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EFFICIENT SOLUTIONOF THE EULERAND NAVIER-STOKESEQUATIONS
WITH A VECTORIZEDMULTIPLE-GRID ALGORITHM

Rodrick V. Chime and Gary M. Johnson

National Aeronautics and Space Administration
Lewis Research Center

Cleveland, Ohio 44135

ABSTRACT solution. As the multiple-grid scheme retains the
explicit nature of the underlying fine-grid proce-

A multiple-grid algorithm for use in efficiently dure, it may be vectorized in a straightforward
obtaining steady solutions to the Euler and Navier- manner. This leads to a further reduction in com-
Stokes equations is presented. The convergence of putational work. In combination, multiple-gridding
the explicit MacCormack algorithm on a fine grid is and vectorization produce a quite efficient explicit
accelerated by propagating transients from the algorithm for the solution of both inviscid and

_ domain using a sequence of successively coarser viscous flow problems.
_ grids. Both the fine- and coarse-grid schemes are

readily vectorizable. The combination of multiple- EQUATIONSOF MOTION
gridding and vectorization results in substantially
reduced computational times for the numerical solu- The nondimensional equations of motion may be
tion of a wide range of flow problems. Results are written in conservation law form as
presented for subsonic, transonic, and supersonic

inviscid flows and for subsonic attached and sepa- qt = -(Fx . Gy) (1)rated laminar viscous flows. Work reduction factors
over a scalar, single-grid algorithm range as high
as 76.8. where, for the full Navier-Stokes equations,

INTRODUCTION F z f - Re-lr G _ g - Re-ls

Steady solutions to both the Euler and Navier-
Stokes equations are commonly computed as temporal while, for their thin-layer version,
asymptotes to the unsteady equations of motion with

steady boundary conditions applied. This is done F z f G z g - Re-l_
because the unsteady equations are either purely
hyperbolic, in the case of the Euler equations, or
hyperbolic - parabolic, for the Navier-Stokes equa- and, for the Euler equations,
tions, and are thus amenable to numerical solution
by robust time-marching procedures. Furthermore,
such procedures are relatively easy to implement F z f G _ g
and, to the extent that the computation is time-
accurate, allow physical interpretation of the con- where:
vergence history.

Relaxationprocedures for solving the steady, rpv l

compressible versions of the Euler or Navier-Stokes F_u] rpu2. ]:/ pu * P/ /°uv /
equations are a topic of current research and have q =|PV I f IpUV | g =
not as yet resulted in production algorithms. LtJ L(E+ p)u] |pv2 + p I

Both explicit and implicit time-marchingproce- L(E+p)v]
dures are presently in widespread use. The explicit

methods are simple, easily vectorizableand allow a 0
good deal of flexibility in the treatment of bound- r

ary conditions. Their largestshortcoming lies in l_xx

their conditionalstability,which may place rather r =
severe limitationson the time step size permissible TxY

on a given grid. When only a steady solution is _pr-1(y - 1)-1(a2)x + U<xx + VTxysought and the accurate resolutionof transients is
of no consequence,explicit methods may consequently
exhibit poor convergencerates. FO

Implicit methods are one possible remedy to the [Txyslow convergenceof explicit schemes. These meth- s =

ods, at the expense of a higher operationscount, lTyy

are generally unconditionallylinearly stable and Lpr-I(y- 1)-1(a2)y + U_xy + V_yyhopefully permit time steps to be taken as large as
is consistentwith accuracy requirements. In prac-
tice, large time steps may excite nonlinear

: instabilities,and the choice of boundary condition F0 1

implementationmay introducea stability limit. _ = |_Uy JThe presentwork maintains the advantages of an I(_ + 2_)Vyexplicit procedure while using a multiple-gridcon-

vergence accelerationscheme to substantially LKpr-I(y - 1)-1(a2)y+ _(UUy + 2VVy) + _vvimprove the convergencerate at relativelylow com-

putationalexpense, in terms of increasedoperations = (_ + 2u)ux + _Vycount. This results in a net reduction in the com- _xx
putational work required to produce a converged

1
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= Specificationof initial and boundary condi-
<xy _(Uy + vx) tions complete the formulationof the problem.

