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SECTION 1

INTRODUCTION AND SUMMARY

This is the final report for work performed under Contract NAS8-33511 by the

Honeywell Systems and Research Center for NASA's George C. Marshall Space

Flight Center, Huntsville, Alabama. This is the third phase of this

contract. The work in this and previous phases of the contract is

summarized below.

SUMMARY OF PHASE I

During Phase I of the program, a spectral splitting photovoltaic concept was

defined. In this concept, the energy spectrum is split into different bands

in which photon energy is effectively converted into electrical energy via

photovoltaic cells that have matching spectral responses. The efficiency of

the system also increases with the concentration ratio if the temperature of

the cell is maintained constant — 300K. Assuming this condition was met, a

system with 1000:1 concentration ratio was defined, using a Cassegrain

telescope as the first-stage concentration (270 x), and compound parabolic

concentrators (CPC) for the second-stage concentration of 4.7 x for each

spectral band. Using reported state-of-the-art solar cell parameters and

considering losses due to optics and beamsplitters, the calculated

efficiencies of one- to four-cell systems varied from — 22% to — 30%.

When the cost of optics, beamsplitter, radiator, and the cost of developing

A,	 new cells are considered., the most cost-effective system was the two-cell

{	 gallium arsenide/silicon (GaAs/Si) system.
14
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jc	 The advantages of the spectrophotovoltaic (SPV) concept are: 1) the

increase in photoelectric conversion efficiency without development of new

materials and cells; 2) intrinsic particle radiation hardness, since the

11,
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cells are not directly exposed to particle radiation; and 3) intrinsic

resistance to laser dairage, since the acceptance angle of the concentrator

system is only ±0.5 0 , pointing at the sun. Thus, the spec^rophotovoltaic

concept is especially suitable for space power generation.

SUMMARY OF PHASE II

In Phase I'Lr of the program, the objective was to define and design a

subscale model which would demonstrate the hardware feasibility of selected

components of the full-scale spectrophotovoltaic orbital power generation

system up to a concentration ratio of 1000U. The design for ground-based

testing would be in sufficient detail to pitoduce a subscale model capable of

demonstrating the performance characteristics of the major components and

the integrated system.

The subscale model defined was a 10 -in. aperture system with an effective

concentration ratio up to 1000:1, similar to that defined in Phase I. The

partially concentrated solar spectrum was divided into two bands by a

beamsplitter and then focused onto two selected cells. The chosen cells

were well-developed GaAs and Si solar cells. Both reflective and

transmitting mode to GaAs (denoted by GaAs/Si and Si/+3n;As, respective;l.y)

would be tested, since each configuration had its own merits. The model

would demonstrate the high conversion efficiency, due to both spectrum

splitting and high concentration ratio of the defined concept. In addition,

thermal data on various system components would be taken; these data would

shed 'light on system losses and thus lead to an optimal design. The ability

of the system components to withstand such high concentration would also be

tested.

2
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The optical design for the subscale model was a scaled-down version of the

Phase I design with an increase of the back focal length from 3 in. to 5 in.

to allow room for thermal measurement at the CPC solar cell closest to the

primary. This caused the secondary obscuration to increase from 78 to 108.

Three manufacturing methods for the optical components were explored. Among

these, electroforming, a version of electroplating, was the most economical

for the CPCs. Diamond turning and conventional glass grinding appeared best

for the primary and s.>condarh. Optical tolerance analysis of the mirror

included three other mirror combinations. The most critical alignment was

the separation between the primary and secondary mirrors, which had to be

maintained within +0.015 in.

PHASE III OBJECTIVES AND SUMMARY

The objective of building and testing the subscale model of the

spectrophotovoltaic system was to demonstrate the efficiency gains

attainable by splitting the spectrum and directing the energy to spectrally

matched solar cells and to take advantage of cell efficiency gains resulting

from operating at high solar concentration ratios.

The test results presented in this report show that there is a small

advantage to be gained by implementing the spectrophotovoltaic concept.

f•	 Component performance contributed to lower than anticipated system

efficiency. The highest measured system efficiency was 14.28, with the GaAs

cell contributing 128 and the Si cell contributing 2.28 of the total

conversion efficiency.

Measured and manufacturers' data on all of the components were input to a

computer model of the system. Good agreement was found between the measured

and calculated parameters for the GaAs solar cell. The model and computer

printout areiven in Appendixppendix A.

3



SECTION 2

DESIGN

The objective of the design was to provide a solar concentrator for testing

solar cells under very high concentration ratios while employing spectral

beamsplitting to increase the net solar to electrical energy conversion

efficiency. In addition, the subscale test model would closely model the

optical features of the concentrator concept designed in Phase I of this

contract. * Additional requirements on the test model were that it be

large enough to provide readily measurable electric and thermal output from

each solar cell. The upper limit on model size was constrained by the need

for portability and by component costs.

The optical design only required one departure from linear scaling. To

provide more clearance between the back of the primary mirror and the solar

cells and for instrumentation and thermal insulation, the back focal length

of the optics was incroiazed slightly. This required a larger diameter

secondary mirror with an accompanying increase in obscuration from 7.3% to

10%. Figure 1 is a cross-sectional drawing which identifies the optical

components.

*Although the Phase I design considered only a single concentrator system
with a 100 kW electric output, the optimum aperture mAze for most effici`nt
fabrication and energy conversion is not clear. Ea::h size of concentrator
will require different manufacturing techniques, alignment tolerances, and
materials to achieve an optimum design. Determining the best solution
will require a series of complete system designs.

9
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Figure 1. f/3.5 Optical System

The double-width rays trace out the path of rays originating from the edges

of the 0.50 wide sun. The beamsplitter is placed at a 22.5 0 angle to

the optical axis to redirect the short wavelength portion of the spectrum to

the solar cell having the higher bandgap. The longer wavelength portion of

the spectrum passes through the beamsplitrer to the lower bandgap solar cell.

The optical concentration at the aperture of the compound parabolic

concentrator is approximately 270:1, and an additional concentration of 4.66

occurs in the CPC for a total concentration of 125E:1. Obscuration losses

due to the secondary mirror surfaces bring the net concentration down to

approximately 1000:1.

5



This particular optical configuration was the result of an optimization

study performed in Phase T of the contract. The tradeoffs considered

surface accuracy requirements, space deployment concepts, beamsplitter heat

loads, and cell-to-beamsplitter geometry. The results were that the most

economical system performed the solar concentration in two stages, as shown,

using an f/3.5 primary concentrator and a CPC secondary concatrAtrator.

