

CORE

V.3

NASA-CR-165598-VOL-3 19830018488

User's Manual for Axisymmetric Diffuser Duct (ADD) Code

Volume III—ADD Code Coordinate Generator

O. L. Anderson, G. B. Hankins, Jr., and D. E. Edwards United Technologies Research Center

February 1982

Prepared for NATIONAL AERONAUTICS AND SPACE ADMINISTRATION Lewis Research Center Under Contract DEN 3-235

LIBRARY COPY

for U.S. DEPARTMENT OF ENERGY Conservation and Renewable Energy Office of Vehicle and Engine R&D JUN 15 **1983**

LANGLEY RESEARCH CENTER LIBRARY, NASA HAMPTON, VIRGINIA

NOTICE

This report was prepared to document work sponsored by the United States Government Neither the United States nor its agent, the United States Department of Energy, nor any Federal employees, nor any of their contractors, subcontractors or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights

 0 0 1*6 0 0 1*3 0 0 1*4 0 0 2*6 0 0 2*4 7 1 1 RN/NASA-CR-165598-V0L-3 DISPLAY 97/2/1 CANSA-CR-165598 V0L-3 DOE/NASA/0235-2-V0L-3 NAS 1.26:165598-V0L-3 UTRC81-65-V0L-3 CNT*: DEN3-235 DE-AI01-77CS-51040 82/02/00 3 V0LS 90 PAGES UNCLASSIFIED DOCUMENT UTTL: User's manual for Axisymmetric Diffuser Duct (ADD) code. Volume 3: ADD code coordinate generator TLSP: Final Report AUTH: A/ANDERSON, 0, L.; B/HANKINS, G. B., JR.; C/EDWARDS, D. E. CORP: United Technologies Corp., East Hartford, Conn. AVAIL.NTIS SAP: HC A05/MF A01 MAJS: /*AXISYMMETRIC FLOW/*COMPUTER PROGRAMS/*FUEL FLOW/*USER MANUALS (COMPUTER PROGRAMS) MINS: / COMPUTER SYSTEMS PROGRAMS/ DUCTED FLOW/ FLUID FLOW/ SUBROUTINES ABA: Author ABS: This User's Manual contains a complete description of the computer codes known as the Axisymmetric Diffuser Duct (ADD) code. It includes a list of references which describe the formulation of the ADD code and comparisons of calculation with experimental flows. The input/output and general use of the code is described in the first volume. The second volume contains a detailed description of the subroutines. The code, list of FORTRAN variables, and descriptions of the subroutines. The 					
 0 0 1*6 0 0 1*4 0 0 2*6 0 0 2*3 0 0 2*4 1 1 RM/NASA-CR-165598-V0L-3 DISPIAY 07/2/1 CAN26759*** PSUE 15 PAGE 2504 CATEGORY 85 RPT*: (MASA-CR-165598-V0L-3 ODE/NASA/0235-2-V0L-3 WAS 1.26:165598-V0L-3 UTRC81-65-V0L-3 COT*: DEN3-235 DE-A101-77C5-51040 82/02/00 3 V0L5 90 PAGES UNCLASSIFIED DOCUMENT UTTL: USER'S MADUAL OF AXISYMMETRIC DIFFUSER DUCT (ADD) code. Volume 3: ADD code coordinate generator TLSP: Final Report AUTH: A/ANDERSON, 0. L.; B/HANKINS, G. B., JR.; C/EDWARDS, D. E. CORP: United Technologies Corp., East Hartford, Conn. AVAIL.NTIS SAP: HC A05/MF. A01 MAJS: /*AXISYMMETRIC FLOW/*COMPUTER PROGRAMS/*FUEL FLOW/*USER MANUALS (COMPUTER PROGRAMS) MINS: / COMPUTER SYSTEMS PROGRAMS/ DUCTED FLOW/ FLUID FLOW/ SUBROUTINES ABA: Author ABS: This User's Manual contains a complete description of the computer codes known as the Axisymmetric Diffuser Duct (ADD) code. It includes a list of references which describe the formulation of the ADD code al comparisons of calculation with experimental flows. The input/output and general use of the code is described in the first volume. The second volume contains a detailed description of the suboutines. The code, list of FORTRAN variables, and descriptions of the suboutines. The 					
 9 9 1*3 9 0 1*4 9 0 2*6 9 0 2*3 9 0 2*4 7 1 1 RN/NASA-CR-165598-V0L-3 DISPLAY 07/2/1 23N26759*** ISSUE 15 PAGE 2504 CATEGORY 85 RPT*: NASA-CK-165598_V0L-3 (DOE/NASA/0235-2-V0L-3) WAS 1.26:165598-V0L-3 UTRC81-65-V0L-3 CNT*: DEN3-235 DE-AI01-77/CS-51040 82/02/00 3 V0LS 90 PAGES UNCLASSIFIED DOCUMENT UTTL: User's manual for Axisymmetric Diffuser Duct (ADD) code. Volume 3: ADD code coordinate generator ILSP: Final Report AUTH: A/ANDERSON, 0. L.; B/HANKINS, G. B., JR.; C/EDWARDS, D. E. CORP: United Technologies Corp., East Hartford, Conn. AVAIL.NTIS SAP: HC A05/MF A01 MAJS: /*AXISYMMETRIC FLOW/*COMPUTER PROGRAMS/*FUEL FLOW/*USER MANUALS (COMPUTER PROGRAMS) MINS: / COMPUTER SYSTEMS PROGRAMS/ DUCTED FLOW/ FLUID FLOW/ SUBROUTINES ABA: Author ABS: This User's Manual contains a complete description of the computer codes known as the Axisymmetric Diffuser Duct (ADD) code. It includes a list of references which describe the formulation of the ADD code and comparisons of calculation with experimental flows. The input/output and general use of the code is described in the first volume, The second volume contains a detailed description of the code including the global structure of the code, list of FORTRAN variables, and descriptions of the subroutines. The 		0 0 1*6			
 0 0 1*4 0 0 2*6 0 0 2*4 7 1 1 RV/NASA-CR-165598-VOL-3 DISPLAY 07/2/1 23N26759**) ISSUE 15_PAGE 2504_CATEGORY 85 RPT*: (NASA-CK*165598.VOL-3 DOE/NASA/0235-2-VOL-3 WAS 1.26:165598-VOL-3 UTRC81-65-VOL-3 CNT*: DEN3-235 DE-AI01-77CS-51040 82/02/00 3 VOLS 90 PAGES UNCLASSIFIED DOCUMENT UTTL: User's manual for Axisymmetric Diffuser Duct (ADD) code. Volume 3: ADD code coordinate generator TLSP: Final Report AUTH: A/ANDERSON, 0. L.; B/HANKINS, G. B., JR.; C/EDWARDS, D. E. CORP: United Technologies Corp., East Hartford. Conn. AVAIL.NTIS SAP: HC A05/MF A01 MAJS: /*AXISYMMETRIC FLOW/*COMPUTER PROGRAMS/*FUEL FLOW/*USER MANUALS (COMPUTER PROGRAMS) MINS: / COMPUTER SYSTEMS PROGRAMS/ DUCTED FLOW/ FLUID FLOW/ SUBROUTINES ABE: This User's Manual contains a complete description of the computer codes known as the Axisymmetric Diffuser Duct (ADD) code. It includes a list of references which describe the formulation of the ADD code and comparisons of calculation with experimental flows. The input/output and general use of the code is described in the first volume. The second volume contains a detailed description of the code including the global structure of the code, list of FORTRAN variables, and descriptions of the subroutines. The 		0 1*3			
 0 0 2*6 0 0 2*3 0 0 2*4 7 1 1 RN/NASA-CR-165598-V0L-3 DISPLAY 07/2/1 <u>S3N26759*#</u> ISSUE 15 PAGE 2504 CATEGORY 85 RPT#: (NASA-CK-165598-V0L-3 DOE/NASA/0235-2-V0L-3 NAS 1.26:165598-V0L-3 UTRC81-65-V0L-3 CNT#: DEN3-235 DE-A101-77C5-51040 82/02/00 3 V0L5 90 PAGES UNCLASSIFIED DOCUMENT UTTL: User's manual for Axisymmetric Diffuser Duct (ADD) code. Volume 3: ADD code coordinate generator TLSP: Final Report AVTH: A/ANDERSON, 0. L.; B/HANKINS, G. B., JR.; C/EDWARDS, D. E. CORP: United Technologies Corp., East Hartford, Conn. AVAIL.NTIS SAP: HC A05/MF A01 MAJS: /*AXISYMMETRIC FLOW/*COMPUTER PROGRAMS/*FUEL FLOW/*USER MANUALS (COMPUTER PROGRAMS) MINS: / COMPUTER SYSTEMS PROGRAMS/ DUCTED FLOW/ FLUID FLOW/ SUBROUTINES ABA: Author ABS: This User's Manual contains a complete description of the computer codes known as the Axisymmetric Diffuser Duct (ADD) code. It' includes a list of references which describe the formulation of the ADD code and comparisons of calculation with experimental flows. The input/output and general use of the code is described in the first volume. The second volume contains a detailed description of the subroutines. The 		<u>β</u> 3.1*4			
 0 0 2*3 0 0 2*4 7 1 1 RN/NASA-CR-165598-V0L-3 DIEPLAY 07/2/1 23N25759** 155UE 15 PAGE 2504 CATEGORY 85 RPT*: NASA-CR-165598-V0L-3 DOE/NASA/0235-2-V0L-3 NAS 1.26:165598-V0L-3 UTRC81-65-V0L-3 CNT*: DEN3-235 DE-A101-77C5-51040 82/02/00 3 V0LS 90 PAGES UNCLASSIFIED DOCUMENT UTTL: User's manual for Axisymmetric Diffuser Duct (ADD) code. Volume 3: ADD code coordinate generator TLSP: Final Report AUTH: A/ANDERSON, 0, L.: B/HANKINS, G. B., JR.; C/EDWARDS, D. E. CORF: United Technologies Corp., East Hartford, Conn. AVAIL.NTIS SAP: HC A05/MF A01 MAJS: /*AXISYMMETRIC FLOW/*COMPUTER PROGRAMS/*FUEL FLOW/*USER MANUALS (COMPUTER PROGRAMS) MINS: / COMPUTER SYSTEMS PROGRAMS/ DUCTED FLOW/ FLUID FLOW/ SUBROUTINES ABS: This User's Manual contains a complete description of the computer codes known as the Axisymmetric Diffuser Duct (ADD) code. It includes a list of references which describe the formulation of the ADD code and comparisons of calculation with experimental flows. The input/output and general use of the code is described in the first volume. The second volume contains a detailed description of the code including the global structure of the code, list of FORTRAN variables, and descriptions of the subroutines. The 		0 0 2*6			
 0 0 2*4 7 1 1 RN/NASA-CR-165598-VOL-3 DISPLAY 07/2/1 23N25/259**) 15UE 15 PAGE 2504 CATEGORY 85 RPT*: NASA-CR-165598-VOL-3 DOE/NASA/0235-2-VOL-3 NAS 1.26:165598-VOL-3 UTRC81-65-VOL-3 CNT*: DEN3-235 DE-AI01-77C5-51040 82/02/00 3 VOLS 90 PAGES UNCLASSIFIED DOCUMENT UTTL: User's manual for Axisymmetric Diffuser Duct (ADD) code. Volume 3: ADD code coordinate generator TLSP: Final Report AUTH: A/ANDERSON, 0. L.; B/HANKINS, G. B., JR.; C/EDWARDS, D. E. CORP: United Technologies Corp., East Hartford, Conn. AVAIL.NTIS SAP: HC A05/MF A01 MAJS: /*AXISYMMETRIC FLOW/*COMPUTER PROGRAMS/*FUEL FLOW/*USER MANUALS (COMPUTER PROGRAMS) MINS: / COMPUTER SYSTEMS PROGRAMS/ DUCTED FLOW/ FLUID FLOW/ SUBROUTINES ABA: Author ABS: This User's Manual contains a complete description of the computer codes known as the Axisymmetric Diffuser Duct (ADD) code. It' includes a list of references which describe the formulation of the ADD code and comparisons of calculation with experimental flows. The input/output and general use of the code is described in the first volume. The second volume contains a detailed description of the code including the global structure of the code, list of FORIRAN variables, and descriptions of the subroutines. The 		6 6 2*3			
 7 1 1 RN/NASA-CR-165598-VOL-3 DISPLAY 07/2/1 REAL STATE S		0 0.2*4			,
<pre>DISPLAY 07/2/1 DISPLAY 07/2/1 CAN26759*# ISUE 15 PAGE 2504 CATEGORY 85 RPT#: NASA-CR-165598-VOL-3 DOE/NASA/0235-2-VOL-3 NAS 1.26:165598-VOL-3 UTRC81-65-VOL-3 CNT#: DEN3-235 DE-A101-77CS-51040 82/02/00 3 VOLS 90 PAGES UNCLASSIFIED DOCUMENT UTTL: User's manual for Axisymmetric Diffuser Duct (ADD) code. Volume 3: ADD code coordinate generator TLSP: Final Report AVTH: A/ANDERSON, 0. L.; B/HANKINS, G. B., JR.; C/EDWARDS, D. E. CORP: United Technologies Corp., East Hartford, Conn. AVAIL.NTIS SAP: HC A05/MF A01 MAJS: /*AXISYMMETRIC FLOW/*COMPUTER PROGRAMS/*FUEL FLOW/*USER MANUALS (COMPUTER PROGRAMS) MINS: / COMPUTER SYSTEMS PROGRAMS/ DUCTED FLOW/ FLUID FLOW/ SUBROUTINES ABA: Author ABS: This User's Manual contains a complete description of the computer codes known as the Axisymmetric Diffuser Duct (ADD) code. It' includes a list of references which describe the formulation of the ADD code and comparisons of calculation with experimental flows. The input/output and general use of the code is described in the first volume. The second volume contains a detailed description of the code including the global structure of the code, list of FORTRAN variables, and descriptions of the subroutines. The </pre>	-7	1 1 DN/NACA_CD_165500_VAL_2	,		
 SIN26759** ISSUE 15 PAGE 2504 CATEGORY 85 RPT*: NASA-CR-165598-VOL-3 DOE/NASA/0235-2-VOL-3 DAS 1.26:165598-VOL-3 UTRC81-65-VOL-3 CNT*: DEN3-235 DE-A101-77C5-51040 82/02/00 3 VOLS 90 PAGES UNCLASSIFIED DOCUMENT UTTL: User's manual for Axisymmetric Diffuser Duct (ADD) code. Volume 3: ADD code coordinate generator TLSP: Final Report AUTH: A/ANDERSON, O. L.; B/HANKINS, G. B., JR.; C/EDWARDS, D. E. CORP: United Technologies Corp., East Hartford, Conn. AVAIL.NTIS SAP: HC A05/MF A01 MAJS: /*AXISYMMETRIC FLOW/*COMPUTER PROGRAMS/*FUEL FLOW/*USER MANUALS (COMPUTER PROGRAMS) MINS: / COMPUTER SYSTEMS PROGRAMS/ DUCTED FLOW/ FLUID FLOW/ SUBROUTINES ABA: Author ABS: This User's Manual contains a complete description of the computer codes known as the Axisymmetric Diffuser Duct (ADD) code. It includes a list of references which describe the formulation of the ADD code and comparisons of calculation with experimental flows. The input/output and general use of the code is described in the first volume. The second volume contains a detailed description of the code including the global structure of the code, list of FORTRAN variables, and descriptions of the subroutines. The 	t i i i i i i i i i i i i i i i i i i i	T NN/ NHUH UN 100000 YVL U) - 1991	Anna ana ang ang ang ang ang ang ang ang	
 NASA-CR-165598-VOL-3 DOE/NASA/0235-2-VOL-3 NAS 1.26:165598-VOL-3 UTRC81-65-VOL-3 CNT#: DEN3-235 DE-A101-77C5-51040 82/02/00 3 VOLS 90 PAGES UNCLASSIFIED DOCUMENT UTTL: User's manual for Axisymmetric Diffuser Duct (ADD) code. Volume 3: ADD code coordinate generator TLSP: Final Report AUTH: A/ANDERSON, O. L.; B/HANKINS, G. B., JR.; C/EDWARDS, D. E. CORP: United Technologies Corp., East Hartford, Conn. AVAIL.NTIS SAP: HC A05/MF A01 MAJS: /*AXISYMMETRIC FLOW/*COMPUTER PROGRAMS/*FUEL FLOW/*USER MANUALS (COMPUTER PROGRAMS) MINS: / COMPUTER SYSTEMS PROGRAMS/ DUCTED FLOW/ FLUID FLOW/ SUBROUTINES AAthor ABS: This User's Manual contains a complete description of the computer codes known as the Axisymmetric Diffuser Duct (ADD) code. It includes a list of references which describe the formulation of the ADD code and comparisons of calculation with experimental flows. The input/output and general use of the code is described in the first volume. The second volume contains a detailed description of the code including the global structure of the code, list of FORTRAN variables, and descriptions of the subroutines. The 		DONOCZEDAN LECHE 15 DACE DECA	CATECODY DE	007#•	n en
