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1. Introduction

This report summarizes the second stage of work done at the Smithsonian
Astrophysical Observatory on a feaslbility study of a coherent optical system
of modular imaging collectors, or COSMIC. This report is also submitted
as the Final Report, Considerable progress was nade since the submission
of Technical Report #1 in November 1981, We believe that the work done
to date will form a solid base on which to build for subsequent progress.

The 3 publications that appeared during this period are reprinted
in sections A, B, and C. Supportive details as well as developments on
a number of as-yet unpublished topics are included directly as 7 internal
working papers. One of these, the notes by W. F. Davis, is a continuation
of the series which appeared in the preceding Technical Report No. 1.
These latter notes contain suggestions for a number of image reconstruction
techniques which should be tested in future programs.

N




ORIGINAL PACE 18
OF POOR GQUALITY

i

Coherent optical system of modular imaging collectors:(COSMIC) telescope array: . .
astronomical goals and preliminary image reconstruction results

Waesley A. Traub, Warren F. Davis
Harvard-Smithsonian Center for Astrophysics
60 Garden Sireet, Cambridge, Marsachusetts 02138

Abstract

We are developing numerical methods of image reconstruction which can be used to produce
very high angular resolution images at optical wavelengths of astronomical objects from an
orbiting array of telescopes. The engineering design concept for COSMIC (coherent optical
system of nodular imaging collectors) is currently being developed at Marshall S,F.C.,
and includes four to six telescope modules arranged in a linear array., Each telescope
has a 1.8 meter aperture, and the total length of the array is about 14 meters, This
configuration, when controlled to fractional wavelength tolerances, will yield a diffrac-~
tion pattern with an elongated central lobe about 4 milli-arc~sec wide and 34 milli~-arc~
sec long, at a wavelength of 0.3 microns, and correspondingly larger at longer wavelengths.
The goal of image reconstruction is to combine many images taken at various aspect angles
in such a way as to reconstruct the field of view with 4 milli-arc-sec angular resolution
in all directions. We are developing a Fourier transform method for extracting from each
individual image the maximum amount of information, and then combining these results in
an appropriately weighted fashion to yield an optimum estimate of the original scene.

The mathematical model is discussed, and the results of preliminary numerical simulations
of data are presented.

Introduction

We have recently developed a method of image reconstruction which makes efficient usge
of the individual images received by an orbiting linear array of telescopes, and allows the
reconstruction of a conventional image of the scene which is equivalent to that which
would be recorded by a large circular apertyre of diameter egqual to the longest dimension
of the linear array. Our previous papers~’'“’" on the concept of a coherent, linear array
of telescopes in space alluded to the likelihood that such a reconstruction scheme should
be possible, but at that time we were not able to suggest an appropriate procedure. Now,
nowever, we are able to present: first, an optimized algorithm for image combination;
second, a suggestion of the direction in which we are currently moving to develop zn
optimum noise filtering technique; and third, a series of numerical examples of image
reconstruction using hueristic noise filters which demonstrate the effects of noise and
optical imperfections, and also demonstrate the initial coherent alignment procedure.

Astronomical goals

The preceding paper in this volume4 discusses a first-stage COSMIC with an effective
length of about 14 m, and a second-stage of about 35 m, corresponding to angular resolution
limits at 0.3 micron of about 4 and 1.6 milli-arc-sec, respectively. This unprecedented
capability means that we will be exploring a new domaln, so our scientific expectations
must necessarily be relatively general and open-ended. However, by analogy with the
spectacular results from the VLA and VLBI radio instruments as well as the x-ray images
from Einstein, we should anticipate a dramatic inérease in our ability to understand the
visible universe. COSMIC in fact should have an angular resolution in the optical region
which will mateh VLA and VLBI images,

A sampling of projects which have recommended themselves on the basis of a simple
extrapolation from present knowledge includes the following: investigate the nature of
the diffuse emission seen around certain quasars, to see if it represents an underlying
galaxy, and if so, what type; probe the structure of thie region surrounding the nuclei
of Seyfert galaxies, down to the equivalent of about a light-year in size, i.e. the
scale on which broad-line spectral variations are seen; study the nuclei of ordinary
galaxies with suspected massive black hole centers to see if the gravitational potential
is truly point-like; make detailed comparisons of the several images nproduced by a
gravitational lens, to probe more fully the gravity field of the lens; examine the as-yet
unresolvable central regions of globular clusters for evidence of mass distributions
indicative of either black holes or simply self-gravitation; imagje the actual motion and
excitation of material arouni-a recent nova; measure diameters, limb and polar darkening,
and spots of nearby stars; directly image reflected light from circumstellar shells or
discs; image stellar surfaces in very narrow spectral bands, as is done for hydrogen or
caluvium on the sun; directly image nearby asteroids to measure rotation and search for
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companions; regolve cometary nuclei and follow the evolution of the coma and jet~-like
activity; search for Jupiter~like planets around nearby stars by detecting position
variations using localized astrometric techniques.

Telescope concept

The basic idea of the rotating linear array is indicated schematically in Figure 1
where we see a plan view of 7 telescope primaries with a beam-combiner telescope (BCT)
at one end. To fit into the Shuttle bay, the length of the collecting area is limited
to about 14 m, Although it is, of course, extremely desirable to have available all 7
mirrors, in principle one can still achieve the same resolution if a minimum redundency
array is used, i.e., only mirrors 1, 2, 5, and 7; the discussion in this paper is
applicable in either case, As the array rotates about the line of sight, it sweeps
out an area of diameter Dy, as shown, We will show in the following sections that the
final image, which can be reconstructed while the array is rotating through 180° and
simultaneously recording instantaneous images, is equivalent in angular resolution to
that obtained with a single large mirror D,. The power of the array is further increased
by adding a second colinear stage, and pos%ibly twc perpendicular stages, as indicated
by tie dotted elements and the final equivalent diameter Djp.
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Figure 1., Linear array of 7 telescopes,
plus beam combiner telescope.

Motivation

The image produced by a linear coherent array will exhibit non-uniform resolution as
a function of direction in the image plane, Specifically, the diffraction-limited
resolution in the direction colinear with the array will exceed that normal to the array
in the same ratio as the aperture aspect ratio L/W. If the array width is decreased to
zero, resolution in the normal direction will also become zero (normal diffraction
limit becomes infinite),

The situation is analogous to the CAT scan in medical imaging in which the ability
to resolve along the beam path is zero., 1In the latter technique views are taken from a
number of directions around the subject and the results combined in such a way that
the favorable resolution capability across the beam path is exhibited in all directions
in the final image. This suggests that a similar technique might be possible in the case
of the linear coherent array. The array would be rotated slowly about the optical axis
and the intermediate images combined in such a way that the more favorable colinear
resolution would obtain in all directions in the image plane.

In fact such a technique is possible as we will shww. An important distinction is
that, due to the finite array or aperture width, the normal resolution of the coherent
array is not zero as it is along the CAT beam path. Consequently, the appropriate
reconstruction algorithm differs somewhat from the CAT but, not surprisingly, goes over
to the CAT algorithm in the limit as the aperture width goes to zero. This will be
demonstrated. The image reconstruction algorithm appropriate to the rotating linear
coherent arrgy is, then, a generalization of the CAT algorithm familiar from medical
applications®. As is th: cuse in CAT analysis, Fourier techniques yield an exact
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reconstruction algorithm and provide a deep insight into the nature of the process,
«w Fourier techniques are used in the derivation which follows,
' gggéegcs

The starting point of the derivation of the reconstruction algorithm is the integral
representation of the effect of the telescope aperture on the incident wave field. See

Figure 2.
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Figure 2, Diffraction by an
aperture a{x,z).

k and k' are the incident and outgoing wave vectors.
wahx
k = kxé\x 4+ kyéy -+ kz@z
- (1)
-l
k = |kl = w/c =2n/A
The aperture a(x,z) which is, in general, a complex funmtion is assumed tgo lie in the

X,2-plane., To simplify the notation, vectors confined to the x,z-plane will be denoted
by a subscript zero. Thus, for example,

a(x,z) = a(To)
(2)
To = x8 + 2&
We assume that u(ﬁ) represe 1ts the amplitude of the incoming E-field as a function of

direction. By formally representing the outgoing field_as a superposition of plane wavns
(Fraunhofer diffracti n), we are led to the result that

1) = [ [ dkdles 1O AL s ~ke) (ks k)] ™

L ’
where ;(ﬁ) is the time-averaged intensity of the outgoing component in the k direction,

and A(k) is the Fouriwy transform of the aperture defined by

Ak) = (—zf;;l_/:-dz;o a(To) e-iii:

(4)

oo, N
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In words, (3) says that the outgoing intensity distribution is given by the convolution
of the squared magnitude of the Fourier transform of the aperture with the incoming
intensity function.: R P N L ST TR N S TP R T I TN T LR S O PR )

Consider now the Pourier transform of the intensity (k).

W) = [ [ dieedk: KE) gemiky

-

(5)
ij = Vx@& + Vz@h

We find from evaluation of (5) using (3) that

() = UD)4(V) (6)

where
UE) = [ [ dkedks luE)F e )
A@) = [ [Cdkdk: AR e (®)

Result (6) is just the familiar Burel convolution theorem applied to, (3). 0(3) given by
(7) is the Fourier transform of the incoming intensity function. 4(V) given by (8) can be
related to the aperture function by substituting (4) into (8) and evaluating to get

A(D) = ["d’Fe a(2nTo) a'[Rm(TotV)] =
(9)

]

L “d?ro a'(2nro) a[2m(To-V)]

Result (9) is the generalized autocorrelation of the aperture function and represents a
second application of Borel's convolution theorem to the product A(k)A" (k).

The results derived so far state that the Fourier transform of the image intensity is
equal to the product of the Fourier transform of the incoming, unmodified intensity
distribution and the, generalized aperture autocorrelation function in suitable cocrdinates.

It 1s useful to think of the aperture autogorrelation as providing a "window" onto the
true (unmodified by the instrument aperture) image Fourier plane. As the aperture rotates,
g0 does the aperture autocorrelation. At each orientation only a portion of the Fourier
plane can be "seen" through the window. By piecing together glimpses of the Fourier plane
provided by a set nf distinct aperture orientations, a measure of U(V) can be built up
over a region corresponding to the union of the areas covered by the individual auto-
correlations. From (9) it is seen that

4(-D) = £'(D) o

so that after one~half revolution of the aperture it is possihle to map out a circular
region of the V-plane whose radius L/27 is given by the largest value of V| for which
4(V) is non-zero. Depending on the geometry, there may be annular regions within this
radius which can not be mapped because £(V) = 0 there.

Such a circular region corresponds to the autocorrelation of a circular aperture of
diameter L. In this way we see the possibility of synthesizing from the rotating linear
aperture of length L an image equivalent in resolution to that obtainable from a full
circular aperture of diameter L. 1In particular, the resolution in all directions in the
synthesized image plane will be equivalent to that attainable from the greatest dimension

across the aperture, L.
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Relationship to CAT algorithm

Imagine now that the aperture width:w-is reduced’ to zero. ”In 4this case’the aperture
autocorrelation too reduces to a line of width zero, and length L/%, The corresponding
image resolution normal to the array also goes to zero, For each angular orientation of
the aperture, the autocorrelation "window" permits determination of the image Fourier
transform only along a line through the origin of vV~space at the orientation angle.

This process matches precisely the Fourier description of the computer-assisted tomo-
graphy (CAT) algorithm in which the one-dimensional Fourier transforms of the individual
ray projection functions are mapped onto V-space at angles equal to the projection angles.
The inverse transform yields the reconstructed image., Just as the instantaneous image
resolution of the telescope is zero normal to the aperture, so too is the resolution of the
CAT scanner along the beam and, hence, normal to the projection. Thus our present
algorithm contains the CAT algorithm as a special case.

Image combination

Each orientation of the aperture "exposes" part of U(V) in the Fourier domain,
weighted by the aperture autocorrelation according to (6). A given point in the V-plane
may be exposed, with a different weight, by each of several aperture orientations. The
question is how to comkine optimally the information about the value of U(V) implicit in
each exposure. In particular, a real instrument will produce images contaminated by noise
sc¢ that the true value of U(V) can only be estimated.

Let us assume that a set of images, N in number, has been formed corresponding to
various aperture orientations., We use a subscript to denote a specific member of the set.
Let us also assuime that signal-independent noise has been added to the spatial domain
images. Because of the linearity of the transform, the noise will be additive also in
the Fourier domain. Thus, we write for the measured signal at a specific point v in the

n~-th image transform,

yn = UAD + En (ll)

where €, represents the noise. Explicit reference to ¥ has been dropped to ease the
notation.

Eet us assume that the €, are statistically independent, have zero mean, and variance

ocn
Efen) = avgle,) = 0 (12a)
 E{€n€m} = O , (n#m) (12b)
' = var(en) = O’ (n=m) (12¢)

In this formulation the variance of the noise at a given ¥ is a function f the image
member index. 7his might be the case, for-example, if unequal times are spent observing
at the various aperture orientations. To estimate U let us form a weighted sum of the

measurements Yn over- the set of images.
ignJ’n =U fg»dn + fgnen (13)
o=l nw} n=l

where g, are weights to be determined. The estimated value of U is, from (13),

‘'

0 = .ilg"y" /ggn‘dn = U + ggnen /;ilg»dn (14)

where U is defined only where 4(3) # 0. If the noise goes to zero, the estimate G goes
over to the true value U.

168 / SPIE Vol, 332 Advanced Technology Optical Telescopes (1982)
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. The proper value for the weights g, is found by demanding that the variance of i ~ U be
minimum,

s pota e Nt B A » LI L R n’a' LR AL T LR S 1 ;(,4.‘:.1, IER.
2 )
E{|0-UP) = minimum (15)
A straightforward calculation leads to the conclusion that
) » 2
£n v dn /Tex (26)

s0 that

b = f[%;’é’-‘]/f[%] = U+ f["‘*%“]/ﬁ[ﬁ'ﬂ;] (27)

as1 mil Cen E ) I P L Cen

It is easy to show that the variance of 0 about the true value U will be

o = E{|0-UR = [f‘,lﬁﬂ;]'l (18)

1 0¢n

The aperture autocorrelation 4, can be determined from the geometry or, using (6), from
a test image with good sighal=-to-noise ratio whose transform U(V) is known. Assuming
white noise, the variance o, is probably best estimated by considering those parts of
the n-th V-plane which are i8¢t "exposed" by the autocorrelation window. There, in the
absence of noise, the image transform should be zero. Any non-zero contribution can be
assumed to be due to noise or other image contaminant. In this way, using (16), the
weights which minimize the variance of the estimate of U (17) can be determined.

Equation (17) represents the optimum combination, in the sense of minimum variance of
U, of information from the Fourier transforms of the individual images formed with the
aperture at different orientations. Discounting the need to deal with the effects of
noise, the desired spatial image is, by (7), the inverse Fourier transform of (17).
Equation (18) shows that in general the variance of the estimate of U will not be constant
over the V-plane. In particular, the variance will increase in those regions in whicn
the magnitude of the aperture autocorrelation decreases., Thus, the noise associated
with the weighted combination of the individual image transforms will be non-stationary
over V.

Equation (l4) expresses the estimate of U which is to be optimized in the weighted
combination of images. Direct implementation of (14), or (17), in a practical image
reconstruction application would suffer from the effective amplification of noise,
attributable to the second term, in regions where the magnitude of the aperture auto-
correlation is small. We have already described this effect in terms of the non-
stationarity of the noise in the U~plane, To recover satisfactory images in the presence
of noise, a filtering operation, to be discussed in the next section, must generally
follow the image-combining step. Image combination according to the criterion of least
variance of U and the subsequent filtering operation are separate and distinct steps in
the overall processing.

