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TRANSFORMATION OF TWO AND THREE-DIMENSIONAL
REGIONS BY ELLIPTIC SYSTEMS

The major effort during this contract pericd has been the analysis
of finite-difference methods for composite grids. It was observed that
Tinear interpolation between grids would suffice only where low order
accuracy was required. In the context of fluid flow, this would be in
regions where the flow was essentially free stream. Higher order inter-
polation schemes have also been investigated. The well-known quadratic
and cubic interpolating polynomials would increase the formal accuracy
of the overail numerical algorithm. However, it can also be shown that
the stability of the algorithm may be adversely affected. Further numerical
results are needed in order to assess the nature of this instability
induced by the interpolation procedure. A complete renort on composite
grid schemes will be presented at the Conference on Large Scale Scientific
Computation. A copy of that paper is attached to this report. One aspect
of our work which is not discussed deals with the technical procedures in
implementing interpolation schemes used on composite grids. Currently
available software is not designed for repeated interpolation at the same
points. Therefore, in order to maximize the efficiency of our programs,
the Tocation of the points used in the interpolation and the coefficients
in the interpolation formula are computed only once. By storing these
values, the cost of computing an interpolated value is comparable to the
cost of applying the difference equation at an interior grid point.

The recent appearance of the paper by Hoffman (see attached reports)

and personal communications with other researchers has motivated us to



take a closer look at the order of a numerical algorithm on a curvilinear
coordjnate system. The order of a method is, by definition, dependent

on the manner in which the grid spacing is decreased. The grid spacing

may be decreased by adding grid points or by moving existing grid points.

A detailed analysis of order, including many commonly used mapping
functions, appears in a paper to be presented at the ASME Applied Mechanics,
Bioengineering, and Fluids Engineerirg Conference. A copy of that paper

is also included in this report.



To be presented at the Conference on Large Scale Scientific Computation,
Madison, May 1983 (to be published by Academic Press).

ERROR ANALYSIS AND DIFFERENCE EQUATIONS ON CURVILINEAR COORDINATE SYSTEMS

C. Wayne Mastin

1. INTRODUCTION.

A computational grid must be constructed when solving partial differ-
ential equations by finite-difference or finite element methods. Presently
there are many gricd generation lgorithms. The choice of algorithm will
depend on the users desire for control over properties such 2s orthogonality
of coordinate lines, location of grid points, and smoothness of grid point
distribution. A1l of these properties may affect the accuracy of the
numerical solution. A survey of grid generation techniques may be found
in the article by Thompson et. al [7]. This report will deal with methods
for deriving difference equations on curvilinear coordinate systems and
the effect of coordinate systems onthe solution. Recent contributions
dealing with the effect of the grid on truncation error for one-dimensional
problems have been made by Hoffman [3] and Vinokur [8].

The motivation for this investigation can be seen by considering some
current problems in computational fluid dynamics. Available computers can
be used to model the fiow about a wing-fuselage configuration. When
additional components, such as fins, stores, and nacelles are added to the
aircraft, the computational region becomes increasingly complicated. The
grid can be extremely distorted and special difference formulas may be
needed due to irregular neighborhood structures as encountered by by Lee
et. al. [4] and Roberts [5]. In an attempt to limit grid distortion,
overlapping grids have also been used for complicated regions. Each
component is endowed with its own local coordinate system, and inturpola-
tion is used in the solution algorithm. Various interpolation procedures
have been used by Atta [1], Atta and Vadyak [2], and Starius [6]. The



possible impact of the interpolation procedure on the solution algorithm
will be investigated. It is noted that the interpolation technique may
effect the local truncation error as well as the convergence rate of
iterative algorithms and the stability of explicit algorithms.
2. FINITE-DIFFERENCE EQUATIONS.

A curvilinear coordinate system in the xy-plane is understood to be

the image of a rectangular Cartesian coordinate system in a gn-plane. The
induced grid is therefore composed of quadrilateral cells and difference
equations may te derived by transforming the partial differential equation

to the gn-plane.
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A typical grid cell is indicated in Figure 1. This derivation gives no
information on local truncation error, so an alternate derivation will be
presented. Regardless of the derivation, the difference equations will
involve derivatives of x and y with respect to ¢ and n. Since the grid
may be given only as a set at data points, it will be assumed that these
derivatives are approximated using differences. It can be shown that the
exact computation of these derivatives does not increase the accuracy of
the method.

Second order central differences are commonly used in the numerical
sclution of partial differential equations. The truncation error depends
on the grid spacing in the curvilinear coordinate system, and therefore,
the corresponding grid spacing in the gn-plane will at present be assumed
unity. The difference approximations with respect to £ and n are then

fe = (f(g+1,n) - f(g-1,n))/2

f = (f(g,n+1) - f(g,n-1))/2

fop = flexdia) + f(e-T.n) - 2f(e.n) (1)
fen = (F(e+1,n+1) +f(g-1,n-1) - f(e-1,n%1) - f(&+1,n-1))/4

f = f(g,n+1) + f(g,n-1) - 2f(g,n).

nn



The local truncation error in using these differences to approximate the
derivatives with respect to x and y is revealed by examining a series
expansion of the above differences at (xkg,n), y(&,n)). First derivative
approximations are much simpler, and they will be considered first. After
a little algebra, the difference expression fE can be represented as

LIS 2F 1 2%
fg = xgax + ygay ty x€x§£;;§-+ E-(xsyg5 + ygxgg)axay
e
+ 7 ygygg_;‘y—f + HOT. (2)

The terms in this expansion can be separated into three categories. The
first order terms are used in deriving the difference equations. The
second order terms are due to the nonuniform spacing and curvature of the
curvilinear coordinate systems. The remaining higher order terms (HOT)
are proportional to the third power of the grid spacing, and terms of this
order would appear even if a uniform rectangular grid were used. Clearly
the same remarks can be made about the series expansion for fn' From
these comments it follows that one condition for the derived difference
approximations to be second order, in the sense that the local truncation
error is the same order as the square of the grid spacing, is the condi-
tion that the following quotients

X y X y
S, e, M, o s (k) (3)
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remain bounded as |r§| + lrnl approaches zero. A second condition arises

when examining the form of the truncation error in the approximation of
of of of
ax and 3y. From (2) it is seen that the truncation error for 3x can be

written
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where

J = XEyn ) xny€

and Tg and Tn are the second and higher order terms in (2) and the
analogous expansion for fn' Certainly some lower bound on the rate at
which J approaches zero is necessary. Let 6 be an approximation of the



angle between the coordinate lines measured by ORIGINAL PAGE 19
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3 n
If the degree of nonorthogonality is limited by the condition

|cot 6| < M, (4)
then

s gy drglir 1
Once it is noted that each term in T¢ has a factor of either Xg or Yeo it

follows that when the quotients in (3) and cot 6 remain bounded as
|r£| + |rn| approaches zero, the order of the difference approximations

~or first order derivatives is preserved on the curvilirear coordinate

system.

The truncation error analysis is considerably more complicated for
second order derivatives. The major conclusions will be derived without
going into all the technical details. The series expansions for the second
order differences are given.
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The mixed derivative approximation involves diagonal neighbors and it is
convenient to introduce the differences

f (f(e+1,n*+1) - f(e-1,n-1))/2/2

)

f, = (Fle-1,n+1) - fleg+1,n-1))/2/2

t
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(f(e+1,nt1) + fe-1,n-1) - 2f(g,n))/2
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The series expansion has the form
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Once again the terms have been categorized into those used in the deri-
vation of the difference equations, S(]) and T(]), the second and third
2), and the
higher order terms which are representative of truncation error that

order terms due to the curvilinear coordinates, 5(2) and T(

would be present on a uniform rectangular grid. The two third order terms
in T(z) which are omitted would be obtained by interchanging x and y in
the twc third order terms that are present. Now the differences with
respect to s and t can be bounded by differences with respect to £ and n.
Therefore, the only additional conditions, other than those required for
first derivatives, in order that the truncation error for second derivat-
tivesbethe same order as the square of the grid spacing is that the
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remain bounded as |rg| + |rn| approaches zero.

In the numerical solution of a partial differential equation, the
truncation error may be decreased at a point by adding grid points or
moving existing grid points. The technique used to decrease the grid
spacing has a significant effect on the local truncation error as the
above analysis indicates. This fact is further illustrated in the follow-
ing one-dimensional examples. Let x(g) be an arbitrary fixed grid point.
Consider a sequence of grids where the distance between x(n)(g) = x(g) and
its neighbors, x(n)(g-]) and x(n)(g+1), is decreased by a factor of 2 at
each step. Then

e, i) O
(n)\2 =2 (n-1),2 =2 0),2
(x€ ) (xE ) (xg )
and a reduction in the order of the local truncation error would occur
unless the original grid was uniform; i.e., xé:g = 0. Now consider the

case where the grid is defined by a mapping x(g) = f(z). Suppose the
neighbors of x(£) are x(g-1) = f(z-h) and x(g+1) = f(g+h). Then if
f'(z) # 0 and f"(z) exists

Tim *ee . £'(g)

" x’ )

is finite. In this case the local truncation error is proportional to the
square of the grid spacing or 0(h2). It has been assumed that the func-
tion f and the image of x(&), which is denoted by z, are fixed. This
conclusion, that the order is preserved, would not necessarily hold if the
function f changed as h~+0.

