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ABSTRACl' 

The quality of semiconductor crystals grown by the vertical Bridgman 
technique is strongly influenced by the axial and radial variations of 
temperature within the charge. The pr~sent work examines the relationship 
between the thermal parameters of the vertical Bridgman system and the 
thermal behavior of the charge. 

Thermal models are developeu ~hich are capable of producing results 
expressable in analytical form and which can be used without recourse to 
extensive computer work for the preliminary thermal design of vertical 
Bridgman crystal growth sys~~~,s. These models include the effects of 
thermal coupling between the Ll.1rnace and the charge, charge translation 
rate, charge diameter, thickness and thermal cooductivity of the confining 
crucible, thermal conductivity change and liberation of latent heat at ~~e 
growth interface, and infinite charge length. The ~ot and cold zone 
regions, considered to be at spatially uniform temperatures, are separated 
by a "gradient control" region which provides added thermal design 
flexibility for controlling the temperature variations near the growth 
interface. 

One-dimensional thermal models show that the thermal coupling between the 
furnace and the charge and the change in thermal conductivity at the growth 
interface are the primary factors influencing the axial temperature 
gradients near the interface. The effect of the crucible is analytically 
described in a way which does not compromise the simplicity of the one­
dimensional models 1 its effect is to reduce the thermal coupling between 
the charge and the fu'.nace. Criteria for the neglect of charge translation 
rate, charge length and liberation of latent heat are developed. 

Two~imensional models show that the interface shape is primarily affected 
by therrr.al conditions near the growth interface. Heat transfer to or from 
the charge near the interface is shown to provide a means for altering the 
interface shape. The combined effects of a crucible and the liberation of 
latent heat and/or condu~tivity change at the growth interface produce 
radial temperature varidtions at the growth interface. For the grcwth of 
semiconductors, thi.= effect leads to an adverse interface curvature and 
remains an unresolved problem inherent to the Bridgman technique. 

Thesis Supervisor: W. M. RohsenQ\li 
Title: Pl:'of~;Jor of Mechanical Engineering 
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cross sectional area; without subscript denotes the charge cross 
sectional area 

i • 1 to 5; coefficients in the concentric fin equations (c.f., 
eq. [6.1]) 

Biot number, hD/k 

dopant concentration in the melt 

specific "leat; without subscript denotes the specific heat of the 
charge 

diffusion coefficient of the dopant in the melt 

diameter: without subscript denotes the diameter of the charge 

diameter of the inner charge fin (c.f., Fig. 6.2) 

radial location for the temperature of the inner charge fin in the 
concentric fin model (c.f., Fig. 6.2) 

radial location for the temperature of the outer charge fin in the 
concentric fin model (c.f., Fig. 6.2) 

radial 10\ :ior for the crucible temperature in the concer.tric fin 
model (c.f., Fig. 6.2) 

radiation surface heat exchange factor between the furnace and the 
crucible (c.f., eq. [C.4]) 

dimensional axial gradient GlD 

average charge/crucible axial temperature gradient at the growth 
interface 

heat transfer coefficient 

conduction heat transfer coefficient across the furnace cavity gap 

radiation heat transfer coefficient across the furnace cavity gap 

latent heat of solidification 

function defined by eq. [7.1lal 

function defined by eq. [7.llbl 

electric curra~t per unit cross sectional area 
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k thermal conducti vi ty~ without subscr ipt denotes the thermal 
conductivity f the charge 

K kcr/k 

Ko equilibrium partition ratio of the phase diagram 

L lMgth of a portion of the charge 

Lp length of the pull rod 

Lmtp mean free path length of a molecule of the gas in the furn..ice cavity 
gap 

In[. slope of the liquidus of the phase diagram 

N radius of curvature of an isotherm in n\.llt)er of charge radii 

p pressure of the gas in the furnace cavity gap 

P surface area per unit length of the charge 

Pe Peclet mumer: VCV ( f cp> .. VO/« 

qR heat transfer to the surface of the charge per unit surface area of 
the charge 

r radial coordinate 

R growth rate of the crystal, or thermal resistance between adjacent 
fins 

Rc k(;A(ikA 

RG RQt {l + KS (~z_ 1)] 

Rti AHsl/cp(Tf,H - Tf,e) 

RH RHi {l + KS (~1_ l)] 

Rt< kt/kS 

RK [RK + KS(~l- 1)]/[1 + KS< ~ 1_1)] 

ROc cxc.~ 101. 
Se Seebeck coefficient 

t tiJr.e 

tgap gap width between the furnace and the crucible 

T temperature 
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eiqenvalues of the fin equations us€.d in the various thermal models 

axial coordinate measured from the center of the gradient zone 

axial distance between the locations of an isotherm at the center 
and surface of the charge 

axial distance from the end of the charge/pull rod boundary 

Greek mt>ols 

Ot 

S 
E 

C 
~c 
~~ 
r,. 

l 

C;p 

~4> 

C:;,xI 

7J 
e 

thermal diffusivity: without subscript denotes the thermal 
diffusivity of the charge 

surface emisslvity 

dimensionless axial coordinate, ZID 

axial location of the cold end of the charge 

axial location of the hot end of the charge 

axial location of the growth interface 

dimensionless axial distance from the end of the charge/pull rod 
boundary, ZpIDp 

dimensionless distance between the axial locations of an isotherm at 
the center and surface of the charge, Zct/D 

lIinfinite ll charge length (c.f., section 5.5) 

latent heat parameter defined in eq. [5.12] 

dimensionless temperature determined from one-dimensional models, 
(T - Tf,C)/(Tf,H - Tf,C) 

e~ dimensionless solidification temperature 

A dimensionless length of a portion of the charge, LID 

Ap dimensionless' ength of the pull rod, LpIDp 

f Ar;,12 

f dimensionless radial coordinate, riD, or mass density 
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Stefan-Boltzrrann constant, 5.729 x 10-8 N/m2-£(4 

dimensionless time, tI (oIV) 

dimensionless temperature deter.nined from two-ciimensionless models, 
(T - Tf,e)/(Tf,H - Tf,e) 

(4)ovt - ¢in) /2. 
average charge/crucible temperature at a particular axial location 
(c.f., eq. [4.21]) or, when considering the gradient zone annulus, 
the average chargeicrucibleigradiePlt zone annulus temperature (c.f., 
eq. [6.17]) 

parameter defined by eq. [5.16] 

Subscripts 

C cold zone 

cp boundary condition to be used at the cold end of the charge 
accounting for the effect of the pull rod 

cr crucible 

end ends of the charge 

f furnace 

G gradient zone or gradient zone annulus 

H hot zone 

i growth interface 

in inner charge fin 

lac charge properties or boundary conditions at a particular axial 
location 

m mean cross sectional charge temperature 

out outer charge fin 

P pull rod 

s surface of the charge 
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syparscripts 

* 

** 

denotes alternative dimensionlees formulation (c.f., eq. [4.3b]) or 
axial derivative in eqs. [6.3] ~1~ [6.4] 

represents effective values of Bi, Pe, RK' RHI and R(;, accounting 
for the presence of the crucible in the moving fin model 

effective Biot number accounting for the radial thermal resistance 
of the charge in addition to 'the crucible (c. f ., eq. [ 4 .14] ) 

+ values of K and S which maximize Bi * 
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The ~sic material property requirements of semiconductors used for 

advanced electronic devices are: 

(1) absence of grain and twin boundaries (single crystal) 

(2) low crystal defect density 

(3) uniform distribution of the dopant 

(4) minimized contamination by electrically active elements 

NUmerous techniques exist for the production of s~miconductors in single 

crystal form (c.f., [1,21). The choice of a technique for a particular 

apph "'ation is dicta,:ed by the inherent physical and chemical properties of 

the ser,iconductor and the desired resultant electronic properties [3]. 

Increasingly stringent requirements for the electronic properties of 

semiconductor crystals necessitate the ~odification and refinement of 

conventional growth techniques. 

Growth from the melt describes several tecrniques used for the pro-

duct ion of bulk crystals by ~~e controlled transformation of a liquid into 

a solid of high degree of crystalline perfection. The majority of bulk, 

single crystal semiconductors is currently grown from the melt. The 

commonly used melt growth techniques are depicted in Fig. 1.1. In each 

case, growth of a single crystal is initiated by partial melting of a seed 

crystal; continued growth of the crystal occurs by the relative motion of 

the charge (crystal and melt) through the thermal boundary conditions 

imposed by the apparatus. 

Each of the ~elt-growth techniques has advantages and shortcomings. 

The Czcchralski technique (Fi~. l.la), for example, ~as relatively high 
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• • - • -
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HEATING 
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?ig. l.la: Sketches of ':..~e c(l'l1'!'CI11" used ~el t crr~.".th technicruE"s: 
czcc:U-alski. 
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rates of production and can produce crystals witt: a low defect density. 

Axial and radial segregation of the dopant is ty"?ically significant, 

however, due to the effects of time-varying, natur~l convective fluid flow 

in the ~elt. Also, precaution mu~t be taken to prevent depletion of 

volatile elements from the melt. 

Crystals grown by the float-zone technique (Fig. l.lb) are relatively 

free from contamination since t."'te melt is unconta.ined~ radial segregation 

of the dopant is appreciable, however, due to the strong two-dimensional 

thermal field near the growth interface and the resulting nat~~al 

convective fluid flow. 

Use of a sealed crucible in the vertical Bridgman technique 

(Fig. l.lc) provides a simple means of minimizing t.'e depletion of volatile 

elements from the melt. (The crucible used in the horizontal Bridgman 

technique is typically open.) Crystals grown by the Bridgman techique, 

however, have high defect densities generally attributed to mechanical 

stresses associated with the confining crucible. The boundary between the 

growth interface and the crucible also provides si tes for heterogeneous 

nucleation of crystal grains which can prevent single crystal growth. 

