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ABSTRACT

We develop numerical procedures for constructing asymptotic solutions of
certain nonlinear singqularly perturbed vector two-point boundary value
problems having boundary layers at one or both endpoints. The asymptotic
approximations are generated numerically and can either be used as is or to
furnish a general purpose two-point boundary value code with an initial
approximation and the nonuniform computational mesh needed for such problems.
The procedures are applied to a model problem that has multiple solutions and
to problems describing the deformation of a thin nonlinear elastic beam that

is resting on an elastic foundation.
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1. Introduction

Initral value problems for stiff systems of ordinary differential
equations are now considered to be relatively tractible numerically (cf.
Enright et al. [7]). However, codes for stiff (or singularly perturbed)
boundary value problems are not readily available, even though these problems
arise in a great many applications,

In this paper we consider asymptotic and numerical methods for singularly

perturbed two-point boundary value problems of the form

; = f(x,y,t, €) ’ e; = g({x,y,t, €) (1.1)
a(x{(0),y(0),e) =0, b(x(1),y(1),€e) =0, {1.2a,b)

where x, y, a, and b are vectors of dimension m, n, q, and r =m + n - q,
respectively, and € is a small positive parameter.

Although many special problems of this form can be solved by known
asymptotic or numerical techniques, the general problem is very difficult and
beyond our current understanding. The form of equations (1.1, 2) imply that,
whenever g‘ls not small, Z varies rapidly relative to x. The behavior of the
solution in these zones of rapad transition can be very complicated. For
example, y can "jump" abruptly in a narrow boundary layer near t = 0 and/or 1.
These jumps can also occur at interior locations where solutions or their
derivatives will become unbounded as € + 0. The locations of the interior
layers are generally unknown and must be determined as part of the solution
process. Examples of these and other phenomena are discussed 1in, e.g.,

O'Malley [20], Kevorkian and Cole [18], Pearson [24, 25], Hemker [15], and

Flaherty and O'Malley [11].



The traditional numerical techniques for two-point boundary value
problems all have difficulties with singularly perturbed problems unless the
grid that is used for the discretization is appropriately fine, at least
within boundary or interior layers. If the grid is not fine enough to resolve
the layers, the computed solution typically exhibits spurious mesh
oscillations. There are, however, special purpose schemes that can solve
some singularly perturbed boundary value problems without using a fine
discretization in transition regions. Most notable among these are the
*upwind" or one-sided finite difference schemes (cf., e.g., Kreiss and Kreiss
[19] or Osher [23]) and the exponentially weighted finite difference and
finite element schemes (cf., e.g., Flaherty and Mathon [9] or Hemker([15]).
These schemes must usually be either restricted to relatively simple problems
or employ complicated algebraic transformations.

In view of these theoretical and computational dirfficulties, we simplify
problem (1.1, 2) considerably by assuming, in addition to natural smoothness
hypotheses, that (1) ?j if and b are linear functions of the "fast" variable

~

Yy, (112) the n x n Jacobian

~

Glx,t) := gy(x,y.t,o) (1.3)

~

has a strict hyperbolic splitting with k » O stable and n -~ k » 0 unstable
eigenvalues for all xand 0 < £t €1, and (21112) g »k and r > n - k. A
corresponding theory for problems with quadratic dependence on y is wvery
limited (cf., e.g., Howes [17] which discusses second-order scalar equations).
This, of course, limits extension of a numerical theory, but encourages
further numerical experimentation.

The assumed hyperbolic splitting restricts any rapid variations in y

to occur in boundary layer regions near t = 0 and/or 1. Thus, we

unfortunately have eliminated many important and challenging problems having

interior or "shock" layers. Some numerical work on these problems was done



by Kreiss and Kreiss [19], Osher [23], and O'Malley ([22].

In a series of three papers, Ascher and Weiss [2, 3, 4] show that
symmetric, or centered, collocation schemes could be used on problems that
satisfied assumptions similar to ours provided that appropriately fine meshes
were used in the endpoint boundary layers. Our approach is somewhat different
in that we use the assumed hyperbolic splitting to find an asymptotic solution
of problem (1.1, 2) which 1s composed of a limiting outer solution (Eo(t),
go(t)) and boundary layer corrections near ¢t = 0 and 1. The limiting solution
satisfies a reduced system, which is obtained from (1.1) by formally setting
€ to zero, 1.e.,

~

= f(X ,Y ,t,0) , 0 = g(Xx 'Zo't'o) . (1.4a,b)

X X
~0 ~ ~0 ~0

Because G 1s everywhere nonsingular, we can solve Eq. (l.4b) for

(

Y (X ,t) 1n a locally unique way, and there remains the m th order
~0 ~0

differential system (1.4a) for determining X (t).
~0

In order to completely specify the limiting solution, we must prescribe
m boundary conditions for Eq. (1.4a). We do this in Section 2 by providing a
“cancellation law" that selects a combination of g - k initial conditions
(1.2a) and of r = n + Xk terminal conditions (1.2b) to be satisfied by EO(t)'
For more nonlinear problems, we note that such a cancellation law is much
more difficult to specify (cf. O'Malley [21])). Boundary layer corrections are
generally needed to compensate for the cancelled initial and terminal
conditions, and these are easily determined once Eo(t) and Eo(t) have

been found (cf. Section 2).

In Section 3 we discuss a numerical procedure for calculating the

asymptotic solution of Section 2. We implement the cancellation law by



using orthogonal transformations to reduce G(x(t),t) to a block triangular
form with its stable and unstable elgenspaces separated. We also use the

general purpose two-point boundary wvalue code COLSYS to solve the reduced

problem and then add numerical approximations of the boundary layer

corrections. This approximation is considerably less expensive to obtain than

solving the full stiff problem numerically and it has the advantage of
improving in accuracy, without any additional computational cost, as the
small parameter € tends to zero. However, when €& i1is only moderately small,
our asymptotic approximation may not be sufficiently accurate for some
applications, so we have developed a procedure for generating an improved
solution by using COLSYS to solve the complete problem (1.1, 2) with our
asymptotic approximation as an initial guess. In order for this approach to
succeed, we must also provide COLSYS wirth an initial nonuniform mesh that 1is
appropriately graded in the boundary layers, and we give an algorithm for
constructing such a mesh in Section 3.

