General Disclaimer One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)

by
Charles Sheffield, Earth Satellite Corporation, 7222 47th Street, Chevy Chase, Md. 20815.

Background. Since the human eye employs three primary colors, and the Thematic Mapper returns seven bands of data, one obvious problem that arises In making color composite images is the choice of bands. The choice in non-trivial, since three bands can be selected from seven in 35 ways. Also, any band can be assigned any color. This gives a total of 210 different possible color presentations of TM three-band Images. In this note we present a way of reducing that 210 to a single choice, decided uniquely by the statistics of a scene or subscene, and taking full account of any correlations that exist between different bands.

We should remark here that one well-known and widely used approach to this problem of choice is through the use of principal component Images. However, such methods offer a new problem as great as the ore that they solve. For although the first three principal components contain in a statistical sense as much Information as can be presented using three colors, the resulting scene is completely data dependent. It is thus difficult for an Interpreter to apply any previous experience of color-surface relationships to the analysis of a principal components image.

Definition of the method. Consider the 7×7 varlance-covarlance matrix M for the scene or subscene, ignoring for the moment the fact that the thermal band is of Inherently lower resolution than the rest. Any triplet of bands will be represented within this 7×7 matrix by a 3×3 submatrix. (E83-10303) SELECTING bAND COMBINATLONS N83-27294 WITH THEMATIC MAPPER DATA (Earth Satellite Corp.) 12 p HC A02/MFAU1 CS:L 20F

Considering now the 3-dimensional subspace spanned by any particular band triplet, the assoclated variancemcovariance matrix defines an billpsold within the subspace. Further, the sum of the squared principal axes of this ellipsold repiesents the total varlance accounted for by these three bands (see flgure 1). One could plausibly (but as we shall see, wrongly) argue that the best three bands are those wlth the largest sum of squared princlpal axes, and hence accounting for the largest total varlance, This is, after all, exactly the argument applied in employing princlpal component images. Since the trace of a matrix is invarlant under rotational transiormations, and since the sum of squared principal axes is equal to that trace, the band triplet that accounts for the most posslble varlance can be found from the original varlance-covarlance matrix simply by selectling the three bands with the largest diagonal elements. There is no need to examine all 35 band combinations.

To see what is wrong with this approach, corisider an extreme case where there happens to be perfect correlation between a palr of bands. For convenience, suppose that those bands are 1 and 2 , and suppose that the varlance of band 1 (and therefore of 2) is larger than that of any other band. The 7×7 matrix M then has the form:

where $a>b, c, \ldots$

The rotation matrlx that wlll diagonallze the upper left 2×2 submatrlx then has the form:

$$
\left(\begin{array}{cc:ccc}
1 / \sqrt{2} & \frac{1}{\sqrt{2}} & 1 & & \\
-1 / \sqrt{2} & 1 / \sqrt{2} & 1 & 0 & \\
- & & 1 & & \\
& 0 & & I &
\end{array}\right)
$$

and thus after rotation the upper left 2×2 submatrixwill have the form:

$$
\left(\begin{array}{cc}
2 a & 0 \\
0 & 0
\end{array}\right)
$$

As expected, one elgenvalue is zero; but the other is the sum of the variances from the original bands 1 and 2. Since a is assumed to be large, both bands 1 and 2 wlll be included in the triplet that accounts for maximum variance -despite the fact that if either one of them is used, adding the other contributes no new information.

The problem lies in the use of total varlance as the measure for the information content of the band triplets. This is equivalent to use of the sum of squares of ellipsold principal axes, and there is no penalty associated with a very small principal axis provided that it occurs in association with a large axis (see Figures 2 and 3), as was the case for the above example.

We propose the use of a new measure for the information content of the triplet, and one that avolds the undesirable property demonstrated above. We will select the ellipsold of maxlmum volume. This discourages selection of palrs of bands with high correlation, since in such cases one elgenvalue will be close to zero and the corresponding ellipsold volume will be small.

Since the eilipsold volume is simply $4 / 3$.TTabc, where a, b, and c are the principal axes of the ellipsold, the volume of the ellipsoid assoclated with a

ORIGINAL PAGE IS
 OF POOR QUALITY

particular band triplet is a constant multiple of the square root of the product of the elgenvalues for the 3×3 varlance-covarlance matrlx of that triplet. However, under rotational transformation the product of the elgenvalues is equal to the determinant of the original 3×3 submatrix. Thus we can select the band triplet that provides the ellipsold of maximum volume simply by computing and ranking in order the determinants of each 3×3 principal submatrix of the original matrix M. The band triplets associated with these determinants wlll then be ranked in order of decreasing overall information content. Given the original matrix M, the total computation to achleve this ranking is trivial. It requires a few hundred multiplications, followed by a sort of a list of 35 items. A BASIC program to perform this is given as an Appendix to this note.