Table 1 summarizes the subscale model optical design parameters. The

characteristic optical surface radii, focal lengths and separations, and the

theoretical concentration ratios are listed. The tradeoffs and rationale

for selecting a 10-in. aperture design were presented in the Phase 11 design

study report. The main driving issues were that a 10-in. aperture was large

enough to collect easily measured quantities of energy, while being small

enough to be easily portable and have v'..tnimum component costs.

Figure 2 is a cross-sectional cutaway view of the subscale test model

showing the physical size, shape, and layout of various optical components.

The primary is an f/0.7 diamond-turned elliptical mirror made from

aluminum. The secondary is a spherical quartz mirror bolted to the spider

mount, the two together forming what is referred to as a Dall-Kirkham

telescope system. The beamsplitter is a multilayer coating deposited on

Infrasil (fused quartz) substrate. It is mounted in an aluminum holder

which is turn is bolted to the primary mechanical structure of the

concentrator. The two solar cells and CPCs are each mounted in their own

separate housing which provides the mechanical support and thermal

insulation. Electric power leads, thermocouples, and coolant lines are also

supported by the solar cell mounts. Complete detailed mechanical drawings

of the various components are provided in Appendix B.

1	 6
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TABLE 1. SYSTEM DESIGN PARAMETER FOR SUBSCALE MODEL

n

^a

!t

e.

Y

Primary Diameter -

Primary Focal Length =

Primary F/# =

Secondary Magnification

System hack Focal Length =

Source Angular Subtense =

System Focal Length =

System F/# =

Secondary Focal Length =

Secondary Diameter =

Primary-Secondary Separation =

Secondary Obscuration =

Obscuration Effir;iency

CPC Entrance Aperture Dia.

Concentration of Cassegrain =

Solar Cell Diameter

Concentration of CPC =

Length of CPC =

System Concentration =

10.0"

7.0n

0.70

5.0

6.0"

± 0.50

35.00

3.50

-2.7-1-11

3.18"

4.83"

0.10

0.90

0.61"

269.63

0.28"

4.66

0.85

1256
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Figure 3 is a photograph of the ab:sembled mechanical structure, tracking

drive, and data logger. It shows the mounting relationship of the test

model, two Epply normal incidence pyrheliometer g , and the drive mechanism.

Two adjustable counterweights are provided to minimize the unbalanced loads

both on the declination adjustment and the polar rotation axis. The drive

mechanivi is a standard Epply pyrheliometer drive modified to accept the

greater weight and higher center of gravity of the test model. All

components are either anodized aluminum, stainless steel, or plexiglass

excel,t for the drive mechanism, which is baked enamel on steel.

The data logger used for recording the c-11 current, voltage, temperatures,

and solar intensity was a 30-channel Fluke Model 22400 data 1a19er having a

40,000-cou p - dual-slope integration. It was ..apable of resolving

dif.fere-ices if 1 mV or 1 part in 40,000, whichever is larger. Temperature

measurements were resolved to 0.1 Or.

Figure 3. Subscale Test Model, Mount, and Data Logger

9
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Figure 4 is a close-up view o: the back of the test model showing the

beamsplitter mount, the CPC and cell holders, and the electric signal and

coolant feedthroughs. The CPC/cell holders are bolted to the mounting plate

with single bolts placed in oversized holes to permit rotation and

translation for the fine alignment. Height adjustment was provided by

shims. (in the Final assembly, no shimming was required to achieve optical

alignment.) The back and top of the cell mounting compartment was covered

with plexiglass to reduce convection los:.es and dust contamination of the

intensely illuminated optical components. The dust covers are shown

installed in Figure 3 but are removed in Figure 4.

Figure 5 snows the assembled concentrator while it was being tested in

sunlight. The cabling so predominate in the photograph consists of voltage

and current leads for each solar cell, thermocouples, pyrheliometer leads,

tracker drive power, and cell coolant lines. The coolant used was water

with approximately 15% alcohol to prevent freezing.

Figure 4. Close-Up of Test Model Solar Cell Mounts

10
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Preliminary alignment of the concentrator to the sun was performed using the

pinhole and target alignment sight on the pyrheliometers. Fine alignment

'	 was performed by fine adjusting the declination and hour angles to maximize

the short-circuit current from each or the solar cells.

The one-degree field of view of the concentrator while tracking a half-

degree wide sun provided an acceptably wide margin of error such that once

aligned, the concentrator would track for an hour or more without requiring

fine adjustment. Improving the alignment of the polar axis to the earth

^.	 axis would have increased this accurate tracking time to several hours.

Measurements and geometric calculations showed that the pyrheliometers were

very insensitive to alignment errors of + l o. Hence, the concentrator-

I '	
to pyrheliometer alignment did not have to be changed with small adjustments

of the concentrator to sun alignment.

11



In the following section, the numerical modeling performed during this

program will be discussed. Test data measured for various components and

the system performance will be presented in Section 4.
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SECTION 3

MODELING

INTRODUCTION

Evaluation of the test model required an analytic model for performance
u

comparison and predictions. A detailed analytic model of the concentrator

was created by spectrally integrating the component performance data.

Spectral measurements of component reflectance, transmission, and conversion

efficiency were made for each component and integrated with the solar

spectral intensity within the 0.29- to 1.1-pm spectral range. The

conversion efficiency is the quotient of electrical output divided by solar

i	 energy input. In the following paragraphs, all of the parameters which went

into the analysis will be discussed, starting from the solar spectral data

and ending with the predicted performance.

SOLAR SPECTRAL DATA

The solar spectral data used in this analysis were taken from a 1978 paper

by Mecherikunnel and Richmond . 1 This paper presents spectral irradiance

data over the wavelength range 290 to 4000 nanometers ( 0.29 to 4.0 Um) for

µ air masses 0 to 10 1% AM0 to AMID), (For sea-level observations the air mass

is approximately 1/sin6, where a is the altitude angle of the sun.)

The paper further presents correction factors for various levels of

^T
atmospheric moisture, ozone, and turbulence. In all of the following

analyses, it was assumed that the atmosphere was clear, with Angstrom

turbidity coefficients a = 0.66 and s = 0.170, 20 mm of precipitable

water vapor and 3.4 mm of ozone.

13
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Figure 6 is a plot of solar spectral irradiance for AMO and an AM2 spectrum

with the atmospheric conditions given above. The atmospheric attenuation is

stronger at the shorter wavelengths but shows very strong water-absorption

bands at the longer Wavelengths. The overall effect on a two-color

photovoltaic conversion system is to shift a greater percentage of the

energy from the shorter wavelength solar cell to the longer wavelength

cell. A system optimized for space applications will not have the maximum

efficiency when tested at AM2 conditions.

