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Abstract

We re-examine the energy dependence of the mean escape length of cosmic

rays from the galaxy in the light of recent measurements of cosmic ray

abundances from the Danish-French experiment on HEAO-3. On comparing these

data with results of our propagation calculations, we find that the energy

dependence is steeper than previously thought. The boron to carbon, nitrogen

to oxygen and 21 s Z < 25 to iron ratios at energies above 2.3 GeV/nucleon are

best fit with 95 percent confidence by a rigidity dependence R(-0.7±0.1).

This, coupled with the absence of structure in the proton spectrum to 10 14 eV,

implies that 1 GeV/nucleon cosmic rays do not diffuse more than a few hundred

parsecs from their sources during their 10 7 year lifetime. Further, if the

source spectrum is produced by shock acceleration, the shocks must be strong

(compression ratio 4 or certainly greater than 3.5). The shapes of the

observed energy spectra are well fit by this source spectrum. We also agree

with earlier conclusions by the Chicago group concerning the impact of their

data from IMP on the decrease in the path length at lower energies (< 1

GeV/nuc). We discuss implications for the shape of the cosmic ray path length

distribution at short path lengths and on the galactic wind model for the loss

of cosmic rays from the galaxy by convection.

l Department of Physics and Astronomy, University o` Maryland, College Park, MD.
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I. Introduction

Highly accurate new data on the relative abundances of cosmic ray nuclei

(boron through nickel) in the energy range 0.9 to 15 GeV/nucleon are now

available (Engelmann et al., 1961). These data have been obtained on the

Danish-French collaborative experiment (Bouffard et al., 1982) flown on board

the HEAD-3 satellite which was launched on September 20, 1979. At the same

time, new more accurate measurements of some of the cross sections upon which

an interpretation of these data must be based have been made and are available

(14ebber and Brautigam, 1982; see also survey of total cross section measure-

ments by Letaw et al., 1962). Using these new data and earlier low energy

measurements, we have re-examined the nature of cosmic ray acceleration and

propagation.

The energy dependence of the secondary to primary ratios allows us to

determine the energy dependence of the mean escape length, X e . We shall use

this, together with the measured proton energy spectrum to infer the source

spectrum, i.e., the spectrum of cosmic rays after acceleration. The result

will be discussed in terms of predictions of shock acceleration models

(Axford, Leer and Skadron, 1977; Bell, 1978a and b; Blandford and Ost:riker,

1978 and 1980). The energy dependence of the mean escape length inferred from

the data at low energies has previously been shown by the University of

Chicago group (Garcia-Munoz et al., 1979) to require a reduction in x e with

decreasing energy below - 1 GeV/nuc. We find this reduction is more rapid

than can be accounted for in dynamical halo models. Using the inferred source

spectrum and energy dependence of ae we will show that the observed energy

spectra of primary species can be satisfactorily accounted for.
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I1. Source Spectra

Cosmic ray energy spectra must reflect the mechanism by which they have

been accelerateerh The range from 100 MeV/nuc to 1 GeV/nuc, in which particle

energies transition from the non-relativistic to the relativistic regime, is

particularly crucial in this regard as, at these energies, the effects of the

various mechanisms differ and are reflected in the predicted spectral shapes.

In this section we shall discuss the shape of the spectra predicted by shock

acceleration models over the whole energy range accessible to observation of

the galactic cosmic rays.

At energies where individual cosmic ray species i—nay be identified, it is

customary to measure their flux as a function of kinetic energy per nucleon, T.

Previous analyses of the solar modulation have shown that the demodulated

spectrum outside the ^^eliosphere must lie somewhere between a power law in

total energy and a power law in rigidity with exponent -2.7. These spectra

cannot be distinguished at high energy. Extensive analyses by the University

of Chicago group (Garcia-Munoz et al., 1975a and 1975b), taking account of

solar modulat45i, and assuming energy independent propagation, give a best

source spect^,um dJ a {T + 400 MeV/nuc} -2 ' 6 at energies below a few GeV/nuc.	
r,

This spectrum is plotted in Figure 1. However, this is only an empirical fit
ii

to the data, and it would be desirable to find a theoretical justification for 	 .h

this shape.	 +

The shock acceleration mechanism gives a definite prediction for the

shape of the source spectrum. This, along with our current understanding of 	 1

the propagation of cosmic ray nuclei allows us to predict the interstellar

energy spectra of cosmic ray nuclei. We summarize here the relevant

discussion of acceleration of cosmic rays by shocks (see review paper by

Axford, 1981).
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A plane shock of infinite extent will produce a density of particles, N,

which is a power law in momentum, p,

dN = kp -(2 + E) dp ,	 (1)

where the exponent depends upon the strength of the shock. Defining r as the

ratio of the velocities of the shocked and the unshocked materials, V1 and V2

respectively, then

E; 
= 4 - r	 (2)
r-1

For strong shocks, r = 4, hence e = 0.