Noise filtering

A frequently applied method for dealing with noise is Wiener filtering7'8; In this

technique the noisy function is filteved (weighted) by another function which is inversely
proportional to the noise variance. To be effective it is important that regions in which
most of the signal information is contained do not coincide with regions in which the
noise variance is greatest. The noisy function is, thereby, attenuated most where the
noise is greatest, and least where the signal is greatest,

In the case at hand the variance of the noise associated with the estimate of U may be
greatest, due to the geometry of the aperture, in regions where U is also most significant.
Intuitively, it is undesirable to apply a filtering function which simply attenuates
(biases downward) the estimate of U in such regions. Rather, it would be preferable to
adopt a strategy which utilizes information from adjacent areas where the noise variance
is less, as well as averaging within the relatively noisy areas, to provide a filtered
estimate of U which is everywhere unbiased.
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We are cuwrently investigating a technique, which may %e described as weighted multiple
regression, which yields such an unblased filtered ewtimats. The results of this work
will be presented 18 LABWNHEY @, v 4 e Fusyau e g% b A Wk Dani kTt el gVt b e b M pba Pamiakivay W

Resolution

The limiting resolution, in the absence of noise, inherent in the image combination
scheme described above {s twice that of an aperture of comparable dimensions according to
the usual laws of passive optics. That is, without Fourier~domain processing, This is
most easily seen by considering a one-dimensional example,

Assume that a point source is observed in the absence of noise, The magnitude of its
Fourier transform U(V) will be constant over U, Let the afiarture be unity over a span of
length L, and zero elsewheré, The one-dimensional aperture autocorrelation will be a
"tent" function centered on v = 0 which spans an interval L/m,

2v)

R S Ly T

~L/2w 0 +L/2w v

Figure 3.[a) Image transform S(v) for a
point source., (b) Effective point~source
image transform from eqn. (17) with no noise.

Since the transform of the source is a constant, the lmage transform (6) given by the
product with the aperture autocorrelation will also have the form of a “tent" function
in v of width L/n. The inverse Fourier transform of this tent is, within a scale factqr,

L[sin(kL z_]ﬂ:
‘1:1.'72:f '

k = £2n/L (19)

wihich has its first zeros at

For small angles 0 the normal component of k is (21/A)6 so that (19) is equivalent to
6 = x\/L (20)

which is the result familiar from elementary optics.
Result (17), which divides-out the magnitude (f the autocorrelation, recovers the

underlying uniform source transform in the interwal ~L/27 < v < +L/2n. The inverse
transform of the resulting pedestal of width L/7 is, within a scale factor,

L) @
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k=zxn/L -8 =2x\/2L . . . .. (22

Thus the resolution of wne proposed image combination scheme is, in the absence of noise;
twice that expected from elementary optics. In the presence of noise resolution will
necessarily be degraded from this ideal because of the requirement to suppress noise
amplification in regions whare the aperture autocorrelation is small,

Sampling

The results derived so far have been in terms of integral representations, Digital
implementation recessarily involves manipulation of sampled functions, The relevant
expressions can be converted to discrete summations amenable to computer processing by
introducing a series of Dirac delta functions under the integral signs.

2.6(x-mX) o &3 6[2n(v-n/X)] (23)

Is relation (23), which is applicable to one dimension, ++ indicates that the two sides
are Fourier transform pairs. x and v represent the two domains; X, the sampling interval
in the x-domain, is a constant to be determined. 1/X is the corresponding sampling
interval in the v~domain,

Sampling of the aperture at intervals X will, by (9), cause the aperture autocorrela-
tion, and hence #(%Y), to be sampled at intervals X/2m in V., From the convolution theorem
and (23) the corresponding image domain representation will be given by the convolution of
the continuous reconstructed image with a series of Dirac delta functions at intervals
k = 2n/X. That is, the continuous image will be replicated at intervals 2n/X in K.

Suppose that the field of view (FOV) is k.. Suppose alsp that we demand that the
point-gsource image response given by (21) be attenuated by a factor o at the point at
which sueh a source at the lower (upper) FOV edge enters the upper (iower) FOV edge due
to the sampling-induced image replication. That is, w2 reguire from (21) that the
separation of the upper and lower edges of the FOV in the replicated images be

" k2 a/L

Allowing also for the FOV k_, the image domain periodicity must be at least ko + a/L.
Therefore, the required ape?ture sampling interval is

X s (24)

an = A
ko + a/L 6o + Aa/27nL
where 0, is the FOV in radians.

The reconstruction simulations which follow employ discraete Fourier techniques (FFTs)
with sampling intervals over the aperture Desed on the above considerations,

Numerical image reconstruction: examples

We imagine ‘the detector (CCD or equivalent) to be fixed in inertial space, while the
telescope array is rotated, so the center of each star image will not move with respect
to the detector, but the diffraction pattern will rotate about each bright point source.
To display the various stages in a calculation, we will first discuss what happens
when a conventional circular telescope aperture.is used to image a point source, 1In
the following figures we will display the apertures, functions, or images as points on
a 64 by 64 grid, with contour levels at either 5 or 9 eguispaced intervals between the
maximum and minimum values. Ahove each contour diagram there is a plot displaying a
slice through the same data, from left to right; the slice is positioned to include the
peak data point,

In Figure 4a we show a single large telescope mirror which is circular to within the
discrete limits of our grid, and has unity transmission and no phase delay within this
circle. The mirror diameter is 31 units, From eqn. (8) we find the autocorrelation of
the aperture, 4(v), as a function of spacial frequepcy Vv across the detector, and
display this in Figure 4b. The corresponding conventional, diffraction-limited image
I(k) is obtained from the real part of the inverse transform of eqn., 5, and is shown in
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Figure 4.{a) Telescope aperture a(x,z),
dinneter » 3) units. (b) Autocorrelation
of swerture 4(V), (c) Image of point
source I(k). ‘

Figure 4c for the case of a single, point~like star centered in the FOV. For contrast,
we show in Pigure 5 the same sequence for a mirror with diameter 7 units; as expected,
the smaller mirror samples fewer of the spatial high frequencies, and therefore produces
a broader star image.

O 45@‘ @@z&:

}

[} b [

Figure 5.(a) Telescope aperture a(x,z),
diameter = 7 units. (b) Autocorrelation
oﬁ*?perture 4(V)., (c) Image point source
I k *

The imnging properties of a coherent linear array of telescopes will now be sketched
in a way that attempts to clarify the relationship between a circular aperture and a
rotating linear aperture. This discussion also applies to rectangular single mirror
segments, since it is the overall shape of the aperture, not the details of construction,
that matters here. In Figure 6a we show an aperture which is 3 by 15 units; the
autocorrelation of the aperture in Figure 6b extends to high frequencies in the direction
parallel to the long axis of the aperture. Figure 6c shows the effect of this aperture on
a star field which consists of 3 stars of equal intensity; 2 of the stars are completely
unresolved with this viewing angle. In Figure 7 we show the case where the aperture has
rotated by 45 degrees.

From eqn. {17) we see that an appropriately weighted sum over all angles of Fourier
transforms of snapshot images will yield a reconstructed image. However, as was pointed
out above, eqn, (17) also tends to produce highly amplified noise, and appropriate filtering
must be applied to control this effect. We have done numerical experiments with various
types of filters, and have found that, although we do not yet have in hand an optimally
derived filter, it is relatively easy to generate filters which perform quite well. One
such ad hoc filter we have tried is to multiply egqn. (17) by

Sl St

(25)
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" or equivalently, simply to replace ld l in the denominator of (17) by 4 _; in all our cases
f we assume equal noise variance and equal exposure time at each angle snaBsho:, go the o?
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Figure 6. (&) Linear aperture at 0 degrees, 3 b L5
units. (b) Autocorrelation. (c) Snapshot wiiac .
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Figure 7. (a) Linear aperture at 45 degrees, 3 by
15 units. (b) Autocorrelation. (c) Snapshot image,
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From left to right- -

Figure 8. Three point-lik¢ stars.

Pigure 9. 1Image reconstruction, using 16 angle views and a 3 by 15
telescope.

Figure 10. Snapshot image using a 3 by 3 telescope.

Figure 1l1. Snapshot image using a 15 unit circular aperture.

For reference we show in Figure 8 the inrut star field which was used to generate
Figures 6¢ and 7c. Carrying out the reconstruction for 16 angle views between (0 and 180
degrees, in the noise~free case, we find the result shown in Figure 9; note the clean
. separation of the wide~spaced components and the clear eloncation of the close-spaced
(J 7 stars. Fo: comparison we show what the star field would look like if we used a small
telescope with a 3 by 3 aperture (Figure 10), and a large telascope with a round aperture
15 units in diameter (Figure ll). Note that Figure 9 is quite similar to Figure 11, but

b
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with slightly stronger sidelobes. In comparing these figures, note thaf the diffraction

FWHM of a 15 pixel circular mirror is 4.4 pixels, and the star separatins shawn are 3
and 10 pixels center~to-center;+so the:closerpairis expected to' berunresolved ysdtmmsnnn noss ey

Effects of noise and misalignment

To test the rcobustness of the algorithm to noise, we have added to each pixel in
each snapshot random noise values with relative peak-to-peak levels of 0.l and 1.0,
with the results shown in Figures 12 and 13. The algorithm clearly is stable,

[ s seom e e [

-ai*«i,."‘. f LA PR
v e sovms o TS geges s - -er R— -
9 N
-\"‘\D "'Q““r"'!
' »-’-’(. o mA A *
»
0 ey S:,, o !
[ 1 L
0. S )
- Pca - A vy 71 [

<3
] A\
o4
»
W) mp.uu AF:J

From left to right:

Figure 12, Image reconstruction with relative noise = 0.1,

Figure 13. Image reconstruction with relative noise = 1.0.

Figure 14. Image reconstruction with phase error = 1/4 peak-to-peak.
Figure 15, Image reconstruction with phase error = A/2 peak-to-peak.

The mirror train between the incident wavefront and the detector will undoubtedly
include various types of imperfections. Here we model random small-scale piston errors
distributed over the pixels which represent the mirrors, with peak-to-peak phase shifts
uniformly distributed over ‘the range of 90 and 180 degrees (i.e. A/4 and A/2), in Figures
14 and 15, respectively. If we take A/4 as an upper limit on the phase variation, and we
have 7 T}Erors in the optical path, the surface quality on each mirror must be rgughly
(1/2)/7 times better, or A/20, which is well within the limits of conventional optical

polishing technology.

We conclude the numerical results with a brief description of tip~tilt and (large
scale) piston errors as applied to individual telescope primaries and their optical trains.
This is essentially an exercise in initial alignment of the array, from a non-coherent to a ,
coherent state. We start by blocking the beams from all but two of the telescopes.

Taking these two to be adjacent, we will initially see two sets of star images in the focal
plane. The telescopes can now be focussed to that each one produces images which are as
small in diameter as is possible. If we look at a portion of this field of view, we will
have a situation similar to that shown in Pigure l6a, where a single star appears double
because the mirrors are tilted with respect to one another. Here the wavefront tilt in
each of two directions is A/D, where D is the width of each primary, and for convenience we
have scaled each mirror to be 7 by 7 units in size. Removing the tilt on one axis yives

us the situation in Figure 16b, where we see significant interference developing in the
overlap region. A final tip brings us to Figure l6c, perfect alignment. Intermediate
tilts (not shown) demonstrate that 0.125 A/D is virtually indistinguishable from perfect
alignment, and that even 0.25 )/D is quite good; these may be taken as ‘preliminary upper
limits on tip~tilt.

Monochromatic piston errors between two adjacent telescopes are illustrated in Figure
17a, where one of the two 7 by 7 unit pyrimaries is displaced by 0.5 A toward the star;
the image bifurcation is an artifact produced by the exact cancellation of amplitudes
at the position where the star should ideally have been imaged. Reducing the piston
error to 0.25 ) yields Figure 17b, where one of the images grows at the expense of the
other, and the peak intensity shifts toward the expected star position. Zero error simply
returns us to Figure l6c. Polychromatic piston correction requires the leverage of several
different wavelength 'bands, and is an extension of the technigue just discussed.

Conclusion
The preliminary results presented here have demonstrated that image reconstruction for

a rotating linear array of coherent telescopes in space is both theoretically and
practically a tractable problem. Nevertheless it is clear that there are many avenues yet
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Figure 16. Snapshot images of a single star, using Figure 17. Snapshot images of a
two adjacent 7 by 7 telescopes, with tip-tilt single star, using two adjacent 7 by
errors. (a) Wavefront tip = A/D, tilt = A/D. 7 telescopes, with piston errors,
(b) Wavefront tip = 0, tilt = )\/D. (c) Wavefront (a) wWavefront piston error = 0.5 ),
tip = 0, tilt = 0, {b) Wavefront piston error = 0,25 A,

to be explored, including for example the definition of an optimum filter function, the
guestion of limlting magnitude, the effect of signal-dependent noise, the effect of
varying pointing of the spacecraft, the handling of a rotating detector instead of an
inertially fixed detector, the sensitivity of the image to optical imperfections, and many
other points, We are continuing active study of these problems, meanwhile also addressing
the related question of maintaining optical alignment oi the array.

As a result of these efforts, it is becoming increasingly clear that it would be
extremely helpful to build in the next few years a balloon-borne version of COSMIC,
perhaps at half scale. A balloon-borne COSMIC would be especially valuable because it
would allow key engineering questions to be addressed at an early stage, Such an instru-
ment would be capable of investigating a small but significant number of scientifically
rewarding questions, much jin the spirit of the pioneering Stratoscope flights of two
decades ago.
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Conceptual design of a coherent optical system of
modular imaging collectors (COSMIC)

= Max E. Nain, Billy G, Davis
NASA/Marshall Space Flight Canter, Alabama 35812

Abstract

A concept is presented for a phase~coherent optical telescope array “liich may be
deployed in orbit by the Space Shuttle in the 1990‘s. The system woild start out as a
four~element linear array with a 12 m baseline. The initial module is a minimum
redundant array with a photon~collecting area three times larger than Space Telescope
and a one-dimensional resolution of better than 0.01 arc seconds in the visible range.
Thermal structural requirements for the optical bench are assessed, and major subsystem
concepts are identified.

’

Introduction

A vigorous and comprehensive astronbmical program in the.1990's and beyond must pro-
vide for the increased spatial resolution and large apertures which will be reguired to
address the questions raised but not answered by the Space Telescope. These needs
derive, on the one hand, from the fact that the large cosmological distances over which
light must travel reduce the number of photons available to be recorded by Space Tele-
scope (ST) to fewer than 1/sec for many objects of interest. On the other hand, under-
standing the details of the fundamental interaction of matter and energy in the most
energetic objects in the universe depends on recording the spectral characteristics of
photons over small physical volumes, a fact which dictates high angular resolution for
the large distances involved.

Scientific investigations that will be pursued in the 1990's and beyond will require
imaging resolutions of 10-3 arc-sec. To meet these regquirements, a comprehensive
program must be formulated that makes use of the Space Transportation System, the
advanced technology inherent in the Space Telescope Program, and new technology as it
can be foreseen and developed in order to produce a phased, cost-effective set of
astrophysics payloads with a wide spectrum of capabilities.

One such program which is currently being studied is a phase-coherent optical tele-
scope array for launch on the Space Shuttle in the 1990's. The scientific goals for
such an instrument and the initial results of image reconstruction analyses are
discussed in a companion paper during this conference by W. A. Traub and W. F. Davis of
the Harvard-Smithsonian C nter for Astrophysics.

