MASA CR- 170576

DOCUMENT NO. 81SDS4226 AUGUST 1981

E83⁻10281

"Made available under NASA sponsorship in the interast of part and wide dissemination of Earth Resources Survey Program information and without liability for any use made thereot."

ţ,

LANDSAT-D ORBITAL JITTER ANALYSIS

FINAL REPORT

(E83-10281)LANDSAT-D MSS/TH TUNED ORBITALN83-26148JITTER ANALYSIS MODEL LDS900Final Report(General Electric Co.)(General Electric Co.)150 p HC A07/MF A01CSCL 05BUnclasG3/43 00281

BEST AVAILABLE COPY

ł

Ę

Ū

ORIGINAL PAGE IS OF POOR QUALITY

LANDSAT-D FINAL MSS/TM TUNED

ORBITAL JITTER ANALYSIS

MODEL LSD900

PREPARED BY:

T.C. Pollad T. E. Pollak

Structural Dynamics

APPROVED BY:

E. J. Kuhar, Lead Engineer Structural Dynamics

APPROVED BY:

Kingache

J? R. Schumacher Landsat-D Manager Mechanical Systems

APPROVED BY:

ī.

C. V. Stahle, Manager Structural Dynamics

TABLE OF CONTENTS

ł

١

17

. 1

١

ł

SECTION

ت.

ļ

Ċ

TITLE

SECTION	TITLE	PAGE
1	SUMMARY	1-1
2	CONCLUSIONS	2-1
3	RECOMMENDATIONS	3-1
4	DISCUSSION	4-1
	4.1Model Description4.2TDRSS Boom Re-Tuning4.3Response Data	4-1 4-31 4-35
5	ORBITAL ANALYSIS	5-1
	 5.1 Orbital Anal sis Approach	5-1 5-3 5-68
6	REFERENCES	6-1
	i	

2

LIST OF FICURES

NUMBER	TITLE	PAGE
4.1-1	Orbital Configuration	4-3
4.1-2	Deployed Solar Array Representation	4-11
4.1-3	Updated MMS Representation	4-15
4.1-4	Deployed TDRSS Boom Representation	4-18
4.1-5	Deployed RF Compartment Representation	4-20
4.1-6	Deployed TRW Supplied Ku/S-Band Anterna	4-21
4.1-7	Updated Instrument Module Representation	4-27
4.2-1	Re-Tuned TDRSS Boom Analytical Mode No. 1	4-38
4.2-2	Re-Tuned TDRSS Boom Analytical Mode No. 2	4-39
4.2-3	Re-Tuned TDRSS Boom Analytical Mode No. 3	4-40
4.2-4	Re-Tuned TDRSS Boom Analytical Mode No. 4	4-41
4.2-5	Re-Tuned TDRSS Boom Analytical Mode No. 5	4-42
4.2-6	Re-Tuned TDRSS Boom Analytical Mode No. 6	4-43
4.2-7	Re-Tuned TDRSS Boom Analytical Mode No. 7	4-44
5.1-1	MSS/TM Bandwidth Considerations	5-2
5.2-1	Orbital Model LSD900 Analytical Mode No. 7	· 5-5
5.2-2	Orbital Model LSD900 Analytical Mode No. 8	5-6
5.2-3	Orbital Model LSD900 Analytical Mode No. 9	5-7
5.2-4	Orbital Model LSD900 Analytical Mode No. 10	5-8
5.2-5	Orbital Model LSD900 Analytical Mode No. 11	5-9
5.2-6	Orbital Model LSD900 Analytical Mode No. 12	5-10
5.2-7	Orbital Model LSD900 Analytical Mode No. 13	5-11
5.2-8	Orbital Model LSD900 Analytical Mode No. 14	5-12
5.2-9	Orbital Model LSD900 Analytical Mode No. 15	5-13
5.2-10	Orbital Model LSD900 Analytical Mcde No. 16	5-14
5.2-11	Orbital Model LSD900 Analytical Mode No. 17	5-15
5.2-12	Orbital Model LSD900 Analytical Mode No. 18	5-16
5.2-13	Orbital Model LSD900 Analytical Mode No. 19	5-17
5.2-14	Orbital Model LSD900 Analytical Mode No. 20	5-18
5.2-15	Orbital Model LSD900 Analytical Mode No. 21	5-19
5.2-16	Orbital Model LSD900 Analytical Mode No. 22	5-20
5.2-17	Orbital Model LSD900 Analytical Mode No. 23	5-21
5.2-18	Orbital Model LSD900 Analytical Mode No. 24	5-22
5.2-19	Orbital Model LSD900 Analytical Mode No. 25	5-23
5.2-20	Orbital Model LSD900 Analytical Mode No. 26	5-24
5.2-21	Force At TM Theta X - Response At MSS Theta X	
	$(0-100 \text{ Hz}) \text{ Damping} = 0.001 \dots \dots \dots \dots \dots$	5-26
5.2-22	Force At TM Theta X - Response At MSS Theta X	
	(100-200 Hz) Damping = 0.001	5-27
5.2-23	Force At TM Theta X - Response At MSS Theta Y	
	(0-100 Hz) Damping = 0.001	5-28
5.2-24	Force At TM Theta X - Response At MSS Theta Y	
	(100-200 Hz) Damping = 0.001	5-29
5.2-25	Force At TM Theta X - Response At MSS Theta Z	
	(0-100 Hz) Damping = 0.001	5-30

٠.

ii

t

(

CONTRACTOR OF

......

NUMBER

LIST OF FIGURES (CONTINUED)

TITLE

PAGE

5-2-26	Force At TM Theta X - Response At MSS Theta Z (100-200 Hz)
5.2-27	Force And Response At MSS Theta X (0-100 Hz) Damping = 0.001
5.2-28	Force And Response At MSS Theta X (100-200 Hz) Damping = 0.001
5.2-29	Force At MSS Theta X - Response At MSS Theta Y (0-100 Hz) Damping = 0.001.
5.2-30	Force At MSS Theta X - Response At MSS Theta Y (100-200 Hz) Demping = 0 001 5-35
5.2-31	Force At MSS Theta X - Response At MSS Theta Z (D-100 Mz) Depring = 0.001
5.2-32	Force At MSS Theta X - Response At MSS Theta Z (100-200 Hz) Damping = 0.001
5.2-33	Force At TM Theta X - Response At MSS Theta X (0-100 Hz) Damping = 0.01
5.2-34	Force At TM Theta X - Response At MSS Theta X (100-200 Hz) Damping = 0.01
5.2-35	Force At TM Theta X - Response At MSS Theta Y (0-100 Hz) Damping = 0.01
5.2-36	Force At TM Theta X - Response At MSS Theta Y (100-200 Hz) Damping = 0.01
5.2-37	Force At TM Theta X - Response At MSS Theta Z (0-100 Hz) Damping = 0.01
5.2-38	Force At TM Theta X - Response At MSS Theta Z (100-200 Hz) Damping = 0.01
5.2-39	Force and Response At MSS Theta X (0-100 Hz) Damping = 0.01
5.2-40	Force and Response At MSS Theta X (100-200 Hz) Damping = 0.01
5.2-41	Force At MSS Theta X - Response At MSS Theta Y (0- 100 Hz) Damping = 0.01
5.2-42	Force At MSS Theta X - Response At MSS Theta Y (100- 200 Hz) Damping = 0.01
5.2-43	Force At MSS Theta X - Response At MSS Theta Z (0- 100 Hz) Damping = 0.01
5.2-44	Force At MSS Theta X - Response At MSS Theta Z (100- 200 Hz) Damping = 0.01
5.2-45a-b	Typical Response Showing 5% Bandwidth For MSS (0-200 Hz)
5.2-46a-b	Typical Response Showing 10% Bandwidth For MSS (0-200 Hz)
5.2-47a-b	Typical Response Showing 15% Bandwidth For MSS (0-200 Hz)

iii

and the second second

LIST OF FIGURES (CONTINUED)

--

:

.

NUMBER

NUMBER	TITLE	:	PAGE
5.3-1 5.3-2 5.3-3	Gaussian Probability Density Function	•	5-71 5-72
	MSS Force - Damping = 0.001	•	5-75
5.3-4	MSS Force - Damping = 0.001	•	5-76
5.3-5	Theta Z Probability of Exceeding Jitter Response - MSS Force - Damping = 0.001		5-77
5.3-6	Theta X Probability of Exceeding Jitter Response - TM Force - Damping = 0.001.		5-78
5.3-7	Theta Y Probability of Exceeding Jitter Response - TM Force - Damping = 0.001	•	5-79
5.3-8	Theta Z Probability of Exceeding Jitter Response - TM Force - Damping = 0.001	•	5-80
5.3-9	Theta X Probability of Exceeding Jitter Response - MSS Force - Damping = 0.01.		5-81
5.3-10	Theta Y Probability of Exceeding Jitter Response -	•	5-82
5.3-11	Theta Z Probability of Exceeding Jitter Response - MSS Force - Damping = 0.01	•	5-83
	MSS Force - Damping = 0.01	•	5-83

1 1

· ·

5

`}

.

LIST OF TABLES

NUMBER

:

(

<u>(</u>].

.

~

PAGE

•

	-	
4.1-1	Substructure Representation	4-2
4.1-2	Dynamic Model Summary Table	4-5
4.1-3	DS/A Free-Free Dynamic Model Summary Table	4-12
4.1-4	Weight Breakdown For Updated MMS (Tuned)	4-16
4.1-5	MMS Free-Free Dynamic Model Summary Table	4-17
4.1-6	GDA Stiffness Properties For Orbital Model LSD900	4-19
4.1-7	Boom/RFC Free-Free Dynamic Model Summary Table	4-22
4.1-8	Ku/S-Band Free-Free Dynamic Model Summary Table	4-23
4.1-9	TM and TM Foot Simulation	4-25
4.1-10	IM Free-Free Dynamic Model Summary Table	4-28
4.1-11	Orbital Jitter Models Comparative Summary	4-30
4.1-12	Appendage Coupling Stiffnesses	4-32
4.2-1	Changes For Re-Tuning 2nd Y-Bending Mode of Boom/	
	RFC NASTRAN Model	4-33
4.2-2	Comparison of Measured To Tuned NASTRAN Modal	
	Frequency Values	4-34
4.2-3	Self-Ortho Check Of Tuned Analytical Model (306 DOF)	
	Truncated To 42 DOF Test Set	4-36
4.2-4	Re-Tuned TDRSS Boom Mode Identification	4-37
4.2-5	Landsat-D Deployed TDRSS Boom Cross Orthogonality	
	Between Measured Modes and Tuned Analytical	
	Model	4-45
4.3-1	Representative Nodes In Data Transmittal to ACS	4-46
4.3-2	Structural Transfer Function Coefficient Values For	
	Orbital Model LSD900 - Damping = 0.001	4-47
4.3-3	Structural Transfer Function Coefficient Values For	
	Orbital Model LSD900 - Damping = 0.01	5-41
5.2-1	LS/D Final Tuned Orbital Model For Jitter - LSD900 .	5-4
5.2-2	LSD900 Transfer Function Data Presentation -	
	Damping = 0.001	5-25
5.2-3	LSD900 Transfer Function Data Presentation -	
	$Damping = 0.01 \dots \dots$	5-38
5.2-4	Jitter Allowables	5-51
5.2-5	TM Forces - MSS/RMS Allowables - Damping = 0.001 -	
	15% BW	5-52
5.2-6	TM Forces - MSS/RMS Allowables - Damping = 0.001 -	
	10% BW	5-53
5.2-7	TM Forces - MSS/RMS Allowables - Damping = 0.001 -	
	5% BW	5-54
5.2-8	MSS Forces - MSS/RMS Allowables - Damping = 0.001 -	
	15% BW	5-55
5.2-9	MSS Forces - MSS/RMS Allowables - Damping = 0.001 -	
	10% BW	5-56

v

ı.

!

.

LIST OF TABLES (CONTINUED)

NUMBER

TITLE

PAGE

5 2-10	MSS Forces - MSS/RMS Allowables - Damping =
512 20	0.001 - 5 BW
5.2-11	MSS Forces - MSS/RMS Allowables - Damping =
• •	0.01 - 15% BW
5.2-12	TM Forces - TM/Peak Allowables - Damping = 0.001
c o 15	- 15% BW
5.2-13	MSS Forces- TM/Peak Allowables - Damping = 0.001
5 2-14	- 138 BW
J. 2-14	0.00 aserine officer fredictions - pamping =
5.2-15	LSD900 Baseline Jitter Predictions - Damping =
	0.01

.

()

 \Box

 $\langle \rangle$

. ..

1.0 SUMMARY

The final Landsat-D orbital dynamic math model (LSD900), comprised of all test validated substructures, has been used to evaluate the jitter response of the MSS/TM cxperiments. The revisions to the previous analytical model, LSD801, include: (1) updated tuned MMS dynamic model to include dynamic test results from propulsion system testing; (2) test verified TDRS'S boom/RF Compartment substructure with the boom 2nd Y-bending mode re-tuned to better match test data increasing the on-orbit frequency separation from the fundamental MSS forcing harmonic at 13.62 Hz; (3) updated coupling simulation between the MMS and Instrument Module substructures; and (4) updated IM dynamic model representing the design as shown on the released prints as of January 1981 and including the structural updates to the 36 and 55 bulkheads. No simulation updates were included in the TRW supplied RF Compartment and Ku/S-Band Antenna models over those of model LSD801. The appendage orientation used for this final analysis positions the Ku/S-Band antenna line-of-sight and deployed solar array solar cells along the Landsat-D -Z axis.

A dynamic forced response analysis was performed at both the MSS and TM locations on all structural modes considered (thru 200 Hz). The analysis determined the roll angular response of the MSS/TM experiments to impulsive excitation generated by component operation. Cross axis and cross experiment responses were also calculated. The excitations were analytically represented by seven and nine term Fourier series approximations, for the MSS and TM experiment respectively, which enabled linear harmonic solution techniques to be applied to response calculations.

For consistency in data presentation between previous and current orbital models, a damping value of 0.001 was assumed. However, recent spacecraft data acquisitions suggest larger damping values. Therefore, data is also presented herein for an assumed damping value of 0.01. The baseline orbital model has self-induced peak roll engular responses (damping = 0.001) of 2.0945 arc-seconds (MSS due to MSS) and 1.3725 arc-seconds (TM due to TM). These values translate, respectively, to rms values of 1.1673 and 0.8445 respectively.

Single mode wurst case jitter was estimated by variations of the eigenvalue spectrum of model LSD900. These variations show the effect of possible structural frequency deviations from the best estimate of model LSD900 by modifying the modal spectrum so that the maximum resonant response of any one mode would be excited. Modes near each forcing harmoniwhich differed in frequency by more than 15% were not included in the analysis. Maximum worst case peak roll response for .001 damping was 94.55 arc-seconds which translates into a 65.54 arc-second rms response for the MSS. Third harmonic mode 105 exhibited this large response. Maximum worst case peak roll angular response for the TM experiment for all models considered and 0.001 damping was 6.63 arc-seconds or 3.99 arc-seconds rms. Since the peak response is within the capability of the adjustable gain ADS (angular displacement sensor), emphasis was shifted to MSS jitter amplitudes always noting, however, TM peak responses.

Since an analytical model cannot be tuned to exactly match all measured test modes and frequencies and the Landsat-D's structure may not exactly match the tested hardware, there is an uncertainty associated

1-2

1

with the analytical predicted frequencies. A statistical analysis approach was implemented to examine the probability of any worst case mode occurance. The probability of exceeding the 1.5 arc-sec (.3 pixel error) in the θ_{χ} direction is reduced from .34 to .093 if the allowable MSS RMS jitter is raised to 3.14 arc-sec (.4 pixel error), see Figure 5.3-3.

:*-*--

. . .

2.0 CONCLUSIONS

- 1) All worst case TM jitter peak response amplitudes are within the capability of the ADS.
- 2) There is no requirement to modify the primary structure to detune structural resonances.
- 3) The Baseline MSS jitter meets the .3 pixel requirements.
- 4) Statistical analysis of MSS worst case jitter, using all test verified analytical substructure models shows a low probability of exceeding .3 pixel error 234% and an even lower probability of exceeding .4 pixel error 29% which meets the jitter criteria defined in SVS-9934 LSD Flight Segment Specification. The "probability" numbers noted indicate the probability that the given pixel error will be exceeded for any given flight when the TDRSS antenna and solar array are in their worst case orientation.
- 5) Simultaneous TM & MSS operation is feasible within the recommended jitter criteria.
- 6) Baseline jitter results are relatively insensitive to damping value changes between .001 and .01.
- 7) Statistical analysis results are highly sensitive to damping value changes between .001 and .01 for all pixel allowables.

3.0 RECOMMENDATIONS

1. The previously recommended all axis gain setting of 50 arcids for the ADS should provide an ample error margin when ing expected TM peak responses. Ϋ́,

 Should any major structural changes occur on the Landsat-D spacecraft, it is recommended that another orbital model be assembled to establish adherance to MSS jitter riterin values.

4.0 DISCUSSION

4.1 MODEL DESCRIPTION

The latest Landsat-D orbital model used for evaluation of MSS/TM jitter has been LSD801 (Reference 1). To better assess MSS/TM orbital jitter predictions, an updated orbital model, LSD900, has been developed. This updated model differs from the previous model in that all test validated substructure models have been used. Also, the TDRSS boom modal test model was effectively retuned to match more closely the boom modal test. This increases the separation of the boom 2nd Y-bending mode from the first MSS forcing harmonic at 13.62 Hz. The test verified substructure models incorporated into model LSD900 include the IM centerbody, deployed solar array, deployed TDRSS boom/RF Compartment-Ku/S-Band Antenna, and VASA furnished MMS.

The Landsat-D Orbital Dynamic Math Model, LSD900, consists of six (6) primary substructures: Multi-Mission Modular Spacecraft (MMS); Instrument Module (IM) which includes Thematic Mapper (TM), Wideband Module (WB), and Multi-Spectral Scanner (MSS) components; deployed Solar Array (DS/A); and TDRSS boom which includes the RF Compartment (RFC) and Ku/S-Band Antenna. The dynamic math model consisting of 819 dynamic degrees of-freedom (DOF) and 257 nodes was obtained from a complex static model represented by 2700 nodes and 15187 static DOF. A node and DOF summary for each substructure is presented in Table 4.1-1. Figure 4.1-1 shows the orbital configuration (exploded at 3 structural interfaces, IM/ MMS, RFC-Ku/S-Band Antenna, and TDRSS boom/RFC) for plotting clarity.

Substructure	Before Nodes	Reduct	ion F1S	After Nodes	Reduc	tion OF's
SMM	629	39	54	50	1	59
ИІ	957	50	82	70	7	34
Deployed Solar Array [.]	333	. 19	51	60	1	50
Deployed TDRSS Boom With Detailed Outer Hinge	102	4	64	. 15		60
RF Compartment	323	17	80	27		66
Ku/S-Band Antenna	326	19	56	. 35	Т	17
	Total	Nodes:	2700	Total	DOF:	15187
	Reduced	Nodes:	2443	Reduced	DOF:	14368
	Model	Nodes:	257	Model	DOF:	819

Table 4.1-1 Substructure Representation

4-2

ORIGINAL PAGE IS OF POCR QUALITY -.

ŧ.

:

Ũ

)

.1

•

Figure 4.1-1 Orbital Configuration

i.

1

Stiffness coupling was used to assemble the 6 substructures. Table 4.1-2 summarizes nodes, node coordinates, DOF schedule, and nodal weights defined in the orbital model.

Substructure modeling changes reflect documented recommendations, released drawings and modal test results. Reference 2 documents the modal test results for the deployed solar array substructure. A representation of the deployed solar array structure is presented in Figure 4.1-2. Substructure DOF summary is shown in Table 4.1-3.

The original MMS substructure NASTRAN model as incorporated in model LSD801 was updated by NASA-Goddard for inclusion in the current configuration'. The MMS substructure is described as three (3) primary modules, Power Module, Attitude Control Systems Module, and Command and Data Handling, The modules are connected to a triangular module support structure Module. (MSS). The triangular transition adapter (TTA) located atop the MSS provides the interface attachment points for the Instrument Module structure. The Payload Attachment Fitting (PAF) is located beneath the MSS and provides the attachment to the launch vehicle. For the free-free orbital configuration, the PAF structure was deleted from the NASTRAN bulk data deck. Located within the M'S are the two primary propulsion tanks, PMI and PMIA, and their associated attachment structures. The major improvement was the incorporation of dynamic test results to better represent the modeling simulation of the propulsion tanks and associated support structure. Also included is the earth sensor and the signal control and conditioning

																									0	F	PC	0	R _.	Q	JA	L	T	1							• •	
	172					0	ö			0	2500.00	400 400 400 400 400 400 400 400 400 400	50	0					0.	0.		6	o.	ōċ		0.	ġ	50		o o	50	0.	òò	o c	; . ; .	o			.0	ò	35290.00	
	DATA	••	òò	50	60	°.	o.	òc	ċċ	0.	2000.00	400.00	òd	o.	ò	ò	òc	60		ò		ċċ	io	òò		o	òò	òd		ö	ċċ	0.	ò	όc	òo	0	ö	o d		ò	45240.00	
	WEIGHT 1XX	ò	ó	50		°.	o.	o c	50	.0	3600.00	500.00		.0	°.	<i>.</i>	ò	50	6	ö	٥c	50				ō	ō	ic		ö	o c			o c		0		o c	; ; ; ;	°	71170.00	
	M2	400.200	41.630	40.710	40.710	41.630	41.630	43.447	43.447	41.630	56.380	26.000	24.665 24.665	12.333	12.333	12.333	31.300	23.760	34.435	34.435	34.435 74.435		23 760	23.760	34.547	49.949	6.591	27 663	146.583	19.772	34.547 46 682	9.220	15.885	13 681	41.044	41.044	41.044	41.044 15 885	13.681	13.681	000.766	
	5	400.200	41.630	41.630	40.710	41.630	41.630	43.447	43.447	41 630	56.380	26.000	24.665 74 665	12.333	12.333	12.333	31.300	23.760	34.435	34.435	34.435		23.760	23.760	50.000	49.949	6.591	128.049 27 663	146 583	19.772	34.547 A6 687	9.220	15.885	13.681	41.044	41.044	41.044	41.044	13.681	13.681	337.000	
	×	400.200	41.630	40.710	40.710	41.630	41.630	744 54	43.441	41.630	56.380	26.000	24 665	12, 333	12.333	12.333	31.300	23.760	34.435	34.435	34.435	000 10	23.760	23.760	50.000 34 547	49,949	6.591	040.871	146.583	19.772	34.547 Af 607	9.220	15 805	13.681	41.044	41.044	41.044	41.044	13.681	13.681	337.000	-2
31 DLLAK	ABLE RZ	٥	0	0	, 0	0	0	00	00	00	39	45	00		0	0	0	5 0	00	0	00	2 0	00	0	° C	00	0	50	00	0	00	00	0	0	0 0	0	0	00		• •	159	e 4.1
7018 .E.F	E S	0	0	0	> c	0	0	00	• •	0	38	44	00		0	0	0		00	0	00	0 0	00	°	0 0	0	0	0 0	00	0	00	00	0	0	0 0	°	0	00	pjo	0	158	lde
TE O BY T	POF RX	0	0	olo	00	0	0	00	0 0	0	31	43	00	pio	0	0	0	>	0	0	00	0 0	0	0	00	0		0 0	00	0	c	>0	0	0	00	0	0	00	olo 	0	151	Ē
RUN	N	n	6	۶	μ Ω	e e	21	4	27	2.6	36	42	4 4		53	60	မြ	0 0 0 4	125	75	78	50	8	6	6 6	0 6 6	102	<u>6</u>	25	14	117	123	126	123	132		141	144		153	156	
	>	2	ا	▫╞	7	5	:0	50	200		35	41	4 4	2 N	20	53	S	0 9 9 9		74	11	200	5 9 8 9 8	68	92 9 6	1 30 6	<u>10</u>	0	22	113	116	50	125	128	101	1 <u>5</u>	140	143		152	155	
	×	-	4	- <u></u>	2 5	; 2	<u>6</u>	5	35		40	40	46		22	58	5	4 U	202	73	76	6/	9 7 9 2 9 2	88	16	16	8	501	50 50	112	15	121	124	127	021	136	139	142		121	154	
	DOEL SLE TES Z	0	- 15.000	- 15.000	- 14 . 723	- 15,000	- 15.000	-10.890	25.613		37.050	37.800	25.613	- 10. 650	- 15.000	-15 000	-14.723	- 11. / 23	-31.723	-31.723	-31.723	-31.723	- 14. / 23	-31.723	-20.723	-4.057	-4.057	3.910	27 812	27.812	27.280	35, 780	27 280	35.780	35.780	27.813	3.910	3 910	-12, 557	-4 057	.	
	DRBITAL MU UMMARY TAU DORDINA Y	0	-25.981	-25.981	-21.0/5	25. 981	25,981	23.288	2.213	ċc	0	.0	-2.213	.23.288	-25.981	25.981	-23.000	-23.000	-13.000	- 13, 800	13,800	13.800	23.000	23.000	3,000	38.972	38,972	34.372	34.3/2	20.572	1.250	15.9/2	-1.250	- 15.972	-15.972	-20.572	-34.372	-34.372	-24.250	-38.972	°.	
	3 JITTER IC MODEL S X	-46.100	-8.800	-61.000	008.8-		-61.000	-8.800	-8.800	-61 000	-24 900	-43.810	-8 800		-3.200	-3.200	-56 800	-56.800	- 10.800	-29 200	-38 400	-29.200	-56 800	- 10.800	008 66-	-56 800 008 85-	-10.800	-38,400	002.92-	-29.200	-56 800	-56.800	-56.800	-56.800	- 10.800	- 29 200	- 38.400	-29.200	-56.800	- 10, 800	-71.700	
L SD900	PHASE DYNAMI Suis Nota	9 000 7 000	4600	4650	4682		4750	4782	4792	4800	4875	4876	4882	4892	5737	5765	6200	6208	6228 6716	6320	6616	6620	6708 6708	6728	6669	7200	7228	9104	7320 7616	7620	7700	7708	8200	8208	8228	8316	8616	8620	8700	8708 8738	0006	
9	Fred Fred	,	1	-	T U	0 4	- - -	0	с (2:	: =	F	14		2 2	H 18	9	23		50	24	52	26 2 7	. e	29	8.5	32		9 6 6	200	37	38	6	4	4		4	46	4	4 4 9 7	;' <u>0</u>	
RUN	ESC.	TAL TAL		- - -		S MAN	F 200000			-7			4 SUMONT	ATTACTURE A	E H	JALLA 1				N U N	Mobule			+-		-		Thurs o	Mobule					¢	Ę Ę		Mapure			- 72	EM1 Tem	**-
	D	F	C -				-				-				4	1-	5			ج	τ						_				_								_	-	~	

ORIGINAL PAGE IS

1.