<pre>UTRC81-65-V0L-3 COT#: DEN3-235 DE-A101-77CS-51040 82/02/00 3 V0L5 90 PAGES UNCLASSIFIED DOCUMENT UTTL: User's manual for Axisymmetric Diffuser Duct (ADD) code. Volume 3: ADD code coordinate generator TLSP: Final Report AUTH: A/ANDERSON, 0. L.; B/HANKINS, G. B., JR.; C/EDWARDS, D. E. CORP: United Technologies Corp., East Hartford, Conn. AVAIL.NTIS SAP: HC A05/MF A01 MAJS: /*AXISYMMETRIC FLOW/*COMPUTER PROGRAMS/*FUEL FLOW/*USER MANUALS (COMPUTER PROGRAMS) MINS: / COMPUTER SYSTEMS PROGRAMS/ DUCTED FLOW/ FLUID FLOW/ SUBROUTINES ABA: Author ABS: This User's Manual contains a complete description of the computer codes known as the Axisymmetric Diffuser Duct (ADD) code. It includes a list of references which describe the formulation of the ADD code and comparisons of calculation with experimental flows. The input/output and general use of the code is described in the first volume. The second volume contains a detailed description of the code including the global structure of the code, list of FORTRAN variables, and descriptions of the subroutines. The</pre>	7	NACA TH 1 (SEDR VOL - 7 DOC (NACA (0.225		NET 17: NET 1 CEEQQ_VAL	
<pre>90 PAGES UNCLASSIFIED DOCUMENT 90 PAGES UNCLASSIFIED DOCUMENT UTTL: User's manual for Axisymmetric Diffuser Duct (ADD) code. Volume 3: ADD code coordinate generator TLSP: Final Report AUTH: A/ANDERSON, O. L.; B/HANKINS, G. B., JR.; C/EDWARDS, D. E. CORP: United Technologies Corp., East Hartford, Conn. AVAIL.NTIS SAP: HC A05/MF A01 MAJS: /*AXISYMMETRIC FLOW/*COMPUTER PROGRAMS/*FUEL FLOW/*USER MANUALS (COMPUTER PROGRAMS) MINS: / COMPUTER SYSTEMS PROGRAMS/ DUCTED FLOW/ FLUID FLOW/ SUBROUTINES ABA: Author ABS: This User's Manual contains a complete description of the computer codes known as the Axisymmetric Diffuser Duct (ADD) code. It includes a list of references which describe the formulation of the ADD code and comparisons of calculation with experimental flows. The input/output and general use of the code is described in the first volume. The second volume contains a detailed description of the code including the global structure of the code, list of FORTRAN variables, and descriptions of the subroutines. The</pre>	L. L	NHOH-UK-100008-WUL-S(DUE/NHOH/0230-	ATOL DICC EAC	70•100000-AAC	- 0
 Mi PAGES UNCLASSIFIED DUCUMENT UTTL: User's manual for Axisymmetric Diffuser Duct (ADD) code. Volume 3: ADD code coordinate generator TLSP: Final Report AUTH: A/ANDERSON, O. L.; B/HANKINS, G. B., JR.; C/EDWARDS, D. E. CORP: United Technologies Corp., East Hartford, Conn. AVAIL.NTIS SAP: HC A05/MF A01 MAJS: /*AXISYMMETRIC FLOW/*COMPUTER PROGRAMS/*FUEL FLOW/*USER MANUALS (COMPUTER PROGRAMS) MINS: / COMPUTER SYSTEMS PROGRAMS/ DUCTED FLOW/ FLUID FLOW/ SUBROUTINES ABA: Author ABS: This User's Manual contains a complete description of the computer codes known as the Axisymmetric Diffuser Duct (ADD) code. It includes a list of references which describe the formulation of the ADD code and comparisons of calculation with experimental flows. The input/output and general use of the code is described in the first volume. The second volume contains a detailed description of the code including the global structure of the code, list of FORTRAN variables, and descriptions of the subroutines. The 		VIKU81-65-VUL-3 UNI#: DEN3-235 DE	-A101-7765-516	140 82/02/00	3 VULƏ
<pre>UTIL: User's manual for Axisymmetric Diffuser Duct (ADD) code. Volume 3: ADD code coordinate generator TLSP: Final Report AUTH: A/ANDERSON, O. L.; B/HANKINS, G. B., JR.; C/EDWARDS, D. E. CORP: United Technologies Corp., East Hartford, Conn. AVAIL.NTIS SAP: HC A05/MF A01 MAJS: /*AXISYMMETRIC FLOW/*COMPUTER PROGRAMS/*FUEL FLOW/*USER MANUALS (COMPUTER PROGRAMS) MINS: / COMPUTER SYSTEMS PROGRAMS/ DUCTED FLOW/ FLUID FLOW/ SUBROUTINES ABA: Author ABS: This User's Manual contains a complete description of the computer codes known as the Axisymmetric Diffuser Duct (ADD) code. It includes a list of references which describe the formulation of the ADD code and comparisons of calculation with experimental flows. The input/output and general use of the code is described in the first volume. The second volume contains a detailed description of the code including the global structure of the code, list of FORTRAN variables, and descriptions of the subroutines. The</pre>		MU PAGES UNCLASSIFIED DUCUMENT			
<pre>code coordinate generator TLSP: Final Report AUTH: A/ANDERSON, O. L.; B/HANKINS, G. B., JR.; C/EDWARDS, D. E. CORP: United Technologies Corp., East Hartford, Conn. AVAIL.NTIS SAP: HC A05/MF A01 MAJS: /*AXISYMMETRIC FLOW/*COMPUTER PROGRAMS/*FUEL FLOW/*USER MANUALS (COMPUTER PROGRAMS) MINS: / COMPUTER SYSTEMS PROGRAMS/ DUCTED FLOW/ FLUID FLOW/ SUBROUTINES ABA: Author ABS: This User's Manual contains a complete description of the computer codes known as the Axisymmetric Diffuser Duct (ADD) code. It includes a list of references which describe the formulation of the ADD code and comparisons of calculation with experimental flows. The input/output and general use of the code is described in the first volume. The second volume contains a detailed description of the code including the global structure of the code, list of FORTRAN variables, and descriptions of the subroutines. The</pre>	0111:	User's manual for PX1Symmetric Uitt	user Duct (ADL)) code. Voiu	me 3: HUD
AUTH: A/ANDERSON, O. L.; B/HANKINS, G. B., JR.; C/EDWARDS, D. E. CORP: United Technologies Corp., East Hartford, Conn. AVAIL.NTIS SAP: HC A05/MF A01 MAJS: /*AXISYMMETRIC FLOW/*COMPUTER PROGRAMS/*FUEL FLOW/*USER MANUALS (COMPUTER PROGRAMS) MINS: / COMPUTER SYSTEMS PROGRAMS/ DUCTED FLOW/ FLUID FLOW/ SUBROUTINES ABA: Author ABS: This User's Manual contains a complete description of the computer codes known as the Axisymmetric Diffuser Duct (ADD) code. It includes a list of references which describe the formulation of the ADD code and comparisons of calculation with experimental flows. The input/output and general use of the code is described in the first volume. The second volume contains a detailed description of the code including the global structure of the code, list of FORTRAN variables, and descriptions of the subroutines. The		code coordinate generator TLSP: F	inal Report		•
CORP: United Technologies Corp., East Hartford, Conn. AVAIL.NTIS SAP: HC A05/MF A01 MAJS: /*AXISYMMETRIC FLOW/*COMPUTER PROGRAMS/*FUEL FLOW/*USER MANUALS (COMPUTER PROGRAMS) MINS: / COMPUTER SYSTEMS PROGRAMS/ DUCTED FLOW/ FLUID FLOW/ SUBROUTINES ABA: Author ABS: This User's Manual contains a complete description of the computer codes known as the Axisymmetric Diffuser Duct (ADD) code. It includes a list of references which describe the formulation of the ADD code and comparisons of calculation with experimental flows. The input/output and general use of the code is described in the first volume. The second volume contains a detailed description of the code including the global structure of the code, list of FORTRAN variables, and descriptions of the subroutines. The	AUTH:	A/ANDERSON, O. L.; B/HANKINS, G. E	3., JR.; C/EDW	JARDS, D. E.	
A05/MF A01 MAJS: /*AXISYMMETRIC FLOW/*COMPUTER PROGRAMS/*FUEL FLOW/*USER MANUALS (COMPUTER PROGRAMS) MINS: / COMPUTER SYSTEMS PROGRAMS/ DUCTED FLOW/ FLUID FLOW/ SUBROUTINES ABA: Author ABS: This User's Manual contains a complete description of the computer codes known as the Axisymmetric Diffuser Duct (ADD) code. It includes a list of references which describe the formulation of the ADD code and comparisons of calculation with experimental flows. The input/output and general use of the code is described in the first volume. The second volume contains a detailed description of the code including the global structure of the code, list of FORTRAN variables, and descriptions of the subroutines. The	CORP:	United Technologies Corp., East Har	tford, Conn.	AVAIL.NTIS	SAP: HC
MAJS: /*AXISYMMETRIC FLOW/*COMPUTER PROGRAMS/*FUEL FLOW/*USER MANUALS (COMPUTER PROGRAMS) MINS: / COMPUTER SYSTEMS PROGRAMS/ DUCTED FLOW/ FLUID FLOW/ SUBROUTINES ABA: Author ABS: This User's Manual contains a complete description of the computer codes known as the Axisymmetric Diffuser Duct (ADD) code. It includes a list of references which describe the formulation of the ADD code and comparisons of calculation with experimental flows. The input/output and general use of the code is described in the first volume. The second volume contains a detailed description of the code including the global structure of the code, list of FORTRAN variables, and descriptions of the subroutines. The		A05/MF A01			
PROGRAMS) MINS: / COMPUTER SYSTEMS PROGRAMS/ DUCTED FLOW/ FLUID FLOW/ SUBROUTINES ABA: Author ABS: This User's Manual contains a complete description of the computer codes known as the Axisymmetric Diffuser Duct (ADD) code. It includes a list of references which describe the formulation of the ADD code and comparisons of calculation with experimental flows. The input/output and general use of the code is described in the first volume. The second volume contains a detailed description of the code including the global structure of the code, list of FORTRAN variables, and descriptions of the subroutines. The	MAJS:	/*AXISYMMETRIC FLOW/*COMPUTER PROGR	RAMS/*FUEL FLOW	1/*USER MANUAL	S (COMPUTER
MINS: / COMPUTER SYSTEMS PROGRAMS/ DUCTED FLOW/ FLUID FLOW/ SUBROUTINES ABA: Author ABS: This User's Manual contains a complete description of the computer codes known as the Axisymmetric Diffuser Duct (ADD) code. It includes a list of references which describe the formulation of the ADD code and comparisons of calculation with experimental flows. The input/output and general use of the code is described in the first volume. The second volume contains a detailed description of the code including the global structure of the code, list of FORTRAN variables, and descriptions of the subroutines. The		PROGRAMS)			
ABA: Author ABS: This User's Manual contains a complete description of the computer codes Known as the Axisymmetric Diffuser Duct (ADD) code. It includes a list of references which describe the formulation of the ADD code and comparisons of calculation with experimental flows. The input/output and general use of the code is described in the first volume. The second volume contains a detailed description of the code including the global structure of the code, list of FORTRAN variables, and descriptions of the subroutines. The	MINS:	COMPUTER SYSTEMS PROGRAMS/ DUCTED) FLOW/ FLUID F	LOWN SUBROUTI	NES
ABS: This User's Manual contains a complete description of the computer codes known as the Axisymmetric Diffuser Duct (ADD) code. It includes a list of references which describe the formulation of the ADD code and comparisons of calculation with experimental flows. The input/output and general use of the code is described in the first volume. The second volume contains a detailed description of the code including the global structure of the code, list of FORTRAN variables, and descriptions of the subroutines. The	ABA:	Author			
Known as the Axisymmetric Diffuser Duct (ADD) code. It includes a list of references which describe the formulation of the ADD code and comparisons of calculation with experimental flows. The input/output and general use of the code is described in the first volume. The second volume contains a detailed description of the code including the global structure of the code, list of FORTRAN variables, and descriptions of the subroutines. The	ABS:	This User's Manual contains a compl	lete descriptic	on of the comp	uter codes
references which describe the formulation of the ADD code and comparisons of calculation with experimental flows. The input/output and general use of the code is described in the first volume. The second volume contains a detailed description of the code including the global structure of the code, list of FORTRAN variables, and descriptions of the subroutines. The		known as the Axisymmetric Diffuser	Duct (ADD) coo	ie. It include	a a list of
of calculation with experimental flows. The input/output and general use of the code is described in the first volume. The second volume contains a detailed description of the code including the global structure of the code, list of FORTRAN variables, and descriptions of the subroutines. The		references which describe the form	Mation of the	ADD code and (compar isons
of the code is described in the first volume. The second volume contains a detailed description of the code including the global structure of the code, list of FORTRAN variables, and descriptions of the subroutines. The		of calculation with experimental fl	lows. The input	voutput and g	eneral use
detailed description of the code including the global structure of the code, list of FORTRAN variables, and descriptions of the subroutines. The	A CARLES AND A	of the code is described in the fir	st volume. The	e second volum	e contains à
code, list of FORTRAN variables, and descriptions of the subroutines. The	1×1 ·	detailed description of the code in	cluding the gl	obal structur	e of the
	2 ⁴	code, list of FORTRAN variables, an	nd descriptions	s of the subro	utines. The
Third volume contains a detailed description of the CODUCT code which	i' .	third volume contains a detailed de	escription of t	he CODUCT code	a which
generates coordinate systems for arbitrary axisymmetric ducts.	1.	generates coordinate systems for an	bitrary axisym	metric ducts.	ann •