Coherent Optical System of Modular Imaging Collectors (COSMIC)

The COSMIC Program will meet the needs of increased resolution and aperture by the
development of phase-coherent arrays which will be progressively combined to form a
larg§ equivalent aperture imaging complex capable of achieving 10~3 arc-~sec imaging
resolution.

The study objective for COSMIC is to investigate the feasibility of developing a
modular phase-coherent array which may achieve at least an order-of-magnitude increase
in capability over the Space Telescope, through a single Shuttle launch. Later addi-
tions to the linear array module would then further build up the capability of the
telescope facility. Figure 1 shows an artist's concept of COSMIC and the envisioned
evolutionary construction of a large cruciform array. The initial linear array con-
tains four Afocal Interferometric Telescopes (AIT) with a Beam Combining Telescope
(BCT) at one end. The COSMIC spacecraft module pivots from its launch position at the
end of the BCT to its deployed position below the BCT. The solar arrays deploy from
stowed positions alongside the telescope module. The scientific instruments are riaced
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in the focal plane of the BCT, and sunshades are extended above the telescope
apertures. Telemetry antennas will pivot into position for communicacion and data
transmission,

Figure 1. 1Initial COSMIC Module and Evolutionary Buildup

COSMIC Configuration

Optics

The key to high angular resolution is that light remains coherent over large dis-
tances. Diffraction-limited performance of an array of telescopes requires coherence
of all participating wave fronts, Such a method has been used successfully to study
radio sources at high resolution (0.001 arc~sec) by using data from simultaneously
observing radiotelescopes on baselines stretching over the diameter of the Earth.
Theoretically, the same resolution can be achieved at optical wavelengths by devices
one hundred thousand times smaller in scale. Since the spatial coherence of widely
separated beams of visible light is nearly destroyed by passing through the atmosphere,
investigations of interesting faint sources of small angular size must be performed in
space.

The concept of a minimum redundancy array of telescopes is borrowed from radio
astronomy and has been applied by the Smithsonian Astrophysical Observatory to optical
systems, as illustrated by the linear four-element array shown in Figure 2. The AIT's
are identical and all feed through fold flats, which compensate for the staggered
spacings, to the BCT. The four AIT's are located at positions (0, 1, 4, 6), giving the
effect of simultaneously having mirror separations of 0, 1, 2, 3, 4, 5, and 6 units.

It is required that the array be rotated about its target axis so that two-dimen-
sional images can be constructed that have the full resolution of a single large mirror
with a diameter equal to the lenjth of the array. The requirement for maintaining all
the optical path lengths equal t»> within 1/4 wavelength peak to valley is the tradi-
tional Rayleigh criterion for nefar-diffraction imagery. It is an overly simplistic
criterion in this case, but it al'equately scopes the required dimensional stability at
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this conceptual stage. To minimize the complexity of an a)lready beyond-the-state-
of-the-art adaptive optics control problem, the primary mirrors were restricted to a
size that would retain their flgure quality passively and be packaged within the
Shuttle payload bay constraints,
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Figure 2. Linear Four Element Array Optical Schematic and
AIT Mirror Definition

The 1.8 m square mirrors selected for COSMIC are lightweight mirrors of the Space
Telescope class. Figure 2 shows the AIT optical schematic and mirror definition.

Active alignment of all secondary mirrors is essential, but probably will only
require occasional intermittent adjustment as in the case of Space Telescope.
Conversely, it is almost certain that one or more beam-steering fold mirrors and some
sort of active path length adjustment will be required in each leg.

The beam from AIT 1 is directed into the BCT in a direct path. The beam from AIT 2,
however, must be folded in an indirect ‘manner (optical delay line) so that the total
path length is the same as for AIT 1. AIT 3 and AIT 4, which are even closer to the
BCT, must have proportionately longer folded paths so that all wave fronts from the
four AIT's arrlve in phase at the BCT entrance aperture. The large number of reflec~-
tions, a minimum of seven for AIT 1, from entrance aperture to focus is an inherent
drawback to the COSMIC concept. At visible and infrared wavelengths where very low-
loss reflective coatings are achievable, the drawback is minimal, but the uv through-
put will be significantly attenuated.

With about 3 sg m of collecting area per AIT for a total of 12 sg m, COSMIC has
three times the collecting area of the Space Telescope. This, coupled with the factor
of ten increase in angular resolution, means that COSMIC will have a faint-object=-
detectivity advantage over Space Telescope comparable to the advantage Space Telescope
has over ground-based observatories.

Although it is an objective of this study to develop a system which can provide
meaningful science with one Shuttle flight, the design concepts which were considered
are based on the eventual coupling of several linear arrays to form a cross configura=-
tion. For this reason, the beam combiner telescope was placed at the end of the linear
array to accommodate additional modules (Figure 1).

Thermal Structural Concept

Two major factors were design drivers for COSMIC: (1) The structural members and
structural/thermal approach must produce an optical system with dimensional stability
in all directions. In most telescopes, the structure holding the mirrors in relative
alignment must be designed to focus the beam on a specified point with very 1little
deviation caused by disturbances which act on the system. But in COSMIC, both relative
alignment between individual telescope mirrors and betweein AIT's and the BCT must be
maintained. Although the coherent beam combination requirement will be met by an
active control system, the structural/thermal design for COSMIC must still meet more
stringent criteria than previously designed optical systems such as Space Telescope.
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(2) The beams from individual telescopes must be combined to form a coherent wave

Q front to approximatey one-tenth wavelength RMS, 'Thus, dimensional stability of the
o structure and/or active path-length contrc. must be better than 0.1 micrometer RMS,

COSMIC has an overall line-of-sight aspect determination goal of 0.0005 arc-sec RMS.

Figures 3 and 4 show the strpcture of COSMIC. The telesicopes and instruments are
mounted in or on the optical bench, which is mounted inside an aluminum structure.

Since active path-length control of the optical components has been ground-ruled,
the overall dimensional stability does not depend entirely on the metzring structure.
A tradeoff exists between the stability of the metering structure and the range over
which the active control system must compensate, However, since the structural stabil-
ity has not been budgeted, the approach was to determine the best metering structure
using Space Telescope technology.

° L R

Ideally, the metering structure material should have a coefficient of thermal expan- 1
"sion (CTE) of zero. However, to postulate a zero CTE would not be practical. Based on :
results of very precise measurements of Space Telescope metering truss members, a CTE i
value of about 4x10™8 in/in°F was chosen for the structural members of the

graphite epoxy truss. f

COosMIC
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COOMIC i
@UTRIDE ditsLL N i

SPACICRATY
¥
WUTTLE ATTACHNENT i
P1TVings 10TRAL) 3
L |
VAN LOALS OwLY :
ASTMATED YAN GIPLICTION » & 0 4
URTINATED 16T (o00E NATUNAL PALD » 18 N3 4
Jone SCLAR ARRAYS fram SiALe f
AR A" RNl irn 08 )
> Vet atees)
Figure 3. COSMIC -~ Isometric View Figure 4. Exterior Shell Structure

of Interior Structure

A relatively high natural frequency is desirable to have adequate separation between
the structure and attitude control bandwidth during on-orbit operations. ‘For the
launch or return phase, the observatory should be designed to prevent coupling with the |
Shuttle's 16 Kz critical frequency. Since the truss weight increases rapidly with i
increasing frequencies, a lower frequency of 15 Hz was selected as a basis for the 4
truss design.

The metering structure is supported at many redundant points along the outside shell
structure during launch. The redundant attach points are subsequently released for on~-

orbit operations so that thermal deflections are not transmitted from the outside shell
to the metering structure.

The mirrors are attached directly to the metering structure by flexure joints simi-
lar to the ST mirror supports. Launch loads are taken directly to the outside shell.
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To obtain a truss structure with minimum elongation and bore-~sighting deflections
resulting from temperature gradients in the metering truss, a thermally stable optical
bench structure was designed to support the mirrors. The truss is thermally isolated
by an outer shell covered with a Multiple Layer Insulation (MLI) having a low a/€
ratio. This thermal configuration results in a temperature bias, causing energy to be
continuously lost from the bench.. Thermal conditions are maintained by replacing the
lost energy with energy supplied by electric heaters which are controlled by a micro-
processor, This power is estimated to be 200 wat*3. Other thermal control} require-
mfnts are estimated to be approximately four times that of Space Telescope, as shown in
Figure 6.,
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Figure 6. Thermal Control Budget and Truss Thermal Control Approach

Application of classical beam bending equations for an unconstrained configuration
led to expressions for bore sighting and elongation. Truss elongation and bore-
sighting values as functions of temperature changes are shown in Figure 7 and 8 for
various CTE values. '
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Based on ST performance obtained in extensive thermal vacuum testing of the ST
metering structure, COSMIC requirements for elongation control to 0.1 um can be met
with a CTE of 4x10"% {n/in‘F. The bore~sighting error, however, exceeds the
allowable requirement by a factor of two. The results imply that the active optical
correction mechanism must be capable to npan this range.
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Figure 7. Influence of Bulk Temperature Figure 8., Bore-Sighting Error as
Change on Truss Elongation a Function of Radial
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Avionics

The avionics subsystems consisting of the Attitude Control System (ACS), Fine Guic-
ance System (FGS), Communications and Data Management System (CDMS), Electrical Power
System (EPS), and the Propulsion Systems (PS) were analyzed. This paper concentrates
on the Attitude Control and Fine Guidance Systems because of their role in establishing

feasibility,

It was assumed that COSMIC should permit viewing any source on the celestial sphere
at any time, subject to constraints such as the sun, moon, and the Earth's limb viewing

interference.

Since COSMIC will view a target for periods up to hours and then maneuver to another
selected target, the maneuver rate should be rapid to optimize total viewing time. In
addition, COSMIC must be rotated about its line~of~-sight (LOS) to build'up a total high
resolution image with the data being digitally reconstructed on the gound.

While attitude-holding against environmental forces, the ACS must point the COSMIC
LOS within 0.2 arc-sec of the target and be stabie to 0.001 arc~sec per sec while data
ie being taken, These requirements are similar to those of the Space Telescope. How-
ever, COSMIC uses photon-counting science detectors with continuous readout; therefore,
long~term stability (slow drift) has little meaning in contrast with Space Telescope.
However, in reconstructing the data on the ground, the location of the source viewed
must be determined relative to the guide stars used for inertial reference to an
accuracy of 0.001 arc-sec or better (0.0005 arc~sec gonal).

The ACS actuators must be sized to provide control authority during all mission
phases from Shuttle deployment to Shuttle revisit for repair or retrieval.
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Since COSMIC is unbalanced both in mass distribution and surface areas, large
gravity gradient, 0.46 ft-lb, and ac¢redynamic torques, 0,17 £t-1b, will result at the
qperational orbit altitude of 500 km. As a minimum sizing criterion, the Reaction
Wheel Assembly (RWA) or Control Moment Gyros (CMG's) must be sized to counteract the
cyclic momentum and have some reserve capacity for failure modec and to prevent
saturation during the peaks of each cycle. With 50 percent contingency, approximately
18 of the Space Telescope's 200 ft-lb~s RWA's would be needed.

Obviously, new and larger torque devices must be provided. 1t appears that four
single gimbal control moment gyros of an existing design (Spervy 1700) can provide
sufficient control authority. To prevent the momentum exchange system from saturating,
the secular momentum buildup iw continuously reacted against the Earth's magnetic field
by utilizing three Space Telescope magnetic torquer bars per control axis.

' Several design approaches for the Fine Guidance System were investigated (see Pigure
9). Option } was selected for COSMIC, In this approach, the FGS uses part of the
field from one AIT that has its total field enlarged to obtain the required probability
of guide star acquisition. Fixed solid-state detectors are positioned around the peri-
meter of the square field of the AIT, Several Charge Transfer Devices (CTD's) are
needed to cover the field required for a high star acquisition probability. Option 1
appears viable for the 0.001 arc-sec resolution requirement. Thermal control of the
detector is critical. Currently we assume an operational temperature of -20°C,

OPTION 1: USE AIT FIELD

- APPROACH: SEVERAL FIXED CTD IN
THE FGS FIELD
- ASSESSMENT: VIABLE FOR 0,001 ARC-SEC REQUIREMENT ™~ si FIELD

=N

FGS FIELD

OPTION 2: TELESCOPE WITH FIXED FIELD

- APPROACH: FOV FOR STAR ACQUISITION WITH | —FGS FIELD

FIXED CTD' TO COVER THE FIELD
- ASSESSMENT: VIABLE FOR 0,001'ARC-SEC REQUIREMENT FIXED CTD
- PROBLEM OF ALIGNMENT WITH AIT

OPTION 3: SCAN MECHANISMS TO COVER FIELD

- APPROACH: DEDICATED TELESCOPE WITH CTD AND X
SCAN MECHANISMS _ ==-1--[J«=——t——MOVABLE

- ASSESSMENT: OPTICAL GAIN MUST BE BETTER THAN ST FIELD
VIABLE FOR 0.0005 ARC-SEC GOAL

Figure 9. Fine Guidance System Options

Advanced Technology

Several areas for advanced technology were examined that should increase the prob-

ability that COSMIC can meet its mission objectives, especially for the full cross con~
figuration. The structural members for the metering structure must be designed using

very low Coefficient of Thermal Expansion (CTE) materials to meet the one-tenth wave-

length critérion over the long length of COSMIC. Materials, manufacturing techniques,
and ways of joining members should be examined in detail.
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)
The large and Ajifficult-to~control COSMIC configuration wil)l require new attitude

control actuators that have the precision of Space Telescope, but are several times
larger than Space Telescope actuators, At the shorter wavelengths and for the
cruciform, the eéxpected resolution will reguire that the subsystems and structure be
designed for the 0.0005 arc-sec stability goal. Improvements in sensing for the fine
guidance and aspect determinatiom will reqguire development of more accurate rate gyros
and star trackers with less noise than those currently available,

While devices for measuring and correcting the optical path distances from each

collecting telescope to the science instruments were not addressed during this study,
emphasis should be placed in this general technology area, Optical devices for
correcting both the path length and focal point must be examined in more depth to
determine the operational range required.

COSMIC uses photon-counting detectors on the science instruments whose output is

telemetered to Earth for image reconstruction. The COSMIC subsystems selection and
permissible performance ranges must be related to image quality and/or complexity of
data reconstruction, currently under investigation. A greater understanding of those
relationships could lead to a relaxation of spacecraft pointing and structural
stability requirements.

Conclusions

Overall system concepts for COSMIC were developed, and the primary subsystems, such

as thermal gontrol, attitude control, fine guidance, communication and data management,
and electrical power, were analyzed.

The initial engineering work concentrated primarily on achieving a very stable

optical bench structure by selectively utilizing low thermal expansion materials in
conjunction with structural heaters., The design approach results in a structure which
is sufficiently stable to allow fine tuning of the optical train via active beam
steering devices,

Although current technology should suffice in development of many of the systems,

advanced technology will be required in areas where COSMIC systems exhibit specific
sensitivity to technological advances, such as in the active optical path length
control and alignment, and fine pointing and control of the spacecraft.

5
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Abstract

Very high angular resclution can be
achieved in optical and radio astronomy
through interferometers in space., Evolu-
tionary approaches and required techno-
logical advances are presented, In the
optical region a phase-coherent array
(COSMIC) starting as a four~element linear
array is discussed. Combining several
modules results in greatly improved
resolution with a goal of combining images
to ohtain a single field of view with
0.004 arcsecond resolution. The angular
resolution, detail and temporal coverage
of radio maps obtained by ground-based
Very Long Interferometry (VLBI) can be
greatly improved by placing one of the
stations in Earth orbit. An evolutionary
program leading to a large aperture VLBI
observatory in space is discussed.