Initial conditions are specified as uniform flow
<yy = (_ + 2_)Vy + _ux at the isentropicMach number implied by the ratio

of exit static pressure to inlet total pressure.
Here p, u, v, p, a and E are respectively Boundary conditions are specified as follows: At
density, velocity components in the x- and y- the inlet,total temperature,total pressure, and
directions,pressure, sound speed and total energy flow angle are specified,while at the exit the
per unit volume. The total energy per unit volume static pressure is specified. Along solid surfaces
may be expressed as the tangency condition is applied for inviscid

flow, or the no-slip condition is applied and the
temperatureis specified for viscous flow.

E = p(e + ½(u2 + v2)) FINE-GRID SOLUTION PROCEDURE

where the specific internal energy, e, is related The fine-grid integrationscheme employed in
to the pressure and density by the simple law of a this work is the _wo-step Lax-Wendroffmethod known
caloricallyperfect gas as the MacCormack_ scheme. Schemes of Lax-Wendroff

type may be arrivedat intuitivelyby using
p = (y - 1)pe Taylor's theorem to write the approximation:

with y denoting the ratio of specific heats.
At2

The coefficientof thermal conductivity,_, and aq = At qt +Tqtt (2)the viscosity coefficients,_ and p, are assumed
to be functions only of temperature. Furthermore,
by invoking Stokes' assumptionof zero bulk where we define the "correction"to q such that
viscosity, _ may be expressed in terms of the
dynamic viscosity _ as aq _ q(t + At) - q(t)

2 Since we seek solutions to Eq. (1), time deriva-
= -_ _ tives may be expressed as space derivatives:

Re and Pr denote the Reynolds and Prandtl numbers, qt = -(Fx + Gy)
respectively.

Although, for simplicity,the equations of
motion are presented here written in Cartesian qtt = [A(Fx + Gy)]x + [B(Fx + Gy)]y
coordinates,ViviandI has shown that their strong
conservationlaw form may be maintained under an where A and B are the Jacobian matrices (see
arbitrary time-dependenttransformationof coordi- Steger2 for details):
nates. Explicit detail concerningthe generalized
coordinateversion of these equations has been A _ BF/Bq B _ aG/Bq
provided by Steger2 and need not be repeated
here. Substitutioninto Eq. (2) results in:

We note that the thin-layer approximation,in

the words of Baldwin and Lomax3, "... evolves aq = -at(F x + Gy)
directly from a realistic assessment of what is

really being computed in a typical high Reynolds _{[ Gy) }number Navier-Stokessimulation." A highly + A(Fx + ] + [B(Fx + Gy)] (3)
stretched mesh is used to resolve the large flow x y
gradients normal to the vorticity-generatingsur-

face. Consequently, because of limitationson Second-orderaccurate spatial discretizationof
computer capacity, the diffusion terms involving Eq. (3) then yields a one-step Lax-Wendroffmethod.
derivativesparallel to the surface are not re-

solved well enough to merit their computation. Ni's Method
Similar viscous terms are also neglected in

the classical boundary layer approximation. How- Prior to discussingMacCormack'sscheme, we
ever, while the boundary layer approximation derive the fine-grid solution procedure used by
replaces the normal momentum equation with the Ni5. This is a necessary prerequisiteto the
assumption that the normal pressure gradient is developmentof the coarse-grid accelerationscheme.
zero across the viscous layer, all momentum equa- If we make the following finite-volume type
tions are retained in the thin-layer approximation approximations:
and no assumptionsare made concerning the pres-
sure. Consequently, the separationpoint is not a 1 F

singularityof the thin-layermodel equations nor (Fx + Gy)i,j =8---Ax-k(Fi+l,j+l + 2Fi+l,J +
do the problems associatedwith matching a boundary Fi+l'j-l)

layer solution to an inviscid outer flow occur (Fi_l,j+l + 2Fi_l,j +when they are used. - Fi-l,j-lJ

In practice,the thin-layer assumption is im- 1 F

plemented by using a body-fitted coordinatesystem +_ k(Gi-l,j+l+ 2Gi,j+l +
and neglecting the viscous terms in the coordinate Gi+l'j+l)

direction along the body. For Cartesian coordi- _ (Gi_l,j_l + 2Gi,j_l + Gi+l,j_l_nates, with x representingthe body-conforming
coordinate,the thin-layerversion of the Navier-
Stokes equations is as given above, and define the "change" in q at cell centers

such that:



_ at [(Fi+l,j + Fi+l,j+l) + _ [aq _ _xFAt + at_yG]]1 _,J-_aq.+l .+1 _ ..1 • 1

+ Fi,j+l_ Eqs. (4) and (7) constitute the one-step Lax-(Fi,j
N

J Wendroff method used as a basi_ integrationscheme
(4) by Ni. He gives the following heuristic interpre-

-A_A-yAt_Gi,j+l + Gi+l,j+l) tation to these equations: the first calculates
the change, Aq, occurring in a controlvolume

fl during the increment at while the second distri-- (Gi,j + Gi+l,jj butes the effects of the changes occurring in four
nearest-neighbor control volumes to their common
central nodal point where they are combined to

it then follows that a discrete approximation to form the correction, 6q, to the vector of conser-
the first-order term in Eq. (3) may be written as: vation variables, as illustrated in Fig. 1. This

interpretation motivates the construction of the
+ coarse-grid acceleration scheme to be discussed

-At(Fx + Gy)i,j :_ FAq. 1 • i Aq. 1 ..1 subsequently.
L 1-_,j-_ 1-_,j Notice that Ni's scheme may also be thoughtof

) (5) as a two-step scheme with a full time increment
predictor defined by Eq. (4) and a corrector de-

+ aq.+l ..1 + Aq.+l . 11 fined by Eq. (7). However, such an interpretation
i _,jT_ i _,j--_j would not be consistentwith the general practice

of avoiding the computationof Jacobian matrices
Consistentwith the above approximationsand def- in two-step schemes.
inition, we may write the approximation:

MacCormack'sMethod

-at(Fx + Gy)_+l _+1 = aq..l ..I
, _,j _ 1 _,J_ Following Richtmyer 6 many two-step Lax-Wendroff schemes have been developed. They have

superseded the one-step schemes by virtue of their
This motivates the definitions: lower operations counts. MacCormack's method is a

particularly popular and efficient member of this

AF i i _ A.+l ..i aq.+l .+i class. The forward predictor- backward corrector
i+_,J+_ I _,j _ ] _,j _ version of this method may be written as

AG 1 i _ At(Fn n __G n nB.+I .+1 Aq.+l .+I aqi,j - - Ax' i+l,j - Fi,j) - Ay' i,j+l - Gi,j)
i+i,j+i 1 7, j _ 1 _,J

n +
If we then approximatethe second-orderterms in qi,j = qi,j Aqi,j
Eq. (3) as:

aqi,j _^A_Fi
I [AFI aqi,j : T - ,j - Fi-l,j)+ x}i,j ..1

7 ,0

(6a) -_-{Gi,j - Gi,j-I)
+ AF I 1 - AFl 1 . 1 - AF1 1 +11

i+i,j-_ "--_,j-_ "--_,j_j
n+l n +

qi,j = qi,j aqi,j

i FAG 1 1 where:
-at {[B(Fx + Gy)] y} i,j - 2ay L i+i,j+_

(6b) Fi,j = F(qi,j)
+ AGl 1 .+1 - AG 1 1 - AG 1 11"-'2,J_ i-_,J-'z i+i,j-,ZJ

Gi,j = g(qi,j)

we may combineEqs. (3), (5), and (6) to yield: First derivativesin the viscous terms are backward
. differencedin the predictor and forward differ-

I [ At At ] enced in the corrector.6qi,j =_ aq +T_AF +_aG • 1 • 1 A second-orderdissipativeterm is used to
1-_,j-_ enforce the entropy condition across shocks in the

supercriticalresults presented later. Second

1 [aq +A__t_ A___At^l derivatives in the dissipation term are multiplied
+ _ ax r - ay _J i___,j+_ by the absolute value of the density gradient.This improves shock resolution but makes the dis-

(7) sipation first-order in the vicinity of shocks.

+ Aq -A--_AX-A--_G Dissipationwas not used for any of the subcritical
i+½ j+½ results.' This approach to solving fluid flow problems

is quite robust and has been in widespread and



successful use for some time, both for the time- flow computations may be formulated on the basis
accurate computation of unsteady flow and for the of the inviscid equations of motion. Such a con-
time-asymptotic solution of steady flow problems, vective coarse-grid scheme is inherently more ef-
In the latter case, where accurate resolution of ficient than the full coarse-grid scheme because
physical transients is;not required, the numerical of the diminished computational effort associated
stability limitation inherent in this explicit with forming the Jacobian matrices of the Euler
method may severely restrict the speed of its con- flux vectors rather than those of the viscous flux
vergence to the steady state. Providing a method vectors. An additional benefit is that the con-
to accelerate convergence in this case is one ob- vective coarse-grid scheme leads to a multiple-
jective of this work. grid convergence acceleration procedure which is