ENTER:

DOE/NASA/0235-2 NASA CR-165598 UTRC81-65

User's Manual for Axisymmetric Diffuser Duct (ADD) Code

Volume III—ADD Code Coordinate Generator

O. L. Anderson, G. B. Hankins, Jr., and D. E. Edwards United Technologies Research Center East Hartford, Connecticut 06108

February 1982

Prepared for National Aeronautics and Space Administration Lewis Research Center Cleveland, Ohio 44135 Under Contract DEN 3-235

for U.S. DEPARTMENT OF ENERGY Conservation and Renewable Energy Office of Vehicle and Engine R&D Washington, D.C. 20545 Under Interagency Agreement DE-Al01-77CS51040

N83-26759#

USER'S MANUAL FOR AXISYMMETRIC DIFFUSER DUCT (ADD) CODE

TABLE OF CONTENTS

VOL. III ADD CODE COORDINATE GENERATOR

		<u> </u>	'age
10.0	OPERA	TION OF CØDUCT CODE	II-1
	10.1	Runstream	11-1
	10.2	Input Format	11-2
	10.3	Output Format	11-10
	10.4	Diagnostics and Failure Modes	11-21
11.0	GLOBA	L STRUCTURE OF CØDUCT CODE	II -2 3
	11.1	Main Program CØDUCT	11-24
	11.2	Global Tree Structure by Task	11-25
	11.3	List of Labeled CØMMØN Blocks I	II - 27
12.0	DETAI	LED DESCRIPTION OF CØDUCT CODE	11-36
	12.1	List of Subroutines	11-37
	12.2	Description of Subroutines	II-39

10.0 OPERATION OF CØDUCT CODE

10.1 Runstream

The following runstream for a UNIVAC 1100 operating system is used to assign input/output disc files and to execute the CØDUCT coordinate generator code.

@ASG,A @USE	FILE9.,D/0/TRK/300000 9.,FILE9.
@ASG,A @USE	FILE10.,D/0/TRK/300000 10.,FILE10.
@XQT	CØDUCT
	•
	•
	•
	data cards
	•
	•

@FIN

FILE9 contains the coordinate data for a uniform mesh and FILE10 contains the data for a nonuniform mesh.

10.2 Input Format

The input format for the CØDUCT code is described on the input data coding forms which follow. With the exception of the first card (Title card) and the duct geometry cards, the input data cards follow in sets of three cards. The first of three is a blank separator card. The second of three is the input variable name and the third of three is the value of the input variable. In general the input data is read as follows:

Card	1	Title Card
Cards	2-4	Program Control Parameters
Cards	5-7	Program Control Parameters
Cards	<u>8-10</u>	Coordinate Generator Parameters
Cards	11-13	Coordinate Generator Parameters
Card	14	Number of duct geometry coordinates
Cards	15 +	Duct geometry coordinates

Card 1 Title Card (18A4)

Γ													-										÷							<u> </u>		2.7.2	m			1 73	1					ų •	···						r	17117				nu:.#																			_
1	2 3	4	5	6	7 1		•	0 1	1 13	2 13	5 14	4 1	5 H	6 13	7 11	6 19	2	0 2	15	2 2	3 2	4 2	5 2	6 21	20	5	9 34	0 31	1 32	2 3	5 3	4 3	5 3	6 3	7 3	6 3	9 4	0 4	. 4	2 43	5 4 4	4 4:	46	47	48	49	50 1	51.5	2 5	3 54	\$ 55	56	57 !	58 5	9 60	C 61	62	63	64 (6 6	6 67	64	69	70	71	n	73	74 1	75 7	6 77	7 70	179	80
Π	T	Π	Τ	T	T	T	T	T	T	T	T	T	T	T	T	T	T	T	T	T	Ĩ	T	1	T	Ι	Ţ	T	Ī	T	T	T	Ť	Ĩ	Ì	Ī	Ī	T	Î	Ī	T	Ī	Ī	Ī	Ī			T	T	T	Ī	Ī		T	I	T]	$\left[\right]$	T	T	T	Γ							T	T			\prod	
										T		T	1	Т	L	E			T	T	T	T	1		1-	T	1	Ĩ	Ť	T	T		-	I	1-	1	-	1	1	1-		1	1	1						1-	1								Ι								I			Ī			
					I	Ι								I	I				I.		I											Ι						I	I]				T																			

.

Cards 2-4 Program Control Parameters (T6, I3, T20, I1, T32, I1, T43, I2, T53, F5.2, T64, E8.3)

-		
2	1 2 3 4 5 6 7 0 0 10 11 12 13 14 MAXIT IIIIII	15 16 17 16 19 20 21 22 23 24 25 35 35 35 35 36 37 38 39 40 41 42 43 44 45 50 51 52 53 54 56 67 56 66 67 56 <td< td=""></td<>
	MAXIT	Maximum number of iterations for conformal mapping solution
	IPRINT	Print option:
III-4		<pre>= 0 Print only input and final mapping = 1 Print iteration results = 2 Print approximate solution</pre>
	ICORD	Coordinate generation option:
		<pre>= 0 Calculate conformal mapping only = 1 Calculate coordinates</pre>
	NIPOT	Approximate solution option
		 O Program determines number of approximate potential lines O User specifies number of approximate potential lines
	DM	Step control in approximate solution calculations
	ECONV	Convergence criterion on conformal mapping iteration

Cards 5-7 Program Control Parameters (T8, I1, T18, I3, T30, I3)

8 9 10	12345	6 7 0 9 10 11 12 13 14 15 16 17 10 19 20 21 22 23 24 25 26 27 20 29 30 31 32 33 34 35 36 37 30 39 40 41 42 43 44 45 46 47 40 49 50 51 52 53 54 50 56 57 50 59 6C 61 62 63 64 66 67 60 69 70 71 72 73 74 75 76 77 70 79 90 J L J L P T S K L I G R I D J D S L I I I I I I I I I I I I I I I I I I
	JL	Number of streamwise stations to output
	JLPTS	Number of data points to output from smooth
	KL	Number of nonuniformly spaced streamlines
н	IGRID	Grid option
II-6		 = 0 KN uniformly spaced streamlines output to unit IUUNIT = 2 KL nonuniformly spaced streamlines output to unit INUNIT = 1 Both meshes (0), (2) output
	LOP	Control option for mesh distortion
	DDS	Ratio of uniform/nonuniform mesh size at wall

Cards 8-10 Coordinate Generation Control Parameters (T6, I3, T18, I3, T30, I3, T44, I1, T51, E8.3, T68, I1)

Cards 11-13 Coordinate Generation Control Parameters (T7, I2, T19, I2, T32, I1, T43, I2, T55, I1)

L	
1234567	8 9 10 11 12 13 14 15 18 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 66 66 67 68 69 70 71 72 73 74 75 76 77 70 79 80
	N I T I N U N I T I S MOO T J X K I X F G I I I I I I I I I I I I I I I I I I I
IUUNIT	Output unit number for uniform mesh
INUNIT	Output unit number for nonuniform mesh
ISMOOT ⊢	Smoothing option
II-7	= 0 No coordinate smoothing = 1 Smooth data using IMSL routine ICSVKU
JXK	Number of knots to use in spline smoothing
IXFG	Transfer grid option
	= 0 Conformal mapping procedure = 1 IUUNIT data is read and interpolated to new grid in INUNIT

Card 14 Number of Duct Geometry Coordinates (13)

		 				_				 	 					 ~	 													 	·	 	 	<u> </u>				= 	· · · · ·	 									 	 ·····	 					7.6			0.70			. 7	4 7		. 7	, ,			
Ì	Ţ	T	T	Ţ	•	1	Ţ	T	12	ſ	Ī	Ī	Ţ			T		1	T	Ī	Ī	Ţ	Ī	Ĩ) 	52	1	Ī	T	 Ī	Ĩ	 39	Ţ	ן ן	T	T	Ī	•5			• <u>•</u>	50	51	52		1	Ī	1	Ī			T	Ī	T	Ī	T	Ī	Ī	Γ	Γ	Ī			Ē		Ī	T	Ī	-
N	F					_								-	_	-				-												 										-							.																		+	+	

NLF Number of coordinate pairs defining the upper/lower walls

Cards 15 → Duct Geometry Coordinates (8F10.6)

F	
1234567	8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 6C 61 62 63 64 66 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
XU (1) x u (2) x u (3) x u (4) x u (5) x u (6) x u (7) x u (8)
XU	Upper wall x-coordinates
YU	Upper wall y-coordinates
XL	Lower wall x-coordinates
YL	Lower wall y-coordinates
	Where the data is read as follows
	READ (IRUNIT,40) ($XU(J)$, J=1,NLF)
	READ (IRUNIT,40) ($YU(J)$, J=1,NLF)
	READ (IRUNIT,40) $(XL(J), J=1, NLF)$
	READ (IRUNIT, 40) (YL(J), J=1, NLF)
40	FORMAT (8F10.6)

10.3 Output Format

The printed output from the CØDUCT code is given on the following pages and is largely self explanatory. These pages contain the names of the subroutines which calculate the data as well as any print options which may be involved.