9 ,

Y

Atmospheric attenuation can be minimized by testing at higher altitudes and

when the sun is most nearly overhead. Figure 7 is a plot of apparent air

mass as a function of solar zenith angle and test-site elevation. The test

sites plotted include se • ►eral high-altitude observations plus Minneapolis,

and Leadville, Colorado. Table Mountain, California, provides the best

compromise in terms of accessibility, working facilities, and reduction in

air mass.

2.6
	 A614 AND A612 SOLAR SPECTRA

L/

1.F

1./
/
a

N

t

0.5

AW

AM2

0.0 V	 I	 I	 I	 1

0.3	 0.6	 0.7	 0./	 1.1

WAVELENGTH 1µm)

Figure 6. Solar Spectral Intensity Distribution 	 E
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Figure 7. Air Mass for Various Test Sites

In all of the following analyses the air mass and turbidity assumed was that

for average clear sky conditions with either an AM1 or AM2 condition.

Should further testing be performed, testing at a high-altitude site such as

Table Mountain would be recommended.

CONCENTRATOR COMPONENT PROPERTIES

Introduction

Before the performance of the spectrophotovoltaic system can be predicted,

the performance of each of its components must be characterized. The SPV

concentrator system has a large number of components in the optical path,

all of which impact the net conversion efficiency. Figure 8 is a

cross-sectional drawing of the concentrator showing the relative size and

15
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Figure 8. Spectrophotovoltaic Concentrator Layout

locations of the mirrors, beamsplitter, compound parabolic concentrators,

and solar cells. Figure 9 provides the critical geometric dimensions of all

the components in the optical system. In the following paragraphs the

optical properties data for each of the components will be presented.

Mirrors

The primary and secondary mirror system together form what is known as a

Dall-Kirkham telescope. The primary is an elliptical diamond-turned

aluminum mirror; the secondary is a spherical quartz mirror.. Both mirrors

are overcoated with silver for maximum short-wave reflectance. Figure 10 is

a plot of reflectance versus wavelength for a witness coupon overcoated with

silver at the same time as the primary mirror. The integrated average solar

reflectance (AMO) over the 0.4- to 1.1-um spectral range was 86%. This

16
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Figure 10. Primary Mirror Reflectance (coupon measurement at 13 0 angle
of incidence; an aluminum reference shown for comparison)
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would increase slightly for an AM2 spectrum because of the higher

reflectance at longer wavelengths. An accurate reflectance measurement from

a large, steeply curved mirror is difficult to perform. An approximate

measurement of reflectivity was made using a double bounce technique as

illustrated in Figure 11A and B. The reflectance measured at 0.63 um was

0.86 + 0.02 per surface. The large uncertainty was due to the relatively

small detector collection aperture of the detector and the amount of surface

scattering from the diamond-turned primary mirror. it is suspected that,

had a larger aperture detector been available, the measured reflectance

would have approached the 908 shown in Figure 10 (X = 0.63 um). The

measurement scheme shown in Figure 11 had an acceptance angle of

approximately 0.20 , whereas the acceptance angle of the solar cell is near

10 . In calculating the mirror reflectance it was assumed that the primary

and secondary had the same reflectance. From a practical standpoint, it

makes no difference whether one mirror has 100% reflectance and the other

748 or whether they both have 868. From the limited amount of data

available, the latter case appears to be a good approximation.

The reflectance requested from the vendor was 983 or greater over the 0.45-

to 1.1-µm range. Coatings of this high reflectance and broadband are

commercially available (Figure 12), without pushing the state-of-the-art.

Increasing the reflectance of each mirror from 868 to 988 would increase the

system conversion efficiency by 29.98.

Beamsplitters

The spectral beamsplitter is the unique feature of this solar electric

conversion system. Solar cells characteristically have a very steep

long-wave cutoff (Figure 13). Since the solar cells having shorter

wavelength cutoff characteristics operate at higher voltages, the electric

power output is maximized by splitting the solar spectrum and directing

portions of the spectrum to the spectrally matching solar cells.

18
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To determine the sensitivity of the conversion efficiency to the cutoff

wavelength of the beamsplitter, a series of calculations were made for GaAs

and Si cells using both AMU and AM2 solar spectra. 	 Figure 14 shows a plot

of efficiency versus beamsplitter cutoff wavelength. 	 The curves indicate

that the cutoff wavelength can vary + 0.3 pm with less than a 58 reduction

in net electrical power output.	 in the modeling an assumption was made that

the reflected portion of the spectrum was totally reflected, and It of the

remainder was absorbed. 	 Depending on whether the short-wave portion of the

spectrum, which contains more than 70% of the energy, was reflected or

transmitted, the peak of the efficiency curve is shifted slightly. 	 Since

more energy is produced by the GaAs cell than by the Si cell, the system

efficiency is slightly higher with a short-wave reflective beamsplitter.

Two sets of beamsplitters were purchased from Broomer Research, Inc.--one

set for the AIGaAs/Si solar cell combination, and one for the GaAs/Si cell

combination.	 Figures 15 and 16 show the GaAs/Si beamsplitter trannmission

and reflectance, respectively.	 Figure 17 shows the effect of turning the

multilayer coated mirror over and measuring reflectance with the glass side

.1

toward the incident beam. 	 The presence of harmonics in one orientation and

not in the other is the result of the walk-off of the multiply reflected

beam from the collection aperture of the spectrometer. 	 The total

reflectance is the sum of an infinite series of reflections, but since the

spectrometer beam strikes the sample of an 8 o angle the multiple

reflections between the front and back surfaces are displaced from the

k principal reflection and do not reach the detector.

Figure 18 diagrams the reflection of the beam striking the surface at an

angle.	 The total reflection from the beamsplitter is the infinite sum of

the multiple reflections, given by the following equation:

i^
^s

! R1122R1R2 + R2
R

1 - R1R2	
(1}
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f.

d	 d

d = h ton 
I
Sin"(-P sin 1)

Figure 18. Multiple Surface Reflectance From the Beamsplitter

The equation is totally symmetric in terms of front and back surface 	 t

reflectances R 1 and R2; hence, the total reflectance is independent of

whether the beam strikes the higher or lower reflectance surface first.

When a reflectance measurement is made with an instrument having a narrow

aperture slit, the walk-off of the beam limits the number of reflected rays

that can be collected by the aperture. For a double bounce measurement having

an 8o incident angle and a 0.1-in. thick substrate, the beam reflected from

the back surface is displaced laterally 0.0373 in., the second reflection

0.0745 in., etc. If only the primary reflection and one reflection from the

second surface are summed, the reflectance is given by

R = R1 + (1-R1 )
2
 R2	(2)
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Since the beamsplitter can be oriented with the coated side (R a 0.95) toward

the beam or the uncoated glass (R = 0.04) side toward the beam, the net

collected energy can be different. In Case 1, coating toward the beam, R 1 =

0.95, R2 = 0.04 the net reflectance measured would be R 1 = 0.95010. In

Case 2, R1 = 0.04, R2 = 0.95, the net reflectance is R2	 0.91552. This

explains why the average reflectance measured with the glass side toward the

spectrometer beam (Figure 17) is 3% to 4% lower than when measured with the

coated side toward the beam (Figure 16).