Further, although the vertical Bridgman configuration is relatively stable 

for natural convective fluid flow (the melt is heated from above), radial 

segregation of the dopant in Bridgman grown crystals has not been 

demonstrated to be consistently superior to that in crystals produced by 

other melt-growth techniques. 

It is evident that heat transfer is involved in the phase transforma-

tion at the crystal/melt (growth) interface and it is now understood that 

thermal phenomena greatly affect the quality of melt-grown crystals. Basic 

thermal considerations have not, however, been adequately applied in the 
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CRYSTAL 

1 L-----+---J ! HEATING COILS 
MOLTEN _~.-'--- ~ MOVE VERTICALLY 

ZONE 
• "-'--~......J • 

• • 

CRYSTAL 

Fig. l.lb: Sketches of the ccr.tronl v used melt grQlNth 
techniques: float-zone. 
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analysi.s or design of melt-growth apparatus. There is, therefore, a strong 

motivation for a reaasessment of the inherent capabilities of the various 

melt-growth techniques from the point of view of improved thermal design. 

Compared to other melt-growth techn:"~es, the thermal configuration of 

the vertical Bridgman technique offers several features that appear 

advantageous for semiconductor crystal growth: 

(1) The thermal boundary conditions associated wi~1 the furnace 

are relatively simple and axisymmetric. 

(2) The furnace configuration is readily adaptable to thermal 

design changes deemed necessary to accommodate the growth of 

different semiconductor materials with varying thermal 

properties. 

(3) Natural thermal convection in the melt is reduced since the 

melt is heated from above and is completely enclosed by the 

crucible. 

For these reasoos a combined analytical and experimental program is being 

conducted to investigate the potential for improvement in the thermal 

design of the vertical Bridgman cryst.'!l growth technique. The present work 

is the analytical portion ot this program. The methodology of the analysis 

if to develop simplified thermal models which are capable of showing the 

governinq parametric behavior of the growth system. Particular emphasiS is 

given to obtaining approximate analytical expressions which easily 

demorstrate the interaction among the thermal parameters. 

Thermal requirements fer satisfactory melt-growth are shewn in section 

2.1 to depend on both axial and radial temperature variations within the 
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charge. OnMimensicnal (i.e., axilll teItl~"'erature v~.ciatia'ls only) and two-

dimensiON.l thermal models are formulated in O'.apterE 4 Md 6 respectively. 

The temperature field within the charge obtained from the models is then 

used to evaluate the effects of t.~e thermal parameters frem the viewpoint 

of satisfying the thermal requirements (Olapters 5 and 7). 
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A combined analytical and experimental proqram for the improvement of 

semiconductor crystal growth by the vertical Bricgman technique is ceing 

undertaken in the Department of Materials Science and E~lgineering. The 

analysis presented in this thesis comprises the ar~lytical portion of this 

program. 

The objecti ve of the thermal analysis is to identify and provide an 

understanding of the th~rm~l characteristics of .semiconductor crystal 

growth by the vertical Bridgman technique; in this way, problems likely to 

be encountered, and the means for their possible resloluti~n, are expected 

to be identified. To perform t~is task requires r of course, an adequate 

knowledge of the eff~ts of the principal thermal parameters. r-\ooels are 

formulated to asce,tain these effects with special emphasis directed 

towards obta;ning results which CWl be presented in arulytical form and can 

thl.refore be used without recourse to extensive computer work. Design 

alternatives ~;"'ggested by the thermal analysis are to be evaluated in the 

experimental program. 

Section 2.1 points out that the beuavior of the axial and radial 

temperature gradients near the growth ll"lterface is of primary importance in 

determining the quality of crystals grown by the Brici':.llIan technique. The 

results of the thermal analysiS are therefore discussed in this context. 

·:hapters 4 and 5 deal ,-lith the axial temperature distribution of ti1e charge 

and Chapters 6 and 7 treat radial temperature variations within the charge. 
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The electronic properties of a crystal grown by a melt-growth 

technique depend strongly upon the temperature distribution near the growth 

interface during solidification. The thermal requirements leading to the 

growth of high quality semiconductor crystals by the vertical Bridgman 

technique are: (1) that the axial temperature gradient at the srowth 

interface is greater than a critical value and (2) that the radial 

temperature gradients near the growth interface produce an interface shape 

which is slightly concave toward the solid (Fig. 2~). 

2.1.1 Axial Temperature Gradient At The Growth Interface 

During solidification, a concentration boundary layer of the dopant is 

generated in the melt in advance of the growth interface. Within this 

boundary layer the solidification temperature varies in accordance with the 

phase diagram. The phenomenon termed constitutional supercooling occurs 

when the sensible temperature in the melt is less than the local 

solidification temperature [4]. Under such conditions the morphology of the 

interface becomes unstable ar.d it is difficult to maintain single crystal 

growth i5,6,7). If the concentration boundary layer in the melt is 

diffusion dominatec (i.e., neglecting natural convective fluid flow), the 

axial temperature gradient in the melt at the interface required to prevent 

cor.stitutional supercooling is (8): 

[2.1) 

where: R = growth rate 

mL = slope of the liquidus of the phase diagram 
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where: Co. concentration of dopant in the rrelt 

Ko. equilibrium partition ratio of the phase diagram 

d. diffusion coefficient of the dopant in the melt 

Fquaticn [2.1] indicates that the axial gradient criteria is, to a certain 

extent, controlled by the crystal grower. By decreasing the. lowering rate, 

V, the growth rate, R, likewise decreases [9,10,11] and the axial gradient 

criteria becomes less restrictive. 

The axial gradient criteria is l~s restrictive in the presence of a 

convective comt:Onent to the mass transf~!' of dopant. near the interface [4]. 
. . 

'nle axial gradient requirement given by eq. [2.1] represents, therefore, an 

uI=P!r limit. 

2.1.2 Shape of the Growth Interface 

Heterogeneous nucleation can occur at the boundary between the growth 

interface and the crucible. When allowed to grow, crystal grains initiated 

by such nucleation destroy single crystal growth. These unwanted crystal 

grains do not propagate into the Single crystal, however, if the interface 

is concave toward the crystal as shown in Fig. 2.1. It is desired, 

therefore, that radial temperature variations within the charge near the 

growth interface produce an interface which is slightly concave toward the 

solid. 

The shape of the interface is also a factor concerning the radial 

segregation of the dopant in the solidified charge. For the special case 

of a diffusion dominated concentration boundary layer at the growth 

interface, analysis shows [12,13] that the radial mass transfer of the 

dopant decreases ~ith interface curvature. Thus, to achieve a desired 

level of radial segregation under such conditions, it is only required that 
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the interface curvature be reduced to sn appropriate level. For dilutel:' 

doped semiconductors, even in the presence of radial segregation, the 

interface is very nearly an isotherm. The interface shape criteria 

therefore trsnslates into a thermal criteris -- the interfsce isotherm 

should be nearly flat. '11lat is, heat transfer near the interface should be 

ntsrly one-dimensional. 

cases of practical significance occur in which the assumpticns leading 

to the flat interfsce criteria discussed above sre not valid. For example, 

the t!1eoretical studies of Chang [14] and Chang and Brown [15] show that 

natural convective fluid flows may have a significant effect on the radial 

segregation of the dopant while h.sving only a minor effect on the 

temperature distribution in ~,e charge for melts which have small Prandtl 

numbers. under these ccnditioos a flat growth interface is not directly 

correlated with satisfactory radial segregation of the dopant. Also, in 

systems which exhibit a large separaticn of the liq',.lidus .lnd solidus (e.g., 

HgCdTe), the interface shape is coupled to the radL!l segregation of the 

dopant as well as the radial variation of the temperature in the vicinity 

of the interf.!ce. Sueh cases .!s these require .l det.!iled .!nollysis of the 

mass, momentum .!nd heat transfer within the charge in order to predict ~~e 

radi.!l segregation. 

DOp.!lnt molSS transfer is not within the scope of the present thermal 

ana1i'sis. The behavior of isotherm sh.!pes to be deser ibed in subsequent 

chapters may therefore be correlated to r.!ldioll seqreg.!ticn be.havicr cnly 

for the s~i.!l C3se of dilutely \.·k'FeC!, diffusion dcmin.lted systems. i,h~n 

these ide31 conditi:ns are not 3Fproximated, results fr0m the present 

.!n.!lysis .3re nevertheless eXp:!'Cted to describe the thermal t-eh.3\'lLlr )f th.' 
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charge and may thus be used in conjunction with analyses which consider 

mass transfer of the dopant (e.g., [14,15]) to aid in understanding the 

manner in which radial segregatial is affected by the thermal parameters of 

the Bridgman growth system. 

2.al M 'llfflBMAL pEL 

The two-dimensional temperature field in the solidifying charge is 

described by partial differential equations subject to complex boundary 

conditions. The solution of these equations may be effected by standard 

numerical techniques (e.g., finite difference or finite element methods). 

Numerical solution methods preclude, however, the descriptiat of results in 

simple analytical form. The present work emphasizes the development of 

~pproximate models which lead to analytical results. The increased 

accuracy of more exact numerical formulations is not considered wbrranted 

at the present time for the following reasons: 

(1) Thermal property values (e.g., thermal conductivity of the 

melt, emissivities of the furnace wall and crucible) are 

often not well known and introduce uncertainty into the 

results of any thermal analysis. 

(2) The development of approximate thermal models itself leads to 

a better understanding cf the thermal behavior of the 

Br idgman system. 

(3) Approximate results presented in analytical form and 

indicating the primary thermal behavior of the Bridgman 

system are more conveniently used to evaluate the effects of 

various furnace design alternatives. 
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The present work models the vertical Bridgman configuration being 

constructed for ~~e experimental portion of ~,e program. The experimental 

apparatus, described in section 2.2.1, contains the features basic to all 

vertical Bridgman growth systemsJ therefore, results obtained in this work 

can be used in a qualitative manner for any vertical Bridgman furnace 

configuration. It is necessary, of course, that simplifying awroximations 

be made in the development of any thermal modelJ the thermal effects 

incorporated in and excluded from the present models are outlined in 

Section 2.2.2. 