																						0	F	r	JUI	K	ų٧	JA	ni i	I						1				
		122	<u>ہ</u> ہ			o		o.	ò	o o	o	ċc		°.	ó			ō				ōċ			o d	0					-	8.0	88			i o c	50			
		υΑΤΑ ΙΥΥ	òò	.0	ö	o o			o o		°.	ō		°.	0		o.	ō			60	o o	őc		o d	0					9.1	8.	88			o o				
		XXI	o 0	50	o			io	ö		o.	o o		0	ó		.0				; 0	o o		6	o d	.0	.		ö		0.1	8.	88		0	o o		0.0		
		27	25.313	8.008	9.177	1.650	3.200	1.690	23.123	10.886	13 653	8.048 7.052	14 048	12.593	11.426	19 52 1	8.167	194	18.6/U	15.602	19.651	25.888	867.5	13.359	17.135 8.581	10.535 1	17.738	4.405	12.322	4.482	2.158	2.158	2.023	0.800	0.800	2.235	2.528	2 528	2.528	
		٨٨	25.313	8 008	9.177	1.650	1.680	1.690	23.123	C81.1 10 886	13.653	8.048	14.043	12.593	11.426	19.521	8.167	7.194	18.6/U	15.602	19 651	25 888 25 401	10.40	13.359	17.135 8.581	10.535	17.738	4.405	12.322	4.482	258	2.158	2.023		0.800	2 235	2 528	2.528	2.528	nued)
		XX	25.313	8.008	9.177	1.650	1.680	069.	23.123	1.785	13.653	8.048 7 052	14 048	12.593	11.426	10.330	8.167	7.194	18.670 26 773	15 602	19.651	25.888	5 498	13.359	17.135 8 581	10 535	17.738	4.405	12.322	4.482	2 158	2.158	2.023	0 800	0.800	2.235	2.233	2.528	2.528	(Conti
1 11.LAK		RZ	00	00	0	0	n c	0	0	00	0	00	00	0	0 1	o o	0	0	00		0	00		0	00	0	0	00	0	00	19	285	161	20	0	0	00	0	00	1
018 P		يتي	00	0	0	0	00	0	<u>.</u>	00	0	00	00	0	0	0 0	0	0	00		0	0 0	olo	0	00	0	0	0 0	0	0 0	78	84	06 e	່ວ	0	0	0 0	0	00	
н 1 1 1 1 1 1		ABL	00	0	0	0	0 0	0	0	00	0	00	0 0	0	0	0 0	0	0	0 0	- -	0	00		0	00	0	0	00	0	0 0	77 2	83 2	89 89 98 98 98	20	0	0	0 0	0	00	9
DAT RUN B		E I	162 165	168	171	174	22	183	186	189 192	195	198	204	207	210	213	219	222	225	1.60	234	237	042	246	249 253	255	258	261 264	257	270	276 2	282 2	288 2		303	306	309 312	315	318	Tet
		ă,	161	167	170	173	176	182	185	191	194	197	88	206	209	212	218	221	224		233	236	200	245	248	254	257	260	266	269	275	281	287	566	302	305	305	314	317	
		×	160	166	169	172	175	181	184	181	193	196	202	205	208	211	217	220	223	0,0	232	235	872	244	247	253	256	259	265	268	274	280	286	298	301	304	310	313	316 319	
	00EL BLE	ATES	29.204	- 10. 390	29.204	20.380	-3.550	12.350	29.023	29.023	-11.202	-17.820	-20 000	-20.000	-20.000	-20.000	-20.000	-20 000	- 20.000	000	-20.000	-20.000	-20.000	-20.000	-20.000	-9.000	-9.000	000.6-	000.6-	000.6-	-24.000	-24.000	-21.000	- 10 485	- 10.485	-21.250	-21.250	-5.000	-5.000 -5.000	
	ORBITAL M JMMARY TA	ITANOOD	3.821	-26.540	-3 821	7.024	16.180	-13.973	3.821	-3.821	27.045	-23.224	-21,000	21.000	-21.000	- 21 000	-5.500	5.500	21.00 21.00 21.00		500	21.000		s.500	21.000	21.000	-21.000	- 51.000 - 51.000	-5 500	5.500	- 18.000	18.000	-18 000	-11.215	7.215	-4.960	4.960	7.750	-6.250	
	JITTER (C MODEL SU	×	8.00	88.8	8 000	B.000	8.8 8.8	000 B	0	<i>.</i> .	0.	00	0. 8.000	8.000	19 250	19.250 36 500	36.500	36.500	36.500		55.000	55.000	2000 14	74.000	74.000	36.500	55.000	55 000 74 000	14 000	74 000	25.250	25.250	76 250	75.375	75.375	75.375	71 000	60.500	71 000 60.500	
LSD900	PHASE :	NOTA	320	338	346	347	348	350	420	446 460	461	470	101	1020	1034	1043	1079	1081	1085		2011	1136	1155	1160	1163	1209	1269	1279 1798	1302	1303	1468	1469	1482	15.26	1528	1529	1530	1555	1560 1561	
Ŋ		100 H	12 8	2 C 2 C	54	55	5 1 1 1 1		59	9 .	62	69		99	67	89 89	20	71	22	2	1 10	16		66	8	82	83	84 94	80	87	5	06	6		10	95	96	-86	6 <u>0</u>	
RUN		DESC.	Tor	Mission	APAPAR	1	44	N LLY		l l	N138104	Aberton		AM	-				Vien Rail		A 17. 14. 07	27		24		C. LC HO	- 5		 	, « ^U			N. N		Front	22	V CONTS.	MSS	لا الا	

ORIGINAL PAGE IS

1

. ٦

ŧ : 1

۰.

٠

ţ

RUN	ND. L Best. Hered	PHASE O	3 JITTER	ORBITAL UMMARY T OORDIN	MODEL Able Ates			BY 1 BY 1 PY 1 BX	7018 .E.PC	LLAK D7	5	3	5	WEIGHT	DATA	
חבאר		No.	Y		7		•	¥	ł	77	× ×		78	144		
K-Marsa	00	1572	50.750	-21.000	14.500	328 32	3-324	325	326-3	27-1	2.000	2.000-	2.000-	-0-10	- 0 0	8 - 0
-Turk	200	1633	53.920	51.00	19.249	331 33	2 333	0	0	00	6 4 15	6.415	6.415			
BOWN ATTACH	104	1649	42 300	0.	-16.500	00 PCC	5 336	101	338 3	39	22.629	22.6 5	22.629	44.00	44.00	44.00
M56 C.G.	105	1664	67.250		1.660	340 34	1 342	343	344	45	130.000		130.000	16181.00	7780 00	12724.00
LT CIE	<u>8</u> 6	1679	75 375	9. 380 0.	-16.250	352 35	3 354	η Ο γ	2022	- 0	2.971	2.571	2.971	3.0°	0.0	0.
¢	108 30	2012	53 750	11 078	12 045	355 35	6 357	0	0	0	19.100	19.100	19.100		ö	00
	109 30			11 078	25 465	358 .35 361 36	9 360 263	о с '	်င		3.935	3,935	3, 935	50	00	
		2120	53 750	-10.579	25 465	364 36	5 366	o c	0	0	3.300	3 300	3.300		0.	
	112 30	0000	37.750	11.078	12.045	367 36	8 369	00	00	00	32.300	32.300	32.300	••	••	o c
ANVA 30. 7		2064 2077	37.750	11.078	25.465	15 0/5 373 37	1 375	00	00		3.635	3.635	3.635		; ; ;	
More	115 30	1000	37.750	-10 579	25 465	376 37	7 378	0	0	0	000 C	3.000	3.000	ò	0	ö
	116 30	0152 2166	46.250	0.250	28 986	379 38 282 38	0 381 284	00	0 0	o c	2000 2000 2000	5 000 000 000 000	2.000	o c	5 c	00
	118 30	0167	53.750	-16 563	-9.500	335 38	6 387	0	0	00	10 400	10.400	10.400			6
	0C 611	2168	37 750	17.062	-9 500	388 38	060 6	0	0	0	14 800	14 800	14 800		ö	• •
	20	0169	37.750	-16.563	-9.500	391 39	2 J93	0 0	00	00	18.900	18.900	18.900	o c		o c
	121	2005	50.750	-97.8.75-	-24.260	60 160	0657 G	00	00	00	3.252	3.252	2 012	; ;		; . ;
	123 2	5003	5.625	-97 875	-24.260	400 40	1 402	0	0	0	5 920	5 920	2.548	ō	ò	
	124 2	2012	76.250	-86.750	-24.260		0 403	0	0	0	0		4 140	ò	••	
LEONAD	125 2	2016	25.250	-86.750	-24.260	00	0 404 104	00	0 0	00	o o		4 140	o o		ċc
Pauch	127 2	2023	50.750	-73 750	-24.260	406 40	7 408	00	00	00	7.160	7.160	3,896			
	128 2	2027	5.625	-74.250	1 -24.260	0	0 409	0	0	0		0.0	1.885	ō		
	129 2	2039	76.250	-50.750	-24.260	çc		0 0	00	00			4.024			50
	131 2	2048	95.875	-42.375	-24.260	412 41	3 414	0	0	0	4.126	4 126	0.860	o.	0	ò
	132 2	2053	50.750	-42.375	-24.260	415 41	6 417	00	00	00	7.343	7.343	5.002.	o c	o c	o
PLOYED	1 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	2060 2060	56.890	-37.203	-24 .00	418 41	2 423	00	0	0	3.208	3.208	3.208			; . ;
- AAA	135 2	2062	46 650	-37 203	-24 250	424 42	5 426	0	0	0	3.208	3.208	3.208	0	•	• •
RADY York	136 2	2071	56 000 45 790	-32 610) -24.440) -24.440	427 42	8 429 4 435	436	431 4 437 4	38	4.476	4.476	4.476	88	88	<u> </u>
• }	138 2	2074	50.750	-31.750	-13.920	44 604	0 441	442	4 644	44	4.071	4.071	4.071	8	8.	2.0
	139 2	2076	50.750	-27 820	- 14. 500	445 44	6 447	448	449 4	20	3.269	3.269	3.269	8	8	5 - c
-	041	2101	9J.875	-99.035	-24 034	451 45 454 45	2 456	o 0	00	00	3.715	3.715	2.238			
	142 2	501 d	5 625	500.66-	-24.034	457 45	8 459	0	0	0	4.757	4.757	1 882	o	ò	ö
	143 2 2	2112	76 250	- 109 350	1 - 19.867	0	0 460	0	0	0	0	0	3 493		ö	ö
0.200	144 2	2116	25.250	-109 350	-19.867	00	0 401	00	00	00		ōċ	3.522		o c	o c
	145 2	2119	95.875 	-126.040	421.EL- 0		101	0	0 0	,				ċc	i c	ċc
UNDORR D	140	2123	50.750 5 625	-126.040	0 -13.124 0 -13.124	94 F94	4 403 0 466	00	00	00	0.044	0.	1.677		00	5 0
	48	0001	76.250	-142,729	-6.381	0	0 467	0	0	0	0.		3 493	o.	°.	ö
	149 2	2134	25 250	- 142.729	1 -6 381	0	0 468	0	0	0			3.522	o o	o o	o o
-	150 2	2137	95.875	- 153.044	-2.214	4634	0 4 2	S	>	>	4.100		×	5	\$	5

. . . '

•

:

Table 4.1-2 (Continued)

- - -

• •

. •

••

UN NO. LSD900	סטצעבי						LN RU	N 84	Т. Б.	DLLAK						
PHASE 3 JITTER ORBITAL MODEL DYNAMIC MODEL SUMMARY TABLE SAN. 648.	PHASE 3 JITTER ORBITAL MODEL DYNAMIC MODEL SUMMARY TABLE Guas.	3 JITTER ORBITAL MODEL IC MODEL SUMMARY TABLE COORDINATES	ORBITAL MODEL	MODEL Able [NATES				DOF	TAB.	E			2	THOIS	DATA	
No No.C X Y Z X	Nore X Y Z X	X Y Z X	Y Z X	x	×		7	X	ž	RZ	XX	3	A2	IXX	177	122
151 2141 50.750 -153.044 -2.214 47	2141 50.750 -153.044 -2.214 47	50.750 - 153.044 - 2.214 47	-153.044 -2.214 47	-2.214 47	47		473 47	4	0	0	3.398	3.398	1.923		ö	
152 2145 5.625 -153.044 -2 214 47 153 220, 95.875 -207.864 19.935 47	_2145 5.625 -153.044 -2 214 47 _220, 95.875 -207.864 19.935 47	5,625 -153,044 -2 214 47 95,875 -207,864 19,935 47	-153.044 -2 214 47 -207.864 19.935 47	-2 214 47 19.935 47	4 4	ი. ი. თ	476 47	0 0 ~ 0	00	00	4.910	4.910	1.960		0 o	
154 2205 50.750 • 207 864 19.935 48	2205 50.750 - 207 864 19.935 48	50.750 - 207 864 19.935 48	· 207 864 19.935 48	19.935 48	48	-	4.0.2 48	0	0	0	3.486	3.486	1.918	ö		
155 2209 5.625 -207 864 - 19.935 48	2209 5.625 -207 864 - 19.935 48	5.625 -207 864 - 19.935 48		- 19.935 48	48	4 (485 48	0 (0 (00	00	4.280	4.280	1.330	ċċ	ċ	ċċ
150 2216 25.250 -197.549 15.768	2216 25.250 -197 549 15.768	25.250 -197 549 15.768	-197 549 15 768	15 768		00	0 481	> 0 ~ 8	00	00			3.623		50	50
158 2219 95 875 -180,860 9.025	2219 95 875 -180.860 9.025	95 875 -180,860 9.025	-180.860 9.025	9.025		0	0 48	00	0	0 0	0.	0	1.674	٥.	ōð	ōo
159 2223 50 /50 -180.860 9.025 45 18 (60 2227 5 625 -180.860 9.025	2223 DO /DU -180.850 9.025 45	5 625 - 180,860 9,025 5 625 - 180 860 9,025	-180.860 9.025 45 -180.860 9.025	9.025		2 o		00		00	6.845 0.	0.0	3.900 1.674			
161 2230 76.250 -164 171 2 282	2230 76.250 - 164 171 2 282	76.250 - 164 171 2 282	-164 171 2 282	2 282		0	0 49	0	0	0	0		3.377	ö	o	0
162 2234 25.250 -164.171 2.282 (2234 25.250 -164.171 2.282 (25.250 - 164.171 2.282	-164.171 2.282	2.282		0.0	040	00 00	00	00	0	0.	. 2. 405	••	o c	00
164 223/ 99.8/5 -153.850 -1.865 49	223/ 90.8/0 - 153.850 - 1.665 - 1.665 - 40	90.8/0 - 103.800 - 1.860 - 490 60 750 - 153 855 - 1 885 40	-153.150 -1.860 -1.860 - 400	-1.883 49		ο σ			00	.	4.000 3.358	3.358	919.1	50	50	50
		5 625 -153,856 -1,885 50	-153.856 -1.885 50	-1.885 50	i iii	2	503 50	• •	00	00	4.110	4.110	1.336			
166 2301 5.625 -203.677 20.263 50	2301 5.625 -203.677 20.263 50	5.625 -203.677 20.263 50	-203.677 20.263 50	20.263 50	20		506 50	1 0	0	0	6.120	6.120	2.448	0		
167 2305 5.625 -235.681 31.174 C	2305 5.625 -235.681 31.174 C	5.625 -235.681 31.174 C	-235.681 31.174 C	31.174 C				0 (8 •	00	00	•	• •	1.250	o c	o c	ōc
100 2309 3 023 202.003 42.044 303 169 2339 25.250 -218.952 24 431 (2309 35250 -218.952 24 431 (3 023 7202.003 42.044 303 25.250 -218.952 24 431 (-218.922 24 431 ()	24 431 0	Š		000	- 90	00	00	0. r 0	0.	4.097	; .;		òò
170 2343 25.250 -252.370 37 917 0	2343 25.250 -252.370 37 917 0	25.250 -252.370 37 917 0	-252.370 37 917 0	37 917 0			0 51	0	0	0	.0		3.889	ò	o.	0
(b) 171 2373 50.750 -208.677 20.262 514	2373 50.750 -208.677 20.262 514	50.750 -208.677 20.262 514	-208.677 20.262 514	20.262 514	514		515 51	0 0 0 0	00	00	2.963	2.963	1.800	o o	ċ	o
172 2377 50.750 -235.681 31.174 517 173 2381 50 750 -262 685 42 084 520	2377 50.750 -235.681 31.174 517 2384 50 750 -262 685 42 084 520	50.750 -235.681 31.174 517 50 750 -262 685 42 084 520	-235.681 31.174 517 -262.685 42.084 520	31.174 517 42 084 520	517		5215 513 521 523) 0 , 0	00		2.963	4.9/3 2.963	1,800			
174 2411 76.250 -218.992 24.431 0	2411 76.250 -218.992 24.431 0	76.250 -218.992 24.431 0	-218.992 24.431 0	24.431 0	0	1	0 52	0	0	0	0.	o	4.168	ö	0	0
175 2415 76 250 -252.370 37.917 0	2415 76 250 -252.370 37.917 0	76 250 -252.370 37.917 0	-252.370 37.917 0	37.917 0	0	-	0 52	4	0	0	o.	0.	3.889	.	ö	o
176 2445 95,875 -208,677 20,263 52 177 2449 05 875 -275 581 31 174	2445 95.875 -208.677 20.263 52 2440 05 875 -275 681 31 174	95.875 -208.677 20.263 52 95 875 -235 581 31 174	-208.677 20.263 52 -275 681 31 174	20.263 52	5	0 C	526 52 0 521	0 C	00	0 C	6.120	6.120	2.448			
178 2453 95.875 -262.685 42.084 529	2453 95.875 -262.685 42.084 529	95.875 -262.685 42.084 529	-262.685 42.084 529	42.084 529	525		530 53	0	0	0	4.210	4.210	0.110	ö	.0	°.
179 2460 2.750 -213 549 22.232 53	2460 2.750 -213 549 22.232 53	2.750 -213 549 22.232 53	-213 549 22.232 53	22.232 53	ŝ	2	533 53	4 535	536	537	1.816	1.816	1.816	8.	8.8	8.8
180 2461 98.750 -213.549 22.232 5 • 181 10779 42 300 0 -117 380 5	2461 98.750 -213.549 22.232 5 10272 42.300 0117.380 5	98.750 -213.549 22.232 5 42.300 0117.380 5	-213,549 22,232 5 0117,380 5	-117.380 5	ດທ	4 4	545 54(6 547	548	240	1.816	1.816	1.816	516.00	516.00	80.08 80.08
- 182 10273 42.300 0123.380 5	10273 42.300 0123.380 5	42.300 0123.380 5	0123.380 5	-123.380 5	2	20	551 55	2 553	554	553	12.815	12.815	12.815	355.00	355.00	73.00
183 10500 42.300 025.150 5	10500 42.300 025.150 5	42.300 025.150 5		-25.150 5	ທເ	9 0 20	557 551	8 559 •	200	561	12.477	12.477	12.477	160.00	160.00	160.00
×₩185 10505 42.300 0155.225 5	10505 42.300 0155.225 5	42.300 0155.225 5	0155.225 5	-155.225 5	0 60	20 V	566 56.	7 568	5695	570	21.265	21.265	21.265	569.74	569.74	156.54
Arr.186 (0515 42.300 017.700 5	10515 42.300 017.700 5	42.300 017.700 5	017.700 5	- 17.700 5	د ا	-	572 57	3 574	575	576	10.017	10.017	10.017	160.00	160 00	160.00
187 10516 42 300 082.750 5	10516 42 300 082.750 5			-82.750 5	տա		578 579 584 58	0 C n c	00	00	12.403 3 180	3 180	3 180	o c	o d	
189 10519 46.350 0 -54.450 5	10519 46.350 0 -54.450 5	46.350 0 -54.450 5	54.450 5	-54.450 5	າທ	200	584 58	0 0	0	00	0.160	0.160	0.160	0	0	0.
190 10520 42.300 037.850 56	10520 42.300 037.850 56	42.300 037.850 56	037.850 56	-37.850 56	3	يوا	587 58	0	0	0	6.257	6.257	6.257	ō		
	10521 42 300 -4,960 -54 450 56	42 300 -4,960 -54 450 56	-4.960 -54 450 56	-54 450 56	ີ ມີ	<u>6</u>	590 59		0 0	00	4.625	4.625	4.625 2.466	ċċ		ċc
192 10522 42.300 4.950 -54.450 55 102 10510 28 050 7 7-0 -82 933 56	10522 42.300 4.950 -54.450 55 	42.300 4.950 -54.450 5 29 AGA 7 7-A -82 933 50	4.950 -54.450 55 7 7-0 -82 933 55	-54.450 -87 923 50	ດີ ທີ	N U) C	, c	. .	3, 150 3, 130	3, 130	3 130.		50	50
133 103 103 00 25 00 11 750 167 130 5		23 230 11 130 14 130 5	- 17 750 - 167 139	- 167 139 - 5	۵ľ	200	599 605				3.460	3.460	3.460	0		
T 195 20007 32.550 +17.750 -186.128 6	20007 32.550 -17.750 -186.128 6	32,550 +17,750 -186,128 6	-17,750 -186,128 6	-186.128 6	שר	20	502 600) O	, o	0	3.460	3 460	3.460	; .	•	.0
196 20018 42.300 -17.750 -177.427	20018 42.300 -17.750 -177.427	42.300 -17.750 -177.427	-17.750 -177.427	-177.427		604	605 60	0	0	•	29.230	29 230	29.230	ö	°.	°.
197 20029 52 050 -17.750 -167.139	20029 52 050 -17.750 -167.139	52 050 -17.750 -167.139	-17.750 -167.139	-167.139		607	608 60	0	0	0	3 460	3 460	3.460	°.	0.	0
198 20035 52.050 -17.750 -186.127	20035 52.050 -17.750 -186.127	52.050 -17.750 -186.127	-17.750 -186.127	-186.127	Į	610	611 61	0	ο.	0	4.080	4.080	4.080		ō	0.0
199 20056 32.550 -9.500 -167.139	20056 32.550 -9.500 -167.139 20061 32.850 -0.500 -167.139	32.550 -9.500 -167.139 32.550 -9.500 -167.139	-9.500 -167.139 -0 500 -167.139	-167.139 -183 338		613 613	614 01 617 61	۵ د ۵ ه	<i></i>	٥c	1.530	1.530 6.020	1.530 6.020	o c	o c	. c
			9.100							,				;		
					ł	1	Ta	ble	4.1	Ē	Continue	d)				-)

-

۰.

٦

w . ^

۰.

.