In Section 4 we apply our procedures to a third order model problem that
has multiple solutions and to problems involving the deformation of a thin
nonlinear elastic beam. These examples show that our methods can calculate
accurate solutions of stiff problems for a very modest computational effort.
While our algorithm for furnishing COLSYS with an initial guess and a
nonuniform mesh does not seem to be optimal, it does offer some advantages
over the more standard approach of continuation in €, where one starts with a
large value of € (e.qg., € = 1) and a crude initial quess of the solution and

reduces € in steps so that the mesh is gradually concentrated into the

boundary layer regions.,



We also present two examples 1n Section 4 that are beyond the
capabilities of our current methods because their solutions become unbounded
as € + 0. We include numerical results for these problems in this paper in
order to show some of the several challenging effects that can occur with
singularly perturbed problems. Fanally, in Section 5, we discuss our results

and present some suggestions for future investigations.

2. Asymptotic Approximation

With the assumed hyperbolic splitting, we expect solutions of (1.1,2) to
feature boundary layers in the fast y variable near both endpoints as € + 0.
Thus, 1t 1s natural (cf. O'Malley ([21]) to seek bounded uniform asymptotic

expansions of the form

x(t,€) = X(t,e) + €&{T1,e) + enl(o,¢€)

, 0<t <t , (2.1)

y(t,e) = ¥(t,e) + pult,e) + Vg, e)

where the outer solution (X(t,e), Y(t,e)) represents the solution

asymptotically within (0,1), the initial layer correction (e&(t,€e), u{t,€))

decays to zero as the stretched variable

T=t/e (2.2a)



tends to infanity, and the terminal layer correction (en(o,ec), v(c.tg))

~

goes to zero as the stretched variable
o= (1 - t)/e (2.2b)

approaches infinity. The outer solution and the boundary layer corrections

are represented by expansions of the form

X(t, €) X (t)

~ ~J

Y(t, €) Y (t)

~ ~J

E(T,€) £ (1)

~ ~]

= J
D) € (2.3a-f)

w T, €) 3=0 u (1)

~ ~J

n( g, €) n (o)

~ ~3

v( g, €) v (o) .
~ ~]
L - L _

The limiting uniform approximation is obtained from (2.1) by letting e tend to

zero, i.e.,

x(t,e) =X (t) + 0(g), vy(t,e) =Y (t) + p (1) + v (o) + O(g) . (2.4)
~ ~0 ~ ~ ~0 ~0 ~0 ~

At t = 0 the fast vector y usually has a discontinuous limit, jumping from

v(0,0) = Y (0) + u (0) to Y (0) at t = 0¥, An analogous Heaviside
~ ~0 ~0 ~0

discontinuity generally occurs near t = 1.



The outer expansion (2.3a,b) must satisfy the full problem (1.1) within

(0,1) as a power series in ¢; thus, the limiting solution (X ,Y ) will

~0

satisfy the nonlinear and non-stiff reduced system (1.4). As previously

noted, since G(X ,t) (cf. Eg. (1.3)) is nonsingular we can solve Eg. (1.4b)
~ ~0

(t) 1n a locally unique way, so there remains the m th order

for Y = (

Y (X
~0 ~ ~0
nonlinear system (1.4a) for X (t). Later terms of the expansion (2.3a,b)

~0
satisfy linearized versions of the reduced system. For example, the

coefficients of order € give

X = £.(X ,Y ,£0)X + By (XY 60T £ £ (XY LE0)
M L0 0 ~ ~'"TTTTM ke’
(2.4)

= gy(X ,Y ,t,0)X + G(X )Y + g (X ,Y ,t,0) .
~. ~0 *0 ~ ~ ~0 ~1 ~g ~0 ~0

6""

We can determine Y (t) in terms of EO' zo, and X from (2.4b) and, once again,

~1

there remains the m th order linear system (2.4a) for X . Saimrlarly, for each
~1

j > 1, we obtain a system of the form

X = £,(X ,Y ,t,0)X + £g(X /Y ,£,00Y + a (X, 00X b)),

~ ~. 0 ~0 ~ ~ ~0 ~0 ~j ~j=1 ~0 ~)=1

- (2-5)
Y gx(X Y ,t,0)X + G(X ,t)Y + B (X ,**°,X% . t)

~ =1 ~0 ~0 ~ ~ ~0 ~j ~-=1 ~0 ~)-1

with successively determined inhomogeneous terms.



In order to completely specify the outer expansion (2.3a,b), we must

prescribe boundary conditions for the m-vectors X (t). Most critically, we
~3

need to specify m boundary condit:ions for the limting slow vector Eo(t).
It 1s natural to attempt to determine them by somehow selecting a subset of m
combinations of the m + n boundary conditions (1.2) evaluated at € = 0. For
scalar higher order linear differential equations, the first such
"cancellation law" was obtained by Wasow [29]. Harris [14] obtained a more
complicated cancellation law for linear systems with coupled boundary
conditions and Ferguson [8] developed a numerical procedure for corresponding
linear problems. These early works suggest that we should seek a cancellation
law that ignores an appropriate combination of k initial conditions and of
n-k terminal conditions. To this end, we must examine the boundary layer
corrections and we begin by considering the initial layer correction (e£,u).
Near t = 0, the terminal layer correction (€n,v) may be neglected, so the

representation of our asymptotic solution (2.1) requires the initial layer

correction (€&, u) to satisfy the nonlinear system

~ o~

di/dt = dx/dt - dX/dt = £(X+e§,Y+u,e1,€) - £(X,Y,¢e1,¢€) '
(2.6)
dwadTt = e(ldy/dt - 4y/dt) = g(X+¢E,Y+u,€e1,¢€) - g(X,Y,eT,€e) ,

on T » 0 and to decay to zero as T + ®, Substitution of the asymptotic
expansion (2.3c,d) into (2.6) provides successive differential equations for
the coefficients (& ,u ). In particular, when € = 0, we have the limitaing

~ ]
1nitral layer system




df /dt=£(x (0),Y (0) + u ,0,0) - £(x (0),Y (0),0,0) ,
~0 ~ ~0 ~0 ~0 ~ ~0 ~0
(2.7)
du /dT= g(X (O)IY (o) + ] Iolo) - g(X (O)rY (O)IOIO) .
~0 ~ ~0 ~0 ~0 ~ ~0 ~0
The decay requirement determines
E(1) =- [ (dE (s)/dT1)ds (2.8a)
~0 ~0

T

as a functional of u , while p satisfies the conditionally stable system
~0 ~0

dp /dTt = G(X (0),0)qp . (2.8b)
~0 ~ ~0 ~0

We used (1.3) and the assumed linearity of g in y when obtaining (2.8b).