2.2.1 '!be Exariment;a1 Vertical BridgxMn Ct2§t;al Growth S!l§tem 

Vertical Bridgman crystal growth denotes the solidification of a 

molten charge, contained in a chemically inert crucible, by its descent 

from a hot to a cold environment. In conventional Bridgman growth 

(Fig. l.lc) the hot environment is a tube furnace of varying design and the 

cold environment is the surroundings (e.g. the laboratory>. The present 

work formulates a thermal model of a system, currently under construction, 

which incorporates several modifications of a conventional Bridgman system. 

There are two objectives for these modifications: 

(1) To permit flexibility for controlling the thermal environment 

exposed to the charge. In this way, through the adjustment 

of design and operation parameters, the system is expected to 

provide for a wide range of axial temperature gradients, and 

radial temperature gradients which lead to interface shapes 

ranging from convex to concave. 

(2) To permit the formulation of more accurate thermal models of 

the system, particularly in describing the thermal boundary 
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conditions exposed to the charge. In this way, the thermal 

analysis is expected to provide more a~licable results. 

44$ W; 4*4 ___ 4, 

The experimental Bridgman system is depicted in Fig. 2.2. The cold 

environment is a separate furnace whose temperature can be independently 

controlled. Stockbarger [16] first introduced a separate furnace for the 

cold environment which was separated from the hot furnace by a simple 

radiation shield as a means for increasing the axial temperature gradient 

at the growth interface. In the present system, heat pipes are used for 

the hot and cold furnac~ The temperature boundarY condition is therefore 

uniform in both the axial and circumferential directions. The gap between 

the heat pipes and the charge can be made smaller in order to simplify the 

description of radiant heat transfer and also, if desired, to obtain 

signifi~t heat transfer by thermal conducti~ Between the heat pipes is 

a "gradient control" region in which the growth interface is to be located. 

Chang and Wilcox [17] suggested the use of an adiabatic gradient control 

region as a means of reducing the curvature of isotherms near the growth 

interface. The present work considers the thermal design of the gradient 

control region as a design variable. It is anticipated that judicious 

design of heat transfer between the gradient control region and the charge 

will assist in obtaining the requiSite control over the interface shape. 

laU Effects Incorwrated In and Excluded Fran the 'Ibermal Models 

The following thermal parameters, considered to be of primary 

importance in determining the thermal characteristics of Br idgman crystal 

growth, are included in the thermal models of Olapters 4 and 6: 
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(1) Thermal coupling between the charge and the 
heat pipe furnace. 

Thermal communication between the charge and the 

furnace is due to both radiation and conduction heat 

transfer. The radiative contribution strongly depends 

on the values of surface emissivities which are 

oftentimes not accurately known. The conductive 

contribution is determined by the thickness of the gap 

between the charge and furnace and the conductivity of 

the gas in the gap. Thus, evacuating t!le gas from the 

gap can eliminate the conduction heat transfer. 

Appendix C discusses the quantitative evaluation of 

typical heat transfer coefficients associated with both 

modes of heat transfer across the gap. 

(2) Thermal design of the gradient zone region. 

The gradient zone portion of the furnace is modelled as 

an annular ring between the hot and cold heat pipes. 

Changes in the thermal conducti vi ty and thickness of 

the annular ring are expected to alter the distribution 

of heat transfer to the charge and, as a consequence, 

the shape of the isotherms within the gradient zone. 

(3) Thermal conductivity of the charge and the 
ratio, RKr between the melt and crystal 
conductivities. 

For semiconductors, the mel t conducti vi ty is greater 

than that in the solid, i.e., RK > 1. 

(4) Generation of latent heat at the growth 
interface. 

- 36 -



_".. __ . V .s-~· ~-- _.¥'*' -G. ¥ 

ORIGINAL P.t\GE I~ 
OF POOR QUALITY 

(5) Thickness and thermal crnductivity of the 
crucible. 

(6) Lowering rate of the charge. 

Lowering rates for typical semiconductor crystal growth 

range from 0.1 JAmls to 10 !,m/s. 

(7) Length of the charge and ita position in the 
furnace. 

(8) Dia.eter of the charge. 

Several effects have not been included in the thermal models. The 

excluded effects are of relatively small importan.ce for typical crystal , 

growth situations or do not contribute to the primary thermal behavior of 

the Bridgman growth system7 it is therefore considered that the increased 

complexi ty of thermal models that would be required for inclusion of these 

effects is not warranted. The excluded effects are: 

(1) Natural convection in the melt. 

The temperature field in the charge is not greatly 

affected by natucal convective fluid flow during 

typical vertical Bridgman growth of semiconductors 

(i.e., materials with a small Prandtl number) [14,15]. 

(2) Transients. 

All models are quasi-steady: i.e., t..'"le transient terms 

of the heat balance equations are assumed negligible. 

This asoumption is normally valid due to the small 

lowering rates used in typical Bridgm3n growth. 

<AWendix E provides a brief discussion of ter.l~rature 

transients. ) 
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(3) Thermal coupling between the furnace and the 
charge. 

Thermal coupling between the CM ,,:,ge and the furnace is 

described in the present work by a heat transfer 

coefficient, h. The heat tra~sfer coefficient varies 

with position due, for example, to temperature 

dependant radiation heat transfer. The present thermal 

models assume that the heat transfer coefficient is 

~onstant within the hot furnace, cold furnace and 

gradient control region. Since the expected maximum' 

spatial variation of h within a furnace zone is 

approximately a f~ctor of 2, it is considered that the 

variation of h is of secondary importance compared to 

the overall thermal coupling describ~d by a suitable 

average value. Additionally, the hot and cold zone 

furnace temperatures are assumed to be uniform 

reflecting the heat pipe action. The lengths ot the 

furnace zones are assumed infinite. (Appendix 0 

develops a criterion for the validity of this 

assumption). 

(4) Constant thermal properties. 

Except for the change in thermal conductivity at the 

growth interface, all thermal properties are assumed 

independent of temr~rature. 
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ti number of thermal analyses of Bridgman-type crystal growth systems 

have been reported in the literature in recent years [9-11,17-28). They 

can be classified according to the type of analysis which was performed, as 

shown bele /I in Table 3.1: 

'r.{PE OF 'l'HERMAL ANALYSIS 

One-Oimensiooal (axi~.l ten- 9-11, 17-23 
perature variations only) 

Two-OimensiCDll (axial and 17, 24-28 
radial tem~rature variations) I i 

I 

Dimensiooal Variables 10, 11, 18-20, 25, 27, 28 ' 

Nondimensional Variables 9, 17, 21-24, 26 

Analytical Results 17, 2'2, 23 

Numerical Results (i.e., 
catplter generated results) 9-11, 18-21, 24-28 

Table 3.1: Current literature containing thermal analysis 
of Bridgman-type crystal growth systems. 

All of the one-dimensional models describe the axial temperature 

distribution of a solidifying charge by equations similar to those used by 

Davis [18]. In these models, the charge is analogous to a fin moving 

through spatially varying boundary conditions. The equations for a moving 
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fin are found in many heat transfer texts [e.g., 29,301. The principal 

results obtained through a one-dimensional analysis are the axial 

temperature gradient at the growth interface and the axial position of the 

growth interface .. 

~l coojuction with his model, Davis [18] obtained experimental results 

by solidifying load-tin alloys at various growth rates and hot and cold 

zone furnace temperatures. Good corre14~lon between experimental and 

calculated results demcnstrated the usefulness of one-dimensional models 

for predicting the axial temperature distribution of the charge. Further 

experimental verification of one-dimensional modeling has been provided by 

Clyne [l0,11] who solidified aluminum at variow:; lowering rates. 

The differences among the one-dimensional analyses listed in Table 3.1 

concern several factors. The most apparent distinction is the type of 

system wtich is modeled. Some works deal with the furnace configurations 

of experimental growth systems employed for the growth of spec~.fic metals 

or metal alloys (Pb-Sn [18], Al [10,19], Ag-Si (201); others treat 

idealized furnace boundary conditions without reference to a specific 

chargp. material [9,17,21,22,23]. The former analyses, being limited to 

specific charge materials, primarily analyze the effects of furnace and 

operation parameters such as the thermal coupling between the charge and 

furnace, position of the charge witllin the furnace, and lowering rate. The 

latter models are nandimensional and their results are more readily applied 

to an extended var iety of growth systems. 

The one-dimensional analyses differ also with regard to the solution 

technique. Several employ finite difference or finite element methods 

[10,11,19-211; others carry out analytical solutions which are suffiCiently 

complicated to require computer ev~luation of the resulting expressions 
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[9,18,22,23]. Only Chang and Wilcox [17] and Sukanek [23J have be4tn able 

to prasent results in simple analytical form. Generally, the shift from 

numerical to a.nalytical methods occurs as the modeling of the growth system 

becomes mure idealize<L 

Fi.nall~', differences aJnoog the one dimensional a.nalyses also pertaiz, 

to the specific effects incorporated into the t-.hern.al models: im:lusia& of 

the crucible [10,11,18,20], generation of latetlt heat at the grow~h 

interface [10,11,17,28,21-23], une~ual melt and crys~al thermal 

conductivities [9-11,18-23], gradient control region (10,11,18,22,23,261, 
. 

lowedng rate of the charge [10,11,17,18,~1-23], arY.! temperature transients 

[10,11,21]. 

