JPL PUBLICATION 82-62

Propellant/Material Compatibility Program and Results

Ten-Year Milestone

Clifford Moran Roy Bjorklund

July 15, 1982

National Aeronautics and Space Administration

Jet Propulsion Laboratory California Institute of Technology Pasadena, California

> REPRODUCED BY U.S. DEPARTMENT OF COMMERCE NATIONAL TECHNICAL INFORMATION SERVICE SPRINGFIELD, VA 22161

The research described in this publication was carried out by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.

CONTENTS

Ι.	Objectives	1
II.	Pretest Activities	2
III.	Posttest Analysis	4
	A. Posttest Chemical Analysis	4
	B. Posttest Specimen Analysis	4
IV.	Material Ratings	10
	A. Hydrazine/Materials, 10-Year Compatibility Ratings	10
	B. Monomethylhydrazine/Materials, 10-Year Compatibility Ratings	13
	C. Nitrogen Tetroxide/Materials, 10-Year Compatibility Ratings	14
v.	Conclusions	16
	A. Hydrazine	16
	B. Monomethylhydrazine	16
	C. Nitrogen Tetroxide Mon-1	16
Gloss	sary of Terms	17
Refer	cences	18
Appen	ndix A. Summary of Specimens Remaining in Storage	19
Appen	ndix B. Pretest Propellant Assays	25
Appen	ndix C. Summary of Posttest Analyses and Results	29
Appen	ndix D. Scanning Electron Microscope Examination of Specimens	47

Figures

1.	Procedure for capsule filling	3
2.	Procedure for posttest chemical analysis, hydrazine	5
3.	Procedure for posttest chemical analysis, monomethylhydrazine	6
4.	Procedure for posttest chemical analysis, nitrogen tetroxide	7
5.	Procedure for metallic specimen analysis	8
6.	Materials rating system	11
D-1.	Specimen 0018, 6061-T6Al, 500X. Unbroken surface film	48
D-2.	Specimen 0016, 6061-T6Al, 500X. Cracked and flaking film	48
D-3.	Specimen 1130, 304L, heat-affected zone, 500X. Thin irregular film	49
D-4.	Specimen 0896, Ti6Al-4V, 500X. Thin irregular film, minor cracking and pitting	49
D-5.	Specimen 1499, 6061-T6Al, 500X. Thin film with cracking and flaking	50
D-6.	Specimen 1527, 304L, 500X. Unbroken surface film	50
D-7.	Specimen 0073, 2014-T6A1, 500X. Thin-to-moderate film showing evidence of erosion, not surface pitting	51
D-8.	Specimen 3155, 304L, 500X. Surface virtually untouched	51
D-9.	Specimen 1975, 347, 500X. Corrosion at area of highest stress .	52
D-10.	Specimen 0191, Ti6A1-4V, 500X. Unbroken surface film	52

Tables

A-1.	Specimens in hydrazine (MIL-P-26536B)	20
A-2.	Specimens in purified hydrazine (VL-75)	21
A-3.	Specimens in hydrazine-hydrazine nitrate	22
A-4.	Specimens in monomethylhydrazine (MIL-P-27404A)	23
A-5.	Specimens in nitrogen tetroxide (MON-1) (MSC-PPD-2B)	24
B-1.	Assay of hydrazine	26

Tables

B-2.	Assay of monomethylhydrazine used in material compatibility test program	27
B-3.	Assay of nitrogen tetroxide used in material compatibility test program	28
C-1.	Summary of posttess analyses and results - hydrazine	30
C-2.	Detailed posttest analyses and results - hydrazine	36
C-3.	Posttest analyses of hydrazine controls	37
C-4.	Summary of posttest analyses and results - monomethylhydrazine	38
C-5.	Detailed posttest analyses and results - monomethylhydrazine	40
C-6.	Summary of posttest analyses and results - nitrogen tetroxide (MON-1)	41
C-7.	Detailed posttest analyses and results - nitrogen tetroxide	44

ABSTRACT

This report details the analyses and results of a test program to establish the effects of long-term (10 years or more) contact of materials with earthstorable propellants for the purpose of designing chemical propulsion system components which can be used for current as well as future planetary spacecraft. This report covers the period from the publication of JPL TM 33-779 in 1976 through the testing accomplished in 1981.

The following propellants are reported herein: hydrazine, monomethylhydrazine and nitrogen tetroxide. Materials included the following: aluminum alloys, corrosion resistant steels and a titanium alloy. The results of the testing of more than 80 specimens are included. Material ratings relative to the ten-year milepost have been assigned.

Some evidence of propellant decomposition was found. Titanium is rated as acceptable for ten-year applications. Aluminum and stainless steel alloys are also rated as acceptable with few restrictions.

1. OBJECTIVES

The basic objective of the NASA propellant/material compatibility program is to obtain detailed compatibility data for periods up to 10 years or longer. Concommitant objectives are the development of (1) a standard test methodology, (2) basic procedures for compatibility testing and analysis, and (3) a system of rating the materials for compatibility in long-term applications.

The scope of the test program was established to serve the needs of longterm planetary spacecraft. The "real-time exposure testing" approach was chosen as the most productive method of determining the acceptability of materials of construction for chemical propulsion systems.

The test program is comprehensive. Materials are tested unstressed and stressed in each propellant. Groups of materials are tested in (1) bimetal separated, (2) bimetal contact, (3) welded, (4) brazed, (5) plated and (6) coated configurations. In addition there are control units containing only propellants to monitor the behavior of the propellant itself.

A summary of the specimens remaining in storage is presented in Appendix A. The metals include aluminum alloys, corrosion-resistant steels and titanium alloy. Nonmetals include fluorocarbon coating or grease, ethylene propylene terpolymer and butyl rubber compound elastomer. Whenever possible, these were procured and certified to meet military specifications or equivalent specifications used in aerospace applications. A detailed description of these is given in Ref. 1. The emphasis has been on materials appropriate to small liquidpropellant thrusters. Most of the materials originally placed into storage were those typically used in the Viking Orbiter 1975 propulsion system.

II. PRETEST ACTIVITIES

Preparation of specimens and the assembly of the test units are detailed in Ref. 1. The procedures used for capsule loading are outlined in Fig. 1. The pretest propellant assays are given in Appendix B.

The test container was made of borosilicate glass ("Pyrex"). The design was such that it could be completely sealed with the propellant and specimen in contact with only the glass. Internal pressure in the glass capsules is monitored by attached strain gauges. Earlier capsule designs utilizing an attached bourdon gauge had the disadvantage of propellant interaction with gauge material.

Capsule loading was accomplished under clean room conditions. The specimen was inserted into the capsule and a glass transition section fused to the capsule opening. Propellant was admitted either by the use of a glass syringe or by distillation. The propellant was frozen; the nitrogen used to blanket the propellant was evacuated, and the capsule tipped off by fusing the glass.

After completing the final seal, the capsules with specimens in place were maintained with the propellant frozen. This allowed for safer handling and shipping, and also inhibited any premature chemical reaction. The capsules were shipped to ETS and placed in storage in a special test facility held at a constant temperature of $43^{\circ} +1^{\circ}C$ (110 +2°F).

Under the general program plan, a few test units were due to be removed semiannually for posttest analysis. However, this schedule was not adhered to, and capsules were removed on an irregular basis. The criteria for removal from test were (1) to obtain periodic data points for certain, widely used metals, e.g., CRES 304L, (2) to analyze those test units in which the propellant was discolored, thereby indicating a high degree of corrosion, and (3) to remove from test for safety reasons those units indicating pressures greater than $34.4N/cm^2(50 \text{ psia})$. The last criterion proved unsatisfactory because the strain gauges often gave spurious results, especially as they aged.

ORIGINAL PAGE IS

Fig. 1. Procedure for capsule filling (strain gauge type)

3

III. POSTTEST ANALYSIS

Since the publication of Ref. 1 in 1976 a considerable number of test capsules have been subjected to posttest analysis. Material evaluation and propellant characterization have been accomplished with more than 80 test units. The results of these analyses are included in this report and in Appendix C. The previously published report was primarily directed toward the investigation of fuels (hydrazine, MMH and hydrazine-hydrazine nitrate). The present report includes the analyses of 32 test units containing an oxidizer - nitrogen tetroxide.

The fuel, hydrazine-hydrazine nitrate, has not been included herein because of problems with rapid and excessive corrosion, particularly with CRES specimens, and the rapid evolution of dangerously high pressures in the test capsules. Most of these specimens were removed from test storage within months of their initial exposure period. Many exploded in the test rack. A few capsules containing either titanium (6Al-4V) alloy or aluminum alloys remain in test but no decision has yet been made as to their disposition.

A. POSTTEST CHEMICAL ANALYSIS

The procedures used for posttest chemical analysis of propellants are detailed in Ref. 1. An outline of the procedure for hydrazine is shown in Fig. 2; monomethylhydrazine was tested in a similar manner (Fig. 4). The procedure for nitrogen_tetroxide is outlined in Fig. 4.

The propellant was frozen by immersing the capsule in liquid nitrogen. The capsule was placed in an opening fixture, attached to a high vacuum line, and then the glass tip was broken and the noncondensible gas removed and measured in a calibrated volume. This gas was analyzed for N_2 , H_2 , and, in the case of MMH, CH_4 . The propellant was then thawed; hydrazine and MMH were removed from the capsule with a syringe. Nitrogen tetroxide was distilled from the capsule into a preweighed glass vial. Each propellant sample was analyzed for purity, contaminants and dissolved metals.

B. POSTTEST SPECIMEN ANALYSIS

The procedures used for the posttest analysis of the metal specimens were the same as those detailed in Ref. 1. Each specimen was examined to determine the physical or metallurgical changes which had taken place. Surface conditions were examined at low magnifications with an optical microscope and selected surfaces were examined at higher magnification with a scanning electron microscope (SEM) (Appendix D). Figure 5 outlines the general procedures.