														;				ł
ŭ	ON NO	. LSD900						RUN	TE 0 87 T	7018 . E. Pl	1 Ollak							
DESC		PHASE DYNAMI Gues Hone	3 JITTER C MODEL : X	ORBITAL SUMMARY COORDI Y	MODEL Able NATES 2	×	>	۲ <mark>۲</mark>	P. S.	TAB	LE R2	XX	*	ΝZ	WEIGHT	DATA	221	
-	201	20063	37 420	-9.500) -167.140	619	620	621	0	0	0	2.114	2.114	2.114	0.	0.	0.	
	203	20073	42.300	705.6- 202.6-) -171.827) -177.427	623	623 629	624	5 O	029	627 0	7.240 6.000	4 240 6.000	6.000	0	45.24 0.	166.56	ł
	204	20084	52.050	-9.50	0 - 167.139	631	632	633	00	0	0	1.920	1.920	1.920	òò	ō¢	o c	1
	205 206	20099 20119	42.300 52.050	-2.500) -1/7.427) -167.139	637	628	629	00	00		2.120	2 120	2.120				
	207	20137	42.300	6 500	0 -177.427	640	641	642	0	0	0	5.690	5.690	5.690	<u>.</u>	o.	ö	I
_\ ¢	208	20141	37.420	0.50 202) -167.140) -167.140	643	644	645 648	00	00	00	2.114	2.114	2.114	o c		o c	
	210	20153	32.550	6.50	0 - 183.028	649	650	651	00		>0	5 800	5.800	5.800				
		20155	52.050	14 200	0 - 167 . 139	652		654	9	0	0	4.280	4.280	082 4			-ic	1
	212	20151	42.300	14.200) - 186. 12/	659 658	629 629	660	00	00		9 360	9 360	P 360			50	
	214	20183	32 550	14.200	0 - 167.139	661	602	663	00	00	00	2.230	2.230	2.230	ōċ			
	× 216	20191	20.279	-11.521	-186.127	667	668	699	670	11	672	1.340	1.340	1 340	1.00	1.00	00	1
4	217	20192	30 279	12.521	1 - 186 127	673	674	675	676	677 (678 22 -	1.340	1.340	1 340	88	8.9	88	
	م 19 19	20193	54.321	-11.521	1 - 186. 128 - 186. 128	679 685	680 686	681	682 688	583 (583 (68^ 690	1.340	1.340	1.340	88	88	88	
	×11220	20198	42 300	0	-174.827	169	692	693	694	695	696	19 890	19.890	19.890	518.89	124.30	518.89	1
<u>م</u> ردر	221	20509	42.300	-9 500	9 -54.450	691	698	669	0	0	0	2 210	2.210	12.210	ò		ö	
•	x 222	20512 1	42.300	6.50C	9 -54,450 -190,160	700	704	702	00	00	00	0.750 2 696	0.750 2.690	0.750 2.696				
ļ	22.4	5	33.365	-1.894	- 190. 160	706	707	708	0	0	0	2.696	2.696	2.696	0	0.	0.	0
	225	m 1	49 029	-24.614	1 - 196.993	404	10	112	0	0	0	2.451	2.451	2 451	ö	ō	òò) F
	226	43	35.571	25.614 28 267	1 - 196, 994	712	713	714	00	00	0 0	2 451	2.451	2.451			 0	P
l	228	9	20 993	-27.261	-203.347	718	719	720	0	0	0	2 155	2.155	2 155		0		1974 00 1
	229	~ 0	54 321	12.52	1 - 191.037	721	722	723	00	00	00	0.837	0.837	0.837	òò		ċc	R
	2310	.	30.279	-11.52	150.161 - 1960 - 1910 - 1910 - 1910 - 1910 - 1936	727	728	6 <i>C</i> L	00	00	00	0.837	0.837	0.837				Q
	232	10	28.813	-9.845	- 191.036	130	151	732		0	0	0.110	0.110	0.110		ö	òò	AC UA
5= 8 3			30.254	12.521	1 - 191,054	733 796	734	735 738	00	00	00	0.145	0, 145	0.145	ōđ	• •		
		N CO	54.321	12.521	- 186. 128	139 139	740	741	742	743	744	0.225	0.225	0 225	0.23	0.23	0.23	ני דץ
	236	14	54.321	-11.521	- 187.116	745	746	747	0	0	0	0.145	0.145	0.145	0.	; 00	0.)
. <	1021	5 4 4	34.321	-11.52	- 185.128	754	755	954	<u></u>	20	10	0 145	0.145	0.145		0.0		
(H	239	2	30.279	-11.521	-186.127	757	758	759	760	761	762	0 225	r. 225	0.225	0.23	0.23	0.23	1
40	240	18	30 279	12.52	1 - 187.116	763	764	765	0 22	0 0	0	0.145	0.145	0.145	0.33	0.23	0.23	
Ĭ	240	91	47.293 47.293	5.493	1 -212.469	772	ELL	774	20	20	. 0	0.125	0. 125	0.125				
	243	21	47 293	-4.493	1 -212.469	775	776	777	0	0	0	0.125	0.125	0.125 .	0	ö		I
ł	244	22	37.307	-4.49	9 - 212.468	778	119	780	00	00	00	0.135	0.125	0.125	00		00	
	245	52	43 184	-0.384	1 -212.469	784	785	786	00	o	00	0.040	0.040	0.040				,
	247	25	41.416	1.384	1 -212.458	787	788	789	٥	0	0	0.040	0.040	0.040	0	•		I
ł	248	26	42.300	1 750	7 - 212.469	061	161	792	00	00	00	0.140	0.140	0.140	o d			
	250	28	42.866	-0.066	-212.469	196	197	198	0	0	0	0.345	0.345	0.345	0.			
!										.			;					1
									C e E	3			10010					

•

-

· · · · · ·

•••••

- -

- - ,

• • • • · · ·

-

.

	WEIGHT DATA V2 IXX IXY 122		0.345 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.		0 066 0. 0. 0.	0.066 0. 0. 0. 0.066 0. 0. 0. 0.					-	00	RF	ginal Poor	PA(QU	GE	IS TY	-		(
	VX VY	910 0 JIC 0	0.345 0.345	0.066 0.066	0 066 0.066	0.066 0.066 0.066 0.066		(Continued)													
DATE 070181 RUN BY T.E.POLLAK	X Y Z RX RY RZ			808 809 810 0 0 0	811 812 813 0 0 0	814 815 816 0 0 0 817 818 819 C 0 0		Table 4.1-2													
	RBITAL MODEL MMARY TABLE OORDINATES Y Z		-0.066 -212.469	8 166 -211 117	0.500 -211.117	-7.166 -211.117 0.500 -211 117		·													
0	E 3 JITTER O MIC MODEL SU X		41.735	42.300	49 966	42.300 34 634								,							
RUN NO. LSD904	DYNAI DYNAI SC. SINT SUB.	. No.	251 29 252 30	253 31	255 33	256 34 257 35		-	4-	- 1 (

.....

•

1

Figure 4.1-2 Deployed Solar Array Representation

		•																						0)r)f,	igi P	IN. Voi	al Dr	. (PA 2U	GE Al	: .17	is Y				;					
		122	ō	0.	0			0		 0	<u>.</u>	••	o o	00	88	1.00	1 .00	. d		ö		5 d	; . ;	ōo		0	ōō	òò					<u>.</u>			, , , , , ,		ōċ			•'	 ; ;
		177			o.	o	ód	0			0	· o		8	8	- 00 -	8	. c		, o	o	ic	0			ō	••			o		io	o		o c	io io		ōċ	-i c		•	
		1XX	.		o.	o o	o c		••			o.	ōċ	- o	8.5	8.	8	c		°.	.	5 c	0.	ōċ			o				ċc		°.	o.	o c	, o		ō	ċ		•	
		٨Z	1.338	2.012	4.140	4.140	1 885 3 895	1.885	4.024	4.014 0.860	5 002	2 051	3.208	3.208 4 476	4.476	4.071	3 269	1.323	1.882	3.493	3.522	800 C	1.677	3 493	1.312	1.923	1.872	000.1	0000 1	3.623	3 623	005 6	1.674	3 377	3.405	616.1	1.336	2.448	052.1	4.097	3.889	
		٨	4.700	3.252 5.920	0	•	0. 7 160	0.	••	0. 4.126	7.343	5.314	3.208	3.208 4 476	4.476	4.071	3.269	4.200	4.757	0.	ō	6 844	0.	o o	4.186	3.398	4.752	0 0 0 0	4.280	•	o c	6 845	0	••	0.	3.358	4.110	6.120		0.7.0	••	
		XX	4.700	3.252 5 920	0		0. 7 teo	0.		0. 4.126	7.343	5.314	5.20B	3.208	4.476	4.071	3 269	4.200	4.757	o O	ö	0. 6 844	0.0	ō	4,186	3.398	4.752	014.4	4.280	•	o o	6.845	0	o.	0.	3, 358	4.110	6 120	0.	4.210 0.		
OLLAK		ĸz	0	00	0	0	00	0	0	0 0	0	0	00	000	57	51	57	00	00	0	0	,	00	00	00	0	0 0	20	00	0	00	00	0	0	00		0	00	0	00	0	
7138		Å	0	00	0	0	00	o	0	00	0	0	0 0	o e	44	50	56	00	0	٥	0	> c	00	0	- c	0	0	00	0	0	0 0	0	0	0	00		0	0	9	00	0	
TE O		ž	0	00	0	0	00	0	ó	00	0	0	00	0	2 4	4	55	0 0	00	0	5	> c	00	0	o c	0	0	> (00	0	00	00	0	0	00			0	0	0 0	0	
A D A		~	3	დთ	ļ	=	<u>5</u>	99	4	18 18	. 4	17	88	50	50	48	3	0 9 9	, 99 99	67	68	7 G 9 F	10	41	c / 8/	81	84		000	94	6 0 0	0 0	<u>8</u>	<u>10</u>	102		Ē	114	122	8 1 8	120	E
		>	3	ເກ ເປ	0	0	٥ţ	<u>,</u> 0	0	၀င္ရ	50	26	50 50		, 4 , 1	47	53	6 G	65	0	0	°;	: °	0	0 Ç	80	683	99	9 0 0 0	0	0 0	8	0	0	°	56	::	• (0	Ē	0	
	Y TABLE	×	-	4 1-	0	0	0:	0	0	oġ	55	25	28	5	5 A	46	52	9 9 9	64	0	0	0 ç	20	0	76 0	79	82	17 C	6	0	00	9.6	0	0	0	500	601	3		910	0	
	ODEL Del Summar	2	-24.260	-24.260 -24.260	-24.260	-24.260	-24.260	-24.260	-24.260	-24.260	-24.260	-24.260	-24.260	-24 260	-24 440	-13.920	-14 500	-24 034	-24.034	-19.867	- 19.867	421 · E1 -	-13.124	-6.381	-9.381	-2.214	-2.214	19,935	19.935	15.768	15.768	9.025 9.025	9.025	92	2.282	500 1-	-1.085	20.263	31.174	42.084 24 431	37.917	
	ORBITAL M Dynamic Mo	>	-97.675	-97 875 -97 875	-86.750	-86.750	-74.250	-74.250	-50 750	-50 750	-42.375	-42.375	-37.203	-37.203	-32.610	-31.750	-27 R20	-99.035	SCO 66-	-109.350	-109 350	- 126 040	- 126.040	-142.729	-152.729	- 153 044	-153.044	-207.864	-207 864	-197 549	- 197 549	- 180 860	- 180.860	-164.171	-164 171	-153.830	- 153.856	-208.677	-235.6.	-262.L 5 -718 997	-252.370	
	3 JI-TTER Ree-Free (×	95.875	50 750 5 625	76.250	25.250	95.875 50 750	5 625	76.250	25.250 of 975	50.750	5.625	56 690	46.650	20.000 45 790	50 750	50 750	95 875 Ev 760	5.625	76.250	25.250	95.075 E0 7E0	5.625	76.250	25.250 95 875	50 750	5 625	95.875 25.875	00/ 00 5/9/5	76.250	25.250	50.650	5.625	76.250	25.250	C/8 CA	5.625	5.625	5.625	5.625	25.250	
DSAB 1F	PHASE DSA F		2001	2005 2009	2012	2016	2019	2027	2039	2042	2053	2058	2060	2062	2073	2074	2076	2101	2109	2112	2116	2119	2123	2130	2134	2141	2145	2201 6865	2209	2212	2216	6122	2227	2230	2234	2237	2245	2301	2305	2309.	2343	
RUN ND.			-	N (1) 4	5 C	60 F	8	đ	2:	12	13	4	15	<u>9</u>	. 8	19	20	22	23	.6	5 U 0	27	28	67	9.16	32	00 00	9 60	36	37		40	41	42		101	46	47	48	09	

.

.

1014

t

.

	-		•								· '.		 	
		122	000	000										
		1 Y Y	600	000	<i>.</i> o o	88			or:gin of po	al p or q	AGE IS			
		1 X X	000	000		.88.								
		ZN	1.800 3.132	4 168	2.448								•	
		3	2.963 4.973 2.963	0.0	6. 120 0.	1.816	•		-					
		XM	2.963 4.973 2.962	.0 .0	6.120 0	4.210 1.816 1.816		nued)						
DSABIF DATE 071381 RUN BY T.E.POLLAK	PHASE 3 JITTER ORBITAL MODEL DSA FREE-FREE DYNAMIC MODEL SUMMARY TABLE	X Y Z X Y Z RX RY RZ	2373 50.750 -208 677 20 263 121 122 123 0 0 0 0 2317 50.750 -235.681 31.174 124 125 125 0 0 0 0	z381 30.750 252.635 43.056 50.750 </td <td>2445 95.875 -208.677 20.263 132 133 134 0<</td> <td>2453 95 875 - 262.685 - 42.084 136 -137 138 -0 - 0 0 2460 2.750 - 213.549 22.232 139 140 141 142 143 144 2461 98.750 - 213.549 22.232 145 1-1 147 148 149 150</td> <td>· · ·</td> <td>Table 4.1-3 (Contin</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	2445 95.875 -208.677 20.263 132 133 134 0<	2453 95 875 - 262.685 - 42.084 136 -137 138 -0 - 0 0 2460 2.750 - 213.549 22.232 139 140 141 142 143 144 2461 98.750 - 213.549 22.232 145 1-1 147 148 149 150	· · ·	Table 4.1-3 (Contin						
RUN NO. D			22.2		2 5 2 7 2 7	58 2 59 2 60 2								

.

unit (SC-CU). A representation of the MMS structure is presented in Figure 4.1-3. A weight breakdown is shown in Table 4.1-4. A substructure DOF summary is presented in Table 4..-5. An acceptable equilibrium check in the free-free configuration was used for model acceptance. Reference 3 describes the efforts of the Stress group in determining freefree acceptability.

The TDRSS boom assembly defined in the current model is a model test verified structure incorporating al! structural changes to reflect test correlation as presented in Reference 4. A representation of the boom structure is presented in Figure 4.1-4.

The TRW supplied RF Compartment NASTRAN model and SAP formulated Ku/S-Band Antenna model were those assembled in models LSD700 (Reference 5) and LSD801 (Reference 1). Gimbal drive assembly stiffness properties (tuned from modal test results) associated with the RF Compartment math model are presented in Table 4.1-6. Representations of the RF Compartment and Ku/S-Band substructures are presented in Figures 4 1-5 and 4.1-6. Respective boom/RF Compartment and Ku/S-Band Antenna substructure DOF summaries are shown in Tables 4.1-7 and 4.1-8.

The Instrument Module (IM) used for orbital model LSD900 is a completely revised model incorporating the numerous modifications to the free-free model as assembled in model LSD801. The previous free-free static model represented by 642 nodes and 3065 degrees-of-freedom is currently represented by 957 nodes and 5082 degrees-of-freedom. References 6 and 7 detail the modification analysis undertaken by the Stress Analysis Group to make the previous baseline IM reasonably compatible with the

()

1

va Table 4

. . .

Table 4.1-4 Neight Breakdown For Updated MMS (Tuned)

Component	Total Weight	Remarks
ACS Module	345.38	
Power Module	503.6	Includes 3rd Battery
C and DH Module	250.67	Includes Tape Recorders
Propulsion Tank (PM1)	337.0	Includes Fuel + Pressurant
Propulsion Tank (PM1A)	400.2	Includes Fuel + Pressurant
Earth Sensor	26.00	
SC-CU	56.38	
PAF	150.77	Not in Free-Free Model
MSS	504.423	Includes Harness, Thermal Subsystem, Grappler, Misc.

Electrical, Propulsion Tank Support Structure

Total Substructure Wt. = 2574.423

2423.653 W/O PAF

•

																									O	FI	PC	0	R	QU	A	LU	ſY					_		
		. 221	0.		°.	ōo		0	ōċ		2500.00	0.0	o		o c		ō			•	o o	60	ö	o c		ò	ċc		òò		o .	òò		0	••	òò	<u>.</u>	ö	35280.00	>>·>>
		177	0.		o	òò			o o		2000 00		o.	o o	o c		o	n d	0.		òò					ö				; ;	0	00	50	0.	o o	60	0.	ö	45240.00	>>>>>
		1XX	o.	00	°.	o o		°.	o o		3600 00	3 °	ò	ö	ċċ		o o			0	òò		0.			ó	ċc		o o		0			<u>.</u>			0.	ō	71170.00	ろうここ
		ZM	400.20	41.630	40.710	40.710	41.630	43.447	43.447	41.630	56.380	24,665	24.665	12 333	12 333	31 300	23.760	23.760	34.435	34.435	34.425	23 760	21 760	50 000 34 547	49.949	6.591	128.046 27 643	146.583	19.772	46 682	9.220	15.885	13,681	41.044	41.044	41.044	15.885	13.681	000.755	222
		٨٨	400.200	41.630	40.710	40.710	41.630	43 447	43.447	41.630	56.380	24.665	24.665	12.333	12.333	31.300	23.760	23.760	34.435	34.435	34.435	23.760	23.760	50 000 34 547	49.949	6.591	128.046 27 663	146.583	19.772	46 682	9.220	15.865	13.681	41.044	41.044	41.044	15.885	13 681	337.000	
		XM	400.200	41.630	40.710	40.710	41.630	43.447	43 447	41.630	56.380	24.665	24.665	12.333	12.333	31.300	23.760	23.760	34.435	34.435	34,435	21.300	23.760	50.000	49.949	6.591	128.046 27 663	146.583	19.772	46.682	9 220	15.885	13.681	41 044	41.044	41,044	15.885	13.681	337.000	222.100
r'LLAK		RZ	0	0 0	0	0	00	0	00	00	39	ç o	0	0	00	0	0	00	00	0	0 0		0	00	00	0	5 0	0	00	0	0	00	0	0	00	00	0	0	2 65	
		ž	0	0 0	0	0	0 0	0	00	00	38	† 0	0	0	00	0	0	0 0	0	0	0 0	00	0	00	0	0	>	0	00	0	0	0 0	00	0	00	00	• •	0	59	001
C		ž	0	00	0	0	0 0	0	00	00	10	ç o	0	0	0 0	0	0	00	0	0	0 0	00	0	0 0	0	0	2 0	0	00	00	0	00	00	0	0 0	00	0	0	5 1 2 1 2 1	10
ND ND		N	e	φσ	2	Ş	318	24	22	28	36	4 4	51	54	57	83	99	6 <u>9</u>	12	78	8	8 7 8	g g	6 90	66 66	102		111	114	202	123	126	132	135	138	144	147	150	565	200
-		>	n	ε ρ α	=	Z !	20	23	5 0	5 N 10 N	35	- 4	50	53	5 0 0 0	62	65	58 7 t	4	11	000	5 9 9 9 9	89	92 97	n 86	101		<u>2</u>	611	5	122	125		134	137		146	49		20
	TABLE	×	-	4 ٢	<u>0</u>	C	<u>6</u>	22	25	3 4	34	4 4 0 9 0	49	52	50 8 9	619	64	67	55	76	79	រ ព ព	88	16	16	001	50	109	112	8	121	124	021	133	136	142	145	148		1
	DEL DEL SUMMARY	2	°.	- 15.000	- 14.723	-14.723	- 15.000	-10 890	25 613 20 000	800.00	37.050	25.613	-10 890	30.000	- 15.000	- 14.723	-31.723	-31.723	-31.723	-31.723	-31.723	- 14.723	-31.723	-20.723	-4,057	= 4,067	015.5	27.812	27.812	35.780	35 780	27.280	35.780	27.813	27.813	3.910	-12.557	-4.057	160.4-	
	ORBITAL MC VNAMIC MOL	>	ö	-25.981	-21.075	21.075	25 981	23 288	2.213		o o	-2.213	-23.288	.	-25.981	-23 000	-23.000	-23.000	-13,800	13.800	13.800	23,000	23.000	000 6	38.972	58,972	24. 312 272 72	20 572	20.572	15 972	15.972	-1.250	- 15.972	-20 572	-20.572	-34.372	-24.250	-38 972	2/6.85-	>
	3 JITTER EE-FREE D	×	-46.100	-9.800	-8 800	-8 800	-61 000	-8.800	-8.800	-61.000	-24.900	-8 800	-8 800	-3.200	-3.200	-56.800	-56 800	- 10.800	-29 200	-38.400	-29.200	-56 800	-10 800	-33.800	-56.800	<u>949</u> .01=	- 38.400	- 38 . 400	-29 200	-56 800	- 10.800	-56.800	- 10.800	-38.400	-29.200	- 29, 200	-56 800	-56 800	- 10.800	3
LOPSING	PHASE MMS FR		3000	4600 4650	4682	4692	4750	4782	4792	4800	4875	48/5 4882	4892	5709	5737 5766	6200 6200	6208	6228 5245	6320	6616	6620	6708 6708	6728	6999 7200	7208	BERL	91EL	7616	7620	7708	7728	8200	8228 8228	8316	8320	8620 .	8700	8708	8778	225
KUN NU.			-	м с	•	S I	9 6	. 8	б (2 =	5		5	16	5.	<u>e</u> 5	20	55	53	24	25	26	28	29	9.6			32.2	36) 8C	6C	9		43	44	40	47	48	7 C	20

4-17

قد م

. ..

Table 4.1-6 GDA Stiffness Properties for Orbital Model LSD900

•

																							O	F	P ()(ĸ	Ŷ	U۲									•		
		122	80.00	73 00	160.00		156.54	<u>}</u>	o	ò	ōc	; ; ;	ò	ō	ó	50		o	o o	0. 188.88	0.	°.	o o		o.	o'	o o	, , ,		o o	8.	8	8.1	8	518.89		ò			
		177	516.00	355.00	160.00	.0.	569.74 • 60.00	<u>.</u>	io	°.	o c	io	ò	o o	ò	ċc	; .;	o.		45.24	0.	0	o o		.0	•	o o	ö	o	o o	8	8	8	8.1	124.30		o			
		IXX	516.00	355.00	160.00	0.	569.74 .60 00	8 .00	; ; ;	°.	o o	, o	ò	o o			; . ; .	0.		0. 188.88	0.	°.		c	0	o.	o o	50	ò	o o	8	8	0.1	1 .8	518.89	o	ò		•	
		ZA	14.073	12 815	12.477	13.140	21.265	12.403	3 180	0.160	6 257 4 676	3.165	3.130	3 460	3.460	29.230 3 A60	4 080	1.530	6.020	7.240	6.000	1.920	7.110	2.120	2.114	1.530	5.800	4 850	9 360	2 230	1.340	1.340	1.340	1.340	19.890	2 210	057.0			
·		۸M	14.073	12.815	12.477	13.140	21.265	10.01	3.180	0.160	6.257	3.165	3.130	3.460	3.460	29.230	4.080	1 530	6.020	2.114	6.000	1.920	7.110	2.120	2.114	1.530	5.800	4.850	9.360	2.230	2.230	1.340	1.340	1.340	19.890	2.210	0.750			
		XX	14.073	12.815	12.477	13.140	21.265	10.01	3.180	0.160	6.257	3.165	3.130	3.460	3 460	29.230	4 080	1.530	6.020	7 240	9000	1.920	7.110	2.120	2.114	1.530	5.800	4 850	9.360	2.230	2 230	1.340	1.340	1.340	19.890	2.210	0.750			
81 Pollak		RZ	g	5	18	0	27	20	0	0	00		0	0	0	o c	0	0	0	0 8	50	0	0	00		0	00		0	00	129	135	141	147	153	0	0		1-7	
0713 r E.		Å	ഹ	Ξ	7	0	26			0	00		0	0		00	0	0	0	0 4	30	0	0	00		0	00		0	00	128	PC1	13	146	152	0	¢		4	•
BY 1		ž	4	<u>0</u>	<u>9</u>	•	5 C	50	P	0	00	P	0	0	0	0 0	0	0	0	0 8	;0	0	0	0 0	0	0	00	o	0	0 0	1270	133	139	145	151	0	0		b l e	
RUN	ω	~	3	σ	5	5	24	2 6	66	42	44	2	54	57	<u>e</u> ls	5 U	8 G	72	75	81	87	6	6	96 9 0	; <u>5</u>	105	108	4	117	120	126	132	138	144	150	156	129		Та	
	TABL	>	3	00	7	30	50	א ת א ר	200	4	44	205	53	56	62	0 1 0 1	68	71	74	208	80	89	32	5 a 0 1	Ϊē	104	101		116	611	122	191	137	143	149	155	128			
	SUMMARY	×	-	-	5 5	61	22	97	16	4	4.4		52	55	8	61	67	70	13	76	85	88	16	94	8	103	106		115	118	121	130	136	142	148	154	157			
	IC MODEL	2	-117.380	- 123.380	-25.150	-54,450	- 155.225	-1/ /00	-89.750	-54.450	-37.850	-54.450	-82.933	- 167. 139	-186.128	-177.427	-186.127	-167.139	- 183.028	- 167.140 - 171 827	-177.427	-167.139	-177.427	-167.139	-167.140	-167.139	- 183.028	-186 127	-177 427	-167.139	- 186. 128 - 186. 127	- 186. 127	-186.128	-186.128	-171.827	-54.450	-54.450			
	ORBITAL M Ree dynam	>	ō		o.	0.	o		24 000	0	0.	4 960	7 750	-17.750	-17.750	-17 750	-17 750	-9 500	-9.500	-9.500	005 6-	-9 500	-2 500	e.58	6.500	6.500	6.500	14 200	14 200	14.200	-14.200	12 521	-11.521	12.521	o	-9.500	6 500			
	3 JITTER FC FREE-F	×	42.300	42.300	42.300	42.300	42,300	42.300	42.300	46 350	42.300	12.300	39 050	32 550	32 550	42 300	52.050	32 550	32 550	37 420	42.300	52.050	42 300	52.050	37.420	32.550	32 550		42 300	32 550	000 25 000 00	975 05	54 321	54 321	42 300	42 300	42.300			
RUN NO. BRFTO1	PHASE BOOM/RI		1 10272	2 10273	3 10500	4 10501	5 10505	6 10515 7 10515	R 10517	610216	10 10520	12 105 2	13 10570	14 20001	15 20007	16 20018	18 20035	19 20056	20 20061	21 20063	23 20073	24 20084	25 20099	26 20119	28 20141	29 20148	30 20153	19102 22	33 20172	34 20183	35 20189	37 20192	38 20193	39 20194	40 20198	41 20509	42 20512			

ļ

ORIGINAL PAGE IS

-1 <u>`</u>_

- ---

.....

