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ABSTRACT

This paper presents approximate analytic expressions for the emissivity
and absorption coefficient of synchrotron radiation of mildly relativistic
particles with an arbitrary energy spectrum and pitch angle distribution. From
these, an expression for the degree of polarization is derived. The analytic
results are compared with numerical results for both thermal and non-thermal

(power law) distributions of particles.
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I. INTRODUCTION

The formulas for evaluation of emissivity and absorption coefficient of
synchrotron radiation in the ultra-relativistic (synchrotron) and non-
relativistic (cyclotron) limits have been known for decades.l'z. In the
intermediate energy range, however, no simble formula exists for an arbitrary
distribution of particles. Earlier Trubnikov? derived formulas for emissivity
and absorption limited to a thermal gas and convenient only for propagation
perpendicular to the magn;tic field. As a result, the usual practice has been
to use lengthy numerical calculgtions}’4.

In a recent paper5 (referred to as Paper I, hereafter) we presented
simple approximate methods for evaluation of the frequency spectrum and
angular variation of the synchrotron radiation at high harmonics from an
(essentially) arbitrary distribution of particles in a given magnetic field. Tn
this paper, we shall use the same methods to calculate the emissivity and
absorption coefficient of the extraordinary and ordinary modes of synchrotron
radiation ﬁeparately..Also, we will derive the degree of circular polarization
from these expressions. The general expressions presented in Sec. IT were
derived for high harmonics of the cyclotron frequency which are the most
useful since the low harmonics are usually self~absorbed, absorbed by the
surrounding plasma, or suppressed by the Razin-Tsytovich effect; In Sec. III
we use the above results to find emissivity, absorption aq@ polarization of
the radiation from particles wifh Maxwellian and }ower law euergy
distributions. Here, through comparison with numerical results, we also show
that our formulas provide a good approximation even at low harmonies. In Sec.

IV we present a final summary.
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Consider particles with charge e, mass m,, and distribution £(4,Y) where
fdudy is the numbe  density of particles in the ehergy interval (in units of
mecz) from y to Yy + dy. and with pitch angle cosine betweet.x M and Y + dy.
The emissivity and absorption coefficients for the ordinary (+) and
extraordinary (-) modes at frequency V and at angle & with respect to the

magnetic field B arel"',

j (v,0) - : 1
t ’ 2‘"82\’b AY) © 1
= mmemTm TmmmyeT dy | dufGry) n,(6,y,u,v) , ()
c Vbsin 0
\’QKt(VOO) : . m'
wvhere

1 = x J(x) 2
n, = -—-——z ’ T+(coso-Sl!)J (x ) - (1 - Bucos0) —r 8(y), (2)
T2+1 l - " m
+ m=1

o = - 3lnlEQu,Y)/BY2) /oy + ——mmmmmmee Anf(u,y) /3y , (3)

™V 2y1/2 »
y = .'-Y—V- - (1 - Bp_cose). x = (W\)b)anO(l—p ) » Vp < e'BIZmec . (&)
The quantity T represents the ratio of the major to the minor axis of
the polarization ellipse and, in general, is a complicated function of angle

6, v, V,, andthe plasma frequency v,. The ordinary (+) and extraordinary

P
(-) modes are distinguished by their respective values c¢f T, which in vacuum
or for \)p/v << 1 are

]

. 5 p ey i
T, = -T. T, = £+ (1 +ED)?%, & vbsmze/(2\)cose) . (5)
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Note that for v/vb >> 1, the quantity & << 1 and T, * %1 except for a
small range of angles (/2 - 9) < Vv /2 where £ >1. And in the limit 0 -
w/2, £+ > so that T+ and T >0.

Since we are only dgaling with the higher harmonics, m is large and we
can replace the sum in equation (2) with an integral. This integral can then
be done using the §- function. Also, since m 1is large, we can use the

Carlini approximation for the Bessel’s function as®,

(1-22)"1/4zm [1-(1-22)1/2) "
J ( ) B esesm ey e » ) zz [ S ————— e2(1"‘z ) (6)
- (1+(1-z2)1/2) '

which is valid for (1-22)"3/2/n << 1.