It was noted above that the degree of skewness in a nonorthogonal
coordinate system must be limited to maitain the order of the numerical
algorithm. The effect of skewness can he further clarified by noting that

J = |r€||rn| sin 6.



Therefore, for first derivative approximations, the local truncaticn error
varies inversely as the sine of the angle between the coordinate lines.

It can also be shown thot, for second derivative approximations, an in-
crease in truncation error by a factor of sin'ze is possible. If the
skewness is accompanied by large variations in grid spacing, this factor
increases to sin'3e. The general conclusion is that a moderate degree of
skewness has little effect on truncation error. The principal disad-
vantage in using nonorthngonal coordinates is the added complexity of the
difference equations.

Certainly this development does not cover all possible discretizations
of a partial differential equation. However, similar conclusions hold for
other commonly used difference approximations. In particular, the same
conditions for maintaining the order of the difference approximation
suffice when second order partial derivatives of the form

2 () DRIGINAL ¥4 3 "
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Extreme distortions in grid cells can have an especially serious
effect in the finite difference analogs of conservation laws. If the
partial differential equation

fyt9,=s (5)

is approximated by
- + - =
(fy, - 9x ), (gx, - fy) = Js,

then the consistency of the difference equation depends on the difference
between

[(”Vn)s - (uvg)n]/d
and

[uavn - unvg]/d
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converging to zero where u and v are either of the coo0rdinate variables

x and y.
3. FINITE VOLUME EQUATIONS

An alternate method for approximating ccnservation laws has been
widely used on curvilinear coordinate systems. Generally referred to as
the finite volume method, it is derived by integrating the differential
equation (5) over a grid cell and applying the Gauss Divergence Theorem.

Let C be an arbitrary grid cell with vertices r(g,n), r(g+l,n),
r(g,nt1), r(g+l, n*l), where r = (x,y). Let f(g + %, n o+ %) denote the
values of the function f at the centroid of C. In the literature, the

mean value over the cell is sometimes used rather than the value at the
centroid. Since the difference in the two values is the same order as the

truncation error, either definition may be assumed. Integrating equation
(5) over C gives

J fdy - gdx =Js dxdy.
aC o

A third order quadrature may be derived by using the values of f and g at
the midpoints of the cell sides. In the usual finite volume formulation,
this value on the cell side is approximated by the average of the values
on the two cells having the given side in common. Thus the derived
difference equation is of the form

I )5(ay), - (ug), (ax); = As (6)

where A is the area of C and, for example,

—

(uF); = 2(F(6-Fn+3) + Fg+7un+7)

(8x); = x(g5n) - x(g,n+1).

The effect of the curvilinear coordinate system can be analyzed by con-
sidering the difference between uf and the corresponding value of f at the
midpoint of the common side. The Taylor series expansion of this differ-
ence is, for example,

T(f(e Font ) + Fe+guns D)) - Fle,md) = (7)
1 3¢ ] 1y 4 1af ] ]
ax Eantz) X (Enes) + 5006 nex) y (Goneg) + HOT
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with
x(6,n+3) = F(x(En+1) + x(£.n)).

Thus we again see that the order of the quadrature foimula is preserved on
the cuirvilinear coordinate system if the quotients in (3) remain bounded
as the grid spacing decreases to zero. Here |r£| and irnl are the ais-

tances hetween the cell centroids. The higher order terms, HOT, in (7)
are the same order as the square of the grid spacing and hence do not

decrease the third order accuracy that would exist with the midpoint rule.

Due to the simplicity of the equation (5) which was considered,
several aspects of the finite volume method have not been mentioned. In
practice, s is generally the temporal derivative of some physical quantity.
When (6) is solved for s, it is apparent that some lower bound must be
placed on A. This is again accomplished by limiting the nonorthogonality
and is consistent with results for finite element methods where excessively
thin elements are to be avoiaed. It is also noted that,in most finite
volume methods, the equation (6) is implemented in a two-step algorithm to
produce second order temporal accuracy.

Basically then, the finite volume methods also require restrictions on
the grid to maintain the order of the algorithm. However they can be
easier to implement in cases where many rectangular grids are patched
together to fill a complicated region. In such cases it is not urcommon
for a grid point to have more or less than four neighbors. This causes
no problem in deriving finite volume equations, but special difference
formulas must be derived when using the finite difference methods as
described above. The same comint can be made for cases where trianguiar
grids are produced by singularities in the curvilinear coordinate system,

4. PATCHED COORDINATE SYSTEMS

Thus far we have considered the curvilinear coordinate system at each
point to be topologically equivalent to a rectangular cartesian coordinate
system in the plane. As has been shown, a loss of accuracy in the numeri-
cal algorithm may occur if the grid is severely distorted. Therefore,
when the region is too complicated, it may be advisable to partition the
region and construct a separate curvilinear coordinate system fur each
subregion. Most grid generatior techniques are flexible enough to permit




the smooth continuation of coordinate lines from one subregion into the
next. However, at points where the boundaries of ~:veral subregions
intersect, there may be greater than or less than four neighboring points.
An inspection will reveal four grid points which have five neighbors in
the grid of Figure 2. Special techniques must bc appiied to derive
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difference equations at these points. One simple technique would be to
select five nearby points and compute a Taylor series truncated after the
second order terms. This would give a system of five equations which
would be solved to obtain difference approximations for the first and
second order derivatives. Unfortunately, the difference equation derived
by this method would not resemble the difference equations at other points,
which it is assumed would be derived ty the usual change of variables
formulas. Thus the effect of tais differencing technique on numerical
properties such as stability and iterative convergence would be uncertain,
A second method of dealing with special points caused by grid patck-
ing is more compatible with the usual differencing techniques. Basically
it involves selecting nearby points to form a local curvilinear coordinate
system. Let r(g,n) = (x(£,n), y(£,n)) be a grid point with an excess or
deficiency of neighbors. Then four grid points, denoted by r(g+1,n) and
r(¢,n21), are chosen to defire the two coordinate directions through
r(¢,n). Four additional points, denoted by r(¢+1,n21)and r(g21,n%1),
are chosen from the four quadrants of the new curvilinear coordinate
system. The rine points to be used in deriving the difference equation
at r{¢,n) have bteen defined. But the coordinate iines and grid cells may



be far from that of & uniform rectangular grid. Therefore, as has been
discussed in Section 2, a loss of accuracy is to be expected when the
usual finite difference equations are employed. In fact, the local trun-
cation error for the first derivatives will be the same order as the grid
spacing. Convergence of second derivative approximations cannot ve
guarantwed as the grid spacing decreases to zero. Desoite this discouiag-
ing note, accurate results have been computed using this technique. The
inconsistency of the difference approximation for second order equations
motivated the search for a higher order approximation. A system of five
equations in the five partial derivatives of the function f can be con-
structed by truncating the Taylor series expansions of the central differ-
ences in (1) after the second order terms. The system is written below
with the notation of Section 2.

_ L .
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For a uniform rectangular grid, the usual difference approximations are
produced. Although it cannot be guaranteed that the coefficient matrix

is well-conditioned or at least nonsingular, this is suggested by the fact
that the system (8) is a perturbation of the nonsingular system of equations

-

which produces the usu:® difference equations. The later system has a
3

coefficient matrix whose determinant is J°. This technique generates a
nine-point difference equation using the same differences on the local
coordinate system that are used at the other points of the grid.



The local truncation error for first derivative approximations is the
same order as the square of the grid spacing, whereas, the local trunca-
tion errcor for second derivative approximations is the order of the grid
spacing. This result is valid regardless of the coordinate line spacing
or curvature. It is only assumed that the coefficient matrix is not ill-
conditioned.