071381	T.E.POLLAK
JTE	ΒY
0	RUN

۱ .

PHASE 3 JITTER ORBITAL MODEL

RI'N ND. KUANT2

	>	2	×	N	ž	ά	RZ	XA XA	709 c	42 2 606	XX	<u>کړ</u>	122
ម ខ្លួ	2.894	- 190. 160 - 190. 160	- 4	01 IN	00 m 0		00 -	2.696	2.696	2.696 2.696			
29	-24.614	- 196 993	7	8	6	Ĭ		2 451	2.451	2 451	0	0	o.
11	25.614	- 196.994	0		00		00	2.451	2.451	2.451	ö	ōċ	o o
56	-27 267	-203.347	2 9		, a			2.155	2.155	2.155	öö	; . ; .	; . ; .
21	12.52	- 191.037	(N	0 2	1		0	108 0	10.837	1 8 9	<u>.</u>	o.	o.
17	-11.521	- 191.037	22	2 2	4		0	. 0.837	0 837	0.837	o	ō	ō
6, 5	-11.521	- 191.036		2 0 2 0				168 0	0.837	0.837		o c	50
2 4	12.57	- 191.054	9 E 9 E	າຕ ເ <u>ຕ</u>) 0) m		> 0 > 0	0 837	0 837	0.837		50	50
12	12.4	-187.116	34 3	15 3	9		0	0 145	0.145	0.145	0	o.	o.
21	12.571	-186.128	37 3	88 3	9 40	4	1 42	0.225	0.225	0.225	0.23	0.23	0.23
53	-11.521	- 187.116	4	4 1	ດ ເ ຫ		°; ~	0.145	0.145	0.145	, , ,	; ; ;	; ; ;
	-11.521	-186.128	46	- C		ñ		G77.0	577 0	371 0	57.0	5	5.0
0	-11.521	-186.127		 	7 58	5		0.225	0.225	0.225	0.23	0.23	0.23
19	12.521	-187.116	61 6	5	0		0	0 145	0.145	0.145		ō	°.
79	12.521	-186.127	64 6	55 6	6 67	ĕ	69	0.225	0.225	0.225	0.23	0.23	0.23
56	5 493	1 -212.469	~ r 2 r		0 C		00	0.125	0.125	0.125	ċċ	óc	o c
יי		-212.409		•••	ο α			0.143	0.12		óċ	i c	i c
56	5.493	1 -212 468	64	- 6	, -		> 0 > 0	0 125	0.125	0 125	50	; ó	
84	-0.384	-212.469	82 8	8	4	Ĭ	0	0.040	0.040	0 040	°.	ö	ö
<u>ب</u>	1.384	-212 468	80 58 58	9 0 9 0	~ (0 0 0 0	0.040	0.040	0 0 0 0	o c	o c	o c
89	1.066	-212.469	96 96	, 0 , 0) ()) ()		• •	0.345	0.345	0 345			
66	-0 066	-212.469	94 9	9 50	9		0	0.345	0.345	0.345	ö	°.	°.
35	-0.066	-212.469	97 9	8	0	č	0 0	0.345	0.345	0.345	•	o'	o'
50	1 066	-212.469	8 8 5 5 5 5 5	29	<u>a</u> 1		。 。	0.345	0.345	0.345	o o	ō	o o
312	0.00	-208 324						0.120	0.120	0.120		o c	
98	0.50	-211.117	11 801	21	, -			0.066	0,066	0.066			
88	-7 166	-211,117	112 11		• 4			0.066	0.066	0.066	0	.0	
3	0 500	-211.117	115 11	11		Ĭ		0.066	0.066	0 066	<u>.</u>	o.	
				E4	able	4	.1-	~					
)ri)f	
												GI P(
										-		N DO	
												AL)R	
												PA QU	!
												IGI	
												E .IT	
												'S Y	

. . .

١

ļ

<u>,</u> \$

١.

...,

.

۰.
current design. References 8 thru 10 detail the analysis to update the design as shown on the released prints as of January 1981. The mission adapter is essentially the same as the previous model but updated to reflect the current configuration. The upper support structure represents a totally new model due to extensive differences between the . old version and the current configuration. A major refinement to the previous model is the inclusion of a detailed SADAPTA simulation incorporating the bearing compliances of the SADAPTA shaft bearings. Another modification, found during the MTM vibration testing, was that the mono-ball bearings used at the ends of the 2.5 in. O.D. struts needed to be simulated. This simulation is included in the current substructure model. Two structural updates occured in the TM area. First, the thematic mapper (TM) simulation was altered. Originally, the TM C.G. was modeled on a structurally tuned H-truss framework to insure a fundamental frequency of 100 Hz or greater. This simulation was modified to position the TM C.G. on a CBAR quadrupod (Q-pod) with element properties ensuring a fundamental frequency of greater than 250 Hz. Secondly, stiffnesses for the TM feet were included. Various TM foot NASTRAN models were generated by the stress group for this analysis and their results are presented in Reference 7. Table 4.1-9 presents the TM and TM foot simulation used in the current IM model. Improved support structure detail was incorporated into the baseline MSS experiment Q-pod simulation. The translational degrees-of-freedom at the four (4) attachment locations of the MSS Q-pod to the IM USS are still retained in the analysis set.

.

.

Table 4.1-9 'TM and TM Foot Simulation

. •• -

TM C.G.	Modeled	On Q-Pod				
CBEAM	1871	1124	1669	1670		
CBEAM	1872	1124	1669	1671		
CBEAM	1873	1124	1669	1672		
CBEAM	1874	1124	1669	1673		
PBEAM	1124	1004	0.80	945.0	945.	100.0
MAT1	1004	29.E+6	11.E+6	0.29		
		_	_			

TM Influence Foot Coefficients

.

.

CELAS1	41347	1	347	1	1671	1	
CELAS1	42347	2	347	2	1671	2	
CELASI	43347	3	347	3	1671	3	
CELAS1	41348	1	348	1	1672	1	
CELASI	42348	2	348	2	167 2	2	
CELAS1	43348	3	348	3.	1672	3	
CELAS1	41349	1	349	1	1673	1	
CELAS1	42349	2	349	2	1673	2	
CELASI	43349	3	349	3	1673	3	
CELAS1	41350	1	350	1	1674	1	
CELASI	42350	2 '	350	2	1674	2	
CELAS1	43350	3	350	3	1674	3	
PELAS	1	3225806.					
PELAS	2	729395.					
PELAS	3	729395.					

(;

To accurately define dynamic behavior, a detailed weight distribution was performed resulting in the current dynamic analysis set. Since this dynamic model incorporates in detail the changes associated with the previous free-free model (also used for modal tuning, Reference 11), a cross orthogonality pheck was performed between analytical and test data yielding acceptable results. This was the final step in substructure verification and led to its inclusion in the current analysis. Figure 4.1-7 shows a representation of the current IM structure with Table 4.1-10 defining the substructure DOF summary table. Table 4.1-11 presents a comparative summary of modeling revisions between models LSD201 and LSD900.

The detailed orbital model, LSD900, was assembled entirely on the VAX mini-computer using the SCAMP analysis code. Free-free MMS and IM substructures were coupled through the Triangular Transition Adapter (TTA). The TTA structure was répresented by an updated (27x27) stiffness matrix · derived from the simulation incorporated in the current MMS NASTRAN model. The RF Compartment is connected to the TDRSS boom through the azimuth drive and forms one complete NASTRAN assembly. The RF Compartment is rotated 90° CCW in NASTRAN from its modal test position (mounting feet along -X axis) to configure the structure in its worst case orbital The Ku/S-Band Antenna was point-to-point coupled to the RFC at mode. the four (4) attachment feet. This complete assemblage was in turn coupled to the MMS/IM using the fitting stiffness defined from the inner powered hinge to the IM attachment point. Lastly, the deployed solar array was attached to the MMS/IM at the SADAPTA interface using the aluminum jettison shaft from the SADAPTA to the jettison assembly apex as the

Figure 4.1-7 Updated Instrument Module Representation

/

																		C)F	P	00)R	()U	A	LN	ſY																_
		127	.		0	ö		0.				ō	• •			ò.	o			°.	o o	50	0.	0	ōċ	50	.0	°.		0		8 		00	8 			; o			ċ,	;	
		177	.0	0 0	.0		o d		ōo		0	o	n o		; .;	°.	ö	50		o.	00	50	0.	°.	ōċ		io.	•	ōċ	c	ė		1.00	1.03	8. - (5 c	; ;		0	o ,	5	
•		1XX	ò	. .	0	ö	o c	0	ōo	ċ	°.	ö	òò			ö	ċ	<i>.</i>		ن ن	ō	ic	0	o	ō	jo	, o	°.	00	5		9 - 0	8	0.1	8 - (ö		; . ; .		ò	o o		
		ZM	25.313	17.125 8.008	9.177	1.650	3 200	1.690	23 123	10.886	11.653	E.048	550.V	12 593	11.426	10 330	19 521	101.8	18 670	26 723	15 602	25 888	10 401	5 498	13.359	8.581	10 535	17.738	4.205	12.322	12.322	4.482 7.158	2.158	2.073	2.023	0 800	2 235	2 235	2 528	2 528	2.528	870.7	
		À	25.313	17.125 8.008	9.177	1.650	3 200	1.690	23 123	10.886	13.653	8.048	540.7	12 593	11.426	10.330	19.521	101.8	18.670	26 725	15.602	25 888	10 401	5 498	17.359	8 581	10.535	17.738	4,309	12.322	12.322	4.482 2 158	2.158	2.023	2.023	0 80	0.600	2.235	2 528	2 528	2.528		
		XX	25.313	17.125 8.008	9.177	1.650	1.680	1 690	23.123	10 886	13.653	8 048	7.053	12 593	11.426	10.330	19 521	101.8	18 670	26 723	15.602	25,868	101 01	5.498	13.359	8.581	10.835	17.738	4.309	12.322	12.322	4.482 2 158	2 158	1 023	2.023	0 803	0.00	2.235	2.528	2.528	2.528	870.7	
81 Pollak		RZ	0	o c	0	0	00	0	00	00	0	0	0 0		0	0	0	50	0	0	00	.	0	0	00	, ,	0	0	00	0	0	د د +	26	132	138	5	- c	, o	0	0	0 (5	07-
0713 T.E.		à	0	00		0	00		00	00	0	0	0 0		0	0		50	0	°	00		0		00			0	00		0	00	126	131	137		o c	0	0	°	00	2	
BY		ž	0	00	P	0	00		0	oc		0	0 0		0	0		00	0	٥	00		0	0	00	o c	0	0	00)'3 	0	0	12	06.	136		o c	> 0	00	2	00	5	ab 7.
ů N N N N N N N		~	e	οσ	<u>5</u>	5		12	27			39	47	4 4 0 4	515	54	5	С С С С С	99 99	69	22	2.4	818	84	87	200	ရှိဖွ	66	102		Ξ	4 4	123	129	135	7	144	93	153	156	159	201	Ē
	ļ	>	2	ທິແ	" =	14		33	26	339	35	38	4	44	205	53	20	ກິດ	65	68	- 1	4 6	ះ	83	86	δα	65	96	• • •	101	5	611	122	128	ž	9	143	144	152	155	159	101	1
	r TABLE	×	-	41	9	C 1	9 1 0	22	25	31	34	37	99		404	52	22	29 9	64	67	2°5	76	5.	82	585	2 • 2 •	6	97	<u>8</u> 2	106	109	112	12	127	5 - 1 5 - 1	159	142	148	151	154	157	001	
	ODEL El Summar'	2	29.204	- 10.390	29 204	20.380	- 3.550	12 350	29 623	29.023	-11.202	-17.820	-11.202	-20.000	-20.000	-20 000	120 000	- 20.000	-20.000	-20 000	-20 000		-20.000	-20.0m	-20.000		000	-9.007	000.6- 6-	000.6-	000.6-	000.6-	-24 000	-24.003	-24 000	-10 485	-10.485	- 21 250	-5 000	-5 000	-5.000		
	ORBITAL M NAMIC MOD	>	3.821	26 540 -76 540	-3 821	7.324	16.180	E19 51-	3 821	-3.821	27 045	-23.224	-27.045		-21 000	2:000	-21 000	-5 00 00 00 00 00 00 00 00 00 00 00 00 00	20.000	-21.000	-5.500		000.13-	-5.500	5.500		21.000	-21.000	21.000	-5.500	5 500	21.000	18.000	-18 000	18 000	-11 215	212.1 20.4-	1 960	7.750	750	-6.250	062.9-	
	3 JITTER E-FREE DY	×	8.000	8	8000	8.000	8000	8.000	0	o c	0	0	0. 555	32	15 250	19 250	36 500	36.500	35 500	55 000	55 000	2000 2000 2000	74 000	74 000	74 000	74.000	36 503	59.000	55.000	74 000	74.000	74.000	25.250	76 250	76 250	75 375	75 375	15 275	000 12	60 500	71.00.	60.500	
1 M8 1 F F	PHASE IM FRE		320	328 3'38	346	347	348	350	420	440		470	471		1034	1043	- 10/5	1079	1085	1127	1132	9611	1155	1159	1160	1163	1209	1269	1279	1202	1303	130.0	1469	1482	1495	1526	1528	1320	1554	1555	1560	1561	l İ
RUN NO.			-	61 (7	4	ŝ	ωr	8	δ	2:	12	C‡	4	2	2	18	6	200	22	23	24	25	27	28	29	0.4	20	CC	34	96	37	38	40	4	42		44		4 4	48-	40	50	

ORIGINAL PAGE IS

1.12

$ \frac{1}{10} - \frac{1}{10}$	PHASE 3 JITTE Im Free-}7ee X				•	•	.PGLLAK						
11 1 </th <th>×</th> <th>CR DRBITAL M</th> <th>ODEL El Summary T</th> <th>ABLE</th> <th></th> <th> </th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>	×	CR DRBITAL M	ODEL El Summary T	ABLE									
0 0 <th></th> <th>۲</th> <th>2</th> <th>×</th> <th>~</th> <th>X</th> <th>Y RZ</th> <th>ХX</th> <th>٨</th> <th>¥2</th> <th>IXX</th> <th>144</th> <th>122</th>		۲	2	×	~	X	Y RZ	ХX	٨	¥2	IXX	144	122
0 0 <td>51 1572 50 75</td> <td>50 -21.000</td> <td>- 14 . 500</td> <td>103 164</td> <td>165 1</td> <td>66 16</td> <td>7 168</td> <td>2.00</td> <td>2.000</td> <td>2.000</td> <td>÷.</td> <td>- 8</td> <td>8 - 0</td>	51 1572 50 75	50 -21.000	- 14 . 500	103 164	165 1	66 16	7 168	2.00	2.000	2.000	÷.	- 8	8 - 0
0 0 <td>52 1621 53 92 53 1633 53 92</td> <td>00 -21,000</td> <td>19.249</td> <td>169 170 172 173</td> <td>171</td> <td>00</td> <td>00</td> <td>5.262 6.415</td> <td>6.415</td> <td> 5.202 6.415</td> <td>0</td> <td></td> <td></td>	52 1621 53 92 53 1633 53 92	00 -21,000	19.249	169 170 172 173	171	00	00	5.262 6.415	6.415	5.202 6.415	0		
11/100 11/100 <td>54 1649 42 30</td> <td>0</td> <td>-16 500</td> <td>175 176</td> <td>1771</td> <td>78 17</td> <td>9 180</td> <td>22.629</td> <td>2.629</td> <td>22.629</td> <td>44.00</td> <td>44.00</td> <td>44.00</td>	54 1649 42 30	0	-16 500	175 176	1771	78 17	9 180	22.629	2.629	22.629	44.00	44.00	44.00
1 1 <td>55 16u4 67.2.</td> <td>0 0</td> <td>1 660</td> <td>181 182</td> <td>183 1</td> <td>84 18</td> <td>5 186</td> <td>130 000</td> <td>30.000</td> <td>130.000</td> <td>16181.00</td> <td>7780.00</td> <td>12724.00</td>	55 16u4 67.2.	0 0	1 660	181 182	183 1	84 18	5 186	130 000	30.000	130.000	16181.00	7780.00	12724.00
0 0 <td>56 1669 21.10</td> <td>0 6.380 5</td> <td>0 820</td> <td>187 188</td> <td>- 183 - 183</td> <td>6 0 0 0 0</td> <td>1 192</td> <td>549.700 5/</td> <td>00 100 c</td> <td>549.700</td> <td>271300.00</td> <td>2 00 2/ 954</td> <td>22617.00</td>	56 1669 21.10	0 6.380 5	0 820	187 188	- 183 - 183	6 0 0 0 0	1 192	549.700 5/	00 100 c	549.700	271300.00	2 00 2/ 954	22617.00
0 0 <td></td> <td>8-0 · · ·</td> <td>12 045</td> <td>196 197</td> <td>861</td> <td></td> <td></td> <td>19.100</td> <td>001.61</td> <td>001 61</td> <td> ; </td> <td>0.0</td> <td>0</td>		8-0 · · ·	12 045	196 197	861			19.100	001.61	001 61	 ; 	0.0	0
0 0 <td>59 30014 53.75</td> <td>0 -10.579</td> <td>12 045</td> <td>199 200</td> <td>201</td> <td>• •</td> <td>0</td> <td>19.700</td> <td>19.700</td> <td>19.700</td> <td></td> <td>.0</td> <td>°.</td>	59 30014 53.75	0 -10.579	12 045	199 200	201	• •	0	19.700	19.700	19.700		.0	°.
0 0 <td>60 30019 53 75</td> <td>50 11.C78</td> <td>25.465</td> <td>202 203</td> <td>204</td> <td>0</td> <td>0 0</td> <td>3 935</td> <td>3.935</td> <td>3,935</td> <td>o: I</td> <td></td> <td>.</td>	60 30019 53 75	50 11.C78	25.465	202 203	204	0	0 0	3 935	3.935	3,935	o: I		.
1 1 <td>61 30021 53.75</td> <td>50 - 10.579</td> <td>25.465</td> <td>-205 206</td> <td>207</td> <td>0</td> <td>0</td> <td>3.300</td> <td>3.300</td> <td>3 300</td> <td>o I</td> <td>0</td> <td>o</td>	61 30021 53.75	50 - 10.579	25.465	-205 206	207	0	0	3.300	3.300	3 300	o I	0	o
Sociological Original O	62 30060 37.75	0 11 078	12.045	208 209	210	0 (0	32.300	27.300	32.300	o o	o o	.
Decension 1	63 30064 37.75	50 - 10.579	12.045	211 212	E12	0	00	39.600	00.00	20.00			;
0 0 0 0 0 0	64 30077 37.75		25.455 26.455	212 412	210	o c		5, 630 COO				50	50
Sociolo GRIGINAL PAGE IS OF POOR QUALITY Sociolo GRIGINAL PAGE IS			200 00		222						jc		c
10000 1 10000 0					2 1 K	.		000	200	1.200	6	2	່ດ
0 0 <td>68 30167 53 75</td> <td>in - 16, 563</td> <td>005.6-</td> <td>226 227</td> <td>228</td> <td>> 0</td> <td>) 0) 0</td> <td>10 400</td> <td>10.400</td> <td>10.400</td> <td></td> <td></td> <td>0</td>	68 30167 53 75	in - 16, 563	005.6-	226 227	228	> 0) 0) 0	10 400	10.400	10.400			0
o o o o o o o o o o o o o o		12.062	2023 31	229 230	231	, c) c	14.800	14.800	14 800			
GRIGINAL PAGE IS OF POOR QUALITY	70 30169 37 75	0 - 16 563	- 500	232 233	234	0	0	18 900	1 0005.81	18 900	0	o.	°.
GRIGINAL PAGE IS OF POOR QUALITY					Table	÷ .	1-10	(Continue	(g)				
ORIGINAL PAGE IS OF POOR QUALITY													
RIGINAL PAGE IS F POOR QUALITY													
NAL PAGE IS POOR QUALITY												riĝ F l	
AL PAGE IS OR QUALITY												SIN PO	
PAGE IS QUALITY												AL OR	
PAGE 15 DUALITY												: F 2	
SE 13 ALITY												? A(2U/	
												SE ALI	
												IS ITY	
										·		3	
i.					1								
							in.					•	
										•	1		:

¢ 1

4-29

-

ļ

Table 4.1-11 Orbital Jitter Models Comparative Summary

ITEM	<u>TSD801</u>	<u>196051</u>
SMM	12/80 Updated Model From NASA-Goddard	06/81 Tuned Model From NASA-Goddard
MSS USS Grids In Aset	Yes	Yes
TDRSS Boom	Tuned Analytical Model	Modal Model With Re-Tuned 2nd Y-Bending Mode
Deploved Solar Array	NASTRAN Verified Modal Test Model	NASTRAN Verified Modal Test Model
Instrument Modulc	NASTRAN Verified Modal Test Model	Updated NASTRAN Verified Modal Test Model
Ku/S-Band Antenna	Modified Antenna With Feed Currections	As Per LSD801
RF Compartment	Per TRW-99DOF/6DOF At Node 20071 Original Detailed Elevation Drive	As Per LSD801
GDA Stiffness Properties	TRW Beam Equivalent Properties For Azimuth Drive	Modification For Azimuth • Drive
Total Number of Assembled Substructures	S	S
Total Nodal Locations	228	SET 257
Total Dynamic Degrees-of- Freedom	723	BINAL POOR
		PAG QUA

4-30

1

ف فا ماد

، ز_ب

L PAGE IS R QUALITY

1

coupling link. This shaft was tuned to represent the SADAPTA 'torsional stiffness of 30,000 in-lb/rad. Appendage coupling stiffness values are presented in Table 4.1-12.

4.2 TDRSS BOOM RE-TUNING

In the series of models associated with the previous orbital analysis, concern was expressed over the proximity of the TDRSS boom second Y-bending mode to the fundamental forcing harmonic of the MSS 'experiment at 13.62 Hz.

In the previous modal tuning effort, the 2nd boom Y-bending mode was tuned to a frequency of 13.407 Hz compared to the test validated frequency of 14.47. To effect a re-tuning of this mode, a parametric variation on the previously tuned modal test model (Reference 4) was performed. The shifted on-orbit 2nd Y-bending frequency to 14.142 Hz. better meets the test acceptance criteria for an analytical model.

All the NASTRAN model changes incorporated in re-tuning the analytical model are shown in Table 4.2-1. Using the changes shown, a new set of analytical frequencies and mode shapes was determined. A comparison of the measured test modes and the updated analytical modes is shown in Table 4.2-2.

The analytical model used for the re-tuning effort contained 306 degrees-of-freedom (DOF) including 54 DOF's on the suspension system. To estimate the effect of having a finite number of measurement points in the test set-up, the 306 DOF mode shapes were used to extract only

4-31

	AXIAL	26,000	22,275,000	1,672,000	ORIGINAL PAGE IS OF POOR QUALITY	1 1
	SHEAR	185,000	134,770, 000	3,085, 200		
esses	STIFFNESS BENDING	26,00r	8,705, 400	187,030	• ·	
ling Stiffn	TORSION	185,000	103,720, 000	30,000		•
pendage Coup	LENGTH	0.0	1.20 IN	6.82 IN		, , ,
Table 4.1-12 Ap	CONNECTION NODES	13 TO 20194 15 TO 20193 17 TO 20191 19 TO 20192	1649 TO 10515	1572 TO 2076		
	DESCRIPTION	KU/S-BAND ANTENNA TO RF COMPARTMENT	KU/S-BAND ANTENNA - RF COMPARTMENT - TURSS BOOM TO IM	DS/A TO IM		
			4-3	2		

1

~

,

.