Introduction

During the 1980's Space Astronomy
will, without doubt, make discoveries and
ralse questions that require the use of
more powerful astronomical instruments in
order for us to understand the diverse
astrophysical phenomens that will be
unveiled. Detailed structural studies of
objects ranging from nearby planets and
small bodies to distant guasars will be
required during the final decades of this
century and into the next. To meet these
needs, large astronomical facilities with
greatly improved angular resolution and
larger collecting areas will be placed in
space above the absorbing and distorting
interference of the Earth's atmosphere.

This paper is declared & work of the .S,
Government and therefore is in (he pubdiic domain,
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Frontier problems in astrophysics
during the next 30 years will require
angular resolution approaching 10~
arcseconds in the UV/visible spectral
region. This high resolving power coupled
with large flux collectors will lead to
great advances in our understanding of
objects within our solar system, stars,
galactic nuclel and other objects as well
as offering new avenues to cosmological
studies,

At the longer (radio) wavelengths
milliarcesecond resolution has already been
surpassed with intercontinental VLBI,
However, in mcBt objects, there remains
spatial structure that is unresolved. For
example, virtually every active galactic
nucleus has angular structure that cannot
be resolved, even with the best VLBI net-
work currently avalilable (offering a
resolution of 104 arcsec). VLBI
measurements have reached the limits
imposed by the size of the Earth,

The capakility to assemble large
structures in space and the existence of
advanced technology for maintaining
precise baselines and accurate pointing of
large systems will make possible inter-
ferometers in space. Two such concepts
currently under study by the Marshall
Space Flight Center (MSFC) are the
orbiting VLBI and a phase~coherent
UV/visible telescope array, Each concept
is considered to be evolutionary in
nature, progressing from simpler to more
complex configurations. The concepts,
progi am approach and technological readi=~
ness of the required systems are discussed
in the following sections.
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Extending VLBI To Space
4

Radio interferometry observations of
celestial sources are routinely performed
on Earth by usinz atomic frequency stand~
ards to synchronize radio telescopes that
may be separated by as much as intercon~-
tinental distances, Angular resolution
better than a milliarcsecond, four ordeis
of magnitude superior to that of Earth~
based optical telescopes, has been
achieved. By placing one or more of the
observing elements in Earth orbit and
making observations in concert with those
on the ground, significant advantages over
purely ground-based systems may be
obtained, Among these advantages are
improved angular resslution, improved
coverags of the celestial sphere, more
accurate radio maps, and more rapid
mapping. (!

Scientific Advances with Spacc VLB

With orbiting VLBI we will be able to
study in detail the structure of many
astrophysical objects., For example, we
will be able to investigate the super-
luminal phenomenon in quasars (expansion
of different portions of gquasars that
apparently exceed the velocity of light),
the structure of the interstellar masers
that are often associated with the star~
formation process, active binary systems,
radio stars and other objects,

The famous guasar 3C273 provides an
interesting example of the dramatic
improvements that we will achieve with
orbiting VLBI. It has become evident that
highly unusual physical processes are
occurring within guasars and galactic
nuclei, Very large amounts of energy are
being produced within compact structures.
The map resolution and quality required to
study these compact sources surpasses the
capabilities of our current ground-based
instruments. 1In particular, for a low
declination source such as 3C273, the
North-South resolution is poor. This
limitation is caused by the location of
present radio telescopes in the temperate
zone of the Northern Hemisphere,

Figures 1 and 2 are computer
simulations {llustrating the advantages of
a VLBI terminal in space. Observations are
of 3C273 at 18 cm. Figure 1(a) shows the
synthesized beam from a ¢onventional
ground-based network consisting of
stations at Haystack (Mass.), NRAO Green
Bank {(W,Va.), Owens Valley {Calif.) and
Bonn (W. Germany). Figure {(b) adds a
space~based terminal in low-Earth orbit to
a three~station ground-based network. By
comparing Figures 1(a) and 1(b), one notes
the dramatic: improvement in resolution
obtained by adding a single space-based
station.
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Figure 1. Comparison of Synthesized Beams
from VLBI Observatories

Figure 2 shows the Fourier (u=v)
coverage for the two cases shown in Flgure
1+ The u=-v plane is normal to the vector
to the source being studied; u and v are
the East-West and North-South components
nf the baseline joining a pair of
antennas, as seen from the source. As the
elements of the VLBI network move in space
due to the Earth's rotation or the orbital
motion, the apparent baselines joining the
stations change. When the entire set of
baselines from all network stations are
plotted in the u~-v plane, the result is
equivalent to the synthesized telescope
aperture, The extent and completeness of
u~y coverage determines the resolution and
qguality of the radio image constructed
from the data. Note from Figure 2(b) both
the density and extent of the Fourier
coverage is greatly improved by adding a
terminal in space.
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Figure 2. Comparison of Fourier Coveraye
from VLBI Observatories
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A Space VLBI Progran

The Astronomy irvey Committee of the
National Academy of Sciences has
recommended that a space VLBI ante«nna be
launched in !9« Eavth orhit during this
decade, (¢ To achieve a per nt
VLBI system in space, three nat phases
can he i1dentified (see Figure 3). €ach
phase utilizes the expected evolution in

the capabilities of space systems.

%

SRTTLE AT PLATEORM COMPIGARATION

_——
R -
e

Figure 4.

50 Meter Deployablie Antenna

Figure 3. An Evolutionary Space VLBI antenna is desirable, an important set of
Program bright sources could be observed with a
space antenna as small as 5 to 10 meters
An initial step would be to utilize in diameter.

the capability of the Space Shuttle to
demonstrate orbiting VLBI by deploying a
large retrievable antenna attached to the
Shuttle, This mission could be part of
the Large Deployable Antenna Flight Fxper-
iment that has been under active study by
MSFC and aerospace contractors during the
past several years. (3,4) This flight
would provide an on-orbit test of a large
(~ 50 meter) antenna system (which also
has potential applications in defense,
communications and Earth observations
among others). An artist's concept of one
possible antenna is shown in Figure 4.
ring the miassion about three days wo..id
be devoted to VLBI observation:. Figure 5
a block diagram of the system with
probable locations of the various
subsystems indicated in Figure 6. An
alternative system now under study av MSFC
is a 15 meter antenna abhoard the Shuttle
that could later be used on the Space
Platform or perhaps on an Explorer class
mission. Although a larger aperture
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Figure 5.
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Figure 6. Shuttle VLBI Flight System

The Space Platform could be available
by the end of this decade. A VLBI termi~-
nal aboard a Space Platform (or Space
Station) could carry out observations for
extended periods using essentially the
same science package previously demon-
strated on the Shuttle. Figure 7
illustrates the Platform concept with a 15
meter VLBI antenna attached to one of the
ports. A Platform mission would yield a
high-resolution survey of the entire sky
and temporal studies of the most important
sources,

During this time frame an alternative
or perhaps concurrent flight confiaquration
might be a 15 meter free flyer 'n the
Explorer class but placed at a higher
(5000 km) altitude. Ultimately a large
aperture antenna aboard a high altitude
free flyer would be desirable.

Both Platform and free flyer VLBI
observations are naturally o>mplementary
to a dedicated ground-based VLBI array. A
single space VLBI terminal improves both
the resolution and density of u-v coverage
by large factors and significantly
increases the sky coverage available.

Figure 7. Orbiting VLBI: Platform
Configuration

Technology Requirements

The technology readiness for orbiting
VLB1 depends upon the availability of
space versions of the same systems that
are used for ground observations. These
major systems include antenna, receiver,
frequency standards, IF to digital elec~
tronics and data handling systems. Each
of these will be discussed briefly below.
The mission and system parameters for the
Shuttle mission are shown in Table 1,

Antennas

Two major parameters determine the
antenna contribution to the signal-to-
noise ratio of the received signal:
diameter and efficiency. The first is the
more important of the two, The largest
civilian space antenna was the 9 meter
ATS~-6 reflector that was flown in 1974,
During the past decade antenna technology
has progressed significantly, however a 50
meter antenna operating up to about 8 GHz
will probably require demonstration in
space.

The antenna efficiency depends on the
mesh size and surface irregularities with
the latter the more difficult to control.
Predicted values of the ratio of antenna
diameter to rms surface irregularity for
the 50 meter Shuttle antenna is estimated
to be about 2x104 which should allow
good performance up to about 10 GHz.

A final important consideration is
the antenna pointing. It is essential
that the antenna be pointed to within the
half power beamwidth (i.e., approximately
A /D where A is the observing wavelength
and D the antenna dameter). For A= 3.6 cm
and D = 50 m the pointing reguirement is
about 0.04 degrees. The pointing can be
achieved using several steps.

For the Shuttle mission the following
three steps could be used:

(1) the Shuttle points the antenna to
within 0.5 degrees of the celestial target.

(2) An optical or RF sensor is used
to drive a movable subreflector to place
the target within the 3 dB beamwidth of
the antenna.

(3) Knowledge of pointing is recorded
from the above sensor to later correct for
any residual mispointing of the antenna.
This knowledge will permit a steriori
corrections for amplitude 1635933?Tﬁ§“
mispointing.

As part of the Shuttle VLBI mission
study the C. S. Draper Laboratory perform-
ed a brief study of the dynamics and
control of the Shuttle attached
antenna.(5) 1Initial finite elements
simulations have indicated that the
antenna structure that was considered 1is
quite stable during various Shuttle
motions.
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SYSTEM
RECEIVER
SURFACE ACCURACY | FREQ, (GHz) BEAM POLARIZATION | BANDWIDTH | NOISE
TYPE TEMPERATURE
ANTENNA
SYSTEM N N
S -2 e 4ok 1,66 SINGLE | ONE SENSE ~ 100 MHz 1609K
30 23 CIRC, POL, ¢
8.4 YO BE DETECTED FEEDPOINT
ANT, TRACKING/ KNOWLEDGE SLEW INTEG.
ELECTRICAL AXIS POINTING SUBSYS. OF POINTING {, RATE TIME
POINTING POINTED TO WITHIN £ 0,025° £001° 3° /MIN 60 SEC (REQUIRED
REQUIRE~ 1/2 BEAMWIDTH OF TO TRACK SOURCE
MENTS OF TARGET FOR 60 SEC WITHOUT
ANTENNA ———— . VRCS FIRING)
SYSTEM®
1,66 GHZ - 026°
, 23 - 0,18°
8.4 - 0,059
i
ORBIT ALTITUDE INCLINATION POSITION KNOWLEDGE VELOCITY KNOWLEDGE
REQUIRE~
MENTS MINIMUM: 350 km 40° < | < 57° £ 10km £1 miSEC

¢ ANTENNA SYSTEM POINTING INCLUDES: ORBITER, ANTENNA STRUCTURE, MOVABLE FEED/SUBREFLECTOR

AND BEAM STEERING TO REACH REQUIRED ACCURACIES,

Table 1
Receivers

Gallium arsenide field effect transis-
tor (GaAs FET) receivers are very suitable
for crbiting VLBI. Through radiative
cooling, system temperatures of 70°K at 2
GHz and 160°K at 8 GHz are probably possi-
ble. The long cooldown time of radiative
cooling systems may preclude their use for
the Shuttle mission. However, Peltier
devices may be used. Performance can be
considerably improved by cryogenic cool=-
ing.

Frequency Standards

The local oscillator frequency
standard must he stable over the data
integration periods to a small fraction of
a cycle of RF phase. A hydrogen maser
flown in 1976 as part of the sub-orbital
Gravity Probe~A (Redshift) rocket flight
achieved a level of stability of Af/f =
3x10714 |, This is sufficient for a 100
second coherent integration at frequencies
as high as 22 GHz. )

IF to Digital Electronics and Data
Handling

The signal from the receiver is mixed
with the local osciliator and converted to
an IF signal. It is then converted to a
video signal ‘and digitized (See Figure 3).
The standard for ground-based observations
is the Mark III system. The electronic
modules of this system could be repackaged
and qualified for ‘space.

D
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VLBI Demonstration Experiment Parameters

The data recording equipment for a
space mission will depend upon the data
storage and transmission capability of the
particular mission. For the Shuttile
mission one could use several cassette
tape recorders each of which would record
one 4 Mbits /s channel. The tapes would
then be returred to the central correlator
site to be combined with the reco®ded data
from the ground-based radio telescopes.

VLBI systems aboard a platform, spate
station or free flyer would periodically
return data via the TDRSS system. High
altitude free flyers having long term
communication with the Deep Space Network
could send data directly to the ground for
recording.

Summary of VLBI Technology Readiness

In general, the subsystems required
to support orbiting VLBI missions are
technologically ready. Antennas as large
as 50 meters appear to be technologically
feasible; however testing in space is
probably required.

The program for orbiting VLBI dis-
cussed in this paper is driven by the
availability of the space systems describ-
ed and the continued interest in extend-
ing the capability te utilize space. The
technology is available. Only the oppor-
tunity remains for us to enter into the
exciting era of space VLBI,
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Space Based Coherent Optical System pf
Modular Imaging Collectors (COSMIC) ™

At microwave wavelengths large
ground~based interferometers are routinely
employed for high resolution astronomical
observations. However, the difficulties
of dealing with wavelengths 5 orders of
magnitude smaller than microwave have made
this a less attractive technigue for
achieving similar advances with ground~-
based observations at UV/visible wave-
lengths. In addition, ground~based
problems of atmospheric absorption and
seeing fundamentally limit the possible
advances., Space will overcome these
barriers as well as providing the
necessary undisturbed environment,

The capabiity to construct large
systems in space and the development of
advanced optical control technol>gy to
maintain accurate baselines and alignments
will allow the development of an array of
coherent optical telescopes - the optical
analog of radio VLBI. This program,
called COSMIC, will meet the needs of
increased resolution and larger aperture
through the development of phase-coherent
arrays which are progressively combined to
form a large equivalent aperture imaging
complex. Images with angular resolution
in the mxléiarcsecond range can be
achieved, (6-8)

Scientific Prospectes with COSMIC

There are a large number of unique
astronomical observations which would be
possible with an orbitinc telescope having
both a large collecting area and an
angular resolution in “he milliarcsecond
range. COSMIC will bz able to resolve the
nucleus of many comets, to detect the
splitting of a nucleus, and to study the
activity of the inner core. At Jupiter,
COSMIC will be able to obtain images down
to 5 km resolution, comparable to some of
the best images obtained by Voyager 2.
Detailed studies of the large scale fea-
tures of nearby main seguence stars will
also be made. Correleations with VLBI
measurements of the H0 and Si0 maser
emissions in the atmospheres of super
giant stars will be possible.

COSMIC will be unigue in being able
to resolve the highly condensed cores of
globular clusters. As an illustration we
show in Figurc 8 a series of images of the
globular cluster M3 as it would appear if
it were removed from our own galaxy to a
much more remote distance, in the galaxy
MB87. The first panel in Figure 1 is a
long-exposure photograph of M87 which
shows the many globular clusters
surrounding this galaxy. The next three
panels show respectively the appearance
of M3 (taken from a CCD image) as it would
appear at the distance of M87 from the
Space Telescope, then from a first

stage COSMIC (14m in
second stage COSMIC

length) and finally a
(35m in length).

COSMIC will be able to resolve the
central regions of active galactic nuclel
to help us understand what powers these
very bright and condensed regions.

Because such a telescope will be able
to solve outstanding astrophysical
probiems such as these, the Astronomy
Survey Committee of the National Academy
of Sciences has recommended "the study and
development of the technology reuired to
place a very large telescope _in space

early in the next century."(2)
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Figure 8.