It is suspected that the high frequency modulation of the reflectance that

appears in Figure 16 and not in Figure 17 is due to interference between

layers within the coating since it stops abruptly at 0.7 um. The reflective

coating appears to contain two discrete reflective stacks, one covering 0.4 to

0.7 pm, the other the 0.7- to 0.9-um range.

Figures 19, 20, and 21 are the transmission and two reflectances measurements

for the 0.70-um cutoff filter. These curves show characteristics very

similar to those of the long-wave cutoff filter previously discussed. In all
i

cases, the transmission portion of the band shows approximately 90%

transmission and the reflectance band approximately 95% reflectance.

Multilayer coated filters show an angle of incidence dependence. The filter

was designed to operate at a 22.5° angle of incidence, but transmission is

customarily measured at normal incidence and reflectance at a fixed angle

between 8° and 30°, depending on reflectometer design. To determine the

effect of incidence angle on transmission, the sample holder was rotated and

transmission measured at 0°, 22.5°, and 30° for each of the beamsplitters.

The results are shown in Figures 22 and 23 for the long-wave and short-wave

cutoff filters. Increasing the angle of incidence from 0
0
 to 22.5

0
 shifts

the cutoff to approximately 0.2 pm shorter wavelength. All other

transmission and reflectance features are shifted with no significant changes

in total reflectance or transmission.
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Compound! Parabolic Concentrators

The compound parabolic concentrators perform the final stage of optical

concentration. Using two stages of optical concentration allows the

beamsplitter to function in a relatively collimated beam at moderate

concentration ratios. how concentration at the beamsplitter reduces the

temperature rise on this passively cooled component. Further, by functioning

in a more nearly collimated beam, the beamsplitter cutoff wavelength can be

more sharply defined.

The CPC aperture is oversized sufficiently to collect the light from a 1°

wide field of view. This permits the system to function with small pointing

and tracking errors and compensate for spreading of the beam due to mirror

imperfections. The mirrors will have small slope errors and a small amount of

beam spreading due to nonspecular reflectance.

Figure 24 is a cross-sectional drawing of the CPC showing the geometry of the

electroformed nickel structure. With the solar dusk centered, only 38% of the

energy strikes the CPC and makes only one bounce before reaching the solar

cell. As the tracking error increases, more of the energy is incident on the

CPC wall. The angle of incidence ranges from 45 0 to near 0°. For a

perfect tracking system, 38% of the total energy is incident on the CPC walls

and the angles of incidence change from 45° to 62° from the normal. The

reflectance of polished nickel integrated over the solar spectral range

appears to be in the 708 range with no strong angular dependence for the

operating range.

n

The maximum energy loss due to CPC absorption is the product of incident

energy times one minus the reflectance (2.38 x (1 - .7)), or 11%. Coating the

inside of the CPC with a high-reflectance multilayer coating could improve the

reflectance to 95% and cut the CPC losses to near 2%. The small size and poor

aspect ratio--i.e., great depth-to.-diameter ratio--made this impractical. A

=c
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0.71

SOLAR CELL

Figure 24. Compound Parabolic Concentrator Cross Section

possible way of increasing coating uniformity would be to out the CPC

lengthwise into three or more sections. These are areas for further

evaluation and system improvement.

The solar cells form the last and most important link in the SPV conversion

system. The choice of solar cells was restricted to those that were currently

available and that would meet the 1000:1 concentration ratio requirements.

Three cell types were available: silicon, gallium arsenide, and aluminum

gallium arsenide (A1GaAs). The nominal open-circuit operating voltages of the

three cells were 0.7, 1.1, and 1.3 volts, respectively. Varian Associates of

u	 Palo Alto, California, was able to provide all three types of cells designed

and packaged to operate at 1000:1 solar concentration.

b
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i

To compare solar cell performance, two common comparisons were used--quantum

efficiency and power output. Quantum efficiency is the ratio of electrons

collected per incident or absorbed photons. Given cells of the same output

voltage, quantum efficiency is a good measure of relative efficiency and is a

good diagnostic tool for evaluating cell, performance. When comparing solar

cells having different output vol,tages--e.g., Si, GaAs, and AlGaAs--power

output is a better measure for comparison. At a given wavelength, the quantum

efficiency of an Si cell may be 208 higher than that of an AlGaAs cell, but

the output voltage of the Si cell is only 548 of the AlGaAs cell. Hence, at

that wavelength, AlGaAs will have a higher power output. For photovoltaic

systems employing multiple solar cells of different output voltages, power

output is a better basis of comparing cell performance.

Figure 25 is a plot of the quantum efficiency versus wavelength for the three

types of cells. The AlGaAs exhibits a lower peak quantum efficiency and a

significant fall-off as the wavelength approaches the long wavelength cutoff

valve. When these same data are multiplied by the output voltage, the

relative areas under the curves change significantly. Figure 26 plots the

relative power output determined by multiplying spectral quantrum efficiency

by open-circuit voltage. In this plot, the higher output voltage of the

AlGaAs and GaAs cells show their importance.

Multiplying the power output by the AMO and AM2 solar spectral energy provides

the final basis of comparison of the solar cLils (Figures 27 and 28). Because

M _	 the AlGaAs cell quantum efficiency rolls off too much before the long-wave

cutoff, the AlGaAs/Si cell combination power output is less than that

contributed by the GaAs/Si cell combination. Thus, of available cells, the

GaAs/Si combination was selected for testing.
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Figure 27. Spectral Power Output for Three Solar Cells at AMO
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Figure 28. Spectral Power Output for Three Solar Cells at AM2

When comparing individual cells, the Si cells are more efficient than the

available A1GaAs cells at all air masses, and the GaAs cells are significantly

better than either. When comparing two cell system performance (A1GaAs/Si and

GaAs/Si), the differences are not quite as great but are significant and

increase with increasing air mass. If the A1GaAs cell quantum efficiency did

not roll off so rapidly at long wavelengths, the AlGaAs/Si combination would

be better at AMO.

The GaAs solar cell provides significantly greater efficiency by all of the
comparison methods. Although it is claimed that better A1GaAs cells are

available, there are also slightly better GaAs cells available.

Since the GaAs/Si solar cells exhibited the best performance, this combination

was the only combination tested and is reported in Section 4.

