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NUMERICAL COMPUTATIONS ON ONE-DIMENSIONAL 

INVERSE SCATTERING PROBLEMS 

Mark H. Dunn 

Institute for Computer Applications in Science and Engineering 

S. I. Hariharan 

Institute for Computer Applications in Science and Engineering 

ABSTRACT 

In this note we present an approximate method to determine the index of 

refraction of a dielectric obstacle. For simplicity we treat one-dimensional 

models of electromagnetic scattering. The governing equations yield a second 

order boundary value problem, in which the index of refraction appears as a 

functional parameter. The availability of reflection coefficients yield two 

additional boundary conditons. ~"e approximate the index of refraction by a 

k-th order spline which can be written as a linear combination of B-splines. 

For N distinct reflection coefficients, the resulting N boundary value 

problems yield a system of N non-linear equations in N unknowns which are 

the coefficients of the B-splines. 

Research reported in this paper was supported by the National Aeronautics 
and Space Administration under NASA Contract Nos. NASl-16394, NASl-17070 and 
NASl-17130 for the first author and NASl-17070 for the second author while 
they were in residence at ICASE, NASA Langley Research Center, Hampton, VA 
23665. 
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Introduction 

In this note we treat a class of inverse scattering problems in one 

dimension. Similar problems hae been studied and motivated by Hagin [1] and 

Gray and Hagin [2]. Our goal, like theirs is to reconstruct an unknown 

function, which we refer to as the index of refraction, to moderate accuracy 

and by simple means. 

The problem we solve is as follows: 

We seek a function n(x) 

problem 

such that the solution u of the boundary value 

o xe(O,1) 

(P) 

satisfies u(O) = few) and u'(O) = g(w), where f and g are known 

functions of the real parameter w. 

This class of problems arises in several situations. In order to 

motivate the above problem we shall describe one such situation arising from 

electromagnetic wave propagation. 

For a general graded index medium, whose refractive index is n(x), the 

time harmonic Maxwell's equation, with single angular frequency k, can be 

written as [3] 
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2 
curl H = ikn (~)E~ 

curl E = -ik~~ (M) 

div H = 0 

where Hand E are the electric and magnetic fields and EO and ~O are 

the permittivity and magnetic permeability. 

thickness L (Figure 1) parallel to the y-axis 

air 

n 
o 

o 

y 

n(x) 

Figure 1 

Consider a dielectric slab of 

air 

L 

n 
o 

x 

We assume the magnetic permeability of the slab is the same as for the ambient 

medium (air). Suppose there is a transverse electromagnetic wave 

present. That is to say the electric field ~ and the magnetic field ~ are 

at right angles to each other and to the direction of propagation which is 
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taken as the x-axis. E = (O,u(x),O)T satisfies (M)3. H = (o,o,iU~~X))T 
o 

satisfies (M)2 and (M)4. Demanding Hand E to satisfy (M)l gives 

Upon nondimensionalization, in particular 

replacing x with x/L, the above becomes 

o (1.1 ) 

where The bondary conditions are that the tangential 

components of E and H are continuous across the interfaces of the slab. 

This implies that u and u' are continuous at x = 0 and x = 1. The 

problem that we consider is that the index of refraction of the ambient medium 

is a constant nO. 

coming from x = -~ 

The process of wave propagation is initiated by a wave 
inOwx 

of the form e Then the solution of (1.1) for 

x < 0 can be written as 

u(x) 
inowx -inOwx 

e + R(w)e , (1. 2) 

where R(w) is called the reflection coefficient. For x > L part of this 

wave is transmitted and the solution has the form 

u(x) (1.3) 

where T(w) is called the transmission coefficient. Since u and u' are 

continuous at x = 0 and x = 1, then (1.2) and (1.3) imply that 

(1. 4) 

and 
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o (1.5) 

In practice the reflection coefficient R(w) can be measured for any desired 

value of w. The continuity of u and u' at x = 0 together with (1.2) 

imply that 

u(O) 1 + R(w) 

and (1.6) 

u'(O) inOw(1-R(W» 

Thus u(O) and u'(O) are known functions of w. 

2. Solution Procedure 

Our solution procedure consists of approximating n(x) with a k-th order 

spline n(x). This choice of approximation is motivated by the need to solve 

the problem (P) quickly and accurately. We will expound on this statement 

after the description of the scheme. 

We begin with a brief description of the spline spaces Sk (.!). Let 

x = { }N+1 
xi i=1 be a partition of [0,1], and let Sk(~) denote the space of k-th 

order splines with knots at each xi· seSk(~) implies that in each interval 

[X
i

,x
i
+

1
] s is a polynomial of degree at most k-1 and sec (k-2) [0,1]. Let 

{ }N+k-1 
Bi,k(x) i=1 denote the B-spline basis for The general properties 

of B-splines are well known and can be found in [4] for example. A property 

for which we will have occassion to utilize is 

xe[xi_k+1,Xi+1]. As a consequence, if f(x) 

xe[x
m

,xm+1] then f(x) is simply given by 

that Bi k(x) = 0 if 
N+K-1 ' 

2 aiBi k(x) and if 
i=l ' 
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(2.1) 

The approximation of n proceeds as follows: 

For given Nand k we seek an approximation 

n (x) 
(N) 

(2.2) 

where N = N + k - 1, such that, given the distinct pairs (Wj,R(Wj )) 

j = 1,···,t, where t = rN/21, the A(N),s are chosen such that the solutions 
i 

u. of the initial value problems 
J 

~" + w
j
2u2 (x)u. 0 

j (N) J 

u. (0) 
J 

(I) 

1,2,···,t. This is equivalent to solving 

where A = (A(N) ••• A(N))T 
- l' , N 

F(A) = 0 

and E(~) = (fl(~),···,fN(~))T and where 

and f 2j _1(l) = Imag((uj-iWjUj ) (1») 

(2.3) 

j = 1,2,···,t. Before proceeding to the motivation we note that the system 

(2.3) is highly nonlinear. 