Input Data Echo Page (1)

Printed by	RCNTRL
Calculated by	RCNTRL
Options	None

Description

Subroutine RCNTRL reads the input control data (cards 1-13) and prints the input control data.

Duct	Coordinates	Echo	Page	(2)

Printed by	CORINP
Calculated by	N/A
Options	None

Description

Subroutine CORINP reads the duct wall coordinates as described in Section 10.2 and prints the wall coordinates.

Pages 1-2	INPUT WALL COORDINATES		
Heading	Variable		Description
PT#	J	,	Wall coordinate number
XU	X ₁₁	,	Upper wall input X coordinate
YU	Y	,	Upper wall input Y coordinate
XL	ΧŢ	9	Lower wall input X coordinate
YL	ΥL	,	Lower wall input Y coordinate

Smoothed Duct Wall Coordinate Page (2)

Printed by	CORINP
Calculated by	SMARCL, SMOOTH
Options	ISMOOT
	ISMOOT = 0, no smoothing, no printout
	ISMOOT = 1 smoothed, printed

Description

The input coordinates are read in CORINP and subroutine SMARCL is called to cubic-spline smooth the wall data.

Variable		Description
J X _U Y _U XL	> > > >	Smoothed wall coordinate number Smoothed upper wall X coordinate Smoothed upper wall Y coordinate Smoothed lower wall X coordinate
	Variable J X _U Y _U XL Y _L	Variable J, X _U , Y _U , X _L , Y _L ,

Calculated Duct Geometry Parameters (1)

Printed by	MDAVIS,	ROTATM
Calculated by	MDAVTS,	ROTAIM
Options	None	

Description

Subroutine MDAVIS determines the orientation of the duct and forces the inlet walls parallel. The rotational and scaling constant M and the exit wall angle are calculated and output by subroutine ROTATM.

Page_1	CALCULATED DUCT G	EOMETRY PARAMETERS
Heading	Variable	Description
None	Θ1	Angle of inlet lower wall to horizon- tal
None	h	True height of duct - perpendicular distance from lower wall to upper wall
None	М	Rotational and scaling constant used in Schwartz-Cristoffel mapping
None	α _E	Relative angle at exit of duct + π

.

Approximate Potential Flow Page (6)

Printed by	WALLV, ESTIMP	
Calculated by	ESTIMP, ESTCOR,	WALLV
Options	IPRINT	
	IPRINT < 2	no output
	IPRINT = 2	output

Description

Subroutine ESTIMP solves for a geometric approximate potential solution in the duct using subroutine ESTCOR to determine the positions of a set of approximate potential lines. The wall velocities and curvatures at the end points of these lines are calculated and printed by subroutine WALLV. The solution along each wall is interpolated to the set of wall coordinates and an estimate of the Schwartz - Cristoffel mapping is determined. This estimate is calculated and printed by sub-routine ESTIMP.

Page 1	LOWER WALL EST	COR FLOW ESTIMATE
Heading	Variable	Description
PT# ARCL VMEAN VWALL KMEAN	NP S V V K	Approximate potential line number Arc Length Duct midline velocity Lower wall velocity Duct midline curvature

Approximate Potential Flow Pages (Cont'd)

Page_2	UPPER WALL ESTCO	R FLOW ESTIMATE	
Heading	Variable	Description	
PT#	NP	Approximate potential line number	
ARCL	S	Arc length	
VMEAN	$\overline{\mathbf{v}}$	Duct midline velocity	
VWALL	v _u	Upper wall velocity	
KMEAN	K	Duct midline curvature	
Pages 3-4	LOWER_WALL POTEN	TIAL FLOW_ESTIMATE	
Heading	Variable	Description	
PT#	J	Wall coordinate number	
VWALL	V,	Lower wall velocity	
KWALL	K _T	Lower wall curvature	
TT	t	t-plane pole estimates	
В	Ъ	ζ-plane pole estimates	
Pages 5-6	UPPER_WALL POTEN	TIAL FLOW_ESTIMATE	
Heading	Variable	Description	
PT#	J	Wall coordinate number	
VWALL	V,	Upper wall velocity	
KWALL	ĸ	Upper wall curvature	
TT	t	t-plane pole estimate	
В	b	ζ-plane pole estimate	

Iteration History Pages

Printed by	MDAVIS	
Calculated by	MDAVIS, STEP	
Options	IPRINT	
	IPRINT = 0	not printed
	IPRINT > 0	history printed

Description

The current estimate of dz/dt is integrated along the duct walls in subroutine MDAVIS by steps $t_{j+1} - t_j$ in the t-plane. The results of the integration and the error of the current iteration are printed.

Page 1	ITERATION HISTORY	
Heading	Variable	Description
PT# TX TY X Y RATIO ERROR DZDT	$ \begin{array}{c} J \\ t_{x} \\ t_{y} \\ Z_{x} \\ Z_{y} \\ R \end{array} $ $ \begin{array}{c} dz \\ dt \end{array} $	Wall coordinate number - j Real component of t _j Imaginary component of t _j Real component of Z _j Imaginary component of Z _j Arc length ratio Absolute error Zc _j - Z _j Complex derivative ot mapping

Iteration Summary Page (1)

Printed by	MDAVIS,	CLOSUR
Calculated by	MDAVIS,	CLOSUR
Options	None	

Description

Subroutine MDAVIS calculates the maximum relative error in the coordinate calculation for each iteration and tests for convergence of the mapping solution. Subroutine CLOSUR determines the integrated closure error of the solution.

Page 1	ITERATION SU	MMARY
Heading	Variable	Description
ITERATION SCALED MAXIMUM ERROR None None None	$\frac{\varepsilon_{m}}{\frac{ZCL}{Z_{1}}}$, Iteration count , Maximum scaled error for the iteration , Closure error $ \overline{Z}_1 - \overline{Z}_2 $, Integration path #1 endpoint , Integration path #2 endpoint

Mapped Duct Coordinate Page (2)

Printed by	MDAVIS
Calculated by	MDAVIS
Options	None

Description

Once the mapping iteration has terminated, the final solution and errors are printed for each wall coordinate.

Pages 1-2	MAPPED DUCT COOR	DINATES
Heading	Variable	Description
TX	t.	Real part of t-plane pole location
TY	t _v	Imaginary part of t-plane pole location
Х	x ³	Image of T under mappping
Y	Y	
XC	x _c	Input coordinates
YC	Ϋ́	
EX	ε _v	Error $ X - X_c $
EY	ε _τ	Error $ Y - Y_c $
S	s ^y	Arc length

Mesh Generation Page (1)

Printed by	COORD
Calculated by	COORD
Options	None

Description

The t-plane uniform mesh that is used for the coordinate generation is described.

Page 1	MESH PARAMETERS	
Heading	Variable	Description
None	JL	Number of streamwise steps
None	DSTEP	Streamwise step size
None	KN	Number of uniform normal steps

10.4 Diagnostics and Failure Modes

Numerous checks are performed during the course of the calculation. If a non-fatal or correctable error occurs a DIAGNOSTIC message is printed and the calculation continues. If a fatal error occurs a FAILURE Mode error is printed and the calculation stops. A DIAGNOSTIC message is printed of the form:

- ** DIANGOSTIC NO. XX for 2-D COORDINATE OPERATOR and a FAILURE Mode message is of the form:
- ** FAILURE NO. XX for 2-D COORDINATE GENERATOR where XX refers to one of the conditions listed below.

DIAGNOSTICS

1) NUMERICAL SOLUTION OF SCHWARTZ-CRISTOFFEL TRANSFORMATION FAILED TO CONVERGE

This error is detected in subroutine MDAVIS. It indicates that the scaled maximum error in the computed wall coordinates is greater than the input value ECONV after MAXIT iterations have been completed. By examining the ITERATION SUMMARY printed above the diagnostic message, one of three courses of action may be determined.

- a) The Scaled Maximum Error (SME) appears to be converging. Reset MAXIT and rerun the case.
- b) The SME has converged to a value different than zero. This can often be remedied by increasing the number of sub-steps (NSD), employed in the normal direction integration. If this does not solve the problem, more wall definition coordinates may be needed.
- c) The SME is not converging. This often indicates that a poor initial potential flow solution was generated.
- 2) UPPER AND LOWER WALLS NOT PARALLEL AT INLET. UPPER WALL FORCED PARALLEL. TO LOWER WALL

This error is detected in subroutine ROTATM. It implies that the inlet upper and lower wall angles with respect to the horizontal differed by less than ten degrees but greater than 1.0-10. The upper wall endpoint is moved to force the walls parallel.

FAILURE MODES

1) MESH DISTORTION PARAMETER EQUALS = XXXXX

This error is detected in subroutine ROBRTS.

2) MESH DISTORTION PARAMETER EQUALS = XXXXX

This error is detected in subroutine DROBRT.

3) LOWER WALL ANGLE = XXXXX DEGREES UPPER WALL ANGLE = XXXXX DEGREES WILL NOT FORCE PARALLEL IF DIFFERENCE IS > 10 DEG.

This error is detected in subroutine ROTATM. It indicates that the inlet walls are not sufficiently parallel, and the program will not force the walls parallel to avoid drastically changing the geometry.

4) DEGENERATE DERIVATIVE MAPPING FOR I = XXXXX

This error is detected in subroutine MDAVIS. It implies that $\left|\frac{dz}{dt}\right| < 1.D-8$ at wall point XXXXX.

5) INCONSISTENT OR INVALID INPUT

This error is detected in main program CODUCT. Check input data set.

6) READ ERROR ENCOUNTERED IN SUBROUTINE CORINP

This error, detected while reading duct wall coordinates, indicates an error in the input data set.

7) NUMBER OF INPUT POINTS EXCEEDS MAXIMUM (XXX)

This error, detected in subroutine CORINP, indicates that too many wall values are defined.

8) UNABLE TO COMPLETE APPROXIMATE SOLUTION

This error is detected in subroutine ESTCOR. It implies that more than ten attempts have been made to compute a single potential line and is usually due to very large wall curvatures.

9) INDEPENDENT STEP SIZE TOO SMALL

This error is detected in subroutine DERIV3. It indicates that two consecutively numbered wall coordinates are equal.

10) IMSL LIBRARY ICSVKU FAILURE NO. XXX

This error is detected in subroutine SMOOTH. It implies that the IMSL program ICSVKU cannot solve the spline problem. See IMSL manual to determine remedy.

11.0 GLOBAL STRUCTURE OF CØDUCT CODE

This section of the manual is intended for the special user who wishes to modify the CØDUCT code or adapt to a different computer. The section provides a global overview of the code in terms of the principal tasks. These tasks are clearly labeled in the main program CØDUCT and agrees with the tasks listed on the Global Tree Structure Chart in Section 11.2. The global variables in labeled CØMMØN blocks are given in Section 11.3. Only the variables unique to the CØDUCT code are listed. Variables that are used by both the CØDUCT code and ADD code are listed in Section 6.0. Special problems associated with machine specific code are similar to those in the ADD code and are treated in Section 5.0.

11.1 Main Program CODUCT

Object

Main program for coordinate generator.

Options

IXFG	= 0	Full solution
	= 1	Interpolate only
IESTIM	= 0	Approximate solution only
	= 1	Schwartz-Cristoffel transformation also
ICORD	= 0	No coordinate output
	= 1	Coordinate output to disk files.

Theory

The control program CODUCT first calls subroutine RCNTRL (See Table 1) to read the user-input control parameters and options. Subroutine CORINP is then called to read the duct wall coordinates and, if requested, will smooth the wall coordinate using a cubic-spline fitting algorithm. Subroutine ESTCOR is called to geometrically determine the approximate potential flow solution necessary to start the conformed mapping iteration procedure. Then Davis' algorithm to compute the Schwartz-Cristoffel transformation is invoked by calling subroutine MDAVIS. Finally, subroutine COORD is called to generate and output the coordinate mesh parameters to disk file(s).