If g(x,y,t, €) were not linear in y, the initial layer correction would
satisfy a nonlinear differential equation which would generally be dirfficult
to solve (cf. O'Malley [21]}). 1Indeed, it would then be extremely difficul:
to specify what set of initial vectors EO(O) would lead to decaying solutions

of the boundary layer system (2.7b). Here, Eq. (2.4) 1s readily integrated to

give

G(xX (0),0)T
p(t) =e~ "0 u (0) . (2.9)
~0 ~ 0



10.
Thus, Eb will decay to zero as T + o« provided that
EO(O) = E(EO(O),O)EO(O) F (2.10)
where E{ls a projection onto the k dimensional stable eigenspace of

G(x (0),0).
~ ~0

Substituting (2.10) into (1.2a) and letting € + 0, we see that the g

limitaing initial conditions take the form

a(x (0),Y (0) + P(X (0),0)u (0),0) =0 . (2.11)
~ ~0 ~0 ~ ~0 ~0 ~

Now, using the linearity of a in y, we let

i(fft) = EY(fIZIt’O) (2.12)

~

and further assume that A(EO(O),O)P(EO(O),O) has its full and maximal rank k.
Then we can uniquely determine EO(O) as a function of EO(O) from k of the

equations (2.11)., Having done this, initial conditions for the reduced
problem can be determined from the remaining q - k conditions in (2.11). For

the moment, we write these in the form

(X (0)) =0 . (2.13)
NAO ~

In Section 3, we discuss a numerical procedure for determining P,p (0) and
~ ~0

HxX (0)).
~ ~0




1.

The terminal layer correction can be analyzed in an analogous manner.
In particular, the leading term v (o) satisfies
~0

G(xX (1),1V)c

v{g) =e~ "0 v (0) . (2.14)
~0 ~0

Now, Vv will decay to zero as ¢ + « provided that
~0

v (0) =o(x (1),1H)v (0) , (2.15)
~0 ~ ~0 ~0

where Q 1s a projection onto the n - k dimensional unstable eigenspace of

~

G(X (1),1). Substituting (2.15) into (1.2b) and letting & + 0 gives
~ ~0

the r limiting terminal conditions as

b(x (1),Y (1) + o(x (1),1)v (0),0) =0 . (2.16)
~ ~0 ~0 ~ ~0 ~0 ~

We let

E()ilt) = Ey(i'zft’()) (2-17)

~

and assume that B(X (1),1)0(X (1),1) has full rank n - k. Then we can solve
~ ~0 ~ ~0

(2.17) for v (0) and the remaining r - n + k conditions specify terminal
~0

conditions for the limiting problem, which we denote by

¥(x (1)) =0 . (2.18)
Nl\o -~

The reduced problem consists of the nonlinear reduced differential
equation and the m separated nonlinear boundary conditions (2.13, 18). If
it 1s solvable, 1t may have many solutions; however, corresponding to any of
1ts isolated solutions (§o(t),zo(t)), one can expect to find a solution of

the original problem (1.1, 2) that converges to (}fo(t),Y (t)) on 0 < t < 1
~0



12.

as € + 0. Sufficient hypotheses to obtain an asymptotic solution having the
form of (2.1) are provided by Hoppensteadt [16] and others. For this reason,
we shall merely indicate the considerations that are involved in obtaining
further terms in the initial and terminal layer expansions and boundary
conditions for the outer expansion.

Additional terms of the initial layer expansion (2.3c,d) are determined

J
by equating the coefficients of € 1in the nonlinear system (2.7), 1.e.

dt fdt = Ey(x (0),¥ (0) + w (D),0,0)u +y (1) ,
~j -, ~0 ~0 ~0 ~ ~=1
(2.19)
du /dt = G(X (0),0)u + § (ty .,
~J ~ ~0 ~ M-t

for 3 > 1, where the inhomogeneous terms are exponentially decaying as T + &

because § and p r X =1, ese, J-1, and therr derivatives behave 1in
~ -1 ~M -1

this manner. The linear system (2.19) may be integrated to yield

(-]

E(T) = -f (dE (s)/dnds ,
~] T ~3
(2.20)
G(X (0),0)T T G(X (0),0)(T-s)
pl(t) =e” ~0 p (0) + f e~ ~0 S (s)ds .
~J ~) 0 ~3=1

We see that & (1) decays as T increases and u (t) will decay provided that
~] ~

¢ (0) lies in the unstable eigenspace of G(X (0),0), x.e.,
~ ~~0

p (0) = P(X (0),0)u (0) . (2.21)
~ ~ ~0 ~
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J
Using (2.1) and (2.3a,b) we find that the coefficient of € 1in the

initial condition (1.2a) has the form

ay(x (0),Y (0) + u (0),0)X (0) + A(X (0),0)[Y (0)
&~ ~0 ~0 ~ ~ ~0 ~
(2.22)

+ P(X (0),0)u (0)] = ¢,
~ ~0 ~ "’J-1

Since A(X (0),0)P(X (0},0) has 1ts maximal rank k, we can determine p (0)
~ ~0 ~ ~0 ~j

from k of these equations, and the remaining q - k eguations determine linear
equations for X (0). The saituation for the terminal layer correction is
~
completely analogous; thus, v (0) and the terminal conditions for X (1) are
~J ~J

determined from linear equations of the form

b(X (1),Y (1) + v (0),0)x (1) + B(X (1),1)[Y (1) + Q(x (1),1)v (0)] . (2.23)
~. ~0 ~0 ~0 ~ ~0

=0
~] ~ ~0 ~) ~] ~3-1

To summarize, we have shown that the j th (3 > 1) term in the outer
expansion satisfies an m th order linear boundary value problem consisting of
Eq. (2.5) and a set of m linear boundary conditions determined from (2.22)

and (2.23). It is a linearization of the problem for fo(t).
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3. Numerical Procedure.