independent of the nature of the dissipative terms
COARSE-GRIDACCELERATIONSCHEME retained in the viscous model equations. That is

to say that the coarse-grid scheme based on the
Given the fine-grid corrections, which may be Euler equations may be employed, without modifica-

computed by any one- or two-step tax-Wendroff tion, to accelerate the convergence of viscous
scheme, as shown in Johnson 7, we wish to use flow computations based on the Navier-Stokes equa-
successively coarser grids to propagate these cor- tions, the thin-layer equations, or any other
rections throughout the computational domain, thus viscous model equations which contain the full
accelerating convergence to the steady state while inviscid Euler equations. This claim is supported
maintaining the accuracy determined by the fine- by the computational results presented subsequently.
grid discretization. Define a fine grid such that
the number of points in each direction is expres- VECTORIZATION
sible as n(2P) + i for p and n integers such
that p > 0 is the number of grid coarsenings, The original multiple-grid MacCormack code was
and n >--2 is the number of intervals on the developed on the IBM 370/3033 computer at the NASA
coarsest grid. Then successively coarser grids Lewis Research Center. This is a scalar machine
can be defined by successive deletion of every which runs at about one-half the speed of a CDC
other point in each coordinate direction. 7600. All scalar timlngs presented in this paper

were obtained on the Lewis 370 with full compiler
Full Coarse-Grid Scheme optimization.

It is well known that explicit algorithms in
The full coarse-grid acceleration scheme, as general and MacCormack's algorithm in particular

illustrated in Fig. 2, replaces the computation of are highly amenable to v_ctorization (eg. Shang,
coarse grid changes using Eq. (4) with a restric- Buning, Hankey and Wirth_). As the multiple-grid
tion of the latest fine-grid correction. This scheme presented here is explicit, it may also be
restricted fine-grid correction is then distributed vectorized in a straightforward manner. Indeed, we
according to a coarse-grid version of Eq. (7) to have vectorized the original research code for use
obtain a coarse-grid correction. This in turn is on the Cray 1-S computer recently installed at NASA
prolonged to the fine grid to become the new fine- Lewis and have decreased its execution time by fac-
grid correction. One time-cycle of the multiple- tors ranging from 11.2 to 13.3 over the scalar code.
grid scheme is composed of an application of some The changes made to the code can be grouped into
Lax-Wendroff scheme on the fine grid followed by the five catagories listed below.
an application of the coarse-grid solution proce- 1. Unrolling short inner DOloops over the
dure to each successively coarser grid. The flow four conservation variables. This change allows
of information in this process is depicted in vectorization over longer outer loops. It also
Fig. 3. Boundary conditions are updated only eliminates considerable loop overhead, thereby im-
during the fine-grid computation. This decouples proving scalar performance.
the coarse-grid acceleration scheme from the de- 2. Revising DO loop ordering to make innermost
tails of boundary condition implementation, loops the longest. The code is thus vectorized

In the basic integration scheme, a change at over grid rows. We remark that both the base Mac-
one grid point affects only its nearest neighbors Cormack algorithm and the multiple-grid scheme can
while, in a k-level multiple grid scheme, the same be vectorized over the entire domain to obtain much
change affects all points up to 2k-I mesh longer vectors. While this would be desirable for
spacings distant. Furthermore, since the change a Cyber 205, it does not seem to be worth the added
is always determined by information from the fine programming complexity for the Cray. Note also
grid and simply propagated by the distribution that making the innermost loop the longest lowers
formulae for coarser grids, fine grid accuracy is the paging rate on the virtual storage IBM machine.
maintained. This concept for convergence acceler- 3. Removing IF statements and subroutine calls
ation was introduced by Ni for use in conjunction from vectorizable loops.
with his one-step Lax-Wendroff scheme, as described 4. Storing metric invariants used in a second-
above. He illustrated its utility by solving the order damping term for the supercritical cases.
homoenthalpic two-dimensional Euler equations. This would be impractical in a storage-limited 3-D

code.
Convective Coarse-Grid Scheme 5. Addition of Cray compiler directives to

ignore possible recursion due to ambiguous sub-
In Johnson 8, consideration of the physical scripts in the multiple-grid subroutine. To allow