The COSMIC Configuration

Figure 9 shows an artist's concept of
COSMIC and the evolutionary construction
of a large cruciform array. The initial

Coherent Optical System cf
Modular Imaging Collectors

Figure 9.
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linear array contains four Afocal Inter-§
ferometric Telescopes (AIT) with a Beam
Combining Telescope (BCT) at one end., The
COSMIC spacecraft module pivots from its
launch position at the end of the BCT to
its deployed position below the BCT. The
solar arrays deploy from stowed positions
alongside the telescope module. The
scientific instruments are placed in the
focal plane of the BCT, and sunshades are
extended above the telescope apertures,
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Telemetry anteanas will pivot into posi-
tion for communication and data trans-
mission.

Optics

The concept of a minimum redundancy
array of telescopes is borrowed from radio
astronomy and applied to optical systems,
as illustrated by the linear four-element
array shown in Figure 10, The AIT's ave
identical and all feed through fold flate,
which compensate for the variations in the
optical path lengths to the BCT. The four
AIT's are located at positions (0,1,4,6),
giving the effect of simultaneously having
mifror separations of 0,1,2,3,4,5, and 6
units.,

The instantaneous diffraction~limited
image of a point source is narrow along
the array's major axis only, but by using
an already demonstrated image reconsStruc-
tion technique it will be easy to build up
fully resolved images after a 180 degree
rotation of the array, even in the pre-
sence of noise and optical imperfections.

The requirement for maintaining all
the optical path lengths equal to within
1/4 wavelength peak to valley is the
traditional Rayleigh criterion for near-
diffraction imagery. It is an overly
simplistic criterion in this case, but it
adequately scopes the required dimensional
stability at this conceptual stage. To
minimize the complexity of an adaptive
optics control problem that is already
beyond-the-state~of-the-art, the primary
mirrors were restricted to a size that
would retain their figure quality passive-
ly and be packaged within the constraints
of the Shuttle payload bay.

Active alignment of all secondary
mirrors is essential, but probably will
only require occasional adjustment as in
the case of the Space Telescope.
Conversely, it is almost certain that one
or more beam-steering fold mirrors and an
active path length adjustment will be
required in each leg.

Optical Schematic of Afocal
Interferometric Telescope
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Linear Four Element Array
Optical Schematic and AIT
Mirror Definition

Figure 10.

The beam from AIT 1 is directed into
the BCT in a direct path. The beam from
AIT 2, however, must be folded in an in-
direct manner (optical delay line) so that
the total path length is the same as for
AIT 1. AIT 3 and AIT 4, which are even
closer to the BCT, must have proportion-
ately longer folded paths so that all wave
fronts from the four AIT's arrive in phase
at the BCT entrance aperture.




]
i

ORIGINAL PAGE (&

OF POOR QUALITY

A collectin? area of about 3m3 per
AIT gives the initial COSMIC configuration
three times the collecting area of the
Space Telescope., This, coupled with a
factor of six inc¢rease in angular
resolution, means that COSMIC will have a
faint-object~detectivity advantage over
Space Telescope comparable to the
advantege Space Telescope has over
ground-based observatories.

Image Reconstruction

The image produced by a linear
coherent array will exhibit non-uniform
resolution as a function of direction in
the image plane. Specifically, the
diffraction~limited resolution in the
direction colinear with the array will
exceed that normal to the array in the
same ratio as the aperture aspect ratio.
The image formed in the focal plane is the
convolution of the aperture autocorrela-
tion function and the "ideal" sky which
falls in the several telescopes' common
field of view., If we consider the focal
plane two-dimensional detector (such an as
intensified CCD) to be fixed in inertial
space, while the linear telescope rotates
about the line of sight, then it is useful
to think of the aperture autocorrelation
as providing a "window" onto the true
(unmodified by the instrument aperture)
image Fourier plane, As the aperture
rotates, so does the aperture autocorrela-
tion. At each orientation only a portion
of the Fourier plane can be "seen" through
the window. By piecing together glimpses
of the Fourier plane provided by a set of
distinct aperture orientations, a measure
of the Fourier transform of the sky can be
built up over a region corresponding to
the union of the areas covered by the
individual autocorrelations,

We have begun computer simulations of
the image reconstruction process and have
been ahle to investigate the effects of
additive noise as well as optical system
imperfections. {9 Noise is strongly
rejected in this technique, since in the
Fourier-~plane summing operation, we are
able to exploit natural opportunity to
suppress noise from non-information
bearing frequencies. The images are also
very stable against optical imperfections
up to about one-guarter wavelength, peak-
to-peak. Finally, no artifacts have been
found to be generated; this should not be
at all surprising because the reconstruc-
tion process is in fact very close to
being a "selective addition" process
wherein we simply save and then add
together the "good" parts of each image;
there is no amplification whatsoever of
weak signals, so artifacts and
instabilities are completely avoided.

Structural Concept

Two major factors were design drivers
for COSMIC: (1) The structural,members and
structural/thermal approach must produce
an optical system with dimensional stabil-
ity in all directions, In most tele~
scopes, the structure holding the mirrors
in relative alignment must be designed to
focus the beam on a specified point with
very little deviation caused by disturb-
ances, But in COSMIC, both relative
alignment between individual telescope
mirrors and between AIT's and the BCT must
be maintained. Although the coherent beam
combination requirement will be met by an
active control system, the structural/
thermal design for COSMIC must still meet
more stringent criteria than previous
optical systems such as Space Telescope;
(2) The beams from individual telescopes
must be combined to form a coherent wave
front to approximately one-~tenth wave-
length rms. Thus, dimensional stability
of the structure coupled with active path
length control must be better than 0,03
ricrometer rms. COSMIC has an overall
line~-of-sight aspect determination goal of
U.0005 arcsec rms.

Figures 11 and 12 illustrate the
structure of COSMIC. The telescopes &nd
instruments are mounted in or on the opti-
cal bench, which is mounted inside an
aluminum structure.

Since active path length control of
the optical components has been assumed
the overall dimensional stability does not
depend entirely on i:he metering structure,.
A tradeoff exists between the stability of
the metering structure and the range over
which the active control system must
compensate., However, since the structural
stability has not been budgeted, the
appvoach used was to determine the best
metering structure using Space Telescope
technology.

Ideally, the metering structure
material should have a zero coefficient of
thermal expansion (CTE). However, to
postulate a zero CTE would not be
practical. Based on results of very
precise measurements of Space Telescope
metering truss members, a CTE value of
about 4x10~8 in/in*F was chosen for
the structural members of the graphite
epoxy truss. This will allow elongation
control to 0.1 um. The boresighting error

‘which exceeds the allowable requirements
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by a factor of two must be corrected with
an active optical compensation mechan-
ism.,
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Figure 12. Exterior Shell Structure

The metering structure is supported
at many redundant points along the outside
shell structure during launch. The
redundant attach points are subseguently
released for on-orbit operations so that
thermal deflections are not transmitted
from the outside shell to the metering
structure. The mirrors are attached
directly to the metering structure by
flexure joints similar to the Space
Telescope mirror supports.

Avionics

The avionics subsystems consisting of
the Attitude Control System (ACS), Fine
Guidance System (FGS), Communications and
Data Management System, Electrical Power
System, and the Propulsion Systems were
analyzed.

While attitude~holding against envi~
ronmental forces, the ACS must polnt the
COSMIC line-of~-sight within 0.2 arcsec of
the target and be stable :to 0.001 arcsec
per sec while data is being taken. These
requirements are less restrictive than
those of the Space Telescope., Since
COSMIC will use photon-counting detectors
with continuous readout, long~term .
stability (slow drift) has liltle meaning
in contrast with Space Telescope. How~
ever, if reconstructing the data on the
ground, the location of the source viewed
must be determined relative to the guide
stars used for inertial reference to an
accuracy of 0,001 arcsec or better
(0.,0005 arcsec goal).

Since COSMIC is unbalanced both in
mass distribution and surface areas, large
gravity gradient and aerodynamic torques
will be present at the operational orbit
altitude of 500 km., Approximately 18 of
the Space Telescope's 200 ft+lb:s Reaction
Wheels would be needed to counteract these
torques.

Obviously, new and larger torque
devices must be provided. It appears that
four single gimbal control moment gyros of
an existing design can provide sufficient
control authority. To prevent the momen-
tum exchange system from saturating, the
secular momentum buildup is continuously
reacted against the Earth'’s magnetic field
by utilizing three magnetic torquer bars
per cont:fol axis.

Several design approaches for the
FGS were investigated. We selected an FGS
which uses part of the field from one AIT
that has its total field enlarged to
obtain the required probability of guide
star acquisition. This system is capable
of meeting the 0.001 arcsec resolution

. requirements.
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Summary of COSMIC Technology Readiness

Several areas cf advanced technology
were examined that should increase the
probability that COSMIC can meet its
mission objectives, especially for the
full cross confiquration. The structural
members for the metering structure must be
designed using very low Coefficient of
Thermal Expansion materials to meet the
one-tenth wavelength criterion over the
long length of COSMIC. Materials, manu-~
facturing techniques, and methods of join-
ing members should be examined in detail.

The large COSMIC configuration will
require new attitude control actuators
that have the precision of Space Tele-
scope, but are several times larger than
Space Telescope actuators. At the shorter
wavelengths and for the cruciform configu-
ration the expected resolution will re~
quire that the subsystems and structure be
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designed for the 0,0005 arcsec stabffity
goal. Improvements in sensing for the
fine guidance and aspect determination
will require development of more accurate
rate gyros and star trackers with less
noise than those currently available,

wWhile devices for measuring and
correcting the optical path distances
from each collecting telescope to the
science instruments were not addressed,
emphasis should be placed in this general
technology area.

COSMIC uses photon-counting detectors
on the science instruments with outputs
telemetered to Earth for image reconstruc-
tion. The COSMIC subsystems selection and
permissible performance ranges must be
related to image quality and/or complexity
of data reconstruction, currently under
investigation. A greater understanding of
those relationships could lead to a
relaxation of spacecraft pointing and
structural stability requivements,

Conclusion

Results from preliminary studies of
two large interferometers in space have
been presented that would lead to major
advances in capabilities for astrophysics

during the next 30 years.

At radio wavelengths the technology
is generally available to place a VLBI
station in Earth orbit. However, large
(~50 m) aperture deployable antennas will
probably reguire demonstration in space.

For UV/visible spectral coverage
COSMIC is a very attractive approach that
is both theoretically and practically
feasible. ‘Although major technology
barriers have not been identified in our
studies thus far, one must recognize that
the development of the large systems
presented here poses formidable tasks in
orbital #gsembly and servicing, mainten-
ance of optical coherency, pointing and
stability of the spacecraft and thermal
control.

For current systems the accepted
approach is to verify performance through
extensive ground testing., However, the
new generation of large aperture instru-
ments which have structural frequencies as
low as a few Hertz can only be adeguately
tested as functional systems in space. It
is thus imperative that considerable space
demonstration work precede any commitment
to a specific design of a long duration
space system. Since the space demonstra-
tion capability would lead the design of
the final system by several years, it
would actually establish many of the
technology reguirements.
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The theoretical work that Warren Davis has been doing during the
past three months has led to a better understanding of the image
reconstruction problem for COSMIC (OCTAS), and has suggested a simple
computer technigue which will be illustrated in this memo. Part of
the motivation for writing this computer program was to gain some
experience with the practical aspects of generating an image, doing
fast Fourier transforms with the array processor, and displaying the
results in a meaningful way. The program also provides a simple
reconstruction technigue as a baseline against which more refined
methods can be compared later. The name of this program, CRUDE, is
intended o convey a sense of its current state of sophistication. 1In
fact, only a very few of the theoretical constructs which appear in
Davis' notes on this subject have been used in the current computer
program; many as yet untouched areas must be explbored before we can
claim to be able to extract the full amount of information from the
individual images produced by a linear array of coherent telescopes.

Consider a single image of a small region of the sky as formed
by an ideal, diffraction-limited telescope having an aperture which is
essentially a long, narrow slit. The diffraction pattern in the focal
plane which corresponds toaip01nt source in the sky will also be
elongated, but at a rlght angle to the aperture slit. This image
clearly contains the maximum available amount of high-resolution information

i1 one spatial direction, but little information in the orthogonal direction.

We can demonstrate this by taking the two-dimensional Fourier transform
of the image: we will find many more Fourier coefficients going out
in the high-resolution direction than we will in the low-resolution
direction. Suppose we save these coefficients.

Now we imagine the detector to be fixed in inertial space, while
the telescope array is rotated, so the center of each star image will
not move with respect to the detector, but the diffraction pattern will
rotate about each bright point source. An image with such a rotated
aperture will have high-resolution information in a different direction,
so Fourier-transforming the new image and combining this result with
the original will start to f£fill in the frequency plane. C(Clearly some
low-frequency points will be represented in both views and they will
be disproportionally represented unless we allow for this multiple
counting; a weight function of some sort can easily be used which
essentially will keep track of the degree to which each frequency point
has been sampled by the various rotated slit apertures. After all views
have been added, this weight can be used to normalize each frequency

DL
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point. The inverse Fourier transform will then be a representation

of the star field which c¢ontains essentially all measured high-spatial-
frequency components in all directions, This reconstructed star field
should be essentially the same as could have been obtained with a single
large mirrox having a diameter equal to the length of the slit-aperture
telescope, and this is indeed true, as we shall show below,

1. Conventional telescope apertures. To illustrate these concepts
and to show how program CRUDE can be used to display the various stages
in a calculation, we will first discuss what happens when a conventional
circular telescope aperture is used to image a point source. In the
following figures we will displady various 2-dimensional objects,
functions, or images as points on a 64 by 64 grid, with contour levels
drawn at either 9 intervals (ie, 10, 20, ..., 90 percent) or at 5
intervals (ie, 16, 33, 50, 67, 83 percent). Above each contour
diagram there is plot displaying a slice through the same data, from
left to right; the slice is positioned to include the peak data point.
In Fig. la we show a single large telescope mirror which is circular
to within the discrete limits of our grid, and has unity transmission
within this circle. The mirror diameter is 31 units.

For photons of a given wavelength, the diffraction pattern of a
telescope is conveniently given by the Fourier transform of the auto~-
correlation of the aperture transmission, as described in Davis' notes
(egqn. 26). The autocorrelation can be calculated either by stepping
the aperture across itself and multiplying a total of 64 x 64 times,
or more conveniently by calculating the Fourier transform, taking the
square magnitude, and again Fourier transforming (eqns. 24 and 25).
Using the latter technique, we calculate the autocorrelation shown in
Fig. 1lb, where the lower left-hand corner point is the origin, ie.,
the point which corresponds to zero relative displacement. between
the multiplied apertures. This figure and all others are periodic
modulo 64 points, so the plane should be considered to be tiled with
such figures, making it clear that the four filled corners of Fig. 1b
can be looked upon as offset segments of circles centered on the origin.
The total extent of these circles is just one point less than twice
the telescope diameter, as expected (Davis' egn. 197). Again, viewing
Fig. lb as the Fourier transform of the diffraction pattern of the
aperture, we see that the origin corresponds to the zero-frequency
or DC point, and that higher spatial frequencies correspond to points
farther from the origin. Those points beyond 64/2 = 32 points in either
direction are aliased, and the values in these 3 quadrants should be
considered to be translated to the left by 64 points so as to surround
the origin.

The image of a single point-like star, as seen by the telescope
in Pig. la, is shown in Fig. lc. This image was calculated by first
setting up a single (1 pixel) star, then calculating the Fourier
transform.of the star (in this case a complex vector with unity
sagnitude everywhere in the frequency plane), multiplying by Fig. lb,
inverse Fourier transforming, and displaying the real part as seen in
Fig. lc.
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Continuing the illustration, we show in Figs. 2 and 3 the

corresponding apertures, autocorrelations, and star images from circular

filrrors with diameters of 15 and 7 pixels respectively. As expected,
gmaller mirrors sample fewer of the spatial high frequencies, and
therefore produce broader star images.