Fig. 3. Procedure for posttest chemical analysis, monomethylhydrazine

Fig. 4. Procedure for posttest chemical analysis, nitrogen tetroxide

.

Original page is of poor quality

Fig. 5. Procedure for metallic specimen analysis

The important observations are listed:

- (1) Weight.
- (2) Appearance and location of the liquid/vapor interface boundary.
- (3) Presence and distribution of deposits, stain or film.
- (4) Streaks, mottling or spotting of surfaces.
- (5) Crystalline deposits.
- (6) Flaking and/or cracking of films.
- (7) Extent and location of etching.
- (8) Extent and location of pitting, size of pits.
- (9) Extent and location of cracking.

IV. MATERIAL RATINGS

The criteria for the determination of long-term propellant/material compatibility ratings are fully covered in Ref. 1. The general scheme for determining the final ratings is shown in Fig. 6. The materials rating system has been established to derive engineering information and design guidelines for JPL test programs. The system provides for:

- (1) A basis for selecting structural or component material candidates based on the application and operating environment.
- (2) A basis for rating the acceptable materials in terms of the best data currently available.

The classification and symbols used are:

- A = acceptable
- N = not acceptable
- I = incomplete compatibility data with respect to conditions or duration
 of exposure
- R = restricted compatibility due to corrosion of materials or propellant degradation at conditions that could influence the mission, component or operating specifications.

A. HYDRAZINE/MATERIALS, 10-YEAR COMPATIBILITY RATINGS

Based upon the rating system discussed in the previous section, the compatibility ratings for materials in contact with hydrazine for 10 years at 43°C (110°F) are summarized as follows:

Material	Rating	Qualification
Propellant only	A	R
Aluminum alloys 6061-T6, 2014-T6	А	R
Corrosion resistant steel 302 and 303	N	
304L, 316, 347, 17-7 430, 446, 355	А	R
350	N	I
Titanium alloy 6Al-4V	А	

ORIGINAL PAGE 19 OF POOR QUALITY

Fig. 6. Materials rating system

Material	Rating	Qualification
Others		
Braze	А	I
Gold plate	A	I
Polymers		
AFE-332	A	I

• •

1. Hydrazine

Decomposition of the propellant resulted mainly from contaminants in solution and the catalytic effects of metals, and, generally, the rate of decomposition was acceptably low, i.e., less than 0.1% per year for both the MIL-P-26536B specification grade and the purified hydrazine. The hydrazine rating is restricted only in presence of contamination and/or catalyzing metal ions.

2. Aluminum Alloy, Type 6061-T6, 2014-T6

During analysis of this aluminum alloy, the main features noted were moderate corrosion and the formation of a surface film, some of which flaked off. The film did not appear to catalyze propellant decomposition. The aluminum alloy rating is restricted because of the possibility of oxide layer flaking and plugging filters.

3. Corrosion-Resistant Steel, Types 302 and 303

All capsules with these alloys were found to contain excessive pressure. These CRES alloys are rated not acceptable because of excessive catalysis of the propellant.

4. Corrosion-Resistant Steel, Types 304L, 316, 347, 17-7, 430, 476, 355, 301

These specimens were found to contain some random corrosion and discrete pitting, with only a thin film formation. A quantity of iron was transferred to the solution, and this can catalyze hydrazine decomposition. However, except for a few anomalies, e.g., the 347 weld stress and a 304L weld-stress, the hydrazine decomposition rates were low. These CRES alloys are restricted only because of possible contamination problems and possibly a catalytic interaction in weld-stress specimens.

5. Corrosion-Resistant Steel, Type AM 350

This alloy produced unacceptably high levels of propellant decomposition and is rated not acceptable. However, the rating is considered incomplete because of insufficient data. 6. Titanium Alloy, Type 6A1-4V

The general effects noted in this alloy were the irregular formation of corrosion products on the surfaces — particularly in the vapor exposed area — and minor pitting. Film buildup was very thin. Apparently none of the titanium dissolved in hydrazine, and the catalytic activity was very low.

- 7. Others
 - a. Braze. A 301 Cryo/304L tank-to-diaphragm weld showed no evidence of corrosion; however, the rate of propellant decomposition was 0.2% per year. This alloy is given an acceptable rating; however, these are incomplete data because only one specimen was tested.
 - b. Gold plating. Imperfections (pitting or porosity) in the plating allowed the propellant to interact with the substrate. This produced nonuniform blisters and to a minor extent, affected the bonding integrity of the plating to the metal. The acceptable rating is incomplete because of insufficient data.
- 8. Polymeric, Type AFE 332

No serious degradation of this polymer was observed after a three-year exposure, even in the stressed configuration. The acceptable rating is incomplete because data is lacking for 10-year period.

B. MONOMETHYLHYDRAZINE/MATERIALS 10-YEAR COMPATIBILITY RATINGS

Compatibility ratings for materials in contact with monomethylhydrazine for 10 years at 43°C (110°F) are summarized as follows:

Material	Rating	Qualifier	
Propellant only	А		
Aluminum alloy 6061-T6	А	I	
Corrosion-resistant steel 304L, 347	А		
Titanium alloy 6A1-4V	А	I	

1. Monomethylhydrazine

The rate of decomposition of this propellant in contact with any of the materials tested was acceptably low for the 10-year period, i.e., less than 0.1% per year.

2. Aluminum Alloy, 6061-T6

The primary effect noted on the surface of this alloy was a very thin, even oxide coating which did not appear to flake. Although up to 100 ppm of aluminum was found to be dissolved in the propellant, no catalytic effect was noted. The acceptable rating is incomplete because at this point only two specimens have been tested.

3. Corrosion-Resistant Steel, Types 304L and 347

Both types of stainless steel alloys exhibited only minor corrosion with a surface film formation. Considerable iron was dissolved (100 ppm) but the catalytic effect was small.

4. Titanium Alloy, Type 6A1-4V

Corrosion of this alloy was light, but corrosion products were deposited in the vapor-exposed area and at the liquid-vapor interface. A small quantity of very fine sediment was found in a capsule that also contained chloride contamination. The acceptable rating is incomplete because only two specimens have so far been tested.

C. NITROGEN TETROXIDE/MATERIALS 10-YEAR COMPATIBILITY RATINGS

Compatibility ratings, for materials in contact with nitrogen tetroxide MON-1 for 10 years at 43°C (110°F) are summarized as follows:

Material	Rating	Qualifier
Propellant only	A	
Aluminum alloy 6061-T6	А	R
Corrosion-resistant steel 302, 303, 304L, 316, 321, 347, 17-4, 17-7	А	R
Titanium alloy 6Al-4V	A	
Nickel	N	

1. Nitrogen textroxide MON-1

This propellant was found to be stable when in contact with any of the materials tested.

2. Aluminum Alloy - 6061-T6

The primary effects noted in this alloy were corrosion and formation of a surface film. Corrosion was minor because of the protective nature of the film. The rating of this alloy is restricted only because of the possibility of the oxide layer flaking and plugging filters.

3. Corrosion-Resistant Steel, Types 302, 303, 304L, 316, 321, 347, 17-4 and 17-7

In all CRES alloys, only very minor corrosion was seen. However the rating is restricted due to the iron nitrate dissolved from the surface of the metal with possible flow decay problems in certain applications.

4. Titanium Alloy, Type 6A1-4V

Only minor corrosion was seen in this alloy, usually as a spotty grey appearance. Oxide formations were nonuniform and showed signs of cracking, but not flaking. Thin film appeared to adhere tenaciously and did not dissolve in the propellant.

5. Other: Nickel

Extensive corrosion was observed with flaking of the oxide coating leaving a heavily etched surface. The propellant also contained dissolved nickel.

V. CONCLUSIONS

A. HYDRAZINE

Under the controlled environmental conditions, and in the absence of metal surfaces and degrading contaminants, the rate of decomposition of hydrazine in these tests was determined to be 0.015% per year. In the presence of metal specimens, the decomposition of hydrazine was within an order of magnitude of the rate of the propellant control samples, i.e., less than 0.15% per year. The few exceptions to this were all CRES alloys and the reasons for the greater rate of decomposition were not readily apparent. In general, however, none of the tested materials would, with few exceptions, excessively catalyze the decomposition of hydrazine during long-term (10-year) missions.

B. MONOMETHYLHYDRAZINE

The rate of decomposition of propellant, MMH, in those tests was quite small: 0.02 to 0.10% per year. The corrosion products of aluminum appeared to cause only an insignificant amount of decomposition, whereas the metal ions or corrosion products of CRES alloys or titanium seemed to catalyze the decomposition somewhat more.

The dissolved iron from CRES was higher in MMH than is generally seen in the hydrazine propellants, but the catalytic effect of this ferric ion was obviously less with MMH. Even the highest concentration of iron - 100 ppm yielded a decomposition of only 1.1% in 11 years. It would appear that the materials tested would not excessively catalyze the decomposition of monomethylhydrazine during long term (10-year) missions.

C. NITROGEN TETROXIDE MON-1

No evidence of propellant decomposition has been found. Given the chemical nature of NTO, about the only change possible would be disproportionation into various other oxides of nitrogen, and this disproportionation usually requires more severe conditions (very much higher temperature) than were present in these tests. The CRES alloys, however, did provide enough dissolved iron to cause a possible flow decay problem in certain systems.

GLOSSARY OF TERMS

- AES auger electron spectroscopy
- CRES corrosion-resistant steel
- ELI extra-low interstitial grade
- EPT ethylene-propylene terpolymer
- ETS JPL Edwards Test Station
- FEP Fluorinated ethylene-propylene polymer
- MMH monomethylhydrazine
- MON-1 mixed oxides of nitrogen (NTO with 1% NO)
- NTO nitrogen tetroxide
- SEM scanning electron microscope
- SIMS secondary ionization, mass spectroscopy
- TFE tetrafluoroethylene

REFERENCES

- Toth, L. R., et al., <u>Propellant/Material Compatibility Program and Results</u>, Technical Memorandum 33-779, Jet Propulsion Laboratory, Pasadena, California, August 15, 1976.
- 2. Tolberg, W. E., et al., <u>Chemical and Metallurgical Analysis of 6A1-4V</u> <u>Titanium Test Specimen Exposed to Hydrazine Liquid Propellant</u>, Report 951586-11; Stanford Research Institute, Menlo Park, Calif., April 15, 1971.