While it is possible to generate consistent difference equations at
special points encountered in grid patching, it should be noted that loss
of accuracy is possible. The condition that grid lines pass smoothly from
one region into the next also places a restriction on the number and
location of grid points in each subregion. Coordinate lines which are
discontinuous, or have discontinuous slopes, at subregion boundaries can
be used, but this further complicates the problem of deriving accurate
difference equations. '

5. OVERLAPPING COORDINATE SYSTEMS

when dealing with complicated regions, especially multiply connected

regions, thare may be portions of the boundary where a curvilinear coordi-

nate system can be easily constructed. For example, consider the region
between a rectangle and a circle. A polar coordinate system is the
obvious choice near the circle while a cartesian coordinate system would
be best near the rectangle. Each of these coordinate systems can be
extended into the region until they overlap and form a covering of the
region by grid cells ¢~ illustrated in Figure 3. In general, there may be
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several overlapping grid systems used to cover a particular region. The
difference equations must couple the solution values on the various grid
systems. This transmission of information is most frequently accomplished
by interpolation at those grid boundary points which lie in the interior
of the region. Several interpolation procedures will be examined along

with their impact on finite difference methods.
(1)

Let G be a grid with boundary point o which is contained in some
grid cell of the grid G(z). First, the general interpolation formula
k
f(ro) —jZ]ujf(rj) (9)

will be considered where r. denotes a point in G(z). When the value of f
at o is replaced in a difference equation by the interpolated value, a
new difference equation results which may have a different local trunca-
tion error. Conditions on the coefficients o5 which will preserve the
order of the difference equation can be derived by examining the effect on
a Taylor series at an intgrior neighbor r of o If the value of f at o
is computed from the values at r by (9), then

k k of
f(ro) Yoa, f(r) +] 0 (x -x) 3x (r)
3= R j=1 T3
RIGINAL PRES
Q P
k of OF POOR QuUAMTY
+7 a, (y y) 3y(r)
j=1 9
+ 5 a(x,-x)7 ;;E(r)
j=1 J J
k %
+ 221 ; xJ - X)(yj - y)oxay(r)
Ea (y - y)%ay ( ) +
j=1 9

This series coincides with the actual Taylor series, computed at o
through first order terms if
K

k k
.= 1, X T X : 10
z % jZ]“JXJ %o J-.z.] °¥5 T Yo (10)

and through second order terms if, in addition,
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It will be assumed that the conditions, indicated in Section 2, for pre-
serving the order of first and second order difference equations hold

for the individual grids G(]) and G(z). In that case, the local trunca-
tion error for first derivative approximations would be the same order as
the grid spacing if (10) holds and the same order as the square of the
grid spacing if both (10) and (11) hold. The order of the local trunca-
tion error for second order differences wouldbe the same as the grid

spacing if both (10) and (11) hold. The order would be the square of the
grid spacing if an additional condition equating the coefficients of third

order terms in the series was imposed. The condition which equates the
p th order coefficients can be written as

k
jzlaj[xj1m[yj]"-m = gy, (i2)

n+m=p,m=20,1, -+, p.

Implicit schemes tend to be difficult to implement on regions which
use several curvilinear coordinate systems. Therefore, most currently
used algorithms involve the iterative solution of elliptic equations or
the explicit solution of parabolic or hyperbolic equations. This naturally
leads one to question the effect of the interpolation equation on itera-
tive convergence in the first case and on stability in the later case. No
detailed analysis will be given here, but a few obvious comments are worth
nuting. Diagonal dominance of the coefficient matrix of the difference
equations is a sufficient, although not necessary, condition for the con-
vergence of many iterative methods. A system of diagonally dominant
difference equations will remain diagonally dominant when the interpolation
equations (9) are appended if ‘

]Iaji <1 (13)

nes1x

J
However, when this condition is considered with the first equation in (10),

which is necessary for consistency, it follows that diagonal dominance
will be preserved whenever

. >0, 3=1,2, -+, k. (14)



The stability properties of (9) can alco be observed. Suppose the value
at r, is computed at t = (n+1)at by

0
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The von Neumann stability analysis is based on the behavior of an exponent-
ial solution of the form

f(x,y,t) = exp(at) exp(iux) exp(ivy).

Substituting in (15) gives the following

k
exp(Aat) = ) o, exp(iuax;) exp(ivay.),
j5 9 i j

where ij = xj - X and ij = yj - Yo For real u and v, the exponential
solution will remain bounded as n—+« provided (13) holds. Therefore,
whenever (14) holds along with (10), the interpolation equations impose
no additional stability restriction on the numerical algorithm.

Several different interpolation schemes will be reviewed in light of
the above remarks. The first scheme is based on the approximation of a
linear Taylor polynomial. For each boundary point r, of G(]), select a
nearby point ™ of G(Z). (ZF
Figure 4 so that

The neighbors of " in G are indexed as in

-
—
-
—
~—
I

= (f(ry) - f(ry))/2

-+
=
~~
-
—
~——
1

= (f(rg) - f(ry))/2.

Figure 4.



These differences can be used to approximate the partial derivatives with
respect to x and y. If the approximations are substituted in a Taylor
series, truncated after the linear terms, then the resulting interpola-
tion formula can be written

k

f(ro) = 2 o.jf(rj),

" CﬂﬂK?“i&&.Fﬁ&fE £

1
|

o, = -ag = ((xg=x) y = (yg-yy)x )/2d
ag = -ag = ({yg-yq) x; = (xg-xy)y.)/2d.

In this case, it easily observed that equations (10) are valid, but (14)
does not generally hold. Second degree Taylor polynomials have been used,
but will not be considered here. It is doubtful that they would give
better results since the approximation of second derivatives from the
numerical solution may be very inaccurate. There are other interpolation
schemes for which both (10) and (14) hold and these will be investigated
next. :
Let o belong to a grid cell C of G(z) with vertices which will be
denoted by rj, j=1,2, 3, 4, as illustrated in Figure 5. There exists

"

Figure 5.

a unique bilinear mapping of the unit square onto the cell C. The mapp-
ing can be given explicitly by

r=(1-s)(1-t) " +s(1-t) r, + t(1-5s) ry* st rys

2



where 0 < s, t < 1. Ifwesetr= o’ then the system of two equations,
in terms of the x and y coordinates, can be solved to determine the solu-
tion s = Sp° t = to. If f is also assumed to be a bilinear function of s
and t, then

f(ro) = (1 —so)(l —to) f(r]) + so(l-to) f(rz) + to(l- so) f(r4)

ORIGINAL PAGE [
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It is immediately evident that this interpolation formula satisfies both
(10) and (14). Although equations (11) would not be satisfied, this

method can be modified to give higher order interpolants. 3asically it
involves constructing a bicubic mapping of a square grid in the st-plane
onto the union of the nine cells consisting of C and the eight cells having
an edge or vertex in common with C. This mapping can be expressed in terms
of cubic Lagrange interpolating polynominals. The only additional diffi-
culty is that-the bicubic equations which determine Sy and tO would now
have to be solved numerically whereas the values of So and tg in (16) can
be computed exactly. By construction, the coefficients for the bicubic
interpoiation will satisfy (12) for p = 0, 1, 2, 3. Therefore the inter-
polation scheme would not increase the local truncation error. However,
(14) would not be valid.

Interpolation on triangular regions is very popular in finite element
analysis. Some of those ideas can be adapted to the present problem.
Suppose each quadrilateral cell is divided into two triangular cells. Then
0 will belong to a triangular cell with vertices rys Tos Ty Note that
this would be the case in Figure 5 if the quadrilateral is partitioned by
the diagonal from r to rs. Now the three equations in (10) determine the
coefficients for the interpolation formula (9) which coincides with linear
interpolation on the triangular cell.  As long as o is an interior or
boundary point of the cell, the condition (14) will be satisfied. The
accuracy of the interpolation formula can be increased by increasing the

r

Figure 6.
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number of interpolation points. Figure 6 indicates the grid points which
could be used for quadratic and cubic interpolation. In each case. the
coefficients in (9) can be calculated from the general equations in (12).

The quadratic interpolant uses six coefficients obtained by setting
p=0,1, 2 and the ten coefficients for the cubic interpolant are found
by solving (12) with p = 0, 1, 2, 3. A few cautionary notes are in order.
The linear interpolation polynomial always exists, but for severely dis-
torted grids, the system in (12) may be singular and the interpolation
polynomial may not exist in the quadratic and cubic case. Condition (14)

is also not satisfied in the quadratic and cubic case.
Several interpolation schemes have been presented for use on over-

lapping coordinate systems. This does not include all techniques which
are presently in use. In particular, we have not considered methods which
interpolate normal derivatives at the boundary points of each grid. There
is no reason vhy this analysis cannot be extended to cover that case. We
would only nead consider the formula (9) with some of the rs in G(]) and
the remaining rs in 6(2).

6. CONCLUSIONS.

The procedure for selecting a curvilinear ccordinate system must
necessarily involve a balance of certain requiremenis. The rate of change
in coordinate line spacing and degree of skewness should be limited so that
the formal accuracy of the difference equation is maintained. On the other
hand, efficient use of grid points mandates the clustering of points in
regions where the derivatives of the theoretical solution are large. If
one must use a highly distorted coordinate system or is faced with the
prospect of connecting many separate curvilinear coordinate systems in
different subregions, it is generally possible to derive consistent differ-
ence approximations. While higher order apprcximations may exist, their
use may not be necessary or advisable. The grid spacing is only one
factor in the local truncation error. The other factor is the theoretical
solution of the partial differential equation. In a region where all
derivatives of the solution are negligible, the local truncation error will
be small regardless of the order. Consequently, when solving fluid flow
problems, the accuracy of the numerical algorithm is most likely to be
maintained if irregularities in the grid can be confined to regions of
free stream flow. There are multitudes of examples where the use of higher
order methods produce inferior results for one reason or the other. In
connection with the use of interpolation for overlapping coordinate systems,
it should be recalied that Lagrange inférpo1ating polynomials may be highly




oscillatory.
The analysis of error for nonlinear systems of partial differential S
equations solved numerically on large computational grids can never be
precise. However the quality of a numerical solution can often be judged
by examining the grid and the point-to-point variation in the numerical
solution at the grid points and possibly by recomputing the solution on a
properly refined grid.
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ABSTRACT

The order of finite difference representations on
general curvilinear coordinate systems is considered in
some detail. It is shown that the uniform grid order
is formally preserved on the nonuniform, nonorthogonal
grid in the sense of the error behavior with an increase
in the number of points. However, the coefficients in
the series expansion may become quite large for some
point distributions. Several specific distributions
are evaluated.