This procedure gives the best triplet, but the assigment of colors is stlll to be made. Now we can make use of the actual variances (the diagonal elements of M). Since the eye is most sensitive to green, next to red, and least to blue, we will assign green to the band triplet member of maximum varlance (i.e. most variation within the image), red to the triplet member of second largest varlance, and blue to the triplet member of smallest varlance. The definition of bands for production of a color Image is now complete.

Examples and comments. The procedure has been applled to a number of scenes of very different ground cover, including Washington D.C., Death Valley, and Cement, Oklahoma. The results for Washington and for Death Valley are given in Tables 1 and 2, together with the associated varlance-covarlance matrices. The following comments apply to all scenes studied to date.

1) The band combination $1,4,5$ (In the order blue, red, green) is usually, but not always, the selected triplet. In cases where it does not rank first,
it ranks second or thifd.
2) The natural color combination $1,2,3$ and the standard falso color combination 2,3,4, both place far down in the rankings. In the case of Washington, the natural color combination is 29 th (lowor than anything excopt same thermal band combinations, which are low for another reason to be discussed shortly); the $2,3,4$ comblnation was ranked In 16 th place. For Death Valley, the $1,2,3$ natural color combination ranked $32 n d$, and the 2,3,4 combination just above it, at 31 st. This is prosumably a censequence of the very high correlations between the first four bands.
3) Triplets that rank high always include el ther band 5 or band 6 (noto: the bands here are ordered by incrensing wavelength, so the thermal band is band 7). This emphasizes the great Importance of these new bands on general Information-bearing grounds.
4) The triplet selected is not always or oven usually the triplet with the greatest individual varlances, though large varlances are naturally pretorred somewhat in the seloction process.

ether considerations and comments.

1) The statistical analysis performed here used P tapes (all that we had avallable) In which the original histograms had alroady been modifled by the galns and offsets. It would be preferable to work with data that have had no galns or offsots applled, l.e., with A tapes prior to any radiomotric correction. If band selection of this type becomes common, it would be nice to have A tapes generally avallable from the EROS Data Center.
2) The thermal band is of lower resolution than the rest, thus it would not be appropilate to give it the same welght in the selection process. How should one therefore de-welght it? One argument runs as follows: The maximum Information that a scene can contaln is given by the number of pixels, since

ORIGINAL PAGE IS OF POOR: QUALITY

In the ultimate case there would be no correlation between plxels, and each would carry Independent information about some feature of the surface. In such a case, the amount of Information that the thermal band can contribute is only $1 / 16$ th that of the other bands, because there are 16 times fewer pixels in that band. Therafore one should dewelght the thermal channel by a factor of 16. Such dewelghting was performed in the experiments reported here. However, we should also note that this made no difference at all to the preferred band triplets, since even without dewelghting we found no case where a triplet involving the thermal channel was in the top flve.
3) It is obvlous when one looks at Images created from the triplet $1,4,5$ that for some applications this combination will be much inferlor to others, such as natural color and standard false color. This restates the old truth, one man's nolse is another man's signal. However, the preferred triplets have another advantage: they provide images of unusual clarlty, with far less residual striping than is seen in, for example, the natural color images.
4) Although combinations such as $1,4,5$ produce images that are at first sight unfamiliar and unusual, the assigned colors are not scene-dependent. Thus In contrast to the scene dependent colors of princlpal component or ratio Images, the interpreter quickly learns to assoclate colors with particular ground condition. We therefore belleve that there are definlte advantages to seekling color composites from the original bands, rather than through band ratlos or band comblrations.

Figure 1: The variance-covariance ellipsoid, principal axes $\sqrt{\lambda_{1}}, \sqrt{\lambda_{2}}, \sqrt{\lambda_{3}}$.

ORIGINAL PAGE IS

 OF POOR QUALITY

Figure 2. High correlation. bands 1 and 2.

Figure 3. Low correlation, bands 1 and 2, but lower individual variances.

$$
\begin{gathered}
\lambda_{1}+\lambda_{2} \text { large, } \\
\lambda_{1} \cdot \lambda_{2} \text { small }
\end{gathered}
$$

$\lambda_{1}+\lambda_{2}$ smaller than in Fig.2.
$\lambda_{1} \cdot \lambda_{2}$ larger than in Fig. 2.