In this section we discuss a numerical procedure for finding the limiting
uniform asymptotic solution (2.4). It consists of solving the limrting outer
problem (1.4, 2.13, 2.18) and determining boundary layer corrections from
(2.9) and (2.14).

Our first task 1s to find the projections E and g and we do this by
finding the Schur decomposition of the matrix G at t = 0 and t = 1. In

~

particular, at t = 0 we find an orthogonal matrix E(x(0),0) such that

T (x(0),0) U(x(0),0)
G(x(0),0)E(x(0),0) = E(x(0),0) (3.1)
0 T (x(0),0)
~ ~+~

where T 1s k x k and upper triangular with the stable eirgenvalues of
g}&}O),O), and ?+ 1s upper trianqular with the remaining n - k unstable
eigenvalues. The decomposition (3.1) can often be obtained analytically;
however, when this is not possible or practical 1t can be determined
numerically by using the QR algorithm (cf. Golub and Wilkinson [13],

Ruhe [26], and Bjork [5] for specific procedures).

We partition E after its k th column as

~

and note that E spans the stable eirgenspace of G at t = 0 and

T
P=E E (3.3)

1s the desired projection onto this eigenspace.
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Substituting (3.3) into (2.11) gives
T
a(x (0), Y (0) + E (X (0),0)E (X (0),0)p (0),0) =0 . (3.4)
~ ~0 ~0 ~~ A0 ~e A0 ~0 ~
as the equation for determining EO(O) and (X (0)). Since

A(x (0),0)E (X (0),0) is of rank k, we construct a q x q matrix
~ ~0 ~ ~)

L =1L L] (3.5a)

that reduces 1t to echelon form, i.e.,

L v

A{X (0),0)E (X (0),0) = ' (3.5b)
~ ~0 ~ A 0

!

where V 1s k x k and nonsingular. Multiplying Eq. (3.4) by L, using the

—

linearity of a in y, and Eq. (3.5) gives the initial layer jump u (0) and the
~ ~ ~0
g - k initial conditions (2.13) for the reduced problem, respectively, as

-1
u (0) = -E (X (0),0)V L a(x (0),Y (0),0) ,

(3.6)

X (0)) := L a(x (0),Y (0),0) =0 .
~ ~0 e ~Q ~0 ~

We find the terminal layer jump and the r - (n-k) terminal conditions

for the reduced problem in an analogous fashion with the exception that we

define E(x(1),1) such that



16.
T (x(1),1) U(x(1),1)
M*-N ~ o~
G(x(1),1)E(x(1),1) = E(x(1),1) A (3.7)
- - - 0 T (x(1),1) !

whach we partition after its (n - k) th column as

E = [E 1 . (3.8)

E
~ ~

-~ ~

In parallel with Egs. (3.1) and (3.2), the matrices T , T , and E contain

~ ~
the k stable eigenvalues, the n - k unstable eigenvalues, and span the
unstable eigenspace, respectively, of G at t = 1. Our reasons for switching
the positions of the matrices containing the stable and unstable eigenvalues
of G 1s that we are unaware of a simple and stable computational procedure
for finding a set of vectors that span a given subspace and are not in the
leading columns of an orthogonal matrix like E (cf. Golub and Wilkinson {13}]).

Now, following the procedure that we used for the initial layer, we take
T
(X (1),1) = E (X (1),1)E (X (1),1) (3.9)
~ ~0 ~ ~0 ~ ~0

as our projection onto the (n - k) dimensional unstable eigenspace of

G(X (1),1) and construct an r x r matrax

~

R =[R R I (3.10a)

that reduces the rank n - k matrix B(X (1),1)})E (X (1),1) to echelon form,
~ ~0 ~ ~0

le.€.a,

B(X (1,1)E (X (1),1) = p (3.10b)
~ ~0 ~ ~O

lkﬂ
1o



17.

where V 1s (n~k) x (n-k) and nonsingular. Multaiplying Eq. (2.16) by R
A1. ~
and usaing Egs. (3.9) and (3.10), we find the terminal layer jump and terminal

conditions for the reduced problem, respectively, as

-1
v(0) = -E (X (1),1)V R b(X (1),Y (1),0) ,
~0 ~ ~0 ~ b~ A0 ~0

(3.11)

R b(x
~p~ ~O

(X (1)) := (1),¥ (1),0) =0 .
~ ~0 ~0 ~

Since the reduced problem (1.4), (3.6b), and (3.11b) 1s not stiff, we can
use any good code for two-point boundary value problems (c¢f. Childs et al.[6])
to solve 1t, and we have chosen to use the collocation code COLSYS of Ascher,
Chraistiansen, and Russell [1]. The reduced problem is generally nonlinear and
since COLSYS solves nonlinear problems using a damped Newton method, we have
to supply formulas for evaluating the Jacobians of £, Y, ¢, and ¥ with
respect to X. We do this, but aintroduce an error, by providing analytical
formulas for these Jacobians that neglect the influence of the derivatives of
%} Ef Ej and G. (These derivatives will be small when the related
subspaces are nearly constant)}. This procedure failed to converge once on
Example 1 of Section 4 and a minor modification to the Jacobiran of ¢ restored
convergence; however, an alternative possibility would be to approximate the
Jacobians by finite dirfferences.

We start the Newton iteration with a uniform mesh and an initial guess

(0)
X (t) for X (t). In section 4, we used the default initial guess that is
~ ~0

provided by COLSYS for Example 2 and a constant initial quess for Example 1.
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This latter choice was necessary as Example 1 has three solutions. At each

p)
1teration step, we calculate an approximation E(X (t),t) to E(X(t),t)

p
for £t = 0 and 1 as the Schur decomposition of G(X (t),t). The examples

~ o~

of Section 4 were calculated using analytical formulas for E rather than the

~

numerical procedures of Golub and Wilkinson [13], Ruhe [26], or Bjork [5].

p) (p)
Finally, L and R are obtained by using Gaussian Elimination to row

~

(p) (p) (p) (p)
reduce A(X (0),0)E (X (0),0) and B(X (1),1)E (X (1),1),
~ ~0 ~ ~0 ~ ~0 ~ ~0

respectively.