The acceleration mechanism involves momentum rather than rigidity. This

is because the relative motion of the shocked and unshocked material provide a

momentum increment each time a particle crosses the shock boundary, even

though the scattering mechanism which keeps the particle near the shock front

may be a rigidity dependent phenomenon due to the magnetic turbulence. A

power law results, the high energy particles having traversed the shock many

times.

In the event of acceleration by more than one shock, the spectrum will be

determined by the strongest shock. Axford (1981) shows that shocks which are

strong enough to produce the cosmic ray spectrum occupy only a small volume of

space, so it is unlikely that the observed particles have been subjected to

more than one strong shock during their lifetime.

The maximum energy to which particles can be accelerated will depend upon

how long they can be trapped near the shock front. While the power law

produced is independent of the scattering mechanism (hence not a rigidity Y

3
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process), the energy at which the trapping mechanism begins to break down will

be rigidity dependent. One of two factors will ultimately limit the rigidity

to which particles can be accelerated: a) the gyro-radius of the particles

could be so large that the shock no longer looks planar; b) the particles

could fail to be trapped near the shock front (diffusion coefficients tend to

rise with increasing rigidity) for a sufficiently long time (the higher the

energy, the longer the acceleration time required). In either case, the

mechanism will break down at constant rigidity. Current estimates for the

maximum rigidity that can be obtained by acceleration in supernova Ghocks are

less than 10 6 GV/c (Cesarsky and Lagage, 1981).

As a function of kinetic energy per nucleon, the cosmic ray energy

spectrum per unit volume at production (equation 1) becomes:

dN = kp - ( 2 + e )(A/0c)dT
	

(3)

where A is the atomic mass number of the nucleus and Pc is the particle

velocity.

Converting from particle density, N, to flux, J, we obtain:

N = kp- ( 2 + e) ( A /4fr )dT.	 (4)

We compare in Figure 1 this source spectrum expected for strong shocks

(e << 1) with that obtained from the low energy data as discussed earlier.

From 100 MeV/nuc to 1 GeV/nuc the spectra agree within 30 percent when

normalized at 1 GeV/nuc.

The spectrum (T + 400) - 2.6 has been used to interpret cosmic ray

propagation data (Garcia-Munoz et al., 1981a and references therein). This

i
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spectrum, when propagated in an energy independent manner, gives a reasonable

fit to the demodulated spectra. However, it must be modified for energy

dependent propagation effects in order to derive a source spectrum. Webber

(1981) came to a similar conclusion and showed that the source spectrum at

high rigidity should be of the form dJ/dT a R ,1 ( 2+e ). We use the source

spectrum given in Equation (4) to interpret the data at all rigidities.

111. Propagation Effects

The cosmic ray spectra outside the heliosphere will be affected by the

propagation of the particles from their source through the interstellar

medium. For secondary nuclei, which are produced by interactions in the

interstellar material, the source spectra will be similar to the equilVrrium

spectra of the primaries. Above a few GeV/nuc, the spectra of secondaries are

observed to be steeper than of primaries (see e.g., Ormes and Freier 1978).

In the leaky box model (see Cowsik et al., 1967) or in a diffusion picture

(see Ginzburg and Ptuskin, 1976), higher energy particles must leak out of the

galaxy more easily (faster) in order to produce equilibrium spectra that are

steeper than source spectra (as reflected in the steeper spectra of secondary

nuclei).

