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Abstract

Re freestream Reynolds number,

The present work extends the recently p=U=RN/_

reported implicit analogue of MacCormack's r body radius normal tO the body axis,earlier widely used explicit method to external * ,
r /RNaxisymmetric laminar flows with strong entropy

gradients. The details of the "numerics" of the s coordinate measured along the body,

implicit part are provided in a body-oriented s /RN

coordinate system with a moving outer (shock) T nondimensional temperature, T*/T:boundary during the transient part of the solu-

tions. The limiting values of the Courant number T* freestream temperature, K

are obtained when the shock boundary is treated t nondimensional time, t U=/RNexplicitly. The solution algorithm outlined ,

includes the treatment of the source term U® freestsream velocity, m/s

associated with the equations in weak conserva- u nondimensional tangential velocity,tion form. From the results obtained for two , ,

sample problems, it becomes clear that accuracy u /U_

of predictions is, indeed, very good at higher v nondimensional normal velocity, v*/U:
values of the Courant number. There is a _, ffi(u2 + v2)/2
significant saving in overall computing time, u" shock angle
depending on the Courant number used and the flow 8' ffi7-I
Reynolds number. These properties combined with 81 = r+ncose

the simplicity of programing the implicit 8 mesh refinement parameter
analog may appeal to researchers for using

it in the analysis of 3-D flow problems. _,_ transformed coordinates along the bodysurface
Nomenclature

_,q transformedcoordinatesnormalto the
bodyCA, CB constants with values less than or

equal to unity Y ratioor specificheats

Cf skin-frictioncoefficient, _ shock standoff distance,6*/RN
(2 _w/Re)(_ul_n)w , ,

CH heat-transfercoefficient, K localcurvature,K /RN, also time
(2 _w/PrRe)(_h/an)w step counter

CN Courant number _ = I+ nK
• ,

e speedof sound,_y--_--p _ nondlmensionalviscosity_ /_

C constant in Sutherland's law of _ freestream viscosity, Ns/m 2
viscosity, K

H nondimensional total enthalpy, p nondimensional density, p /p=
• *2

H /U® P= freestream density, kg/m 3

h nondimensional specific enthalpy, T,_ transformed time variable
• *2

h /U= 8 body angle

i finite-differencepointin s-direction SuperscriptJ flnite-difference point in n-dlrection

.k count of time steps * dimensionalquantity
M_ freestream Mach number

molecular weight of mixture
Subscriptsn coordinate direction normal to the

body,n /RN o conditionsat the axisof symmetry
Pr Prandtl number w conditions at the wall

• * *2 ® conditions in the freestreamP nondimensionalpressure,p /o®U_

•NRC-Senior Research Associate,

Aerothermodynamlcs Branch, Space Systems Introduction
Division.

•*Aero-Space Technologist, Asrothermodynamics Much progress has been made in the recent
Branch, Space Systems Division. past in developing computationally efficient

tProfessor, Dept. of Aeronautics and methods for solving the equations of compressible
Astronautics. viscous flow. Foremost among these methods are

the implicit time-dependent finlte-dlfference_
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techniquesl,2, 3 which are not subject to the 'Analysis
conventional stability condition of explicit

methods.4 However, the application of these Flow Governing Equations
techniques is frequently limited by the large

computer time per step, their programlng The time-dependent vlscous-shock-layer
complexity, as well as severe accuracy criteria, equations employed in the present analysis can be
These limitations increase in severity in three- obtained from the unsteady Navier-Stokes
dimensional flow analysls. In 1981, MacCormack equations by keeping terms up to second order in
presented5 an implicit analog of his earlier the inverse square root of the Reynolds number in
widely used explicit method.4 One of the basic both the viscous and inviscld regions of the
features of this implicit analog is that it shock layer. These equationsj when represented
involves the inversion of only upper or lower in the body-orlented coordinate system (see Fig.
block bidiagonal matrices as opposed to the more I) fora perfectgasflow at zero angleof
costly inversion of block tridiagonalmatrices attack, are expressed as11
needed in the existing implicit methods.l,2,3
The other major advantage with the method of _U _M _N
Ref. 5 is that with more complex problems, only --_+_+ _+ Q ffi0 (I)
the explicit part of the code increases in

complexity. The implicit step, which is simply where the vectors U, M, N, and Q may be obtainedthe numerics to obtain enhanced stability with
larger values of the Courant numbers, is not by dropping the specles-contlnultyequation and

taking the mass fraction of species and radiative
affected. Since it is easier to program the heatfluxas zero in Eq. (I) of Ref. II Theseexplicit part even with the increased

vectors are also given in Ref. 12.complexities, the potential for this method is _
greatly enhanced, especlally for the 3-D flow