When this procedure converges to (§O(t),Y (t)), we calculate boundary layer

~0

corrections EO(T) and :O(c)p for a given value of g, using Egqs. (2.9). (3.6a),
(2.14), and (3.11a), and add these to the reduced solution 1in order to get
the 0( €) asymptotic approximation (1.4). For moderately small values of ¢g,
this approximation may not provide a sufficiently accurate representation of
the solution and, in this case, we use 1t as an initial guess to COLSYS and
solve the complete problem (1.1, 2). However, this procedure may fairl

unless we also provide COLSYS with an initial nonuniform partition
mT:={0=t <t <<t =1} (3.12)
o] 1

N

that 1s appropriately graded within the boundary layers. Following Ascher,
Christiansen, and Russell [1], we seek to find w such that the error on each

subinterval satisfaies

[lel| < 8¢1 + |full ), 1=1,2, esu; N, (3.13)
~ 1 ~ 3
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where 6 1s a prescribed tolerance,

T T T
u =I[x,vy1, (3.14)

e(t) is the difference between u(t) and i1ts collocation approximation,

~ ~

||u||. = max lutey| and Ju(t)] = max Ju (t)]. (3.15)
~ e et T ~ 1<3<m+n 3
i-1 i

We assume that the final partition selected by COLSYS to solve the
reduced problem satisfies (3.13) outside of boundary layer regions and
we seek to refine it within the boundary layers. We further assume that de-
rivatives of u can adequately be approximated by either u (t) or v (o) in the

~ ~0 ~0

left or right boundary layer, respectively.

It 1s known (cf. Russell and Christiansen [27]) that 12f the soluticn of

(1.1,2) 1s smooth

(3+1) J+1 j+2
llel] =c ||u [l "+ o™ ) (3.16)

for collocation at the image of ] Gauss-Legendre points per subinterval.

Here ¢ 1s a known constant,
J

h =t -t . and h= max h . (3.17)
h 8 1 1-1 1<1<N 1
In the left boundary layer we approximate u in (3.16) by u using (2.9) and
~ ~0

attempt to find a partition that satisfies

J+1 (3+1)
1

h
o n " ln

(e/e)|] = &1+ ||u]] ) . (3.18)
J 2 2 2



20.

Finally, we use (2.9) and (3.1) to approximate EO and the subinterval lengths

as

1/(3+1)
€ §C1 + |ful] )
t -t s (=) ~ol , (3.19)
1 1-1 °‘ c lu(t /e
3 ~0 21-1

where o 1s the magnitude of the largest diagonal element of T (XO(O),O).
A similar formula can be obtained for selecting subintervals in the right
boundary layer.

Starting with 1 = 1, we use Eq. (3.19) to generate a partition until we
erther reach t = 1/2 or a point where a subinterval length selected by Eqg.
(3.19) 1s larger than that used locally by COLSYS to solve the reduced
problem. We then repeat the procedure in the right boundary layer.

We have written a computer code called SPCOL that implements the
algorithms that are described in this section; thus, it (1) uses COLSYS to
solve the reduced problem, (11) calculates and adds appropriate boundary layer

corrections to the reduced problem, and (1ii) (optionally) suggests a mesh

that can be used by COLSYS to solve the complete problem.

4. Examples.
In order to appraise the performance of SPCOL, we have applied 1t to a
problem involving the deformation of a thin nonlinear elastic heam (Example 1)

and a third order model problem that has multiple solutions (Example 2).
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Example 1. We consider problems involving the deformation of a nonlinear
elastic beam that 1s resting on an elastic foundation with unit spring
constant and i1s subjected to the combined action of a horizontal end thrust P
and a unit uniform Jlateral load. This problem 1s discussed in detail in
Flaherty and O'Malley [11] and herein we only present the governing

differential equations, which in dimensionless form are

; = CcOoS X , ; = sin x , ; =y , (4.1a,b,c)
1 2 3 3 1
& ==y ey = (x -t)cos x - Ty ., (4.14,¢e)
1 2 2 2 3 1
where
T = sec X + €y tan x . (4.1£)
3 2 3

The slow variables (x1,x2) and x3 represent the Cartesian coordinates and the
tangent angle of a material particle on the centerline of the beam that was at
the Cartesian location (t,0) ain the undeformed state. The fast variables y
and y are the internal bending moment and transverse shear force,

respectively. Finally, the small parameter 1is
€ = EI/PL , (4.2)

where EI 1s the flexural rigidity and L 1s the length of the beam; thus, our

beam 1s much stronger in extension than it 1s 1in bending,
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This example does not precisely fit our hypotheses since the axial force
T 1s a function of the fast variable y2 and, thus, EY also depends on Z.
However, our theory and methods will still apply as ;gng as y remains bounded
and |x3| < /2 as € + 0, Flaherty and O0'Malley [11] show that unbounded
solutions can occur when certain types of boundary conditions are prescribed

for Eq. (4.1). 1In this paper we present results for the following three sets

of boundary conditions:

(r). x (0,€) =x (0,e) =y (0,e) =x (1,€) =y (1,¢e) =0, (4.2a)
1 2 1 2 1

(ir). x (0, €) 0, -10x (0,g) + y (0,¢) 0, -x (0,€)+10y (0,g) =0
1 2 2 3 1

(4.2b)

10x (1,€) +y (1,¢) 0, 10x (1,¢e)+y (1,e) =0,
2 2 3 1

(r212). x (0,¢) x (0,€) =x (0,e€) =x (1,€) =x (1,e) =0 , (4.2¢)
1 2 3 2 3
Equations (4.2a) correspond to "simple supports", Egs. (4.2c) correspond to
"clamped supports", and Egs. (4.2b) correspond to elastic supports that are
almost simply supported at t = 0 and almost clamped at £ = 1, Conditions
(4.2b) could arise because, say, friction introduces some coupling between
lateral and rotational effects at the supports. As we shall see, Y remains
bounded for conditions (4.2a,b), but becomes unbounded as € + 0 when
conditions (4.2c) are applied. The problem 1s that the boundary conditions
for the clamped beam only involve the slow variables and the slow vector x

cannot generally satisfy all five of them without having boundary layers.