4
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SECTION 4

TEST RESULTS AND ANALYSIS

TEST DESCRIPTION

The main objective of the tests was to evaluate the SPV system performance

under natural sunlight. Tests were conducted to evaluate system performance,

individual cell performance, field of view, thermal response, and

instrumentation.

Most of the theoretical calculations were based on clear sky AM2 spectrum or

an AMO spectrum. Because of the low solar-declination angle during the late

November test period, most of the tests were conducted between AM2 and AM3.

J The high air mass tends to shift the solar spectrum toward longer wavelengths,

with a resulting decrease in overall system efficiency. This will be

discussed further when comparing the calculated and measured system output.

The tests were conducted on the Honeywell Systems and Research Center roof top

which provided on unobstructed solar view, access to electric power and heat,

and restricted personnel access. The geographic coordinates of the test site
u	

were 450OON, 93
0
13'W with an elevation of approximately 850 feet above

mean sea level. The longitude was such that solar time was within two minutes

of central standard time (CST); hence, data reported for CST are essentially

corrected for apparent solar time.

11_
	 The procedure used to obtain the current-voltage (I-V) curves for the solar

V^ cells was to align the concentrator to the sun to maximize the short-circuit

current output and then vary the series resistance from 0 n to - (short

circuit to open circuit) in steps from which the complete I-V curve could be

plotted. Due to a small mechanical misalignment of one of the solar cells,

measurements for each cell exhibited maximum power output at a slightly

different alignment. Hence, the I-V curves for the two cells were measured

sequentially rather than simultaneously.
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Figure 29 shows the system in its test configuration on the roof top. The

picture shows the SYV concentrator on an Epply equitorial drive unit with the

variable resistance box and cooling water system placed on the lower shelves

of the laboratory cart. The data logger, not shown, was located indoors.

Tests were conducted on November 16 and 18, 1982, during the morning hours.

Near noon on each day high cirrus clouds moved in and prevented further

testing.

TEST RESULTS

The test results presented in this section are the I-V curves for each solar

cell, the I-V curve for the silicon cell without the beamsplitter, the system

thermal response, and the field-of-view tests. Each of the test results is

presented graphically, with a discussion of the results and test conditions.

Comparisons between the measured results and the modeling predictions will be

made in the following section.

Figure 30 is a plot of the I-V curve for GaAs cell operating with the

beamsplitter reflecting light onto it. The data were taken over a period of

18 minutes during which the solar intensity varied +1.3%. The maximum power

point was determined by fitting a curve through the measured data and

differentiating to determine the maximum power point. The cell efficiency of

12.68% was determined by dividing the maximum power output by the effective

power input. The power input was taken as the product of net collector area,

primary mirror area minus secondary mirror obscuration, and solar flux

measured with the calibrated pyrheliometer.

The long wavelength energy, 0.9 to 1.1 pm in wavelength, was transmitted

through the beamsplitter to the Si cell. The Si cell I-V curve is plotted in

Figure 31. The voltage scales in Figures 30 and 31 are similar, but the

*Secondary mirror obstruction was 10.1% of the aperture area.
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current scale was changed to provide a reasonably proportioned graph. Since

64% of the AM2 solar energy occurs at wavelengths less than 0.9 )1m, a large

difference in current output can be anticipated. The Si cell fill factor is

higher than that of the GaAs cell because the cell is operating at a current

considerably below its maximum current design point.

When the power output of the GaAs and Si cells (Figures 30 and 31) are

combined, the system efficiency was 14 . 85%. This efficiency is considerably

less than the 20 % anticipated earlier in the program. The major causes of the

poor performance are the low reflectance values for the two mirrors and the

CPCs, with a minor contribution due to absorption in the beamsplitter. The

effects of the components will be discussed further in the modeling discussion.

The I-V curves were generated a second time on November 18. Although the
i
u	 experiments were run later in the morning when the sun was higher and the

intervening air mass lower, the sky was hazier. The result showed up as a

slightly lower solar flux. The I-V curves measured on November 18 for the

GaAs and Si cells are presented in Figures 32 and 33. The efficiency of the

i GaAs solar cell appears to be slightly higher--13 . 38% versus 12.68%. The

differences between the two test results appear to be related to the solar

flux levels. As the solar flux decreases, the cell current decreases and the

internal resistive losses in the cell decrease. The result is that the fill

factor increases. If, in the case where the spectral distribution of energy

is approximately the same, the cell efficiency increases. The slope of the

GaAs I-V curve from 0 to 3 A indicates that the cell and its mount had an

E^ internal resistance of approximately 0.0353 Q. Assuming an initial

condition of an open circuit voltage of 1.13 V, the fill factor would decrease

by 3.5% per ampere of current draw. Within experimental error, this is the

change exhibited between the two test runs (Figures 30 and 32).

u
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The fill factors for the silicon cells for the two test days were nearly the

same--78% and 77%. Since the change in co gent on the Si cell was a factor of

4 smaller than for the GaAs cell, the effect on fill factor was also reduced.

In fact, the internal resistance of the Si cell circuit was also lower--0.0317 Q

versus 0.0353 P for the GaAs cell.

Figure 34 presents the I-V curve measured for the silicon cell with the

beamsplitter removed from the system. The solar spectrum was concentrated on

the single cell. The cell current increased by nearly a factor of 4, the

efficiency increased by approximately 3.6, and the fill factor decreased from

77% to 70.9%. The fill factor change is very close to the decrease predicted

by the voltage drop due to cell resistance.

With the full solar spectrum concentrated on the solar cell's 0.71-cm

diameter, the incident flux was 23.7 W or 59.7 W/cm (0.597 x 10 6 W/m2).

.1

2.64 W

.6

L
MAX POWER FT.

.4 1.17 W
J
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LU IEAMSPLITTER

10.1% FILL FACTOR
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11:10.11:30 CST
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0	 1	 1	 1	 1	 1	 1

0	 1	 2	 3	 4
CELL CURRENT (A)

Figure 34. Silicon Cell Tested Without the Beamsplitter
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(The heat flux from the cell was not recorded during this test.) The cell

temperature was proportionately higher than that of the GaAs cell, indicating

that the cooling and temperature measurement systems were operating normally.

The increase in cell temperature causes a decrease in output voltage. Data

from Reference 2 indicAte that silicon cell voltage will decrease at

approximately 0.002 V/°C near ambient temperature while the current at the

maximum power shows little change. The 20° rise in cell temperature could

account for a 0.04-V decrease in cell voltage or approximately 0.53% in

efficiency. Cooling the silicon cell to 26 0C, as in Figures 31 and 33,

would have raised the cell efficiency determined from the data in Figure 34 to

8.428.