11.2 Global Tree Structure By Task

	Read	Control Input		
CODUCT	RCNTRL			
	Read	and Smooth Du	ct Wall Data	· · · · · · · · · · · · · · · · · · ·
CODUCT	CORINP	SMARCL	ARCL1 SMOOTH	ICSVKU
	Calc	ulate Approxim	ate Potential F	low Solution
CODUCT	ESTIMP	ARCL1 KURVTR ESTCOR WALLV	DER1V3 INSECT CROSS1 DER1V3 SUNBAR UNBAR	CROSS1
	Calc	ulate Schwartz	-Cristoffel Tra	nsformation
CODUCT	MDAVIS	ROTATM INTNOR STEP TTUP CLOSUR	STEP STEP INTNOR INTSTR	STEP STEP

Calculate Coordinates and Metrics						
CODUCT	COORD	CONSTR	CDS ROBRTS DROBRT			
		COOR1D	NORLIN STRSTP CDVDN CORSTR Q2INTP	STEP STEP		
		COORMD	BLKWRT QPSTOR STRSTP CDVDN CORSTR QPSTOR Q2INTP BLKWRT	NTRAN \$ QPCURV STEP NTRAN \$	INSECT	CROSS1
			QPSTOR	QPCURV	INSECT	CROSS1
Transform from Uniform to Non-uniform mesh						
CODUCT	XFGRID	INITQ CONSTR	BLKRED	NTRAN \$		
		Q2INTP QPSTOR BLKWRT	NTRANS QPCURV NTRANS	INSECT	CROSS1	

11.3 List of Labeled CØMMØN Blocks

Name	Object
BSMØTH	Variables for spline smoothing
CESTP	Variables for approximate solution
CØØRCØ	Control options and parameters
CØØRT	Complex coordinates and derivative
IPDAVS	Complex solution variables
NSDAVS	Constants and parameters for mapping
ØPDAVS	Intermediate Schwartz-Christoffel variables
TITLE	Run Title

III-27

List of Variables in CØMMØN/BSMØTH/ Variables for Spline Fitting

Name	Symbol	Length	Туре	Description
A		NXK	R*4	Integration constant
В		NXK	R*4	Integration constant
СК		ICK,3	R* 4	Spline coefficients
WK		IWK	R*4	Work area
XK		NXK	R*4	Knot locations
YPP		NXNTD2	R*4	Second derivative of input curve
List of Variables in CØMMØN/CESTP/ Variables for Approximate Solution

Name	Symbol	Length	Туре	Description
нт	h _t	NXNTD2	R*4	Approximate duct height
IL,IU		NXNTD2		Index lower/upper walls
KKL,KKU	ĸ _L ,ĸ _U	NXNTD2	R*4	Curvature lower/upper walls
KMEAN	ĸ	NXNTD2	R*4	Curvature of mean line
SL,SU	s _L ,s _U	NXNTD2	R*4	Arc length lower/upper walls
SLI,SUI	S _{LI} ,S _{UI}	NXNTD2	R*4	Arc length lower/upper walls
SMID	รี	NXNTD2	R*4	Arc length mean line
TH	θ	NXNTD2	R*4	Angle of mean line with x axis
VL,VU	v _L ,v _U	NXNTD2	R*4	Velocity lower/upper walls
VLI,VUI	v _{LI} ,v _{UI}	NXNTD2	R*4	Velocity lower/upper walls
VMEAN	v	NXNTD2	R*4	Velocity on mean line
XL,YL	X _L ,Y _L	NXNTD2	R*4	Input coordinate lower wall
XU,YU	x _U ,Y _U	NXNTD2	R*4	Input coordinate upper wall
XLI,YLI	X _{LI} ,Y _{LI}	NXNTD2	R*4	Coordinates lower wall
XUI,YUI	X _{UI} ,Y _{UI}	NXNTD2	R*4	Coordinates upper wall

Note: subscript I denotes intersection of approximate potential line with wall

List of Variables in CØMMØN/CØØRCØ/ Control Options and Parameters

Name	Symbol	Length	Туре	Description
DDS	(∆n/∆n) ₁		R*4	Ratio uniform/nonuniform grid at wall
IGRID			I*4	Grid option
INUNIT			1*4	Output unit for nonuniform grid
IRUNIT			I*4	Read unit
ISMØØT			1*4	Smoothing option
IUUNIT			I*4	Output unit for uniform grid
IWUNIT			I*4	Print unit
IXFG			I*4	Transfer grid option
JL			I*4	Number of output streamwise stations
JLPTS			1*4	Number of input stations
JXK			I*4	Number of knots for spline
KL			1*4	Number of nonuniform streamlines
KN			I*4	Number uniform streamlines
LØP			1*4	Mesh distortion option
RADR	rr		R*4	Reference length
TTL	t _L		R*4	Maximum t-plane coordinate lower wall
TTU	t _u		R*4	Maximum t-plane coordinate upper wall

List of Variables in CØMMØN/CØØRT/ Complex Coordinates and Derivatives

Name	Symbol	Length	Туре	Description
DZDTJ	$\left(\frac{\mathrm{d}z}{\mathrm{d}t}\right)_{\mathrm{I}+1}^{\mathrm{J}}$	KLL	C*16	Mapping derivative
DZDTJP	$\left(\frac{dz}{dt}\right)_{t+1}^{t+1}$	KLL	C*16	Mapping derivative
DZDTP2	$\left(\frac{\mathrm{d}z}{\mathrm{d}t}\right)_{1}^{\mathrm{d}+1}$	KLL	C*16	Mapping derivative
DZDT1	$\left(\frac{\mathrm{d}\mathbf{z}}{\mathrm{d}\mathbf{t}}\right)^{\mathrm{T}}$	KLL	C*16	Mapping derivative
ZJ	z ^J	KLL	C*16	Coordinate in duct plane
ZJP	J+1 Z	KLL	C*16	Coordinate in duct plane
ZP2	J+2 Z	KLL	C*16	Coordinate in duct plane
Z1	l z	KLL	C*16	Coordinate in duct plane

List of Variables in CØMMØN/IPDAVS/ Complex Solution Variables

Name	Symbol	Length	Туре	Description
В	b ^{ν-1}	NXNT	R*8	Location of poles
BNEW	b ^ν	NXNT	R*8	Location of new poles
TG	t ^{v-1}	NXNT	C*16	t-plane wall coordinates
TT	t ^ν	NXNT	C*16	New t-plane wall coordinates
Z	Z	NXNT	C*16	Z-plane calculated wall coordinates
ZC	Z _c	NXNT	C*16	Z-plane input wall coordinates

List of Variables in CØMMØN/NSDAVS/ Constants and Parameters for Mapping

Name	Symbol	Length	Туре	Description
DM ,	d m		R*8	Automatic step size in approximate solution
ECØVV	εc		R*8	Convergence criteria
IC	0. + 1.i		1*4	Complex number $\sqrt{-1}$
ICØRD			I*4	Coordinate generator option
IESTIM			I*4	Approximate potential flow option
IPRINT			I*4	Print option
MAXIT			I*4	Maximum number of iterations
N			1*4	Number of wall points (NLF+2)
NBE			1*4	Number of non-trivial angle changes
NCL,NCU			I*4	Number of lower/upper wall elements
NLF			I*4	Number of lower wall points
NM1			I*4	N-1
NNS			1*4	Number of additional steps in integration
NUI			I*4	NLF+1
NIPØT			I*4	Approximate potential flow option
ØNE	1. + 0.i		C*16	Complex 1.0
XM	М		C*16	Scale constant
ZER	0. + 0i		C*16	Complex 0.0

List of Variables in CØMMØN/TITLE/ Run Title

Name	Symbol	Length	Туре	Description
ITITLE(I)		18	1*4	Run title

List of Variables in CØMMØN/ØPDAVS/

Name	Symbol	Length	Туре	Description
ALPHA	αJ	NXNT	R*8	$\operatorname{Re}(\beta_{J}) + 1.$
BETAM	$^{\beta}J$	NXNT	C*16	Change in wall angle
DELR	^b J+1 ^{-b} J	NXNT	R*8	Difference in pole locations
EXITA	α _E	1	R*8	Duct exit divergence angle + π
HEIGHT	h	1	R*8	Duct inlet height
RATIO	R _J	NXNT	R*8	Ratio of actual to calculated length
THETA1	θ	1	R*8	Rotation of duct from real axis
ZET	ζ _J	NXNT	C*16	Estimated pole location

; · ·

12.0 DETAILED DESCRIPTION OF CODUCT CODE

This section contains an alphabetic list of subroutines and a detailed description of each subroutine. Subroutines that are used by both the ADD code and the CODUCT code are listed and described in Section 7.0. The description of the subroutines which follow have the same format. This format consists of the object or purpose of the subroutine, any options used by the subroutine, and a list of variables not in a CØMMØN block which are used by the subroutine. Variables in CØMMØN blocks are listed in Section 6.1 or Section 11.3. Following the list of variables is a brief description of the analysis performed by the sub-routine.

12.0 DETAIL DESCRIPTION OF CØDUCT CODE

12.1 List of Subroutines

Name	Object
------	--------

- ARCL1 Calculate arc length of input curve
- BLKRED See Section 7.2
- CDVDN Calculate streamline curvature
- CØBLK Block data (IBM version)
- CØDUCT liain program (see Section 11.1)
- CLØSUR Calculate closure error in mapping
- CØNSTR Store fixed data in Q1, Q2 arrays
- CØØRD Calculate coordinates and metrics
- $C \phi \phi RMD$ Calculate coordinates J = 2, JL
- $C\phi\phi R1D$ Calculate coordinates J = 1
- CØRINP Read coordinate data
- CØRSTR Store coordinates in Q1 array
- CRØSS1 See Section 7.2
- DERIV3 Calculate 3 point central difference derivative
- DRØBRT See Section 7.2
- ESTCØR Determine locationof approximate potential line
- ESTIMP Calculate approximate pole locations
- INSECT Determine intersection of potential line and wall
- INTNØR Calculate end point of potential line
- INTSTR Calculate end point of streamline

12.1 List of Subroutines (Cont'd)

Name	Object
KURVTR	Calculate curvature of input curve
MDAVIS	Solve Schwartz-Christoffel mapping
NØRLIN	Calculate single potential line
QPKURV	Interpolates curvatures at output location
QPSTØR	Store Q parameters in Ql, Q2 arrays
Q2INTP	Interpolate from uniform to non-uniform mesh
RCNTRL	Reads user input control parameters
R∮ TATM	Calculate duct rotation and scaling
SMARCL	Cubic spline smoothing on arc length
SMØØTH	See Section 7.2
STEP	Davis' integration formula
STRSTP	Integrate each streamline one step
SUNBAR	Store X, Y data into interpolation table T
TTUP	Update upper wall upstream point
UNBAR	Lagrange table interpolation
WALLV	Approximate potential flow wall velocity
XFGRID	Interpolate uniform to nonuniform grid

12.2 Description of Subroutines

Subroutine ARCL1 (X,Y,NPT,S)

<u>Object</u>

Calculate arc length of input curve

Options

None

Symbols

NPT		Number of input points
S(I)	s _t	Arc length
X(I),Y(I)	X ¹ , Y _I	Coordinates of input curve

Theory

The arc length of a curve is given by

$$S_{J} = \sum_{I=2}^{J} \left\{ \left(X_{I} - X_{I-1} \right)^{2} + \left(Y_{I} - Y_{I-1} \right)^{2} \right\}^{1/2}$$
(1)

Calculate streamline curvature

Options

None

List of Symbols

DZDT	dZ/dt	,	Complex derivative of mapping
NPT		,	Number of points in DZDT
Q1(7,K)	av/ 3 n	,	Streamline curvature

Theory

The magnitude of the potential flow velocity is

$$V = \left| \frac{dt}{dZ} \right| \tag{1}$$

Then the streamline curvature is given by

$$\kappa = -\partial V / \partial n \tag{2}$$

The curvature is obtained by numerical differentiation using subroutine DERIV3 for K = 2, KL - 1. At the wall the streamline curvature is given by the wall curvature obtained from the input data.