INTRODUCTION

Numer ically-generated, boundary-conforming curvi-
linear coordinate systems have now become common in the
numerical solution of partial differential equations,
allowing very general codes to be constructed whichare
applicable to regions with arbitrarily-shaped bound-
aries. Surveys have been given in (1) and (2), and a
source book with both basic exposition and state-of-
the-art developments, (3), has recently become avail-
able.

Difference representations on curvilinear coor-
dinate systems are constructed by first transforming
derivatives with respect to cartesian coordinates into
expressions involving derivatives with respect to the
curvilinear coordinate and derivatives of the cartesian
coordinates with respect to the curvilinear (the metric
coefficients). The derivatives with respect to the
curvilinear coordinates are then replaced with differ-~
ence expressions on the uniform grid in the transformed
region.

Considerable attention is appropriately now being
focussed on evaluation of the truncation error of dif-
ference expressions on these curvilinear systems, but
some misunderstandings have ar’sen regarding the iden-
tification of the true order of these expressions. The
"order" of a difference representation refers to the
exponential rate of decrease of the truncation error
with the point spacing. On a uniform grid this concerns
simply the behavior of the error with a decrease in the
point spacing. With a nonuniform point distribution,
there is some ambiguity in the interpretation of order,
in that the minimum spacing may be decreased either by

._.WF—

increasing the number of points in the field or by
changing the distribution of a fixed number of points.
Both of these could, of course, be done simultaneously,
or the points could even be moved randomly, but to be
meaningful the order of a difference representation
must relate to the error behavior as the point spacing
is decreased according to some pattern. This is a moot
point with uniform spacing, but two senses of order on
a nonuniform grid emerge: the behavior of the error
as (1) the number of points in the field is increased
while maintaining the same relative point discribution
over the field, or (2) the point distribution over the
field is changed so as to reduce the minimum spacing
with a fixed number of points in the field.

On curvilinear coordinate systems, then, the def-
irnition of order of a difference representation is ,
integrally tied to point distribution functions. The §
order is determined by the error behavior as the spac-
ing varies with the points fixed in a certain distribu-
tion, either by increasing the number of points or by
changing a parameter in the distribution, nct simply
by consideration of the points used in the difference
expression as being unrelated to each other. This
point is essentially what is noted by Hoffman in (4).
Actually global order is meaningful only in the first
sense, since as the minimum spacing is reduced with a
fixed number of points in the field, the spacing some-
vhere else must certainly increase. This second sense
of order on a nonuniform grid then is relevant only
locally in regions where the spacing does in fact de-
crease as the point distribution is changed.

The question of order with nonuniform spacing has
recently been consijdered by Vinokur (5), Hoffman (4),
and by Thompson (2). Other studies of error on curvi-
linear coordinate systems have been reported in (6-7).
The present discission attempts to clarify this ques-
‘tion.

ORDER ON NONUNIFORM SPACING

A general one-dimensional point distribution
function can be written in the form

x(6) = g

[

(0 <g <N) (1)
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In the following analysis, x will be considered to vary point distribution. The first {-derivative follows
from 0 to 1. Any other range of x can be constructed from (2):

simply by multiplying the distribution functions given .

here by an appropriate constant. With this form for ORIGINAL PAGE I8 , ., ¢ ¢

the distribution function, the effects of increasing the OF POOR QUALITY £ b
number of points in a discretization of thefield can be
seen explicitly by defining the values of { at the
points to be successive integers from 0 to N. In this
form, N + 1 is then the number of points in the dis-
cretization, so that the dependence of the error ex-

Now f;y, and the higher derivatives, depends on £ ex-
plicitly through the f{-derivatives of the metric deriv-
atives, e.g., Xe» and implicitly through the x-depend-
ence of £f. Thus

pressions on the number of points in the field will be d(f.) aE ) 3(£.)
displayed explicitly by N. This form removes the con- £ - ( (4 ) +( 3 ), x (8)
fusion that can arise in interpretation of analyses dg 3 ‘x X g ¢
based on a fixed § interval (0,l1) where variation of
the number of points is represented by variation of the
interval Af. The form of zhe disttibztion furction, or, In operator form
i.e., the relative concentration of points in certain d 3 3
areas while the total number of points in the field is FET % (9
fixed, is varied by changing parameters in the function.
The transformation of the first derivative {is
For example,
given by fE 2 , , , ,
f ==
X xg f“ = (-a—e— +xg 5—;)fC = (a€ + Xe ax)(ngx)
if f_ is approximated by the second-order central dif- 2
fereﬁce expression we have, since 4{ = 1 here, = xggfx + xifxx
1
f& - 6(f1+1 - fi-l) + Tg 3 In general, then
3 where T, is the truncation error in this difference a"¢ 3 3.n
4 exP“SSion, and 1+l indicates points adjacent to the £y = " (3—6 + % ) f (10)
central point, i.e., indicates increments in £. A dg
Taylor series expansion in £ yields
e 1 L m (- )n Note here that since f has no explicit f-dependence,
TE = fE -4 I T f(n) +% L P~ f(n) we have
n=0 a=0 4 x, 2 =x £ =f
th 12 £ 9x £ x €
where f represents the n  f-derivative of f. The :
n=0 aéa)n = 1 terms lead to cancellations, so that as expected. \
T_can be written The truncation error in f_ can then be written,
x
- 1 using (10) in (6), as )
Te ™ -t @D f2ne) (4) -, L op oL 3, 2, "
x Xe nel (2n+1)! “3¢ £ 3x
Using (3), the difference expression for fx on this .
point distribution is Note that the binomial theorem cannot be used to ex-
1 and the pawer of the derivative operator here since
fx = E;E (fi+l - fi-l) + Tx (S) 3€ and xE P do not commute, i.e.,
3 3 3 32
where now Tx = f; T€ is the truncation error in this (BC)(XC ax) b xEE Ix * xE 9£93x
difference repreéentation of £ . From (4) we have then
x while
) = _ —1_ = 1 2
Ty Xe nfl (2n+1)! f(Zn+1) (6) (xE é%)(é% =X 3%3;
Here the metric coefficient, x_, is considered to be Thus all permutations of the operator products of 2
evaluated analytically, and heflce has no error. (The case degree 2n+l will occur in the expansion of the 2n+l
of numerical evaluation of the metric coefficients power of the derivative operator. For example, with =
is considered in a later section.) . 2n+l = 3, the following eight operator products will
& Now the series in (6) cannot be truncated without occur:
o further consideration since the {-derivatives, f 2n+1)* 33 32 3 3 32 53
-4 are dependent on the point distribution. Thus if n (3{) . (SE) (x5 3;). (3—)(x5 3;). (xg 3;) .
£ 4 the point distribution is changed, either through the ¢
addition of more points or through a change in the form 03—)(x 'é—)fj-) (x jiﬁ(jL)(x ji)
of the disribution function, these derivatives will AL g ax"IET tTg ax” 3L Y ax”!? .
change. Since the terms of the series do not contain a 3 32 32 3 §
power of some quantity less than unity, there is no (xE 3;)(‘2) ' (Xe Ty (SE) :

= indication that the successive terms become progres-
A4 sively smaller.

: It {s thus not meaningful to give the truncation
i error in terms of §-derivatives of f. Rather, it is
i pecessary to transform these ¢ -derivatives to x-

But since f has no explicit f-dependence, all of these ’
operator products having a - on the extreme right will.
make no contribution. There%ote, of the above eight-

L d ;
derivatives, which, of course, are not dependent on the products for ule 2n+l power term, only four need to be

Sy I , . Ty : =t
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considered: . , .
3 ] ] 3 3 2 2 2
G (l€ U (-a?)(:t'é;)' (xzﬁ'), (xc—a;)(ﬁ)(x;a_x)

Also since there is no explicit f-dependence in f, the
following relations apply:

i}
xﬁfxxx

1
'3 (x fx + 3x x_ £+ )

1119 £ 6 x

Here m = 1,2,3, and C1 = C3 -

- Ay, g ” 1, with all the other a. being zero.

1, C2 = 3, and a4 = 3,
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d.m 3 df

wvhere x indicates the m+l £-derivative of x. Also
(m+1) e

.8 a.m 3.0, md®, 9 (x) @
[(36) (xg 3 If (sz) (x dx’) : _;;zﬂ_ ;;;

and,

2 dm Ry o 20 dieD) a7t
[, 30" G (x 30 "1E = (x, Y o

2in

a"(x™
e £ dv i
= X ‘7-—-
& d{n dx +n

Other combinations appearing can be inferred from these.