The following limiting form of the governing
problems. Moreover, running a program fully equations is obtained at the axis of symmetry by
explicitly can provide solutions for comparison differentiating Eq. (I) with respect to s andand check when the impllcit analog is used.
This is an important feature for the accuracy taking a limit as s . 0:

check not available with the other implicit _U _M _N
methods. The implicit part in the MacCormack's o + o o =
new method5 is merely an "add-on" to the explicit _t Ys-+_-n-+ Qo 0 (2)
part.4

where the vectors Uo, Mo, No, and Qo may
Recently, Refs. 6, 7, and 8 presented once again be obtained from Eq. (2) of Ref. II or

solutions for internal flow problems whereas from Ref. 12.
Ref. 9 provided results for external transonic
flows with an integral formulation by using the The equation of state is given by
new implicit method. References 6 and 8 have
basically used the MacCormack'smethod in * * * *_
Cartesian coordinates as presented in Ref. 5. p ffi[R T /M U_ZlpT (3)

The results of Ref. 7 were obtained in more and the laminar viscosity is obtained from the
general coordinates _(x,y), q(x,y) for a fixed Sutherland's law
outer boundary and Ref. 9 employed the Cartesian
velocity vectors in the solution vector. Except
for Ref. 8, the equations solved in these analy- _ = [(I+ c*/T*)/(T+ c*/T*)]T3/2 (4)
sea were of strong conservation form. Reference

I0 has outlined a procedure for the governing Transformation to Computational Plane
equations which appear in "weak" conservation

form. In this form the source terms, which are The first of the two independent trensforma-
introduced into the equations by coordinate tions employed maps the physical domain into a
transformation and/or by turbulence modeling, rectangular region in which both the shock and
appear outside the derivatives of the conserved the body are made boundary mesh lines of the
variables, computational region. This transformation is

In the present analysis, MacCormack's
implicit analog has been extended to external z _ t, [ £ s, and n ffiI - n/_(s,t) (5)

axisymmetric laminar flows with strong entropy The transformed forms of Eqs. (I) and (2)gradients. The matrices involved in the are
"numerics" of the implicit part have been
obtained in a body-oriented coordinate system

with a moving outer boundary. The limiting 8__U+___M+___N+6 = 0 (6)
values of the Courant number are provided when _ _[ _
the shock boundary is treated explicitly. The
method switches automatically from implicit to
fully-expllclt mode whenever the time step, At, _U _M _N
satisfies the explicit stability condition. In o

__+___o +__o +_ = 0 (7)
general, the method becomes implicit only in _ 8_ _qregions where the gradients of the flow variables

are large and a refined mesh is needed for higher where
accuracy.

= u/J,_ = M [slJ



= (U _t . M ffs + N _n)/J, Q = Q/J For n odd

_o" %/J,_ =%_s/J _pllcltpart:-k
_ _k

o AUi, j = -AT \_+ - AT _,j

Here, J is the transformation Jacobian given
as Implicit part:

_(,,_,_>1 (_> i_l i li,, +P: \ _u/t ,4
and _s denotes 3_/8s, and so forth.

another plane tO allow higher resolution through x - AT -_@ B i,j. . AT _U/i I i,JtheviscouslayernearthesurfaceThesecond A, ,j
transformation is

-k

\--f

With this transformation, the final forms of _xplicit part:
Eqs. (6) and (7) become:

@'_"+_-+_+ Q = 0 (10) A = -A'{'\--'-_+_ - AT

@_.I @_i @_I Implicit part:
O O O

where +AT j lij +AT
c \_u/i,_/

and

_o = Uo/J' _o = Mo_-13 = A_i'_,j

_o=_o_/_,_ =%/_ ._+1 -_ _ ._+1Ui,j = (I/2) (Ui,j + + 8Ui,j )

Here, once again, J is the transformation
Jacobian given as

_8(_,_,n) . ._+I.28(I)=
(12)

@(T,{,n) _nt_ZT___ _-_

Elements of the Numerical Integr:_tion Method

Since the numerical integrationmethod
has been adopted from Ref. 5, the development of
the method presented here for a body-fltted
coordinate system wlth the moving outer boundary
will not contain the details provided there. The
method outlined here will provide details more
specific to the problem being analyzed. Equation
(I0) may be integrated in time by the following
implicit predictor-correctorset of finite-
difference equations:



And for n even It may be noticed from Eqs. (13) and (14)
- that the order of differencing has been reversed

"Explicitpart: in the streamwisedirection(whileretainingthe
sameorderin the directionnormalto the

-k stepsbetweenconsecutivetimesteps. Further,_k = A_M_,j -AT • .
AUi,j -AT \_ + Aq / Qi,j in these equations, (A+/A_) and (A_/An) are

one-sided forward differences and (A_/A_) and
Implicitpart: (A_/An)are one-sidedbackward