We evaluate the integrals to first order in this quantity.
Integration over Pitch Angle‘

As can be seen from Eq. (6), the Bessel function and its derivative hav=
sharp maxima at M = Bcosf and tend to zero rapidly at MU=%*]1. The rest of
the integrard 1is positive and var.-~s slowly with p i'f the pitch angle
distribution of the particles is not extremely anisotrop:’.c.. We use Athe method
of steepest descent to evaluate the integrals over u. The only exception to
this is the coefficient of J;(x) in Eq. (3) which becomes zero at i
= cos0/B. For a general cosfB this willgive rise to a secondary waximum whose
contribution is of second order in our expansion parameter, I-n particular,
for perpendicular propagation (cos_e=- 0) this term bec'omes zero at the
maximum of the function 2®. This givés rise to two maxima, each with a second
order contribution to the integral.

The use of the method of the steepest descent amount.s to setting

B = Bcosd in the integrand and multiplying it by (wvb/\))l/zu ..32“,520)3/4.
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This means that most of the contribuition to the radiation at an angle 6
comes from particles with pitch angle cosines in a narrow range of the
order of @v&/v)llz centered atu = PBcosb.

This approximation is valid only‘for pitch angle distributioms which are
not extremely anisotropic, i.e., distributions with 2nffop << vA, [cf.
Paper I, Egs. (7) and (19)]. Note that this enables us to drop the second
term iﬁ the expfession for @ in Eq. (3) so that the pitch angle dependence
becomes the same for j and K.

Integration over Energy

The resultant integrand for integration over energy also has a sharp
maximum for particle distributions which fall rapidly with increasing energy
[e.g., a power law f « {y - 1)% or a thermal distribution £ « exp(-Y/KT)].
Consequently, we can use the method of steepest descent to carry out this

integration also. This gives

§ X (v )£, (B cosB,y )
* ey TR » 2\)u‘2)/ YbYo drendre .
_ b (_\,) Yo Y(e,yo)[zmx(:o)] - (7)
. ¢ vb Yo
vikt XK(YO)fK(BOC§89.Yo)
where
x;72 = y%a? Inf, [dy? - Wydlnf /dy (8)
u~-1 .
Zax® = ( ----- ) 2/ | 42 =1+ BYy2sin®0 (9)
u+l
u - T cosB 2 9 '
Y(O.Y) [ ) /(1 + T%) . (10)
Ysin0



Note that all these expressions are evaluated at critical enefgy Y, (and
the corresponding B, and uoz =1 + 3;73 6in?0), where most of the
contribution to the integral comes from. There are two such critical
energies; one for emission and one for absorption. These are obtained from

the transcendental equation; ORIGIN.
' AL PAGE i3
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vl -t - cotzelyi)lnzmx - -&b /2vsin?0)dlnf. [dy

s (11)

e/sin26 .

0

Here and in equation (7) the function fj and f. are related to the

particle distribution £ as

fj = f(Bcos8,v)/y , f = -Byd [£(BcosB,y) /BY?1/dy . (12)

In Eq. (8) the function W is a complicated function of u, and g@.

o
However, as shown in paper I, W can be approximated by the following simple

expression,
W o= 3/2+1/(y% ~1), (13)
o .

which is an excellent approximation in the entire region where equations (6)
to (11) are valid.
Ordinary and Extraordinary Modes

The emission and absorption coefficient of each mode is obtained by the
substitution of T, in Eq. n. Thus,.ji and Ky become prb'portional to
Y, evaluated at the respective valuees of the critical energy Y,- Since T, T_ =

- 1, it can be shown that

Y, = (u2-2’1‘°uc050 + 'l'ozcosze)/[Y"‘sin“’’6 (1 + '1'02)],

= 22 8
Y. (To u‘+ 2'1'°uc059 + c05%0)/[Y%sin26(1 + ’1'02)].

6
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The total emissivity then becomes
. Co 2 2 2 20 /.2
Jeor " da t il = (x, +Y) =(u° + cos?0)/y*sin® = 142 cot®0/y (15)

in agreement with Paper I. Similarly, with the help of Eq. (5) the difference

of emissivities is given by
AT AL S (2ucos®y%sin®® + £)/(1 + 52)112. (16)

For v /v > 1 and away from the direction perpendicular to the magneticr

b
field, §<< 1 and T, =1 + E so that the ratio of j and Kk of the ordinary

to that of the extraordinary mode becomes
u - cosf)\2 “02 + cos20
Kolko = 3 /i = |- 1 - 2¢ "“‘5““"‘5;) . (17)

This appr?ximation breaks down for (6 - 7/2) <Y f2v. As 0+ w/2, u » vy,
T, 28+ and
2 2 2
Y, > (u-v /)"y cos’e/v;y ,
(18)

Y.+ 1+ 2vcot29/vby .