In order to solve (2.3) one must solve (I) many times. In general this 

requires the numerical solution of these problems which leads to a large cost 
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in computer time. Our choice of approximation reduces this time to a great 

extent. For examp Ie, when k lone can obtain the solution of (I) in 

closed form, and when k ~ 2 one can easily obtain truncated Taylor 

expansions, whose accuracy is comparable to the numerical integrations of 

(I), but the time taken to compute the expansions is, in general, much less 

than the time taken to integrate (I) nUMerically. The Taylor expansions are 

computed as follows: For is a polynomial of degree at 

most k - 1 and is given by 

n (x) 
(i) 

m+k-1 (N") 
L \ Bi k(x). 

i=m ' 

This follows from (2.1). Let and l\n(x) denote two linearly 

independent Taylor series solutions, expanded about xm' of (1)1. Then for 

is given by ~.(x) = a S (x) + b H (x), 
J m m m m 

(I) the solution of 

where the am's and bm's are chosen so that u j and uj are continuous at 

each xm and also to satisfy the initial conditions. 

It is known [4], that if fEC(j) [0,1] for j = 0,1,···,k-1, then 

inf IIf-sll 
00 

SESk(~) 

where h max (xi+Cxi)' Ck . is a constant which depends only on k and 
l~i~N ,J 

j, and 

sup{lf{j)(x)-f(j)(y)l: x,yE[O,l], Ix-yl(h} 

is the modulus of continuity of f(j) at h. It is also known that the above 

estimate cannot be improved. Thus, if nEC(k) [0,1], then 
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lln-~ II w(n(k-l;)h) C hlln(k)lloo 

o (hk ). As will be seen, in 

and the best that we can hope for is 
(N') 00 

several numerical examples tested the optimal 

convergence rate was attained. 

3. Numerical Results 

In this section we present some numerical examples for k = 1,2 and 3 

with knot sequence { i-l}N+l 
N i=l· In all examples the Levenberg-l1arquardt 

algorithm [5] was used to solve (Z.3). The R( w.), s were computed by 
J 

inputting the exact solution n(x) into (P). 

To solve a large non-linear system of equations it is usually necessary 

to have a good initial approximation to the solution. For fixed Nand k 

our solution was built up according to the following algorithm: 

(i) Select a sequence of integers ~ = {mi}~=1 with ml 

and 

(ii) Compute by solving (Z.3) with an initial guess 

1. 

k, IIJ.t N 

(iii) For j = 1,000 ,M-l compute n( ) by solving (Z.3) with the 
_ mj +1 

initial guess chosen so that
m

.:Im
j
+

1
) interpolates TI(m

j
) at the 

m
j
+1 distinct points {Y.t} .t:l. This gives a linear system for 

(m.+l) 
the initial Ai J 's that is invertible if and only if 

.t = 1,000 ,mj+l [4]. 

We found that the best results were obtained by setting m 

for k = 1 and ~ = {Zi}~=1 for k = Z and 3. 

{Zi}M 
i=1 
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The maximum attainable N is limited by considerations of computer time 

and accuracy. In the examples tried we found that satisfactory results were 

obtained if N = 32 for k = 1 and N varied between 10 and 14 for k = 

2 and 3. 

Example 1. (Figures 2, 6, 10) 

n(x) = 1 + x2 

k 

N 

IIn-u(N) II"" 

computational time (cpu sec.) 

estimated convergence rate 

Example 2. (Figures 3, 7, 11) 

xe[ 0 ,-!)U( i, 1] 

+ sin221T(x- t) 

Table I 

1 2 3 

32 12 10 

.036 .0064 2.4 x 10-6 

123 31.2 8.30 

1.0 2.1 



k 

N 

IIn-n(N) 1100 

computational time (cpu sec.) 

estimated convergence rate 

Example 3. (Figures 4, 8, 12) 

n(xl = {: 

k 

IIn-n(N) 1100 

xe[ O,i) 

xe[i, 1] 

computational time (cpu sec.) 

estimated convergence rate 

Table II 

1 

32 

.16 

195 

1.1 

Table III 

1 

16 

.50 

25.6 

9 

2 3(a) 

12 10 

.058 .021 

101 35.7 

.96 

2 3 

8 10 

.46 .47 

20.2 104 

(a)These results were obtained by demanding the initial approximation to 
interpolate the final approximation for k = 2. 
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Example 4. (Figures 5, 9, 13) 

n(x) ={ t; 2x 

xe[ o,i) 
xe[i ' i] 
xe( i ,1] 

k 

N 

IIn-o(N) 1100 

computational time (cpu sec.) 

estimated convergence rate 

4. Discussion 

Table IV 

1 2 3 

32 14 10 

.050 .028 .025 

09.2 117 51.1 

1.1 1.1 

In all examples with k = 1 and 2, except for example 3, the optimal 

convergence rate was attained. 

It is obvious from the results listed in Tables 1 - 4 that if a desired 

accuracy is specified, then the minimum computational time is achieved by 

increasing the order of the splines rather than increasing the number of 

unknowns for a fixed order. 

In practice the measurement of the reflection coefficients is subject to 

experimental error. To simulate this situation we introduced Gaussian type 

noise in the values of R(w). Stable results were obtained if the amplitude 

of the noise was less than 10-6• 
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Our results are comparable in accuracy and computational time to those 

obtained in [1] and [2]. However, our method is applicable to any boundary 

value problem in which the unknown appears as a parameter and sufficient 

additional conditions are known. 
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