The majority of the one-dimensional models are conc~rned with the 

relationship between ~he poSition of thp. charge within the furnace and 

either the axial temperature gradienc at the growth interface or the axial 

position of the growth interface. Clang and Wilcox [17] demonstr~':e that 

the interface position changes as the end of the charge approaches the 

region between the hot and cold zone furnaces. 'nleir results suggest that 

larger Biot numbers (see Section 5.2) and longer charge lengths tend to 

maintain a stationary interface location. Riquet and Dur~d [9] extend the 

results of Clang &nil Wilcox [17]. They show the manner in which the growth 

and lowering rates differ during a solidification experiment and indicate 

how the furnace temperatures should be varied with time in order to keep 

the interface locaticn stationary. Sukanek [23] offers a blmple criterio~ 

under which growth and lowering ra'l:es will be nearl~' equal during 

solidification of a signifiCAnt portion of the charge (see Section 5.S). 
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Two-dimensional thermal models are employed in order to obtain the 

interface shape. The difference between the one- and two-dimensional 

models is the ircorporation of radial temperatu~e variations. This 

addition, however, makes the solution significantly more complex. Chang 

and Wilcox [17] used a highly idealized system (no crucible, gradient zone, 

or generation of latent heat, and equal thermal conductivites of crystal 

and melt) and obtained a solution in the form of two Fourier-Bessel 

infinite serie& Evaluation of these series was carried out by computer. 

Sen and Wilcox [24], Fu and Wilcox [26], El-Mahallaway and Farag l25] and 

Domanski et al [271 used finite difference methods. Jones et al [28] used 

an electrical analogue model whose solution was also obtained by computer. 

A series of outstanding publications by Wilcox et al [17,24,26] 

demonstrate the usefulness of nondimensional variables in order to describe 

the thermal characteristics of a Bridgman growth system. Their results 

present two- dimensiooal isotherms in a solidifying charge for different 

values of several of these nondimensional variables. The effects of 

thermal coupling between the charge and the furnace (represented by the 

Biot number) and the lowering rate (Peclet number) was thus determined by 

Chang and Wilcox [17]. A significant conclusion is that the shape of the 

solidification isotherm depends strongly on its axial location w~thin the 

furnace. Although not including a gradient control region in their 

thermal model, Chang and Wilcox [17] suggested the use of an insulating 

gradient c~ntrol region in order to reduce isotherm curvature near the 

interface. Fu and Wilcox [26] later demonstrated th~ validity of this 

concept for a system which did not consider a crucible, latent heat, and 

conductivity change at the growth interface. Sen and Wilcox (24J showed 
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the effect of crucible conductivity on the isotherm shape for various Biot 

numbers: they also found that the thermal conductivity of the crucible 

should be close to that of the charge in order to maintain large axial 

temperature gradients in the gradient zone. 

El-Mahallawy and Farag [25] calculated the tWMimensional temperature 

distribl'tion in a solidifying Al-A13Ni eutectic grown under various 

conditions, including an abrupt change in the inner diameter of the 

crucible along the axial direction. Several comparisons of calculated 

results with experimental data showed good agreemen~ 

The cited literature provides a valuable background for further 

thermal analysis of Bridgman-type growth systems. In particular, the 

nondimensional formulation of Wilcox et al [17,24,26] identifies the 

Significant combinations of thermal properties and system parameters which 

govern the thermal behavior of the system. Taken in part or as a whole, 

however, the previous work has not yet led to a systematic approach for 

Bridgman furnace design. The areas found deficient are: 

(1) Several important effects have not been studied, have been 

analyzed only in simple systems or have been addressed only 

for systems with specific thermal property values. For 

example, a general treatment of the behavior of radial 

temperature gradients near the growth interface is not 

available: only the case of a perfectly insulating gradient 

zone has recei ved attention: generation of latent heat has 

be~n inc IJd ~d only in one-dimensional models without 
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crucibles; the effects of unequal thermal conductivities of 

the crystal and the melt, and cr',Jcible thickness have been 

considered only for systems of st-'eCific property values • It 

is difficult to draw general conclusions regarding these 

effects. 

(2) Conclusions drawn from those analyses which did not use a 

nondimensional formulation are difficult to extend to systems 

of different parameter values. 

(3) As seen in Table 3.1, all results, excepting parts of 

£17,22,23], have been determined by computation. The 

presentation of these results is necessarily in graphical 

form and their interpretatioo quickly becomes awkward when 

several effects are acting simultaneously. In this respect, 

results presented in simple analytical form are more 

desirable. 
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The axial temperature distributicn of a solidifying charge deter~ines 

two i )rtant characteristics of a par.ticular growth experiment: 

(1) the axial temperature gra-. ient in the melt at the growth 

interface. This must be 1reater than a critical value in 

order to prevent c~nst~tutional supercooling (c.f., 

section 2.1.1). 

(2) the axial location .. ~ the growth interface. In addi tion. to 

strongly influencln~ the interface shape, the temporal 

sequence of interface locations indicates the growth rate (as 

opposed to the lowering rate). 

Since neither of these factors pertains to radial temperature variations 

within the charge, thE' common approach has been to determine the axial 

temperature disti:ibution through a one-dimensional thermal model, i.e., 

neglecting tne r.sdial temperature variations. Such models neglect the 

radial thermal resistance within the charge compared to the thermal 

resistance between the charge and the furnace. The r.atio of internal to 

external thermal resistance is expressed by the Biot number, Bi. A one-

dimensional model is therefore valid for sufficiently small Bi (c.f., 

section4.2.3). 

'n1e one-dimensional thermal model developed in this chapter posesses 

several unique features. The crucible and the radial thermal resisitance 

of the charge are accounted for in a way which readily demonstrates their 

effects on the axial temperature distr ibution without compromising the 
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simplicity afforded by the one-dimensional modeling. Additionally, small 

lowering rates common in semiconductor crystal growth is recognized to lead 

to Simple analytical results from the one-dimensional model. Such results 

are used in Chapter 5 to demonstrate the effects of the various parameters 

of tile Bridgman growth system on the axial temperature distribution of the 

charge. 

A heat balance performed on a slice of the charge of infinitesmal 

length in the axial direction results in eq. [4.1]" (see section 4.2.1) for 
, 

the axial temperature distribution of the charge. The heat balance points 

out that the amount of heat conducted through the charge in the axial 

direction, and hence the axial temperature gradient in the crarge, depends 

directly on the amount of heat transferred to the charge in the hot furnace 

and from the charge in the cold furnace. Factors which affect the r~-=ial 

transfer of heat to or from the surfate of the charge are therefore 

expected to affect the axial temperature distr.ibution of the charge. 

The one-dimensional thermal model is initi,,".ly developed in 

section 4.2.1 neglecting the crucible and the radial thermal resistance 

within the charge. The charge is, in this case, analogous to a fin moving 

through the spatially varying boundary conditions imposed by the furnace. 

The crucible, however, may provide a significant radial thermal resistance 

between the surface of the charge and the furnace boundary conditions. 

Further, a large Biot number indicates that the internal radial thE:rmal 

resistance of the charge affects the radial heat exchange with the charge. 

These effects are approximated in sections 4.2.2 and 4.2.3 where it is 

shown that they can be included in the moving fin model as a modific3tion 
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of the ther~al coupling between the charge and the furnace (i.e., as a 

~odification of the Biot number) • 

.L.l THE PF50UBINd mtJATIONS FOR THE: royrN; FIN WPE!. 

The factors of concern for the development of a one-dimensional heat 

transfer model of the modified Bridgman grow~~ system depicted in Fig. 2.2 

are shown in Fig. 4.1. The hot and cold heat pipes comprise the hot and 

cold zones: the region between them is called the gradient zone. The 

length of the charge is broken down into LH' LG, and LC within the hot, 

gradient and cold zones respectively. The charge is lowered through the 

furnace with a velocity V, has crystal and melt portions with different 

thermal conductivities, and has a crystal-melt interface which generates 

latent heat. A crucible provides containment for the charge. 

The thermal mode=.. makes the assumptions described in section 2.2.2. 

Additionally, the gradient zone is assumed adiabatic (i.e., h(; = Q) in the 

one-dimensional model: this assumption is relaxed for the two-dimensicnal 

model of Chapter 6. 

~ ~ Charge 

With the assumption of negligible radial thermal resistance wl.thin the 

charge, and neglecting the crucible, the charge is analogous to the moving 

thin rod treated by Carslaw and Jaeger [291: the equation describing the 

axial temperature distribution is: 

[4.1] 

where: A s cross sectional area of the charge 

P = surface area per unit length of the charge 
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where: z· axial coordinate measured from tha center of the 
gradient zone 

k • thermal conductivity 

f • mass density 

cp • specific heat 

t • time 

Subscr ipt "loc" serves to distinguish boundary 
conditions or charge properties of a particular 
furnace zone. 

Tm denotes the area-averaged charge temperature as a function of Z. The 

first term of equatioo [4.1] represents axial conduction of heat within the 

charge and the second term represents axial convection of heat due to 

motion of the charge at velocity V. The factor q" in the third term 

accounts for radial heat transfer to the surface of the charge, per unit 

surface area of the charge. The final term r~presents heat storage due to 

temperature transients at fixed axial location, Z. According to assumption 

3 in section 2.2.2, q" is given by: 

[4.2] 

where: h· heat transfer coefficient between the furnace and the 
charge 

Tf • furnace temperature 

Substi tuting eq. [4.2] into eq. [4.1], neglecting the transient term 

according to assumption 2 in section 2.2.2, and nondimensionalizing the 

resulting expression, yields: 

[4.3aJ 
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An equivalent nondimensional form of eq. [4.3aJ is: 

Equation [4.3b] has one fewer parameter than eq. [4.3al but the axial 

coordinate, ,', is less physical since t.l-te Biot number is included in its 

definition. 