Assuming for the moment that the mean escape length can be represented as

a power law of particle rigidity, 
X  

a R -a , the observed spectrum at energies

above a few GeV/nuc will be

U	 Qa	 -(2 + e + s)
( dT")observed m (-d7)source R
	 « R	

(5)

whenever escape losses are dominant over other possible loss mechanisms. For

protons, the interaction length in interstellar matter, dint, is about 60

is

L
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g/cm 2 (i.e., aint >> Xe) so interaction losses can be ignored, and the high

energy proton spectrum can be used to determine 2 + e + d. Proton spectral

measurements (Ryan et al. 1972; Gregory et al., 1981; Tasaka et al., 1982) up

to 10 5 GV/c rigidity (10 14 eV) give 2 + e + 6 = 2.70 j: 0.05. We will infer

the slope of the injection spectrum of primary species after obtaining 6 from

the energy dependence of ratios of secondary to primary nuclei in the cosmic

rays in the next section.

III-1 Mean Escape Length at High Energy

In the early seventies it was discovered that the mean escape length

decreases monotonically with energy above a few GeV/nuc (Smith et al., 1973,

Juliusson and Meyer, 1973). On the other hand, at low energies the mean

escape length becomes constant (Protheroe, Ormes and Comstock, 1981, and

references therein) or even decreases (Garcia-Munoz et al.. 1981b). The new

HEAO-3 data cover the energy range 0.9--15 GeV/nuc nd are of very high

statistical accuracy. The available data on the energy dependence of the

boron to carbon ratio from this experiment are plotted in Figure 2. We also

show data obtained on both satellites and balloons. The satellite data at low

energy (Garcia-Munoz et al., 1979) are from IMP, and the higher energy data 	 n

(Engelmann et al., 1981) are from the HEAD-3 cosmic ray experiment for which

the quoted statistical errors are less than ±2%. Note how rapidly the HEAD-3

data falls with energy above 1 GeV/nuc. The balloon data are from a variety

of observations with individual references listed separately at the end of the

paper (original compilation, Garcia-Munoz et al., 1981b, with additions).

They are shown in order to indicate the general agreement between these and

the new more accurate satellite observations. This agreement is important

because of a potential problem with the HEAO-3 data. In order to avoid

14
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triggering on delta rays with high 7 nuclei, a compromise had to be made in

flash tube triggering efficiency for low Z nuclei.	 As a result, not every low

7. nucleus produced a recognizable track in the flash tube array (Rotenberg et

al., 1981). Because of this inefficiency, lithium and some of the berylium

{	 data cannot be used. At the quoted accuracies, it is possible that an energy

dependent bias in the flash tube efficiency could affect the boron to carbon

ratio. Both the agreement with the balloon data and, as we shall see later,

other secondary to primary ratios which are not subject to this bias show this

is probably not the case.

To determine the mean escape length as a function of energy, we have

performed a propagation calculation for the leaky box model which takes into

account nuclear interactions, radioactive decay, ionization energy losses and

solar modulation. Details of the method of calculation are given in our

earlier work (Protheroe, Ormes, and Comstock, 1981). In the present calcu-

lation we have used source elemental abundances derived from the HFAO-3

data (Perron et al., 1982), We assumed the isotope ratios at the source to be

as in solar material (Cameron, 1980), except for C, 0, Ne, Mg, and Si for

which we used those obtained by Wiedenbeck and Greiner (1981). For source

abundances of the sub-iron group (Sc--Mn) we have taken the local galactic

abundances (Meyer, 1979). We have used energy dependent total cross sections

calculated from formulae of Letaw et al. (1982). For spallation cross

sections, we have used the semi-empirical formulas (Silberberg and Tsao,

1973a, b, 1977a,b,c; Tsao and Silberberg, 1979). The semi-empirical cross

sections for spallation of iron have been normalized to the recent

measurements of Webber and Brautigam (1982) at 980 MeV/nucleon.

Since the spallation and total interaction cross sections are expected to

be almost independent of energy above - 2.3 GeV/nuc (Silberberg and Tsao,
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1977a), by comparing the results of our propagation calculations with the

secondary to primary ratios observed above this energy from the HEAO-3 experi-

ment, we should be able to determine d eery well. We can also determine the

normalization of a e but, for this, we must take into account a systematic

error due to'uncertainties in spallation cross sections. For example, the

measurements for iron fragmentation cross sections of high statistical

accuracy (3-4 percent) at 660 MeV/nuc and 980 MeV/nuc (Webber and Brautigam,

1982) indicate substantial energy dependence in the cross sections which are

not matched by a comparable accuracy in the semi-empirical relationships used

to calculate cross sections at all other energies. Furthermore there are no

measurements of comparable accuracy at energies above 1 GeV/nuc. and for many

of the other relevant partial cross sections. Because of these limitations,

we estimate the uncertainty in the normalization for ae due to cross sections

uncertainties to be of the order of 10 percent. Previous estimates of the

uncertainties are even larger (30 percent, Raisbeck, 1979 and 15 percent

Webber and Brautigam, 1982).