processes being modelled in a viscous flow compu- for several grid levels this subroutine is pro-
tation led to the formulation of an alternative grammed to sweep the grid with a variable stride
coarse-grid scheme. Dissipative effects have a equal to 2**(IGD-1), where IGD is the grid level.
local character and their influence need not be The Cray compiler does not know the value of this
taken into account in the construction of coarse- stride a priori, and, to avoid possible recursion,
grid distribution formulae. Rather, it is the will not vectorize loops with an ambiguous stride.
convective terms, with their global character, We know that the multiple-grid scheme is not re-
which are the key element in coarse-grid propaga- cursive and direct the Cray compiler to ignore the
tion. Hence, a coarse-grid scheme for viscous possible vector dependencies. Cray compiler di-



rectives start with a "C" in column one and look on a single fine grid to the work required to pro-
like comments to the IBM compiler, duce the same result on a sequence of grids.

The multiple-grid scheme, as presently con-
structed, requires the use of grids of length Inviscid Flow
n(2P) + I for n and p integers as described
earlier. Since boundary conditions are computed Ultimatelywe intend to use the multiple-grid
separatelyfrom interior points,fine-grid vectors MacCormack algorithmto compute flows in turbo-
are of length n(2P) - 1 and coarse-gridvectors machinery cascades. To investigatethe robustness
are of length n(2P-k+l) - 1, where k > 2 is the of the algorithmwe have computed the flow about

" grid number. For the cases presented l_ter, n = 4 the cascade of bicirculararc airfoils shown in
and p = 4 (in the x-direction)giving a fine-grid Fig. 4 over a wide range of flow conditions, from
vector length of 63, which is a near-optimalvector low speed to choked. We will reference the dif-
length for the Cray. Coarse-gridvector lengths ferent flow conditionsby the nominal Mach number
can be much shorter, and consequentlycoarse-grid impliedby the imposed isentropicstatic-to-total
calculationsdo not vectorize as efficientlyas pressure ratio.
fine-grid calculations. Nevertheless,the coarse- All inviscid computationswere made using the
grid calculationsbenefit from vectorizationas 65 x 17 node fine grid as shown in Fig. 5 and the
long as the vector length remains greater than about coarse grids as indicated in Table I. All computa-
four. tions have been run to convergenceon a single grid

Note that a Cray vector is defined by a starting and on a three-gridsequence, on both the IBM
location, a length and a stride through memory, 370/3033 and the Cray I-S. We emphasize that the
making the multiple-grid scheme readily vectorizable converged single- and multiple-grid solutions are
on the Cray. However on the Cyber 205, vectors are identical. The computationsare consideredto be
defined only by a starting location and length,with convergedwhen the average unscaled residual in pu
elements assumed to be in contiguousmemory loca- drops below 10-4, a decrease of approximately
tions. This would make the multiple-gridscheme three decades. Detailed timing and convergence
more difficult to vectorize on a 205. data are presented in Table II and will be dis-

The vectorizedmultiple-grid code is completely cussed subsequently.
machine independentand has been run on both the Fig. 6 shows computed points on a mass flow
IBM 370/3033 and the Cray 1-S, in 64-bit precision versus pressure ratio operating curve for the
on each, to produce the results in this paper. To cascade. The largest error in integratedmass
illustratethe performance increase due to vector- flow along any grid line in any of the cases was
ization,we present the following timing results 0.38 percent. The computed points are compared to
for a typical inviscid supercriticalflow case. the 1-D isentropictheory. The 1-D choking pres-
First, the vectorizedcode runs 1.77 times faster sure ratio is 0.73503while the computed 2-D
on the IBM than the original code did, due strictly choking pressure ratio has been bracketed between
to scalar efficiency improvements. Second, in a 0.70155 and 0.72093. Details of the flows at the
scalar mode on the Cray the code runs 5.82 times four right-most points on the curve are shown in
faster on one grid and 5.31 times faster on three Figs. 7 through 10.
grids than on the IBM, reflectingmostly the clock Low-speedresults at M = 0.2 are shown in
times of the two computers (12.5 ns for the Cray, Fig. 7. Fig. 7(a) shows isomachs while Fig. 7(b)
60 ns for the IBM). Third, in vector mode on the shows Mach number distributionson the body and
Cray the code runs 2.36 times faster on one grid symmetry lines. Figs. 7(c) and 7(d) show con-
and 2.15 times faster on three grids than in scalar vergence histories on 1 and 3 grids, respectively.
mode. Averaged over several cases we find that the The low-speed solution converges extremely slowly
vectorized Cray code runs 13.3 times faster on one on a single grid, taking 5740 time cycles. On
grid and 11.2 times faster on three grids than the three grids the solution converges in 780 time
scalar IBM code. Again, the relative difference in cycles,with a net multiple-gridwork reduction
speed-up due to vectorizationbetween the single- factor of 4.92 on the IBM and 4.02 on the Cray.
and multiple-grid codes is due primarilyto the Subcriticalresults at M = 0.5 are shown in
short vector lengths on the coarse grids. It may Fig. 8. This case has been well documented in
be possible to improvethe vectorizationof the Johnson.7 The single-gridsolution converges in
multiple-grid algorithm by restructuringthe storage 4300 time cycles while on three grids the solution
of the coarse-griddata. converges in 710 time cycles. The multiple-grid