/I+ AT 1 la_Alk _ differences.I_[ and I_1are matriceswith

positiveelgenCaluesa_d are relatedto the
A xk

Ili \ aU/i'J/-- the implicit steps indicate that the

I_ " + A_ Jacobians _ = (a_a_) and _ I (a]/a_), respec-P: I tively, and I is the unit matrix. The dots in

difference operators(A+//_I> cA+/ Al)
A. _ k • + AT (a"_QB _ _._ etc.. apply also to all fa_to.s to the ri_ht.I- n-r

Ill,_ parts: the explicit part solves the governingi,J Both predictorand c0rrectorconsistof two
equationssubjectto restrictiveexplicit_k

AUI,j stabilityconditions;the implicitpartremoves
I

theseconditionsby numericallytransformingthe
equationsintoan implicitform.

The Jacoblans _ and _ are related to the
"Explicitpart: JacobiansA/X ffiaM/aUand B I aN/aUby

A

= A (lS)
i,j -A,\--TU- +--_-n/-A" _=Tn t +_ns+Bn n

Implicitpart:
where_t ffia_/at,_s = a_/as,_n = a_/an,

- AZ _ i,j " + Az The Jacobianmatrices_ and _ are provided
C: \ a_/i,j/ in Appendix B. In the definition these

Illl matrlces_and_arethecontravarlentvelocltles

obtainedfrom

x +AT i,J. +Axk a_/i,Jl i,j u ffi _t +_s + v_nu

Now, the integration method contained in the
finite-difference Eqs. (13) and (14) can be

_k+l _k

_:_-_ _k+l. simplified if the matrices _ and B are
Ui,j = (1/2)(Ui,j + + 6Ui'j) . diagonalized.Knowingthe elgenvaluematrices

AA and AB for _ and _, respectively,these
where the sourceterms%and _ represent matricesare dlagonallzedas:partsof the totalsourceidentifiedwith the
coordinates_ and q, respectively,as discussed

in Ref. 10. Basedon the definitionof Q given _ ffi_-I_AA _
in Ref. 12,% and _ are providedin
AppendixA. (16)

ffi_-I AB

where _ and % are the elgenvector matrices
of and_land_'aretheinversesofand



_ and __, respectively. The complete time step Az permitted in the n-direction, fordeflnlti_nof thesematricesis given in
example,throughthe Courant-Frledrichs-Lewy

AppendixC. (CFL)criterion

The diagonalmatricesAA and AB in Eq.

(16),formedfrom the eigenvaluesof _ and _, AT _<CN An (22)

erespectively,may be writtendownas: + g + p--_-_-_ + nI°°I= HereCN is lessthanor equalto unityfor an
AA 0 OA2 0 (17) explicitstablesolution.

0 0 oA3
FollowingRef. I0,a procedurecan alsobe

0 0 0 oA outlinedfor obtainingthe Jacobians(_%/_U)

OBl 0 0 0 with respectto _. Justificationof this
AB ffi 0 OB2 0 (18) procedureis providedin Ref. I0.

0 0 OB3 _A
0 0 0 oB Let _A = AT

where _
(23)

OA1 ffi_, OA2 ffiu+d, OA3= u, OA4 = u-d and CB = AT 35

OB1 ffiv, OB2 = v, OB3 ffiv+g, OB4 = v-g We now define the scalar matrices ICAI andI,_1asfollowswith

d fficV(_s/A)2 + (_n)2 I_AI=_AI

g fficV(ns/A)2 + (nn)2 I_BI = _B I (24)
Here _A and _B are obtained from 9

The matrices _o_ and |_l appearing in _.qs. +
(13) and (14) may be fbr_ed by replacing the +A > max (qA - AT _A' 0.0)matricesAA and AB by positively-valued -- o
diagonal matrices DA and DB. The matrices

II IIand _ are thus defined as _B >--max (_B -AT PB' 0.0) (25)
O

iXl+_j1_A_ wlt_
<"> + I + 1I+Iffi+:'o++ _A_max+ (°A+_A)'0.0n o max

where " { AT } (26)qB = max _ (aB + _B ), 0.0
o max

_A=max(I^AI+q _ 00) and
(20)

°.=max(i_.l+h _,o.o) _A=SxIL+I
and J = I, 2, 3, 4 (27)

j BJ
3'A pA_ + _ - CA ^

(21) whereiAJ is the Jth elgenvalueof (8%/_)+II > °too_B = 2V obtained_om °BmaxOA-'--n + rl _ CB ArlAT

with v = max Re ' Re max j AJ
J = I, 2, 3, 4 (28)