With these three images before us, it is of interest to attack
an absolute scale to the figures and make » comparison with standard
measures of resolution. Interpolating between the discrete data
points shown in the upper parts of Figs, l¢, 2¢ and 3¢, we find values
for the full-width at half-maximum (FWHM) of 2,18, 4.43, and 9.67
pixels, respectively. Referring to Davis' eqn. 172, we f£ind that the
field-of view, ie. the width of Fig. lc, 2c, or 3¢, is given by
A/4% where A is the wavelength and Ay is the sample interval across
the mirror, ie. the pixel size in Fig. la, 2a, or 3a., If we choose
a visible wavelength A = 0.5 micron, and a telescope scaie factor of
Ax = 1 meter per pixel, we find a field-of-view of 0,103 arc-sec, which
for 64 pixels gives a scale factor of 1.61 milli-arc-sec per pixel. The
mirrors in Figs la, 2a, and 3a are then 31, 15, and 7 meters in diameter,
and the stars have FWHM = 3,5, 7.1, and 15.6 milli-arc-sec, respectively.

To compare this with the clsssical equation for the intensity
distribution given by [2 7 (Z)/ZJ ; where z is a distance scaled by
mA/D and D is the telescope diameter, we f£ind that this function has
a FWHM of 1.03 )\/D and a distance to the first zero of 1.22 A/D.
This predicts values of FWHM = 3.4, 7.1, and 15.2, all of which are
close enough to the hand-measured values that the differences can be
attributed to uncertainties in the linear interpolation process, and
the discrete approximation to a circular mirror (which biases the
perimeter to be less than or equal to a specified diameter,; so the
diffraction pattern is always wider than predicted by the classical
formula) .

2. Linear apertures. The imaging properties of a coherent linear
array of telescopes will now be sketched in a way that attempts to
clarify the relationship between a circular aperture and a rotating
linear aperture. This discussion alsgo applies to rectangular single
mirror segments, since it is the overall shape of the aperture, not
the details of construction, that matters here, In Fig. 4a we show
an aperture which is 3 by 15 pixels, or 3 by 15 meters using our
previous scaling for the sake of concreteness. The autocorrelation of
the aperture appears in Fig. 4b, where the lower left-hand corner is the
zero spatial-frequency point. Note that the orientation of the aperture
is important, since the higher spatial frequencies are sampled in a
direction parallel to the long axis of the aperture. In Fig. 4c we show
the effect of this aperture on a star field which consists of 3 stars of
equal intensity; 2 of the stars are completely unresolved with this
viewing angle. (In this and the following, only 5 contour levels appear
in the figures.)
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If we now imagine the detector to stay fixed with respect to
inertial space, while the aperture is rotated by 45 degrees, we have the
situation shown in Fig, 5. Note that the rather simple technigue which
iy employed to rotate the discrete 3 by 15 aperture sometimes produses
edge distortions and even gaps in the rotated array, bcith of which are
seen in the aperture drawn in Fig, 5a. The effects of these edge
distortions and gaps on the final image are relatively minor however,
since the overall shape of the aperture is not strongly affected. The
frequency plane coverage is shown in Fig. 5b, and the star field image
appears in Fig. 5c.

To complete the present example we show in Fig. 6 the case where the
rotation has reached 90 degrees. Here the 3 stars have been completely
smeared into one feature. In the next section we show how these
snapshots can be combined and an image reconstructed.

3, Image reconstruction. The key idea behind our present image
reconstruction scheme is given by Davis' eqn. 35, namely that we consider
a stack of frequency planes and that we simply add these planes together,
with a suitable filtering function if desired. This sum should be
properly normalized to account for the greater number of low frequency
measurements with respect to samples at the rotacing high freguency end
of the autocorrelation function. The real part of the inverse Fouriex
transform then is the desired image. This method is very general, as
can be seen from the fact that in the limit of very long and narrow
apertures, the calculation yields just the computer-~assisted-tomographic
(CAT) scan reconstruction (see Davis, pp. 9-11).

The entire simulation procedure which was used can be outlined as
follows:

A. Set up real stars within the basic 64 by 64 pixel field-of~-view.
B. Calculate FT of atars and rave.

C. Set up an "ideal" aperture shape by assigning real 1l's to the
3 by 15 aperture and 0's elsewhere.

D. Rotate the aperture to the nearest discrete grid points available
for a specified rotation angle.

E. Set up a "noisy" aperture by following C and D, except that the l's
are replaced by exp (ix) where x is a real random number between
+X/2 and =X/2 and X is the peak-to-peak phase error assigned to
each mirror element.

F. For the "ideal" aperture, calculate the FT, find the magnitude
squared at each point, and calculate a second FT; this is the
autocorrelation function.

G. For the "noisy" aperture, follow step F.

H. Set up background noise, by filling the 64 by 64 field~of-view with
real random numbers y, where y is between +Y¥/2 and -Y/2 and Y is
the peak-to-peak background noise assigned to each pixel in the
field of view, from CCD read-out noise, cosmic rays, etc.
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I. Calculate the FT of the background noise.

J, Calculate the effect of image smearing and added noise by
forming (B x G) + I.

K, Calculate a filter function according to whether filter number
0, 1, or 2 iz desired:
Filter 0 = real 1l's £illing 64 by 64;

Filter 1 = real 1l's where the magnitude of F is essentially non-zero;

Filter 2 = magnhitude of F.

L. Filter the image FT by forming J x K, and add this to previously
formed stack, if any.

M., Calculate the current contribution to the normalizing function by
adding K into a separate stack.

N. If there are more angles to contribute to the final image, return
to step C, and repeat this until the desired number of images has
been added, typically 1, B, or lé6.

P. For the summed data now, calculate the normalized, weighted ima7je
F7 by forming L/M.

Q. Find the final image by calculating the inverse FT of P and
keeping the real part.

The above reconstruction procedure differs from that discussed by
Davis (egn. 56) in that Davis' normalizing factor includes an extra
multiplicative aperture term; in the noise-free case this term will
enhance the angular resolption substantially, but when noise is included
the algorithm becomes ufiztable, The present method of reconstruction
has not yet been theoretically analyzed to optimize the filtering (K)
or the normalization (M), and shculd be regarded as being purely exploratory.

For reference we show in Fig. 7 the input star field (step A above)
which was used to generate Figs. 4, 5, and 6. Carrying out the full
reconstruction as outlined above, in the noise~free case and using
filter type 2, we have tried both 8 and 16 angle views (between 0 and 180
degrees) with the results shown in Fig. 8 and 9a, respectively. Except
for an improved baseline, the two reconstructions are quite similar.
Both show a clean separation of the wide-spaced components, and a clear .
elongation of the close-spaced stars. For comparison, we show what this
star field would look like if we used a small telescope with a 3 by 3
aperture (Fig. 9b), and a large telescope with a round aperture 15
pixels in diameter (Fig. 9c). Note that Fig. 9a is quite similar to
Fig. 9c¢, but with slightly stronger sidelobes (see also Fig. 4c). In
comparing these figures, note that the diffraction FWHM of a 15 pixel
circular mirror is 4.4 pixels, and the star separations shown are 3
and 10 pixels, so the close pair is expected to be unresolved.

;
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4. Background noise and filters. We now present a catalog of
images showing the effects of adding background noise as described
in section 3H, At present the noise level is not clearly related to
the amplitudes of the stars; this will have to be clarified in later
versions of the program. For now, amounts of noise with peak~to-peak
parameters of 0.0, 0.1, and 1.0 have been tried, and the effects of
the 3 filter schemes have been examined. In Fig. 10 we show the
results of using filter types O, 1L, and 2 with no noise. Figs. 11
and 12 are similar, but with noise levels of 0.1 and 1.0 respectively,
Several points can be made from these figures. First, filter type 0
gives large, extended wings and relatively poor noise rejection, as
could be expected from adding unweighted and unfiltered data. Second,
filter types 1 and 2 are roughly -comparable in their effects, with
type 1 apparently giving somewhat better smoothing of the noise; this
is surprising because by design filter type 2 smoothly rolls off the
higher frequencies within the passband, whereas type 1 keeps all
frequency components right out to the edge of the passband and then cuts
off sharply. Future work will be needed to better define useful
filters which will deliver optimum resolution at a given noise level.

5, Optical phase fluctuations. The mirror train which lies
between the incident wavefront and the detector will undoubtedly
include various types of imperfections. We assume here that there
are no gross tip-tilt errors in the alignment of the combining wavefronts,
but that there is a residual, random piston error distributed over the
pixels which represent the mirrors. 1In Fig. 13 we show the effect of
introducing piston errors with peak-to-peak phase shifts uniformly
distributed over the ranges of 36, 90, 180, and 360 degrees, corresponding
to amplitudes of A/10, A/4, A/2, and A. The rms values are about 4 times
smaller than the peak-to-peak values. We see from Fig. 13b in particular
that an acceptable upper limit on the phase variation is probably somewhat
greater than A/4, assuming that we require a signal-to~noise of about 100
in the image. If there are 7 mirrors in_the optical path, the surface
quality on each mirror must be roughly 74/2 times better, or A/10. This
is certainly within the limits of conventional optical polishing technology
and should not be too expensive to achieve. This value should be only
tentatively entexrtained however until further computer simulations have
been completed, using lore pixels across each mirror, and including some
tip-tilt errors as well.
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Fig. 7 Three point-like stars Pig. 9a Reconstruction
Fig. 8 Reconstruction using 16 angle views,
using 8 angle views and a 3 x 15 telescope

and a 3 x 15 array

Ny e
ORIGINAL Palis 1
OF POOR QUALITV,

- g
Fig. 9b Single image using Fig. 9¢ Single image using
one 3 x 3 telescope aperture one round 15 pixel aperture
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To! bistribution (revised version)
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Subject: Zomputer demonstration of the initial coherent alignment of COSMIC
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1. Introduction. This memo is an illustrated demonstration
of the technique by which the COSMIC telescope array can be easily
aligned using a small or distant star. To starf, we assume that each
independent telescope module is essentially optically ideal, and that
the recombination optics and detector are likewise ideal. Initially,
however, these ideal telescopes are assumed to be mutually non-coherent,
so that each one is pointing in a slightly different direction and
each is slightly ahead or behind its proper position with respect to
the incoming wavefront.

The presentation of results here follows that in the previous
memo, "first results from a crude image reconstruction computer
program.”" Modificaticns to that program (CRUDE) now allow each
telescope module to be tipped, tilted, and piston displaced. For
each case, we show a contour diagram of the intensity in the focal
piane, along with a cross-section through the focal-plane which
includes the point of maximum intensity.

2. Tip-tilt correction. We start by blocking the beams from
all but two of the telescopes. Taking these two to be adjacent, and
square, we will initially see two sets of star images in the focal plane.
The telescope can now be focussed so that each one produces images which
are as small in diameter as is possible. If we look at a portion of
this field of view, we will have a situation similar to that shown in
Fig. la, where a single star appears double because the mirrors are
tilted with respect to one another. We have offset the second wavefront*
by one wavelength across its width for an angular tilt of A/D, and
also by the same angular amount in the perpendicular direction, for a
net shift of v2 A/D, where D is the mirror dimension.

To combine the images, it is easy to see that a telescope
operator can reduce the error to essentially zeroc along one axis
without much difficulty, bringing us to the state shown in Fig. 1b.
Here we see interference patterns developing in the overlap region.
Successive tilts in the remaining direction produce the images shown in
Figs. lc, 4, e, and £, going to tilts of (0.5, 0.25, 0.125, and 0.0)A/D
respectively.

*Phroughout, we will refer to the state of the wavefront, rather than the
state of the mirrors or other optical componeénts. Thus a wavefront tilt

of A/D will be produced when the primary mirror is tilted by 0.5 A/D, and
likewise for piston errors.
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3. Monochromatic piston correction. The telescopes in Fig. 1
had no piston displacement, i.e. we assumed coincident arrival of
wavefronts in the focal plane, If there had been, say piston error
of 0.5\, then Fig. la would still fairly accurately describe the images
since they do not yet overlap, but bringing the tip-tilt errors to zero
will produce the result in Fig. 2a, rather than that in Fig. 1f.

The "double image" in Fig. 2a is an arxtifact produced by the exact

~cancellation of amplitudes at the position where the star should ideally

have been imaged. As we reduce the piston error to (0,25, 0.125, and
0.0)A we find that one of the images grows at the expense of the other,
and that the peak intensity shifts toward the expected star position.

4. Combined tip-tilt and piston correction. The first two
mirrors (or telescope modules) are now perfectly aligned. In general, of
course, both tip~tilt and piston errors will be present together. However
it is not necessary to demonstrate the simultaneous correction of both
conditions because it is clear from Fig. la that we can immediately
determine the tip-tilt error simply by measuring the offset between
images and doing a one step correction, which takes us immediately to
Fig. 2a.

5. Polychromatic piston correction. In monochromatic light
the piston correction can only be made modulo one wavelength; but it is
also reasonable to expect that if we use a wide spectral band we can
reduce the error to at most a very few wavelengths, since we then
have the combined leverage of the longest and shortest wavelengthg to
produce the sharpest possible image. As an example, suppose that the
mechanical integrity and structural stability of the COSMIC array is
such that we can assume each wavefront to be within a piston displacement
p >> A of the ideal position.

Then using a filter to generate monochromatic light, and
following the correction steps shown in Figs. 1 and 2, we adjust the
piston position of the second wavefront by an amount < 1.0A. If we
define n = p/A, there are approximately n >> 1 different positions
where we will get about the same image quality, and these positions
are spaced by A. Suppose that the accuracy of positioning is €},
where € << 1.0; comparison of Fig. 2c with 2d suggests that e » 0.1 is
appropriate. This argument can also be used to show that the spectral
purity of the nominally monochromatic beam does not have to be any
better than AA= €A, which is easy to produce with an interference
filter or a circular variable filter,

We now use a different filter ‘to select a second wavelength Az'
where A _ differs from the first wavelength A by a fractional amount given
by the quantity e, so that A, ~ A(1.0 + €). In general this will
require a slightly different“piston correction, again < 1.0A,. Now
the number of possible positions where both A and A give good images
is reduced to approximately en, spaced by Az/e ~OA/JE,
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If we repeat this process with a third wavelength A, ~ A (1.0 + 2¢),
we will again increase the spacing between acceptable piston displacements
to approximately A/e?, i.e., another factor of l/e. If we carry out
this process a total of m times, we wil%_incxease the spacing between
acceptable piston spacings to about A/e ; we can stop when this quantity
g;o§§1as large as the original positional uncertainty p, so we have

£ = p.

If we use the above estimate that € = 0.1, and take A = 0.5
micron and p = 5 mm (say), then we require m = 5, Thus we need 5
different filters centered at wavelengths 0.50, 0.55, 0.60, 0.65,
0.70 microns. Equivalently, it is likely to be true that we could
simply use a single wide band ranging from 0.50 to 0.70 microns and
sweep the mirror through the full adjustment range of 5 mm, searching
for the minimum image width or brightest central peak.