To estimate the field of view of the system, short-circuit cell current was

recorded as the sun image moved out of the field of view. Mote that

short-circuit current is proportional to photon flux while open-circuit

voltage is nearly independent of flux. Hence short-circuit current is better

suited for detecting tracking errors. Figure 35 shows a plot of solar-cell

short-circuit current as a function of time with the right ascension (RA)

drive stopped. The sun's apparent position changes at a rate of 1° every

four minutes. The design field of view was 1°. When a 0.5° sun is

viewed, all of the sun's energy should be collected with a +0.25° tracking

error. Further, all energy should be rejected with a tracking error greater

than 0.75
0

.

There was some difference in the way the two cell currents fell off with

t:.me. As observed earlier in testing, there was a small amount of

misalignment between the two solar cells. In this test the Si cell was most

accurately aligned to the sun, with the result that the GaAs exhibited a small

decrease in output from the start of the test. The Si cell output remained

relatively level for the first 0.25° (GaAs 91% of max and Si 97% of max),

then started to decrease. At 0.5° both cells had an output that was 72% of

the maximum; this then dropped off rapidly with a further increase in

tracking error.
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After three minutes, when all of the theoretical sun's image was fa-.ling

outside the CPC, the cell current had dropped to 34% on the GaAs cell and 25%

for the Si cell. The cell current did not reach 1% of the initial value until

the sun image was 1.10 from centered. This could be attributed to a high

sky brightness and nonspecular reflectance from the mirror. During the test

the sky exhibited some haze due to high-altitude cirres. The test was

discontinued after 5.5 minutes due to excessive heating of the CPC/solar cell

holder modules as the sun's image moved across them. The results of this test

demonstrated that the CPCs provide a fairly uniform illumination of the solar

cell over nearly a 10 field of view.

While the solar cell current as a function of tracking error was being

measured, the system thermal response was also recorded. The results for the

GaAs cell module are plotted in Figure 36. The module diagram in the upper

right corner of Figure 36 indicates the location of the thermocouples.

Thermocouples 13 and 14 can be used to estimate heat flux from the GaAs solar

cell. The calculated thermal conductance between thermocouples 13 and 14 was

1.17 W/0C. While the cell temperature monotonically declined as the sun's

image moved off from the center of the CPC, the CPC temperature increased.

During the first minute when the image moved within the CPC, its temperature

change was small. The aperture of the cell holder module was larger than the

CPC aperture, thus allowing energy to be absorbed directly by the CPC support

ring as the sun's image moved outside the CPC. As the sun's image moved

outside the CPC, the CPC temperature rose rapidly and then fell sharply as the

image moved out onto the face of the aluminum module at about 3.5 minutes into

the test.

The temperature of the solar cell and the apparent heat flux from it fell off

significantly more slowly than the solar flux. This was due to a considerable

mass of copper used in the cell holder and a lower than expected thermal

conductance between the cell holder and the water-cooled support. In fact,

r
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after the cover was placed on the system, the CPC and holder quickly cooled to

a temperature below that of the solar cell. The total heat load into the

module indicated by the sink temperature, thermocouple 12, rose slightly as

the sun's image move) across the CPC and then dropped rapidly as the CPC

temperature fell.

As the field of view of the concentrator was evaluated, the field of view of

the pyrheliometer,s was also checked. Figure 37 plots the output of the two

pyrheliometers as a function of time with the right ascension drive turned

off. No significant change in signal level was observed until approximately

seven minutes had elapsed or the sun had drifted 2 0 off center. The quoted

field of view of the Epply pyrheliometer is 5043' but that is the field of

view at the half-power point. The calculated field of view with no signal

blockage is 3031'. Hence the output signal plotted in Figure 37 should be

expected to start falling off after six minutes, reaching the half-power point

after 11.4 minutes. Tne signal started falling off approxim4tply a minute

late (0.250 ) and appeared to be approaching the half-power point at 11

minutes. The approaching clouds obscurred the exact time. Other than a

possible misalignment of the pyrheliometer to the concentrator of ±0.250,

the pyrheliometer was Yunetioning as predicated.

To characterize the solar spectrum, three filters were mounted on the

pyrheliometer filter wheel. Knowing the spectral transmission of the filters

allows an estimation of the relative amounts of energy reaching each

detector. The three Schott Glass filters on OG-530, on RG--695, and RG-780

were used. Their measured spectral characteristics are shown in Figure 38.

The measured cutnon wavelengths were 530 um, 695 Um, and 800 pm, with

90% transmission out to 2 Um and then a sharp cutoff at 2.7 Um. Table 2

lists the measured solar flux using each of the filters and compares it to the

;p
S
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TABLE 2. MEAS13RED SPECTRAL FLUX DISTRIBUTION

^alcu- Scaled Measured
Spectral Trans- lated Measured ;alcu- Differ-
Range Mission Flux Flux lated ence

Filter (Um) 8 (11/0) (W/m2) Flux M

AM2 None 0.3 100 563 --- 623 ---
(Calculated) to + 10.7

4.0

Pyrheliometer None 0.3 100 563 623 623 0.0
(Measured) to

X4.0

OG-530 0.53 .90 403 484 446 + 8.5
to

2.7

RG-695 0.695 .90 363 311 + 16.7
to

1111

2.7

RG-780 0.80 .90 223 295 246 + 19.9
to
2.7

expected flux assuming an AM2 atmosphere and turbidity coefficients of a =

0.66 and s = 0.17. Although the calculated air mass was 2.3, the measured

intensity was 10.7 % greater than the theoretical value for AM2. This can

easily be accounted for by observing that if the turbidity coefficient S is

cut in half, the AM2 flux increases from 563 to 691 W/m 2. Interpolating
between AM2, AM3, and turbidity coefficient $ = 0.085, and s = 0.171

indicates measured flux of 623 would require a turbidity coefficient of (3 =

0.10, which is representative of moderately clear air. The spectral shift

toward longer wavelengths due to increased air mass only accounts for about

two to three percentage points. The remainder of the measured spectral shift

remains unexplained. In the final analysis, none of the spectral shifts or

measured intensities has a strong effect on earlier system efficiency

calculations. At the worst, the effect could be on the order of a fraction of

a percentage point.
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A final look at the thermal response of the solar cells is presented in

Figure 39. The temperature rise of the GaAs cell is plotted as a function of

time after exposure to the concentrated sunlight. In a period of 37 seconds

the temperature rose to 50% of its final value. The initial temperature rise

rate was approximately 170C per minute. In the initial stages of heating,

most of the heat goes into the heat of the cell and holder. As the

temperature rises further, a gradient is established between the cell and the

holder, and heat begins to flow into the water-cooled heat sink. The cell

temperature continues to rise until thermal equilibrium is established and all

heat is being conducted to the heat sink. The slow establishment of

equilibrium--i.e., the last 5o temperature rise requiring 10

minutes--supports the earlier observation that on cooling (Figure 36), the

slow decay in cell temperature when the sun moves off from the cell was due to

removal of heat and not to a slow decrease in solar flux on the cell.