Calculate closure error in mapping

<u>Options</u>

None

List of Symbols

NLF		Number of wall points
Z	Z	Duct plane coordinates
ZCL	² ст	Closure error
TT	t	t-plane coordinates

Theory

The solution is integrated from t_1 to $t_{\rm NLF}$ + i % two paths to close the polygon. The closure error is defined by

$$\epsilon_{\text{CL}} = \left| Z \left(t_{\text{NLF}} + i \right)_{1} - Z \left(t_{\text{NLF}} + i \right)_{2} \right|$$
(1)

Subroutine CØBLK

BLOCK DATA

Object

Defines default values for program control

List of Symbols

NXNT	Maximum number of wall definition points total
NXNTD2	Maximum number of wall definition points for each wall, also maximum number of potential lines permissible
IST	Maximum number of streamlines
NVK	Maximum number of knots to use in cubic-spline fit to wall data
IPOINT	Logical unit number to read from
IWUNIT	Logical unit number to write to

Store fixed data in Q1, Q2 arrays

Options

IGRID =	0	Uniform mesh
=	1	Nonuniform mesh
=	2	Both meshes

Input Symbols

DDS	$(\Delta n / \Delta n)_1$	Mesh distortion parameter
DETA	Δη	Uniform transverse step size
JL		Number of streamwise stations
KL		Number of nonuniform streamlines
KN		Number of uniform streamlines
LØP		Mesh distortion option
SAVG		Average length of duct

Output Symbols

Q1	Uniform mesh block data
Q2	Nonuniform mesh block data

Theory

CØNSTR is a general setup program that stores information into the Ql and Q2 data blocks. These stored variables are ones that do not change for J =1, JL.

Q1(5,K) = 1, Q1(16,K) = 0, Q1(17,K) = 0, $Q1(18,K) = \eta$	K = 1, KN	(1)
Q2(5,K) = 1. Q2(16,K) = $d\eta/dn$ Q2(17,K) = n Q2(18,K) = η		(2)

Calculate coordinates and metrics

Options

IGRID = 0	Uniform grid output to	IUUNIT
= 1	Nonuniform grid output	to INUNIT
= 2	Output both grids	

Input Signals

DDS	∆n/∆n	Mesh distortion parameter
DETA	Δη	Uniform step size
JL		Number of streamwise stations
JLPTS		Number of points on wall
KL		Number of nonuniform streamlines
KN		Number of uniform streamlines
LØP		Mesh distortion option
NNS		Number of steps on potential line

Output Symbols

Q1(I,K)	Coordinate	data	uniform grid	
Q2(I,K)	Coordinate	data	nonuniform g	rid

Theory

Once the mapping solution has converged, the location of the poles are known and the solution can be obtained for any interior point by integrating the Schwartz-Christoffel transformation. The streamwise integration step ΔS is defined in subroutine CØNSTR by

$$\Delta S = (\max(t_U, t_L) - \min(t_U, t_L)) / (JL - I)$$
(1)

and the normal integration step is defined by

$$\Delta n = 1 / (KN - 1) \tag{2}$$

Then integration of dZ/dt with n constant produces a streamline and integration with S constant produces a potential line.

To start the coordinate calculation, CØØRLD is called to integrate the first potential line at the duct inlet. We note that dz/dt calculated by subroutine STEP is evaluated at the point

$$n_{K+1/2} = (n_{K+1} + n_{K})/2$$
 (3)

such that the metric is given by

$$\left(\frac{dZ}{dt}\right)_{\kappa} = \frac{1}{2} \left[\left(\frac{dZ}{dt}\right)_{\kappa+1/2} + \left(\frac{dZ}{dt}\right)_{\kappa-1/2} \right]$$
(4)

$$V_{\kappa} = I \left/ \left| \frac{dz}{dt} \right|_{\kappa} \right.$$
(5)

•

The remainder of the computation grid is constructed by integrating all the streamlines in the streamwise direction one step using subroutine CØØRMD. Again we note that the derivative is evaluated at the mid point so that

$$\left(\frac{dZ}{dt}\right)^{J} = \frac{1}{2} \left[\left(\frac{dZ}{dt}\right)^{J+1/2} - \left(\frac{dZ}{dt}\right)^{J-1/2} \right]$$
(6)

$$V^{J} = I \left/ \left| \frac{dZ}{dt} \right|^{J} \right.$$
(7)

The integration is continued to J = JL + 1/2.

Object

```
Calculate coordinates J = 2, JL
```

Options

IGRID	= 0	Uniform grid output to IUUNIT
	= 1	Nonuniform grid output to INUNIT
	= 2	Output both grids

Input Symbols

DSTEP	ΔS	Streamwise step size
DZDTJ	$\left(\frac{\mathrm{d}Z}{\mathrm{d}t}\right)^{\mathrm{J}}$	Derivative at J
DZDTJ1	$\left(\frac{\mathrm{d}Z}{\mathrm{d}t}\right)^{\mathrm{J-1}}$	Derivative at J-1
J		Streamwise index
KL		Number of nonuniform streamlines
KN		Number of uniform streamlines
ZJ	z^J	Coordinate at J
ZJ1	z ^{J-1}	Coordinate at J-1

Output Symbols

Q1	Coordinate	data	uniform gr:	id
Q2	Coordinate	data	nonuniform	grid

Theory

The derivatives of the metrics ($\partial V/\partial n$, $\partial V/\partial S$) are obtained by the three point difference formula. Thus we have

$$\left(\frac{dZ}{dt}\right)_{K}^{J} = \frac{1}{2} \left[\left(\frac{dZ}{dt}\right)_{K}^{J+1/2} + \left(\frac{dZ}{dt}\right)_{K}^{J-1/2} \right]$$
(1)

and

$$V_{\kappa}^{J} = i \left/ \left| \frac{dZ}{dt} \right|_{\kappa}^{J} \right|_{\kappa}$$
(2)

III-46

Since dZ/dt are known at the mid points we have

$$\frac{d v_{\kappa}^{J}}{ds} = \frac{1}{2\Delta S} \left\{ \frac{1}{2} \left[v_{\kappa}^{J+1/2} + v_{\kappa}^{J+3/2} \right] - v_{\kappa}^{J-1} \right\}$$
(3)

The derivative $\partial V/\partial n$ is obtained using subroutine CDVDN and the remaining variables are defined and calculated for the KN points on the uniform mesh by calling subroutine CØRSTR. Subroutine Q2INTP interpolates from the KN uniform mesh points to the KL nonuniform mesh points.

```
Calculate coordinates at J = 1
```

Options

IGRID	=	0	Uniform grid output to	IUUNIT
	=	1	Nonuniform grid output	to INUNIT
	=	2	Output both grids	

Input Symbols

DSTEP	ΔS	Streamwise step size
KL		Number of nonuniform streamlines
KN		Number of uniform streamlines
NNS		Number of steps in n integration

Output Symbols

DZDT2	Derivative at $J = 2$
DZDT3	Derivative at $J = 1$
Q1	Coordinate data for uniform grid
Q2	Coordinate data for nonuniform grid
Z2	Coordinate at $J = 2$
Z3	Coordinate at $J = 3$

Theory

The first potential line is calculated by calling subroutine NØRLIN. Then derivatives of the metrics ($\partial V/\partial n$, $\partial V/\partial S$) are obtained by 3 point difference formula. Thus we have

$$\left(\frac{dZ}{dt}\right)_{K}^{J} = \frac{1}{2} \left[\left(\frac{dZ}{dt}\right)_{K}^{J+1/2} + \left(\frac{dZ}{dt}\right)_{K}^{J-1/2} \right]$$
(1)

$$V_{\kappa}^{J} = i / \left| \frac{dZ}{dt} \right|_{\kappa}^{J}$$
⁽²⁾

The streamlines are integrated to J = 4 using subroutine STRSTP. Then we have

$$\left(\frac{\partial V}{\partial S}\right)_{K}^{I} = \frac{1}{\Delta S} \left\{ -3V_{K}^{I} + 4\left[\frac{V_{K}^{3/2} + V_{K}^{5/2}}{2}\right] - \left[V_{K}^{5/2} + V_{K}^{7/2}\right] \right\}$$
(3)

Subroutine CØØR1D (Cont'd)

The derivative $\partial V/\partial n$ is calculated using subroutine CDVDN and the remaining variables are defined and calculated for the KN points on the uniform grid by calling subroutine CØRSTR. Subroutine Q2INTP interpolates from the KN uniform grid to the KL nonuniform grid.

•

Read coordinate data

Options

 $ISM \phi \phi T = 0$ Do not smooth wall data = 1 Smooth wall data

Input Symbols

JLPTS	Number of smoothed wall data points
JXK	Number of knots in spline smoothing
NLF	Number of input upper/lower wall data points

Output Symbols

XL,YL	X ₇ ,Y ₇	Lower wall data points
XU,YU	X_{11}^{L}, Y_{11}^{L}	Upper wall data points
ZC	x _c	Complex coordinates of wall data points
RADR	rr	Reference radius XU(1)

Theory

The subroutine reads the wall data in card image form. If $ISM \phi \phi T = 1$, a cubic spline smoothing routine SMARCL will produce a set of JLPTS data points for each wall. This subroutine also prints the smoothed and unsmoothed wall data.

Store coordinates in Q1 array

Options

None

Input Symbols

J		Streamwise station number
DZDT	$\left(\frac{dZ}{dt}\right)^{J}$	Derivative at J
ZI	z ^J	Coordinates at J

Output Sybmols

Q1 Coordinate data block

Theory

The following coordinate data are calculated at J.

Q1(1,K)	=	Im (Z _K)	= R	(1)
Q1(2,K)	=	Re (Z _K)	= Z	(2)
Q1(3,K)	=	Re (dZ/dt) _K	$= \partial R / \partial n$	(3)
Q1(4,K)	=	Im (dZ/dt) _K	$= \partial R / \partial S$	(4)
Q1(6,K)	=	$1/ dZ/dt _{K}^{J}$	= V	(5)
Q1(9,K)	=	$\int_{o}^{S} J \frac{dS}{V}$	= X	(6)
Q1(10,K)	=	$\int_{o}^{n} \frac{dn}{v}$	= Y	(7)
Q1(11,K) [.]	=	Q1(10,K)/Q1(10,KN)		(8)
Q1(12,K)	=	$2\pi \int_{0}^{n} \frac{Rdn}{V}$	= A	(10)
Q1(13,K)	=	2π R		(11)
Q1(14,K)	=	2π ∂R/∂n		(12)
Q1(15,K)	=	2π ∂R/ ∂S		(13)

Calculate 3 point central difference derivative

Options

None

Input Symbols

NPT	Point at which to evaluate derivative
NX	Number of data points for X and Y
Χ,Υ	Table of NX independent/dependent variables

Output Symbols

DYDX	dy/dx	First derivative
D2YDX2	$d^{2}y/dx^{2}$	Second derivative

Theory

The finite difference formula are given by:

$$\left(\frac{dY}{dx}\right)^{I} = \frac{Y^{I+I} - (I-r^{2})Y^{I} - r^{2}Y^{I-I}}{X^{I+I} - X^{I} + r^{2}(X^{I} - X^{I-I})}$$
(1)

$$\left(\frac{d^{2}Y}{dx}\right)^{I} = \frac{Y^{I+I} - (I+T)Y^{I} + TY^{I-I}}{(X^{I+I} - X^{I})^{2} + T(X^{I} - X^{I-I})^{2}}$$
(2)

$$r = \frac{x^{I+1} - x^{I}}{x^{I} - x^{I-1}}$$
(3)

If I = 1 or NPT a diagnostic is printed

"INPUT PØINT XX OUT OF RANGE"

and both derivatives are set to 1.0.

Subroutine DERIV3 (X,Y,NX,NPT,DYDX,D2YDX2) (Cont'd)

.

If $|X^{I+1} - X^{I}|$ or $|X^{I} - X^{I-1}| < 10^{-15}$ a diagnostic is printed

"INDEPENDENT VARIABLE STEP SIZE LT 1.E-15"

and both derivatives are set to 1.0.

Determine location of approximate potential line.

Option

	NIPØT	= >	0 1	Program determines number of lines NIPØT lines are calculated
Input	Symbols			
	npøt		Np	Number of potential lines
	SAVG		S	Average duct length
	XL,YL		X _L ,Y _L	Lower wall coordinates
	XU,YU		x _U , ^Y U	Upper wall coordinates
Outpu	it Symbols			
	нт		h	Height of duct
	IU,IL			
	ТН		θ	Angle of mean line
	XLI,YLI		X _{LI} ,Y _{LI}	Coordinates potential line lower wall
	XUI,YUI		x _{UI} ,Y _{UI}	Coordinates potential line upper wall

Theory

The object is to determine NPØT approximate potential lines in the duct where NPØT = NLF/3 initially. The first potential line intersects the duct at Z_{U1} and Z_{L1} where the complex notation is used.

$$Z = X + i Y$$
 (1)

We then construct a mean line Zm, (See Fig. 1), which satisfies the following conconditions:

$$\left|Z_{m,J} - Z_{m,J-1}\right| = \Delta S \tag{2}$$

$$|Z_{UI,J} - Z_{m,J}| = |Z_{m,J} - Z_{LI,J}|$$
 (3)

$$(Z_{UI,J} - Z_{LI,J}) \cdot (Z_{m,J} - Z_{m,J-I}) = 0$$
⁽⁴⁾

It was found that the set of equations, Eq. (2) through (4) do not have a unique solution. Therefore Eq. (3) was replaced by a minimum condition on D where:

$$D = I - \frac{|Z_{UI,J} - Z_{m,J}|}{|Z_{m,J} - Z_{LI,J}|}$$
(5)

The algorithm consists of finding an angle $\theta_{\rm J}$ which minimizes D. Thus we have from Eq. (1),

$$Z_{m,J}^{\nu} = Z_{m,J-1} + \Delta S \cdot \left[\cos \theta_{J}^{\nu} + i \sin \theta_{J}^{\nu} \right]$$
(6)

A straight line normal to the mean line, from Eq. (4), is defined by the point $Z^{\nu}m$, J and the point,

$$\widetilde{Z} = Z_{m,J} + \Delta S \cdot \left[\cos \left(\theta_{J}^{\nu} + \pi/2 \right) + i \sin \left(\theta_{J}^{\nu} + \pi/2 \right) \right]$$
(7)

The intersections of the line $(Z,Z_{m,J})$ with the duct wall $(Z_{UI,J}^{\nu}, Z_{LI,J}^{\nu})$ is determined using subroutine INSECT. Then D is calculated and checked for a minimum. An iteration procedure determines the θ_J^{ν} which minimizes D.