ACKNOWLEDGEMENT

The authors acknowledge the assistance and contribution of the following:

Edmond Chow Ray F. Haack Karen M. Moran John W. Short Lois Taylor Louis R. Toth Appendix A

Summary of Specimens Remaining in Storage

original page is of poor quality

Table A-1.	Specimens in	hydrazine	(MIL-P-26536B)
------------	--------------	-----------	----------------

Material	Stug	Bimetal contact	Bimetal separated	Stressed (stressed to 67% of yield)	Welded	Coatings	Controls	Total
		W/304L W/347 W/2219-T81 W/6061 W/64Ti	w/347 w/6061 w/6-4Ti	Slug Weld Bimetal weld	Self	Gold plate Chrome plate Anodize Krytox 240 AC		
304L	3				1			4
316	1	1	1 1					4
347			1 1					2
430	1 .			ł		3		4
446						2	_	2
17-4						1		1
17-7	1					1		2
355	1							1
356-T6AI						2		2
2014- T6				5		1 2		8
2219-T81	2		}					2
5052			1			22		4
6061 T 6	13	21 5	1	3 1		2 3 3		34
7075T6						1		1
6Al-4V Ti	27	2	2	14 16		8		69
6AI-4V ELI	3			6				9
Niobium						2		2
EPT-10	2	234						11
Teflon LRV-448	2			1				2
N ₂ H ₄				1			28	28
Total	56	2 4 3 2 9	4 1 2	28 17	1	2 5 6 22	28	192

۰.

ORIGINAL PAGE IS OF POOR QUALITY

Material	Slug	Bimetal contact		Stressed (stressed to 67% of yield) Ha 4 LT E		Stressed (stressed to 67% of yield) H		Wel	ded	Brazed	Controis	Total
		W/64Ti	Slug	Weld	Bimetal weld	Bimetal weld	Self	Bimetal/3041	Self			
301 CRYO								2			2	
304L CRES	1		3	3	2	1	3				13	
316									1		1	
446				4			1				5	
6Al-4V Ti	1		1		<u> </u>						2	
AFE-332	4	26									30	
EPT-10		6							i .		6	
N2H4										4	4	
Total	6	32	4	7	2	1	4	2	1	4	63	

Table A-2. Specimens in purified hydrazine (VL-75)

ORIGINAL PAGE 19 OF POOR QUALITY

Material	Slug	Bimetal contact	Stre (stre to (of y	essed essed 67% rield)	Welded	Total
· ·		w/6061 w/6-4T	Slug	Weld	Self	
6061-T6 Al		1	1		2	4
6Aŀ4V Ti	1	1	3	3	4	12
Total	1	1 1	4	3	6	16

Table A-3. Specimens in hydrazine-hydrazine nitrate

ORIGINAL PAGE IS OF POOR QUALITY

Material	Sing		Bimeta contac	1 t	Stre (stre to 6 of y	essed essed 57% ield)	Welded	Brazed	Controls	Total
		W/347	W/6061	W/6-4Ti	Slug	Weld	Self	Self		
303 CRES	3	2	2	1	2	2		2		14
304L	2	2	2	2		2	1			11
316	3	2	4	2	2	2	2			17
347	2		2	2	1	2	2			11
6061-T6 AI	3	1			1	2	1			8
6Al-4V Ti		2	2		3	3	3			13
Teflon-FEP	2									2
Teflon-TFE	4									4
MMH (control)								•	2	2
Total	19	9	12	7	9	13	9	2	2	82

Table A-4. Specimens in monomethylhydrazine (MIL-P-27404A)

ORIGINAL PAGE IS OF POOR QUALITY

Material	Slug	/347 0 H	Bimetal contact	/6-4Ti	Stre (stre to 6 of yi	ssed ssed 7% eld)	Welded	hrome plate	Coating	rytox 240 AC	Controls	Total
		3	3	3	S	5	s		<	×		·
302 CRES	3	1	1		1					i		6
303	4 ·	2										6
304L	4	2			1		1			2		10
316	3											3
321	3	1			1		2					7
347	2		7	3	2			2		2		18
416	3											3
17-4	4									1		5
- 17-7	3									2		5
5052AI	4											4
606IT6	2	2		4	4				4	3		19
7075	3											3
6Al4VTi	8				16	8				3	•	35
Nickel	5									2		7
N2 ⁰ 4											5	5
Total	51	8.	8	7	25	8	3	2	4	15	5	136

Table A-5. Specimens in nitrogen tetroxide (MON-1) (MSC-PPD-2B)

,

Appendix B

,

,

Pretest Propellant Assays

Original page is of poor quality

Table B-1. Assay of hydrazine

Constituent of property	MIL-P-26536B ^a specification limits	Drum H-3155 ^b	Purified hydrazine ^C
Hydrazine assay, % by weight	97.5 min	98.7	99,2
Water, % by weight	2.5 max	0.50	0.60
Density at 298 K (77 ⁰ F), g/cm ³	1.004 ±0.002	1.004	1.004
Particulate, µg/cm ³	10 max	4.6	0.5
Ammonia, % by weight	Not required	0.07	0.06
Aniline, % by weight	Not required	0.25	<5 ppm ND ^d
Carbon dioxide, µg/g (ppm)	Not required	35	19
Nonvolatile residue (ash) µg/g (ppm)	Not required	60	<5 ND
Dissolved metals, µg/g (ppm)	Not required		
Iron		0.5	0.38
Aluminum		0.05	<0.05 ND
Nickel		1.10	0.03
Manganese		0.35	0.04
Cobalt		< 0.5 ND	<0.02 ND
Chromium	·	0.16	0.02
Copper		0.09	0.04
Zinc		0.13	0.01
Silicon		<0.5 ND	< 0.5 ND
Magnesium		<0.01 ND	0.01
Sodium		0.20	0.06
Potassium		0.05	0.04
Calcium		0.04	<0.04 ND
Barium		<0.2 ND	<0.2 ND
Boron		<10 ND	<10 ND
Dissolved anions, $\mu g/g$ (ppm)	Not required		
Fluoride		<0.5 ND	< 0.5 ND
Chloride		0.3	< 0.3 ND
Sulfate		<0.5 ND	< 0.5 ND
Nitrate		<0.5 ND	< 0,5 ND

^aVersion of hydrazine specification in force at the start of program.

^bJPL assay replaces SRI assay (Ref. 2) erroneously reported in Ref. 1.

^CMartin Marietta Corp. Lot No. 51, JPL assay.

^dNot detectable by method of analysis used.

Table B-2. Assay of monomethylhydrazine used in material compatibility test program

.

Constituent or property	MIL-P-2740A Amendment 2 specification limits	Assay of N ₂ H ₃ CH ₃ prior to filling capsules
Monomethylhydrazine (N2H3CH3) assay, % by weight	98.3 min	99.42
Water, % by weight	1.5 max	0.48
Particulate, milligram per liter	1 0.0 max	0.97
Density, grams per milliliter at 77 ⁰ F (25 ⁰ C)	0.870 to 0.874	0.872
Ammonia (NH ₃), % by weight	Not required	0,10

Constituent or property	MSC-PPD-2B specification limits	Assay of N ₂ O ₄ prior to filling capsules
Nitrogen tetroxide (N_2O_4) assay, % by weight	98.50	99.36
Nitric oxide (NO) assay, % by weight	0.8 ± 0.20	0.60
Water equivalent, % by weight	0.10 max	0.06
Chloride (NOCl), assay, % by weight	0.08 max	<0.01 ND
Ash, % by weight	-	< 0.01 ND

Table B-3. Assay of nitrogen tetroxide used in material compatibility test program

Appendix C

Summary of Posttest Analyses and Results

				Specimen				Propellant	
Specimen number	Duration of test, days	Material	Configura- tion	Remarks	Weight change, mg	Capsule pressure, N/cm ² at 430C	Decom- position, %	Remarks	Halide content, ^a mg
0001	3939	6061-T6 AI	Slug	Light corrosion; overall thick white film with cracking at the L/V area; light etching and no pitting.	1.8	7.45	0.53	Slight decomposition; water-white.	2.0
0053	3939	Ti6AJ-4V	Slug	No corrosion; overall thin film; no pitting.	5.1	13.75	0.88	Slight decomposition; water-white.	2.20
0073	4233	2014-T6AI	Slug	Light corrosion; overall thick film; light etching; no pitting.	-6.9	16.83	1.16	Slight decomposition; water-white.	0.60
1610	3986	Ti6A1-4V ELI	Slug	Light corrosion; overall thick film with cracking; light etching in the L/V and L areas; light pitting in the L/V and V areas approxi- mately 1 x 10 ⁻⁶ in, in diameter with none in the L area.	3.2	3.98	0.35	Slight decomposition; water-white.	0.20
0533A	4038	6061-T6AJ	Bimetal STD	Light corrosion; thin film in the L and V areas and thick in the L/V area; light etching and no pitting.	1.8	I	1	Severe decomposition; pale pink.	1.80
053 3B		302 CRES	Bimetal	Moderate corrosion and thick film in the L/V and L areas; light corrosion and a thin film in the V area; light etching; moderate pitting in the L/V and L areas and none in the V area.	4				
0559A	4027	Ti 6Al-4V	Bimetal STD	Light corrosion; overall thick film, with cracking in the L/V area; light etching and no pitting.	1.0	12.99	0.84	Slight decomposition; water-white.	2.60
0559B		6061-T6AI	Bimetal	No corrosion; overall thick film, with cracking in the L/V area; no pitting.	-21				