This 1n turn forces the fast vector y to become unbounded like 0(1l/e) at

~
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the endpoints. Thus, the solution cannot have an asymptotic expansion of
the form of Eq. (2.1); however, an appropriate asymptotic expansion was
obtained by Flaherty and O'Malley [11]. We do not repeat those results here,
but in order to emphasize the diverse behavior that can occur with nonlinear
singularly perturbed problems, we present solutions for x2, x3, and y3
corresponding to each of the boundary conditions (4.2a), (4.2b), and (4.2c)
in Fiqures 1, 2, and 3, respectively.

Our methods apply to problems having boundary conditions (4.2a) and

(4.2b) and, in these cases, the orthogonal matrix

1 -|af
2 -1/2
E(x(0),0) = (1+a ) (4.3a)
| of 1
where
2
a = sec x3(0) (4.3b)
reduces
0 -1
G(x(0),0) = (4.4)
2
-a 0

T
to the Schur form given by (3.1) at t = 0 while E (x(1),1) will reduce

G{x{1),1) to the form given by (3.7) at t = 1.

We solved Eq. (4.1) with conditions (4.2a) and (4.2b) in two ways:

(1) using COLSYS to solve the complete problem with continuation from a large
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conditions given by equation (4.2¢).
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to a small value of € and (11) using our code SPCOL to compute an inmitial
asymptotic approximation and to recommend a nonuniform mesh and using this
with COLSYS to calculate an improved solution. All calculations were
performed using double precision arithmetic on an IBM 3033 computer, two
collocation points per subinterval, and an error tolerance § {(cf. Eq. (3.19))
of 10-.6 for slow variables and 10_ for fast variables,

Our results for the normalized CP times and the number of subintervals
{NSUB) that are either used by COLSYS or recommended by SPCOL are shown in
Tables 1 and 2 for the simply supported beam and in Tables 3 and 4 for the
elastically supported beam. Tables 1 and 3 contain the continuation results
and Tables 2 and 4 contain the SPCOL results with COLSYS improvement., The CP
times (for all examples) were normalized with respect to the € sequence in
Table 7. Differences between our initial asymptotic approximation and the
final solution obtained by COLSYS are shown for x2(1/2,e) and y (0,¢) for the
simply supported beam in Table 5 and for x3(0,e) and yz(o,e) foi the
elastically supported beam in Table 6. All of the differences are decreasing
like 0( €) as expected. Differences that are recorded as zero are less than

-8
10 .

The results reported in these Tables need some additional explanation.
The number of subintervals and CP times used with continuation depended
heavily on the € sequence that was used. The results in Tables 1 and 3 are
about the best insofar as they gave the smallest total CP time for the
sequence, We see 1n almost every ainstance that the COLSYS correction 1s using
about twice the number of subintervals that were suggested by SPCOL. This

mesh doubling strategy 1s often used 1n COLSYS to estimate errors or when the

Newton 1teration has convergence difficulties. Thus, in some sense our mesh



€ NSUB cp TOTAL CP
-1

10 80 6.1 6.1
-2

10 72 6.3 12,5
-4

10 112 18.4 30.9
-6

10 158 27.2 58.1
-8

10 254 41.9 100.0

S
TABLE 1. EXAMPLE 1 WITH SIMPLE SUPPORTS. NUMBER OF SUB-

INTERVALS (NSUB) AND CP TIMES TO SOLVE THE PROBLEM
BY COLSYS WITH CONTINUATION IN €, TOTAL CP IS THE
ACCUMULATED TIME FOR THE ¢ SEQUENCE.

SPCOL COLSYS
€ CORRECTION
NSUB Cp NSUB cp TOTAL CP

-1

10 20 1.3 80 5.7 7.0
-2

10 28 1.3 112 8.7 10.0
-4

10 34 1.3 136 9.0 10.3
-8

10 35 1.3 92 9.3 10.6

TABLE 2., EXAMPLE 1 WITH SIMPLE SUPPORTS. NUMBER OF SUB-

INTERVALS (NSUB) AND CP TIMES TO SOLVE THE PROBLEM BY
SPCOL AND TO IMPROVE IT BY COLSYS. THE CP TIMES
INCLUDE THE TIME TO CALCULATE THE REDUCED SOLUTION,
WHICH WAS 1.3 TIME UNITS. TOTAL CP IS THE SUM OF THE
SPCOL CP AND THE COLSYS CP.
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€ NSUB Cp TOTAL CP
-1

10 80 6.9 6.9
-2

10 78 6.3 14.6
-4

10 78 16.8 31.4
-6

10 156 38.3 69.7
-8

10 100 16.4 86.1

TABLE 3. EXAMPLE 1 WITH ELASTIC SUPPORTS. NUMBER OF SUB-
INTERVALS (NSUB) AND CP TIMES TO SOLVE THE PROBLEM
BY COLSYS WITH CONTINUATION IN €. TOTAL CP IS THE
ACCUMULATED TIME FOR THE € SEQUENCE.
SPCOL COLSYS
CORRECTION
€
NSUB cp NSUB cp TOTAL CP
-1
10 40 3.9 100 10.2 14.1
-2
10 47 3.9 94 10.5 14.4
-4
10 56 3.9 112 12.8 16.7
-8
10 57 3.9 134 16.8 20.7
TABLE 4. EXAMPLE 1 WITH ELASTIC SUPPORTS. NUMBER OF SUB-

INTERVALS (NSUB) AND CP TIMES TO SOLVE THE PROBLEM
BY SPCOL AND TO IMPROVE IT BY COLSYS. THE
INCLUDE THE TIME TO CALCULATE THE REDUCED SOLUTION,
WHICH WAS 3.8 TIME UNITS. TOTAL CP IS THE
SPCOL CP AND THE COLSYS CP.