In this section, we shall restrict our analysis to the high energy data

(2.8-15 GeV/nuc) to probe the assymptotic behavior of ae, avoiding biases

introduced at low energies by solar modulation effects, strong energy depen-

dence of cross sections, and velocity dependent propagation effects. For a

source spectrum appropriate to acceleration by strong shocks, i.e., dJ/dT

a p-2, we have calculated the energy dependence of secondary to primary ratios

for two possible forms of the energy variatinn of Xe;

d
a e = ARR 

R:
(6)

and
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xe = ATT -
a 

T .	 (7)

We show in Figure 3 the results of a comparison of these propagation	 w

calculations with various secondary to primary ratios obtained from the HEAD-3

data over the restricted energy range 2.6--15 GeV/nuc. The results are given,

for three important secondary to primary ratios, in the form of the X 2 contour

plot in the A -d plane. For clarity, only the contour corresponding to the

G5 percent confidence interval has been plotted. From this figure, it is

clear that for these almost purely secondary to primary ratios (i.e., B/C,

N/0, Sc-Mn/Fe) the HEAO-3 data give a best value of 6 somewhat higher than

previously realized. from all those ratios, we find S R m 0.7 1 0.1 for the

rigidity dependent fit (Equation 6) and 
6  m 0.63 1 0.1 for the kinetic energy

per nucleon dependent fit (equation 7). There is sufficient internal consistency
between the calculations and the different ratios that we see no reason to

question the boron to carbon ratio from HEAO-3 as published.

Previous estimates based on balloon data (see data survey references) of

the boron to, carbon and other secondary to primary cosmic ray ratios placed 8T

in the range 0.3-0.5. Two problems may have resulted in these lower values of

8T . First of all, the data were of much poorer statistical significance, and

so the structural features were riot so pronounced. Second, the data in the

atmosphere at high energy is subject to large atmospheric corrections.

The latter problem is not !resent in the HEAD-3 observations. As to the

former problem,* when we attempted fitting the HEAO-3 data over a wider energy

range, consistently poor X'4 values resulted. Perron et al. (1961) in their

analysis of the HEAO-3 Be and B data suggest larger values of d would fit better,

and it is clear from the figures in their paper that they too obtain poor fits

}
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4	 with 6	 0.5 variation. If one were to ignore the quoted errors and include data

at lower energies in the fit, lower values of 6T could easily be obtained.

Kinematic effects make 611 larger than SST in this energy range. While kinetic

energy has often been used because it is the observers variable, magnetic

scattering is a phenomenon in which rigidity is the more natural variable and so	 !'

we presume that is the correct physical variable.

From the results of our propagation calculation, as shown in Figure 3, we

find that the best value of A as obtained from the ratio of iron-secondaries to

iron is about 10 percent higher than that obtained from the boron to carbon

ratio. This is consistent with a slightly truncated pathlength distribution, for

example as expected in the nested leaky box model (Cowsik and Wilson, 1973). It

would imply about R percent of a e could be in the source region. Unfortunately,

this conclusion cannot be reached because of previously mentioned uncertainties

in spallation cross sections. To illustrate this point the acceptable range of

AR , obtained from the boron to carbon data allowing for a 10 percent uncertainty

in the partial cross sections, has bebn added to Figure 3(a) and includes the

region between the two dashed lines. The 'best' values of AR obtained from the

three secondary to primary ratios shown in Figure 3(a) appear to be entirely

consistent if uncertainties in spallation cross sections of - 10 percent are

taken into account. For further discussion of truncated pathlength

distributions, see nrotheroe, 0rmes, and Comstock (1931) and Garcia-Munoz et al.

(1961a).