Table C-1. Summary of posttest analyses and results - hydrazine

30

Original page is of poor quality

				Specimen				Propellant	
Specimen number	Duration of test, days	Material	Configura- tion	Remarks	Weight change, mg	Capsule pressure. N/cm ² a 43 ^o C	, Decom- it position, %	Remarks	Halide content, mg
0585A	4027	Ti6AI-4V	Bimetal STD	Light corrosion in the L/V and L areas and moderate in the V area; thick film in the L/V and V areas and thin in the L area; light etching; moderate pitting in the L and V areas and none in the L/V.	21	47.55	2.50	Moderate decomposition; pale blue.	9.0
05858		303 CRES	Bimetal	Light corrosion in the L/V and L areas and moderate in the V area; thick film in the L/V and V areas and thin in the L area; light etch- ing; light pitting in the L/V; moderate in the V and none in the L area.	0.0				
0765	3954	Ti6Al-4V	Slug-stress	Light corrosion; overall thick film with cracking in the L/V area; light etching; moderate pitting in the L/V and V areas (1 x 10^{-5} in.), and light pitting in the L area.	0.2	7.30	0.54	Slight decomposition; water white.	0.60
0767	3954	Ti6AJ-4V	Slug-stress	Light corrosion; thick overall film with cracking in the L/V area; light etching; moderate pitting in the L/V and V areas (1 x 10 ⁻⁶ in.) and none in the L area.	o.s.	11.20	0.73	Slight decomposition; water-white,	6.80
1601	4053	6061-T6AI	Slug-anodized	Light corrosion; thick film overall with cracking in the L/V and V areas; no pitting.	-10.2	11.11	0.80	Slight decomposition; white sediment.	ŊŊ
1099	2980	6061-T6Al	Slug-gold plated	Severe blistering of surface.	1.3	11.80	0.73	Slight decomposition, light brown color.	6.9
1853	3689	347 CRES	Slug	No corrusion; thin overall film; no pitting.	0.7	4.76	0.33	Slight decomposition, water-white.	QN

31

ORIGINAL PAGE IS OF POOR QUALITY ₽

				Specimen				Propellant	
						Capsule			
Specimen	Duration of test,	:	Configura-		Weight change,	pressure, N/cm ² at	Decom- position,	Damarke	Halide content, me
number 1875	days 3689	316 CRES	Slug	Light corrosion in the L/V area	-3.5	7.44	0.50	Slight decomposition; water-white	QN
				oury; num over an inition up in even the ling in the L/V area; no pitting.					
1899A	3788	347 CRES	Bimetal STD	Light corrosion; thin overall film; light pitting overall approxi- mately 1 x 10 ⁻⁵ in.	م :	10.13	0.55	Slight decomposition; water-white.	QN
1899B		316 CRES	Bimetal	No corrosion; very thin overall film; no pitting.	م :				
1161	3788	6061-T6AI	Bimetal STD	No corrosion; very thin overall film; no pitting.	0.4	4.97	0.40	Slight decomposition; water-white.	QN
		347 CRES	Bimetal	No corrosion; thin over all fil m; no pitting.	6.5				
1923	3788	6061-T6AI	Bimetal STD	No corrosion; very thin overall film; no pitting.	6.0 -	43.40	3.20	Moderate decomposition; water-white.	QN
		303 CRES	Bimetal	Light corrosion; thin overall film; light etching and no pitting.	-3.7				
1929	3788	Ti6AI-4V	Bimetal STD	No corrosion; thick overall film; no pitting.	-7.5	3.17	0.23	Very Iow decomposition; water-white.	QN
		347 CRES	Bimetal	No corrosion; very thin overall film; no pitting.	1.3				
1937	3788	Ti6A1-4V	Bimetal STD	Light-to-modetate corrosion; thin overall film; moderate pitting of about 1 x 10 ⁻⁵ in.	-1.9	5.15	0.30	Very low decomposition; water-white.	0.04
		316 CRES	Bimetal	No corrosion; thin overall film; no pitting.	0.0				
161	3689	304L CRES	Slug-stress	No corrosion; thin overall film in the L/V and L areas and a thick film in the V area; no pitting.	1.3	58.12	4.58	Severe decomposition; water-white.	UN

32

ORIGINAL PAGE IS OF POOR QUALITY

Propellant	Italide conten Remarks mg
	com- tion, Rem
	e, Decor at position %
Lapsure	pressure, N/cm ² a 430C
	Weight change, mg
	Remarks
	Configura- tion
	Configura- Material tion
	Duration of test, Configura- days Material tion

.

Original page is of poor quality

		Halide content, mg	QN	QN		:	:	ĝ	Q	:
	Propellant	Remarks	Very low decomposition; water-white.	Very low decomposition; water-white.	Very low decomposition; water-white.	Very low decomposition; no residue; water-white.	:	Moderate decomposition; water-white.	Slight decomposition; water-white.	Very low decomposition
		Decom- position,	0.25	0.19	0.21	0.26		3.73	1.38	0.22
		Capsule pressure, N/cm ² at 43 ⁰ C	2.45	2.58	3.67	3.86	:	47.39	16.31	2.48
(p)		Weight change, mg	-12.9	0.3	-0.2	:	-1.0	-0.7	-5.1	-0.3
Table C-1 (cont	Specimen	Remarks	Light corrosion; thin film on the L/V and V areas and very thin on the V area; light etching and no pitting.	Light corrosion; thick overal! film; light etching and no pitting.	No corrosion; thin overall film; no pitting.		Light corrosion; thick overall film; light etching and no pitting.	Light corrosion; thin falm in the L/V and L areas and thick in the V area; light etching in the L/V and V areas and none in the L area; no pit ting seen in the weld zone. Light corrosion, thin film in the L/V and L areas and thick in the V area; light etching and no pitting seen in the heat affected zone.	Light corrosion; thin film in the L-Weld and L/V areas and a thick film in the V and V-Weld areas with cracking in the V area; light etching and no pitting.	:
		Configura- tion	Slug-stress	Slug	Slug-stress	"O" rings stressed on a Ti6Al-4V flxture	Tube welded	Weld, stress	Fank/di a- phragm weld	ASTM dog- bone double fold in glass sleeve
		Material	304L CRES	Ti6A1-4V	Ti6Al-4V	AFE-332	304L CRES	304L CRES/ 304L CRES	301 CRYO/ 304L CRES	AFE-332
		Duration of test, days	2645	3061	2550	1112	2672	2709	2597	1129
		Specimen nymber	3223 c	3239	3257	3261	3267	3277	3305	3323

34

Original page 13 Of poor quality

^aChloride (halide) introduced as contamination during improper cleaning and preparation procedures.

^bPretest specimen weight in error.

^cSpecimens numbered greater than 3200 were exposed to VL-75 grade purified hydrazine.

ND = none detected; less than quantity detectable by analytical technique used.

--- = not measured; data not available

L = liquid exposed region.

V = vapor exposed region.

L/V = liquid-vapor interface.