•• ,••

÷

٦

•

Table 4.2-1 Changes For Pe-Tuning 2nd Y-Bending Mode Of Boom/RFC NASTRAN Model

· • • •

LINE FREE MINE JOINT ELENIBILITY SIMULATION (1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 2000 - 1000 - 20000 - 2000 - 2000 - 20000 - 2000 - 2000 - 2000 - 2000 - 200

	50000 60100 101 1700 1061 200 200 200 200 200 200 200 200 200 20	50 750 60172 507 507 507 507 507 3000 8000 8000 8000 8000 8000 8000 80	42.30 42.30 10515 80:30 2.70 1.7010 1. 2. 3 6 80#00 9000 9000 9000 9000 9000 9000 900	0.3 3.3 93330 19500 15.9362 10.5510 1.0 1.0 1.0 1.0 1.0	-2:.425 -21.425 1:54 10503 15.5562 10.5510 30100 40140 20130 40140 40140 40140 40140 40140	52 52 21.100 1 23.0125 4 5 5 6 4 5	2 2 -1.00 -1.00 -1.00 -1.00 -1.00
นระจ รณมร วันเพริ (DET HING	E PEUISI TASURED	085 2005 6)				
1) <u>(28</u> 1) 1)	503 203	10297 :0208	3 3	1.8 1.0	19264 10265	3	-1.00 -1.00
*.CU 1981 UFL+51 +11451 PLLAS)) 110-01 110-01 110-01	2 110207 110207 80312	10207 10205	3 1	10254 10265	3	

ALTRUTH LATUE BEVINIONS AT MINU OF TEST PEASURED NODES 4 AMS 71

. LI <u>Cr</u> fis 1. Enf 7347	82-196 52960	55000 1201	20193 .733483	18535 ,738394	19593 738394	052522	2	•PBAR850
fear Fear	32999	:291	.730488	.738294	1.10759	17 50		+984850
ELECATION DE	TEST HE	isions Asufed M	DEE 31					

LO CAPDS CLASS ELASS	26940 26:30	2.83E4 2.88E4	20195 20197	5 5	29156 29198	5 5
YEN SHRDS CELOSS CELOSS	26040 261 m	50197 50187	20195 20197	5	20195 20195	5

 Table 4.2-2
 Comparison of Measured To Tuned NASTRAN Modal

 Frequency Values

ł i

Freguency Difference (%)	-2.25	+.407	+3.16	-1.40	+7.01	+4.27	-2.39
Predicted Frequency (Hz)	1.173	1.235	2.806	2.968	7.416	12.408	14.124
Excitation Axis	×		SPS	λ	Y	×	Х
Measured Frequency (Hz)	1.20	1.23	2.72	3.01	6.930	11.90	14.47
Mode Number	Ч	7	m	4	ъ	9	7

ORIGINAL PAGE IS OF POOR QUALITY

ł

l

í

the 42 modal amplitudes which were measured in the test. An orthogonality check was performed on this truncated mode set. The results of this check are shown in Table 4.2-3. The analytical tuned modes associated with this model are tabulated in Table 4.2-4 and shown in Figures 4.2-1 thru 4.2-7. A cross orthogonality check between the re-tuned analytical model and test data is presented in Table 4.2-5.

4.3 RESPONSE' DATA

ŧ

To aid ACS engineering in their simulation studies to determine orbital control responsiveness of the Landsat-D spacecraft, modal torque admittance data for various spacecraft nodal locations are provided. The nodes shown in Figure 4.1-1 and presented in Table 4.3-1 represent the locations for which data, thru 25 Hz, is to be supplied. Table 4.3-2 presents the structural transfer function coefficient data (Damping = 0.001) for the current orbital configuration model, LSD900. This data is also preserved on the following accessible dynamics data base permfile:

1R400492/TP/ORBIT/PICKOUT4/LS900ACS

Table 4.3-3 presents the coefficients to be used for an assumed damping of 0.01. This data is preserved on the following dynamics data base permfile:

1R400492/TP/ORBIT/PICKOUT4/LS901ACS

Ę

٦

Table 4.2-3

.

Self-Or	tho	Check	Of	Tuned	Anal	lyt:	ical
Model	(306	DOF)	Tri	uncated	i To	42	DOF
		Tes	st S	Set			

					PHI(T)+Y	I-PHI		
		1	2	3	4	5	0-	7
F: D/	REQ AMP.	1 173 C	1 235 0	2 305 0	2 968 Q	7 410 0	12 403 0.	14 124 O.
	FREQ.							
1	1 173	1.000	0.001	0 000	9.002	c 000	-0 000	-0.001
2	1.235	0 001	1.000	-0 003	-0 018	-0.001	-0 001	0 006
3	2 805	0 000	-0 CO3	1 200	C 005	0 001	0 001	-0.001
4	2 358	0 602	-0 019	0 005	1 0:00	-0.000	0 001	0.001
5	7.415	0 000	-0 001	0 001	-0 000	1 000	0 000	-0 213
5	12 408	-0 000	-0.001	0 001	0.001	5.035	1.000	0 000
7	14 124	-0 201	0 005	-0.001	2 201	-0 212	0 000	·

				MOGAL DC	F PRUDUC	,	
	1	2	3	4	5	ũ	7
FRED. DAMP.	1 173 0.	1.235 0	2 5C6 0	2 963 0.	7 116 D	۰2.÷.3 ن	•4 124 0.
FRED							
1 173	1.000	0 035	0 032	0 090	-0.024	0 004	0 126
2 363	0 092	0 326	<u> </u>	2 613	-1: 055	0 043	
7 4 16	0 004	-0 097	-0 055	0 103	1 000	6.00	-0 092
12 409	0.033	0 136	0 021	0 042	-0.092	0 010	1 000

--- -

4-36

.

.

Table 4.2-4 Re-Tuned TDRSS Boom Mode Identification

Mode Number	Frequency	Description
1	1.173	lst X-Bending
2	1.235	lst Y-Bending
3	2.806	Elevation Drive
4	2.968	Azimuth Drive
5	7.416	GDA Bending
6	12.408	2nd X-Bending
7	14.124	2nd Y-Bending

- ----

۲ م ۲ ۲ م ۲ م ۲۰۰۰ می میک در میک در میک در م

ſ

• • • • • • • • • • • • • • • • • • •

÷

....

Figure 4.2-3

ĩ

Table 4.2-5

ORIGINAL PAGE IS OF POOR QUALITY

1

Landsat-D Deployed TDRSS Boom Cross Orthogonality Between Measured Modes And Tuned Analytical Model

				PHICID	4-PN1		
	1 31.20H	2 ¥1 23H	3 5P52 7	4 <u>Y3 01H</u>	5 •6 93H	е ⁻ <u>х 11 эн</u>	7 ¥14 5H
FRED	1 200	1.230	2 720	3 0:0	6 930	11.900	14.470
DAMP.	0 0 94	0 035	0.090	J- 055	0.011	0071	0.01
FREQ.							
1 1,173	0 933	-0 178	-0 053	-0 007	-0.319	-2 035	-0 089
2 1.235	-0.096	0.985	0 955	-0 025	0 005	6 098	-0.018
4 2 969	C 019		-0 247	-0 997	100 0	-0 325	0 025
5 7 4 16	-2.735	0 004	-0 005	-0 010	-0 992	-0.000	0 067
5 12 438	-0 015	•0 000	0 012	0 006	-0 010	+0 982	-0 034
7 13 124	0 0 53	0 0 0 0	0 014	.0 010	-0 110	0.003	0 9.9
		-					
	•						
				HOPAL PC	T PRODUC	T MATEL	·
		2	Э	4	5	6	7
	x1.214	11 231	5852 7	Y3 01H	Y6 33H	X11.0H	Y14.5H
ERED	+ 200	1 230	2 ~ 20	01C E	6 430	0.07	14 470
044P	3 084	0 035	0 0 10	0 000	0 0.1	0011	0.014
	•						
FRED.							
1 173	0 934	-9.151	0 (19	-0.106	-0 013	0 037	-0 052
2 • 235	0 136	0.990	0 023	-0 133 -0 176	0 175	-0 034 -0 034	0.083
3 7 205			-1 .54	·0.355			000
5 7 4 46	-0.024	-2 621	C50 C+	-0.095	-0 279	-0 025	2 0.3
6 12 409	5	5 504	0 031	-0 041	-0 025	·0 999	-0.003
- 14 124	<u></u>	0 1-3	0.0.0	·0 C33	-0 030	<u>·) (0)7</u>	2 454

:

1.4

4

ŝ.

;

Table 4. 3-1 Representative Nodes in Data Transmittal To ACS

٠.

Substruc Node Num	ture ber	Description	Nodal* Degrees-of-Freedom
9000		PM1 Propulsion Tank	6
1572		C/B Side of DS/A Shaft	6
1669		тм с.g.	6
1664		MSS C.G.	6
2076		DS/A Side of DS/A Shaft	6
2460		Sun Sensor (-X)	6
2461		Sun Sensor (+X)	6
20194		Ku/S-Band +X, +Y Mounting Fo	ot 6
20198		Azimuth Drive Attachment To Elevation Drive	6
		Total	DOF: 54
	*Struc rotat engin	tural transfer coefficient da ional DOFS only are supplied eering.	ta for to ACS
		4-46	