In the limit 0 = %/2, Y, =0and Y_= l. This, of course, ';zxeans that for
evaluating the j, and x, at 8 =m/2 one must consider higher order terms
which we have neglected. At 8 = 7/2 the ratio Y,/Y_ is of higher order of
a~1(1-22)"3/2

our expansion parameter = “oYoVb/"’
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1. Polarization

The polarization of the radiation can be obtained from the Stokes

parameters which are (cf. references 1 and 4)

i = [U-1,2)(j,=3.) + 4eosbT (G50 + 1D,

5, = 2sind(3,i0Y2 (19)
iy = 121,05,-3.) = 2c088C1-1.2) (5,50 1101, %)
With the help of Eq. (5) and using Eqs. (15) and (16) and if we define

Y, -Y_ (2ucos0/ysic?0+E)

o Y Y T 0 2 (acot 2oy (20)
these become

iqlitor = [ER, + cosd1 = 2 221 /(1 +£1)}/2

Sulitor = sins(1 ~ B 12, (a1

Sylitor = [P, - zcos81 - B Y2171 + EHY2

Here § is the phase difference between the ordinazy and the
extraordinary modes. For a definite value of & the degree of Polarization P
= (jqza-ju2 +~jv2)1/2/5tot = 1. However, for radiatior from many particles
in a large source with large Faraday rotation, the phase relations are
randomized so that the average values <siné> ~ <cos§> = 0. In this case jy ™
0 and the degrees of linear, circular and total (elliptical) polarizatiun are
simply

- 2,1/2
Plin EPOI(I + E )

=p /(1 + EOY2, R =p (22)

’ Pcitc tot o°



When v/v, >> 1 and £ << 1, Py << P and the radiation is circularly

circ
polarized except near 0 = 7/2 where {+« and radiation becomes linearly
polarized. As evident fromlEqs. (20) and (22) the degree of polarization
decreases with increasing frequency (or the energy of the particles).

2. Summary ‘

Eqs. (7) to (13) along with (21) and (22) give our results in their
general forms and are valid for all particle distributions which are not
extremely anisotropic. The results for the extremely anisotropic situation are
more complicated and were described in Paper I. The modification for
obtaining the emission and absorption coefficients of the two modes separately
and the polarization is similar to the modification described above. We will
not present these results here secause of their complexity and their limited
usefulness.

Given a distribution function subject to this limitation, the first step
is evaluaticu of the critical energies y, from Eq. (11). Then Egs. (6) to (10)
and (12) and (13) evaluated at the appropriate YJf give the desired
results. The most complicated part of this procedure is the solution of Eq.
(11) for Y, » It turns out that for most practical cases it is not necessary
to solve this equation.

In the next section we shall show how this step of the calculation is
simplified considerably for the twc most commonly used particle distributions.
Before doing so we consider the asymptotic limits of these equations.

3. Asymptotic limits. Let us consider first the case when angle 6 is not

too small (i.e., radiation away from the direction of the field). Then in the

two extreme limiting cases, Eq. (11) simplifies (oM g "

OF PCOR Quith

o LS

i) € <<1, Y, > L, a;y; = 2/3csin®, W =3/2;

(23)

- - 22 -
ii) € > 1, 60«1, Y, ¥ 1, BoYo 4/€, W €/4,
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The first case is realized at high frequencies and particle distributions
which are not extremely non-relativistic which is the case of interest here.
The second case is valid for non-relativistic particles and at low frequencies

and has limited usefulness except for s low temperature thermal gas.

IIXI. EMISSIVITY AND ABSORPTION COEFFICIENT OF TWO COMMONLY USED
PARTICLE DISTRIBUTIONS

The two particle distributions we use as examples are i) the distribution
from a thermal gas, i.e. a Maxwellian distribution in energy and isotropic
pitch angle distribution; and ii) the distribution with a power law spectrum
at high energies and with a slowly varying pitch angle distribut‘iou.