Care must be taken in interpreting the normalization constants given in

Figure 3. The fits are valid at 2.3 GeV/nuc and above, and the normalization

constants apply to much lower energy (rigidity). From the B/C contour in Figure

3b and Equation (7), one can readily show that the value of ae at 5 GeV/nuc is

about 6 g/cm 2 , consistent with previous analyses.
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III-2 Mean Esca e Length at Low Energies

Before interpreting the abundances of the lower energy nuclei in terms of

the propagation of cosmic rays in the interstellar medium, we must, allow for

effects of solar modulation. We use the simple force field approximation

(Gleeson and Axrord, 1968) to calculate modulated spectra (observed spectra) from

interstellar spectra. Throughout the remaining work, we will adopt a

deceleration parameter ^ = 600 MV appropriate to near solar maximum conditions

(Urch and Gleeson, 1973). This corresponds to a mean energy loss of 300 MeV/nuc

for nuclei with A/Z = 2.

The variation of ae with energy below a few GeV/nuc is difficult to

determine reliably. This is because the precise energy dependence of many of the

important spallat3on cross sections are not measured as a function of energy and

becar,..,'^ the secondary to primary ratios are altered by solar modulation. It is

clear, however, that the escape length must flatten off or decrease with

decreasing energy below a few GeV/nuc. This is indicated in Figure 4 where we

plot the energy dependence of the boron to carbon ratio obtained from the

satellite experiments. In the figure we show the result (solid curve labelled n

= 0) of extrapolating the rigidity dependence of X e derived in Section III-1

(from the high energy data) to lower energies where the calculated boron to

carbon ratio is seen to lie significantly above the data. We will now discuss

the deviation of ae from a simple power law in rigidity.

A power law rigidity dependence of the mean escape length, x  a R- 6, is

expected in diffusion models (e.g., Ginzburg and Ptuskin, 1976) for a rigidity

dependence of the diffusion coefficient of the form

k = K0ORa.	 (B)
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This does not give tKe required flattening or reduction in xe at low energies.

Jones (1979) and Freedwian et al. (1980), following the suggestions of Jokipii

(1976) and Owens and Jokipii (1977), realized that if the cosmic rays were

convected outward in the halo, at some low energy the escape length would turn

over because the timo to escape would become independent of particle velocity,

and hence the escape length would be proportional to velocity. The relative

importance of convection and diffusion may be given in terms of a parameter qo

(Kota and Owens, 1980) given by

q o = Vconv s /Ko
	

(9)

where s is the size of the halo propagation region. In Figure 4, we show (dashed

lines) results for a dynamical halo model calculated for qo = 1 and 3 such that

in the diffusion dominated regime (high energies) the variation of x e with

rigidity is as determined above (Equation 6). These results indicate that the

rapid reduction in X. required by the low energy data (Garcia-Munoz et al., 1979)

cannot be reproduced by the slower variation produced by the dynamical halo

model.

In order to parameterize how rapidly X e must decrease at low energies, we

will compare the low energy observations of secondary to primary ratios and

the spectral shape with a mean escape length which involves a power of the

particle velocity. The form we adopt is

x  = A{1 + (Ro/R)2}-n/2 R-s
	

(10)

where Ro = 1.88 GV/c. for nuclei with A/Z = 2; this corresponds to
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X  , Aan R -6	(11)

where Rc is the particle velocity. We have taken d `; 0.7 and A = 35 g/cm 2 of

interstellar matter, consistent with the high energy boron/carbon data. We show

in Figure 4 results for n - 1 and 3. For the degree of solar modulation assumed

here, we find a reasonable fit may be obtained for n	 3 although lower indices

would apply if the modulation were less than we have assumed here.

We now show in Figure 5 haw the escape length parameterized in this way

a r ees with the observed nitrogen to oxygen and sub-iron to iron ratios.

Nitrogen is present at the cosmic ray source, and so the observed ratio is not

expected to U as steep as the boron to carbon ratio. The energy dependence of

the nitrogen to oxygen ratio is in good agreement with the result for n = 3 while

that of the sub-iron to iron ratio does not require such a marked flattening in

Xe as the boron to carbon ratio or the nitrogen to oxygen ratio. The reason for

this is at present unknown, but it might be due to variations in the iron

spallation cross sections with energy.

III-3 Spectra and Solar Modulation

We will now see how well the predicted interstellar spectra agree with those

observed. In the previous section we found that the mean escape length varied

steeply with energy, and that a  = 0.7 ± 0.1,implying a source spectrum of the

form dJ/dT a R' 2 as expected from shock acceleration by strong

shocks. We now can calculate the spectra of cosmic ray nuclei expected outside

the heliosphere.