work reduction factor is 3.92 on the IBM and 3.31
COMPUTATIONALRESULTS on the Cray.

Supercriticalresults at M = 0.675 are shown
We report on a sampling of the computations in Fig. 9. This case has also been well documented

performed thus far with the vectorized,multiple- in Johnson.7 The single-gridsolution converges
gridded MacCormack algorithm. The full Euler equa- in 2310 time cycles while on three grids the solu-
tions have been solved across the entire spectrum tion converges in 830 time cycles. The multiple-

. of subsonic,transonic and supersonicflow. The grid work reduction factor is 2.01 on the IBM and
thin-layerversion of the Navier-Stokesequations 1.67 on the Cray.
has been solved for both attached and separated Choked results at M = 0.73 are shown in
laminar subsonic flows. All computationshave been Fig. 10. Of particular interest is the greatly
performed in two dimensions. Extension of these increasedsingle-gridconvergencerate over that
results to the full Navier-Stokesequations,tur- for the supercriticalbut unchoked case shown in
bulent flow or three dimensions presents no essen- Fig. 9. The choked single-gridsolution converges
tial difficulties. Results for attached and in 1350 time cycles, which is almost twice as fast
separated turbulent subsonic flows are reported in as the unchoked solution. On three grids the
Johnson.±u choked solution converges in 710 time cycles but,

For each case presented here we define a because the single-gridconvergencerate is high,
multiple-gridwork reduction factor to be the ratio the multiple-gridwork reductionfactor is only
of the work required to produce a converged solution 1.38 on the IBM and 1.14 on the Cray.
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By fixing all inlet conditions at M : 1.6 to form multiple-grid sequences of length one
(below the choking mass flow) and by extrapolating through five.
all exit conditions, the same cascade was run as a Computations have been performed for the com-
supersonic inlet diffuser. These results are shown binations of Reynolds number and fine grid con-
in Fig. 11. Isomachs, shown in Fig. 11(a), show a figuration indicated in Table IV. Isomach contours
strong oblique shock leaving the leading edge. for the converged solutions produced for each case
The leading-edge shock intersects the upper sym- are shown in Fig. 15. The contour levels displayed
metry plane as a normal shock which reflects are not equally spaced and are the same for all

• downward to intersect with another oblique shock five cases shown. Nevertheless, they provide a
leaving the trailing edge. Surface Mach numbers, good qualitative indication of the nature of the
shown in Fig. 11(b), show some overshoot before computed flowfields. More quantitative information
the normal shock on the symmetry plane, indicating is provided by the normalizedu-velocity profiles,
too little damping. The single-gridconvergence which are also illustratedin Fig. 15. The
history in Fig. 11(c) is not as steep as the choked u-velocity,normalizedwith its value at the top
case in Fig. 10(c), converginghere in 1840 time boundary and same streamwise station, is plotted
cycles. The three-gridhistory in Fig. 11(d) shows as a function of relative distance from the bottom
convergence in 950 time cycles. The multiple-grid boundary. Curves for every second streamwise sta-
work reduction factor is 1.38 on the IBM and 1.21 tion, starting with the plate leading edge and
on the Cray. ending at the outflow boundary, are displayed.