From these relations it follows :hat(—ZL +x, )P
will expand to the sum of products of e-der§vat15egxof
x, !n each of which product the total number of I~
differentiations is p. All possible combinations of §-

derivatives appear in these products:

p=1l x

C ]
2
p=2 x.,x
& &€
= 3 +
P 3 Mg XX Xegg
p==4 x‘ X, . X,, X 2 X, X 2 x
£ TEEETET TEE * TEETE * TRELE
p=35 x5, x X, X._.X X, X 2 x 2x X, X 3
E TEEEETE’ TEEEEET TEELTE T TEE g’ TeEE
*eeeee
The n-term of the series in (l1) then is of the form
1 2n+1 L 2n+l a
D1 m£l Cm ;;; 151 x(i) (m=1,2,...2n+1) (12)

where the a n are non-negative integers on the interval
(0, 2n+l) such that

2n+l

151 i 3 " 2n+l (m = 1,2,...20+l1) (13)
Also

81" 84, 2ne1 0 B 204 " (RIS )

Neither the exponents, a_ , nor the numerical coef-
ficients, C , depend on tﬂe point distribution., The
first and last of the C_ coefficients are unity:

C, *Cpyr ™ 1. In 127, x ) is the ith g_derivative
o} x. ‘K& an example of (125, for n = 1 we have the
term

l 3 3,3
3 Gt !

vhich expands to

series will each contain 2n+l £-differentiations.

Order with Fixed Distribution Function
Now from the form of the distribution function (1),

it is clear that

»lnF

* " (14

=

where the coefficient D, does depend on the point
distribution function oé (1), but not on the number of
points, N. Therefore, in (12),

2n+l a 2n+l a
im im
2n;1 xéim i ZnEIGEL)aim . 151°1 . iﬂlbi
i=1 " (1) i=1 Ni 2041 N2n+1
il ey
N

by (l4). The truncation error in the difference ex-
pression for fx then is

2n+l m
Tx = - n£1 . 2n m£1 Amn ; : 15)
(2n+1) !N dx
where the coefficients, Amn‘ given by
C 2n+l a
m im
Amn D1 121 Di (16)

depend on the distribution function, but not on the
number of points. The series (15) is thus a power
series in the inverse of the number of points in the
field. It therefore is possible to truncate the series
as the number of points in the ficld, N, increascs,
with the result

e I

3 m

d'f

Ta- -+ 1 a 2f (a7

x 6N2 m=l “ml dxm

where, from (16),
C 3 a
: m im
Aml D1 121 Di (m = 1,2,3)

c, = C3 =1, C2 =3, a3 " 3, 3, "3y, " 83, = 1

and all other a, are zero. Thus

im

A -ﬁ A = D A UDZ
11 Dl ' 21 2’ 31

R s s 4

(o)

The truncatica error of the difference expression (5)
can then be written, using (14), as

£ (18)

™ N
a
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The first two terms arise from the nonuniform spacing,
vhile the last term is the familiar term occuring with
uniform spacing as well.

From (17) it is clear that the difference repre-
sentation (5) i3 second-order regardless of the form of
the point distribution function in the sense that the

truacation error goes to zero as 1/N2 ag the number or
points increases. This means that the error will be
quartered when the number of points is doubled in the
same distribution function Thus all difference repre-
sentations maintain their order on a nonuaiform grid
with any distribution of points in the formal sense of
the truncation error decreasing as the number of points
is increased while maintaining the same relative point
distribution over the field.

The critical point here is that the same relative
point distribution, i.e., the same distribution func-
tion 18 used as the number of points in the field is
increased. 1If this i{s the case, then the error will be
decreased by a factor that is a power of the inverse of
the number of points in the fie!d as their number s
increased. Random additions of puints will, however,
not maintain order. This point has also been noted by
Hoffman in (4). In a practical vein this means that a
solution made with twice the number of points as another
solution will exhibit one-fourth of the error (for
second-order representations in the transformed plane)
when the two solutions use the same point distribution
function.- However if the number of points is doubled
without maintaining the same relative distribution the
error reduction will not be as great as one-fourth.

From the standpoint of formal order in this sense,
then, there is no need for concern over the form of the
point distribution. However, formal order in this
sense relates only to the behavior of the truncation
error as the number of points is increased, and the co-
efficients Amn in the series (15) may become large as
the parameters in the distribution are altered to
reduce the minimum spacing with a given number of
points in the field. Thus, although the error will be
reduced by the same order for all point distributions
as thie number of points {s increased, certain distribu-
tions will have smaller error than others with a given
number of points in the field, since the coefficients
in the series, A , while indepen.ent of the number of
points, are depengenc on the distribution function.

Since the numerical coefficients,  , in (16) do
not depend on the distribution funccion, the quantities
of concern for the n-term of the series (15) are

Amn 1 2n+l a,
T ‘o 1ﬂ1 Di (m =1,2,...,2n+l)
m 1
- L 2:+1 Nia‘“x )
ng i=1 (1)
2n+l -1 a
I, a, -1 2n+¢l N"T7x im
. i=] “im (1)
(NXE) iﬂl ('——"'———xe ) (19)

Now at least one a, must be greater than or equal to
unity for each m, and therefore the exponent of Nx, in
the above expression is not negative. Since the a ¢ do
not depend on the distribution function, we are lead
by (19) to compare distribution functions on the basis
of behavior of the following quantities as the ainimum
value of x_on the field goes to zero with fixed N:

§ 1-1
N x
Nx, and .__::-ill (4= 1,2,..., 20¢1)  (20)

Now for uniform spacing we have D, = O for { > 2, and

then by (16), all A are zero exéept A S which
is given by ma Zntl,n .
B PR I S
A2n+1,n D 1 1

1

Thus the contribution to the truncatjion error that
remains with uniform spacing arises from the m = 2n+l
term of (15). The ratio of the coetficients A to the
coefficient AZn 1.0’ corregponding to the uniform
spacing error, Is'ghen, from (16) and (14).
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2n+l,n  Con+l 2“; b 21,2041
1=1
Cm 2n+l aim 2n+l x(i) Am
* el 1 Y = Cp il O (21)
Dl xE

Notemthat this ratfo is the ratio of the ccefficient
of d"£/dx" to that of £, in the n-term, {.e., the

(%)2n+1 term, of the series (15) for the truncation
error. The ratios of the terms arising from the non-

uniform spacing to that from the spacing itself in the
n-term of the truncation error expansion (15) as a
power series in the inverse of number of points are
then

a"t d™¢ a
A o om el x o
A2n+l,n dZntii m daniﬂ i=2 xt
20+l 2n+l &
dx dx

Order with Fixed Number of Points £
The above considerations have been concerned with 2 p
order in the formal sense of the truncation error bclng§ :
reduced by a factor equal to a power of N as the number §
of points in the field {s increcased, wi- le maintaining
the same relative point distiibution. It has been
shown that all point distributions maintoin formal
order in this sense, but that some diszr butions muy be
super for to others with a given total number of points
in the field. Also, comparisons, may be made on the
basis of the magnitude of the series coefficients,
ultimately through the quantities given in (20). All
this was based on a scries expansion of the error in
ascending {nverse powers of the number of points in the,
field, N. H
An alternate sense of order for point distribu-
tions {s based on expansion of the truncation error in
s series in ascending powers of the spacing, x, . This :
can be developed from the series given above ai (15), =
but with D, from (14) substicuted in the expression fo

A, given by (15):
A = E— zn;l(N x )'1m = EE 2n;1((2'1-)1)( ]‘hn .
mrr D i=1 (i) D i=l*'x (i) =
1 1 3
g
But, by (13), i
2n+l I
i+l 1a f1% @ 2ael :
n.o, ®.p - D
{=1"1 1 1l

8
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so that

2n+l x a 2n+l x a
- 2n (1), 1= _ 2n (i), im
A * G0 D) Calix ) 4y =)
x x
£ 3
(23)
Then the series (15) becomes
x_.2n 2n+l dnf
Tx " " 0fl Gt ofl Pan m (24)
where
2n+l «x a
- 1), im
an cm fgl (—SI_) (25)
*g

Recall that the numerical coefficients, Cm' and the
exponents, a, , do not depend on the distribution func-
tic:. However, in contrast to the series of (15), the
coefficients, B, may be depnndent on the variation of
the spacing, x T“with a fixed number of points. The
series here isctherefore not a power series in x_,and
cannot be ttuncated unless the coefficients, B E are
bounded as the spacing goes to zero with a £1xed number
of points. A sufficient condition for this is that the
quantities involved in the ratio of the coefficients

to that arising with uniform spacing, i.e., (22),

x
W ga1,2,...,9 (26)
he bounded as x, goes to zero with fixed N. Where this

is the case, t%e order of the dif{erence representation
is maintained with the non-vniform point distribution
in the sense that the truncation error is reduced by a
factor equal fo apowerof the spacing as the spacing is
decreased with a fixed number of points in the field.
In the specific distribution functions to be con-
sidered below, it will be zeen that it is possible for
the quantities of (20) to be larger than those of (26},
sut for most functions the reverse is true. The dif-
fereace betwecn these two approaches Lo order should be
kept clear. The first approach con erns the behavior
of the truncation error as the number of points in the
field increases with a fixed relative distribution of
points. The series here is u power series in the in-
vorse of the number of points in the field, and formal
o.ter is maintained for all point distributions. The
coefficients in the series may, however, become large
for some distribution functions as the minimum spacing
decreases for any given number of points. Evaluation
of particular distribution functions in this approach
is based on the quantities of (2G). The other approach
concerng the behavior of the error as the minimum
spacing decreases with a fixed number of points in the
field. Distribution functions satisfying the condi-
ticas (26) maintain order in this second sense and can
be compared on the basis of these quantities. This
second sense of order is thus more stringent. The con-
ditions of (26) seem to be .nattainable, however.
Conditions equivalent to .hose given in (20) for
comparison of distribution functions were also obtained
by Vinokur in (5) from consideration of appropriate
length scales inregions of large gradients. (In that
analysis the transformed variable, £, is normalized to
the interval (0,1) so the number of points in the field
does not appear explicitly. The correct interpretation
of the results of (5) with the present form of distri-

function {s the condltions of (20) and not as given in

M |

s ., o 3 a0

\ -

(2) where the Ni'1 factor was omitted.)
EVALUATION OF DISTRIBUTION FUNCTIONS

As an example of the application of the easures
of order discussed above, ten distribution functéons
were analysed with specified spacing at § = 0. Ti..
functions and the coefficients discussed above are
listed in Tables 1-3, using the following notation:

(1) . -1 %) (
by~ =N x L' = —¢°
2 X,
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with the subscripts O and N indicating evaluation at

& = 0 and N, respectively. The table both the
values of the coefficients, L  and L., at the points
of minimum spacing, i.e., £ = 0, and” the maximum
values, together with the location of the maximum.

The relation of these coefficients to the produce NS

as the minimum spacing S, approazhes zero {s also given.
Plots of the coefficients at £ = O and the maximum val-
ues of the coefficients against the minimum spacing are
given in Figs. 1 and 2. The variation of the coeffi-
cients over the field is shown in Figs. } and 4. The
first of these_shows the entire field for a r.inimum
spacing of 107°, while the secoud gives detail of the
reglion near tbg minimum spacing (§ = 0) for a minimum
spacing of 10 . The behavior of the coefficients is
qualitatively the same for diffevrent values of the
minimum spacing. Finally, Fig. 5 shows the variation
of £ with x, {.e., the point distribution, the entire
field being shown for minimum spacings of 10~ and 10~
while detail of the region near the mirimum Bpaclng
(€ = 0) is shown for minimum spacings of 10~ and 10-9.
Here the ordinate, §, can also be interpreted as the
fraction of the total number of points that fall be-
tween x = 0 and the local value of x.

From Fig. 5b it is clear that, of the functions
considered here, only the exponencial, the hyperbol {c
sine, the hyperbolic tangent, and the crror function
are suitable as point distribution functions with very
small minimum spacing. The quadratic and sine functions
do not actually achieve the specified spacing of 10'6,
and the rest of the functions concentrate essentialiy
all of the points at the left boundary. The error
function gives the smoothest coverage of the field.

The hyperbolic tangent {s nexr in this regard, while
the exponential and hyperbolic sine give about the same
distributions in most of the field. Of the four suit-
able functions the hyperbolic sine concentrates more
points near the minimum spacing, i.e., the left bcund-
ary. This function also gives the most nearly uniform
point distribution in the region of high concentration,
since the second derivative, and hence L{Z)and L{2),
vanishes at £ = 0. This vanishing lecong der1VI§iye
also occurs with the tangent and arctangent, but these
functions ccncentrate too many of the points near the
left boundary. .

The plots of the coefficients over the field, Fig.
2 and 4, show L{2) for the hyperbolic sine rising
rapidly from zero to quickly level off just above the
uniform value for the exponential. The hyperbolic tan-
gent, by contrast, falls from a value close to that at
vhich the hyperbolic sine levels off. The error func-
tion starts a bit higher than the hyperbolic tangent
but falls faster. All four of these functions % ve
essen.ially uniform values of the coefficient ) in

6
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he regign extending 100 times the minimum spacing from
thr left boundary, cf. Fig. 4a, except for the initial
rise from zero that occurs for the hyperbolic sine in
the region extending 10 times the minimum spacing from
the boundary. The ;alue that occurs for the error
function is about twice that for the others. Outside
this boundary layer region near the left boundary, the
hyperbolic tangent and the error function drop off to
zero, while the exponential and hyperbolic sine remain
uniform. Thus the hyperbolic sine has the best be-
havior very near the minimum spacing, while the error
function, followed closely by the hyperbolic tangent,
behaves best outside the boundary layer region. The
error function is, however, a bit higher than the
others within the boundary layer. Note that the ex-
ponential, although a suitable distribution function,
maintains the uniform value near that from which the
hyperbolic tangent drops off, ard therefore the
exponential is never as good as the nyperbolic
tangent in regard to the coefficient The
trends for 3) are essentially the same as for

, except that now the value for the hyperbolic
sine is uniform, so tha%BEhis function has no ad-
vantage in regard to ‘¢

For the coefficient L ('Z all four functions give
very nearly the same values within the boundary layer,
except for the rapid initial rise from zero that occurs
for the hyperbolic sine and a slightly larger initial
value occurring for the error function. Outside the
boundary layer the values for the error function and
the’ hyperbolic tangent drop off to zero, the drop
being a bit faster for the error funcction, while the
values for the exponential and hyperbolic sine drop off
to§ether to a nonzero value. Again the behavior of
1{3) is qualitatively the same.

It thus appears that the following conclusions can
be reached on the basis of these coefficients:

(1) The -voonential is not as good as the hyper-

bolic tangent and therefore should not beused.

(2) The hyperbolic sine is the best function 1n
the lower part of the boundary layer. Other-
wise this function is not as good as the hyper-
bolic tangent.
The error function and the hyperbolic tangent
are the best functions outside the boundary
layer. Between these two the hyperbolic tan-
gent is the better within the boundary layer,
while the error function is the better outside.
The logarithm, sine, tangent, arctangent, in-
verse hyperbolic tangent, quadratic, and also
the inverse hyperbolic sine (not included in
Table 1 or the figures)are not suitable.
Figs %ignd 2 show that the the variations of both

S

(&))
(%)

Lél) and L with the minimum spacing are essentially
the same for all four of the suitable functions (ex-
cept that Léz)and Léi)at £ = 0 remain zero for the
hyperbolic sine). ese figures also show that consid-
eration of the values at § = 0 only would be deceptive,
leading incor.ectly to preference for the tangent and
arctangent, both of which are shown by the other fig-
ures to be unsuitable. Finally, Fig. 2 shows that the
four suitable functions do in fact preserve order in
the sense of variation of truncation error as the num-
ber of points in the field increases, since has
only small variation with the minimum spacing. The
same cannot be said, l.owever, for order in the sense

of varfation of the error as the minimum spacing de-
creases with a fixed number of points. In fact, §i§s.
2(c) and (d) show that the logarithmic slope of LS

is near -1 for these functions, and hence the order

is strictly only first in this sense (since

the L) are the coefficients of the xé term in the
error expansion). -

S 1

Vinokur (5) considered all of the functions in-
cluded here, except the exponential, logarithm, and
quadratic, and also considered the arcsine, which was
found to be unsuitable. As noted above, the analysis
of that reference is based on the quantities L ]
Vinokur also shows how to use a basic distribu§£on
function, with specified slope x_ at one boundary, to
construct a distribution functios that allows the
slope to be specified at both boundaries. Forms that
allow the slope to be specified at an interior point
are also given.

Although, as has been shown, all distribution func-
tions maintain order in the formal sense with nonuni-
form spacing as the number of points in the field is
increased. The results obtained for these particular
distribution functions show that considerable error
can arise with nonuniform spacing in actual applica-
tions. Recal that thbe ratio of the coefficients from
the nonuniform spacing in the series (15) to the ~o-
efficient arising from spacing {tielf is given by (22),
which with the definitions of LSi gives the following
bound for this ratio:

ORIGINAL PAGE 1§
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4 a%
Amn d™ ‘e ax® 2n+l (L(i))aim 27)
A2n+1,n d2n+1f - m d2n+lf i=2 S
dx2n+1 dx2n+l

The n=1 term then yields, for the coefficients involved
in the leading term of the series (15):

512 fx fx fg} fxx_ - 3L(2) fxx

X .13 x
A31 fxxx § fxxx A31 fxxx S fxxx

Now a typical case involving a boundary layer might
have 100 points with a minimum spacing of 10™° rela-

tive toca maximum fielg extent of unity. Thus N = 10%,

(28)

$=10", and NS = 10"". Then for
(i); 1,1-1
s = &9
as for the best of the functions considered, we have
(2)_ 4 3)_ .8
LS 10, LS = 10

and then the ratjos of the error from the nonuniform
spacing to that which arises from the spacing itself
are, approximately,

f £
8
10° 7= and 10" —
o xxx XXX
Sigis the error term from the spacing here is Szf =
10 °°f x? the error terms due to the nonuniform “°r
spacing are
107%¢ and 1073
x XX
as compared with 10‘12f due to the spacing. Now

for the same number of ggﬁnts with uniform spacing we
would have a spacing of 1072 and an error of 10-%f_ .
Thus the error due to the nonuniform spacing in tﬁigx
case is well below what would occur on a uniform grid
with the same number of points, except for the f_term.
(It will be shown below that this term can be elimi-
nated from the truncation error by evaluating the co-
ordinate derivatives numerically rather than analyti-
cally.)