CP TIMES

SUM OF THE



€ & (1/2,€) Ay (0,¢€)
2 2
-1 -3 -2
10 7.1x10 3.2x10
-2 ~5 -3
10 6.7x10 3.6x10
-4 -5
10 0 3.6x10
-8
10 0 0

TABLE 5. EXAMPLE 1 WITH SIMPLE SUPPORTS. DIFFERENCES BETWEEN
SPCOL AND COLSYS SOLUTIONS, 1.e., A( ) := |( )gpcor
- ( Jconsys!-

€ & (0,¢€) Ay (0,€)
3 2
-1 -1 -2
10 1.3x10 4,2x10
-2 -2 -3
10 1.4x10 5.2x10
-4 -4 -5
10 1.5x10 5.4x10
-8
10 0 0

TABLE 6. EXAMPLE 1 WITH ELASTIC SUPPORTS. DIFFERENCES BETWEEN
SPCOL AND COLSYS SOLUTIONS, 1.e., A( ) := |( )gpcoL

- ( )cornsys!-
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strategy 1s doing about as well as can be expected; however, it seems that
fewer points should be necessary. We tried placing the subintervals according
to a pointwise error criteria, as suggested by Ascher and Weiss [2, 3, 4],
rather than the global criteria used in Eq. (3.19), but this gave very simrlar
results (cf. Flaherty and O'Malley [12]). We also tried suggesting an initial
mesh to COLSYS that consisted of every other point in the mesh suggested by
SPCOL. This 1s clearly a risky strategy, since collocation at the
Gauss-Legendre points 1s known to produce oscillations unless the mesh is
appropriately fine in the boundary layers (cf. Ascher and Weiss [2}).
Nevertheless, this did give some improvement for values of € > 10-8 (cf.
Flaherty and O0'Malley [12]). Perhaps the results could be improved further by
using higher order collocation and/or collocation at the Gauss-Lobatto points
as suggested by Ascher and Weiss [2, 3, 41.

We see from Tables 1 to 4 that for e = 10-8 the SPCOL solution can be
computed 1in less than 5% of the time of the continuation solution and the
COLSYS improvement with the SPCOL solution as an initial guess can be computed

1n less than 24% of the time of the continuation solution for both simple and

elastic supports.

Example 2, We consider the third order model problem

. . . 2
x=1-x, & =Y . €y2 = a (x)y1 + 8x(1-x) (4.5a,b,c)

with

alx) =1 + 2x (4.54)
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and the linear boundary conditions

x(0,¢€) + y1(0,e) =0, -yx(0,¢g) + y2(0,e) =0, x(i,e) + y1(1,e) = 0. (4.6)

The matrix g}fjt) for this example is the negative of that given by (4.4) for
Example 1 with o now being given by (4.5d). Thus, E has one negative and one
positive eigenvalue provided that a{x) is nonzero and G may be reduced to

Schur form at t = 0 using the orthogonal matrix E?(i(o),g) and at t = 1 using

E(x(1),1) (with E(x,t) given by Eq. (4.3a)).

Flaherty and O'Malley [10] studied this problem and showed that the

reduced system 1s

. 2
X =1-X , Y =0, a (X )Y + 8 (1-X ) =0 (4.7)
0 0 20 0 10 0 0
with the 1nitial condition
la(x (0))|[X (0) + ¥ (0)] - yx (0) =0 . (4.8)
0 0 10 0

They show that there are three solutions of (4.7,8) for each value of the
constant ¥y provided that there are no "turning points"”, i.e., provided that
there are no values of x(t) for which a{(x) = 0on 0 < t < 1. The three

solutions can be characterized by their value of X (0) which 1s determined as
0

1
X (0) =0, 2[Y5—6i/(Ys—4)z + 48] , s = sgn(a(XO(O)) . (4.9)
0
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For Yy = 2 the three values of XO(O) are 0, 0.803, and -4.29 and the three
corresponding solutions for y1(t,e) are shown in Pigure 4. For xO(O) = 0, the
initial layer correction uo(r) 1s traivial; however, the other two solutions
have initial layer jumps.

It can be easily verafied that a(xo(t)) has a zero on 0 € t < 1 when
(-3.08~)=3e/2 + 1 < XO(O) < -1/2. In this case (4.5) has a turning point and
Y10 becomes unbounded. Our theory and methods do not apply ain this case;
however, 1f € is not too small, the solution of (4.5) can be calculated using
COLSYS. In order to contrast solutions with and without turning poirnts, we
1llustrate y1(t,€) for vy = -2 and XO(O) = -2,80 1n Figure 5.

Solutions obtained using SPCOL and the corresponding COLSYS corrections
are shown for y = 2 and XO(O) = 0, 0.803, and -4.29 in Tables 7, 9, and 11,

respectively. The COLSYS correction failed to converge for £ < 10 when

X (0) 0 and -4.29, We have no explanation as to why the solution with
0

XO(O) = 0.803 was so much easier to calculate. The relative difference
between the SPCOL and COLSYS solutions for x(1,e) and yz(l,s) are shown in
Table 13 for Y = 2 and xO(O) = -4,29, These results are typical of those
that we obtained for all three solut:ions,

Using COLSYS with continuation in € and the default ainmitial quess can fand
at most one solution, and, for this example, 1t found the XO(O) = 0 solution.
The results of this calculation are shown in Table 8 for Yy = 2, Although sev-
eral € sequences were tried, we were unable to obtain convergence for € < 10—6.
Again, this situation could possibly be remedied by using collocation at
the Gauss-Lobatto points as in Ascher and Weiss (2, 3, 4]. The other two

solutions when Y = 2 can also be calculated using continuation in € provided

that we use a suitable initial guess. Resulits for the solutions corresponding
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to X (0) = 0.803 and -4.29 are presented in Tables 10 and 12, respectively,

0]
using continuation with SPCOL furnishing an init:ial guess. These results seem
to point to the possibility of using a combination of asymptotics and

continuation to solve singular perturbation problems.