COMPARISON OF CALCULATED AND MEASURED SYSTEM OUTPUT

In this section the system analytic model will be described, the calculated

power output for various operating conditions presented, and a comparison made

between measured and calculated conversion efficiencies.

The solar spectral intensity profile for various air masses is plotted in

Figure 40. It shows the rapid decrease in solar energy with increasing air

mass, the shift toward longer wavelengths, and the strong effect of absorption

in the 0.8- to 1.0-Um band. Considering the GaAs and Si solar cell

combination, one sees that the relative area under the AM2 curve between 0.3

and 0.9 is much larger than the area between 0.9 and 1.1 pm. Further

considering that the GaAs output voltage is 57% higher, 1.1 V versus 0.7 V, it

_p
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is apparent why the GaAs cell output is much greater than that of the Si

cell. This observation is borne out in both the previously presented

experimental data and the calculated values presented in the following

paragraphs.

The method of calculating system performance was to piecewise integrate all

system parameters over the 0.29- to 1.10-um spectral range. The spectrum

was broken into 82 finite bands each 0.01 pm or 10 nanometers in width and

each component property input at the center wavelength. The solar spectrum,

mirror reflectances, beamsplitter reflectance and transmission, and solar cell

quantum efficiency were all entered into the model at 0.01-um increments.

Because of the large number of equal-width spectral bands, a simple summation

of terms produces acceptably accurate results. The accuracy of the input data

56



does not justify more sophisticated curve fitting integration schemes. A

sample listing of one computer run is presented in Appendix A. That

particular calculation is for the nominal AM2 solar flux case using the

measure property data and the best estimates where properties are

unavailable. It forms the baseline for comparison of measured versus

calculated performance in the following paragraphs.

Comparison of measured versus calculated system efficiency will be presented

first. This will be followed by calculated efficiencies with various

component modifications all for a nominal AM2 air mass.

The measured data were taken at various times during the day, with the result

that, not only was the air maca varying, but the solar intensity varied

considerably due to changes in atmospheric scattering and absorption. To

place the comparisons on as nearly an equal basis as possible, the calculated

cell output was scaled up and down by the ratio, and measured flux divided by

AM2 solar constant. No attempt was made to further correct the calculated

output based on variations in spectral content.

Table 3 presents the comparison of measured and calculated solar power

output. Note that the basis of comparison is the current times voltage

product and not the measured power output. The I-V product is nearly

independent of the flux level, whereas the maximum power attainable depends on

cell,-internal resistance, cell temperature, and cell design and flux level.

All but temperature can be lumped into one variable called "fill factor,"

which only depends on flux level, but the cells have not been sufficiently

characterized to do that with any accuracy.

.r	 ^F
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TABLE 3. COMPARISON OF MEASURED AND CALCULATED POWER OUTPUT

Measured Measured Calculated Difference
Solar I x V I x V

Solar Cell Flux

(W/m2 ) (W) (W) M

i6 NOV '82

GaAs 569.5 4.67 4.294 + 8.8

Si 586 0.74 0.477 +55

18 NOV' 82

GaAs 508.5 14.17 3.834 + 8.8

Si 536.5 0.68 0.437 +56

No Beam-
splitter

Si 520.5 2.64 3.050 -13.4

The model predicts the performance of the cells very consistently over a range

of solar fluxes. The accuracy of predicted GaAs power output is quite good.

The Si cell predicted output is much lower than measured. We suspect that a

calibration error was undetected. A review of the raw data did not indicate

any probable cause for the abnormal differences between measurements and

calculations.

For the third case, where the entire sun was concentrated on the Si cell, the

measured power was 13% below the calculated value. Five percant of that

difference can be attributed to the heating of the cell, as previously

mentioned. This close agreement tends to indicate that the lar ge error in

previous Si cell power measurements may be an electrical signal offset error,

possibly noise, which is a much higher percentage error at low signal level.
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TABLE 4. CALCULATED CELL AVD SYSTEM EFFICIENCIES

Wavelength	 (JIM)

0.29-0.90 0.91-1.10 Total

(%) 0) M

A)	 Existing System
GaAs 16.6 0 16.6
Si 0.2 1.6 1.8

Total	 = 18.4

B)	 Existing System--
No Beamsplitter

GaAs 17.3 0 17.3
or Si 11.03 1.8 12.9

C)	 Perfect Optics
GaAs 24.0 0 24.0
Si 0 2.7 2.7

Total	 = 26.6

D)	 No Beamsplitter +
Perfect Optics

GaAs 24.0 0 24.0
Si 14.9 2.7 17.6

*Assumes a fill factor of unity. Fill factors are typically
between 70% and 80%.

ORIGINAL pAOX: V

OF POOR QUALITY

To determine possible system efficiencies with the existing solar dells, the

maximum efficiences from different conditions were calculated. These results

are presented in Table 4 for A) the existing system, B) the existing system

without the beamsplitter and only one solar cell, C) a system with perfect

optical components, and D) a system with perfect optical components and

without a beamsplitter. The Si cell contributes less than 10% of the output

of the existing system. When compared to configuration, which has no

H

t
W

i kv
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beamsplitter losses, the Si cell and beamsplitter only contribute 68 to the

net power output. To determine the upper limit of performance, Case C was

analyzed. Perfect optics and beamsplitter were assumed. In this case, the Si

cell contributed 9.88 of the total output. If each cell was exposed to the

sun with perfect mirrors and without beamsplitter, Case D, the GaAs cell would

produce 368 more energy than the Si cell. Although the GaAs cell does not

utilize the energy in the 0.9- to 1.1-Um range that the Si cell can convert,

the 578 higher output voltage more than compensates over the 0.3- to 0.9-um

range. The quantum efficiencies are similar over the 0.3- to 0.9-um

spectral range.

To clarify where the losses occur in the SPV test model, the average optical

properties for each of the components were calculated. These results are

presented in Table 5. The spectrally weighted average reflectance and/or

transmission of each component was calculated by integrating over the given

spectral range and comparing the system output with the case having a perfect

optical component. Because reflectance varies with wavelengths, it can be

shown mathematically that the system performance is not degraded

proportionally to the product of the component performance. But the component

spectral characteristics do not vary widely over the spectrum, with the result

that products of average values provide a good first estimate of performance.