Subcriticalflow through a similar cascade but They are staggered in proportionto the spacing of
with a 40 percent blade thickness and subject to a their respectivestreamwise stations. The data

linear inlet shear profile is shown in Fig. 12. displayed in Fig. 15 are for conditionsof optimal
The inlet profilehas a nominal Mach number of 0.5 work reduction, as indicated in Table IV. However,
at the top and 0.1 at the bottom. Isomachs in in each case the solution obtained is not a func-
Fig. 12(a) show near-perfectleft-to-rightsym- tion of grid sequence length. This was verified
metry. Surface Mach numbers are shown in by extensive computational experimentation.
Fig. 12(b). The single-grid convergence rate in Convergence histories are also shown in
Fig. 12(c) is slow, as are the other subcritical Fig. 15. For each cas_, we display the fine grid
cases, converging in 3030 time cycles. On three convergence history and the corresponding conver-
grids the solution converges in 1410 time cycles, gence history for that grid sequence length which
The multiple-grid work reduction factor is 1.42 on produced the best work reduction factor. Several
the IBM and 1.18 on the Cray. of the plots have been truncated to fit within the

Detailed timing and convergence data for the residual range displayed.
six inviscid cases are presented in Table II(a). For all three test cases and the five possible
Note that times to convergence on the Cray ranged grid sequence lengths, the computational work re-
from 7.3 to 14.5 seconds. Multiple-grid work re- quired to reduce a standard error measure to a
duction factors are summarized in Table II(b). specified tolerance has been recorded. In each
The most interesting result in this table is that case, based on these data, we have estimated a
the multiple-grid work reduction factor is greatest multiple-grid work reduction factor for the cor-
for the lowest speed flows. However, in all cases responding optimal grid-sequence length. The
the increased computational work of the multiple- results obtained are recorded in Table IV. Multiple-
grid scheme was more than offset by the improved grid work reduction factors ranging from 1.8 to 4.8
convergence rate. have been realized. Wenote that Johnson8 ob-

served that although the work reduction factor
Viscous Flow and, possibly, the optimal grid sequence length

decrease with increasing grid stretching, they do
We first consider the subsonic flow through a not appear to decrease with increasing Reynolds

cascade of unstaggered flat plates at zero angle number.
of attack, as illustrated in Fig. 13. The ratio Further viscous flow computations have been
of exit static pressure to upstream total pressure performed in a cascade where the flat plates were
is 0.8430191, yielding flow Mach numbers in the replaced by sting-mounted bicircular-arc airfoils,
vicinity of 0.5 for the test cases to be exhibited as depicted in Fig. 16. Here, the grids used were
here. The Reynolds numbers, based on cascade gap simply sheared versions of those used previously
and critical speed, span the approximaterange in the flat plate test cases. The combinationsof

from 8.4 X 103 to 2.0 X 10_. Symmetry is Reynolds number, thickness-to-chordratio and grid
invokedto limit the size of the computational configurationtested are listed in Table V. Iso-
domain and the flow is assumed to be laminar, mach contours, normalizedu-velocity profiles and
These assumptionsare made for conveniencein convergencehistories for these cases are shown in
specifyingthe number and location of fine-grid Fig. 17. The work reduction factors attained
nodal points and do not imply limitationson the ranged from 1.5 to 3.8 and are reported in Table V.
generalityof the method. The choice of boundary The viscousresults presented in this report
conditions is also indicated in Fig. 13. were run as scalar computationson the IBM

As illustrated in Fig. 14, three different 370/3033. A vectorizedversion of the viscous
fine grids are employed in this study. All have code has been benchmarked on the Cray 1-S to de-
the same number of nodal points (65 x 33) and have termine the work reduction attainable through vec-
their transverse grid lines located at the same torization for viscous cases. By combining the
positions. They differ in the positioning of their multiple-grid work reduction factor with the work
lateral grid lines. These are smoothly stretched reduction attained by vectorizing the algorithm,
away from the solid boundary in a geometric pro- we have determined that the overall work reduction
gression, starting from the initial spacings in- for the viscous flow cases ranged as high as 76.8.
dicated in Fig. 14. These fine grids each allow Several issues bearing on the multiple-grid
the construction of four successively coarser work reduction factor should be mentioned at this
grids, as indicated in Table Ill. The members of juncture. When one considers convergence acceler-
these grid families may then be used in combination ation of the turbulent full Navier-Stokes equa-



tions, greater work reduction than obtained here REFERENCES
will result by virtue of the inclusion of the full
viscous terms and turbulence modelling on the fine i. Viviand, H., "Formes Conservatives des
grid. The treatment of the Jacobian matrices used Equations de la Dynamique des Gaz."
in the coarse-gridacceleration scheme has a large ("Conservative Forms of Gas Dynamics
influence on the efficiency of the coarse-grid Equations."), La Recherche A_rospatiale,
computations and, hence, on the work reduction No. 1, Jan. - Feb. 1974, pp. 65-66.
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in conjunction with MacCormack's method.
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TABLEI. - INVlSCIDFLOWGRIDDESCRIPTIONS