This example shows that the contributions to the
error from the nonuniform spacing are significant and
mugt be considered. While the contribution form the
spacing itself decreases with the spacing, the con-

oo A A .




i

-
.

i

3

A

3UbDSedguEInt Pag .S

__——Start 2nd and

tributions from the nonuniform spacing increase as the
spacing decreases for very small spacings.

The lead term of the error then is

3
1 "¢
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All of the above considerations have assumed that
the derivatives of x with respect to £ are evaluated
exactly. If the coordinate derivative, x_ , in the
difference expression (5) is evaluated nuéerically by
the same central difference expression used for f we
have, in place of (5):

f - f
£ - i+l _ i-1 T; (29)
TS S I |
With x expanded in Taylor series we have
x
(2n+l)
- = + _xen¥r)
%~ %1 " 2% 40 neny (30)
Using this and (5) in (29) we then have
£ -T
£ = == £ 1 (31)
1+ l = (2n+1)

}‘; n=l (2n+l)!

Now the f term of T, corresponds to m = 1 in (15):
L Mn
1 (ons1y i

ard by (6,

. - El 2n;1 0 a,
1n D i=l i
1
Bus C, =1 and a; = 61,20+l’ as given above, so that,
using (14), 2n
R 2 X (20+1)
1o D1 xE
Then the coefficient of fx in Tx is
1 2 (2n+1)
" % of1 @eeD)!

£

and, for use in (31), we have

b4
L = *(2041)
e~ T T £ (1 + X, nzl (2n+l)')
T 1 2n-;1 A L4
0%l (zn41yeyet OF2 Wo @

But the coefficient of f on the right here is exactly
the denominator in ( ), so that, using (14) in this
denominator, we bave the following expression for the

.truncation error in the difference representation (29):

‘fl 1 el d7f
o= 2n &
T; - o - (2n+1) IN ) Amn dx™ (32)
1+ _1_ r 2n+1
(2n+1)'N

which is the same a3z (17), except that the lower limit
of m is 2 in the present case. This can finally be
written as

(33)

Thus the use of numerical evaluation of the co-~
ordinate derivative, rather than exact analytical
evaluation, eliminates the f_ term from the truncation
error. Since this term is the most troublesome part
of the error, being dependent on the derivative being
represented, it is clear that numerical evaluation of
the metric coefficients by the same difference repre-
sentation used for the function whose derivative is
being represented is preferable to exact analytical
evaluation. It should be understood that there is no
incentive, per se, for accuracy in the metric coef-
ficents, since the object is simply to represent a
discrete solution accurately, not to represent the
solution on some particular coordinate system. The
only reason for using any function at all to define the
point distribution is to ensure a smooth distribution.
There is no reason that the representations of the co-
ordinate derivatives have to be accurate representa-
tives of the analytical derivatives of that particular
distribution function.

Two-Dimensions

The two-dimensional transformation of the first
derivative is given by
(34)

1
fx j(ynfﬁ - vefy)

where the Jacobian of the transformation is

With two-point central difference representations for
all derivatives, we have

S Y 8E -8,y6 £
£ = dxéy_sxé—y+r (35)
Y :
' where
¢ Py TRy Saf T frga T frga

and T is the truncation error. After expansion of all
quantities in Taylor series about the central point
and considerable algebraic manipulation, we have for
the leading term of the truncation error

T -x yx_)f

x 53(y5xnxnn €7n €67 xx

1
+ ZJ(yiyn)(ynn - y&E)fyy

£

x Xe¥nYeg txy

1
+ = -
ZJ[yiyn(xnn xii) * n"g¥nn

(36)

+ second-order terms in the spacing
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ft}preseﬂt central difference expressions, e.g.,

1 _ 1
Xe = 7(‘t+1,j T X1, 0 % T Ty et %y g0

TE Tn
T —_ _ n
sin@ecos¢n r‘)

1 .
x " ;zaz;;:;z)(sin¢ncos¢e (38)

.

™

Therefore the truncation error, in general, varies in-

XEE T X4l g inj + xi-l,DR‘G"NﬁL PAGE Egversely with the sine of the angle between the coordi-
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2x_, + xi,j-l

Tan T Xg,440 T gy

These contributions to the truncation error arise
from the nonuniform spacing. The familiar terms pro-
portional to a power of the spacing occur in addition
to these terms as noted.

Sufficient conditionscanbe stated for maintaining
the order of the difference representations. First of
all, as in the one-dimensional case, the ratios

[(Ynate lines.

Note that there is also a dependence on
the direction of the coordinate lines. To further
clarify the effect of nonorthogonality, the following
example is included. For simplicity, only the trunca-
tion error terms arising from nonuniform spacing are
considered.

The contribution from nonorthogonality can be
isolated by considering the case of skewed parallel
lines with xn = xrm = X = Yee = yEn = 0 as diagramed

below:
(4 r/’

x y x
L . L L) ORIGINAL PAGE IS .
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. Here (36) reduces to
" must be bounded as x_, X.s Yes ¥ approach zero. A 1 1 YE 1%
second condifion must be impgsed which limits the rate Te=-3 Xegfxx + 567 ynnfyy - E(;_)xéifxy
at which the Jacobian approaches zero. This condition y £ . &
" can be met by simply requiring that cotd remain bounded, Since cot8 = ‘e this may be written
where 8 is the angle between the ¢ and n coordinate X, ’
lines. The fact that this bound on th2 nonorthogon- L
ality imposes the correct lower bound on the Jacobian T =-x% f + 1 £ - x £ )ecoth 39
follows from the fact that x 2 TgExx 2(yﬂn yy 123 XY) (9

[cote] < M (37)

implies

2 1 .22

2 22 22
. + .
J° > M+1[x£xn + x Yo + xnyg yiyn]

2
€
With these conditions on the ratios of second to first
derivatives, andthe limit on the nonorthogonality
satisfied, the order of the first derivative approxi-
mations is maintained in the sense that the contribu-
tions to the truncation error arising trom the non-
uniform spacing will be second-order terms in the grid
spacing.

The truncation error terms for second derivatives
that are introduced when using a curvilinear coordi-
nate system are very lengthy and involve both second
and third derivatives of the function f. However, it
can be shown the same sufficient conditions, together
with the condition that

yin
YEYn

xEn
xgxn

and

remain bounded, will insure that the order of the
difference representations is maintained.

It was noted above that a limit on the nonortho-
gonality, imposed by (37), {s required for maintain-
ing the order of difference representations. The
degree to which nonorthogonality effects truncation
error can be stated more precisely. The truncation
error for a first derivative fx can be written

1=y T -y 1)
x I7q7g " Ve
...where T_ and T_ are the truncation errors for the
differesce expgessions f_and £ . Now all coordinate
derivatives can be expregsed us?ng direction cosines
of the angles of inclinatfon, ¢_and ¢ of the § and
n coordinate lines. After someesimpligication, the
truncation error has the form

The first term occurs even on an orthogonal system and
corresponds to the first term in (33). The last two
terms arise from the departure from orthogonality. .
For 8 < 45°, these terms are no greater than those ¥
from the nonuniform spacing. Reasonable departure i
from orthogonality is therefore of little concern when
the rate-of-change of grid spacing is reasonable. E
Large departure from orthogonality may be more of a E
problem at boundaries, where one-sided difference ex- :
pressions are needed. Therefore, grids should probably:
be made as nearlyorthogonal at the boundaries as is g
practical. Note that the contribution from nonortho-
gonality vanishes on-askewed uniform grid.
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Table 1
e clent t n ing
FUNCTION - ( (2))0 wf?) wf?) ("gn’o
) HuNcrion L x N o s Yo -0
of
Exponental: =1 a a n? S .1 ke -n?
e ~1 -1
:Z:::::“c : - EE“%;:%_'_Q l—t:—:ﬁ 2atanh o 2uz(ltanhza - 1) Zunhzu k()tlnhza - l)llnhzlu
Hyperbolic  sinh of a 2 2
Sine ‘ sinh a sinh o 0 * 0 inh o
Error _ecfa(l - O 2 “_GZ 2 2 2(~2 2 L Ve~ a? ¢ !(202 )¢ ol ¢ )Z
Function ecf a /et a 2a atéa - T ae eriy - e erla
. tan af n a 2
Tangent P tana (0<a <3 T s 0 2. 0 2tan’a
2 2.2
Arctangenc : 1 - £30 3{1 = &) 2“ i 2a 3 23 (o 2'21) 2atanla 232 - 1 (tan"a)?2
tan ‘o (1 +a%tan"'a 1l +a (1 + 4%
Sine : 1 - E%la—'ﬂ (0<a < %) “: 5 atan a uz t.nza -tanzu
. Ly .l 401 - 8)] _ a _|_a 2a 2
Log - r e TFaBa+a[T+a  [§ .02 &l +0) Rl +a)]
Inverse -1 =
Hyperbolic : r'—'lh_—lg& (0 <g<1) a i 0 242 0 2(tlnh-lﬂ)2
Tangent . tanh™"a - tanh™a
Quadratic : af + (1 - ))E (0 <a <D a ‘ZQ_;:‘—G') . 1@_;_0_) 0
. . a
Table 2
Maximum Coefficients
2) (3 (2) L(J))
Uy Taax S Vaax s nax Cs Jnax
Exponential: same (uniform) same (unfform) same (£ = 0) same (£ = 0)
Hyperbolic . . (7 . q) same (£ = 0) same (£ = 0) same (& = 0)
Tangent
Hyperbolie = .\ o (F = 1 same (uniform) ; sinha (sioh ol = 1) | same (=0
Sine tat (£ h
Ecror : game (€ = 0) same (£ = 0) same ({ = 0) same (£ = 0)
Function
- 9 2 Fed
Tangent  : 2atana (£ = 1) 2?Gtanda + ) tana (£ = &) 7 tan‘a (can of /_)
T : 9 2 - 551
Arctangent : a (E=1+ Y 2 a° (E=1+ 5=) | same sane
¢ 2 Ao |l e
Sine : same (£ = 0) same (uniform) same (£ = 0) same (€ = 0)
Log 1a (E=1) 20 (£ =1) same (uniform) same (uuiform)
Inverse - 25,2 - -1 s 2 -1.2 =
Hyperbolic : 22— (= 1) 20 td) (¢« 1) zatamh’la (@ oD 2032 + D (eann l)? (F - 1)
Tangent 1L-a (1 -a")
Quadratic : same (£ = 0) sane ({ = 0) saze (€ = 0) same (§ = 0)