5. Discussion.

We have obtained asymptotic approximations for a restricted class of
nonlinear singularly perturbed two-point boundary value problems and have
shown how to construct approximate solutions numerically and use them to
suggest a nonuniform mesh that may be used as input to a two-point boundary
value code in order to calculate improved solutions. Clearly this approach
offers some advantages over the more standard technigue of continuation in ¢
steps; however, the picture 1s far from clear and several questions still
remain as to how best to use asymptotic analysis in conjunction with numerical
analysis.,

In Example 2 of Section 4 we have shown that asymptotic methods may be
used to distinguish different solutions in problems having multiple solutions.
These asymptotic approximations may be used to provide initial guesses to a
two-point boundary value code,

In Example 1 of Section 4 we have shown that unbounded solutions can
result from seemingly minor changes in the houndary conditions of singularly
perturbed boundary value problems., Other very diverse behaviors can occur
when turning point problems are considered {(cf., e.g., Kevorkian and Cole [18]

or O'Malley [20]). Since phenomena cannot easily be predicted, a sensible
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SPCOL COLSYS
CORRECTION
€
NSUB Cp NSUB CP TOTAL CP

-1

10 40 0.6 88 6.3 6.9
-2

10 44 0.6 88 6.2 6.8
-4

16 47 0.6 192 18.2 18.8
-6

10 47 0.6 failed

TABLE 7. EXAMPLE 2 WITH Y = 2 AND XO(O) = 0. NUMBER OF SUBINTERVALS
(NSUB) AND CP TIMES TO SOLVE THE PROBLEM BY SPCOL AND TO
IMPROVE IT BY COLSYS. THE CP TIMES INCLUDE THE TIME TO
CALCULATE THE REDUCED SOLUTION, WHICH WAS 0.5 TIME UNITS.
TOTAL CP IS THE SUM OF THE SPCOL CP AND THE COLSYS CP.

€ NSUB cp TOTAL CP
-1

10 40 1.8 1.8
-2

10 44 3.3 5.2
-4

10 264 13.4 18.6
=5

10 372 20.2 38.7
-6

10 fairled

TABLE 8. EXAMPLE 2 WITH Y = 2 and Xg(0) = O. NUMBER OF SUBINTERVALS
(NSUB) AND CP TIMES TO SOLVE THE PROBLEM BY COLSYS WITH
CONTINUATION IN € FROM ¢ = 107!, THE DEFAULT INITIAL GUESS
THAT IS PROVIDED IN COLSYS WAS USED TO START THE CONTINUATION’
SEQUENCE. TOTAL CP IS THE ACCUMULATED TIME FOR THE
SEQUENCE.
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SPCOL COLSYS
€ CORRECTION
NSUB cp NSUB cp TOTAL CP
-1
10 42 1.5 42 3.0 4.5
-2
10 52 1.6 52 3.0 4.6
-4
10 57 1.6 58 2.6 4.2
-6
10 57 1.6 114 10.9 12.5
TABLE 9. EXAMPLE 2 WITH Y = 2 AND Xg = 0.803. NUMBER OF SUBINTERVALS
(NSUB) AND CP TIMES TO SOLVE THE PROBLEM BY SPCOL AND TO
IMPROVE IT BY COLSYS. THE CP TIMES INCLUDE THE TIME TO
CALCULATE THE REDUCED SOLUTION, WHICH WAS 1.5 TIME UNITS.
TOTAL CP IS THE SUM OF THE SPCOL CP AND THE COLSYS CP.
€ NSUB CP TOTAL CP
-4
10 58 2.6 2.6
-5
10 58 2.4 5.0
-6
10 70 4.3 9.3
TABLE 10, EXAMPLE 2 WITH Y = 2 AND Xp(0) = 0.803, NUMBER OF

SUBINTERVALS (NSUB) AND CP TIMES TO SOLVE THE PROBLEM
BY COLSYS WITH CONTINUATION IN € FROM e = 10~4.
CP IS THE ACCUMULATED TIME FOR THE SEQUENCE.

TOTAL
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SPCOL COLSYS
CORRECTION
€
NSUB CP NSUB cp TOTAL CP
-1
10 44 0.9 62 3.6 4.5
-2
10 52 0.9 84 3.8 4.7
-4
10 59 0.9 232 15.3 16.2
-6
10 59 0.9 failed
TABLE 11. EXAMPLE 2 WITH Yy = 2 AND Xp(0) = -4.29. NUMBER OF
SUBINTERVALS (NSUB) AND CP TIMES TO SOLVE THE PROBLEM
BY SPCOL AND TO IMPROVE IT BY COLSYS. THE CP TIMES
INCLUDE THE TIME TO CALCULATE THE REDUCED SOLUTION, WHICH
WAS 0.9 TIME UNITS. TOTAL CP IS THE SUM OF THE SPCOL CP
AND THE COLSYS CP.
€ NSUB cp TOTAL CP
-2
10 84 3.8 3.8
-4
10 168 21.3 25.1
-6
10 322 40.8 65.9
TABLE 12. EXAMPLE 2 WITH Y = 2 AND Xp(0) = -4.,29. NUMBER OF

SUBINTERVALS (NSUB) AND CP TIMES TO SOLVE THE PROBLEM

BY COLSYS WITH CONTINUATION IN € FROM € = 10~2

CP IS THE ACCUMULATED TIME FOR THE SEQUENCE.

TOTAL



Ax(1,¢€)

AYQ(1,€)

[x(1 €)corsys!

Iy2(1’€)COLSYSI

-1 -3 -
10 9.7x10 2.4x10
-2 -4 -2
10 9.6x10 3.9x10
-4 -6 -4
10 9.6x10 4.3x10
-6 -7 -6
10 1.0x10 4.,5x10

TABLE 13, EXAMPLE 2 WITH Yy = 2 and Xp(0) = -4.29. RELATIVE
DIFFERENCE BETWEEN SPCOL AND COLSYS SOLUTIONS WITH

AC ) == |( dspcor- ( )consys!e
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course to follow is perhaps to use asymptotic and numerical methods in

tandem. For example, a rough numerical solution could be obtained for several
values of € which could then be used to suggest the form of an asymptotic
solution. The asymptotic approximation could then be used to refine the
numerical solution, and so on, It as also possible that singular perturbation
theory could be used to construct special methods that are appropriate for
specific problems as e.g., in Flaherty and Mathon [9] and Ascher and Weiss [2,

3, 41.
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