~ The Crucible 

In Bridgman growth a charge is confined in a crucible which, depending 

on conditions, varies in dimension and composition. Containment of the 

charge typically tends to decrease axial temperature gradients (Sen and 

Wilcox [24]). A crucible of low thermal conductivity lowers the axial 

gradient by adding thermal resistance between the charge and furnace, 

thereby decreasing the thermal coupling between the charge and the furnace; 

one of high thermal conductivity lowers these gradients by conducting heat 

transferred from the furnace axially within the crucible rather than within 

the charge. 

The domain of eq. [4.3] is considered to be the charge only and the 

crucible is not explicitly include<L However, a model of the heat transfer 

within the crucible approximates its effect on qft of eq. [4.1] which is 

then expressed through modified Biot and Peclet numbers. 

Several previous one-dimensional models [18,22,23] have included the 

crucible only as a radial resistance between the furnace and the charge. 
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The present model for the crucible includes axial conductif.)n as well as 

radial resistance by solving in an approximate manner the heat conduction 

equation for the temperature distribution of the crucible: 

v - - [4.4] 

where: r· radial coordinate 

~ • theDmal diffusivity, klfcp 

Subscript ·cr· denotes the crucible. 

The first term of eq. [4.41 accounts for the radial thermal resistance of 

the crucible, while the second term accounts for the axial conduction of 

heat wi t.,in the crucible. 

'nl~ principal assumptions involved in utilizing eq. [4.41 are that, at 

each axial locatj on of the crucible, :)TCM"/~l and Jl~f'J,t' are independent of 

the radial coordinate .,- and equal to dT.,../dl. and J'T.",.jJ?l of the charge. 

(See section 4.4.1 for a discussion of these approximations.) Tl:e first 

term of eq. [4.4] can then be integrated to yield a radial distribution of 

Tcr in terms of the axial gradients in the charge. The boundary condi tions 

at che crucible surfaces are: 

(at the outer 
crucible surface> 

(at the inner 
crucible surface> 

[4.5a] 

[4.5b] 

The heat transfer coefficient in eq. [4.5aJ is between the furnace and the 

outer crucible surface. Equation [4.5bJ assumes that the crucible and the 
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charge are in contact. The radial heat flow to the charge in eq. [4.1], 

q", is related to the radial distribution of Tcr bj: 

'1 1' = R do Tc.,.. 
\.' oc. c.(' do r'" 

(at the iMer 
cruciblQ surface) 

[4.6] 

The heat flow given by eq. [4.6] is substitllted for q. in the third term of 

eq. [4.1]. When nondimensionalized, the resulting expression has the same 

form as eq. [4.3] if Bi and Pe are replaced by their respective "effective" 

values, Bi* and Pe*: 

where: b :. Dcr/D 

Kloc • '~r/kloc 

RA,loc = C(c.f' /c1..lo~ 

(4.7] 

[4.8] 

The relationship between the effective Biot number and the 

conductivity ratio K is shown in Fig. 4.2 for S = 1.25 and various Bi. 

It is seen that Bi* is significantly reduced by both low and high values of 

K, especially for larger Bi. In section 5.2 it is shown that increasing 

Bi* tends to increase tha axial gradient at the growth interface. The 

conductivity ratio, K+, which maximizes Bi * for given ~ and Bi can be 

obtained from eq. [4.7]: 
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[4.9] 

For typical v31ues of Bi and 8, the conductivity ratio providing the 

m2.:i(lmum effective Biot number is found to lie between 0.1 and 1.0. 

It is sometimes possible to increase Bi * by increasing the thickness 

of the crucible (i.e., by increasing ~ ). This effect is similar to the 

"critical radius of insulation- effect whereby a wire which is ca'\ducting 

electricity may be able to dissipate more heat to its surroundings with a . . 
layer of insulation on its surface [30]. For the charge/crucible system, 

an increase in S increases the charge surface area expos( ~o ~:1t 

transfer with the furnace. If this effect more than offsets the ~si..19 

effects of increased radial resiEtance and axial conductance of the 

crucible, then Bi* increases with ~ • 

Consider that Bi* in eq. [4.7] is a function of ~ with constant K 

and Bi. The value of ~ which maximizes Bi *, b +, is given bY' th(.\ roots of 

the following equation: 

Equation [4.10] has positive rOLts greater than un~ty ( b > 1 when a 

crucible is present) only ""~le:'1 K < 1/2 and Bi < 1/4. Figure 4.3 plots the 

values of ~.. for varlOUS K and Bi. Tt is seen that it is advantageous to 

have a thicker cr~cible when Bi is small, but only if K is also small. 

Figure 4.4 shows the increase in Bi* when b • &+ compared to a bare 

charge (i.e., compared to b • 1). CIt is found that this ratio is not a 
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Fig. 4.4: Increase in Bi ioc caused by using the ootimum cr-rci:Jle 
diarreter ratio, 5+, ~~~ec1 to a charge ~vi thout u crucible. 
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strong function of K but correlates well with S+.) Accordingly, for those 

cases where an increase in S results in an increase in Bi *, the maximum 

effect is not large. Therefore, increasing the crucible thickness should 

not be considered as a viable method for increasing the axial temperature 

gradients near the growth interface. 

~ Badial Temperature Gradients Within the Charge 

Equation [4.11 considers that the temperature within the charge at 

each axial location is uniform. Presently, radial gradients in the charge 

are considered insofar as they affect the therma~ coupling between the 

furnace and the charge and thereby the axial temperature distributiono 

When radial temperature variations in the charge are taken into 

consideration, eq. [4.3] assumes the form (see Appendix A): 

[4.11J 

where: ~ a surface temperature of the charge, i.e., at ~ = 1/2 

The term Ss - Sm in eq. [4.11J accounts for the effect of radial 

temperature variations within the charge on the q" term of eq. [4.11. An 

approximation for as - am is obtained by solving in an approximate manner 

the two-dimensional heat conduction equation in the charge: 

[4.12] 

Assuming that the Peclet term is negligible (see section 5.1), and, as in 

the crucible effect, that 'd'e/-x;z, is only a weak function of the radial 

coordinate, f ' eq. [4.12] can be integrated in the radial direction with 
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~~eM/J'~as a variable. The integration indicates a parabolic variation for 

the charge temperature at 3 particular axial location: 

[4.l3a1 

and: 

[4.l3b] 

Combining eqs. [4.11] and [4.13bl leads to a new ~ffective Biot number, 
- . 

Bi**, replacing Bi in the third term of eq. [4.3a], which accounts for 

radial temperature gradients within the charge as well a3 within the 

crucible: 

[4.14] 

According to eq. [4.141, Bi** = Bi* for Bi* « 8: i.e., the radial 

thermal resistance within the charge does not affect the axial temperature 

distribution. Equation [4.14] indicates also that the maximum value that 

Bi** can attain is 8 when Bi* is very large. The internal radial 

resistance of the charge thus limits the degree to which axial temperature 

gradients can be increased by an augmentation of the thermal coupling 

between the charge and the furnace. 

The validity of eq. [4.14] may be tested by comparing the axial 

temperature distributions for a system whose internal thermal resistance in 

the radial directi.on is considered (1) exactly through the use of a two­

dimensional model and (2) through the use of eq. [4.14]. A stationary fin 
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(without crucible) of infinite length provides a simple system for which 

analytical resl.il ts for both models are readily available (see Fig. 4.5). 

In order to consider the most extreme case, the heac transfer coefficient 

at the surface of the fin is taken to be infinite; for these conditions, 

Bi * is infinite and Bi ** • 8. In this case, the expression for the cross 

sectional area-averaged temperature f.or the two-dimensional fin is [311: 

9"',~b (c.) = 90 ! ~ eXf (-2 ~w.) [4.15] 

"., 
where: 

J;,(Wt\ '): 0 

~o • Bessel function of order zero 

and the axial temperature distribution for the one-dimensional fin is [311: 

[4.16] 

Equation [4.16] with Bi** I: 8 is compared to eq. [4.15] in Fig. 4.6 with 

good results. Equation [4.141 is theretore taken to be a reasonable 

anaytical aJ;:proximation for the effect of radial gradients in the charge on 

the overall axial temperature distribution. 

Abrupt changes in surface boundary conditions affect thP. temperature 

of the charge more at its surface than at its center. The assumption of 

constant ~lel_,l over the cross section of the charge and, as a 

consequence, eq. [4.14J, are expected to be less valid near such changes in 

boundary conditions. The moving fin model considers an abrupt change in 

the heat transfer coefficient at the €lds of the gradient zone. Equation 

[4.l4J is least accurate near these locations but becomes increasingly 

valid with distance into the furnace zones. A further verification of 
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(b) One-dimens~nal model used with eq.[4.14] 

f 

e 0 S ',*'It·· 8 f: , 

isotherms 
are 1'ot 

Fill. 4.5: :--ocels of 3. si.ITlple stationar;· ~i.11 used to check t.'1e validity 
of e.l. [4.14]. 
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eq. (4.14] obtalned for the conditions of an adiabatic gradient zone is 

provided in section 4.6 • 

.L.1 SOWl'ION OF 'lSE ltI'J\7mj FIN mumONS 

Using the results of sections 4.2.2 and 4.2.3 in order to include the 

effects of the crucible and radial thermal resistance wi thin the charge, 

eq. (4.3al becomes: 

[4.17] 

The parameters Pe*, Bi**, and Sf are not constant throughout the furnace. 

According to assumptions 3 and 4 in section 2.2.2, however, they are 

constant within each of four separate furnace regions: the hot and cold 

zones and the liquid and solid parts of the gradient zone. (It is assumed 

that the growth interface is located within the gradient zone.) The 

solution of eq. [4.17] within each region yields two exponential terms for 

the homogeneous solution and a particular solution that depends on Sf. The 

assumption of uniform hot and cold zone furnace temperatures yields a 

simple constant for the particular solution in these zones. A particular 

solution is not needed in the gradient zone since h(; = O. 