The constants CA and CB are related to oB ffimax IOBjl
the Courantnumberusedfor explicit stability, max j
The Courant number, CN, is related to the maximum

5



and o_ and CBj are defined following direction. This gives 6_ for all i,J. Then
Eq. (18), whereas _A and _B are given by

Zq.(21). _ik_,j-k _ik_pj"U i,j + 6 etc.
The ConstantsCA and CB appearingin

Eq. (21)are assigneda valueof 1/2 in Ref. 5. For understanding the present method, let us
However,if the tlmestepAT in the expressions examinethe procedurefor solvingthe block-

for _A and _B is a localminimum,a valueof bidiagonalEq. (30)for the n-coordinateor
up to unitymay be usedfor CA and CB to j-direction._ we define
speedup the calculations.

Hi.,o iSolutionAlgorithmand BoundaryConditions _ "6Ui,j + I_ l 6 (31)

As shownin expression(20)for the diagonal the Eq. (30),aftersomematrixmultiplication,
matricesDA and DB, theirelementsare may be writtenas
non-negative.Wheneverthe elementsbecome

negative,theyare replacedby zero.ThiSEq. IB_,j)I(I+ _ + D_ 1
impliesthatthe CFL condition, (22),is 6_i,_ =/__i_k -I
satisfiedand matrices/_1 and /_/ becomenull \ q /i,j I_I--i,_
matrices. For thiscasdthe im_llcltportionof

the schemecontainedin Eqs.(13)and (14)will / _k

be bypassed. For the flow regions where the CFL x \_q/i,j--_ (32)conditionis not satisfied,the implicitpartsin
Eqs. (13)requirethe solutionof upper-block
bidiagonalsystemof equationsfor the predictor wherewe have substitutedfor lB] fromEq. (19)

stepand the solutionof lower-blockbidiagonal and employedthe relationIOBI'-'_BIfor the
systemof equationsfor the correctorstep,etc. scalarmatrixISBI.
The integrationscheme,for the casewherethe

I !

CFL criterionis not satisfied,can be illustrat- The integrationprocedurein the implicit

ed by solvingthe predictorpartof Eq. (13)as partbeginswith thevectors_ _, givenfor
detailed in the subsequent paragraphs, all i = I, 2, ..., I and J = _,'_, ..., J;

In this algorithm we replace the matrices 6Ui,j given for all i - 2, 3, ..., I-I and j =
_A and %B (defined in Eq. (23)) by the scalar

matricesI°_IandI*BIprovidedby_qs(24) 2 3....._1andl_li,j_'_,_givenfor_l
and (25). ....

i = 2, 3 ..... l-1. The quantity i_[_, _i:J'_:rr
represents the flux of change that c_osses _.=

6Ui,j'* ( I- Ax ' ' I IA+ B k l_k )= I topmesh boundary. _ thisboundaryis located
Let

[_[ , i,j " + , Bi,j in the far flowfleldor if the meshis stretched
so thatAT satisfiesthe localexplicitstability
condition(22)at themash pointsnearthe

_+k_1 boundary,as in the caseof the testproblemsto
x _ i,j be discussedlater,thisfluxis set equaltO

zero. Otherwise,it shouldbe suitablyspecified
then,the predictorstepbecomes from the boundaryconditions.

I + Az A i,J + 6Ui = now be summarizedfor eachi and for J - J-l,
,j 'J J-2, ...,3, 2 in the follo_rlngsevensteps:

an upper-bidiagonal equation and the solution can

be obtained for each j by sweeping in the

decreasing i direction, x ([_I)i,J+l [_ll,J+l _i_,J+l

After obtaining _Ui,j for all i,J, then
2)

n/i,j

+i_1JBli,_+I°Bi,_l,_- ,ui,_ 3)ai,j .x1tBt,j I + i,_
-k

+I_1IBli,_+l'_+1 (30)
This equationis alsoupper-bidiagonaland is
solved for each i by sweeping in the decreasing j



i+ + I ooodltlo==oo:d==o +iroo.oo=ply=Bi,j i,J Bi,j the endflu: tees I[1.
_ui, j etc. to be zero! "in fa_, inltfi_s case
the Implicit part in the _-direction is bypassed.

}i,J Yj The explicit boundary conditions employed
are no slip at surface, no surface mass transfer,

6) Zj = D_ Yj a specified wall temperature, and pressure at the
Bi, j wall is assumed to be equal to the pressure at

the adjacent grid point in the normal direction.

i,j i,j' I l}i,j++i,++ fortheexplicitouter-boundarycouditionsto7)

obtain flow propertSes immediately behind the
shock. These relations in the body-oriented

The matrix inversion of step 4 is trivial coordinate system are provided in Ref. 13. The
because the matrix DB is diagonal. The flow conditions along the supersonic downstream
solution at grid point (i,j) is obtained at step boundary are obtained by extrapolation from the5, and the flux to be used at grid point (i,j-1)
is obtained at step 7. In computational plane upstream grid points.