6. Multi-mirror corrections. The procedures described above
will bring two adjacent mirrors into essentially perfect alignment;
remaining imperfections are clearly below the level of measurement,
and are therefore unimportant. The other telescope mirrors can be
aligned in succegsion. For example, the first mirror could be shuttered,
and mirrors number two and three co-aligned, then three and four, etc.
Uncovering all mirrors together should yield a well-aligned telescope ;
array, with further minor adjustments needed only to eliminate any i
accumulated errors. ‘

It may also be possible to devise even more automatic schemes
whereby we perturb each mirror control element by a fixed amount,
measure the image, and then calculate the complete correction needed,
using a matrix inversion (for the linearized case) or an inverted
image formation program (for the more general case). In the ideal
case, of course, a single image measurement should suffice in order to :
generate the full correction needed, but this is not likely to be
stable in the presence of noise. Nevertheless, these cases all deserve
further investigation. )

e S
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Distribution:
N. P. Carleton
W. F. Davis !
H. Gursky, MRL
M. Nein, MSFC
R. Taylor
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a. b. c.

Fig. 1. Images from a single star, as formed by two adjacent

telescope mirrors, each 7 by 7 elements in size, with second wavefront

tipped and tilted with respect to the first mirror.
(a.) Tilt-tip from edge-to-edge of second wavefront is one wavelength

(1.0A) on each axis, so image splits in two parts, such that

the first (reference} mirror's image remains centered.
(b.) Up-down tip on one axis restored to zero (0.0)), with other

axis tilt remaining at one wavelength (1.0A).
(c.) Tilt reduced to 0.5).

d.. , 'l e. £.

(d.) Tilt reduced to 0.25X.

{e.) Tilt reduced to 0.125A.

(£.) Tilt reduced to zero (0.0)); note that, as may be expected,
Figs. 1l(e) and (f) are very similar. .
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a.

Fig. 2., Images from a single star, as formed by

two adjacent telescope mirrors, each 7 by

7 elements in size, with second mirror
displaced toward the star (i.e. a piston error)

(a.) Piston error of one-half wavelength (0.5)) in the wavefront.

b.

0o

with respect to the first mirror.

{b.) Piston error reduced to 0.25).

.

Rt p———— b, =8 aai s @t & —anr

.

da.

(c.) Piston error reduced to 0.125A.°
(d.) Piston error reduced to zerc (0.0)).
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Memo
To: Distribution January 25, 1983

From: W. A. Traub

Subject: Lab demonstration of image reconstruction

This is a brief account of the first laboratory
simulation of COSMIC, with computer reconstruction of the
image. The work was done in August and September 1982, with
Drs. J.Geary and N, P. Carleton in the lab and John
Lavagnino at the computer.

Qptics. The optical set-up is shown in Fig. 1. The light
box, aperture slit, lens and CCD camera were clamped to a
simple triangular-cross-section optical bench. The wood
light box contains a low-wattage incandescent frosted bulb,
run at 110 volts. The object mask is a 6 by 12 mm T-shaped
slot milled in a thin sheet of brass, and backed by a piece
of diffusing glass. The object mask and lens are separated
by about 1067 mm. The aperture slit is from a lab
monochromator, formed by evaporated metal jaws on glass;
the width is 102 = 2 um and length is 534 = 12 um. The
aperture slit mount can be rotated about the optical axis,
and set by reference to an azimuth grid of polar coordinate
paper taped to the mount. A blue-transmitting filter
follows. The camera uses a multi-element £/5.6, 135 mm
Componan Schneider-Kreuznach lens. The CCD is a thinned,
back-illuminated RCA 320-by-5l12-element device, with 30 um
pixels, and essentially no dead space. The chip is located
behind a window in an evacuated space, and is cooled by
connection to an LN, reserveir to about 150 K.

Exposure, With the slit removed, the lens is first focussed .

at full aperture. With the slit inserted, the image is only
slightly blurred in the 534 um direction, but strongly
blurred in the 102 um direction. Eighteen frames are
exposed at slit rotation increments of 10 degrees. Each
frame consists of a short bias exposure and a long object
exposure, in any order, summed on the CCD chip. The bias
exposure is 1/30 sec, with the slit assembly removed, the
object blocked, and the camera illuminated by dim room light
scattered from a white surface; the bias level amounts to
about 100 counts/pixel, and is needed because there is a
loss of almost this amount in the camera readout. With the
slit in place, the object exposure is 120 sec, giving a peak
intensity of about 8000 counts/pixel. A flat field exposure
is also made, like the bias exposure, but with a higher
light level; the average intensity is 12000 counts/pixel.
The conversion factor is 1 count > 30 electrons.

#l
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The 18 frames are spread over 2 days, since 5 of ihe
original frames are contaminated by a ghost. A 15 degree
tilt of the filter throws the ghost out of the field. The
18 useable frames are flat-fielded with standard Nova
software. Readout defects affecting several columns outside
the main image are removed by local averaging.

The centering is slightly different on the 2 days.
From direct images without the slit, the first group appears
to be centered at (row, column) = (208.5, 205(+)), and the
second group is centered at (218(+), 204.5). A 256 by 256
pixel array is selected from each frame, centered at (208,
205) for the first group, and (218, 204) for the second
group. There is thus some residual centering difference
between the groups. The Nova images are recorded on tape
for subsequent processing.

Reconstruction, The resulting cleﬁn, centered images are
manipulated and displayed on the I“S/VAX system. All images
are first reduced to 128 by 128 pixels, by binning groups of
2 by 2; this is done to accommodate the finite storage
space in the Array Processor.

The reconstruction algorithm needs to know the aperture
shape,; size, and orientation for each exposure. In our
discrete Fourier transform approximation, with 128 points in
each dimension, a recEangular function of width W pixels has
a DFT which is a sinc“ function having zeroes spaced at
multiples of p_ = 128/W pixels. Thus Ehe recorded image is
(ideally) the Qonvolution of this sinc® function with the
geometric-optics image.

We determine W by measuring the relative positions of
the lst and 2nd secondary maxima in a selected image, where
the object axes are conveniently aligned with the pixel
axes. As sketched in Fig. 2, the diffraction pattern is

(sin np/po)z/(up/po)z. (1)
The first zero occurs at pixel
Py = (A/d) £ (2)
where f is the distance from the lens to the image:
£71 + (206771 = (135)7Y, or £ = 155 mm. (3)
From 7 measurements of various secondary maxima at positions
p(max) = (integer + 1/2)po (4)
we find

P, ™ 23.90 = 0.76 pixel. (5)

e i A
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Using equation (1) we calculate an effective wavelength
. A= 0.472 + 0,015 um, - (6)
The disgrete equivalent aperture width is
W= 128/po = 5,36 £ 0.17 pixel. (7)
Given the measured length to width ratio of the slit
535/102 = 5.24 # 0.16 (8)

we calculate the discrete equivalent aperture length as

o

L =5,24 x 5.36 = 28.09 = 1.24 pixel. (9)

The reconstruction algorithm requires the
autocorrelation function, which we usually generate from the
DFT of the aperture transmission function. However since
(L,W) are not whole integers, some approximation is needed.
A modification to the program now allows non-integer
aperture sizes, by adding a one-pixel fringe around the
aperture with a fractional transmissifna instead of unity or
zero transmission. The algorithm is also improved by a new
aperture rotation scheme which searches out and eliminates
gaps which occur as the aperture is numerically rotated on a
discrete grid of points. However there still remains the
effect that a numerically rotated aperture does not turn
smoothly, but in discrete steps, generally producing a
staircase profile where it should be smooth. Numerical
simulations verified that the above modifications did indeed
improve the quality of the reconstruction. Further
simulations with a numerical point source also verified the
two-dimensional analog of equation (1), as well as the
fringe-pixel approximation which leads to

P,W X const. = 122 to 129 (10)
in the examples tested.

The mathematical procedure is described in Traub and
Davis (1982), SPIE 332, 164-175. 1In Fig. 3 and 4 we show
individual images at 0, 40, 90 degrees, and the final
reconstructed image. Several variations of parameters were
tried, none of which had any strong effect on the
reconstructed image. First we tried 19 frames instead of
18, with only slight improvement. Next we tried filter 1
instead of filter 2, and it was worse, as expected. We
tried various values of the cutoff parameter (e) which
prevents very small numbers from being dividgg by other,
even smaller numbers; we found e = 0 and 10 to be
essentially identical, but 10 to be large enough to
degrade the image noticeably. We tried changing the
numerical aperture dimensions, finding +10 percent to give a

slightly sharper image, and -10 percent to give a slightly
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poorer image. Finally we tried changing the initial offset
angle of the aperture with respect to the pixel axes, and
found -5 degrees to be a bit worse, +5 degrees to be a bit
better, in agreement with independent estimates that +3
degrees or so would be most appropriate,

Conclusion,. Our first laboratory demonstration of image
reconstruction was remarkably successful., Many non-ideal
factors entered into the process, amply demonstrating that
the algorithm is immune to small perturbations. 1In the
future, with an improved optical system, we can expect to do
even better.
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Figure 1.

chip.

Optical arrangement.
back-illuminated object at the left, the light passes
through the defining aperture slit, the blue filter, an
imaging lens, a vacuum window, and finally falls on the CCD

astronomical telescope aperture.

close as possible.
system can contribute to ghosts, although the (untilted)
filter-reflection ghost was the only major one noted.
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Starting from the

Note that the aperture slit is not being used in
strictly parallel light as would be required to simulate an
Also neither is the
aperture coincident with the imaging lens, although it is as
Numerous glass-air surfaces in this
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Figure 2.

text) are shown on the left.
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The slit, and its digital approximation (see
A schematic diffraction

pattern with zero positions marked is shown on the right.
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o A
Reconstruction of 18 CCD Images, to Demonstrate COSMIC Image Reconstruction Method.
N\

Reconstructed
Image.
Equivalent
Circular
Aperture

Figure 3. 1Images generated in the Izs, originally rendered
in false color on a transparency. The 0, 40, and 950 degree
images are shown, along with the relative orientation of the
aperture slit. The reconstructed image is shown at the
lower right, along with the equivalent diameter circular
aperture.
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(a)

(b)

(c)

(d) \ /

Figure 4. Contour diagrams of measvred intensity are shown

in (a)=-(c) for the 0,
contours are drawn at the 10, 2
levels after subtraction of a w

40, and 90 degree images. All
0, 30,...80, 90 percent
eak background. The

reconstructed image is (d), showing a small ghost feature at
the 10 percent level near the inner edge of the arms,
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Cover: General view of the full cruciform configuration of COSMIC,

developed during the Marshall Space Flicht Center engineering conceptual
definition study (1981). Each of the four main arms is a telescope module
which has been brought into orbit by the Space Shuttle. The fully-extended
sunshades distributed along the upper surface of each telescope module

are collapsed during launch. Also the downward projecting spacecraft and
articulated solar panels are folded for launch. Each telescope module is
sized to nearly £fill the Shuttle bay (4.6 m diameter, 18.3 m length).

The first telescope module to be placed in orbit will have an optical

baseline of 14 m, and will be fully operational. The second telescope

module will increase the optical baseline to 35 m. Third and fourth modules
may be added to form a cruciform shape, although recent image reconstruction .
developments suggest that the cross arms may not be needed. Each telescope
module is capable of supporting 7 collecting mirrors, each 1.8 m across

(square as shown, or round); only 4 of the 7 possible telescopes in each
module are shown, and these are arranged in a minimum redundancy configuration,
although ideally of course all available positions will be utilized. A
diffraction limited image of the sky is formed in a centrally located

focal plane, which is instrumented with cameras and spectrometers analogous

to those in Space Telescope.
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SCIENTIFIC PROSPECTS WITH THE COSMIC TELESCOPE ARRAY

INTRODUCTION

In this paper we discuss for the first time a selected number of
unique astronomical observations which would be possible with an oxbiting
telescope having both a large collecting area and an angular resolution in the
milli-arc-second range. Most of these observations will allow us to study at
firsthand . phenomena for which we currently have little or no direct evidence.
In many cases we will finally be able to resolve objects on an angular scale
such that significant new features and new events can be seen, vastly
enhancing the opportunity for discovery. In other cases we will be extending
to a much greater distance our present capabilities for both isoiating
individual objects and making morphological measurements, so we will be able
to study a significantly increased fraction of the universe at the same

level that we can now with relatively nearby objects.

The COSMIC telescope array has been specifically designed to
investigate the class of problems described in this paper. COSMIC stands for
coherent oéticél system of modular imaging collectors. 1In particular we
envision a linear array of orbiting telescopes held in a rigid framework
which rotates about its line of sight, sweeping out an equivalent diameter
circular aperture. All telescopes feed a common focal plane where a
diffraction-limited image is formed when the optical path lengths are

adjusted to be within a quarter wavelength. For resolvable stellar surfaces

'a narrow band filter or attenuator will be used to avoid detector saturation;

otherwise broad-band imaging will be the normal mode of operation. The
instantaneous diffraction-limited image of a point source is narrow along
the array's major axis only, but by using an already demonstrated image
reconstruction technique it will be easy to build up fully resolved images
after a 180 degree rotation of the array,‘even in the preseuce of noise and
optical imperfections. A 1981 conéeptual definition study of COSMIC by
engineering personnel at Marshall Space Flight Center established that the

overall concept was viable using currently available or anticipated technology.

Focal plane instrumentation could be similar to that now being built for

Space Telescope in that both cameras and spectrometers can be provided, the

TSy
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latter taking advantage of the slit-like nature of thé imaging point response
function. Rapid read-out of the focal plane will ease spacecraft pointing
requirements, now expected to be less stringent than for Space Telescope.

For concreteness, this report considers a COSMIC telescope array
which is 35 m in length, brought up in two shorter sections by two Space
Shuttle £flights, although useful science can be done with only the first
section in place, There are up to 14 collecting mirrors, each 1.8 m in
diameter, feeding a central focal plane. The wavelength range is roughly
0.3 um to 1,1 pm; at the short wavelength end this corresponds to an angular
resolution A/D = 1.8 milli-arc-sec, and in the visible the resolution is
3 milli-arc-sec. The array is a natural follow-on for Space Telescope,
since it has about 28 times better angular resclution and 8 times greater
collecting area. We expect that the limiting magnitude for COSMIC will
be in the neighborhood of m, = 29, for about 100 counts in a one hour

observation.

The observing programs in this report were selected by the contributing

authors from the perspective of their current research activities. Each of

these programs has requirements in angular resolution and collecting area
which go beyond the capabilities of Space Telescope. The only fundamental
limitation is one which is common te all high angular resolution telescopes,

including ST and VLBI, viz., the minimum detectable surface brightness

increases as the angular resolution element decreases. Fortunately in the

i
e

visible, as in the radio, there are a large number of classes of objects with
intrinsically high surface brightness in the milli-arc-sec size range. The

enhanced angular resolution of COSMIC will finally allow us to cross that

boundary which separates our present status, where most astrophysical

i
H
' }

objects appear either as point sources or as hopelessly smeared images,

from our potential future status, where a vast number of objects will

RS

become well enough resolved that we can begin to understand their true
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COMETS

Comet nuclei are thought to have diameters of from 1-10 km. Because
of this small size and because of the difficulty in distinguishing between

the solid nucleus and the bright, inner coma, there has not been a definitive,

unambiguous measurement of a nucleus. Radar observation can give useful

limits on the radar cross-section. Full scale COSMIC resolution capabilities

should be adequate t0 resolve the nucleus of a comet passing within about
0.2 A.U., of Earth if the contrast between the nucleus and the coma - which

will be fully developed at that heliocentric distance - is sufficiently high.

COSMIC will also be able to detect and measure the velocities of comet

nuclei which have split during perihelion passage.

COSMIC will permit detailed studies of the growth and activity of the

inner coma. This includes: the formation, velocity and, possibly, the "hot
épot" location of jets; the velocity field in the coma as displayed by any
bright feature; and the evolution of the molecular species from the time

gas is emitted from the mirface until an equilibrium is reached.