In Figure 6 we have plotted (open circles) the energy spectrum of pr,otons

observed at high energies (Ryan et al., 1972; this spectrum is consistent with

the more recent results: Gregory et al., 1981, Tasaka et al., 1982) and at low
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energies we show three estimates of the interstellar proton spectrum derived

after taking into account solar modulation (Morfill, Volk and Lee, 1976; Fisk,

1976; Gloeckler and Jokipii, 1967). We have plotted (solid lines) the energy

spectrum of protons we expect (normalized to the high energy data) for a

variation of mean escape length with rigidity as giver. by Equation (10).

The cross hatched region represents the variation over the range 1 ,. n 6 3. We

find general agreement with the demodulated spectra at low energies (i.e., the

general features are reproduced).

Recause of the competition between nuclear interaction and escape, the

energy spectra of primary nuclei are expected to be somewhat flatter than of

protons even up to several hundred GeV/nuc. Again, in Figure 7, we have

plotted the energy spectra of oxygen and iron observed by Simon et al. (1980)

and Orth et al. (1978) which are indeed flatter than the spectrum observed for

protons (Figure 6). We have added to Figure 7 the spectral shapes expected

from our propagation calculation which are seen to be in good agreement with

the data. The normalization of these curves is determined by the source

abundances; we have made no attempt here to optimize those abundances.

IV Conclusions

We have used the highly accurate new data on secondary to primary ratios

from the "Danish-French experiment on HEAD-3, to determine the energy depen-

dence of the mean matter traversed by cosmic rays in the galaxy. The final

results are shown in Figure 8. We have found that above 2.8 GeV/nuc, the

variation with energy may be as steep as a e « R-0.7 which would imply that

primary cosmic rays may be produced with a p- 2 spectrum as expected for

acceleration by a first order Fermi mechanism in strong shocks.
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A turnover in ae at lower energies proportional to the cube of the

particle velocity is required to fit both the lower energy HEAD-3 ratios and

the observations around 100 MeV/nuc of the boron to carbon ratio made with the

IMP experiment (Garcia-Munoz et al., 1979). As they stated in that paper, if

the solar modulation is as strong as generally believed (200 to 300 MeV/nuc

energy loss), the turnover at about 1 GeV/nuc is very rapid, i. e., much more

rapid than can be accounted for by the dynamical halo model.

A slight truncation of the pathlength distribution may be indicated by

the HEAD-3 data, as well as by the IMP data (Garcia-Munoz et al., 1979). For

example, in the nested leaky box model about 8 percent of the mean matter

traversed could be around source regions. However any conclusion is premature

because of uncertainties in spallation cross sections.

Now that cosmic ray data are available with a statistical accuracy approaching

2 percent, it is important to measure the energy dependence of the major

spallation and total cross sections to a similar accuracy so that more

explicit conclusions can be drawn.

The steep rigidity dependence of the escape length derived here has some

important consequences regarding the distance cosmic rays can propagate under

the assumption of their diffusive storage in the galaxy. Given an age of the

cosmic rays and the assumption that this age corresponds to the escape time

from a given storage volume, one can derive an upp ►., r limit to the size of that

storage volume based on the fact that the cosmic ray age must be greater than

the speed of light crossing time for the region. Since there is no observed

structure (e.g., change of slope) 'in the proton spectrum up to 10 5 GV/c

(Gregory et al., 1981, Tasaka et al., 1982), we conclude that the rapid

decrease of ae with rigidity continues up to this energy. The lifetime of

cosmic rays is proportional to the escape length. Extrapolating from the 107
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year age (Wiedenbeck and Greiner, 1980 and Garcia-Munoz et al., 1981c) at 1

GV/c using the R- 0.7 dependence derived in this paper, the age at 10 5 GV/c is

about 3000 years and the size of the "storage region" must be less than 1 kpc. 	 I!

1

Since particles which diffusively propagate must strongly satisfy this

inequality, the cosmic rays we observe locally probably come from within a few
i
1

hundred parsec and are lost (i.e., have a 'low probability of returning to the
1F
!i

solar system) once they diffuse very far from the disk of the galaxy, If the

escape law were R- 0.5 , as previously believed, this size limit would be an

order of magnitude larger.