([Anl)i,j+l ffi([Anl)i,j ffi[An[ and, if global Artificial Damping
minimum time step is used, (AT)i,_+1 ffi
(AT)i._ = AT. For this case Wi _-in step I A fourth-order damping!4 is used in the
is ob£_ined from '- explicit part of the correetor step in Fxls.(13)

and (14) for obtaining stable solutions over a

_i_,j+ large number of time steps. The following_* (AT[ [_[_ 6 damping term is used in both the predictor andWj ffi6Ui,j + .._ ,j+l 1 corrector steps with the implicit parts:

However, if a local minimum time step is employed

in the computational plane (with ([A_l)i,j+l= Tk {lXll}k
(IAql), Wj may be obtained from =i,j

_, (AT)i,j ([_[) i,J (+)p

Wj = _Ui,j + (hT)i,j+1 This term is evaluated during step 3, of the
solution algorithm given in the previous section,

AT _ 6 Accordingly, DB in step 3 is obtained fromx _ i,j+1 ,jet 1

For the boundary condition required at the D_ ffimax k + -k I + TI,jl, 0.0
solid wall boundary, the computed end flux terms Bi'j

~+k-@T I[Bl6Ui,2, are saved for use as boundary condi- As steady state is approached lxl approaches
_i_n for the corrector step that sweeps away from zero and the added term vanishes.
this boundary in the increasing j-dlrection.
Using the reflection principle for the wall Discussion of Results
placed between the first and second grid point,
the starting flux for the corrector step is The numerical method presented here has been
obtained from applied to two test problems, both involving the

analysis of viscous-shock-layerequations in the

I1[ i,k 2 body-oriented coordinate system. These two6 i,l ffiE _ 2 6 examples are taken from Refs. 12 and 15 and
' provide fairly severe viscous-shock-layerflow

fields for testing the present method. The main
where difference between the two test problems is that

I! !] the first one (taken from Ref. 12) Is character-

1 0 0 0 ized by a reference Reynolds number (based onE = I 0
nose radius and freestream conditions) with a

0 -I value of about 1.57 x 105, whereas the second0 0
problem15 has a reference Reynolds number around
1.23 x 106. The flow conditions of Ref. 15 are

This condition ensures that the net mass, considered typical of the Jovian entrytangential momentum, and energy fluxes trans-
conditions. The reference Reynolds number

mltted across the wall vanish and that the net mentioned here is related16 to the mesh Reynoldstransverse momentum at the solid wall remains
number and provides a criterion by which the mesh

zero between_-+'l-andk+l time steps, near solld-surface boundaries may be refined.

In the present work the Courant number Problem I - (Ref. 12)
employed in the _-dlrectlon was always less than
unity due to the large mesh size employed in that Probe geometry: 45° half-angle
direction. Accordingly, purely-expllclt boundary sph£rlcally-bluntedcone with a nose radius

(RN^) of 0.222 m.



Jovian atmosphere: Hydrogen-helium mixture specification of boundary values for the implicit
(0.90 H2 + 0.10 He) under perfect-gas conditions, part near the shock, is limited by the relation

Other flow field parameters: M_ - 43.84, LJ[CB(At£)n'ns]Too* = 145K, P_* - 1.27 x 10-4 kg/m 3, CN < 0.75

Tw* - 400OK, y - 1.224, Rg - 3593.6 (At£)n. 0
J kg -! K-l, Re 1.567 x 105 , Pr = 0.72.

where CB has also been used in Eq. (21) and can

Problem II - (Ref. 15) have a value of unity or less. The local minimum

time step near the surface (Atg)n,0, used in
Probe geometry: 44.25 ° half-angle sphere- the above relation, depends on the mesh size

cone with a nose radius (RN*) of 0.352 m. employed there. Therefore, in this case where
the shock is treated explicitly and the mesh size

Jovian atmosphere: Orton nominal atmosphere near the surface is established by requiring that

of hydrogen-helium mixture (0.895 H2 + 0.105 tile mesh Reynolds number be unity, there would be
He) under perfect-gas assumption, an upper limit on the value of CN which may be

used with the present method. However, this is

Other flowfield parameters: M_ ffi43.76, not a limitation of the method. If the shock
T * ffi boundary can be treated Implicitly, values larger