" GRID 1 2 3

NUMBEROF
65x 17 33x 9 17x 5

- POINTS

TABLEIla. - TIMINGANDCONVERGENCEDATAFORINVlSCIDFLOWCASES

CASE FIG. MACHINE TIMEFOR5KCYC. CYC.TOCONVERGE TIMETOCONVERGE
(sec) (sec)

T1GRID T3GRIDS NIGRID N3GRIDS tlGRID t3GRIDS

M = . 2 IBM 368.9 551.5 5740 780 420.2 86.0
7

LOWSPEED CRAY 28.0 51.2 5740 780 32.2 8.0

M = . 5 IBM 370.7 572.4 4300 710 318.8 81.3
8

SUBCRITICAL CRAY 28.0 51.2 4300 710 81.3 7.3

M = . 675 IBM 481.6 665.2 2310 830 222.5 110.4

SUPERCRITICAL 9 CRAY 35.1 58.3 2310 830 16.2 9.7

M --. 73 IBM 478.7 658.3 1350 710 129.2 93.5
10

CHOKED CRAY 35.1 58.3 1350 710 9.5 8.3

M " I. 6 IBM 467.0 654.7 1840 950 171.9 124.3
11

: INLETDIFFUSER CRAY 36.1 58.1 1840 950 12.8 11.0

M _. I -. 5 IBM 366.9 555.1 3030 1410 222.3 156.5
i 12

INLETSHEAR CRAY 28.0 51.2 3030 1410 17.0 14.5



TABLElib. - MULTIPLE-GRIDWORKREDUCTIONFACTORSFORINVISCIDFLOWCASES

CASE FIG. MACHINE (ADDEDWORK)-1 ,:, CONVERGENCE: WORKREDUCTION
RATEINC. FACTOR

T1GRID/T3GRIDS N1GRID/N3GRIDS T1GRID/T3GRIDS

M :. 2 IBM .669 7.36 4.92
7

LOWSPEED CRAY .547 7.36 4.02

M :. 5 IBM .648 6.06 3.92
8

SUBCRITICAL CRAY .547 6.06 3.31

M : .675 IBM .724 2.78 2.Ol
9

SUPERCRITICAL CRAY .602 2.78 1.6/

M =.73 IBM .727 1.90 1.38
10

CHOKED CRAY .602 1.90 1.14

M - 1.6 IBM .713 1.94 1.38
11

INLETDIFFUSER CRAY .621 1.94 1.21

M :. 1 -. 5 IBM .661 2.15 1.42
12

INLETSHEAR CRAY .647 2.15 1.18

TABLEIII. - VISCOUSFLOWGRIDDESCRIPTIONS

GRID 1 2 3 4 5

NUMBEROF
65x 33 33x 17 17x 9 9x 5 5 x 3

POINTS



TABLEIV.-VISCOUSFLATPLATETESTCASES

TESTCASE REYNOLDS INITIAL OPTIMAL WORK
NUMBER TRANSVERSE SEQUENCE REDUCTION

SPACING LENGTH FACTOR

a 8.4x 105 0.0125 .5 4.8

b 5.4x 104 0.00625 2 OR5 3.0

c 2.0x10.5 0.00250 3 1.8

TABLEV. -VISCOUSBICIRCULARARC TESTCASES

TESTCASE REYNOLDS THICKNESS INITIAL OPTIMAL MULTIPLE-GRID
NUMBER CHORD TRANSVERSE SEQUENCE WORK REDUCTION

SPACING LENGTH FACTOR

a 8.4x 103 O.100 O.012,50 3 5.8

b 3.4x104 O.100 O.00250 2 1.8

c 5.4 x104 O.0.50 O.0062.5 2 2.,5

d 2.0x105 O.025 O.002.50 2 I.,5
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