We have also shown that the HEAO-3 data cannot be fit in detail by the

combination of diffusive and convective losses postulated by the dynamical
is

halo model. This statement is even stronger if we try to fit the IMP data at

the same time. This is consistent with the conclusion about the scale size of

the storage volume in the following sense. The convection picture discussed

above and compared with data in this paper is assumed to be due to a large

scale galactic wind. Stich a wind might reduce the probabilty that particles

can return to the disk from the halo, but the affect of such winds may be

unobservable locally because of the small region sampled by the cosmic rays

observable at the solar system. However, a conclusion that the dynamical halo

model cannot fit the observations must be tempered with the realization that

the predictions themselves are subject to the uncertainties introduced by the

simplifying theoretical assumptions. Our conclusion is the same as that of

the Chicago group: the only way the observed decrease in the boron to carbon

ratio below 1 GeV/nucleon can be fit is if the modulation parameter is assumed

to be very small (gyp < 100 MV, for n = 0), a result inconsistent with our

current understanding of solar modulation.
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The injection spectrum derived here may be inconsistent with the

observations based on the electron spectrum. Recent observations (Nishimura

et al., 1980, Prince, 1979, Mauger, 1981) of the electron spectrum at high

energy (a 30 GeV) give a spectral exponent y = 3.2 or 3.3. The Simplest

interpretation is that this assymptotic high energy slope should be one power

steeper than the injection spectrum just due to the energy dependence of

synchrotron losses, indicating a source spectrum of slope 2.2 or 2.3,

consistent with the previously quoted rigidity dependence of the escape length

(R- 0.5 ), but inconsistent with our result (R- 0.7 ). An alternative

explanation, however, is that the propagation time from the nearest source is

sufficiently high (perhaps due to an absence of nearby sources) that the

electron spectrum we see at Earth is steeper. Such a steepening would be

consistent with a slight truncation in the path length distribution. This

will be explored further in a subsequent paper.
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FIGURE OPTIONS

Figure 1. Comparison between so ►arce spectra inferred from low energy cosmic

ray data (Garcia-Munoz et al., 1975a,b) and that expected from

acceleration with strong shocks (see text).

Figure 2. Boron to carbon ratio measured by HFAO-3 and IMP satellites are

compared with a survey of balloon observations (see separate data

survey reference list).

Figure 3. Comparison of boron to carbon, sub-iron to iron, and nitrogen to

oxygen ratios observed from 2.845 GeVinuc by HERO-3 with results

of the present propagation calculations. The figure shows the

goodness of fit when the parameters of Equation 6 (part a) or

Equation 7 (part b) are varied. The closed curves are contours of

constant X2 corresponding to 95 percent probab ility. In Section a,

the dashed lines show the effect on the fit to the boron to carbon

ratio of assuming a 10 percent uncertainty in the cross section for

spallation of carbon to boron. Care must be taken in interpreting

the normalization constants, which assume the rigidity (energy)

dependence extends to lower rigidity (energy). The value of a e at

5 GeV/nuc is 6 g/cm 2 , consistent with previous analyses.

Figure 4. Boron to carbon ratio (replotted from Figure 2). Dashed curves

show predicted energy dependence for diffusion/convection model (qo

is defined in Equation 9). Solid curves show prediction for

variation of ae with energy given by Equation 10. 	 The solid

curves are not based on any model but attempts to find empirical 	 f

fits. The modulation parameter assumed is	 600 MV.	
►1



2.

Figure 5. Energy dependence of nitrogen/oxygen and sub-iron/iron ratios (data

from HEAO-3 experiment). Curves give prediction for variation of	
ii

Xe with energy according to Equation 10 (numbers attached to curves

give value of n),

Figure 6. Interstellar proton spectrum. Three estimates of low energy

demodulated spectrum and high energy measurements are given. The

hatched area corresponds to our prediction for a p- 2 injection

spectrum and a variation of Xe with energy given by Equation 10

with n in the range 1 to 3.

Figure 7. Observed iron and oxygen energy spectra (open circles: Simon et

al., 1980; full circles: Orth et al., 1978). Dashed lines:

predicted interstellar spectra; solid lines: rooduiated spectra

(model as in Figure 6).

Figure 8. Summary of the derived mean escape length as a function of

energy. The curve is the empirical fit based on Equation 10 with

n = 3. The best escape length derived from each individual HEAO-3

data point and those of IMP above 100 MeV/nuc are shown based on

^ = 600 MV modulation parameter.

.

a



,

(T + 0.4 GeV/nuc) -2,6

101

101
10-1 1-

10- 1 10°
T (GeV/nuc)

Fla.1

ORIGINAL PAGE IS
OF POOR QUALITY

102

P

as
s.