®, 151.2 K, p®* - 4.966 x 19 -4 kg/m 3,
Tw = 4022,80 K, ¥ ffi 1.217, Rg_ ffi 3737.45 than the limiting value of the Courant number
J kg -_ K-l , Re ffi 1.227 x 106 , Pr = 0.72. indicated here may be used. In fact, the present

method is unconditionally stable if the flux

Through the transformations of Eqs. (5) and boundary condition |_16_ (see paragraph following
(9), the physical domain, shown in Fig. I, is Eq. (32)) can be evAldated implicitly. It
transformed into a computational domain with represents the implicit part of the boundary
equally spaced grids in both the directions, conditions. Its evaluation by such means as
along and normal to the body surface. Parameter lagging in time, etc. will limit the stability of

in Eq. (9) controls the amount of grid refine- the present method to smaller Courant numbers as

ment desired near the wall in the physical experienced in Refs. 6 and 7.
domain, with values near I giving the largest

amount of refinement. However, the mesh refine- Figure 2 gives various time steps which may
ment is done only to the point at which the mesh be employed at a given body station. The time
Reynolds number reaches the order of step shoal by curve 2 has been used for CN <

unity 10,1G At this point, diffusion and | (employing the explicit method_), whereas-'curve

convection processes are equally resolved. To go 4 has been employed wlth the impllclt analog 5 for
beyond this point to smaller mesh sizes and hence CN>I. Time step At I shown by curve 2 is defined
to lower mesh Reynolds numberst, one would arrive as
at a mesh scale at which diffusion dominates.

For such problems_ more complex and time- At I - (I - 0.0025 j)At£; j = I, 2, .. 100
consuming methods ,2,3 involving tridiagonal- "'

inversion procedures should be used. in the where At£ is the local minimum time step shown
present calculations, the value st 8 was chosen by curve I and j is the mesh point counter with a
to obtain the mesh Reynolds number 16 of order value of I at the wall (n-0) and a value of 100

tlnlty and pAT/p(Aq) 2 was kept leas than [/2 to Just behind the shock. It a very large value of
avoidany possible steady-state solution the Courant number is used with the implicit
dependence on AT. This was done by reducing the analogue, a time step shown by curve 5 would
time step near the end of the calculation. The result and cause the calculations to go implicit
damping coefflcient th _ used with the explicit from the wall to the shock. The global minimum
part was also reduced with the reduction in A_ so curve 3 and the fully-lmpliclt curve 5 have not
as to permit comparisons between the solutions been used in the present work and are included
having similar amounts of artificial damping, for illustration only. It becomes clear from
The damping term associated with the implicit this figure that, for finer mesh resolution near

part goes to zero as steady state is approached, the surface, larger values of the Courant number
can be used without needing to specify the

The various results presented here have been shock-boundary condition Implicitly.obtained for the values of the Courant number

(CN) ranging from 1 to 15. The maximum value of
A 101x15 mesh size has been used in the

the Courant number, which may be used without the
present computations with 101 mesh points in the
direction normal to the surface. The mesh points

tAs pointed out in Ref. 10 also, there is a
along the body were evenly spaced at h_(_As)restriction in the present method on the manner
values of 0.1963 for problem I and at A_ values

in which, for example, AT and Aq go to zero in a
of 0.1597 for problem II. '[hesolution Is

mesh-reflnement procedure. The restriction
considered as converged to the steady-state valuerequires that pAT/p(Aq) 2 remain bounded as AT and

Aq . 0. With this restriction, AT_p(An)2/_ when the following criterion is satisfied:
0(Aq) 2. This limitation on AT is a nuisance

II ( ) 50I)l *which one would llke to avoid. However, this is Maximum [ CH = CII |/ Cli < € ;
the price paid for using a simple bldlagonal i

inversion In place of the more complex where _* = 0(10-2 ) and CH Is thetrldlagonal-lnversion procedures for the viscous
nondlmensional heat-transfer coefficient definedterms.
as



Thus, results in this case have been obtained for
the value of Courant number as larg e as 15. The

2_w _h_ shock stand-off distance of Fig. 6, as well as
CH = PrRe (_/ the velocity and temperature profiles of Fig. 7,

The convergence test given here is for CNffilOand compare quite well at various CN values. Once

is made every 50 time steps; for CN=I it is made again, the comparison is superior over the
every 500 time steps, etc. spherical portion (s=0.32) of the body. Figure 8

also shows good agreement between the distribu-
tions of skin-friction and heat-transfer eoeffic-During the analysis it was found that the

quality and stability of the solutions improved ients and surface pressure employing three values
of the Courant number.