The constants of integration for the homogeneous solution of eq. (4.17] 

are found using the boundary conditions of equality of temperature and 

continuity of heat flux between adjacent regions. The temperature boundary 

condition is: 

[4.18] 

where the subscripts "j" and "k" refer to opposite sides of a boundary 
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between adjacent regions. ':'he flux boundary conditions uo;,ed in the moving 

fin model are: 

between the hot and 
gradient zones 

- or­
between the gradient 

and cold zones 

at the growth 
interface 

[4.19] 

[4.20] 

Section 4.4.3 explains that the axial gradients in the gradient zone which 

result from the use of eq. [4.20] should be interprt!ted as average 

charge/crucible axial gradients1 these average gradients will be denoted by 

GL and GS for the liquid and solid sides of the interface respectively. 

Unavoidable radial heat transfer between the charge and the crucible near 

the growth interface causes Gt and Gs to significantly differ from their 

respective counterparts in the charge, ~e", /Jc.).. and (d9,.JJl:ls. The 

relevant axial gradient for the supercooling requirement is, however, that 

in the charge. Evaluation of the difference between G and d 9.,.,./d' at the 

growth interface require£ two-dimensional modeling and is therefore 

considered in Chapter 7. 

Boundary ccnditions at the end of the charge must be applied when the 

charge length can not be considered infinite (c.f., section 5.5). 

Appendix D discusses the calculation of approximate Biot "bers for the 

nondimensional end boundary conditions. 

The constants of integration have been determined c:nalytically for 

systems of infLiite charge length: expressic ~s for the axial gradient in 
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the melt at the interface and for the axial position of the interface of 

such systems are given in Appendix B. Of special interest are the 

simplified results obtained for the small lowering rates common to 

semiconductor crystal growth, eqs. [B.9] and [B.lO]. If the complete axial 

temperature distribution is desired, or if the charge length is not 

infinite, it is more convenient to determine the constants of integration 

by computer • 

.L.J ASStJMP1'IONS IN THE M?YINi FIN KIDEL 

The validity of the primary assumptions employed in the development of 

the moving fin thermal model of section 4.2 is discussed in this section. 

~ Egua l Axial Gradients of the Charge and Crucible 

In order to obtain a simple analytical expression for the effect of 

the crucible thickness and conductivity on the axial temperature 

distribution of the charge, the crucible model (section 4.2.2) assumes that 

the first and second axial temperature derivatives in the crucible are 

independent of the radial coordinate, f ' and equal to their rt::~?ective 

values within the charge. These approximations are motivated by the two-

dimensional temperature distributions presented by Wilcox et.al. [24,26]. 

Sen and Wilcox [24] determined isotherm shapes in a charge/crucible system 

for various K and Bi by a two-dimensional finite difference computer model 

under the following simplified conditions: s • 1.25, ~ = 0.0, Pe = 0.0, 
C:J 

J.c = )..\1:= .75, RK • 1.0, RH = 0.0. The shapes of their numerically 

computed isotherms indicate ~1at the assumptions are reasonable for values 

of K greater than about 1/2. As K decreases below 1/2 (e.g., as kcr 

decreases), increasing radial resistance of the crucible produces a 
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pronounced radial temperature variation in the crucible; the axial 

gradients in the crucible are larger than those in the charge near the ends 

of the hot and cold zone. It is therefore expected that the crucible 

effect, as described by eqa. [, •• j] and [4.8] will be most in error for 

small values of ~ 

'Ihe temperature distributions of Fu and Wilc~)x [26J indicate that the 

radial variation of the axial gradients are most pronounced at the ends of 

the hot and cold zones, especially for s~·::tems without a gradient zone. 

The absence of a gradient zone in the model of Sen and Wilcox [24] 

therefore accentuates the error in the approximation for systems wi th a 

gradient zone. 

The two~imensional thermal model developed iH Chapter 6 does not 

assume that axial temperature gradients in the charge and crucible are 

equal. The effect of the crucible on the axial temperature gradients of 

the charge determined by the two-dimensiooal model are compared to results 

gi ven by the one-dimensional model using Bi ** • Agreement is good even for 

values of K as small as 0.1. It is therefore concluded that the effective 

Biot number provides a reasonable estimate of the crucible effec~ on the 

axial temperature distribution of the charge. 

J.J...2. fmlAl Growth and Lowering RAtes 

The term PesRH in eq. [4.20] represents the generation of latent heat 

at the growth interface: the velocity used in Pes should therefore be the 

actual growth ratepR. When the charge length if' not infinite, however, the 

;rowth rate exceeds the lowering rate, V, [9,11,22). The present model 

n~lects the difference between V and R under such conditions and uses PeS 

based on the lowering rate V. In this way, the mathematical solution is 
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simplified since the rate of generation of latent heat then has a known and 

constant value. On the other hand, if the growth rate, R, were used, the 

rate of generation of latent heat would not be known a priori or constant. 

The assumption that R-V in not exessively restrictive. Riquet and 

Durand [9] and Sukanek [22] show that the growth rate is most different 

from the lowering rate when the ends of the charge are passing zone 

boundaries. When the length of the charge in both the hot and cold zones 

can be considered infinite (see section 5.5), the growth rate and lowering 

rate are equaL Further, growth conditions may be such so that the effect 

of latent heat on the axial temperat~re profile is negligiole (see 

section 5.4) 1 the error created by the use of V rather than R in PeS would 

then be likewise small. Lastly, if desired, the solution of eq. [4.17] can 

be modified so that PeS in eq. [4.20] is based on R as follows: The axial 

posi tion of the growth interface for two closely spaced locations of the 

charge in the furnace is calculated with an initial af:sumed value of R. 

The difference in position of the interface for these two locations 

indicates a growth rate which need not be equal to the original assumed 

value. ~e growth rate is accordingly modified and the pror.edure iterated 

until convergence is achiev~ 

Jd.l Flux Boyndar:::t Condition at the Growth Interface 

Consider that the charge and crucible temperatures, ~~ and ~~r 

respectively, are each represented b} a single value at each axial 

location. (The variable 4> is used in this work to denote non-dimensional 

temperatures employed in two-dimensional thermal models.) When PesRH ,. 0 

and/or RK ~ 0, the axial gradier.t in the charge, dcP""/d~ , must undergo an 

abrupt change at the growth interface. The axial gradient in the crucible, 
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on the other hand, does not ~hange at the growth interface. Figure 4.7 

shows that such conditions lead to a difference between the charge ~nd 

crucible temperatures as well as their axial temperature gradif'.nts. The 

temperature difference leads to an exchange of heat between the charge and 

crucible near the growth interface. The relatialShip between this radial 

heat transfer and the shape of isotherms is discussed in section 7.3: the 

present sect.ion addresses its effect on the flux boundary condition at the 

growth interface for the moving fin model, eq. [4.20). 

Define an average charge/crucible temperature weighted by their 

respective axial thermal conductances: 

[4.211 

kloc is respectively kL and kS ..:or the liquid and solid portions of the 

charge. Naldimensiooalizing eq. (4.21J yields: 

¢"", + K\oc.(~l.-l) ¢c-r 

\+ K\oc.(Sl.-l) 

Differentiating eq. [4.22] in the liquid and solid yields: 

- 6i -
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The moving fin model assumes t~at e' G II O. In th .. s case, thete is no hea'c 

transfer to or from the surface uf the crucible in the gradient %one and G 

must be invariant in the gradient zone except for a step change at tbe 

growth interface. The relationship between GL and GS is ~ound by 

considerin-3 the heat flux boundary conciit1on at the grl)wth interface. In 

nood1mension~1 form: 

[4.244] 

. [4.24b] 

where subscript wiw denotes the interface 

By multiplying eq. [4.24b] by Ks (S' -I) , adding to eq. [~.24a] and llsing 

eqs. [4.23], the following relation is obtained: 

[4.25] 

The one-di;r.ensional T!loving fin model '1e<;lecb:» the differ~ce between 

<Pt'f\ and <teo.,. ; i.e., 4>",'\1 ctt .. : e~ . In this case, eqs. [4.23] show that: 

[4.26a] 

[4.26b] 

Substituting eqs. [4.26] into eq. [4.25] results in the interface boundary 

condition used by the moving fin model, eq. [4.20], These results suggest 

that the axial temperature gracient in the gradient zone pr~icted by the 
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moving fir. model, d e~/dc. , should be interpreted as the average 

charge/crucible axial gradient, G. The difference between G and d<P .... /d~ is 

discussed in section 7.3. 

J.A.i Qiobotic Gradient Contrgl Regign 

The moving fin model assumes that there is no heat exchange betw' ~n 

the charge and the furnace within the gradient control region~ i.e., 

he • O. Clang and Wilcox [17] suggested the use of an adiabatic gradient 

control region as a means of reducing isotherm curvature near the growth 

interface. Further motivation for this assumption is that it siJllPlifies 

the analytical expression of the temperature distribution in the 

solidifying charge. 

A perfectly insulating gradient control region is a conceptual limit 

and is unobtainable in practice. Radial heat transfer to or from the 

charge in the gradient ~:one affects isot.'1erm curvature; the assumption of 

an adiabatic gradient ('".)lit.rol region is therefore eliminated in the two-

dimensional model described in Olapt~r 6. The present section formulates a 

slmple model of heat exchange within the gradient control region in order 

to determine when this heat exchange is negligible with regard to the axial 

temperature distribution of the charge. 

Consider the portion of the furnace in the gradient control region to 

be an annulus located between and in contact with the hot and cold heat 

pipes. The gradient zone annulus has conductivity kG, cross sectional area 

A(;, and has a temperature, TG (X) which depends only on the axial 

coordinate. Heat exchange between the gradient zone annulus is described 

by the gradient zone heat transfer coefficient hG. No heat loss is assumed 

at the outer diameter of the gradi~nt zone annulus. (This model of the 
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gradient control region is identical to that used in Chapter 6; c.f., 

section 6.2 and Figs. 6.1 and 6.2.) 