For the 0.29- to 0.90-11m band, the product of reflectances is 648. In

Table 4 the ratio of the GaAs cell output Case A, divided by Case C, is 69%,

thus proving both points--that the product is useful, but not exact. From the

data presented in Table 5, it is obvious that the mirrors and the CPC require

improvement. The beamsplitter could also be improved by reducing its

shortwave absorption. Considering the difficulties encountered achieving high

component performances, every consideration should be given to reducing the

number of components in the cptical path.

60
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TABLE S. SPV COMPONENT OPTICAL PROPERTIES

Wavelength (Um)

0.29	 0.91	 0.29

to 0.9 to 1.1 to 1.1

Primary 6lirror Reflectance**
	

0.887	 0.871	 0.884

Beamsplitter Transmission
	

0.012	 0.895	 --

Beamsplitter Reflectance
	

0.926	 0.091

Beamsplitter Absorption
	

0.062	 0.014	 0.555

CPC Reflectancet
	

0.88	 0.90

`Evaluated by integration over the solar spectrum,
AM2 0; = 0.56, ^ = 0.17

**Secondary mirror reflectance assumed identical to
primary mirror

tEstimated based on 40% of energy having one reflection
from CPC and handbook value of bright nickel reflectance

CONCLUSIONS

The SPV concept shows promise of making small improvements in solar-to-

electric conversion efficiency, There cannot be any dramatic gains in

conversion efficiency using GaAs and Si cells because the Si cell sees only

10% of the energy that the GaAs does not use. Should good blue-responding

A1GaAs solar cells become available in the future, an A1GaAs and Si

spectrophotovoltaic system may appear attractive, especially in an AMO

environment.
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RECOMMENDATIONS

The SPV model should be further tested to quantify the fill factor roll-off

with increasing solar flux. The heat rejection problem needs further

investigation, particularly when considering larger aperture systems.

We recommend that a comprehensive series of high-altitude field tests and

further system design work be performed when better A1GaAs solar cells become

available (i.e., cells with higher quantum efficiency and better blue

response).
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APPENDIX A

SAMPLE SYSTEM ANALYSIS LISTING

The following computer output listing is a sample calculation of the SPV

output based on the assumption of an AM2 atmosphere and the measured cell and

concentrator component data. Table A-1 identifies the printout columns and

their interrelationships.

At the bottom of the listing column summations and the spectral energy content

applicable to the GaAs and Si cells are listed. The solar data are taken from

Reference 1, assuminc an AM2 spectrum with scattering and absorption

coefficients of a s 0.66 and $ = 0.17.
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TABLE A-1. PRINTOUT COLUMNS AND THEIR INTERRIELATIONSHIPS
Printout
Column Contents

A Wavelength in nanometers

E Spectral intensity in W/nm - m2

C Gal'iium arsenide solar cell spectral quantum efficiency (electrons per photon)

D Silicon solar cell spectral quantum efficiency

E Deamsplitter spectral transmiusion

F Deamsplitter spectral reflectance

G primary mirror spectral reflectance

11 GaAs cell spectral current am p/nm - m 2 (A x D x C x F x (3 2 x 0.88 x 0,0000065)
Notes	 CPC effective reflectance is 0.88

2 Si cell spectral current amp/nm - m2 (A x 0 x D x E x G 2 x 0.90 x 0,0008065)

J Summation of GaAs cell current from Al - 290 nm to A(n) 	 in amp/m 2 (J(n)	 -
10 x )((n)	 + J(n -	 1) 1

K Summation of Oi cell current from A l - 290 nm to As7)	 in amp/m 2 (K(n)	 . 10 x
t(n)	 + K(n -	 1))

L Summation Of GaAs cell power output from Al - 290 nm to A(n) L(n) • 1.1 J(n)

M Summation of SL cell power output from A l - 290 nm to A(n) M(n)	 - 0.7 K(n)

A 8 C; D E F G H I J k L M

WAVE W/NM GAAG SI BEAM- BEAM- MIRRO GA-I SI-I GA-SUM SI-SU GARS $I
LENGTH M2 Q-EFF 0-EFF SPLT SPLT /NM-M2 /NM-M2 I/M2 I/M2 W/M2 W/M2

AM2 TRANS REFL REEL
290 0 0 0 0 .4 .58 0 (:) 0 (5 0 0

:310 .001 0 (;) (5 .4 .62 0 o 0 0 0 0
320 .0:34 (:, r, r., .4 .64 (:, 0 p 0 0 0
330 . (.)73 0 o 45 .4 .66 0 (:) 0 0 0 0
340 .12:3 (:) 0 (:) .4 .68 0 0 0 0 (5 a
350 15 0 .0(531 . 0001; .4 .7 0 3.E-8 0 3.E-7 0 2.E-7
360 . 177 0 . 0016 .0354 .4 .72 () 1. E-6 0 1 . E-5 0 9. E-6
370 .222 0 .032? .0579 3398 .74 0 6.E-5 0 6.E-4 0 4.E-4
380 .2.39 0 .0355 .0234 .5232 .76 0 3.E-5 0 10E-4 0 7.E-4
390 .258 .076 -0499 .0242 .765 .78 .0025 5.E-5 .0253 . (Sr)15 .0278 .0010
400 .37 .1 . 101 .0091 .6969 .803 -0047 6.E-5 .0725 .0021 , 0797 . iX015
410 .485 .13 .138 .0723 .8666 .82 .0107 10E-4 .1794 .0118 .197.E .0083
420 .516 . 119 .177 .0108' .9106 .834 .01 16 2.E-4 .2953 .01.9 .37..48 -0Q97
430 .517 .163 .227 .0021 .8811 .83 .0156 5.E-5 .4514 .0144 .4965 .0101
440 .609 .226 .27k .(5015 .8558 .84 .0260 6.E-5 .7109 .0150 .7820 .0105
450 .721 .278 .318 .0005 .8617 .84 .03(39 3.E-5 1.100 -015.3 1.210 .0107
460 .769 .x)64 .372 .0005 .9164 .134 .0591 3.E-5 1.691 .0156 1.860 .0109
470 .763 .417 .415 .0005 .926 .8N9 .0710 4.E-5 2.401 .0160 2.641 .0112
480 .827 .479 .456 .0005 .9396 .839 .089•_ 5.E-5 3.294 .0164 3.623 . (:)115
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OPTICAL AND ELECTRIC COMPONENT DRAWINGS
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APPENDIX B

OPTICAL AND ELECTRIC COMPONENT DRAWINGS

The six drawings in Appendix B define the optical surfaces, their relationship

to each other, and the electrical wiring system. The wiring diagram

identifies individual pin connections, lead wire lengths, and the solar cell

variable resis"ance box.
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