A. Thermal Spectrum

In this case, the distribution £ of particles at temperature KT (in

units of mecz) is

f(u’Y) - Ce'(Y‘l)/kTY(Yz_ 1 )1/2 , (24)

where for kT L 1

¢ = (n/2) l2n(xT)3)7M2 (1 - 15 x1/8 + ...), (25)

and n is the number deasity of particles. From these and Eq. (12), it is

clear that kTZ = f; = N so that [as is evident from Eq. (11)] the

critical Y is the same for both j and x and, in fact, according to Eq.
(o]

e

7, j, = k‘I‘K+. We also find that

éln(f/y) -1 KTY aZintely)  -(y? + 1)
( ) : . (26)

y*1 dy? (y* - 1?2

10



Using these cquations we can calculate Y, and X from Eqs. (11) and (8)
respectively. As shown in Paper I, these expressions can be considecrably
simplified. We find that the following expressions
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OF POOR QUALITY

(ZvkT/W (1 + 4.5 vk'n;inzo,'vb)*”3 kT < 1
o0 -1 - '
(lo\le3vbsin0)2I3 kT ¢ 1
(27)
x2 = 2‘2kr/y°)(y; -1/GY - 1), kT < 1

have the correct asymptotic limits in agreement with Eq. (23) and agree with
the exact results from Eqs. (8) and (11) to within 302 for ﬁost relevant
ranges of angles, frequencies and temperatures and better than 10X in the
majority of the interesting cases.

The above equations and Eqs. (7), (8), and (10) give a complete
description of the emissivity and absorption coefficient from a Maxwellian gas
at all temperatures and frequencies. They are valid for kT’é 1 because at
temperatures kT > 1 the use of the method of steepest descent for integration
over the energy becomes less accurate. However, the existence of the
extremely relativistic thermal gas is in doubtd. on Fig. 1 we compare the
total absorption coefficient x = Kk, +k _ obtained from these relationships

3. As evident, our analytic

with numerical results from Lamh and Masters
results give excellent agreement t> the detailed numerical results even at low
harmonics. A more detailed comparisoﬁ with similar results was presented by
Marsh and DulkS.

In the two limiting casas described in the previous section, these

equations are considerably simpler. The interesting case, € << 1 corresponds

to VkT/vy, > 1, y;= 4vkT/3vy8ind, so that

11



1/3

= Vzkr':_'_ = (23/2'"02\)1.,,3‘:)0(\)‘(1'/\’;.) exp(--—- [—~—--' (-E—f] Y

Jt ¥ Vb sind \v"T

1+

(28)
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Similarly, the degree of polarization becomes P = (48vbsin'9/va)l,3 .

Y, =1+ 2(3vbsin“6/4vkr)1/3

B. Power Law Energy.Spectrum

Power law spectra are commonly used spectra in astrophysical problems and
in other problems when the tail of the Maxwellian distribution begins to
deviate from the exponential form. Usually power law spectra are defined with
a low euerpy cut-off. To avoid such discontinuities and the divergence of the

number of particles, we assume a spectrum of the form

(6 - i) 8 ! |
f£(py) = + —— il + (y-1)/ cc)f glu), gluddy = 1 . (29)
c
-1
Here € plays the role of the low energy cutoff (in units of mecz). For

energies much greater than €, the spectrum is a power law with index -¢
but it tends to a2 constant value at lower energies. The particles can be
classified "as ultra-relativistic or non-relativistic if g, > 1or €. << 1.
We are interested primarily in cases with e.=1.

For distributions which are not highly anisotropic (i.e. dlng(u)/dy <<

\dvb), we can carry out a calculation similar to that for a thermal gas. From

Eqs. (12) and (29) we find that

f = |-ememmeee— + e f)

K Y- b4 y(y*- 1) | . (30)

so that the quantities y? and x"2 in Eqs. (R) and (11) can all be calculated
for exact evaluation of the emissivity and the absorption coefficient in Eq.

(7).

As shown in Paper I for semi-relativistic particle energies, €. £ 1, and

for vA% >>1 all these complicated expressions can be simplified

12
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ccnsiderably. This is because it turns out that the high energy asymptotic

limit of Eq. (23) provides a gocd approximation throughout most of the

relevant ranges of frequency and angle 6. In this lirmit Eqs. \29) and (30)
give

2,2 _ 2 . -2 = 1+6 for j
BoYo X l.\)/(3vbs1n8), X 2+68 forx . (31)

Values of 'n)obtained from this simple expression agree to within 30% of

the exact values derived from Eq.-(ll) for 1 % €. R 0.5 and sind > €% . Note

also that in this limit the exact form of the energy distribution is not

$

important as long as it tends to a power law f « Yy ° at highy. In the
extreme-relativistic limit Vv >> vb andyb >> 1, substitution of Eq.