if the order of differencing along the streamwise
direction is reversed from one time step to the
next time step in both predictor and corrector The results presented here have been
steps as given in Eqs. (13) and (14). obtained on the Control Data CYBER 203 vector-

processing computer. The explicit part of the
method is fully vectorized. The increase inThe solution algorithm outlined in this work

includes the treatment of the source term in the computing time due to the addition of implicit

implicit parts of the method. However, in the part is about 70 percent. Typically it takes
results obtained here, the source term in about 3.0x10 -5 s per mesh point per time step for
implicit parts of Eqs. (13) and (14) was the explicit part using the local minimum time

step.tt With the addition of the implicit part,
neglected, implying that AT(_%/B_) and this time increases to about 5xlO-5 s. Two

AT(8%/3_), etc. were small enough. The factors which influence the computing time in the
present case are the partial vectorization of theobservation of Ref. 8 in this regard appears to

be true for the two problems treated here. The implicit part and the extent to which the
physics of the problem is contained in the implicit part is called if the shock boundary is

treated explicitly. However, even with theexplicit parts of Eqs. (13) and (14) and the
source term is retained there. Dropping the increased computing time per time step, the total
source term from the numerics contained in the computing time is reduced significantly. In case
implicit parts of these equations does not seem of problem II, for example, the total computing

to affect the results appreciably. The inclusion time is about 6 times less at CN=15 as compared
of the source term in the implicit part as to the computing time at CNffilwith the mesh
outlined here is likely to increase the refinement parameter 8 having a value of 1.02.

computational time per time step by an estimated For a higher mesh resolution near the surface, a
5 to I0 percent, larger value of the Courant number may be used

while still treating the shock explicitly. This

The computed results for problem I are given would reduce the total computing time even
in Figs. 3 to 5. These figures contain results further when compared to the computing time at
for Courant number (CN) of 1 and 5 with the mesh CN = I. The mesh refinement, however, is done

refinement parameter _ having a value of 1.1. only to the point where the mesh Reynolds number
The CN=I results are those of Ref. 12 and have would be of order unity or so for the reasons

been recomputed here. The two factors outlined explained earlier.

earlier prevented obtaining results for higher
values of CN. The requirement of keeping the
mesh Reynolds number around unity did not allow Concluding Remarks
further mesh refinement, whereas the specifica-

tion of the shock boundary condition explicitly In the analysis presented here, the
with the given amount of mesh refinement did not recently reported implicit analog of MacCormack's

permit the use of higher values of CN for this earlier widely used explicit method has been
problem, extended to external axisymmetric laminar flows

with strong entropy gradients. The details of

Figure 3 shows the shock stand-off distance the "numerics" of the implicit part are obtained

along the body surface. There is a very good in a body-orlented coordinate system with a
agreement between the two values predicted by moving outer (shock) boundary during the
using CNffiland 5 over the entire body surface, transient part of the solutions. The implicit

The velocity and temperature profiles of Fig. 4 analog is unconditionally stable if the boundary
show a similar agreement, the comparison being conditions are also specified fully implicitly
somewhat superior over the spherical portion (i.e. without the lag of 1/2 or I time step). In
(Fig. 4(a)). The comparison between the this work, the inner (wall) boundary for the

predicted values of skin-frictlon and heat- implicit part was treated through the reflection
transfer coefficients and surface pressure for concept as suggested in the original presentation
CNffiland 5 is given in Fig. 5. Once again, the of the implicit analog by one of the present
various distributions compare very well at the authors (RWM). The outer (shock) boundary was
two CN values, treated explicitly in order to avoid the

specification of this boundary condition
Figures 6 through 8 contain results for implicitly and to keep the computational

sample problem II. As pointed out earlier, the algorithm simple. Thus, the present results do
reference Reynolds number in this case is almost not contain any approximation about the treatment
an order of magnitude larger than the one for of the boundary condition which may affect the

problem I. Accordingly, a finer mesh (B=I.02)
can be employed here, still keeping the mesh tiThe same computing time per mesh point per time
Reynolds number of order unity. This allows the step for the explicit part is required if the
use of a higher value of Courant number without global minimum time step is employed. However,
going implicit all the way up to the shock, the total computing time in this case is

increased by a factor of about 2.5.
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stability of the implicit analog other than the though the computing time per time step increases
Courant number limitation. The limiting values by about 70 percent with the inclusion of the
of the Courant number are Provided when the shock implicit part. The code developed for the
boundary is treated explicitly. The solution implicit analogue on the Control Data CYBER 203
algorithm outlined includes the treatment of the computer was essentially an "addition" to the
source term present in a weakly conservative earlier explicit code. The coding of the
system of equations, implicit part is not affected much with the

increase in complexity of the explicit part.
For the results presented here, the Courant This may have special appeal in the analysis of

number in the coordinate direction along the body 3-D flow problems.
surface was 0(1), but the Courant number in the
direction normal to the body, because of the fine
mesh-point spacing needed to resolve the viscous Acknowledgment
boundary layer at the body surface, varied from 5
to 15 depending on flow Reynolds number. A The authors are thankful to Dr. A. Kumar of
detailed comparison of various results obtained NASA Langley for many helpful discussions during
with different values of the Courant number (CN) the course of this work.
shows that the accuracy of predictions is quite
good at higher values of CN. There is a signifi-
cant saving in the overall computing time even