Pased on ellipsoid volumes, Fig. 2 case is preferred over Fig. 1 case. although the former accounts for a greater total variance.

```
20 PRINT "SELECTION OF BEST THREE BANDS BASED ON ELLIPSOID VOLUME"
30 PRINT "DEATH VALLEY WITH REDUCED THERMAL VARIANCE"
4 0 ~ D I M ~ R ( 3 6 ) , Q ( 3 6 ) ~
5 0 ~ D I M ~ U ( 3 6 ) , V ( 3 6 )
60 DIM M(8,8)
```

70 REMARK: M is the variance-covariance matrix for the scene or subscene.
80 REMARK: The arrays R, Q, U and V are storage arrays used in the program.
90 REMARK: Note that the program assumes that band 7 is the thermal data, and band 6 is the 2.2 micrometre data.
100 REMARK: The instructions 190 to 230 (except for 220 , which sets a count) reduce the variance of the thermal channel to allow for the lower spatial resolution of the thermal channel pixel.

```
190 FOR I = 1 TO 6
200 M(I,7) =M(I,7) / 4
210 NEXT
c20 C = 1
230M(7,7) = M(7,7) / 16
240 PRINT "RANK DETERMINANT COMBINATION"
250 FOR I = 1 TO 5
260 FOR J = I + 1 TO 6
270 FOR K = J + 1 TO 7
280 D1 = M(I,I) * (M(J,J) * M(K,K) - M(J,K) ~ 2)
290 D2 = M(I,J) * (M(J,K) * M(I,K) - M(I,J) * M(K,K))
300 D3 = M(I,K) * (M(I,J) * M(J,K) - M(I,K) * M(J,J))
310 DT = D1 + D2 + D3
```

315 REMARK: The next instruction makes the determinant an integer; this is
not necessary, it is done for convenience of output only.
320 DT $=$ INT (DT)
$330 \mathrm{~N}=100$ * $\mathrm{I}+10$ * J + K
$340 \mathrm{R}(\mathrm{C})=\mathrm{DT}: \mathrm{Q}(\mathrm{C})=\mathrm{N}$
$350 \mathrm{C}=\mathrm{C}+1$
360 NEXT
370 NEXT
380 NEXT
385 REMARK: The next piece of code sorts the determinant into descending order.
390 FOR I = 1 TO 35
$400 \mathrm{~N}=0$
410 FOR J = 1 TO 35
420 IF $R(I) \mid R(J)$ THEN 440
$430 \mathrm{~N}=\mathrm{N}+1$
440 NEXT
$450 U(N)=R(I): V(N)=Q(I)$
460 NEXT
470 FOR I = 1 TO 35
480 PRINT I,U(I),V(I)
490 NEXT
500 PR\# 0
510 END

SElection of best three bahd based on ellipsoid volute

Vartance-covariance katrix, thermal bald is baild 7
53.32
35.74
5.86
36.04
33.56
7.77

Table 1,a Variance-covariance matrix for the Hashington D.C. scene.

SELECTION OF EEST THREE BANDS BASED ON ELLIPSOID VOLUME		
THIS IS THE WASHINGTON SCENE WITH REDUCED VARIANCE ON THE THERMAL CHANNEL		
RANK	DETERMINANT	COMBINATION
1	433858	145
2	205811	345
3	138551	146
4	124784	245
5	101638	456
6	71723	156
7	62960	346
8	49759	135
9	39992	134
10	39609	246
11	36060	356
12	22847	125
13	21953	256
14	16732	124
15	11646	235
16	9709	234
17	7967	136
18	5094	457
19	4752	157
20	3634	126
21	3606	147
22	2294	467
23	2194	357
24	1945	347
25	1616	236
26	1386	567
27	1348	257
28	1130	247
29	727	123
30	688	167
31	276	367
32	215	137
33	175	267
34	84	127
35	43	237

TABLE 1.b Ranked results for Washington D.C. Scene.

ORIGINAL PAGE ES OE POOR QUALITY
SELECTION OF BEST THREE BANDS BASED ON ELLIPSOID VCLUME DEATH VALLEY WITH REDUCED THERMAL VARIANCE
VARIANCE-COVARIANCE MATRIX, THERMAL BAND IS BAND 7
246.36
178.63
276.44
262.74
627.47
.456 .9
75.38

Table 2.b Ranked results for Death Valley scene.