original page is of poor quality

Sectors Inst. Test C. Test C. <th< th=""><th></th><th></th><th></th><th></th><th></th></th<>					
0001 Likkk 0001 Likkk 0001 Likkk 0001 Likkk 0001 Likkk 0001 0.01	Purity, N	N2 + H2, NH	, N.2.	H ₂ ,	,EIIN
11.353 11.353 0.001 11.3 0.01 0.10 0.01 0.11 0.01 0.13 0.01 0.13 0.01 0.13 0.01 0.13 0.01 0.13 0.01 0.13 0.01 0.13 0.01 0.13 0.01 0.13 0.01 0.13 0.01 0.13	*	C 31 4 C 2	P mote	/ mole //	mole %
0011 10936 00001 010 01		27.78 94.8	17 22.15	0.50	77.35
0101 11796 00012 0101 0100 0101 <t< td=""><td></td><td>56.45 IJ7.(</td><td>28.85</td><td>0.32</td><td>70.83</td></t<>		56.45 IJ7.(28.85	0.32	70.83
NIX MAXM MONIX NIX MONIX NIX MONIX NIX MONIX NIX MONIX NIX MONIX	9	57.27 197.6	5 24.88	0.51	74.61
0.0.13 1.1.00 0.011	-	1.75 73.7	18 13.43	0.30	86.26
01318 1720 0.001 $$	•	379.4			
1 1 1 0.01 $-1.60 < 0.01$ 2.60 < 0.01 0.61			,		
6559 (0)1 0.00 0.01 0.11 0.02 0.11 0.02 0.11 0.02 0.11 0.02 0.11 0.02 0.11 0.02 0.11 0.02 0.11 0.02 0.11 0.02 0.11 0.02 0.11 0.02 0.11 0.03 0.11 0.03 0.11 0.04 0.13 0.14 0.03 0.13 0.14 0.03 0.13 0.14 0.03 0.13 0.14 0.03 0.13 0.14 0.04 0.13 0.14 0.03 0.13 0.14 0.03 0.13 0.14 0.13 0.14 0.	•				
0855. 1.950 0.001 0.11 <0.02 0.13 0.149 1.49 0855. 1.1844 0.002 0.60 0.43 0.13 0.25 0755. 1.1844 0.002 0.60 0.43 0.31 0.34 0751. 1.9460 0.0013 0.65 6.9 5.00 0.36 0.34 0.34 0.34 1933 5.3930 0.0013 0.65 6.9 5.00 0.36 0.34 0.34 1933 5.3930 0.0013 0.64 ND 0.34 0.34 1933 5.3930 0.0013 0.64 ND 0.34 0.34 1934 0.013 0.64 ND 0.34 0.34 1914 2.7532 0.003 0.03 ND 0.34 0.34 1924 0.144	, ,	2.62 137.0	M 26.91	0.83	72.25
Markan large Markan large					
06558 2702 0.0009 0755 1144 0.002 6.0 0.1 0.1 0.1 0.1 0755 1146 0.002 6.0 0.1 0.1 0.1 0.1 1911 19460 0.0012 6.0 0.1 0.46 0.24 0.24 1935 5.390 0.0013 0.04 0.1 0.46 0.24 0.24 1915 5.390 0.0013 0.04 0.1 0.01 0.24 0.24 1916 2.145 0.0013 0.04 0.1 0.1 0.24 0.24 1917 0.15 0.001 0.01 0.01 0.01 0.1 0.24 0.24 1918 2.353 0.001 0.01 0.01 0.01 0.1 0.24 0.24 1918 2.353 0.0013 0.01 0.01 0.01 0.01 0.1 0.24	20	18.60 390.0	26.59	8.26	65.15
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	*	6 81 07 6	1 1 51	10.0	
	•				C 4-0/
	4	4.90 118.5	9 27.41	0.08	72.51
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	•	2.59 142.3	1 22.34	0.69	76.97
1833 57835 0.0007 0.04 0.04 0.02 0.23 0.	98.7 4	8.30 147.8	0 13.20	11.50	75.30
18/35 5.9380 0.0035 NJ 0.24 0.14 0.24 18/96 0.04 ND 2.85 0.33 18/96 0.04 ND 2.85 0.33 19/1A 0.9156 0.004 0.03 <001 0.03 0.01 0.05 0.23 0.33 9/21A 0.9155 0.003 0.01 0.01 ND 0.69 0.28 0.33 9/21A 0.915 0.013 0.01 0.01 ND 0.69 0.28 0.33 9/21A 0.913 0.013 0.01 0.01 ND 0.69 0.23 9/21A 1.2721 0.0013 0.01 0.01 ND 0.24 0.23 9/21A		7.01 57.9	8 27.68		CE 64
1890		100 118			
1899				CD.1	/0.12
	4	2,114 36.9	6 27.36	5.23	67.41
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	a 	8.58 73.7	9 20.11	• • •	79.89
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					
(923b 2.7277 0.0037 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.012 $\cdots < 0.02$ 0.02 0.02 0.20 0.20 \cdots 0.20 0.20 \cdots 0.20 0.20 \cdots 0.20 \cdots 0.21 1.17 0.20 0.20 \cdots 0.20	173	2.41 574 4	02.14 6	91.1	16 01
				2	14.01
(9298 2.7194 0.0013 0.0013 0.0013 0.0013 0.012 \cdots <0.02 0.02 0.04 \cdots 1.20 0.20 \cdots 19378 2.8889 0.0013 0.17 \cdots 0.01 0.17 \cdots 0.21 3.17 0.20 \cdots 19378 2.8889 0.0013 0.17 \cdots 0.01 0.17 0.02 1.17 0.20 \cdots 0.21 3.17 0.20 \cdots 0.24 \cdots 0.24 \cdots 0.24 0.16 \cdots 0.24 0.16 \cdots 0.24 \cdots 0.24 0.16 \cdots 0.23	3	10 F Y 30 C			
1937A 1.2721 0.0019 0.02 $\cdots < 0.02$ 0.01 1.20 0.20 1.17 0.20 0.10 0.20 0.10 <		0.44	19.17	•	69.16
937B $2,000$ 0.010					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	51	9.42 52.7	1 22.21	4.71	73.09
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	226	5.43 835.39	80.10 6	0.04	78.67
3047 5.744 0 0.10 ND 0.61 0.70 3057A 0.9022 0 0.12 <0.01	71	39 306 07 3	0102		
3057A 0.9022 0 0.12 <0.01		0.000 70.00	61.05		01.60
30578 2.7653 0.0003 0.140 0.28 0.140 0.28 0.14 3055 ^b 5.753 0.0003 0.001 0.02 ND 0.16		1./2 184.4	1 24.83	1.15	74.02
3055 ^b 5.7952 0.0001 3075 ^b 5.7952 0.0001 3075 ^b 5.7139 0.0001 3111 0.0001 0.02 ND 0.63 0.16 3099 5.7739 0.0001 0.02 ND 0.03 0.16 3155 5.7873 0.0004 0.01 0.02 ND 0.32 0.16 3155 5.7805 0.0001 0.01 0.01 0.02 ND 0.32 0.16 3155 5.7805 0.0001 0.01 0.01 0.01 0.13 0.16 0.16 3157 5.786 0.0129 0.01 0.02 ND 0.24 0.13 3157 3.2821 0.0002 0.01 0.25 0.14 0.13 217 6.4497 0.0007 0.36 0.16 0.16 0.26 217 6.4497 0.0001 0.28 ND 0.1 0.26 0.16 217 6.4497 0.0001 0.36 ND 0.1 0.26 0.16 217	81	3.10 73.75	19.70	:	80.30
3055° 5.7952 0.0001 3075° 5.2120 0 3093° 5.8131 0.0001 3099 5.7739 0.0001 3155 5.87873 0.0001 3155 5.87873 0.0001 3155 5.87873 0.0004 3155 5.8026 0.001 3155 5.8026 0.001 3155 5.7803 0.0001 3123 5.7286 0.0129 31147 0.0001 0.01 31147 0.0003 0.01 31147 0.0003 0.01 31147 0.0003 0.02 3123 5.7286 0.0129 31241 0.0002 0.02 31251 0.0003 0.26 3161 1.7418 0.0007 315 0.216 0.26 315 0.201 0.225 3165 19.2021 0.0051 3165 19.2021 0.0051 3165 19.2021 0.0051 <					
3075 ^b 5.2220 0 3091 ^b 5.8131 0.0001 3099 5.7739 -0.0003 0.02 ND 0.63 0.16 3155 5.7739 -0.0003 0.02 0.01 ND 0.63 0.16 3157 5.7833 -0.0004 0.01 0.01 0.32 0.16 3157 5.8026 -0.0129 0.01 0.02 ND 0.32 0.16 3157 5.7866 -0.0129 ND 0.36 0.14 3233 1.1147 0.0003 0.02 ND 0.36 0.14 2126 1.141 0.0003 <0.02	62	1.78			
3091 ^b 5.8131 0.0001 0.02 ND 0.63 0.16 0.16 3099 5.7739 0.0003 0.02 ND 0.03 0.16 0.16 3155 5.8026 0.0004 0.01 ND 0.02 ND 0.32 0.16 0.16 3157 5.8026 0.0001 0.01 0.01 ND 0.32 0.16 0.16 3123 5.7286 0.0001 0.01 0.01 ND 0.32 0.16 0.16 3123 5.7286 0.0001 0.01 0.02 ND 0.02 0.16 0.16 3123 5.7286 0.0129 0.01 ND 0.12 0.16 0.16 3123 1.147 0.0003 0.02 0.10 0.12 0.13 0.14 0.13 3121 1.1418 0.0001 0.12 0.12 0.12 0.14 0.13 0.14 0.13 0.16 0.15 0.16 0.16 0.16 0.15 0.16 0.16 0.16 0.16 0.16 0.16 0	96	0.0			
3099 5.7739 0.0003 0.02 0.02 ND 0.63 0.16 3155 5.7873 0.0004 0.01 0.01 ND 0.32 0.16 3157b 5.8026 0.0001 0.01 0.01 ND 0.32 0.16 3157b 5.8026 0.0129 0.01 0.01 0.32 0.16 3231 5.7286 0.0129 ND 0.36 0.14 3231 3.7286 0.0129 ND 0.36 0.14 3231 3.1147 0.0002 ND 0.36 0.14 324 0.100 0.26 0.24 0.13 365 1.7418 0.0007 0.36 0.26 0.24 1.02 <				•	
1157 ^b 5,8787 0.0004 0.01 0.01 0.01 0.05 0.16 0.16 1157 ^b 5,8026 0.0004 0.01 0.01 ND 0.32 0.16 0.16 1223 5,7286 0.0129 0.01 0.01 ND 0.32 0.16 0.12 1223 5,7286 0.0129 0.01 0.26 0.24 0.13 0.14 1239 1.1147 0.0001 0.01 0.26 0.14 0.14 0.13 1257 1.2821 0.0001 0.1 0.225 0.19 0.14 0.13 1261 1. 0.001 0.25 0.19 0.24 0.13 0.14 0.13 1261 1.7418 0.0010 0.25 0.10 0.225 0.16 0.26 0.13 0.14 0.13 0.16	17	10.	:	• • •	:
3157b 5.8026 0.0004 0.01 0.01 ND 0.032 0.16 0.01 3157b 5.8026 0.0001 0.01 0.01 0.01 0.02 0.01 3239 3.1147 0.0001 0.01 0.02 0.096 0.22 0.01 3257 3.2821 3.1821 0.0002 0.02 0.01 0.04 0.14 0.03 3257 3.2821 3.2821 0.0022 0.02 0.01 0.02 0.14 0.13 256 1.141 0.0002 0.02 0.02 0.03 0.02 0.14 0.13 256 1.7418 0.0007 0.36 0.22 0.12 0.36 0.26 0.26 2577 6.4497 0.0007 0.36 0.16 0.16 0.26 0.16 2577 6.4497 0.0007 0.36 0.16 0.16 0.26 256 19.021 0.28 0.16 0.16 0.16 0.26	10	1.12 42.16	16.15	:	83.85
113/7 5.8026 0.0001 0.36 0.22 1223 5.7286 0.0129 ND 0.36 0.22 1233 1.1147 0.0003 <	•	1.35 42.16	9.35	÷	90.66
1223 5.7286 0.0129 0.86 0.22 1239 1.1147 0.0003 <0.02	7	.87	:	:	:
1239 J.1147 0.0003 <	·	17 57.98	8 19	:	1810
1257 3.2821 -0.0002 <0.02		08 91 (9.			00.00
1261 0.225 39 0.22 0.26 267 1.7418 0.0010 0.25 39 0.26 267 1.7418 0.0010 0.26 30 0.32 0.26 277 6.4497 0.0007 0.36 0.36 ND 1.00 2.59 305 19.2021 0.0051 0.28 0.28 ND 0.44 1.02	1				00.20
267a 1.7418 0.0010 7.451 7.75 0.72 0.26 7.75 0.31 0.36 ND 7.75 0.31 0.36 ND 7.75 0.31 0.329 7.75 0.31 0.36 ND 7.75 0.31 0.329 7.75 0.31 0.36 ND 7.75 0.31 0.329 7.75 0.325 7.75 0.31 0.328 7.75 0.328 ND 7.75 0.34 1.02 7.75 0.345 1.02 7.75 0.345 1.02 7.75 0.345 1.02 7.75 0.345 1.02 7.75 0.345 1.02 7.75 0.345 1.02 7.75 0.345 1.02 7.75 0.345 0.345 1.02 7.75 0.345 0.345 1.02 7.75 0.345 0.355 0.355 0.355 0.355 0.355 0.355 0.355 0.355 0.355 0.355 0.355 0.355 0.355 0.355 0.355 0.355 0.355			34.20	66.17	12.00
277 6.4497 0.0007 0.36 ··· ·· 0.36 ND ··· 1.00 2.59 ··· 305 19.2021 0.0651 0.28 ··· ·· 0.28 ND ··· 0.44 1.02 ···	78.8 12		15.00	<0.01	85.00
1305 19.2021 0.0051 0.28 ··· ·· 0.28 ND ··· 0.44 1.02 ···					
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	183.	.91 682.54	21.06	0.17	78.77
	58.	.38 268.80	17.81	0.04	82.16
0.17 ND 0.88 0.17	98.9 7.	.6 44.8	14.3	0.2	85.5
(Zn+Si)					