Subroutine ESTCØR (Cont'd)

When the iteration has converged, a check is made to determine if the $Z_{m,J}$ potential line crosses the $Z_{m,J-1}$ potential line inside the duct. If it does, the distance along the mean line ΔS is increased

$$\Delta S = \Delta S \cdot 1.2 \tag{8}$$

and the algorithm is repeated starting with Eq. (6). A maximum step ΔS is fixed by some fraction of the duct height d_m . Thus

$$\Delta S = \min \left[d_m \left| Z_{UI,J} - Z_{LI,J} \right|, \Delta S \right]$$
(9)

Z = X + iY

Fig. 1. Geometric Construction of Potential Flow

Object

Calculate approximate pole locations

Options

None

Input Symbols

N NLF ZC	z _c	Total number of poles (2*NLF) Number of poles on each wall Duct coordinates
Output Symbols		
B TT	b t _I	Pole locations in plane Pole locations in t plane

Theory

The arc lengths S_U, S_L to each pole in the duct (Z) plane is determined using subroutine ARCL1. Subroutine ESTCØR calculates the location of the approximate potential line and subroutine WALLV calculates the approximate potential flow velocities (metrics) at the pole locations in the Z plane. Then the pole locations are given by:

$$t_{UI} = \int_{0}^{S_{UI}} V_{UI} dS$$
 (1)

$$t_{LI} = \int_0^{s_{LI}} V_{LI} \, ds \tag{2}$$

$$\mathbf{b}_{\mathbf{UI}} = \exp\left(-\pi \mathbf{t}_{\mathbf{UI}}\right) \tag{3}$$

$$b_{LI} = -\exp\left(-\pi t_{LI}\right) \tag{4}$$

Determine intermine intersection of potential line and wall.

<u>Options</u>

IEXTRP	=	1	Extend last line segment for intersection
	¥	1	Do not extend last line segment.

Argument List

(X1,Y1),(X2,Y2)		Points defining potential line
Х,Ү	Z	Points defining wall curve
NPT		Number of (X,Y) points
(XI,YI)	zI	Intersection point
IØ		Lower index of intersection point
IERR		Error flag = 0 intersection found = -1 no intersection found

Theory

The input coordinates (X,Y) are searched for an intersection with (X1,Y1), (X2,Y2) using subroutine CROSS1 which determines if an intersection occurs between

$$Z(I\emptyset) \le Z_{I} \le Z(I\emptyset + 1)$$
(1)

Object

Calculate end point of potential line

Options

None

Argument List

ZETO	ζo	Starting location in ζ plane
Z 0	Zo	Starting location in Z plane
ZETU	ζu	Final location in ζ plane
ZU	z _u	Final location in Z plane
NNS		Number of steps

Theory

The starting location in the t plane is given by

$$t_0 = i - \ln \left(\zeta_0\right) / \Pi \tag{1}$$

and the step size is given by

$$\Delta t = i \cdot l. / (NNS-l)$$
⁽²⁾

Then

$$Z_{U} = Z_{0} + \sum_{J=1}^{NNS-I} \left\{ \int_{t_{0}+\Delta t}^{t_{0}+\Delta t \cdot J} \frac{dZ}{dt} dt \right\}$$
(3)

where the term in the bracket is evaluated using subroutine STEP.

Calculate end point of streamline

Options

None

Argument List

	ZETO	ζ	Starting location in ζ plane	э.	.**
	ZO	Z _o	Starting location in Z plane		
	ZETU	ς _U	Final location in ζ plane		
	ZU	z _u	Final location in Z plane		
List	of Symbols				
	NLF		Number of lower wall points	a da tra	All and
	TT	t _I	Pole locations in t plane		

,

Theory

The starting point in the t plane is given by

$$t_{0} = i - \ln(\zeta_{0}) / \pi$$
 (1)

Define the streamline by

$$t_n = Im(t_0)$$
(2)

Then

$$Z_{U} = Z_{0} + \sum_{I=2}^{NLF} \left\{ \int_{t_{I-1}+t_{n},i}^{t_{I-1}+t_{n},i} \frac{dZ}{dt} dt \right\}$$
(3)

where the bracket is evaluated using subroutine STEP.

Object

Calculate curvature of input curve

Options

None

Argument List

Х,Ү	Χ,Υ	Coordinates of input curve				
S	S	Arc length of input curve				
NPT		Number of points on curve				
KURV	ĸ	Curvature of input curve				

Theory

The principal curvature of a curve is given by

$$\kappa = \frac{dX}{dS} \frac{d^2Y}{dS} - \frac{dY}{dS} \frac{d^2X}{dS^2}$$
(1)

Eq. (1) is evaluated by 3 point finite difference formula

Solve Schwartz-Christoffel Mapping

Options

None

Input Symbols

ECØN	ε c	Convergence criteria			
NLF		Number of points on wall			
TT	t	Initial pole location t plane			
ZC	^z c	Duct wall coordinates			

Output Symbols

TT	t	Final	pole	location	in	t	plane
Z	Z	Final	pole	location	in	Z	plane

Theory

The flow chart for this subroutine is shown on Fig. 2 and takes place in the following steps:

Step 1 Initialization

- a) Calculate rotation constant M
- b) Calculate duct exit divergence angle α_{a}
- c) Calculate Schwartz-Christoffel pole angle α_{i}

Step 2 Integrate Transformation

- a) Integrate Schwartz-Christoffel transformation along each wall with a guess for the b_i 's in the ζ plane using subroutine STEP.
- b) Integrate Schwartz-Christoffel transformation along far upstream potential line with a guess for b_i 's in ζ plane using subroutine NØRLIN.

Step 3 Update Poles

- a) Update poles on lower wall in t plane by ratio of arc lengths.
- b) Update first pole on upper wall using Step 2b.
- c) Update poles on upper wall in t plane by ratio of arc lengths.
- d) Calculate pole location b_i 's in ζ plane.

Step 4 Check Convergence

a) Calculate absolute error for all poles

$$\varepsilon_i = |Z_i - Z_{Ci}|$$

b) Check convergence

max (ε_i) < ε_c

- c) Calculate closure error using subroutine CLØSUR
- d) If not converged repeat Steps 2, 3, 4 If converged return

Fig. 2. Flow Chart for Subsonic MDAVIS

Object

Calculate single potential line

Options

None

Input Symbols

J		Calculate Jth potential line
KN		Number of output stations
NNS		Number of integration steps
TT	t i	Pole locations in t plane
ZO	Zo	Initial Z location
Output Symbo	ols	
Z1	Z	Coordinates of potential line

Z1	Z K	Coordinates	of p	otentia
DZDT1	(dZ/dt) _K	Derivative		

Theory

After a converged solution for the pole locations is obtained, this subroutine integrates the potential line at the Jth station in NNS steps and outputs the coordinates and derivatives of KN stations. Then let us choose

$$NNS = NSD * (KN - I) + KN$$
(1)

where NSD is the number of integration steps per output station. The integration starts at Z_0 in the Z plane and t₀ given by

$$t_0 = DSTEP (J-I) - t_1/2 + 0 + i$$
 (2)

in the t plane. The parameter t_L is chosen in the approximate coordinate calculation to center the pole distributions about plus and minus values.

Subroutine NØRLIH (Cont'd)

The integration step is then given by

$$\Delta t = 1 / (NNS-1) * i$$
(3)

Then we have the recursion formula

$$Z_1 = Z_0 \tag{4}$$

$$Z_{K} = Z_{K-1} + \int_{K-1}^{t_{K-1} + \Delta t \cdot L} \frac{dZ}{dt} dt$$
(5)

$$\left(\frac{dZ}{dt}\right)_{t_{\kappa}} = \frac{1}{2} \left[\left(\frac{dZ}{dt}\right)_{t_{\kappa}} - \Delta t + \left(\frac{dZ}{dt}\right)_{t_{\kappa}} + \Delta t \right]$$
(6)

Object

Interpolates wall curvature at output location

Options

None

Input Symbols

KKL,KKU	K _L ,K _U	Curvature of lower/upper wall
XL,YL	X _L ,Y _L	Input coordinates lower wall
XU,YU	x _u ,y _u	Input coordinates upper wall
SL,SU	s _L ,s _U	Arc length lower/upper wall
Q1		Coordinate data

Output Symbols

RHS1(3)	K _L (J)	Curvature lower wall
RTS1(3)	K ₁₁ (J)	Curvature upper wall

Theory

The streamline curvature KKL and KKU is known at the input data points (XL,YL) and (XU,YU) respectively. The coordinates are known at station J for equal streamwise steps DSTEP. Let (X_L, Y_L) and (X_U, Y_U) be the lower and upper wall coordinates at station J obtained from the Ql array. A straight line is passed through these points and a serarch of the input coordinates is made using subroutine INSECT to determine the intersection on each wall. Subroutine INSECT returns an interpolation parameter which is used to calculate $K_L(J), K_U(J)$

Object

Store Q parameters in Q1, Q2 arrays

<u>Options</u>

IGRID	=	0	Uniform grid
	=	1	Nonuniform grid
	=	2	Both grids
IXFG	=	0	Uniform grid
	=	1	Interpolate only

Input Symbols

DSTEP	ΔS	Streamwise step size
JL		Number of potential lines
KL		Number of streamlines
RADR	r	Reference radius

Output Symbols

RHS1,RMS1,RTS1	Wall coordinate data uniform grid
RHS2,RMS2, RTS2	Wall coordinate data nonuniform grid
QPARM1	Parameters for uniform grid
QPARM2	Parameters for nonuniform grid

Theory

The wall coordinate data and grid parameters are calculated by this subroutine.

Subroutine Q2INTP

<u>Object</u>

Interpolate from uniform grid to nonuniform grid

Options

None

Input Sybmols

KL	Number of output streamlines	
KN	Number of input streamlines	
Ql	Coordinate data for uniform grid	
Output Symbols		
Q2	Coordinate data for nonuniform grid	

Theory

The normal coordinate for a uniform grid is Q1(19,K) K=1,KN and the normal coordinate for the nonuniform grid is Q2(18,K) K=1,KL. The Q2 variables are obtained from the Q1 variables by linear interpolation using the normal coordinate as the independent variable.

Reads user input control parameters

Options

None

Input Signals

See input data Section 10.2

Theory

This subroutine reads the input control parameters, checks for inconsistencies and prints the input data.

Calculate duct rotation and scaling

Options

None

Input Symbols

ZC Z_c Input duct coordinates

Output Symbols

XM M Rotational constant

Theory

Far upstream of the duct inlet $\zeta \not \sim \infty$ and the Schwartz-Christoffel transformation reduces to

$$\frac{\mathrm{d}Z}{\mathrm{d}\zeta} = \frac{\mathrm{M}}{\zeta} \tag{1}$$

Integrating Eq. (1) we have

$$Z = M \ln \zeta + Z_0$$
 (2)

The tranformation to the t plane is given by

$$\ln \zeta = \pi (i - t) \tag{3}$$

and Eq. (2) becomes a duct with parallel walls.

$$Z = M \pi (i-t) + Z_0$$
(4)

Subtracting the lower wall from the upper wall we have

$$Z_{U} - Z_{L} = -M\pi i$$
⁽⁵⁾

III-72

The height of the duct is given by

$$H = \left| Z_{U} - Z_{L} \right| \tag{6}$$

Hence

$$Z_{U} - Z_{L} = He^{i(\theta + \pi/2)}$$
(7)

where θ is the angle of the duct with respect to the real axis.

Then solving for M using Eq. (5) and Eq. (7) we have

$$M = \frac{-H}{\pi} e^{i\theta}$$
(8)

Since this solution requires parallel walls, this subroutine will modify the Nth point of the data set to insure parallel walls at the inlet so that the correct duct height H can be determined at the inlet.