	Liss PHISE 3 DRBITAL JITTER MORE LISPON • ALL TUNKE • 819 DD0F*5 ItaNSFLE COLFFICIENTS • 9000-1972 - 1664 • 1669 • 2016 • 2461 • 20194 • 20194 • 20195 MDDE ** FRD MDDE ** FRD MDDE ** FRD MDDE ** CO MDDE ** FRD MDDE ** CURMIN	
Abstract Abstract <th< th=""><th>Moles Frequencia Long Construction Long <thl< th=""> Long <thlog< th=""> <thlog< th=""> Long</thlog<></thlog<></thl<></th><th></th></th<>	Moles Frequencia Long Construction Long Long <thl< th=""> Long <thlog< th=""> <thlog< th=""> Long</thlog<></thlog<></thl<>	
Monter Lue Long Marken Lue 1	ADDE FRE0 DAMPING BJ CJ 4 (H2) C/GR11 1.1454E-03 1.1454E-03 2 0.00557 0.0010 5.7764E-03 1.1454E-03 2 0.0057 0.0010 5.7764E-03 1.1454E-03 4 0.0017 0.0010 5.7764E-03 1.1454E-03 6 0.0017 0.0010 5.77761E-01 1.0014E-03 7 0.0101 0.0101 5.57761E-01 1.0014E-03 7 0.0101 5.77761E-01 1.6514E-03 1.0014E-03 1 1.6170 0.0010 5.77761E-01 2.5014E-03 1 1.6171 0.0010 5.57761E-01 2.5014E-03 1 1.6171 0.0010 5.57761E-01 2.5014E-03 1 1.6171 0.0010 5.57751E-02 2.2004E-03 1 1.6171 0.0010 5.57751E-03 2.2014E-03 1 1.6171 0.0010 5.57751E-03 2.20551E-03 1 1.71051E-03	-2 STRUCTURAL TRANSFER
Montal Contract	MDDE FR0 DAMPING BJ CJ 1 0.0033 0.0017 0.0010 8.706741-05 1.124511-03 2 0.0177 0.0010 8.706741-05 1.124511-03 0.017 2 0.0177 0.0010 2.125151-03 1.201411-02 0.017 2 0.0179 0.0010 2.125151-03 1.201411-02 0.014 1 0.0170 0.01010 2.1215161-04 1.201411-02 0.014 1 0.0177 0.0010 2.1215161-04 1.201411-02 0.014 1 0.0177 0.0010 2.1215161-02 1.201411-02 0.014 1 0.15271 0.0010 2.1215161-02 1.201411-02 0.014 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1<	FUNCTION COEPPICIENT
Abore Luciona Luciona <thluciona< th=""> <thluciona< th=""> <thluc< td=""><td>MODES FREG DAMPING BJ CJ 1 0.0053 0.0010 5.17581E-04 1.12451E-02 2 0.0177 0.0010 5.17581E-04 1.12047E 0.01 2 0.0177 0.0010 2.17581E-04 1.2047E 0.01 4 0.0255 0.0010 2.17581E-04 1.2047E 0.01 6 0.0255 0.0010 2.17581E-04 1.2047E 0.01 7 0.4279 0.0010 5.17571E-04 1.2047E 0.01 1 0.4279 0.0010 5.17551E-04 1.2047E 0.01 1 1.12031 0.0010 5.17551E-04 1.2047E 0.001 1 1.12031 0.0010 5.17551E-04 1.2041E 0.01 1 1.12031 0.0010 5.17551E-04 1.2041E 0.01 1 1.15191E 0.001 2.16595E 0.01 1.20591E 0.01 1 1.15191E 0.001 5.16595E 0.2010<td>VALUES FOR ORBITAL</td></td></thluc<></thluciona<></thluciona<>	MODES FREG DAMPING BJ CJ 1 0.0053 0.0010 5.17581E-04 1.12451E-02 2 0.0177 0.0010 5.17581E-04 1.12047E 0.01 2 0.0177 0.0010 2.17581E-04 1.2047E 0.01 4 0.0255 0.0010 2.17581E-04 1.2047E 0.01 6 0.0255 0.0010 2.17581E-04 1.2047E 0.01 7 0.4279 0.0010 5.17571E-04 1.2047E 0.01 1 0.4279 0.0010 5.17551E-04 1.2047E 0.01 1 1.12031 0.0010 5.17551E-04 1.2047E 0.001 1 1.12031 0.0010 5.17551E-04 1.2041E 0.01 1 1.12031 0.0010 5.17551E-04 1.2041E 0.01 1 1.15191E 0.001 2.16595E 0.01 1.20591E 0.01 1 1.15191E 0.001 5.16595E 0.2010 <td>VALUES FOR ORBITAL</td>	VALUES FOR ORBITAL
OCC FR0 OWNING BJ C 1100 C/04114 C/04114 C/04114 D/04114 C 1101 C/0411 C/0411 C/04114 D/04114 D/04114 C 1005 C/0411 C/0411 C/0411 C/0411 D/04114 D/04114 C 1005 C/0411 C/0411 C/0411 D/04114 D/04114 D/04114 C 1005 C/0411 C/0411 C/0411 D/04114 D/04114 D/04114 D/04114 C 1005 C/0411 C/0411 C/0411 D/04114	MODES FREQ DAMPING BJ GJ 1 0.0033 0.0010 6.705476-05 1.134516-03 2 0.0195 0.0010 6.705476-05 1.134516-03 2 0.0195 0.0010 6.705476-05 1.134516-03 4 0.0255 0.0010 2.135616-03 0.0145 7 0.0195 0.0010 2.13516-03 0.0145 7 0.0504 0.0010 6.239176-03 0.0145 7 0.0505 0.0010 6.239176-03 0.0145 9 0.7427 0.0010 6.239176-03 2.2354616 9 0.7427 0.0010 5.231756-03 2.2354616 1 1.25631 0.0010 1.603546 0.0010 2.637566 1 1.25631 0.0010 1.603546 0.001 1.603546 0.01 1 1.25631 0.0010 1.603546 0.01 1.0126 0.01 1 1.25631 0.0010 1.603546 0	Mover Ley 900.
0 0	1 0 0053 0 0011 2.12751E 0 2 0 0017 0 0011 2.12751E 0 4 0 0015 0 0010 2.12751E 0 1.2014E 0 7 0 0010 2.11800E 0 3.51761E 0 3.51961E 0 7 0 0.0010 5.11800E 0 5.77106E 0 1.0014E 0 9 0.7579 0.0010 5.07106E 0 1.0014E 0 0 1.0014E 0 0 1.0014E 0	DAMPING= 0.001
0 0	2 0 0175 0 0011 0 0011 0 0011 0 0011 0 0011 0 0011 0 0011 0 0011 0 0011 0 0011 0 0011 0 0011 0 0011 0 0011 0 0011 0 0011 0 0011 0 0011 0 0011 0	
OF POOR OUNDER PARE P OF OF OP OP OP OP OF OP OP OP OP OP OP OP OP OP OP OP OP OP OP OP OP OP OP OP OP OP OP OP OP <td>6 0.0356 0.0010 3 211806 0.01 7 0 0.5591 0.0010 5 321766 0.01 7 0 0.5771 0.0010 5 321766 0.01 9 1 7.5291 0.0010 5 381756 0.02 10 1.5121 0.0010 5 381756 0.02 5 361966 01 11 1 1.6147 0.0010 1.655956 0.010 2.655956 0.011 12 2 1454 0.0010 2.655956 0.022 0.022 0.022 13 0.0010 2.655956 0.022 0.022 0.022 0.022 14 0.0010 2.111096 0.2 0.022 0.022 0.022 15 0.0010 8.10756 0.2 0.022 0.022 0.022 16 4.704 0.0010 8.10756 0.022 0.022 0.022 16 4.704 0.0010 8.10756 0.022 0.023</td> <td></td>	6 0.0356 0.0010 3 211806 0.01 7 0 0.5591 0.0010 5 321766 0.01 7 0 0.5771 0.0010 5 321766 0.01 9 1 7.5291 0.0010 5 381756 0.02 10 1.5121 0.0010 5 381756 0.02 5 361966 01 11 1 1.6147 0.0010 1.655956 0.010 2.655956 0.011 12 2 1454 0.0010 2.655956 0.022 0.022 0.022 13 0.0010 2.655956 0.022 0.022 0.022 0.022 14 0.0010 2.111096 0.2 0.022 0.022 0.022 15 0.0010 8.10756 0.2 0.022 0.022 0.022 16 4.704 0.0010 8.10756 0.022 0.022 0.022 16 4.704 0.0010 8.10756 0.022 0.023	
0 4201 00000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 10000000 10000000 10000000 <	5 0 00004 0 0001 5.8176E-04 3.65146E-02 7 0.4779 0.2010 5.72915E-03 7.20945E 01 9 0.7621 0.0010 5.59375-03 7.20945E 01 10 1.3212 0.0010 5.59375-03 7.20945E 01 11 1.6414 0.0010 1.65022E-02 6.80041E 01 12 2.1644 0.0010 2.60398E-02 1.02929E 02 12 2.1644 0.0010 3.60558E-02 2.5506E 02 13 2.0610 3.60558E-02 3.25006E 02 3.60558E 14 3.0000 3.60558E-02 3.25506E 02 3.25506E 14 3.0000 4.11034E-02 3.25506E 02 3.25506E 02 15 4.1520 0.0010 8.13107E+02 1.88758E 02 3.25305E 02 16 4.1394 0.001 1.58837E-01 1.88758E 03 03 111	
OF 12010 F F MEL 13 OF 5000 F 2010	6 0.0504 0.0010 5.73972E-03 1.00145E-01 1 1.2051 0.0010 5.37972E-03 1.20616 01 1 1.217 0.0010 5.37956 02 5.771066 01 1 1.6147 0.0010 1.659356 02 1.20610 0 01 1 1.6147 0.0010 1.659356 02 1.00102 0.0022 0.00102 0.0022 0.00102 <td></td>	
OFF 13	0 7477 0 0.010 0 0.7457 0 0.010 0 0.7475 0.010 0 0.7475 0.010 0 0.7475 0.010 0 0.7475 0.010 0 0.7475 0.010 0 0.7475 0.010 0 0.7475 0.010 0 0.7475 0.010 0 0.7475 0.010 0 0.7475 0.010 0 0.7455 0.010 0 0.7455 0.010 0 0.7455 0.010 0 0.7455 0.010 0 0.7455 0.010 0 0.7455 0.010 0 0.7455 0.010 0 0.7455 0.010 0 0.7455 0.010 0 0.7455 0.010 0 0.7457 0.010 0 0.7455 0.010 0 0.7455 0.010 0 0.7455 0.010 0 0.7455 0.7455 0.7455 0.7455 0.7455 0.7455 0.7455 0.7455 0.74555 <th0.745< th=""> <th0.745< th=""></th0.745<></th0.745<>	
0 1 2351 0 0010 1 15315 0 15315 15315 15315 15315 15315 15315 15315 15315 15315 15315 15315 15315 15315 15315 153155 1531555 153155 <td>9 1 2091 0 0010 1.51935 02 5.771066 01 11 1.6147 0 0010 2.60395 02 1.817036 02 12 2.1454 0 0010 2.60395 02 1.817036 02 13 2.8693 0 0010 2.60395 02 1.817036 02 15 3.0802 0 0010 2.60395 02 1.817036 02 15 3.0802 0 0010 2.61767 02 1.81705 02 16 4.1520 0 0010 5.11636 02 1.165286 02 17 6 4.104 0 0010 8.137016 02 1.653956 02 19 6 9147 0 0010 1.435936 03 1.1131 1.436916 03 21 11 3794 0 0010 1.432936 03 1.21216 03 22 12 13916 0 1.439196 03 1.439196 0</td> <td></td>	9 1 2091 0 0010 1.51935 02 5.771066 01 11 1.6147 0 0010 2.60395 02 1.817036 02 12 2.1454 0 0010 2.60395 02 1.817036 02 13 2.8693 0 0010 2.60395 02 1.817036 02 15 3.0802 0 0010 2.60395 02 1.817036 02 15 3.0802 0 0010 2.61767 02 1.81705 02 16 4.1520 0 0010 5.11636 02 1.165286 02 17 6 4.104 0 0010 8.137016 02 1.653956 02 19 6 9147 0 0010 1.435936 03 1.1131 1.436916 03 21 11 3794 0 0010 1.432936 03 1.21216 03 22 12 13916 0 1.439196 03 1.439196 0	
0 0	10 1.3212 0.0010 1.602281-02 6.80016 0.0102 13 2.8653 0.0010 2.6059686-02 1.812929 0.810236 0.2 14 3.0802 0.0010 3.605586-02 3.745626 0.2 3.745626 0.2 15 2.8653 0.0010 3.605586-02 3.745626 0.2 3.745626 0.2 16 4.1620 0.0010 5.317637-02 3.745626 0.2 3.745626 0.2 17 6.41570 0.0010 5.317637-02 5.89556 0.2 3.74562 0.2 18 6.31671 0.0010 5.317637-02 1.657336 0.3 3.74562 0.3 3.74562 0.3 3.74562 0.3 3.74562 0.3 3.74562 0.3 3.74562 0.3 3.74562 0.3 3.74562 0.3 3.74562 0.3 3.74562 0.3 3.74562 0.3 3.745626 0.3 3.745626 0.3 3.745626 0.3 3.745626 0.3 3.745626 0.3 3.745626 0.3 3.745666 0.3 3.75566	
1 1,111 1,1	1 1.6147 0.0010 2.05908F-02 1.02928E 0.02 13 2.81634 0.0010 3.65558F-02 3.257005 0.02 14 3.0802 0.0010 3.65558F-02 3.255065 0.2 15 3.2717 0.0010 3.65558F-02 3.255065 0.2 17 6.4704 0.0010 8.17159F-02 3.255065 0.2 16 4.704 0.0010 8.13107F-02 1.6552815 0.2 19 7.38691 0.0010 8.13107F-02 1.6552815 0.2 20 10.8891 0.0010 8.13107F-02 1.6552815 0.2 21 11<374	-
1 2.8697 0.0010 3.60586 02 3.775056 02 1 2.0000 3.87757 02 3.745626 02 1 6 4.103 0.0010 5.745626 02 1 6 4.103 0.0010 5.11537 02 4.25536 02 1 6 4.103 0.0010 5.11034 0.0010 5.11637 02 1 6 4.103 0.0010 5.11637 02 4.25536 02 1 6 4.103 0.0010 5.11016 03 1.655366 03 2 10.1010 5.11016 03 1.655366 03 1.655366 03 2 10.1010 5.11016 1.655366 03 1.655366 03 2 10.1010 5.1116 03 03 03 03 03 2 110.1010 1.61016 01 1.61016 03 03 03 2 110.1010 1.752306 03 03 03 03 03 03	13 2.8692 0.0010 3.60588 02 14 3.0802 0.0010 3.870726 02 3.745626 02 17 6.4704 0.0010 3.11616 02 8.255816 03 17 6.4704 0.0010 8.131016 02 8.82558 03 18 6.9147 0.0010 8.131016 02 1.652815 03 19 10.3855 0.0010 8.131016 03 1.652815 03 20 10.9891 0.0010 1.887386 03 03 21 111 3794 0.0010 1.681376 03 21 111 3794 0.0010 1.429386 03 23 12 66176 0.3031 03 03 24 111 3794 0.0010 1.429386 03 23 12 661776 0 36556 03 23 12 166176 1 1.891366 03 24 14 1720 0.0010 1.891356 03	
14 3.0002 0.0010 3 f87072-02 3.745626 0.02 17 6 4.1727 0.0010 5.1110361-02 4.0255816 0.02 17 6 9.4704 0.0010 5.1110361-02 4.0255816 0.02 19 7.3855 0.0010 5.2175316 0.02 4.0255816 0.02 19 7.3855 0.0010 5.2055816 0.02 4.0255816 0.02 20 10 8991 0.0010 5.1651616 0.1651616 0.02 4.0255816 0.02 21 110 89916-01 5 1001616 0.02 1.1291616 0.02 22 11 1773146 0.01 1.4599566 0.03 1.4595566 0.03 21 11 10.01 10.011 10.01146 0.03 1.110406 0.03 1.1110406 0.03 1.1110406 0.03 1.1110406 0.03 1.1110406 0.03 1.1110406 0.03 1.1110406 0.03 1.1110406 0.03 1.1110406 0.03 1.1110406 0.03 1.1110406 <	14 3.0802 0.0010 3 B70726-02 3.74552E 02 17 6.4704 0.0010 8.171596-02 4.252888 02 17 6.4704 0.0010 8.131016-02 4.225888 02 18 6.9147 0.0010 8.131016-02 4.225888 02 19 7.3855 0.0010 8.131016-02 1.655836 03 20 10.8891 0.0010 1.459386-012 2.153396 03 21 1137914 0.010 1.428936-015 6.449486 03 22 12.7815 0.0010 1.429386-01 6.44448 03 23 12.7815 0.0010 1.775846-01 7.822026 03 24 14.0720 0.0010 1.775846-01 7.822026 03 25 14.1420 0.0010 1.775846-01 7.822026 03 27 16.7710 0.0010 1.875866 03 04 28 14.0720 0.0010 2.438156 <td>0R</td>	0R
1 3	15 3.27117 0.00010 4.111394 0.2 16 4.1520 0.0010 8.131016-02 1.652836 0.3 19 7.3855 0.0010 8.131016-02 1.652836 0.3 20 10.8891 0.0010 8.131016-02 1.88758 0.3 21 11.3794 0.0010 1.358786-01 5.112116 0.3 21 11.3794 0.0010 1.429846-01 5.112116 0.3 22 12.6150 0.0010 1.429846-01 5.112116 0.3 23 12.7815 0.0010 1.429846-01 5.443486 0.3 23 12.7150 0.0010 1.7771446-01 7.822022 0.3 23 14.1720 0.0010 1.7771446-01 7.822022 0.3 26 14.9920 0.0010 1.883956-01 8.873192 0.3 27 16.7710 0.0010 1.883956-01 8.873192 0.3 27 16.7710 0.0010 2.438196 0.3 0.43436 0.3 29 19.1650 0.0010 <td>iG P</td>	iG P
1 6 4704 0.0010 8.131016 03 1.652316 03 21 11 3794 0<0010	17 6 4704 0.0010 8.13101E-02 1.65283E 03 18 6.9147 0.0010 9.88935E-02 1.88758E 03 21 11.3794 0.0010 1.38837E-01 2.15238E 03 21 11.3794 0.0010 1.42948E-01 5.1121E 03 22 11.3794 0.0010 1.58789E-01 5.1121E 03 23 12.7815 0.0010 1.58789E-01 5.1211E 03 23 12.7815 0.0010 1.58789E-01 5.1211E 03 23 12.7815 0.0010 1.58789E-01 5.1211E 03 24 14.0750 0.0010 1.788395E-01 8.87319E 03 27 16.7710 0.0010 1.78546E-01 1.10405 04 27 16.7710 0.0010 1.88335E-01 1.88335E 04 28 18 1626 0.0010 1.48655E 04 27 16.7710 0.0010 1.88335E 04 04 28 19 10222 00010 <td>IN. 200</td>	IN. 200
18 6.9147 0 0010 8 693255-02 1.887581 03 21 11 3794 0 0010 1.388775-01 5 112116 03 21 11 3794 0 0010 1.388786-01 5 112116 03 22 12 6360 0 0010 1.429986-01 5 112116 03 23 12 7815 0 0010 1.429986 03 4.449486 03 23 14 07600 0.0010 1.7731486 01 7.449486 03 25 14 1420 0 0010 1.7731486 01 7.429566 03 26 14 07500 0.0010 1.7731486 03 2.449486 03 26 14 07500 1.7171486 01 7.429566 03 2.449486 03 27 16 77120 0 0010 1.7771486 03 2.449486 03 2.449486 03 28 14 14070 0 0010 1.771486 03 2.449486 03 2.	18 6.9147 0 0010 8 89355 0.0010 1.386375 0.001 20 10 9891 0 0010 1.368376 0 0 21 111 3794 0 0010 1.368376 0 0 22 12 68057 0 0010 1.368376 0 0 23 12 6810 0 0010 1.429946 0 0 23 12 660 0 0010 1.77784 0 0 0 24 14 0750 0 0010 1.77784 0 1 1 0 25 14 1920 0 0010 1.77784 0 0 0 27 16 1770 0 0010 1.77784 0 0 0 0 28 14 1020 0 1.77784 0 0 0 0 0 0 <td></td>	
19 7.3855 0.0001 9.280395-02 2.153395 03 21 110.8891 0.0010 1.386376-01 5.112116 03 23 12.7815 0.0010 1.38196-01 5.112116 03 23 12.7815 0.0010 1.583966-01 5.112116 03 24 14.0760 0.0010 1.788146-01 7.882026 03 25 14.1076 0.0010 1.777146 03 26 14.9920 0.0010 1.777146 03 27 16.7710 0.0010 1.7819566 03 28 19.162 0.0010 1.7819566 03 29 19.162 0.0010 1.7819566 03 20 20.002 2.107466 04 03 21 12.110 2.813156 03 21 12.1241 0.0010 2.161566 04 21 21.1241 0.0010 2.451566 04 21 21.1241 0.0010 2.451566 04 21 21.1241 0.0010<	197.38550.00109.280937-022.153395032111 31934 00101.368375-014.681075032111 31934 00101.429486-015.12115032312.7815000101.429486-015.44948603241407600.00101.777144-017.8220252514.1120000101.777144-017.822025032614.9920000101.777144-017.822025032716.7710000101.883955-0188731950329191626000102.438356-011.1040604292000102.438356-011.10406043121.1241000102.438356-011.56155043223.0658000102.438356-011.76155043121.1241000102.543545-011.76155043223.53550.00102.935366-012.161015043121.1241000102.935366-012.161015043223.5550.00102.935366-012.161015043223.5550.00102.935366-012.161015043223.5550.00102.935366-012.161015043323.5550.00102.935366-012.945066043323.5550.00102.94566-012.945066043424.7751000102.9456	
21 11 3794 0 0010 1.429986-01 5 112116 033 22 12 666176-01 5 102116 033 23 12 14 0760 0 0010 1.761816-01 5 122116 033 24 14 1720 0 0010 1.7711416-01 7 1895566 033 25 14 1720 0 0010 1.7771416-01 7 1895566 033 26 14 9720 0 0010 1.781916 03 1 <	21 11 3794 0 0010 1.429348-01 5 11211E 03 23 12 7815 0 0010 1.587896-01 5 11211E 03 24 14 0750 0 0010 1.768946-01 5 11211E 03 25 14 11720 0 0010 1.777144-01 7.822056 03 26 14 9920 0 0010 1.777146-01 7.895566 03 27 16.7710 0 0010 2.403815-01 8 873196 03 29 19 16.7710 0 0010 2.403156-01 1 10406 04 29 19 16.7710 0 0010 2.403156-01 1 10406 04 29 20.6553 0 0010 2.403156-01 1<10406	PA QU
22 12 6160 0 0010 1 587895-01 6 30351E 03 24 14 1420 0 0010 1.77714E-01 7.89556E 03 25 14 1420 0 0010 1.77714E-01 7.89556E 03 26 14 9220 0 0010 1.77714E-01 7.89556E 03 27 16.7710 0 0010 2.40341E 03 27 16.7710 0 0010 2.40341E 03 29 19.4652 0 0010 2.40341E 04 30 20.0658 0 0010 2.40341E 04 31 21.1241 0 0010 2.439356 04 31 21.1241 0 0010 2.539566 04 32 23.3955 0 0010 2.549566 04 31 21.1241 0 0010 2.549566 04 32 23.3955 0 0010 2.161516 04 32 23.3556 01 3.955666 04 32 23.5055 0 0010 2.461616 04	22 12 6360 0 0010 1587895 03 23 12.7815 0 0010 1.777145 01 7.849365 03 25 14.1420 0 0010 1.777145 01 7.895565 03 26 14.9920 0 0010 1.777145 01 7.895565 03 27 16.7710 0 0010 1.883956 03 94 29 19 16.7710 0 0010 2.438155 01 1.010405 04 29 19 16.7710 0 0010 2.438155 01 1.486156 04 21 19 16.7710 0 0010 2.438155 01 1.486156 04 20 20.0553 0 0010 2.438155 01 1.486156 04 31 21.1241 0 0010 2.545366 04 91 312256 04 32 23.13555 01 1.761656 04 91 2.436156 91 91 91	GE
23 12.7815 0 00010 1.758845-01 6.49488 03 24 14.0756 0 00010 1.776845-01 8.825626 03 27 16.7710 0 00010 1.776816-01 7.895566 03 27 16.7710 0 00010 2.781316 03 28 19.4720 0 0010 2.825326 03 29 19.4656 0 0010 2.2823166 04 20 20.0558 0 0010 2.2823166 04 20 20.0558 0 0010 2.51556 04 21 21.1241 0 0010 2.51556 04 21 21.1241 0 0010 2.51556 04 21 21.1241 0 0010 2.51556 04 22 23.9555 0 2.161016 04 23 23.50556 0 0010 2.470706 04 24 23.50565 0 0010 2.470706 04 24 <td>23 12.7815 0.0010 1.666171-01 6.44348 03 24 14.0760 0.0010 1.77714E-01 7.82505E 03 25 14.1120 0.0010 1.77714E-01 7.82505E 03 27 16.7710 0.0010 1.77714E-01 7.82505E 03 27 16.7710 0.0010 2.10751E-01 1.10406 04 29 19.1626 0.0010 2.823386-01 1.30732E 04 29 19.1626 0.0010 2.823386-01 1.30232E 04 20 20.0653 0.0010 2.823386-01 1.30232E 04 30 20.0653 0.0010 2.823386-01 1.30232E 04 31 21.1241 0.0010 2.65454E-01 1.76165E 04 31 21.1241 0.0010 2.955366 04 03 32 23.555 0.0010 2.955366 04 04 32 23.5555 01 1.76155 04 04 32 23.5555 01 2.95556 04<td>ITI.</td></td>	23 12.7815 0.0010 1.666171-01 6.44348 03 24 14.0760 0.0010 1.77714E-01 7.82505E 03 25 14.1120 0.0010 1.77714E-01 7.82505E 03 27 16.7710 0.0010 1.77714E-01 7.82505E 03 27 16.7710 0.0010 2.10751E-01 1.10406 04 29 19.1626 0.0010 2.823386-01 1.30732E 04 29 19.1626 0.0010 2.823386-01 1.30232E 04 20 20.0653 0.0010 2.823386-01 1.30232E 04 30 20.0653 0.0010 2.823386-01 1.30232E 04 31 21.1241 0.0010 2.65454E-01 1.76165E 04 31 21.1241 0.0010 2.955366 04 03 32 23.555 0.0010 2.955366 04 04 32 23.5555 01 1.76155 04 04 32 23.5555 01 2.95556 04 <td>ITI.</td>	ITI.
25 14.1420 0.0010 1.77714E-01 7.89556E 03 26 14.9920 0.0010 1.88395E-01 8 87319E 03 27 16.7710 0.0010 2.40751E-01 1<10406	25 14.1420 0.0010 1.77714E-01 7.89556E 03 26 14.9920 0.0010 1.0751E-01 7.89556E 03 27 16.7710 0.0010 2.10751E-01 1.10466 04 29 19.4022 0.0010 2.43815E-01 1.48615E 04 29 19.4022 0.0010 2.43815E-01 1.48615E 04 30 20.0658 0.0010 2.43815E-01 1.48615E 04 31 21.1241 0.0010 2.54515E-01 1.76165E 04 31 21.1241 0.0010 2.55516-01 1.76165E 04 32 23.5555 0.0010 2.95536E-01 1.76165E 04 32 23.5555 0.0010 2.16101E 04 04 32 23.5555 0.0010 2.18123E 04 </td <td>is Y</td>	is Y
26 14.9920 0 0010 1.88395E-01 8 7319E 03 27 16.7710 0 0010 2.10751E-01 1 1040E 04 29 19.4052 0 0010 2.43915E-01 1.46615E 04 30 20.0658 0 0010 2.543915E-01 1.30232E 04 31 21.1241 0 0010 2.54515E-01 1.76155E 04 31 21.1241 0 0010 2.55555E-01 1.76155E 04 32 23.3953 0 0010 2.553615E-01 1.76155E 04 32 23.3953 0 0010 2.553615E-01 1.76155E 04 32 23.35555 0 0010 2.56544E-01 1.76155E 04 32 23.35555 0 0010 2.95380E-01 2.18123E 04 33 23.50166 0 0010 3.14369E-01 2.47070E 04	26 14.9920 00010 1.88395E-01 8 87319E 03 27 16.7710 00010 2.10751E-01 1.10406E 04 29 19.1626 00010 2.83238E-01 1.86615E 04 30 20.0658 00010 2.83385E-01 1.48615E 04 31 21.1241 00010 2.65454E-01 1.76165E 04 31 21.1241 00010 2.95386E 04 32 23.3555 0.0010 2.95386E 04 32 23.5555 0.0010 2.95386E 04 33 23.5555 0.0010 2.95386E 04 33 23.5555 0.0010 2.143695E 04 33 25.0166 00010 2.143695E 04	
27 16.7710 0 0010 2.10751E-01 1.1040E 04 29 19.4626 0 0010 2.38238E-01 1.30232E 04 30 20.0658 0 0010 2.5155E-01 1.30232E 04 31 21.1241 0 0010 2.5554E-01 1.76165E 04 32 23.29555 0 0010 2.5554E-01 1.76165E 04 32 23.29555 0 0010 2.5554E-01 1.76165E 04 32 23.29555 0 0010 2.51651E 04 33 23.27555 0 0010 2.16121E 04 33 23.25505 0 0010 2.161226 04 34 24.77016 0 0010 2.470706 04	27 16.7710 0 0010 2.10751E-01 1.1040E 04 29 19 16.770 0 0010 2.88238E-01 1.48615E 04 29 19 16.26 0 0010 2.843815-01 1.48615E 04 30 20.0658 0 0010 2.8438E-01 1.48615E 04 31 21.1241 0 0010 2.65454E-01 1.76165E 04 32 23.3555 0 0010 2.94508E 04 32 23.3555 0.0010 2.95306E-01 2.16101E 04 33 23.5555 0.0010 2.95306E-01 2.16101E 04 33 23.5555 0.0010 2.95306E-01 2.18123E 04 33 23.50166 0.0010 2.95306E-01 2.47070E 04	
28 18 1626 0.0010 2.293/385 11.486/356 04 20 20.6558 0.0010 2.438/356 04 31 21.1241 0.0010 2.538/356 04 32 23.3953 0.0010 2.54345 04 32 23.3953 0.0010 2.544056 04 32 23.3953 0.0010 2.540086 04 32 23.3953 0.0010 2.540086 04 33 23.5055 0.0010 2.940086 04 33 23.5055 0.0010 2.940086 04 33 23.5055 0.0010 2.940086 04 34 24.7705 0.0010 2.470706 04	28 18 162.6 0.0010 2.262.381 11.466.55 04 29 20.0058 0.0010 2.513815 01.1466.55 04 31 21.1241 0.0010 2.5155 01.1761655 04 32 23.3553 0.0010 2.539565 04 32 23.3555 0.0010 2.539565 04 32 23.3555 0.0010 2.539565 04 32 23.5555 0.0010 2.940085 04 33 23.5555 0.0010 2.953066 04 33 23.5555 0.0010 2.953066 04 33 23.50555 0.0010 2.953066 04 34 24.7761 0.0010 2.143696 04	
20 20.0658 0 0010 2 52155 01 589565 04 31 21.1241 0 0010 2 65454E-01 1.761655 04 32 23.3953 0 0010 2 65454E-01 1.761655 04 32 23.3055 0 0010 2 94008E-01 2.161015 04 33 23.27555 0 0010 2 94064E-01 2.181235 04 34 24.7056 0 0010 3 143694E-01 2.470706 04	20 20.0058 0.0010 5.2155F-01 1.58956 0.4 31 21.1241 0.0010 2.65454E-01 1.76165E 04 32 23.3953 0.0010 2.65454E-01 1.76165E 04 32 23.3555 0.0010 2.95306E-01 2.16101E 04 33 23.1555 0.0010 2.355306E-01 2.18123E 04 34 24.2761 0.0010 3.05564E-01 2.47070E 04	
31 21.1241 0 0010 2 6554E-01 1.76165E 04 32 23.2953 0 0010 2 94008E-01 2.16101E 04 33 23.5055 0.0010 2 95380E-01 2.18123E 04 34 24.2761 0 0010 3 05064E-01 2.18123E 04 35 25.0166 0 0010 3 14369E-01 2.47070E 04	31 21.1241 0 0010 2 654541-01 1.76165E 04 32 23.3963 0 0010 2 94008E-01 2.16101E 04 33 23.5555 0.0010 2 95380E-01 2.18123E 04 34 24.2761 0 0010 3 05664E-01 2.18123E 04 35 25.0166 0 0010 3 05664E-01 2.47070E 04	-
32 23.3963 0 0010 2 94008E-01 2.16101E 04 33 23.5055 0.0010 2.95380E-01 2.18123E 04 34 24.2761 0 0010 3 05064E-01 2.18123E 04 35 25.0166 0 0010 3.14369E-01 2.47070E 04	32 23.3963 0 0010 2 94008E-01 2.16101E 04 33 23.5055 0.0010 2.95380E-01 2.18123E 04 34 24.2761 0 0010 3 05064E-01 2.18123E 04 35 25.0166 0 0010 3 05064E-01 2.47070E 04	
33 23.5055 0.0010 2.95380E-01 2.18123E 04 34 24.2761 0 0010 3<05064E-01	33 23.5055 0.0010 2.953806-01 2.18123E 04 34 24.2761 0 0010 3 05064E-01 2 32560E 04 35 25.0166 0 0010 3.14369E-01 2.47070E 04	
34 24.2761 0 0010 3 05064E-01 2 32660E 04 35 25.0166 0 0010 3.14369E-01 2.47070E 04	34 24.2761 0 0010 3 05064E-01 2 32660E 04 35 25.0166 0 0010 3.14369E-01 2.47070E 04	

RUN ND LSD900

DATE 072081 RUN BY T.E.POLLAK

1

:

•~

LSD PHASE 3 DRBITAL JITTER WODEL LSD900 • ALL TUNED • 819 DDDF'S TRANSFER CDEFFICIENTS • 9000-1572-1664-1669-2076-2460-2461-20194-20198

1006 THETA X		n E E	ñ R				Σ (30 C.	ร่
IDDE THETA X	4000	€ 4000	#1573	#1572	#1672	+1064	#16C4	#1664
1 2 7 1 4 4 7 5 - 1	THETA Y	THETA Z	THETA X	THETA Y	THETA Z	THETA X	THETA Y	THETA Z
	15 -2.88435E-03	-4.06397E-03	3.71608E -05	-2 88425E-03	-4 06388E-03	3.714556-05	-2.884355-03	-4.06397E-U3
2 3 65704E-C	13 2.59987E-03	-2.31467E-03	3 65605E-03	2 599962-03	-2.31432E-03	3.65698E-03	2.59986E-03	-2.314666-03
3 -1.50608E-C	13 1.98927E-03	-2.49725E-03	-1.50646E-03	1.98881E-O3	-2 49800E -03	-1.50612E-03	1.989285-03	-2.497256-03
4 -4 B3677E-C	14 1 95114E-05	-6.1387'E-04	-4.83810E-04	1.900956-05	-6 14553E-04	-4 83666E-04	1 951766-05	-6 13866E-04
5 -3.765-185-6	13 2.44198E-03	-2.098RJE-04	-3.76432E-03	2 44123E-03	-2.10406E-04	-3.76580E-03	2.441956-03	-2.099096-04
6 1 62781E-C	13 -5 543 10E - 05	-1.247046-03	1.62225E-03	-5.27613E-05	-1 24316E-03	1.62756E-03	-5.54878E-05	-1.24697E-03
7 3 15886E-C	13 4.26277E-04	-7.81014E-04	2.094136-03	1.83810E-04	-9.32825E-04	3.15477E-03	4.248456-04	-7.82447E-04
8 9 14252E-C	14 -4 28935E-04	-2.70547E-03	B. 19443E-04	6 32665E-03	5.03922E-05	9.12500E-04	-4.20836E-04	-2 692116-03
9 2 78334E-C	4 -3 50092E-03	-1.08837E-03	-1.63876E-04	-5 45791E-03	1.86483E-03	2.90359E-04		-1.07824E-03
10 -B 6/439E-C	14 -1.76466E-03	2.237116-03	-1.10463E-03	4.41737E-03	-4.52032E-03	-8.46673E-04	- , /2114E-03	2 20433E-03
11 3.45007E-C	13 -1.20493E-03	2 64361E-04	7.59459E-03	-3.52475E-04	-2.164355-04	3.24453E 02	-1.16981E-03	2.991456-04
12 -9 01038E-C	13 -1 68986E-04	7 66708E-05	-4.433795-03	1.31010E-05	2.50152E-05	-8.27815E-03	-1.80802E-04	-2.12326E-05
13 2 28062E-C	14 -1.79046E-05	4.34427E-04	2 88832E-04	-5.77789E-04	3.20016E-04	1.73420E-04	-1.78262E-05	· . 13968f -04
14 -1 1401BE-C	15 -2.18919E-04	5.23542E-04	7.40843E-05	1 66274E-02	-5 36943E-03	-2.57978E-05	-1.98943E-04	4.91221E-04
15 2.196606-6	14 -6.93614E-04	-3 2/037E-05	7.077855-05	4.54810E-04	-4 01003E-04	1.928886-04	-6.01880E-04	-2.18633E-05
16 -2 72118E-C	13 -4 89796E-04	-4 43497E-04	1 134715-02	1 08427E-03	-4 46405E-04	-2.07813E-03	-4 63580E-04	-4 86810E-04
17 1.74066E-C	3 -1.33684E-04	2.0605BE-04	2.52412E-03	8.41951E-05	9.41071E-05	5.07561E-04	-9.70976E-05	3.78999E-04
IB 1 68245E-C	13 2.68456E-04	4.79990E-04	-1.55801E-02	-2 91209E-04	4 94619E-04	6.544495-04	2.42052E-04	5.32337E-04
19 4 37286£-C	IS 6.32152E-05	-5.19373E-05	-5.55651E-04	-1 76503E-02	-3.65071E-04	3.200/16E-05	4.40534E-05	-3.02675E-05
0 6.54092E-C	14 1 52617E-04	1 85271E-04	-1.374705-02	3.00913E-03	1 20880E -03	-2.43635E-04	1.20845E-04	2.16009E-04
1 4 07 187E-C	5 5 87437E-06	5 89657E-06	-7.252566-04	2 10254E-02	4 23249E-03	-6.40879E-05	1.61075E-05	6.12073E-06
2 -5 22594E-C	15 -2.15620E-04	-2.642736-05	-2 96932E-04	3.85671E-04	1.076895-04	-2.72264E-05	3.25198E-04	5.43579E-05
2 01924E-C	15 -2.43016E-05	1 08046E-04	 3 98223E-04 	-1.10847E-03	-2 55462E-04	9.64327E-05	-1.23552E-05	5.15194E-05
4 1 53099E-C	3 -3 21801E -04	-1 17112E-04	-1 80669E-02	1 79442E-02	7.130595-03	-3.00856E-03	-1.59358E-04	5.68695E-04
5 -9 73736E-C	14 1 16190E-03	9 18029E-05	-8.35132E-03	1 21284E-02	4.06861E-03	2.64263E-03	6 80393E-04	-5.60974E-04
6 -7.17726E-C	14 -3 01634E-04	-2 08446E-05	2 02891E-02	1 20977E-02	2 46385E-03	1.14175E-03	-1.47450E-04	-1.85820E-04
17 2 22122E-C	3 1 61331E-03	-5 79623E-04	-4 71933E-02	-2.06411E-02	-7.44B90E-04	-5.25401E-03	5.355686-04	6 86435E-04
<u>8 -2 172496-0</u>	13 -7 163 125-03	3 8 19 18E - 04	-1 44909E-02	-5 28088E-03	6.71631E-04	4.91304E-06	-3 09936E-04	4 58220E-05
9 -6.20187E-C	14 3 B4300E-04	6 34430E-04	7 73178E-03	2.28534E-03	-1.27033E-03	4 15434E-03	-2.26127E-04	-7.664566-04
0 2.75034E-C	13 -9 85035E-04	-3.89155E-03	1 24174E-02	4.51586E-03	4.16494E-03	-2.21004E-02	1.22990E-03	4.72680E-03
11 1 6080GE -C	13 -3 64448E-04	1 651356-04	-4 09750E-02	3 09612E-02	-1 78132E-02	-7.43154E-03	-1.01947E-04	1.68900E-04
2-1-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2	1.45640E-03	-1 049996-03	-8 987196-04	-2 92126E-04	-4 99/72E-04	-3.61050E-03	-9.843695-04	-1.22873E-03
19 4 2542JE-C	- 326795 F G	-2 4102/E-04	7 141015-03	-4.006995-03	5.03944E-03	-7,55290£-04	5.96391E-05	2 59599E-04
14 - 2 13136E-C	1 30100E-04	-6.74714E-04	3 11560E-02	2 31868E-02	-2.716256-02	1.971736-03	-2.99214E-04	-3.788496-04
15 5 49178E-C	3 -3 39855E-03	-7.25376E-06	6 33439E • 03	-9.09982E-04	-2.72686E -03	-4.47891E-03	-5.14870E-03	-B.52928E-04
					-			
			A oldom		+ :			
			' argp.r	1001 2-5.1	(Danuth	•		

ORIGINAL PAGE IS OF POOR QUALITY

T.

MODAL DIMENBIONS ARE / THE WCH-POUND-SErOND SYSTEM

兼

ł

Ì

].

RUN ND. LSD900

.