Table C-2. Detailed posttest analyses and results – hydrazine

.

.

original page 19 of poor quality

ORIGINAL PAGE IS OF POOR QUALITY

				Analysis of	f propellan	t		Analysis (of gas
Specimen number	Duration of test, days	Pressure, N/cm ² 43 ^o C	Decom- position, %	Cl [°] + F [°] , mg	CO ₂ , mg/g	н ₂ 0, %	NH3, %	N ₂ +H ₃ , cc STP	NH3, cc STP
2071 ^a	3788	1.47	0.14	ND	48	0.43	0.13	2.14	34.26
2097 ^a	3619	1.41	0.14	ND	52	0.58	0.13	1.83	34.26
2099 ^a	3633	1.63	0.17	ND		0.54	0.16	2.29	42.16
3351 ^b	2641	2.63	0.14	ND	35	0.65	0.14	3.25	73.78
3353 ^b	2641	2.73	0.14	0.02	32	0.77	0.13	3.85	68.52

Table C-3. Posttest analyses of hydrazine controls

^a20 cc of MIL-P-26536B hydrazine.

^b40 cc of VL-75 purified hydrazine.

ND = none detected,

				Specimen				ropellant	
Specimen Number	Duration of test, days	Material	Configura- tion	Remarks	Weight change, mg	Capsule pressure, N/cm ² at 43°C	Decom- position, %	Remarks	Halide content, mg
1493	39%6	347 CRES	Slug	Light corrosion; thick overall film; light pitting approximately 1 x 10 ⁻⁶ in. diameter.	0.7	10.59	0.57	Slight decomposition; light brown color.	3.70
1499	3996	6061-T6AI	Slug	Light corrosion; thick overall film with cracking in the L/V and V areas; light etching and no pitting.	0.8	6.28	0.63	Slight decomposition.	2.82
1527	3996	304L CRES	Slug	Light corrosion; thin film in the L area and thick in the L/V and V areas with cracking in the L/V and V areas light etching in the L/V and V areas and none in the L area and moderate in the L/V and V areas of about 1 x 10^{6} in. diameter.	0.2	5.54	0.23	Slight decomposition; light yellow color.	0.14
1559	3996	Ti-6Al-4V/ Ti-6Al-4V	' Weld, as is	Light corrosion; thick overall film; light pitting approximately 1 x 10 ⁻⁶ in. diameter.	-0.1	10.00	0.57	Slight decomposition; light yellow color.	0.35
1573	3996	304L CRES 304L CRES) Weld, as is	Light corrosion; thick overall film with cracking in the L/V area; light etching and no pitting.	-0.8	16.19	0.97	Slight decomposition.	0.70
1637	3989	6061-T6 AI	Slug-stress	No corrosion; thin film in the L area and thick in the L/V and V areas with cracking in the L/V area; no pitting.	1.5	6.56	0.23	Slight decomposition.	0.70
1645	3996	Ti-6Al-4V	Slug-stress	Light corrosion in the L/V and V areas and none in the L area; thick overall film; light etching in the L/V and V areas and none in the L area; no pitting.	1.0	10.68	0.55	Slight decomposition; yellowgreen color; dark sedimenL	2.29
1661	3996	304L CRES	Slug-stress	No corrosion; thin film in the L and V areas and thick in the L/V area with cracking; no pitting.	0.5	16.62	1.13	Slight decomposition; light brown color.	3.17

original page is of poor quality

. 38

				Specimen			£	opellant	
Specimen number	Duration of test, days	Material	Configura- tion	Remarks	Weight change, mg	Capsule pressure, N/cm ² at 43 ⁰ C	Decom- position, %	Remarks	Halide content, ^a mg
1793	3989	347 CRES	Slug-stress	Light corrosion; thin overall film with cracking in the L/V area; light etching in the L/V and V areas but none in the L area; light pitting.	-0.2	10.16	0.57	Slight decomposition.	0.35
^a Chloride L = liq V = var L/V = liq	(halide) introd uid exposed re or exposed rey uid/vapor inter	luced as contar gion face	nination during i	mproper cleaning and preparation pr	rocedures.				

original page is of poor quality

39

	Specime	en weight			Ä	alysis of p	ropellant ^a					Analysis	of gas		
men ber	Initial, 8	Change, 8	Fe, mg	AI, mg	Ti, mg	Total metal, mg	CI + F-, mg	Н ₂ 0,	ин ^{3,}	CH4, cc STP	N ₂ , cc STP	NH ₃ , cc STP	N ₂ , mole %	CH ₄ , mole %	NH ₃ , mole %
_	5.7651	0.0007	0.58	;	:	0.58	3.70	2.07	0.30	0.33	38.69	69.57	35.63	0.30	64.07
. 6	1.9680	0.0008	:	1.41	÷	1.41	2.82	0.47	0.54	<0.01	11.71	125.23	8.55	<0.01	91.45
	5.7548	0.0002	0.37	:	ł	0.37	0.14	0.50	0.10	0.08	17.50	23.19	42.92	0.20	56.88
•	3.8351	-0.0001	:	:	0.06	0.06	0.35	0.70	0.31	0.13	35.67	71.89	33.12	0.12	66.75
	6.7187	-0.0008	1.28	;	:	1.28	10,70	0.27	0.53	0.10	6248	122.91	33.68	0.05	66.26
	1.8281	-0.0015		0.48	i	0.48	0.70	0.82	0.07	0.35	23.10	16.23	58.22	0.88	40.90
. v	3.2293	0.0010	:	:	0.37	0.37	2.29	0.16	0.25	0.28	40.05	59.98	39.91	0.28	59.79
. –	5.9349	0.0005	1.95	;	i	1.95	3.17	0.43	0.70	< 0.01	61.05	162,33	27.33	<0.01	72.67
	5.8252	-0.0002	1.02	ļ	:	1.02	0.35	0.38	0.32	0.26	36.22	74.21	32.70	0.23	67.04

Table C-5. Detailed posttest analyses and results – monomethylhydrazine

Ì

i

^aAnalysis based on 20 cc of MMH, weighing 17.6 g.

--- not measured; data not available.

original page is of poor quality

40

				Specimen		Propellan		
	Duration				Weight		NOCI	
Specimen number	of test, days	Material	Configura- tion	Remarks	change, mg	Remarks	content, mg	
0004	4213	347 CRES	Slug	Light corrosion; thin overall film; light etching and no pitting.	0.3		QN	
0100	3249	347 CRES	Slug	No corrosion; thin overall film; no pitting.	-1.0		0.2	
0012	2443	347 CRES	Slug	No corrosion; thin film in the L/V area and very thin in the L and V areas; no pitting.	0.0		0.03	
0016	3379	6061-T6 AI	Slug	Light corrosion; thick overall film and cracking; light etching and no pitting.	-5.3		0.02	
0018	4147	6061-T6 AI	Slug	Light corrosion; thick overall film; light etching and no pitting.	-0,4		QN	
0050	4213	Ti 6Al-4V	Slug	Moderate corrosion; thin overall film; light etching; moderate pitting approximately 1×10^{-4} in. diameter.	0.6		QN	••
0054	3444	Ti 6Al-4V	Slug	Moderate corrosion; thin overall film; light etching; moderate pitting approximately 1×10^4 in. diameter.	1.2		0.06	• •
0010	2251	6Al-4V Ti	Slug	Moderate corrosion; thick overall film; light etching, I x 10 ⁻⁵ in. diameter pitting.	-38.6		0.03	
0134	4022	302 CRES	Slug	Light corrosion; thin overall film; light etching; no pitting.	1.4		QN	
0142	3199	302 CRES	Slug	No corrosion; very thin overall film; no pitting.	0.8		0.02	
0146	4147	303 CRES	Slug	Light corrosion; thin overall film; light etching and no pitting.	0.8		ŊŊ	
0160	4017	304L CRES	Slug	Light corrosion; thin overall fllm; light etching in the $1/\mathbf{V}$ area only; no pitting.	0.7		QN	
0162	2251	304L CRES	Slug	Light corrosion; thin overall film; light etching; light pitting of 1×10^{-6} in. diametér.	1.5		< 0.03	
0178	4147	316 CRES	Slug	Light corrosion; thin film in the L/V and L areas and very thin in the V area; light etching in the L/V and L areas; no pitting.	0.2		QN	
0180	3255	316 CRES	Slug	No corrosion; thin overall film; no pitting.	0.8		0.06	
0218	2246	17-4 PH CRES	Slug	No corrosion; thin overall film; no pitting.	1.5		< 0.03	