ASTEROIDS

Radii of asteroids are normally obtained by a combination of visual
and far-infrared photometry. Confirmation and/or calibration of these

somewhat indirect results by direct measurement is important.

The COSMIC telescope will permit us to examine those asteroids for

which there is some evidence of'a bound companion.
/

Earth-bound observations of asteroids are limited to whole-disk
measurements., Petrological or mineralogical differences between asteroids
are apparent from narrow-band spectrophotometric measures. The periodic
light variations seeﬁ in broad-band photoelectric photometry are probably
due to irregular shapes rather than inhomogeneities in the surface
composition but the two effects can not be separated in most asteroids by

currently available observing procedures.

-
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g Assuming a mean perihelion distance of 2.5 A.U. for main belt
asteroids and an albedo of 0,2 (measured albedus range from 0,05 to 0.4),
the resolution element in the visible would be 3.2 km with a brightness of
m,, ~ 19 per resolution element. Significant observations could be made on
most of the numbered asteroids as displayed in the following table.

No. of resolution
Perihelion magnitude No. of cases elements per diameter
15=- 16 672 25
14 - 15 666 60
13~ 14 364 160
<13 397 >270
Twelve of the asteroids included in the table are Amors with
perihelion approaches to the earth of 0.2 A.U. or less and, in addition.
( there are 19 Apollos with still smaller approach distances. For these

bodies, the resolution element will be in the range 100-400 meters.

Apollos and Amors hold a special significance in that they, or still smaller
bodies in similar orbits, are the source of meteorites. The question of
their ultimate origin - asteroids, comets, or both ~ is unresolved. If, as
believed by some, the Apollos include extinct cometary nuclei, the best

hope for studying these lies in high resolution observations by COSMIC.

JUPITER

It would be possible with COSMIC to measure the shapes and rotatién
rates of the larger of the outer satellites J6- Jl2. Time-dependent
observations of Io and studies of Jupiter's atmosphere could also be carried
out, since 1.8 milli-arc-sec at Jupiter corresponds to about 5 km resolution, ‘
which is comparable to some of the highest resolution images obtained by

g Voyager 2; for reference, the volcanic plumes on Io are about 100 km high.
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SATURN

Two particular dynamical problems in the Saturnian system require
high resolution astrometry.

(a) Positions of the two "co-orbital” satellites, 1980 Sl and 1980 S3.
These two can be observed from the earth only at the time of ring
plane passage (every 15 years). Accurate relative positions will
provide the sum of the masses of the two bodies thanks to their
unique "co-orbital" motion.

(b) Hyperion, S8, is a very irregular body whose long axis, apparently,
points toward Saturn. This satellite moves in an orbit with an
eccentricity of v 0.1l so that a libratron should occur. Measurement

of this libratron provides a knowledge of the moment of inertia ratio

of the body.

¥
.

PLUTO

A detailed survey of the Pluto system would provide us with the
planet's radius, rotation rate and axial orientation; it would also allow
us to improve the orbit of, and possibly measure the radius of, its
recently discovered satellite. Reliable values for these quantities are
unobtainable by other means - i.e. although Voyager flights may provide

such material for Uranus and Neptune, no encounters with Pluto are

scheduled.

MAIN SEQUENCE STARS

A prototypical main sequence star, o Cen, has an angular diameter of
about 10 milli-arc-sec, so one should be able to detect (using a narrow-
band filter in the K-line, for instance)'its rotation axis. It may be
possible to obtain rough information on surface distribution of activity
(whether, for example, emission is concentrated near the poles or the
equator) and, over severai years, follow crudely the "butterfly diagram" of

g i PO e BT
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latitude of activity versus phase in the activity cycle -- an experiment

of importance for stellar dynamo theory. One might detect differential
rotation (another parameter of great interest ‘for dynamo theory) with
precision sufficient to be extremely important. One could obtain information
on size and shape of active yegions or activity complexes. 1In a "magneto-
graph" mode, one could begin to map large-scale surface structure of
magnptic fields, All of these would be extremely useful, when compared

with solar behavior.

SUPERGIANTS

a Orionis has an angular diameter of 40 milli-arc~sec and reported
diameters for o Cet range up to 100 milli-arc-sec. For o Cet, this implies
as many as 30 resolution elements acress the disk, in the visible. These
M-type red giants possess very interesting and complex atmuspheric structure.
COSMIC may be able to answer some fundamental guestions; such as whether
the variability of these stars is primarily due to pulsation or temperature

changes. Spectral-line VLBI observations of H_, O and Si0 maser emission

allow one to probe the extended photospheres if these stars in great
detail. Very complex motions involving both expansion, contraction, arnd
shocks are suggested by the data. The ability of COSMIC to obtain spectral
information as a function of position on the stellar surface would greatly
aid in the understanding of this class of objects. There are a wealth of
features that should be searched for, including:
a) Brightness inhomogeneities on the disk.due to large convective cells,
predicted (Sphwarzschild) to have sizes v0.l of the radius.
b) Velocity asymmetries on the disk due to the above convective motions.
c) Overall shape changes due to photospheric motions; these are already
inferred from polarization studies by Daniel Hayes.
d) Chromospheric emission structure above the limb in strong lines like
Ca II 8542, Ha, or others; already detections of this by speckle
techniques are being reported (not yet in print).

’
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e) Variable velocity outflow in expanding shell could be mapped using
doppler-resolved imaging.
£) Radial and nonradial large-scale pulsation,

CIRCUMSTELLAR EMISSION

Emission from circumstellar material surrounding and enveloping
interacting binaries is potentially a very rich field for investigation with
narrow-band interferometry isolating excited lines like Ha, Ca II, O IV,
etc. Much X¥-ray radio, UV and visual data suggest complex structure and
motions. It would be extremely exciting to map this, for comparison with
higher-energy data, including time development.,

BINARY STARS

-

Although high~résolution observ&tions of binary stars may lack a
certain glamour, they provide fundamental information on stellar masses.
At the cost of a relatively small amount of observing time, a vast amount
of fundamental information could be gathered.

GLOBULAR CLUSTERS

The milli-arc-sec angular resolution capability of COSMIC would be of
special importance for studies of the highly condensed stellar cores of
globular clusters. Centrally condensed globular clusters have central
densities in the range 104- lO5 stars/pc3. Thus the typical stellar
separations are only ~ 0.0) parsec and swould subtend an angle of (0.2 arcsec
at typical cluster distances of 10 kpc. Staxr counts and stellar population
studies can then be carried out in cluster cores with COSMIC. This could
only be partially accomplished with ST because of both the more limited
angular resolution and sensitivity. The extra factor of & 10 in angular
resolution achieved with COSMIC will allow direct searches for visual

binaries in cluster cores, since » 2 AU separations are resolveable at

-
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nv 1 Kpe. This permits direct study of the frequency of binary systems in
cluster cores. Compact binary systems are now known to exist in cluster
cores since recent Einstein X-ray results have determined the mass of
globular cluster X~ray sources to be v 2 Me, or consistent (only) with the
sources being compact binary systems and not massive black holes. These
binary systems have presumably evolved from a significant population of
wider~separation binary systems formed by tidal capture, and it is these
systems which COSMIC could study directly.

In addition to studying the binary problem in globular cluster cores
with direct images, spatially resolved spectra (with long slits across the
core) could extend the search greatly by allowing velocity variations to be
measured for a large number of stars simultaneously. This is also of
fundamental importance for measuring the velocity dispersions in the centers
of globulars. Central velocity dispersions are now very poorly known (they
are inferred fyom line profiles in the integrated cluster spectrum) and yet
they are the most fundamental quantity of interest in describing the stellar
dynamics of dense stellar systems. Again, the great improvements .in both
resolution.and sensitivity over the ST capabilities allow much more detailed
studies to be carried out, e.g., measurements of the degree of isotropy
in the velocity dispersion vs. radius and velocity dispersions vs. stellar
mass (i.e., spectral type) to explore the central potential.

Finally, the "classic" problem of searching for central cusps in the
stellar density profile such as would arise from either a central biack
hole or a subcore of heavier; evolved stellar remnants (black holes, neutron

stars or white dwarfs) can be carried out with COSMIC better than with any

other instrument in the forseeable future. Present upper limits on the mass

of central black holes in globulars (which are not, and need not, be X-ray
sources) .are § 3000 M@' COSMIC could measure the x:"7/4 density profile cusp
expected around a central black hole for masses as small as v 50-100 M@, or
signif}cantly below the limits possible with ST. The existence of subcores
in clusters, already suggested for the X-ray clusters M15 and NGC 6624,
could similarly be explored and important constraints on stellar evolution

and the initial mass functions of globulars derived,
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ACTIVE GALACTIC NUCLET

COSMIC is well suited for imaging of galactic nuclei (Seyferts,
quasars, BL Lac objects), The structure of the central regions of AGN's -~
existence and possible variability of compact sources, accretion disk
structure, etc. ~ is a topic of great ocurrent interest. Present descriptions
of the source morphology axre based primarily on radiative transfer modeling
of spectroscopic emigsion line data, variability timescale arguments and poor
resolution (1 arc-sec) imaging. Very few AGN are bright enough radio
sources to be studied with VLBI, especially the closest objects (eq,

NGC 4151 or NGC 1068) where the smallest spatial scales would be visible,

. 80 optical imaging may provide the key to understanding these objects,

Stratoscope obgservations (0.2 arc-sec resolution) coupled with lower
resolution ground-based spectroscopy have placed some constraints on dynamical
models of M3l. ,However, models with M/L's from 0 to 50 can still be made to
fit the data! Higher resolution observations ({ 0.05 arc-sec) can distinguish
between the photometric profiles of the high and low M/L models. COSMIC
can also bg used to make high resolution cbservations of the nuclei of

other nearby galaxies with a variety of morphologies.

To illustrate with a particular example, there would be great
interest in studying the terminal results of emission flows onto active
galactic nuclei. X-ray measurements on MB7 and NGC 1275, which go down to
a level of about 1 arcsecond, permit accretion flow studies down to distances
of 100 to several hundred parsecs from the galactic nucleus.  In this regime,
there is considera?le X-ray emission with temperatures falling dowr: to a
few million degrees. At closer distances, temperatures should continue to
fall to the point where most of the emission is in the optical. Accreting
gas would form bright filaments. It would be interesting to observe this
structure on the scale of a few tenths of a parsec. Thus, the milli-
rarcserssnd optical observations would provide a means of continuing the

accretion flow studies that begins with X-rays at much larger distances.




1l
' ORIGINAL PAGL i5

OF POOR QUALITY

SUPERNOVA REMNANTS

X-ray observations of galactic SNR indicate that several
contain %nusually bright knots that are not obviously associated with
n-utron staws or pulsars. The Vela SNR and MSH 15-52 are two examples
containing brisht knots (in addition to pulsars). It would be interesting
to examine these bright knots to search for point-like components or for

very fine filamentary structure that might show up in the optical.

JETS IN GALACTIC NUCLEI

Radio astronomers are mow constructing images with an angular
resolution from 0.0003 to 0.1 2rcsec with VLBI techn'gues. These images

have proven to be exciting and revolutionary and VLBI has become an .

unparalleled tool for studying the structure and origins of the great
variety of bright sources in the Universe. At present, however, inter-
pretation of VLBI images has been limited in part because high quality

opzical images with angular resolution better than 0.1 arcsec do not exist.

There are several cases where high resolution optical images would
clearly show significani g#ructure and greatly aid in the astrophysical
understanding of the nature of the emitting objects. For example, radio
jets are seen on scales from smailer than 0.001 to 10 arcseconds in objects
such as QS0's, galaxies with active nuclei, and from the galactic "star"
SS433. The mechanism for the radio emission is thought to be incoherent
synchrotron emission. Extrapolating the synchrotron brightness to optical
wavelengths suggests that many of these objects could be imaged with COSMIC.
One of the most interesting extra-galactic sources, M87, appears to emit
synchrotron radiation over nearly the entire electro-magnetic spectrum.

It exhibits a striking radio/optical/X-ray jet emanating from the nucleus
{of the galaxy. VLBI ;mages of the nucleus suggest that intensities of

> 20 ergs/sec/cm**2/ sterad would be seen at optical wavelengths from a jet
less than 0.0l wide and 0.2 arcseconds long; this intensity is nearly 104
times greater than the detection threshqld for COSMIC, and should therefore

be very easily detected.
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SUPERMASSIVE GALACTIC CORES

Most of the problems outlined above for globular clusters can be
carried out as well for the stellar clusters which are likely in galactic
nuclei. A prime object for study, of course, is the nucleus of M31l.
Stars could be resolved if the density is as high as v 4 x lO7 pc.3 which
is larger than required to fit the central surface brightness. In M87
stars could be resolved and counted into the nucleus at densities of
v 104 pc~3. This would allow measurements of the isotropy of the velocity
dispersion to be made in regions where it should be anisotropic if the
apparent central cusps in both density and velocity dispersion are not
due to a supermassive black hole. Thus COSMIC can directly probe the
dynamical questions necessary to test whether active galactic nuclei and

quasay's are powered by supermassive (v 108- 109 Me) black holes.

»

*

IDENTIFICATION OF FAINT X-~RAY SOURCES

The most obvious use of the high optical resolution in conjunction
with X-ray measurements is to find optical counterparts for X-ray sources
which appear in deep surveys. For many X-ray sources, counterparts are
too dim to bhe identified by present means. Very high resolution images,
including color measurements (and high resolution spectrascopy, which should
also be possible with COSMIC) might help us to find the counterpart or
possibly to set very high lower limits on X-<ray to optical luminosity and
determine if the X-ray to optical ratio is evoiving in the early universe.
It is quite possible that the early universe contains X-ray sources with no
optical counterparts. In general, the X-ray positions would be very well
known from AXAF or LAMAR measurements so that the small field of view of
COSMIC should not be a problem. A limiting magnitude of 29 will be suitable
and necessary_for these observations. (space Telescope is already needed

for the Einstein desn surveys.)
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EXTRAGALACTIC DISTANCE SCALE

The extension of galaxy distance measurements using Cepheids depends
critically not only on light gathering power because the or*ects are faint
(Mv = -6), but alsoc on resolution because the objects are % 1ed in the
parent galaxy. This is also true for the identification and photometry of
globular gluster systems (MV = =~10) around other galaxies. COSMIC can be
used to measure Cepheids in rearby galaxies and in galaxies as far as the
Virgo and Pegasus clusters (distance modulii of 31 and 33 magnitudes
respectively). It can also be used to identify and measure the globular
cluster systems around galaxies as far away as the Coma cluster and possibly
the Hercules cluster (100 Megaparsecs or a distance‘modulus of 35). éuch
measurements are important for studies of the large-scale dynamics of
clusters of galaxies as well as for determination of the Hubble constant.
Large~scale dynamical studies are a fundamental probe of the local mean
mass density. Complete positional coordinates for galaxies in the flattened
Local Supercluster are necessary for discrimination between the pancake

and gravitational instability pictures for cluster formation.

DECELERATION PARAMETER

The morphology of the central regions of the brightest elliptical
galaxies in clusters is interesting not only for the study of the dynamical
evolution of such systems but also for the possible application of the angular

size-redshift test to the determination of the cosmic deceleration parameter,

Qg If scale lengths in gajuxies or clusters of galaxies can be used as

"standard measuring rods," the determination of change in scale as a function
of redshift relativ» to the expected Euclidean 1/r relation is a very powerful
first order test of cosmological models. Brightest cluster galaxies have
core-radii (Hubble profile) on the order of 1 kpc which is already smaller
than 1 arc-sec at a redshift of only z = 0.1. To study galaxies at redshifts :
of 0.5, resolution well in excess of 0.05 arc-sec is required, so COSMIC is

ideally matched to this type of observation.
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