WOTE: 'Same’ indicates maximun value {s same ag_value st Te 0.
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Coefficients as Minimum Spacin

Table 3

Approaches Zero

(2) {3) 2) (3) (2) 3 @) 3) .
“’N )0 (Lﬂ )0 (LS )0 (LS )0 “’N )nax (I‘n' )ux (LS )nx (LS )nlx
. ta L 1,2 1
Exponential: la NS (tn xs’ NS (ilg)l same same same sane
Hyperbolic | 1 1,2 1 1,2
Tangent : & NS (in NS) '3 (Ns) same same same same
1
Hyperbolic | 1,2 1,2 & = 1,2
Sine : 0 (tn ws) 0 (“s) NS same (&n i same
Error : Zl.n(i) 4(n L)2 ﬁ—l- i (l)2 same same saze same
Functfon ° NS NS 2 NS 4 °NS
2 2 2 2
" L4 1,2 1 pL] 1.2 s 1 9n 1,2
Tangent : 1] 5 0 5 (E) TS e (E) % i (N—S-)
. 2 1,2 AL 91,2
Arctangent : 2 6 3 G(E) NS 2'2 (NS) same same
2 2 2 2
Sine : 'T % !4— !l:“ (le)2 - "T (é)z same same same same
1 1,
: . 1 1,2 NS NS) sane same
Log : 1 2 3 Z(Ns) 2 2(e
Iaverse 2 o142
Hyperbolic : O 21-88) | o 2(tankl)?} 2 8cky? NS 8
NS NS
Tangent .
Quadratic: 2 0 2 ('1—) 2 1] same same same same
* NS NS

NOTE: ‘same' {ndicates maximum value {s same as value at € = O.

ORIGINAL PAGE 8
OF POOR QUALITY,

e LT

s




e A At
!_n;- .| - 9 , E ) . E fh' oft ecale
- i ¢
' ] y qad 3 ) '/ E B
‘ . % Log ]
1 24 b 2
4 tanh E stad st ten — b} / =
gb o B 1 tadh ‘/’r’__’__.__,.—-—""— ) W ;—lhh .
E"'; 9 «p gE . stan ge S~ vy '
g 3 9 3 \ i \ sin
] 3 ; : N T
. e 1Y I v ! \ |
‘ - | S & i = !
g o180, atash & tan are 0. o Jqusd 1o 0. s N — N [ 4

LS BB M B S B N e B s L a8 A B i 1B e B I e 1"
10° 107 107 10° 10° 10° 10° 10° 10" 10° 10 > 107
S e o0 10 10° 10° 10” 10° 10" 1

Qo012 62 0.3 04 08 a0 0.7 00 08 1.0 —oga; 02 0.3 K4 OF O8 8.7 08 CF o
X

(a) (b) (a)  ORIGINAL PAGE I8 (v
) OF POOR QUALITY

|
B\
c2
1
A
1]
5]
<}
2, 1848k, atash, and tan are 0. g} uad L9 0.
S S Ay At B e R 2 e e -
10" 10 10" 10" 10" (0" 10 "
10 L sm:mo i T10% 10 u'w" 16* 10* 10 m_‘m 1d
(c) (d) : () (d)
0 (1) (1) (1)
rig. 1 LN and Ls E(i = 2,3) at Point of Minimum Fig. 3 Variation of LN and LS over the Field

Spacing (£ = 0). for Minimum Spacing of 10 7.

~]

® e fGaEh offacale > ‘\u\. - ‘
. Quad 10 0. =3 s =3 3
k] 3 3 ezt
‘;! \ ] quad b tanh, siah i
-! é! Ei exp
7oy 3 . 3 S
4 ar 3 . S
o - 1 |
: ! geéu 323 _____/’/ i
g‘g‘ 3/ e I'Ch_____v.———‘—“g'.:'—“ I tas i
) ] - — ) oln iz
R /,/ i
2 et o ®,
k=] siah 3 E
24 T Ry SR ey 3 tan b
B e g s '-;,—"-HT‘:—'T-‘-M o] ] s e 0.
10° 107 10° 10° 10° 16 10% 10" 18 3oT 10" 10% 10¥ 107 107 167 10° 1 ~ae Lo 20 30 40 30 48 7.0 0 L€ WO, s ro 20 38 40 10 44 7e &0 80 .
RINIMUM SPRCING T RINIMLRY SPACING X %10° X -
(a) (b) (a) (b)
' Y N h |
—ye tank \
El = sta 1a :
quad 5
b =] tan
- atas % BN\ — .
% B RE! i N :
-} 5| s ;
j=% oiah, tanh, exp, er .
=1 )3 53
E £
S kS
- 6
b k=]
- S
2 5

- b3

3 L)
T'g ! ‘ g ataa
. T B

1 Qund fa 2. oy § Quad s
: T 0?1t 1a% 1ad 1nt T n€ (ot 1e end B S S. — - —
L 10 lﬁv—l?" 19 m‘n&?m;n e T ‘M 10t 30 e 10 o xo :}3.-‘5!.0 o 30 do 2o Ko Vo o o e
(@) @ (e) (1) ( @
X . (1) (1) Fig. 4. Variation of and L (i = 2,3) Near

ig. 2 Maximum Values of LN and Ls (1 =2,3). Point Minimum Spacing (2 = 0) for a Minimum

Spacing of 10




‘ .
9’0

~

xt
9.08.1 0.2 0.3 8.4 6.8 0.0 &7 0.0

0.6 0.7 4.0 0.0 1.0

9.00.9 8.3 4.3 0.4 0.8

Fig. 5 Point Distribution

) .
= .
. -
d ]
-
1 3
L ]
&
-
£ Y =‘
u -
9 é
-
9 -
J 3
4
3
s dl G2 63 64 'l:' G &7 40 0.0 ©.0 Geg1 G2 L3 64 A3 U8 07 40 OB L6
 §
(a) (b)
-
4 :‘
[ ] -$
- 10
) 10-‘ »
4 9
. L ] -
t //./ :. m /-/-/ ey
4 “/' / :JJ -t
./ < /
v atan e /'
/n . - /- ataa
) /’ e4is - .
} . o - sinh
s ah | e y
4 __f-_—--—"‘"‘_"__a?{'—— 3 y ry
o ert
0.0 1.0 20 3.0 40 50 &0 7.0 00 80 m:' 3¢ 1.0 20 3.0 €.0 30 60 7.6 8.0 90 1.0
'l 10 X u10*
(c) d)

This research was partially supported under Air Force
Contract F08635-82-K-0409, Eglin AFB, and under NASA
Grant NSG 1577, Langley Research Center.

ORIGINAL PAGE 1§
OF POOR QUALITY




	GeneralDisclaimer.pdf
	0017A02.pdf
	0017A03.pdf
	0017A04.pdf
	0017A05.pdf
	0017A06.pdf
	0017A07.pdf
	0017A08.pdf
	0017A09.pdf
	0017A10.pdf
	0017A11.pdf
	0017A12.pdf
	0017A13.pdf
	0017A14.pdf
	0017B01.pdf
	0017B02.pdf
	0017B03.pdf
	0017B04.pdf
	0017B05.pdf
	0017B06.pdf
	0017B07.pdf
	0017B08.pdf
	0017B09.pdf
	0017B10.pdf
	0017B11.pdf
	0017B12.pdf
	0017B13.pdf
	0017B14.pdf
	0017C01.pdf
	0017C02.pdf
	0017C03.pdf
	0017C04.pdf
	0017C05.pdf
	0017C06.pdf
	0017C07.pdf