:

DATE 072081 RUN BY T.E.POLLAK

LSD PHASE 3 ORBITAL JITTER WODEL LSD900 • ALL TUICD • 819 DDDF'S TRANSFER COEFFICIENTS • 9000-1572-1664-1669-2076-2460-2461-20194-20198

									•																			()7		PC	00	R	ζ	įΰ	AL
	#2460	THETA Z	-4.06382E-03	-2 313896-03	-2.49861E-03	-6.15058E-04	-2.10694E-04	-1.23979E-03	-9.29262E-04	1.57854E-04	6.79274E-03	-1.75633E-02	-1.291266-03	3.53363E-04	-1.28408E-03	2.81982E-02	1.32528E-03	-8.69154E-04	-7.15827E-05	5.12475E-04	7.86397E-04	-1.19761E-03	-1.750656-02	-9.54725E-04	9 99936E-02	5.58789£-03	2.65309E-03	2.05743E-02	-3.19150E-03	-1 27/69-03	-1.07100C-02	5 552B3F-03	1 01400E-03	-6.01035E-02	7.48239E-03	-7.19227E-04
DENGOR -	+0460	THETA Y	-2.88386E-03	2.60031E-03	1.98694E-03	1 68142E-05	2.437796-03	-4.07366E-05	7.28502E-04	3.63888E-D2	-1.76890E-02	4.27158E-02	2.81301E-03	-1.07411E-03	1.93284E-03	-4.21996E-02	-2.14990E-03	4 21072E-03	1.70891E-04	-2.235506-03	-1.13629E-02	6 66549E-03	2.86863E-02	2.02848E-03	-2.53473E-01	-2 50323E-02	-1.30088E-02	-4.94149E-02	8.66659L-03		-1 06430E-03	B 151035-03	-7 538395-03	1.45387E-01	4.73848E-03	3 64147E-03
200	42460	THETA X	3.729336-05	3.63808E-03	-1.51203E-03	-4.89131E-04	-3.731595-03	1.51847E-03	··-2.33077E-02	-2.836325-03	6.33782E-03	2.94852E-03	-4.50305E-02	3.50131E-02	3.42823E-04	2.12792E-02	1.78636E-04	5.40893E-02	3.29571E-C3	1.40633E-02	9.11065E-02	6.45994E-03	9.31560E-02	7.30960E-05	2.40983E-02	-5 52933E-03	-4.11926E-03	-2.03807E-02	-4.95881E-03	-2.54018E-03		- 1.42320C-02	-1 931065-03	1.08137E-01	1.30661E-02	2.60184E-03
	42076	THETA Z	-4 06384E-03	-2 31417E-03	-2 49833E-03	-6 14856E-04	-2.106236-04	-1.24148E-03	- 1" 00066E - 03"	1.27888E-03	3 :6538E-03	-7.50693E-03	-4.41346E-04	5.09059E-05	2.667C4E-04	-7 67624E-03	-5.60327E-04	-3 4/504E-04	-2 43688E-05	3.42734E-04	-1.42322E-03	1.63760E-03	7 36704E-03	1.50146E-03	-4 829255-04	1.01815E-02	6 42615E-03	4.61094E-03	-4.65225E-03	-3 36992E-04	- 4 14 Z00 - 04	2./03346-03		3 30144E-03	-1 74726E-02	-1 65123E-03
うくいろい	9202#	THETA Y	2.88402E-03	2 60035E-03	1.98770E-03	1 77898E-05	2.43924E-03	-4 52569E-05	"-2 26906E-04	2 28526E-02	-1 03840E-02	1.94502E-02	9.38500E-04	-9.13094E-06	-1.96064E-03	5.77526E-02	3.019905-03	3.04609E-03	3 52242E-05	4 061635-04	-6.08362E-02	1 15056E-02	7 23935E-L2	3.71594E-04	-3.54977E-03	6 24851E-02	4.20967E-02	4 03703E-02	-7.08109E-02	-1 405935-02	9.2803/E-03	2.9063/E-03	10-316471.1	-1.459636-02	7 54133E-02	5.10627E-03
	+2076	THETA X	3.71675E-05	3 65562E-03	-1.50662E-03	-4 83872E-04	-3 76363E-03	1.61981E-03	"1.60892E-03	7.45303E-04	-3.33986E-04	•1.24315E-03	9.47030E-03	-2.65116E-03	3.31493E-04	4.17029E-05	2.95010E-05	1 70761E-02	3.26104E-03	-2.23161E-02	-7.65031E-04	-1.90808E-02	-9.23320E-04	-2 66358E-04	-8 23040E-04	-2 322596-02	-1.24193E-02	2.74032E-02	-6 09539E-02	-2 04158E-02	50-350505 B	2.801/06-02	- 30 - 30 - 30 - 07	9 28882E-03	4 . B 1904E - 02	1.18458F-02
	41669	THETA Z	-4.06397E-03	-2.31467E-03	-2.49725E-03	-6.13870E-04	-2.09879E-04	-1 24703E-03		-2 70549E-03	-1.08959E-03	2.23571E-03	2.59037E-04	9 571395-05	4.32428E-04	5 20653E-04	-3 57263E-05	-4 434158E-04	1.85616E-04	4.75720E-04	-4 66762E-05	1.83576E-04	-4.88921E-06	-6. 15557E-05	1.26868E-04	-2 35696E-04	1.79069E-04	1 193995-05	-8.81653E-04	5.149966-04	9. /8413E-04	-0 03293E-03	-1.410/45-04	-5. 29909E-04	-1.09526E-03	-3.33482E-03
קי ב ב	+1669	THETA Y	-2.88435E-03	2.59987E-03	1.98927E-03	1 95151E-05	2.441986-03	-5.54598E-05		-4 276736-04	-3.488536-03	-1 75906E-03	-1.20172E-03	-1 68182E-04	-1.94019E-05	-2 15608E-04	-6 77660E-04	-4 82073E-04	-1.36844E-04	2.53365E-04	5 40866E-05	1 37427E-04	1 70329E-05	-6.40331E-05	-2.948786-05	-2 825206-04	1 059976-03	-2.59788E-04	1.4444E-03	-5 875256-03	1.225552E-04	5.25002E-04	- 1.0440 IC - 04	-3.335576-05	J 69646E-04	-2.438535-03
	# 1669	THETA X	3.71440E-05	3.65704E-03	-1.50608E-03	-4 83675E-04	-3.76598E-03	1 627816-03		9.12050E-04	2.84630E-04	-8 551936-04	3 43518E-03	- 8 92835E-03	2.28030E-04	-2.98364E-06	2 25496E-04	-2 63246E-03	1.60389E-03	1.53937E-03	3 09004E-05	5 18807E-04	3 69193E-05	3,491341-05	2.90329E-05	9 50961E-04	-6 34156E-04	-4 01527E-04	8.20742E-04	-2 31322E-04	-1 666/1E-US	-5.80142E-04		-1 09830F-05	-2 51708F-04	-2.03372E-04
		MODE	-	7	ŋ	4	5	9	- k	80	6	<u>0</u>	:	12	E	1	15	16	1	18	19	20	21	22	23	24	25	26	27	38	52	00 i			44	32

1

;

ORIGINA - .

(Continued)

Table 4.3-2

-

MEDAL DIMENSIONS ARE IN THE LICH- RUND- SECOND SYSTEM

÷

RUN ND LSD900

DATE 072081 RUN BY T.E.POLLAK

4

LSD PHASE 3 DRBITAL JITTER NODEL LSD900 • ALL TUNED • 819 DDDF'S TRANSFER COEFFICIENTS • 9000-1572-1664-1669-2075-2460-2461-20194-20198

	3	- CRUSSOR (+	x)	Ku/S- TAAN	D +X'+1 ATT		AZ DRIVE	ATTACHYGYT	To EL JRJVE
ł	19454	19481	19404	€a0194	#0000 m	+20194	\$61000	* 2019 8	860000
t Z	THETA X	THETA Y	THE A Z	THETA X	THETA Y	THETA Z	THETA X	THETA Y	THETA 2
-	3 729526-05	-2.883865-03	-4 063825-03	3.71963E-05	-2 88407E-03	-4 06398E-07	3.71887E-05	-2,88418E-03	-4 06398E-03
2	3 63799E-03	1 2 60063E-03	-2.31401E-03	3 6557 IE-03	2 59844E-03	-2 31433E-C3	3.65579E-C3	2.598996-03	-2 314336-03
י ה	•1.51195E - 03	1 1 98704E-03	-2.49866E-03	-1 50721E-03	1 991446-03	-2.49754E-03	-1.50716E-03	1 990656-03	-2.49755E-03
4	4 891186-04	1.68952E-05	-6 15090E-04	-4 82908E-04	2.08239E-05	-6 14123E-04	-4 82937E-04	2 03856E-05	-6 14124E-04
5	.J 73 176E-03	2 4371BE-03	-2.10456E-04	-3 761295-03	2 43806E-03	-2.09714E-04	-3.761585-03	2 439595-03	-2.09672E-04
9	1 518315-03	1 -3 89637E-05	-1.24048E-03	1 62563E-03	-5 957326-05	-1 24593E-03	1.62574E-03	-5.83172E-05	-1.245956-03
۔ ۲	-2 331885-02	-2 370286-04	-1.11990E-03	3 94362E-03	6 55836E-04	-B.79449E-04	3 89581E-03	5.76569E-04	-8.76180E-04
- 8	1 156816-03	1 3 64686E-02	1.26850E-04	1 00863E-03	-1.18071E-03	-2 81497E-03	9 94345E-04	-8.59034E-04	-2 78807E-03
6	3.85578E-03	-1.78798E-02	6.86494E-03	9.801456-04	1.97577E-02	-4.33353E-03	9.10095E-04	9 64464E-03	-4.42520E-03
0	1.01502E-02	4 24540E-02	-1.74655E-02	8 54236E-05	9.34777E-03	1 30090E -03	2.96830E-05	4 32447E-03	1.19073E-03
•	4 39911E-02	5 10944E-03	-2 15003E-03	-8 33861E-03	4.488295-03	8 05171E-04	-7.49038E-03	1.51321E-03	6.95387E-04
	-3 48589E-02	1.41261E-03	-5 657086-04	1.27150E-02	-5 65944E-04	-3 255366-03	1 08866E-02	1.33333E-04	-2.99692F-03
0	2 06839E-03	1.791695-03	-1 23222E-03	-1 38533E-03	-2.93673E-02	-9.84608E-02	-1.16376E-03	-1 85777E-03	-8.78376E-02
4	-2.43510E-02	-4 231885-02	2 82526E-02	-5 550316-04	5 54418E-03	-4 86782E-03	-4.30762E-04	3.43042E-04	-4.32696E-03
' S	-2.343316-03	1 -2.037365-03	1.28498 E-0 3	1.71250E-03	-1.182615-01	2 69360E-02	6.18924E-04	-7 32324E-04	2.42518E-02
9	5.28288E-02	-3.91417E-03	2 05005E-03	4.52180E-03	-8 11859E-04	1.12043E-03	3.09932E-03	3 00809E -04	8 73936E-04
1	-4 67526E-03	-7 02959E-04	2.75605E-04	8 26483E-02	9.72067E-03	1.66871E-04	3.60508E-02	5.94777E-04	-9.48543E-04
8	2 45551E-02	4 84908E-03	-2.15207E-03	1 13249E-02	1.60380E-03	-1 83211E-04	4.34121E-03	-1.09946E-04	-2.38077E-04
•	·8 95282E-02	-1 05521E-02	4.85753E-04	-2 84420E-06	1 705622-04	-3.35775E-05	2.69886E-05	-1.79240E-04	-6.96917E-06
' 0	·2 70022E-02	7 34744E-03	-5 60215E-03	4.30834E-04	2 26774E-04	-3 69198E-05	-3.07108E-05	-2 94038E-04	2.59096E-05
-	8 59615E-02	5 61056E-02	-2.34965E-02	-3 38993E-05	-1 548536-04	4.1:635E-05	-2 05620E-05	3.18037E-04	-3.69123E-05
	-6 47773E-05	1 -2 05645E-03	6 96661E-04	2.53034E-03	3 222515-02	-9.31220E-03	1.03825E-03	-8.00501E-02	1.28625E-02
e	3 09562E-02	2,49014E-01	-9.78162E-02	5 44618E-04	2.70240E-04	-B.20748E-05	-3.93271E-04	-6.13274E-04	6.68540E-05
4	1.82533E-02	-3 58543E-02	1.11276E-02	-2.180556-02	-7.73889E-04	5.46526E-04	2.39756E-02	2.64096E-04	2.00540E-03
و	1.01820E-02	-2.561216-02	8.34933E-03	3 55791E-02	7 905316-04	-4 387856-04	-3.97055E-02	9.57440E-04	-3 56545E-03
' ب	·1.72112E-02	2 59665E-02	-1.35725E-02	-9.71730E-04	1 07733E-04	-2.186586-05	1.27127E-03	-4.57204E-04	1 93549E-04
7	3.24301E-03	1.074385-02	-4.34887E-03	1.04507E-03	-6.433156-04	8 638365-05	-3.70230E-03	1.10949E-03	-5.68348E-04
. 8	B 34238E-04	-3 67622E-03	1 13491E-03	5.819456-03	3.509906-03	-4 05603E-04	4.52324E-03	-1.39106E-03	1.09531E-03
' 6	7.07419E-02	-4 28795E-02	1.97579E-32	-1 02653E-03	-9 07458E-05	2 43786E-05	1 83763E-D3	-1.96412E-04	1 30691E-04
' 0	·1.81057E-02	1, 13511E-03	-1.43396E-03	3 77947E-03	-4.840406-04	-5 03671E-05	 1, 199996 - 02 	1.11252E-03	-9,76274E-04
Ξ	5. 19559E-03	1 -2 07279E-02	1.73022E-02	4.940985-04	-1.35568£-06	-2.24890E-05	-2.01758E-03	-3.44353E-04	-4.15892E-05
v	1 971096-02	2.526926-02	-1.01523E-02	4 367196-04	3.28047E-04	-6 28666£-05	-7.71075E-04	-1.172546-03	3.75551E-04
0	1 034 10E -01	-1 43485E-01	5 55999E-02	-1 97307E-05	-1 52939E-04	2 01986E-06	-1 :1346E-03	-7.95740E-05	-8.02187E-05
4	4 10423E-02	-1.59349E-02	1.529395-02	1 261686-04	3.0241BE-04	-1 97859E-05	• b^495E-03	-1 29441E-05	2.36196E-04
S	5 245116-03	-4.64200E-03	2.51270E-03	1 0372BE-03	1.62854E-03	· ^ 06762E-04	u.05182E-03	-1.71905E-0J	1.91185E-03
l									
				Table	a 4.3-2 (C	continued)			

ORIGINAL PAGE IS OF POOR QUALITY

• •

* " MTAN "DIMENSIONS ARE IN THE INCH - PUND - C 2001D SYSTEM

.

i

					DATE 072381 RUN BY T E.POLLAK	
	LSD PHAS TRANSFER	E 3 08817 COEFFICI	AL JITTER FNTS + 900	MOUEL LSD 0-1572-16	100 • ALL TUNED • 819 DDDF'S 14-16C9-2076-2460-2461-20194-20	0198
						TABLE 4.3-3. STRUCTURAL TRANSFE
						Fuction Coefficien
						VALVES FOR DEBITAL
				•	•	Merel LSD900
DDES	FRE0 (H7)	DAMPING C/CR11	ВJ	S		JAMPING= 0.01
	0 0053	0.0100	6 70574E-0	4 1.1245	E-03	
~ ~	0 0169	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2.12761E-0 2.21853E-0	3 1, 1316	16 - 02 F - 02	
ף נ	0 0256	800	3 21880E-0	1065.2 6	-02	
2	0 0304	0 0 100	3 821766-0	3 3.6514	16-02	
ωr	0 0504		5 37752E-0	9 1.0014		_
- 80	0 7627	200	9 58475E-0	2 2 2966	1E 01	
6	1 2091	0.0100	1 51935E-0	1 5 7710	55 01	-
<u> </u>	1.3212	0 0100	1.660226-0 2.029086-0	1 1.0292	16 02	
12	2.1454	0 0100	2.695956-0	1 1 8170	1E 02)R)F
13	2 8692	00;00	3 60558E-0	1 3.2500	ie 02	GI P
4 1	3.0802	0000	3.87072E-0 4 11139F-0	1 3.7456	F 02	
9	4 1520	00100	5 21763E-0	1 6.8059.	E 02	
17	6 4704	0 0100	8.13101E-0	1 1.6528	16 03 5 03	PQ
5 G	7 3855	0.0100	9 280936-0	1 2 1533	E 03	AG
0	10,8891	0.0100	1.368375 9	9 4, 6819	£0 3.	
	11 3794	0 0 00 0 0 00	1.429985 0 1 597895 0	0 5.1121 0 6 3035	E 03	Iđ TY
23	12 7815	0 0100	1.60617E 0	0 6 4494	EO 3	9
24	14.0760	0 0100	1.76884E 0	0 7.8220	203	
22	14 1420	0000	1.7774E 0		r 03	
20	16.7710	0.0	2 10751E 0	0 1.1104	E 04	
28	18 1626	0 0100	2.28238E 0	0 1 3023.	1E 04	
59	19 4022	0 0100	2.43815E 0	0 1.4861	5 04 5 01	
<u> </u>	20 0658		2.65454E 0			
	23 3963	0000	2.9400BE 0	0 2 1610	E 04	
33	23.5055	0 0100	2 95380E 0	0 2 1812	1E 04	
34	24 2/61 25 0166	0.0100	0 14369E 0	0 2.4707		

3

(].

As refinements occur in the current orbital stack-up, except for parametric variations and study models, the data base files will be updated and applicable documentation released.

5.0 ORBITAL ANALYSIS

5.1 ORBITAL ANALYSIS APPROACH

Since TM image data correction through real time analysis of component orbital jitter will be accomplished by the ADS, the primary focal point of this analysis is still MSS induced jitter as a function of the MSS component itself or the TM. TM peak responses, however, were noted throughout the analysis and as shown in subsequent data summary tables, are well within the control range of the ADS.

In addition to generating baseline jitter values, worst case variations of the eigenvalue spectrum were generated and the corresponding MSS/TM responses computed. This approach sought to identify the effect of possible structural frequency deviations from the best estimate by modifying the modal spectrum so that the maximum resonant response would be excited. Modes near each forcing harmonic which differed in frequency by more than 15% were not considered in the analysis. Shifts were implemented for the first seven harmonics in the Fourier representation of the MSS experiment and the first nine harmonics of the TM. The shift value for a particular mode was applied only to that modal frequency. The bandwidths investigated are presented in Figure 5.1-1. For example, the 68.10 Hz MSS third harmonic has bandwidth limits of 59.217 Hz and 80.118 Hz as prescribed by the 15% tolerance premise. The modal spectrum for model LSD900 reveals 26 nodes within this allowable 15% bandwidth. Each mode was then individually shifted to become coincident with the

ł

i

ł

L

Figure 5.1-1 MSS/TM Bandwidth Considerations

Bandwidth = +15% Component = MSS

.

Harmonic	Frequency (Hz)	Lower Limit (Hz)	Upper Limit	Force <u>Coefficient</u>
	,			
·1	13.62	11.843	16.024	40,398
2	40.86	35.530	48.071	39.507
3	68.10	59.217	80.118	37.770
4	95.34	82.904	112.165	35.269
5	122.58	106.591	144.212	32.122
6	149.82	130.278	176.259	28.476
7	177.06	153.965	208.306	24.494

Bandwidth = ± 15 %

Component - TM

Harmonic	Frequency (Hz)	Lower Limit (Hz)	Upper Limit (Hz)	Force Coefficient
1	7.0	6.087	8.235	43.343
2	21.0	18.261	24.706	41.543
3	35.0	30.435	41.176	28.106
4	49.0	42.609	57.647	33.341
5	63.0	54.783	74.118	27.663
6	77.0	66.957	90.588	21.547
7	91.0	79.130	107.059	15.476
8	105.0	91.304	123.529	9.8845
9	119.0	103.478	140.00	5.12

68.10 Hz forcing function frequency. From a steady state response analysis on the altered modal spectrum, force coefficients for each forcing harmonic were obtained. The time-phased coefficients were then combined to produce a set of jitter values. The offensive mode(s) in that particular harmonic were identified by noting which responses exceeded the allotted jitter budget.

5.2 BASELINE ORBITAL MODEL - LSD900

The model presented herein incorporates all the revisions described in Sections 4.1 and 4.2. Table 5.2-1 describes the first twenty (20) elastic modes of the model with Figures 5.2-1 thru 5.2-20 presenting the corresponding modal plots. Table 5.2-2 tabularizes representative force/ response locations for the frequency response spectra graphs (C/C_{CRTT} = 0.001) presented herein, Figures 5.2-21 thru 5.2-32. For an assumed 1% damping (C/C = 0.01), Table 5.2-3 tabularizes representative force, response locations for the frequency response spectra graphs presented in Figures 5.2-33 thru 5.2-44. As depicted in Figures 5.2-27, 5.2-28 and 5.2-39, 5.2-40, resonant frequency placement precludes coincidence with the odd harmonic forcing stimulus of the MSS experiment. Worst case modal spectrum shifts, however, introduce jitter magnitudes in exceedance of MSS allowables. These established allowables are presented in Table 5.2-4. Tables 5.2-5 thru 5.2-11 present the results of TM and MSS single mode shift comparisons to MSS RMS allowables. Included are values for 15%-10%-5% bandwidth spreads about the forcing harmonic. If a particular data set is omitted then no worst cases appear in that

.

Table 5.2-1 LS/D Final Tuned Orbital Model For Jitter - LSD900

. ...

Mode Number	Frequency (Hz)	Description
1-6	0.0	Rigid Body
7	0.428	lst Solar Array Pending
8	0.763	lst Solar Array Torsion
9	1.209	lst Boom X-Bending
10	1.321	2nd Solar Array Torsion
11	-1.615 -	2nd Solar Array Bending + Boom Y
12	2.145	MMS ACS Module + S/A Bending
13	2.869	Elevation Drive
14	3.080	Solar Array 2nd Torsion
15	3.272	Azimuth Drive
16	4.152	Solar Array 3rd Bending
17	6.470	GDA Bending
18	6.915	Solar Array 4th Bending
19	. 7.386	Solar Array 3rd Tornion
20	10.889	Solar Array 3rd - 4th Panel Modes
21	11.379	Solar Array 4th Torsion
22	12.636	2nd Boom X-Bending
23	12.781	Solar Array Outboard Bending
24	14.075	Solar Array 5th Torsion + Inboard Local
25	14.142	2nd Boom Y-Bending
26	14.992	Solar Array 2nd-3rd Panel Bending

Figure 5.2-3

.

_

Figure 5.2-9

Figure 5.2-11

Figure 3.2-12

5-17

Figure 5.2-14

Figure 5.2-19

. -

LSD900 Transfer Function Data Presentation Table 5.2-2

Damping = 0.001

۴،					0	rigina F pooi	LR
Response Spectrum Graph 100-200 Nz		5.1-24	5.1-26	, 5.1-28	5.1-30	5.1-32	
Response Spectrum Graph to 100 Hz	5.1-21	5.1-23	5.1-25	5.1-27	5.1-29	5.1-31	
Response Grið Point	MSS-9X	θ	θ	MSS 0 _X	θ	θ	
Excitation Grid Point	TW 8x. #1669			MSS 0 _x #1664			
		~	5-25			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	

PAGE IS QUALITY

~-

ł

!

1

1 1

;

i

1 ł

Figure 5.2-21

a manager and the and and

ORIGINAL PAGE IS OF POOR QUALITY

;

5-27

Figure 5.2-22

••••

ł

į

1

__! _

;

.7

5-23

ORIGINAL PAGE IS OF POOR QUALITY

ŧ

5-29

RENUTOZNE GF ENN FIRFG N

5-20

:

1

i

7

. 7

1

5-31

- - --

-

-

1

and the subscript on the second

Ę,

ł

;

5-00

ŧ

Vigure 5.2-29

;

t

5-34

1

ORIGINAL PAGE IS OF POOR QUALITY

5-35

لمعدعات تالة فألطفهم

5-36

100510-000

CONT DECOSION

ORIGINAL PAGE IS OF POOR QUALITY . .

Table 5.2-3 LSD900 Transfer Function Data Presentation

كالجاب والبط

Damping = 0.01

Excitation Grid Point	Response Grid Point	Response Spectrum Graph to 100 Hz	Response Spectrum Graph 100-200 Hz
TM 0 _X #1669	. Xe ssw	. 5.1-33	5.1-34
	θ	5.1-35	5.1-36
	θ	5.1-37	5.1-38
MSS 0 _X #1664	MSS 8 _X	5.1-39	, 5.1-40
	θΥ	5.1-41	5.1-42
	θ	5.1-43	5.1-44

5-38

ORIGINAL PAGE IS OF POOR QUALITY

(`)

~.

ORIGINAL PAGE IS OF POOR QUALITY

1 the second se 1

1

ł

 \bigcirc

Figure 5.2-35

ŧ

(

1

αποτοχοπ αι ευώ ιχηια >

: -

5-42

()

ħ

:1

.....

ł

<u>(</u>)

ORIGINAL PAGE IS OF FOOR QUALITY

• --

- ----

5-43

Figure 5.2-37

ORIGINAL PAGE IS OF POOR QUALITY

ţ

é

∽.