In order to develop a relatively simple expression for the temperature 

distributions of the charge and gradient zone aML·lus, the present system 

is specified by the following parameter values: 

1. Equal heat transfer coefficients in the hot and 

cold zones. 

2. Axial convection of heat due to the charge motion 

is negligible; Le., Pe is small. (See 

section 5.1.) 

3. The effect of the generation of latent heat is 

negligible; (PeSRa· 0), (See section 5.4.) 

4. Equal thermal conductivities of the melt and 

crystal \Rf{ • 1). Wi th condi tion 1 above, 

B " ** B" ** 1H • 1C • 

5. Equal charge lengths in the hot and cold zones 

(AM • Ae ). 

A system which has the abov~ parameter values is referred to in the present 

work as a "symmetric· system. The axial temperature distribution of the 

charge for a symnetric system is: 

[4.27] 

It is only necessary to consider one-half of a symmetric system, 

either C, > 0 or C, < O. An additional assumption used in this sectien 

is that the charge length is infinite; in this way, the absence of the end 
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boundary conditions and charge length as thermal parameters simplifies the 

expressions for the temperature distributions of the charge and gradient 

zone annulus. 

A schematic of the temperature distributions in the charge and 

gradient zone a:mulus is shown in Fig. 4.8. Only the cold portion of the 

symmetric ~y~tem is shown. At the center of the gradient zone (i.e., at 

c: • 0), the assumption of a symmetric system dictates that em = 9G = 0.5. 

The cold end of the gradient zone annulus is at the cold zone heat pipe 

temperature. 

The equation governing the mean charge temperatur-e in the cold zone is 

adapted from eq. [4.17] assuming that Fe = 0.0: 

[4.28] 

The charge temperature in the gradient zone is described by eq. [4.28] with 

BiC* replaced by BiG* and ef,c replaced by 9G: 

[4.29] 

where: 0 sS C; $ fJ.. 

The fin equation for the gradient zone annulus can be derived by noting 

that the transfer of heat bet.weE:m it and the charge/crucible requires the 

following relation between the second axial derivatives: 

[4.30] 
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(Equation (4.30] assumes that the axial conduction of heat in the crucible 

is described by the axial derivatives of 9",.) substitu'Cinq eq. (4.30] 

into eq. (4.29]: 

where: 

Rc.,A4 

~\ A 

O~ r:,~f! 

[4.31] 

Equations [4.28], [4.29] and [4.31] are simultaneously solved 

utilizing t!" • .: .. 1,Jl-lowing boundary cendi tions: 

Bc.(o) =0.0 

94 CU ) = 0 

9M(O):: O. s 

eW\ Let') : 0 
[4.32] 

[eM (~) lea : le~ l~) 1 c. 

l J 9., (tt) 1 = (d 9 .. [I:') 1 
de:; C"1 de; c. 

The resu'lting distribution for the temperature difference between the 

charge a~d gradient zone annulus is: 
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where: W~ = 2 lB t:*' (\ + ~~ -I ) J 1/4-

'WWI = 2 L 'B i.~ )'/4 

R!= Re:,/LI"'K~t~t-\)1 
EkJ1,lation [4.33] demonstrates that the difference in temperature between the 

gradient zone annulus and the charge varies exponentionally and decreases 

more rapidly for larger BiG* and smaller Rd. A large value of Bi~* is 

indicative of effective thermal coupling between the charge and gradient 

zone annulus. A small value of RG indicates that the gradient zone annulus 

has a relatively small capacity to conduct heat in the axial direction 

compared to that of the charge/crucible combination: consequently, any heat 

transfer to or from the gradient zone annulus serves to rapidly equilibrate 

9<i1 to e"" . 
The importance of heat transfer in the gradient zone compared to that 

~curing in the hot and cold zones on the axial temperature distribu~ion of 

the charge is revealed by the expression tor the axial temperature gradient 

in the charge at the center of the gradient zone: 

[4.34] 
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Figure 4.9 shows the variation of G( , • 0) with ~ for systems with 

BiG* • BiC*. When RG = C, the gradient zone does not conduct heat from the 

hot or cold zones for subsequent exc."lange to or from the charge; in this 

case, the gradient zone may be called adiabatic ~ven though BiG ~ O. As RG 
increases, the temperature distribution of the gradient zone annulus 

becomes increasingly linear provid~g a temperature difference between it 

and the charge; the resulting heet exchange increases the axial temperature 

gradient of the charge. As ~ approaches infinity, the heat exchange 

between the gradient zone annulus and charge is little affected by 

changes in RG since 8G< l;) approaches its limiting linear variation. 

Figure 4.10 demonstrates the effect of Bia* for systems with 

RG = 1.0. The adiabatic gradient zone case is indicated by the curve 

labeled Bia* 1BiC* • 0.0. Heat exchange between the charge and gradient 

zone annulus becomes increasingly important as BiG* increases relative to 

BiC*' resulting in a significant increase in the axial gradient of the 

charge. In the limit as Bia* approaches infinity, the temperature 

distribution of the charge in the gradient zone varies linearly between the 

boundary conditions imposed ":Jy the hot and cold zone furnace. 

The results presented in this section were based on a model which 

assumed infinite charge length. Further, Figs. 4.9 and 4.10 examined the 

special case of A~ = 1.0. It is expected that the effect of adiabatic 

gradient zone increases as the relative lengtr. of the gradient zone 

increases (e.g., finite charge length and increasing ~;. Nevertheless, 

the results of this section suggest that the gradient zone can be made 

effectively adiabatic by two design options: 

(1) Small RG. A material of poor thermal conductivity placed 
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between the hot and cold zone furnaces provid~s for a small 

value of RG. 

(2) Small BiG relative to the Biot numbers in the hot and cold 

zones. This may be accomplished in systems where the 

conductive component to the gap heat transfer coefficient is 

small (see AR>endix C) by placing highly reflecting radiation 

shields between the gradient zone annulus and the charge. 

The thermal parameters which appear in ~he moving fin model are 

summarized in Table 4.1 

.4...A O)1PARIOON WI'lH ;m; 'OO-QI!1EmIONAL RESULTS Of FU AND WlL(X)X [261 

Results derived from the present one-dimensional model can be compared 

to similar results of Fu and Wilcox [26] who included radial temperature 

gradients within the charge in a two-dimensional finite difference model. 

Figure 3 of their paper presents the radial variation of the axial gradient 

at the growth interface for systems of infinite charge length in the 

absence of a crucible. Point values, estimated from the curves of their 

Fig. 3, were numer ically integrated to obtain the average axial gradient 

over the cross section at the growth interface. These results are compared 

to the values obtained using eqs. [4.14] and [5.8] for several values of 

Bi and AG in Table 4.2. 

Since the model of Fu and Wilcox [26] does not include a crUCible, the 

comparison shown in Table 4.2 tests the validity cf eq. [4.141 in 

accounting for the effect of radial thermal resistance of the chnrge on the 

effective Siot number. ConSidering the approximations required in the 

derivation of eq. [4.14], the agreemer.t of the data must be taken as 
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excellent. It is considered, therefore, that eq. [4.14] provides a 

reasonable correction for the effect of radial temperature variations 

within the charge on the axial temperature distribution of the charge. 

(The validity of eq. (4.7] in accounting for the effect of the crucible c., 

thP. effective Biot number is provided in section 6.3.) 

parameter definition ccmnents 

BiH hHD/kL 

BiC h6>/kS 

Pes VDkslf cp Pet :I; PesRK 

S Dc rID 

KS lter/kS I KL :=& Kg/% 

1 Roc ,S Ot.r:.t' / Ot.s R ~,L = R oc,slR£< 
I 

RK kVkS I 
% i AHsl/Cp(Tf,H - Tf,C) I i 
AG. I tolD 

! I 
! , 

I 
i 

}...~ , Ls/D i I 
required only if the I 

}...c. i Lc/O I charge can not be 

I ! considered infinitely 
BiH,end hH, encJD/k L I 

long (c.f., section 4.2.5) 
i 

i 
I , 

BiC,end he, encJD/kS I 

I I 
I 

L:i ! Zi/O I , 
I I 

I 
I 

I 
(Ti - Tf,C) 

, 
only one is independent , 

e· I 
1 

I (Tf,H - Tf,C) 

Table 4.1: The rna 1 parameters in the moVl.r:g fin model. 
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Fu and Wilcox [26] E:qs. [4.141 and [5.81 

0.0 1.310 1.,,61 

Bi • 2 0.25 0.975 0.961 
(Bi** • 1.6) 

0.50 0.778 0.775 

Bi • 0.4 0.0 0.616 0.617 
(Bi ** • 0.38) 

0.5 0.464 0.472 
-

Table 4.2: Axial temperature gradients at the growth interface, 
~ , ~s obtained through eqs. [4.14] and [5.8], and 

average axial temperature gradients, ~e,~c, )AY , as 
determined from the tw~imensional model of Fu and 
Wilcox [26]. (Symmetric system and no crucible.) 
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.s.a. THE AXIAL lWtRA'JIlRt QISTBIBtmON OF ;m; OWQ; 

This chapter describes the Affects of the thermal parameters of the 

vertical Bridgman growth system on the one-dimensional thermal behavior of 

the charge. The presentation of the results emphasizes th~ thermal 

requirements for satisfactory single crystal growth developed in 

section 2.1 which relate to the axial temperature distribution in the 

charge: (1) the axial gradient in the liquid at the growth interface 

(constitutional supercooling) and (2) the axial position clf th~ gcowth 

interface (a factor strongly affecting the shape of the interface). 

Axlal temperature distributions in the charge are ~alculated by 

computer using the moving fin model described ir.. Olapter 4. Such results 

indicace how the interface position (0: the nondimensional melt 

temperature) is affected by ~~e thermal parameters. The axial temperature 

gradient within the melt in the gradip.nt zone, is studied by utilizing the 

analytical results presentP.d in Appendix B. 