Table C-6. Summary of posttest analyses and results - nitrogen tetroxide (MON-1)

41

original page is of poor quality

ī

district indexCutoffer districtCutoffer indexCutoffer indexNot index01311319131913171317131NotNot indexNot indexNot indexNot indexNot indexNot index01311319131913191316131613161316131131Not indexNot indexNot indexNot index0131131713171316131613161316136Not indexNot indexNot indexNot indexNot indexNot indexNot index					Specimen		Propella	nt	ł
021011.4 PH CRESShapLight corresion; this film and light etching in the L/V1.6 100 0212401717.7 PH CRESShapLight corresion; this film and ho etching in the L/V1.3 100 0213401717.7 PH CRESShapLight corresion; this film and ho etching in the L/V1.3 100 100 100 0214319917.7 PH CRESShapLight corresion; this film and ho etching in the L/V1.3 100 02152196NCKELShapLight corresion; try this film and ho etching in the L/V1.3 100 0216119917.7 PH CRESShapLight corresion; try this film and ho etching in the L/V1.3 100 02172196NCKELShapNote and film; light etching and ho 100 100 100 02183199347 CRESSharetaCorresion; try this film and ho etching and ho 100 100 021921963199347 CRESSharetaNote and film; light etching and ho 100 100 02102131317 CRESBinetalNot corresion; try this overall film; light etching and ho 100 100 021921312137317 CRESBinetalNot corresion; try this overall film; light etching and ho 100 0219213121372137 CRESBinetalNot corresion; try this overall film; light etching and ho 100 031921372137 CRESBinetalLight corresion;	cimen 1mber	Duration of test, days	Material	Configura- tion	Remarks	Weight change, mg	Remarks	NOCI content, mg	· 1
1313401717.7 PH, CRESSlugLight correstion; thin film and light etching in the L/V1.2 ND 0214319917.7 PH, CRESSlugLight correstion; thin film and no etching in the L/V1.5 \sim <td>0220</td> <td>4017</td> <td>174 PH CRES</td> <td>Slug</td> <td>Light corrosion; thin film and light etching in the L/V area; no corrosion, very thin film and no etching in the L and V areas; no pitting.</td> <td>1.6</td> <td></td> <td>QN</td> <td></td>	0220	4017	174 PH CRES	Slug	Light corrosion; thin film and light etching in the L/V area; no corrosion, very thin film and no etching in the L and V areas; no pitting.	1.6		QN	
031 11/7 TPH CRES lught corresion, thin film and light cehing in the L/V 1.5 <0.02	0232	4017	17-7 PH CRES	Slug	Light corrosion; thin film and light etching in the L/V area; no corrosion, very thin film and no etching in the L and V areas; no pitting.	1.2		Q	
071211%MCKELSlagModerate corresion: thick overall flum; light etching: light9.60.0305882196347 CRESBinetal STDLight corrosion: thick overall flum; light etching and no0.905183199347 CRESBinetal STDLight corrosion: thick overall flum; light etching and no1.205183199347 CRESBinetal STDLight corrosion: thick overall flum; light etching and no1.30519317 CRESBinetal STDLight corrosion; thick overall flum; light etching and no1.3 </td <td>0234</td> <td>3199</td> <td>17-7 PH CRES</td> <td>Slug</td> <td>Light corrosion, thin film and light etching in the L/V area; no corrosion; very thin film and no etching in the L and V areas; no pitting.</td> <td>1.5</td> <td></td> <td>< 0.02</td> <td></td>	0234	3199	17-7 PH CRES	Slug	Light corrosion, thin film and light etching in the L/V area; no corrosion; very thin film and no etching in the L and V areas; no pitting.	1.5		< 0.02	
538 2136 347 CREs Binetal STD Light corrosion; thick overall film; light etching and no 0.9 ~ (0.03 66147 Ti Binetal STD Light corrosion; thick overall film; light etching and no 1.2 ~ (0.04 6618 3199 347 CREs Binetal STD Light corrosion; thick overall film; light etching and no 1.9 ~ (0.04 6618 3199 347 CREs Binetal STD Light corrosion; thick overall film; light etching and no 1.9 ~ (0.04 0730 2331 331 CREs Binetal No corrosion; thick overall film; light etching and no 1.9 ~ (0.04 0730 2331 347 CREs Binetal No corrosion; thick overall film; light etching and no 1.9 ~ (0.04 0730 2331 147 CREs Binetal No corrosion; thick overall film; light etching and no 1.9 ~ (0.04 0730 147 CREs Binetal No corrosion; thick overall film; light etching and no 1.9 ~ (0.04 0730 2331 116 Al-14 Slug stress No corrosion; thick overall film; light etching and no 1.9 ~ (0.04 0866 116 Al-14 Slug stress No corros	0272	2196	NICKEL	Slug	Moderate corrosion; thick overall film; light etching; light pitting of about 1×10^{-5} in. diameter.	9.6-		0.03	
6A14VTi Binetal Light corrosion: thick overal film: light etching and no 1.2 0618 3199 347 CRES Binetal STD Light corrosion: thick overal film: light etching and no 1.9 0.04 0730 2337 Binetal No corrosion: thick overal film: light etching and no 1.9 0.04 0730 2337 Binetal No corrosion: thick overal film: no pitting 0.8 White residue. 0.03 0730 2337 347 CRES Binetal No corrosion: thick overal film: inpit teching and no 1.9 0.04 0730 2337 Binetal No corrosion: thick overal film: inpit teching and no 1.9 0.03 0856 4009 Ti 6A14V Slug stress Moderate corrosion: thick overal film with cracking in the ching in the ching in the light etching	0588	2196	347 CRES	Bimetal STD	Light corrosion; thick overall film; light etching and no pitting.	0.9		<0.03	
6618 3199 347 CREs Binetal STD Light corrosion; thick overall film; light etching and no 1.9 0.04 0730 2237 321 CREs Binetal No corrosion; very thin overall film; no pitting 0.8 White residue. 0730 2237 347 CREs Binetal No corrosion; very thin overall film; no pitting 0.7 0.03 0730 2237 347 CREs Binetal No corrosion; thick overall film; inglt etching and no 1.8 0.03 0866 4009 Ti 6A14V Slug-stress Moderate corrosion; thick overall film, inglt etching and no -1.8 0.03 0850 160 Ti 6A14V Slug-stress Moderate corrosion; thick overall film, inglt etching in the -2.34 ND 0850 3040 Slug-stress Moderate corrosion; thick overall film, inglt etching in the -2.34 ND 050 3968 3040 Slug-stress L/V and V areas; light etching and moderate pitting of -1.6 ND 051 3217 321 CRES Slug-stress L/V area only and no pitting. 0.1 -2.03 051 3968 Ti 6A14V Wetarescrosion; thick overall			6Al-4V Ti	Bimetal	Light corrosion; thick overall film; light etching and no pitting.	1.2			
11 311 CRES Bimetal No corrosion; very thin overall film; no pitting 0.8 White residue. 0730 2237 347 CRES Bimetal No corrosion; very thin overall film; no pitting 0.7 0.03 0730 2237 Bimetal No corrosion; very thin overall film; ino pitting 0.7 0.03 0896 4009 Ti 6AL4V Slug-stress Moderate corrosion; thick overall film with cracking in the 2.1.8 0.03 0896 4009 Ti 6AL4V Slug-stress Moderate corrosion; thick overall film with cracking in the 2.3.4 ND 0896 3068 304L CRES Slug-stress L/V and V areas; light etching and moderate pitting of 2.3.4 ND 0950 3968 304L CRES Slug-stress L/V area only and no pitting. 0.5 ND 0956 2237 321 CRES Slug-stress No corrosion; very thin overall film, ilight etching in the 0.5 ND 0956 2337 321 CRES Slug-stress No corrosion; very thin overall film, ilight etching in the 0.5 ND 016 3968 Ti 6AL4V Wedstres ND ND	0618	3199	347 CRES	Bimetal STD	Light corrosion; thick overall film; light etching and no pitting.	1.9		0.04	
0730 2237 347 CRES Bimetal No corrosion; very thin overall film; in pitting 0.7 0.03 0661-T6 Al Bimetal Light corrosion; thick overall film; light etching and no -1.8 0.03 0896 4009 Ti 6A1-4V Slug-stress Moderate corrosion; thick overall film; light etching and no -1.8 ND 0896 4009 Ti 6A1-4V Slug-stress Moderate corrosion; thick overall film with cracking in the -2.3.4 ND 0850 3968 304L CRES Slug-stress L/V and V area; light etching and moderate pitting of 0.5 ND 0950 3968 304L CRES Slug-stress No corrosion; very thin overall film; light etching in the 0.5 ND 0956 2237 321 CRES Slug-stress No corrosion; very thin overall film; light etching in the 0.5 ND 016 3968 Ti 6A1-4V Weld-stress No corrosion; thick overall film, inplit etching in the 0.5 ND 016 3968 Ti 6A1-4V Weld-stress No corrosion; very thin overall film, with cracking; light -11.6 <0.03			321 CRES	Bimetal	No corrosion; very thin overall film; no pitting	0.8	White residue.		
6061-T6 AlBimetalLight corrosion; thick overall film; light etching and no-1.808964009Ti 6Al-4VSlug-stressModerate corrosion; thick overall film with cracking in the-23.4ND08964009Ti 6Al-4VSlug-stressModerate corrosion; thick overall film with cracking in the-23.4ND09503968304L CRESSlug-stressL/V and V areas; light etching and moderate pitting of-0.5ND0956304L CRESSlug-stressLight corrosion; very thin overall film; light etching in the0.5ND09562337331 CRESSlug-stressNo corrosion; very thin overall film; light etching in the0.5ND0163968Ti 6Al-4VWeld-stressNo corrosion; thick overall film with cracking; light-11.6<0.03	0130	2237	347 CRES	Bimetal	No corrosion; very thin overall film; no pitting	0.7		0.03	
0896 4009 Ti 6AI-4V Slug-stress Moderate corrosion; thick overall film with cracking in the -23.4 ND 0950 3968 304L CRES Slug-stress Light corrosion; very thin overall film; light etching in the 0.5 ND 0950 3968 304L CRES Slug-stress Light corrosion; very thin overall film; light etching in the 0.5 ND 0956 2237 321 CRES Slug-stress No corrosion; very thin overall film; light etching in the 0.5 ND 016 3968 Ti 6AI-4V Weld-stress Moderate corrosion; thick overall film, in pitting 0.1 <0.03			6061-T6 AI	Bimetal	Light corrosion; thick overall film; light etching and no pitting.	-1,8			
0950 3968 304L CRES Slug-stress Light corrosion; very thin overall film; light etching in the 0.5 ND 0956 2237 321 CRES Slug-stress No corrosion; very thin overall film; no pitting. 0.1 <0.03	9680	4009	Ti 6Al-4V	Slug-stress	Moderate corrosion; thick overall film with cracking in the L/V and V areas; light etching and moderate pitting of about 1 x 10^{-4} in. diameter.	-23.4		QN	
0956 2237 321 CRES Slug-stress No corrosion; very thin overall film; no pitting. 0.1 <0.03	0320	3968	304L CRES	Slug-stress	Light corrosion; very thin overall film; light etching in the L/V area only and no pitting.	0.5		QN	
1016 3968 Ti 6A1-4V Weld-stress Moderate corrosion; thick overall film with cracking; light -11.6 ND etching and moderate pitting of approximately	0956	2237	321 CRES	Slug-stress	No corrosion; very thin overall film; no pitting.	0.1		< 0.03	
	1016	3968	Ti 6Al-4V	Weld-stress	Moderate corrosion; thick overall film with cracking; light etching and moderate pitting of approximately	-11.6		QN	