. • •

1 -

-?: ;;

1

,

I

ないないないできょうとうとうできょうできょうというというないできょうできょうできょうできょうできょうとう

5-47

-4,

-- -

. .

· · · .

- .

••

.

.

.

* *** 5,1~2

. . .

2-11

5-49

141.46

..

Table 5.2-4 Jitter Allowables

.

		RMS	5 Allowables (Arc	-Sec)
Experiment	Axis	.30 Pixel	.40 Pixel	.50 Pixel
MSS	θ _X	1.50	3.14	4.42
	θ _Υ	1.3	3.0	4.3
	θ _z	8.2	10.8	12.3
TM*	θ _x	20.0	-	-
	θ _Υ	3.6	-	-
	θ _z	6.0	-	-

*Values For TM Experiment Are Expressed in <u>Peak</u> Arc-Sec.

											Ċ	RIG F F	inai PCOI	P	AGE	13 .TTY		RESPONSE				·	 { }
1		REMSS	ē.		. 4 .	0.12	0.32	2.01										ප ප්					
		REMSS	0.44		0.38 9.0	1.66	1.69	0.81						W	ņ			101707		~	<u>н</u>		
		RAMSS			2.99	0.72	1.37	4.89 0.80						RESPONS	201106					4= 0, 0, 0	5-6 9 = 9		
		PGMSS	1.53	3.5	2.20	0.25	0.64	3.00 0.72						MSS	Ans		γ Σ Ω] - -		TION			
		PSMSS	0.97		0.63	2.40	. 48	2.96							~		. JAN	•		Direc			
		P4MSS	2.24	2.09	4.95	1.22	2.72	ខ្លួន ក -									ENCLAT						
AK	RESPONS	RGTM	0 51	02.1	7 08 7 08 7 08	0.17	3.06	2.09						W	N		Nom	LS L	PEAK	RH S N		2-5	
1.6.90	PING N/TYPE	R5TM	0 41	200	0 58	0.41	1.10	1.44 3.97						ESPONS	Tube			Respon		U.		ble 5.)
KUN BY	DAM	R4TM	4 29	3.40 5 5 5	0.83 1.79	0.85	1.18	6.12 3.99	ر					LT H	AMPL			7PE 0-				Ta	
. T H		PGTM	0 88		30.1 3.06	0.33	4.46	3. 15 1.72	VE MODA														
7) manual	= 15 ZG ES	PSTM	0.76	121	0.40	0.76	1.78	2.17 5.74	Le Le Le	1	-												
Ĺ	PRCERR	PATM	5.95	5.38	9. 23 9. 23	1.41	2 21	9 68 6 63	147 H H	FREQUEN													
	LSD903 MSS/RMS	RATIO	.0818	.0123	.0466 0641	0157	9153	0087 8952		AHCNIC.													
	ER MODEL	FCPS	7 00 1	8.2	21.00 35.00	35 00 1	0 00 35	- 00.61 00.61	.	<u>A</u> H	2											•	
		MODE	17	80 (C	23	44	20	61 76	Moze	No.	- Haryon												
	LING	COEFF		- (e	4															,

.

,

5-52

3

- -

	ļ	ł									OR	IGIN PO	al' i or (PAGE QUALI	IS TY	ł	ł			
		RGMSS	1.01	0.49	0 12	0.32	2.01		1 1 1 1		•									
		R5MSS	0.44	0 38	1 66	1.69	0.81		1											
		RAMSS	1.75	2.31	56.2	1.37	1.89													
		PGMSS	2.00	0.82	2.20	0.64	3.00								-					
		PSMSS	0.97	0.68	- 63.6	2.48	1.47		2											
		PAMSS	2 24 2.69	4.29		2.72	3.33													
LLAK		RETM	0.51	0.62	2-08-	3.06	2.09			.2-6										
10/2381		R5TM	0.41 0.67	0 21	0.58 -	.1	1.44	•		able 5										
RUN BI		R41M	4.29 3.90	0 85		1.18	6.12			ä										
	2G=.001	PGTN	0.88	1.02		4.46	3.15													
r	28-107 1	PSTM	0.76	0.40	- FO	1.78	2.17	•										,		
	D PRCES	P4TM	5.95	1.39	3.23		9.68													
	IL LSD900	RATIO	1.0818	1.0466	1 0641	0.9153	1.0087											:		
8	FORCES	FCPS	88	21.00	35.00	35.00	49.00													
NO. URBS	LIU MI	F MODE		30	141	1 05 1 05	4 67													

- ·

.

ļ

_:

						-			1	1	1	1		
		REMSS	64.0	2.01		•			ORIGIN OF PC	IAL PA	GE 13			<u> </u> −,
		REMSS	0.38	0.81			-							
		RANSS	2.31	0.72										
		PEMSS	0.82	3.02 1.02							-			
		P5MSS	0.68	2.40										
		P4MSS	4.29	52.1										
LAK		R6TM	0 62	2.09		-7								
T.E.POLI		R5TM	0.21	1.44		le 5.2								;
RUN BY		R4TM	5800	0.83		Tab					•			
ş	100.	P6TM		3 15										
	ES 26	PSTM	0.40	2.13										
007500	PKCERK ALLOWABL	P4TM	1.39	9.68										
	MSS/RMS	RATIO	0466	1800										
	DRCES	FCPS	31.00	49.00										
111		FF MODE	. 9 5	4 67	•									

ļ	1	ł	•		[Î								0 0 	rig F p	INAL 'OOR 	P Q	AGE UALIT	IS Y	ļ		ļ	:	.		1	•
		IGMSS	0 /1	1.87	0.18	2.02	0.18	0.21	5 38 0 56	0.26	0.70	1 94	1.68	0 21	0.27 0 18										1		12		•
		R5MSS F	0.26	1.61	1.83	1.06	4.23	0.16	3.90 0.88	0 97	2.76	0 19	<u>5 63</u>	5.27	3.33 3.15														
		RAMSS	9.60 9.05	68 C	2. / A	2.65	1.25	1.73	65 54 9 86	4.05	31.85 9 20	55	1 53	2.29	1 88 1.66				•										
		PGMSS		2.79	69 0 69 0	8	0.38	0.47	1.92	0.58	+ 26 0 54	2 90	2 54	44	0.61 0.42					-			-						
		PSMSS	0.51	2 53	2.84	1.74	6.17 2.70	0.28	5.71	1 57	4.41	0.37	0 20	7.77	4 96 4.78														
		PAMSS	6 57 5 45	6 25	3.51	4 58	2 60	3.69	94 55	7.31	46 86	3 53	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	4 85	4 03 3 64								ļ						
DLLAK		RGTM	0.37	1 89	3 22	1.23	0 24	0 38	2 72	1.06	3. 15	0 46	0 35	500	0.30		2-8												
0Y T.E.P		R5TM	0.36	2 48	27	0 66	0 19	0 1	4.59	197	0.10	0 36	0 42	0 37	0.37		ble 5.												
RUN		4 R4TN	99	0.4			000	0 26		0 62	2.04	4	0 44		0 30		Ta								-				
	2600	N P61A		8	5 2	6.1	00	0.1	~ ~ ~		0.8	0	0.7	- 0 - 0	0000														
	CERR-15 OVABLES	N PST	99 0- 0-	5 6 4	5 	6 O 6		8 0.7	2 9 9 9 7 9 9	2.9	8 0.0 0.0	5 0.7	0	20-00	6 0 6 0 6 0 6														
	900 PR	10 P41	70 	90 91		37 1 9	13 0.3	10.5	91 	38	74 31 1 7 2 1 7 2 1	12 0.7	0.8	80.00	56 0 6 73 0 5														
	MODEL LSI	PS RAT	62 0.96 62 0.96	86 1 10	86 1 07	86 0.89	10 0.96	10 0.89	10 0 88	10 0 27		34 0.95	34 0 94	58 0 89	82 1 11: 82 1 09														
	JITTER MSS FOR	DE FC	24 13	48 40	49 40	64 40	99 68.	04 68	105 68 	07 68	108 68 09 68	126 95.	127 95	47 122	145 149.														
		EFF MO		. 0	 	((1)	- 	200	- • n r		 	4	 -	 ເມ	 9 4														

- . . .

~	R5MSS R6MSS	0.26 0.71 0.62		1.83 0 41	4.23 0.18	0.10 1.94	0 29 1.68	5 (3 0.40 3.15 0.18						Ur						
	R4MSS	3.80 3.02		1.83	1.25	1.59	1.53	2.72 1.66									1			
	PGMSS	1.11 0.98		0.69	0.38	06.2	2.54	0.77 0.42				-			-			-		
	PSMSS	0.51		2.84	9 17 9 70	0.37	0.53	8 30 4.78												
	P4MSS	6.57 5.45	480	3.51	2 60 6 61	3.58	3 46	5.53 3.64												
	RGTM	0.30	3.52	3 56	0.24	0.46	0.35	0 28		6-										
	R5TM	0.36	- 1- 09	1.27	0.19	0.36	0 42	0.62	•	le 5.2										
	Q4TM	1.16 0.69	0 88	0 96	0.19	0.41	0 44	0 45 0.26	1	Tab										
6=.001	PGTM	0.58	-5.17	5 22	0 4 9	0.95	0.77	0 84 0 65	-											
R= 10 2 BLES	PSTM	0.63		1.86	0.37	02.0	0.79	1.01 0.45												
S ALLOWA	P4TM	1.75	1.52	1.63	0.37	0.75	0.80	0.88 0 59												
L LSD900 MSS/RM	RATIO	0.9676 0.9631	1_0700	1.0686	0.9613	0.9572	0.9441	0.9127 1.0973					-							
TER MODE Forces	FCPS	13.62	40.86	40.86	68.10	95.34	95 34	122.58												
UIT MSS	MODE	25	49	20	66	126	127	145	1 											

33

				•	(DRIGIN/	L PA	GE IS				
					(DF PO (DR QU				1	1
		R6MSS 0.71 0.62 0.18 1.94										
		R5NSS 0.26 0.74 4.23 0.19		100 - 100 -								
		R4MSS 3 80 3 22 1.25 1.59										
		P6MSS 1.11 0.38 2.33 2.30						-	-			
1		P5M5S 0.51 1.23 6 17 0 37	-		-							
		P4MSS 6.57 5.45 3.58 3.58										
LAK		R6TM 0.37 0.24 0.24 0.46	2-10									
072381 T.E.POLI		R51M 0.36 0.19 0.36	ble 5.						•			
DATE RUN BY		R4TM - 16 0.69 0.19 0.41	Та									
	100.	P61M 0.58 0.49 0.95 0.95										
	2=5 2G	P51M 0.33 0.37 0.37 0.70										
	PRCER	P4TM 1.75 1.09 0.37 0.75										
	LSD900	RATIO 0.9676 0.9631 0.9613 0.9572										
8	FORCES	FCPS 13.62 (13.62 (68.10 (95.34 (
UN NO. 08890	ULTT MSS	066.F MODE 1 24 1 25 3 99 4 126										

5-57

-

r

1			 			1	 _ }	·	·
	R6MSS 0.58 0.16 0.17 0.17			ORIG OF F	INAL PAG				-,;;
	R5MSS 0.44 0.15 0.70 0.26								
	R4MSS 6.72 1.63 1.60								
	P6MSS 1.03 0.34 0.36 0.29			-		-			
	P5MSS 0.72 0.30 0.72 0.72								:
	P4MSS 11.27 3.56 6.57 3.49								
JLLAK	R6TM 0.36 0.28 39 0.28	.2-11							1
3Y T.E.PC	R5TM 0.46 0.46 0.10	able 5.							
NUN	R4TM 0.18 0.18 0.27 0.18	Ē							
26=.01	P61M 0.75 0.53 0.44								
ERR= 15 MARI FC	P5TM 0.76 0 31 0 18								
OO PRC	P41M 0.34 0.55 0.55								
0EL LS09	RATIO 0.8891 0.8845 0.8845 0.8674 0.8507								
ITTER MOI	FCPS 68.10 68.10 68.10 68.10 68.10								
54	COEFF MODE 3 105 3 106 3 106 3 109								

•

particular bandwidth. A detailed explanation of table format appears on Table 5.2-5. A derivation of the MSS experiment forcing function can be found in Reference 12. Considering the data presented, the impact of the predicted MSS response values can be reduced by an alteration of the allowable pixel error specification (see Table 5.2-4) from the current 0.30 values. Tables 5.2-12 and 5.2-13 present the only worst case single mode shift summaries which exist for TM peak allowables. These responses are representative of the order of magnicude of responses expected and confirmed in subsequent model configurations. Since these responses are within the capability of the ADS, future discussion of TM jitter magnitudes will be brief.

To consider the impact of single mode shifts, consider Figures 5.2-45a-b, 5.2-46a-b, and 5.2-47a-b. Depicted here are typical frequency response plots for a force/response at the MSS in the Theta X (Θ_X) direction for three bandwidth conditions, 5% 10%, and 15%. As can be seen, with increasing bandwidth (error) spreads an overlap condition (shaded area) develops, predominately at the higher harmonics due to the larger frequencies associated with the forcing harmonic. In evaluating placement of an offensive mode of the eigenvalue spectrum outside the respective harmonics, the overlap conditions and narrow corridors preclude effective movement. Reducing bandwidth spread compromises the structural unknowns associated with each spacecraft. Therefore, a statistical approach was implemented to ascertain the likelihood of any worst case occurrance. A discussion of the statistical approach method in jitter analysis follows.

		6MSS 0.40 0.65	-			۰.	ORIG OF	INAL POOR	PAGE QUALI	13 TY			
		R5MSS R 1.78 0.56											
		R4M55 0.80 0.76											
		P6MSS 0.72 1.09											
		P5MSS 2.96 1.13											
		P4MSS 1 50 1 37					•						
,LAK		R6TM 1 14 0.68	12										
r T.E.POI		R5TM 3.97 2 13	e 5.2-	•									
RUN B		R4TM 3 99 2.04	Tabl										
	100 5	P6TM 1.72 1.12											
	28+15 2	P5TM 5.74 3 13		•									
	ALLOWAE	P4:M 6 63 3 74											
	EL LSD90	RATIO 0.8952 0.8553											
	FORCES	FCPS 49 00 49 00											
	E ME	EFF MODE 4 76 4 81		•							•		

			1		ORIGI	IAL PAG	E IS			
I	1		i	1	OF PC	OR QUA	LITY	1 1	I	
			1							
	RGMS. 1.87 5.38	0.26								
	25MS5 1.61 00.0	16.0 								
	R4MSS 3.89 65.54	3 1.85	+							
	P6MSS 2.79 7.92	1 26								
	P5MSS 2.53 5.71	10.75	1							
	P4MSS 6.25 94 55	46.86								
LAK	R6ТМ 1.89 2.72	3. 15	. 2-13							
072381 T.E.POL	851M 2.48 4.59	61 4	able 5							
DATE RUN BY	847M 0.43 0.65	2.04	Ĕ							
	P61M	4 75								
	BLES BLES P5TM 358 6.62	6 05	•							
	PATM 0.84	. 15								
	RATID 1.1091	0.8788								
8	FCPS FCPS 40.86	68 10 68 10								
NO. 0RB9	MSS 2 48	201 E								

- -

•--

αμώαφζωμή τη Σύου ητώητα Χ

٩

ولالمهم للمعكان

الاسكة 10 h

αψησοστωώ τη συνό ητώητα χ

ŧ

απωστώπη αθ σώψ θτηθα Χ

utuma attinui HIMH J T ---二/h/u/

i

A tabulation of LSD900 baseline jitter values (no mode shifts) is presented in Table 5.2-14 for $C/C_C = 0.001$ and in Table 5.2-15 for $C/C_C = 0.01$. ()

5.3 WORST CASE STATISTICAL ANALYSIS

Since a worst case analysis produces maximum jitter responses only when a modal frequency coincides exactly with a forcing harmonic frequency, a statistical analysis approach was developed to determine the probability of exceeding the MSS jitter budget. The analysis includes only those modes which both meet the ± 15 % bandwidth criteria and result in jitter RMS responses greater than the MSS allowables. From the selected set of worst cases, individual modes are shifted around each forcing frequency to obtain jitter responses and statistics in the θ_{χ} , θ_{χ} , θ_{χ} directions at the MSS C.G.

Because an analytical model cannot be "tuned" to exactly match all measured test modes and frequencies, there is an uncertainty associated with the analytical predicted frequencies. Results from previous modal tests indicate that approximately 90% of the tuned model's modes were within 10% of the test frequencies. By assuming a Gaussian distribution for the predicted frequencies, this translates into predicting 98.6% of the modes to within 15% of the measured test frequencies, 90% of the modes to within 10% or 60% of the modes to within 5%. Figure 5.3-1 below shows the Gaussian probability density function for a single mode where 90% of the shaded area under the curve occurs between .9 f_m and 1.1 f_m where f_m is a predicted frequency. Definitions for the mean & standard deviation are also shown.

ł

Table 5.2-14 LSD900 Baseline Jitter Predictions

Forcing	Response	Jitter	Values
Location	Location	Peak	RMS
тм ө _х	TM Θ_X .	1.3725	0.8445
	θ _Y	0.3404	0.2041
	θ _z	0.2805	0.1453
	MSS 0 _x	1.2063	0.7140
	θ _Υ	0.6233	0.3585
	θ _z	0.2691	0.1273
MSS O _X	тм. ө _х	0.3203	C.1854
	θ _Υ	0.2033	0.1015
	θz	0.4862	0.2389
	MSS 0 _x	2.0945	1.1673
	. ө _ү	0.3492	0.1818
	θ _z	0.3228	0.1679

Damping = 0.001

v

Table 5.2-15 LSD900 Baseline Jitter Predictions

Forcing	Posponso	Titter	/aluos
Location	Location	Peak	RMS
тм ө _х	$TM \Theta_{X}$ Θ_{Y} Θ_{Z} MSS Θ_{X}	- 1.7215 0.3673 0.4895 1.2426 0.2682	0.9267 0.1638 0.2240 0.6459 0.1433
MSS O _X	$\begin{array}{c} \Theta_{\mathbf{Y}} \\ \Theta_{\mathbf{Z}} \\ \end{array}$ $\begin{array}{c} TM & \Theta_{\mathbf{X}} \\ \Theta_{\mathbf{Y}} \\ \Theta_{\mathbf{Y}} \\ \Theta_{\mathbf{Z}} \\ \end{array}$ $\begin{array}{c} MSS & \Theta_{\mathbf{X}} \end{array}$	0.3988 0.2636 0.1859 0.4465 2.3487	0.2144 0.1752 0.09626 0.2304 1.245
	θ _Y θ _Z	9.1912 0.2711	0.08936 0.1417

Damping = 0.01

•, ••

. .

Figure 5.3-1

If the nominal orbital analysis (no shifted modes) results in no jitter responses greater than any of the allowable values, then for each selected worst case mode there can be found an upper (f_u) , and lower (f_L) shifted frequency value which results in jitter equal to the allowables. As an example, let us assume that θ_{XO} is the maximum allowable RMS response for MSS response about the X-axis. When the modal frequency, f_M , shown in Figure 5.3-2 is shifted to the driving frequency, f_D , the response, θ_X , is much greater than θ_{XO} . When f_M is shifted to either the lower frequency, f_L , or the upper frequency, f_u , the response θ_X , exactly equals θ_{XO} . The probability that θ_X will be greater than θ_{XO} is given by the probability that f_M falls in the interval defined by f_L and f_u . This probability will be the shaded area under the normal density function shown in Figure 5.3-2.

Figure 5.3-2

Now, let A_i be the ith event that one mode when shifted in a specific harmonic results in jitter greater than θ_{XO} in the bandwidth defined by $f_L \leq f_M \leq f_u$. Defining $g_i(f)$ as the Gaussian probability density function for mode j as a function of frequency, the probability, $P[A_i]$, will be given by

$$P[A_{j}] = \int_{f_{1}}^{f_{2}} g_{j}(x) dx$$

Letting n_k equal the number of worst cases at the kth forcing harmonic frequency, the total number of A_i events, n, will be given by

for k = 1 to maximum number of forcing harmonics used in the analysis. Note that in the higher frequency ranges (above 50 Hz for TM), the ± 15 % modal frequency error causes modes to be shifted both to the 1 poter and upper forcing frequencies for worst case analyses. If any single mode results in jitter values greater than the allowable in both harmonics, it is counted as two distinct events for the statistical analysis.

Defining the complement of P[A;] as

 $P[A_{i}]^{C} = 1.-P[A_{i}]$

where $P[A_1]^C$ represents the probability that event A_i will not occur, the probability that none of the A_i 's will occur, $P[A]^C$, is given by the product of all the $P[A_i]^C$'s:

 $P[A]^{C} = \pi (P[A_{i}]^{C})$

The probability of at least one worst case occurring, P[A], is given by the complement of $P[A]^C$:

$$P[A] = 1.-P[A]^{C}$$
.

Using this statistical approach to describe jitter results provides additional insight for evaluating worst case responses. It allows us to assess jitter as a function of modal frequency and its relative location near a forcing harmonic. The closer a frequency is to a forcing harmonic, the more likely a worst case will occur. At the same time, the magnitude of the jitter response for a particular mode and the overlapping shifts at higher frequencies is accounted for.

()

For this report, statistics were calculated using MSS allowables for jicter at the MSS due to both TM and MSS forces. Probabilities were calculated based on the MSS/RMS allowables for each axis of response $(\Theta_X, \Theta_Y, \text{ and } \Theta_Z)$. Initially the statistics were calculated using a value of $C/C_C = .001$. These results are shown in Figures 5.3-3 to 5.3-8. In order to investigate the effects of damping, a final set of statistics was generated for $C/C_C = .01$ shown for MSS forcing in Figures 5.3-9 to 5.3-11. For $C/C_C = 0.01$ and TM forces, since no worst cases exist, no statistics are available.

Results show that jitter at the MSS due to TM forcing is highly unlikely to occur regardless of the damping values selected. Figure 5.3-6 shows the probability of exceeding the .3 pixel error in the θ_{χ} direction due to TM forces to be .046. The probabilities for all other MSS responses due to TM are less than this value.

Results for jitter at the HSS due to MSS forcing show large changes in the probabilities when the jitter error is in the 1 to 4 arc-sec range. Figure 5.2-3 shows the probability of exceeding 1.5 arc-sec (.3 pixel error) in the θ_{χ} direction is .34. If the allowable RMS jitter is raised to 3.14 arc-secs (.4 pixel error), the probability of exceeding this value is reduced to .093. A similar reduction is shown for the θ_{χ} responses in Figure 5.3-4. A change from the .3 to .4 pixel allowables reduces the probability of exceedance from .094 to .027.

....

- ..

--- - - .

5-76

ł

.

5-79

ł

-- **-**-

5-30

٠.

- -

ORIGINAL PAGE IS OF POCR QUALITY

ţ

ł

.

•

. .

. ...

_____ ,

÷

5-33

ORIGINAL PAGE IS OF POOR QUALITY

A comparis n of the MSS due to MSS statistics for 0.001 and 0.01 damping values shows little change in the 1 to 4 arc-second region for 0.40 pixel allowables. The higher damping values affect the statistics in the response regions above 10 arc-seconds. Results show that damping effects are most pronounced in determining MSS due to MSS statistics for the 0.30 pixel allowables.

6.0 REFERENCES

- PIR U-1R4.-LS/D-921, "MSS/TM Orbital Jitter Analysis", T. E. Pollak/ E. J. Kuhar to J. Schumacher, 4/29/81.
- Document No. 80SDS4227, "Landsat-D Deployed Solar Array Modal Test Final Report", D. G. Breskman/F. T. Spykerman, June 1980.

- PIR U-1R43-LS/D-1019, "Model Checkout Of "Latest" MMS Model", C. Faust to J. Schumacher, 6/18/81.
- Document No. 81SDS4217, "Landsat-D Deployed TDRSS Boom Modal Test Final Report", R. T. Spykerman/T. E. Pollak, April, 1981.
- 5. PIR U-1R44-LS/D-870, "Boom Sensitivity Analysis", T. E. Pollak/ R. R. Kaufíman to J. R. Schumacher, 10/7/80.
- PIR U-1R43-LS/D-952, "Review of IM NASTRAN Model", C. Faust/H. Vichnin to J. Schumacher, 12/8/80.
- 7. PIR U-1R43-LS/D-942, "Re-Calculation of Thematic Mapper Foot Influence Coefficients", C. Faust to J. Schumacher, 11/12/80.
- PIR U-1R43-LS/D-960, "Landsat-D Instrument Module Finite Element Model", C. Faust to J. Schumacher, 1/22/81.
- 9. PIR U-1R43-LS/D-963; "Instrument Module Finite Element Model With TRW Wideband Module Added", C. Faust to J. Schumacher, 1/27/81.
- 10. PIR U-1R43-LS/D-1018, "Landsat-D Instrument Module Finite Element Model Update", M. Mangano to J. Schumacher, 6/16/81.
- 11. Document No. 81SDS4220, "Landsat-D Instrument Module Mini-Modal Test Final Report", R. T. Spykerman/T. E. Pollak/D. G. Breskman, May 1981.
- Memo LS/D #572, "Experiment Forcing Function Preliminary Analysis",
 J. M. Medaglia to T. Aepli, 11/16/79.