0 10°

♦ 
p-2

e



-1

OO

u')	 ^-	 rn	 N

O CO O Q O
OOld8 N008VO/N0809

1
O6

_ o

f°N w

Z m

^ Q ^

uj

Q Z: Q
-O- C.> W m

--o- -.0-0
-0-

-{)-

Q ^

C7
WJU

em

LAJ

W

LLJ

_U

Z

O

N

LL

ORIGINAL PAGE 13
OF POOR QUALITY



o0
O

O
^	 ' o
z

F- L

a^

Lf)

0
I M

ca

h	 c4	 L	 ^'	 M

1i ) O

OR

i0
O 

I

tY

C O	 ^

O
Jo O
z

LC)

O 00
N ^°

O^

LV

i
ORIGINAL PAGE IS
OF POOR QUALITY

m

W\

O
N r'

t^

mss,

L

0

t

r



ORIGINAL PAGE 'S
OF, POOR QUALITY

0
0

/ s ^

cCY)l

0%

CV)

0—

0—

O

A

N
t^n

oijej uoqje3/uojoq



ORIGINAL PAGE 19
OF POOR QUALITY

N
O
V-

v

UL
O
O

I I	 ^'
$	 ^	 O

^

	

C	 O!a .o,

-O-	 O
0

-Q-	 O z

O e— M O e— M

T-
0 --.

Lo

A+
000,	 u-

0 
O
T ^

O
co	 O	 Cf'	 tV	 O
O	 O	 O	 O	 O

o g le u



N

0r

a^
r ^ l7

Or LL-

'C7)
P ^^
0r

OR;GINAL PAGZ M
OF POOR QUALITY

i

m
0r

G

C)

C)

0.

0
i

• I,
J

V
r.^

I	 '

1	 '

♦ a

^ v

^e

d'	 M

or	 r
(AGE)I,_asI,_sZ_w)

.-.
rs
UD
CDr

CD

V o
n

//gy^pp

^ij/ I

to
RS ,,^ ^ L
}+ Cr.

CCt LO ^ Q

N
0r



OF pooR QUALITY

r

®U.

0
0r

V

ni 
O ^ W

r

r

r

0
O

r	 r	 r	 r

lc,,,(on
u /AGE)),-JSL-SZ-LU] ^1.1^g•Z1.

Q



Xe
 

R
IG

ID
IT

Y
 

(G
V

/c
) 

2 
3 

6 
10

 
20

 
30

 
60

 
--

-T
--

--
r 
-
,
 

~ 
=6

00
 M

V 

I 
' 

"
"
 

, 
"
"
 

, 
, 

, 
, 
"
"
 

.1 
.2

.3
 

.6
 

I 
2 

3 
6 

10
 

20
 

30
 
~
9
 

K
IN

E
TI

C
 

EN
ER

G
Y 

(G
eV

 / 
N

U
C

LE
O

N
) 

F~
 

~
 

~-
::

: 

F
ig

.8
 

:
:
"
-
_
.
:
_
:
-
_
:
:
.
.
<
:
:
:
:
:
.
:
.
:
:
.
-
_
=
.
:
.
:
.
~
 

-:
.
:
.
:
:
;
:
"
;
t
:
:
-
=
:
'
:
"
:
~
-
:
=
 
-:

-

If
.~

-.
 

. 
-- :., 

0
0

' 

t:
,~

 

..,.:
 


	GeneralDisclaimer.pdf
	0001A02.pdf
	0001A03.pdf
	0001A04.pdf
	0001A05.pdf
	0001A06.pdf
	0001A07.pdf
	0001A08.pdf
	0001A09.pdf
	0001A10.pdf
	0001A11.pdf
	0001A12.pdf
	0001A13.pdf
	0001A14.pdf
	0001B01.pdf
	0001B02.pdf
	0001B03.pdf
	0001B04.pdf
	0001B05.pdf
	0001B06.pdf
	0001B07.pdf
	0001B08.pdf
	0001B09.pdf
	0001B10.pdf
	0001B11.pdf
	0001B12.pdf
	0001B13.pdf
	0001B14.pdf
	0001C01.pdf
	0001C02.pdf
	0001C03.pdf
	0001C04.pdf
	0001C05.pdf
	0001C06.pdf
	0001C07.pdf