42

ORIGINAL PAGE IS OF POOR QUALITY

•••

				Specimen		LIUPetian	IJON 1
a compose	Duration of test		Configura-		Weight change,		content
pecunen	days	Material	tion	Remarks	gm	Remarks	BE
1018	3199	Ti6Al-4V/ Ti6Al-4V	Weld-stress	Light corrosion and thin film in the L area; moderate corrosion and thick film in the L/V and V areas; light etching; light pitting in the L/V and V areas only of about 1×10^{-5} in. diameter.	-13.5		< 0.02
1130	3968	304L CRES	Weld	Light corrosion; thin overall film with cracking in the L/V and L areas; light etching and light pitting of about 1×10^{-6} in. diameter.	0.3		QN
1184	2246	6061-T6 AI	Slug Kry tox 240AC	Moderate corrosion; thick overall film; light etching and no pitting.	-1.3	White specks (Kry tox residue)	0.03
1404	2246	17-4 PH	Slug Krytox 240AC	No corrosion; thin film in the L/V and V areas and very thin in the L area; no pitting.	-0.2	White specks (Krytox residue)	0.03
1556	4017	N204 ONLY			:		9.05
L = liq.	uid exposed re	gion					
V = vap	or exposed re	gion					
f /V = fian	wid-vapor inter	rface.					

ND = none detected.

--- = not measured, data not available.

Original page is of poor quality

43

	Specime	n Weight				A	alysis of pro	opellant			
						T. A.		Propel-			
Specimen	Initial,	Change,	Fe,	AI,	Ti,	rotal, metal,	NOCI	wt, ^a	Н ₂ 0,	NO,	Purity,
number	B	8	mg	gm	Bm	тg	шĝ	8	%	%	%
0004	5.8655	0.0003	0.46	1		0.46	QN	33.5	0.08	0.60	100.10
0010	5.8166	-0.0010	0.09	•	:	0.09	0.02	33.5	0.15	0.33	100.9
0012	5.8602	0.0000	0.47	:	:	0.48 (Cu) ^b	0.03	28.88	, ;	0.70	99.08
0016	1.8784	-0.0053	:	0.95		0.95	0.02	33.5	0.05	0.85	100.16
0018	1.9561	-0.0004	:	1.54	•	1.54	QN	33.5	0.12	09.0	99.75
0050	3.2532	0.0006		0.05	< 0.01	0.05	ŊŊ	33.5	0.21	0.51	99.42
0054	3.2258	0.0012		0.02	<0.01	0.02	0.06	33.5	0.13	0.58	99.84
0010	3.1796	-0.0386	:	0.14	0.95	1.10 (Cu)	0.03	32.78	:	0.46	99.38
0134	5.8840	0.0014	0.39		3 3 8	0.39	QN	33.5	0.15	0.67	66.66
0142	5.7152	0.0008	0.10	•	• •	0.10	0.02	33.5	0.06	0.50	100.16
0146	5.8333	0.0008	< 0.18		1 3 4	<0.18	(IN	33.5	0.12	:	99.43
0910	5.8312	0.0007	0.33	•		0.33	DN	36.64	0.11	0.52	99.58
0162	5.8578	0.0015	0.31	: : :		0.32 (Cu)	< 0.03	33.08	•	0.33	99.39
0178	5.8317	0.0002	0.24		• • •	0.24	QN	33.5	0.21	0.77	99.65
0180	5.9042	0.0008	0.02	•	3 8 1	0.02	0.06	33.5	0.10	0.59	99.64
0218	5.6646	0.0015	0.27	1	:	0.31 (Cu)	<0.03	33.20		0.69	98.97
0220	5.6563	0.0016	0.28	:	:	0.28	QN	33.5	0.11	0.36	100.10
0232	5.7228	0.0012	0.22	:	;	0.22	QN	35.65	0.16	0.59	100.05
0234	5.7372	0.0015	0.02	8 9 1	i	0.02	<0.02	33.5	0.06	0.45	100.20
0272	6.4978	0.0096	11.70	, , ,	6 8 8	11.71 (Cu)	0.03	34.46	:	0.63	99.30
0588A	2.6871	0.0009	0.19	0.04	0.06	0.29	<0.03	35.20		0.63	60.66
0588B	1.4930	0.0012									
0618A	2.6857	0.0019	0.02		•	0.02	0.04	33.5	0.05	0.62	100.13
0618B	2,7263	0.0008									

Table C-7. Detailed posttest analyses and results - nitrogen tetroxide

Original page is of poor quality

	Specim	en Weight				Ą	alysis of pro	pellant			
Specimen number	Initial, 8	Change, g	9 9 8	Al, mg	Ti, mg	Total metal, mg	NOCI, mg	Propel lant wt, ^a <i>g</i>	н 2 0,	۶۵, ۳۵,	Purity, %
0730A	2.6847	0.0007	0.07	1.47	:	1.56 (Cu)	0.03	31.71	:	0.67	99.07
07308	0.9243	0.0018									
0896	3.1650	-0.0234		0.06	0.05	0.11	QN	33.78	0.14	0.60	100.00
0360	5.8221	0.0005	0.37		÷	0.37	QN	33.5	0.30	0.40	99.62
0956	5.8083	0.0001	0.49	:	•	0.50 (Cu)	<0.03	27.52	:	0.64	98.90
1016	3.4109	-0.0116	:	0.03	0.09	0.12	QN	33.5	0.25	0.15	99.56
1018	3.7420	-0.0135	•	0.01	< 0.01	0.01	< 0.02	33.5	0.07	0.64	99.88
1130	6.5896	0.0003	0.62	•	•	0.62	QN	. 33.5	0.10	0.42	100.00
1184	1.9323	-0.0013	:	2.07	÷	2.08 (Cu)	0.03	30.64	:	0.65	90'66
1404	5.7193	-0.0002	0.95	:	÷	0.99 (Cu)	0.03	30.91	•	0.54	90.09
1556	r \$ \$		0.03	<0.01	< 0.01	0.03	0.05	35.01	0.12	0.61	99.74
ND = none d	etected; less ti	han quantity de	tectable by an	aly tical techni	ique used.						
· = not me	asured; data n	tot available.									

Original page is of poor quality

45

4 significant figures = accurately weighed during analysis.
3 significant figures = weight estimated.
^bTotal metals include those listed in parentheses.

^aPropellant weight:

Appendix D

Scanning Electron Microscope Examination of Specimens

These photomicrographs show typical surface appearances after exposure to propellant.

PRECEDING PAGE BLANK NOT FILMED

44 INTENTIONALLY BLANK PAGE

ORIGINAL PAGE 13 OF POOR QUALITY

Surfaces Exposed to Nitrogen Tetroxide

Fig. D-1. Specimen 0018, 6061-T6AI, 500X. Unbroken surface film

Fig. D-2. Specimen 0016, 6061-T6AI, 500X. Cracked and flaking film

ORIGINAL PAGE IS OF POOR QUALITY

Surfaces Exposed to Nitrogen Tetroxide

Fig. D-3. Specimen 1130, 304L, heat affected zone, 500X. Thin, irregular film

Fig. D-4. Specimen 0896, Ti6Al-4V, 500X. Thin, irregular film, minor cracking and pitting

ORIGINAL PAGE IS OF POOR QUALITY Surfaces Exposed to Monomethylhydrazine

Fig. D-5. Specimen 1499, 6061-T6AI, 500X. Thin film with cracking and flaking

Fig. D-6. Specimen 1527, 304L, 500X. Unbroken surface film

Original page is of poor quality

Surfaces Exposed to Hydrazine

Fig. D-7. Specimen 0073, 2014-16AI, 500X. Thin-to-moderate film showing evidence of erosion, not surface pitting

Fig. D-8. Specimen 3155, 304L, 500X. Surface virtually untouched

ORIGINAL PAGE IS OF POOR QUALITY

Surfaces Exposed to Hydrazine

Fig. D-9. Specimen 1975, 347, 500X. Corrosion at area of highest stress

Fig. D-10. Specimen 0191, Ti6AI-4V, 500X. Unbroken surface film