(31) into Eq. (7) gives

2 ~ .
jt(v,ﬂ) Q@nezvbsine (3€cvb(o+1)51nﬁl4v
B e Cecg(Bocose)Yi(G)

vk, (v,6) e (3e2v, (6+2) 5ind 140

Note that in tkis limit Y, =1 % 2 cotS/Yo so that the ratios of

kil =3.1j, = +4 cotelyo) A (33)

tend to unity with increasing frequency. This, and the dependen;e‘on \va,
zad § of Eq. (32) is identical to the results for emissivity obtained from
ultra-relativistic expressions.
It is interesting that with a quite different method and approximation
we have obtained the same expression. The reason for this agreement can be
=3/2

0, . . 2 .
seen by examination of the expansion parameter (1 -z% /m = uoyovb/v,

which in this limit is equ-~l to 4/[3(1 +8)] or 4/[3(2 +6)]. For & > 3 the
it aiAL IRV |
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y 8-1)/2 ~(8+1)/2

(32)

).



expansicn parameter is less than 0.3 which, although not extremely small,
nevertheless is less than unity. Thus, for an ultra-relativistic expression
more accurate than 30% to 50X, one must include higher order terms in our
analysis,

For extremely non-relativistic particles, that is, for ec <<'1, the above;
expressions are valid as iong as vbél\) << 1. For the unlikely case of vbé' JAY .
> 1, we find that Y, ™ 1 and B; = Ve /vbé. Substitution of this in (7)
gives the emissivity identical to that expected from a thermal gas if one
identifies €_ /8 with the temperature kT (cf. Paper I).

In Figs. 2, 3 and 4 we compare results obtained from substitution of Eqs.
(30) and (32) in Egs. (7) and (20) for j,_,_, VzKi ,and P, at 0 = 60° and
8§ =4 with the results of numerical integration kindly provided by Marsh and
Du1k8, who used a power law spectrum with a sharp cutoff at € = 1.02.

The values for j, and Kk, are within 60% at high frequencies and the
approximation is better at higher V/vy. The polarization looks better at
lower frequencies (although it still is better than 50X even when P is small
and errors can be magnified). Also our results are (nearly) systematically
higher than the numerical 2su ts at high harmonics, which tould be the effect

of higher order terms. However, the percentage error never exceeds 30% for

>
vlvbf\, 6.

IV. SUMMARY
Using a simple method of integration developed previously, we have
derived expressions for the emissivity, absorption coefficient and
polarization of synchrotron radiation for an arbitrary distribution of
particles.
Equations (7) to (13) and (21) give our results in their most general
form. And we find that Eqs. (8) and (11) can be simplified considerably, as

ORIGINAL F&%Z [§
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in Eqs. (27) for a Maxwellian distribition and in (31) for a.power law
distribution.

Our results do agree with previous analytic results, and they give good
approximations to detailed numerical results. Although our results were

derived for high harmonics, they give good agreement down to lower harmonics:
to v = 6v, for ii’ to Vv = 10v, for Kk,, and to even lower harmonics , Vv B
= 2v,, for the total j and Xx. These results are limited to pitch angle
distributions which are rot extremely aﬁisotropic and energy spectra that
decrease rapidly with increasing energy. They also are only applicable for
emissivities and absorption coefficients away from the direction‘of the
magnetic field lines.

Our equations are intended for semi-relativistic particles, but they also

give excellent approximations for the extreme non-relativistic and ultra-

relativistic particle distributions.
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FIGURE CAPTIONS

Figure 1. The total synchrotron absorption for a thermal source at 8 = /2
for kT = 0.04 (20 keV electrons). Points are from analytic expressions; the

s0lid lines are numerical results of Lamb and Masters3

Figure 2. Synchrotron emissivity of each mode divided by magnetic field B and
total particle number N. Log (jifBﬁ) vs Log (V/vy), at 6= 60°, 8= 4.

[j, in units erg(cm3 sec sterad H)'l.] The ordinary mode has been
shifted down by a factor of 10 for clarity. The solid lines are numerical
results of Dulk and Marsh (private communication). The 078 are our analytic

results.

Figure 3. Same as Fig. 2 except for the absorption coefficient V2K+ in units

of erg sec” (cmd sterad)” !’

Figure 4. Degree of Circular Polarization vs Log (/Ay) in the limit

£+ 0. Circles from Eq. (22). Solid line from numerical results.

17
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