Cubic spline smoothing on arc length

Options

None

Argument List

JX		Number of input coordinate points
JXB		Number of ouptut coordinate points
JXK		Number of knots in spline fit
Х,Ү	X ,Y	Input coordinates
S	x	Arc length along input curve
SB	S	Arc length along output curve
XB,YB	X,Y	Output smoothed coordinates

Theory

The arc length along the input curve is calculated using subroutine ARCL1. Then an increment of arc length is defined by

$$\Delta \overline{S} = (S(JX) - S(I)) / (JXB - I)$$
⁽¹⁾

The curves X(S) and Y(S) are smoothed using subroutine SM $\phi\phi$ TH which returns X(S) and Y(S) for JXB points spaced ΔS in length

.

<u>Object</u>

Calculate Integration Step For Schwartz-Christoffel Transformation

Options

None

Variables

B(K)	=	^ь к	,	Location of pole in ζ plane
BETM(K)	=	-α _K /π	,	Turning angle in Z plane
DZ	=	∆z _m	>	Step size in Z plane
DZETD	=	∆ړ ∆tm m	3 3	Step size in ζ plane Step size in t plane
XM	=	М	,	Scale factor
ZETD1	=	ς _m	,	Initial ζ
ZETD2	æ	^ζ m+1	,	Final ζ
NBE	=	N	,	Number of poles
GAMA	=	Υ _m	3	Exit divergence angle

Theory

The second order integration formula evaluated at the mid point is given by Davis Ref. 1 as

$$\left(\frac{dZ}{d\zeta}\right)_{M+1/2} = \frac{M}{\zeta_{M+1/2}} \zeta_{M+1/2}^{\alpha M/\pi} \sum_{I=1}^{N} \left\{ \frac{\left(\zeta_{M+1} - b_{I}\right)^{-\alpha_{I}/\pi + 1} - \left(\zeta_{M} - b_{I}\right)^{-\alpha_{I}/\pi + 1}}{\Delta\zeta_{M}(-\alpha_{I}/\pi + 1)} \right\}$$
(1)

where

$$\Delta \zeta_{M} = \zeta_{M+1} - \zeta_{M} \tag{2}$$

$$\zeta_{M+1/2} = \frac{1}{2} (\zeta_{M+1} + \zeta_{M})$$
(3)

III-75

The transformation to the t plane is given by

$$\left(\frac{dt}{d\zeta}\right)_{M+1/2} = -\frac{1}{\pi\zeta_{M+1/2}}$$
(4)

Then we have

$$\Delta Z_{M} = \left(\frac{dZ}{d\zeta}\right)_{M+1/2} / \left(\frac{dt}{d\zeta}\right)_{M+1/2} \Delta^{\dagger} M$$
(5)

where Δt_{m} is chosen by the input ζ 's.

$$\Delta t = -\left(\ln \zeta_{M+1} - \ln \zeta_{M}\right) / \pi \tag{6}$$

References

1. Davis, R. T.: Numerical Methods for Coordinate Generation Based on Schwartz-Christoffel Transformations.

Objec				
	Integrate each st	reamline one step		
Optic	ons			
	None			*.
Argun	nent List			
	J		Streamwise station	4 <u>M</u>
	ZI	z ^J	Coordinates at J	- 670 c
	20	z ^{J+1}	Coordinates at J+1	
	DZDTO	(dZ/dt) ^{J+1/2}	Derivative at mid point	an a
Theor	<u>y</u>		en e	

Theory

This subroutine integrates K = 1, KN streamlines one step

$$Z_{\kappa}^{J+i} = Z_{\kappa}^{J} + \left(\frac{dZ}{dt}\right)_{\kappa}^{J+i/2} \Delta t$$

(1)

using subroutine STEP.

Stores X,Y data into interpolating Table T

Options

None

Input Symbols

Х,Ү	x,y	Independent variable arrays
NPT		Number of data pairs (X,Y)
NORDER		Interpolation order (= 1, 2 or 3)

Output Symbols

Т	Output	interpolation	table .
---	--------	---------------	---------

Theory

The data is stored into T as follows

T(1) = 1. T(2) = NORDER T(3) = NPT T(4) = 0. T(J + 4) = X(J), J = 1,NPTT(J + NPT + 4) = Y(J), J = 1,NPT

Object

Update upper wall upstream point

Options

None

Input Symbols

	ITER	ν	Iteration number
	THETA1	θ	Angle of duct rotation from real axis
	TT	t ^v i	Location of poles in t plane
	ZC	^Z ci	Input wall coordinates
	ZU	z _u	End point of potential line integration
Outpu	it Symbols		
	TT(N)	$t_N^{\nu+1}$	Updated t plane coordinate at point N

Theory

This subroutine updates the corner point Z to close the polygon by jumping from the lower wall to the upper wall as shown ^Nin Fig. 3. With known t^v_i, the point Z_N^{ν} is determined by integrating along the path (Z_{c1},A,Z_N^{ν}) . The error in closing the polygon is given by

$$\mathcal{E} = \left| Z_{N}^{\nu} - Z_{CN} \right| \tag{1}$$

The update $t_N^{\nu+1}$ is determined in the following manner. Let us define upstream points t_1 and t_N given by

$$\mathbf{t}_{1}^{\prime} = \mathbf{t}_{1} - \boldsymbol{\sigma} \left[\mathbf{t}_{1}^{\mathcal{V}} \right] \tag{2}$$

$$\mathbf{f}_{\mathbf{N}}^{\prime} = \mathbf{f}_{\mathbf{I}}^{\prime} + \mathbf{i} \tag{3}$$

where σ is a parameter chosen to move t_1' sufficiently upstream to approximate the limiting case t \rightarrow - ∞

$$Z = \pi M (i-t) + Z_0$$
⁽⁴⁾

Then

$$Z'_{N} - Z'_{I} = -\pi M i$$
 (5)

The point Z'_{1} is determined by integrating along the path (Z_{c1}, Z'_{i}) and Z'_{N} is determined from Eq. (5). A ratio of wall lengths is defined

$$R = \frac{|z_{cN} - z'_{N}|}{|z_{N}' - z'_{N}|}$$
(6)

and the update for t_N^ν is given by

 $t_{N}^{\nu+1} = t_{N}' + R \left(t_{N}^{\nu} - t_{N}' \right)$ (7)

Fig. 3. Update for Corner Point

Subroutine UNBAR (T, IK, XIN, YIN, ZZ, KK)

<u>Object</u>

Interpolate a univariate or bivariate table.

Input Symbols

Т	=	Name of the array which contains the table values.
IK	=	Element of the array at which the table starts. If you have only one table in the array, IK=ONE.
XIN	8	Independent variable in the X-sense.
YIN	=	Independent variable in the Y-sense. If the table is a univariate, then YIN is zero.

Output Symbols

ZZ	=	Dependent variable					
KK	=	Off Table indicator					
	=	0 Normal evaluation					
	=	l Off On X Min.					
	=	2 Off On X Max.					
	=	3 Off On Y Min.					
	=	4 Off On X Min. and Y Min.					
	=	5 Off On X Max. and Y Min.					
	=	6 Off On Y Max.					
	=	7 Off On X Min. and Y Max.					
	=	8 Off On X Max. and Y Max.					
	=	Less Than 0, Table set up wrong.					

Theory

If either variable is off the table, UNBAR will return the corner value. This implies that UNBAR will not extrapolate and does not recognize any discontinuities. The table must be set up as follows-all numbers are in floating point mode.

T(IK)	=	Curve No.
T(IK+1)	=	Degree of Interpolating (1, 2, 3)
T(IK+2)	=	NX. No. of X values
T(IK+3)	=	NY. No. of Y values. (in univariate make zero)
T(IK++)	=	X values in ascending order.
T(IK++)	=	Y values in ascending order.
T(IK++)	=	Z values. Put them in following order- $(Z(1.1), Z(1,2),$
		Z(1,3)Z(1,NY), Z(2,1), Z(2,2)Z(2,NY)Z(NX,1),
		Z(NX,2) $Z(NX,NY)$. For bivariate only.

A Lagrongian interpolation polynomial of degree 1, 2 or 3 will be used for the interpolation depending upon T(IK+1).

Approximate potential flow velocity

<u>Options</u>

None

Input Symbols

	HT	h	,	Approximate duct height
	IL,IU		,	Indices for lower/upper wall potential line
	NPØT	N _p	,	Number of potential lines
	SAVG	S	,	Average duct length
	SL,SU	s _L ,s _U	,	Arc length lower/upper wall
	TH	θ	,	Mean line angle
	XL,YL	X _L ,Y _L	,	Coordinates lower wall
	XU,YU	x _U ,Y _U	,	Coordinates upper wall
	XLI,YLI	X _{LI} ,Y _{LI}	,	ESTCØR coordinates lower wall
	XUI,YUI	X _{UI} ,Y _{UI}	,	ESTCØR coordinates upper wall
Outpu	it Symbols			

VL, VU V_L, V_U , Velocity lower/upper wall

Theory

For each computed potential line, the wall velocity can be estimated as follows

and the curvature of the mean line by

$$\overline{\mathbf{K}} = \frac{\mathbf{d}\,\boldsymbol{\theta}}{\mathbf{d}\,\overline{\mathbf{S}}} \tag{2}$$

Then define

$$\phi = \frac{1 - \overline{K} / (2 \overline{V})}{1 + \overline{K} / (2 \overline{V})}$$
(3)

and the approximate velocity at the wall is given by

$$V_{UI} = \frac{2}{1+\phi} \overline{V}$$
 (4)

$$V_{LI} = \frac{2\phi}{1+\phi} \overline{V}$$
 (5)

Arc lengths S_{LI} and S_{UI} may be calculated using subroutine ARCL for the lower and uppwer walls defined by (X_{LI}, Y_{LI}) and (X_{UI}, Y_{UI}) . The linear interpolation is used with arc length as an independent variable to interpolate V_L and V_U from the table V_{LI}, V_{UI} .

Subroutine XFGRID

Object

Interpolate uniform to nonuniform grid

Options

None

Input Symbols

DDS	Mesh distortion parameter
KL	Number of output streamlines
Q1	Input coordinate data array

Output Symbols

C)2	Output	coordinate	data	array
	(o a op a o	000100000		

Theory

If IXFG option is turned on, only this subroutine is called by the main program CØDUCT. This subroutine reads in input coordinate file from unit IUUNIT, interpolates the Ql array with KN uniformly spaced streamlines to obtain the Q2 array with KL nonuniformly spaced streamlines and stores the output on unit INUNIT.

1. Re N	eport No. IASA CR-165598	2. Government Access	ion No.	3. Recipient's Catalog	No.	
4. Ti	tle and Subtitle			5. Report Date		
l n	Iser's Manual for Axisymmetric I	Mffuser Duct (ADD)	Code	February 1982		
ν	Volume III - ADD Code Coordinate	Generator	/ ••••	6. Performing Organiz	ation Code	
				778-32-01		
7. AL	uthor(s)			8. Performing Organization	ation Report No.	
) I. Anderson, G. B. Hankins,	Ir. and D. E. Edv	vards	UTRC81-65		
				10. Work Unit No.		
9. Pe	erforming Organization Name and Address					
U	Inited Technologies Research Cen	ter	- T	11. Contract or Grant	No.	
E	ast Hartford, Connecticut			DEN 3-235		
		ŀ	13. Type of Report and Period Covered			
12. Sp	consoring Agency Name and Address	·····		Contractor Be	nort	
ט	J. S. Department of Energy		-{	14 Sooneries Arenov	Cot Penart No	
	Office of Vehicle and Engine R&D			14. Sponsoring Agency core Report No.		
<u> </u>	vashington, D. C. 20545			DOE/NASA/0235-2		
15. Su	upplementary Notes					
F	inal Report. Prepared under Inte	eragency Agreemen	nt DE-AI01-77CS51040	. Project Manage	er,	
	4135	nics and Fuels Divi	Ision, NASA Lewis Re	search Center, C	leveland, Onio	
16. AL	bstract					
	Diffuser Duct (ADD) code. It includes a list of references which describe the formulation of the ADD code and comparisons of calculation with experimental flows. The input/output and general use of the code is described in the first volume. The second volume contains a detailed description of the code including the global structure of the code, list of FORTRAN variables, and descriptions of the sub-routines. The third volume contains a detailed description of the CODUCT code which generates coordinate systems for arbitrary axisymmetric ducts.					
17 4	wheels to see the second se					
''. K	ey words (Suggested by Author(S))		IS, Distribution Statement			
	Turbulent, Swirling, Compressible, Axisymmetric, Gas turbine flow, Duct flow		Unclassified - unlimited			
			DOE Category UC-96			
ł			202 Cangory O	•		
<u> </u>	······································					
19. S	ecurity Classif. (of this report)	20. Security Classif. (c	of this page)	21. No. of Pages	22. Price*	
Unclassified Uncl		Unclass	ified	88	A05	

* For sale by the National Technical Information Service, Springfield, Virginia 22161

.

-

.

NASA Langley (Rev. May 1988)

RIAD N-75

3 1176 01326 9072