Appendix A: Source Terms Q

Based on the definition of the total source term Q given in Ref. 11,

and % identified with the coordinates _ and n, respectively, are
efined as:

XSin8

81 pu

XSin8 1 _ 81K_ 8_ 8u plSin8 + _uBIK2

(AD
=I._ XSin8

JJ 61 puv

lSin8

BI pvH

Cos0
--Xpv

81

Cos._._.88X[puv + _ 1 @n 8u

=I___ (A2)
!

j_ Cos._.._B_e_(p+ pv2) + _i [-61<PU2 - p(xCose ffi81_)]81

__ pu 1 @n @u pU2KCosO X[pvH + v 1 @n 8h + + ]
81 PrRe _ 8_ _n Re _ 8_ _n

where

28 . )
@n__ /_-_(' 2 1 ^F18+1, n 1]

and the transformation Jacobians J and J are

j = a(T,{,n). 3- B(_,_,n)
8(t,s,n)' @(T,{,n)

I0



Appendix B: Jacobian Matrices _ and

The Jacobtan matrices _ and _ are obtained from

_t _s/_ _n

-u_ +-T-_s +u_t _ + (1-6') _-_s- _s +u_n -T_s

.... = v ,_ (B1)
-v_ + a'B'_n + v_t _ _s -'6'U_n u + (l-B')V_n 6'_n

C2 C2 _S C2

(-u+_;t)[(i-6,)a, +-_-] (.-E_-+ c,') _ (Er + _')_;n

+ u6'_t - u_'_ + v6'_t - v6'_

D
!

n t n.__s nn [

X [

_'6t _ u _'v 6'
-u; +_n s + unt v + (I-6')_ ns -Tns + Unn -'_ns

_a V

- -vv + c'B'nn + vqt _-ns - B'Unn v + (l-6')V_n 6'nn [(B2)

In s C 2

+ u6'rl t - nl3'v + v6r| t - vS'v

where c = _ is the speed of sound, _' = (u2+v2)/2, and 6' = (¥-1).

Appendix C: Matrices S_, _'l_._n_ an_l

The matrices S_, St , _, and _;lare given by

m

i _"_' uJ-2 -J.Z.' _ 6_2'
c2 c2 e2 c2

'6t c2 _ c2 c2
- _--(u-_t) _ _ - u6' -_ _. - v6' 6'

s_ = (ci)
(UC_n- VC_s/X) _ _E c

pd pd _n _pd _s 0

c2 c2 c2
a'6'+_ (_-n_) -uS'-_ _s "-v6'-_n 6'
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I 1
0

2c2 2c2

c2 c2
(u+ i-__s) (u- _-__e)

u -Pc_ n
2c2 d 2c2

c2 c2
(_ + _ _n) (v - -_- _n)

_1 = v pc _s (C2)2c2 _d 2c 2

C2 _ C2

[a'+-_ (u-_t)l pc v [a'" --_(_-_t)]

2c2 _ (-u_n + _- _s) 2c2

I

+27

1 a 'B' uB._.._' vS'
c2 c2 c2

(VCns/_- UCnn) c c
pg p-gqn _pg qs 0

= (c3)
n c2 c2 c2

_'13' - --_ (_t) _-_ rls - u13' --g qn - v13' 6'

c2 _ C2 c2

a'_'+--_ (V-nt) -_ ns - u_' --_ nn - v_'

u_' 1 1

c2 2cz 2cz

u pc (u c2 c2
g nn +i_%) (u - i-_ ns)

2c2 2c2

(v+_ nn) (v c2
_-l = v _ pc ns g - -g nn) (C4)
n _"g 2c2 2c2

c2

pc v [a' + c2 (_- nt)] [a' --- (_- nt)]
-_ (- _-n s + un n) g g2c2 2c2

1 I

+2-T_ +2-gr

If it is assumed that the outer boundary (which is shock in the present case
and moves with time during the transient part of the solutions) is fixed,

for example for the internal flow problems, then nt and _t are
identically zero and Eqs. (CI) through (C4) reduce to those obtained in
Ref. 7 for a flat surface (%ffil). It may be mentioned that for obtaining the
expressions provided here certain columns and rows of Eqs. (12) and (13) of

Ref. 7 need to be multiplied and divided by (pa_ 2) and a change in their
order is required.
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