Section 4.4.3 explains that the axial temperature gradient at the 

interface calculated from the moving fin model must be interpreted as the 

average of the charge and crucible axial gradients. The variable G is used 

to denote this average value. The difference between G and the axial 

temperature gradient in the cr.ar~e is discussed in sec:tion 7.3. 

For a particular growth experiment r4ving constant process parameters 

(e.g., fur~ce temperature, lowering rate) the temperature of the interface 

and its location within the furnace are functionally re13ted. Since the 

shape of the interface strongly dep€nds on its axial location 117,26 and 

Chapter 7], it is expedient to consider the interface location as the 

- 82 -



_ ...... ~ -> --... '",",,£""'. --~ ~ ........ ""-,......." .. ¥. -.*_442"""". ._, 

ORIG'NAL PAGE IS 
OF pOOR QI JALliY 

independent variable. Given the inter~ace location, the thermal model 

predicts ~ nondimensional interface temperature, 911 the dimensional 

interface tempera~u!e, Ti' is related to the hot and cold zone furnace 

temperatures and 9i as follows: 

[5.1] 

'lbe desired interface location is ",chieved by adjusting the hot and/or cold 

zone furnace temperatures so that eq. [5.1] is satisfi~ 

In consideration of the many variables in the moving fin model, the 

syrrmetric system defined in section 4.4.4 is used as a reference- aqainst 

which the effects of individual parameterr. will be compared. 

The Peclet number expresses the ratio of axial heat transfer in the 

charge due to the lowering velocity, V, and due to ronduction. The 

effective Peclet number, Pe*, incorporates the effect of the crucible on 

the convection term of eq. [4.la]. The unmodified Peclet number is used to 

describe the generation of latent heat (eq. [4.20]). 

The effect of Pe* on the axial temperature distribution in an 

otherwise symmetric system obtained through eq. [4.17) i~ shown in 

Fig. 5.1. It is seen that P~* tends to increase the temperature of the 

charge at all locati.ons; the effect is more pronounced as Pe* increases 

(e.g., high lowering rate or low ti·,: -,al conductivity of the charge}. As a 

consequence, in systems with fixed hot and cold zone furnace temperatures 

(i.e., the nondirnensional melting point temperature is c~nstant), the 

growth interface moves toward the cold zone as Pe* increases; 

alternatively, the nondimensional ~elting point temperature must increase 
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(i.e., one or both of the furnace temperatures must be lowered) if the 

interface is to remain at the same axial location as Pe* increases. 

Table 5.1 gives expressions for the Peclet number based on solid 

properties for Ge and CdTe (materials with high and low thermal 

conductivity, respectively) as a function of lowering rate V and charge 

diameter D. Using lowering rates common to Bridgman growth experiments 

(e.g., .1-10 fAmlsec), it is seen that the Peclet number is small compared 

to unity. A test criterion for its relative magnitude is provided through 

the characteristic roots of eq. [4.17]: 

Expanding eq. (5.2]: 

,....-.. 

Ge 

CdTe I 

OCs PeS 

.097 cm2/sec VOl 967 

.011 cm2/sec VO/:ll 

IX = thernal diffusivity 

V measured in f nv'sec 

D measured in em 

! 

Table 5.1: Magnitude of typical Peclet numbers. 

[5.2] 

[5.3] 

I , 
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If the following inequality holds, the characteristic values, wm r are of 

opposite sign and their sum is equal to Pe*: 

[5.4] if: 
\ l?e"~~ <<;. 1 -
2 \ ~ ~l1C'lC 

W ::; 
t-e1& 

~ 2 (~i.~y/4 --
'1'1\ 2. 

[5.5] then: 

Further, Pe* disatpaars from the characteristic roots under the following 

conditions: 

if: [5.6] 

then: [5.7] 

Equation [5.6] agrees with Chang and Wilcox [17] who :~ported that the 

Peclet effect is stronger for smaller Biot numbers. 

If the inequality in eq. [5.6] holds, the Peclet effect is small enough 

to satisfy the Peclet number criterion for symmetric systems (i.e., Pe=Q); 

in addition, simplified analytical expressions are obtained for the axial 

gradient wi thin the melt in the gradient zone (Appendix ~). co· .... J.nce 

eq. [5.6] does hol d for typical Bridgman gro,,-th, thl - '.mplified 

expressions are used in the remainder of this chapter. 

t.:quation [4.20] shows that the generation of latent heat at c.~e g~owth 

interface is also dependent on Pee The charge lowering rate, therefore, 

has a small effect on the axial temperature distribution if both eq. [5.6] 

holds and the latent heat effect i~ sme-.ll. (Sections 5.4 and 7.3 c.c3dress 
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the effect of latent heat on the axial temperature distribution in the 

charge and on the radial temperature variations near the interface, 

respecti vely • ) 

U BIar NUMBER EFfEC1' 

The Biot number, through the heat transfer coefficient, h, is a direct 

measure of the thermal coupling betwef:n the charge and the furnace. The 

effective Biot number, Bi**, inc~rporates the effects of the crucible and 

radial temperatur~ gradients within the charge on this thermal coupling. 

Typical val~es fo: the effective Biot number vary-from 0.05 fior high 

conductivity lIIaterials such as Ge to 5.0 for low conductivity materials 

such as CdTe. (Appendix C gives approximate values for typical heat 

transfer coefficients.) Axial temperature profiles for several Bi ** are 

shown in Fig. 5.2. In agreement with the results of Chang and Wilcox (172, 

it is found that the charge tem}?erature follows more closely the furnace 

temperature and, as a result, the axial temperature gradient in the 

gradient zone increases, as Bi"* iuc r eases. 

The expression for thb axial gradient near the growth interface 

presented in Appendix B for infinite charge length can be simplified for 

symmetric systems: 

G = 1.. 

-\ 
[5.8] 

The dependence at the axial gradient. on Bi **, accordinc; to eq. [5.8], is 

plotted in Fig. 5.3 for various gradient zone lengths, "'4. The curves 

show that the dependence of the ~xial gradient on Aa, becomes stronger with 

, 'B'** \ :i.nCr~aslng 1 • It can 31so be seen (curve I\~ = 0) that there exists a 
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minimum 8i k * for any desired nondimensiona~ axial gradient. 

The Biot numbers of the hot and cold zones are generally not equal 

due, for example, to the temperature de~-ndence of radiative heat transfer. 

For such conditions, the zone with the larger effective Biot number more 

stroogly influences the overall temperature level (Fig. 5.4) • Compared to 

h t . h B' ** B' ** th h t t f t e symme r1C case were 18 • lC' e c arge empera ure or 

asymmetric systems increases when Bia** > BiC** and decreases when 

B' ** B' *~ lC ;. 18 • If the location of the crystal-melt interface for each 

curve of Fig. 5.4 is considered to be the center of the gradient zone, the 

effect of unequal Biot numbers appears as a change in nondimensional 

interface temperature. To retain the interface in a given location 

requires lowering the hot and/or cold zone furnace te.'llperatures as Bia** 

increases relative to Bic**. 

The expression for the axial temperature gradient in the gradient 

zone for a system with infinite length which is symmetriC except hH ~ he 

is: 

. . -\ 
A ... ..L [('B ,*'*)-1/2-e:. 2. \.~. ;. 

[5.9] 

Equation [5.9] indicat ... s that the smaller of the effective Biot numbers has 

a greater effect on decreasing the axial gradient. Efforts to increase 

axial gradients by adjusting the heat transfer coefficients should 

therefore first be directed at the zone with the smaller Bi**. 
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U EFFECT OF UNmQAL 'tHERMAL CDNOOCTMTY OF 'mE CRYSTAL AND 'mE MELT 

J.BK ~ 11. 

RK expresses the ratio of melt to crystal thermal conductivity. 

Semiconductors have ~ values greater than unity whereas, for metals, the 

value of ~ is less than unity. The effect of R{{ on the axi:!l temperature 

distribution in the charge obtained through eq. [4.17] i~ demonstrated in 

Fig. 5.S for systems with S. 1 and which are otherwise symmetric (i.e., 

BiS • Bic/Rf{>. The charge phase with the higher thermal conductivity tends 

in all instances to have a lower axial gradient because of lower thermal 

~~istance to heat transfer in the axial direction." The axial gradient in 

the melt ~ear the interface is therefore less than in the crystal for 

charges \. :.th R!( > 1. 

The expression for the axial gradient in the melt near the growth 

interface for a system of infinite length which is ~etric except RK ~ 1 

is <Awendix B): 

(5.10] 

A comparison of eqs. [5.41 and [5.10] shows that a value of Rr< greater than 

unity is detrimental to the establishment of large axial gradients in the 

melt. The axial gradient as a function of RK according to eq. [5.10] is 

plotted in Fig. 5.6 for several values of Bie_ It is found, for example, 

that this conductivity effect may reduce the gradient in a germanium melt 

(RK = 2.5) by about 50%. 
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The quantity of latent heat of solidific~tion liberated at the 

crystal-melt interf!l.ce is given in noodimensional form by the product PesRH 

(eq. [4.20]). The expression for the axial gradient in the melt near. the 

growth interface in a system of infinite length which is symmetric except 

PeSRH -; 0 is: 

- 2 + 'Pes R! Ll'B\. ... )-"l. .. ~Gt - 2 c: i ] 

z l (b~*'fI)-l/l + "" 1 
[5.11] 

It can bl! seen that the effect of latent heat on the axial gradient (and 

also on the axial temperature profile) is small if: 

[5.12] 

Equation [5.12] demonstrates that the effect of latent heat on the axial 

temperature behavior is largt=r for smaller Bi ** and for larger lower ing 

rates of the charge (PeS is proportional to V). 

Axial temperature profiles for 'larious values of ." are given in 

Fig. 5.7. It is seen that the generation of latent heat both increases the 

charge temperature and decreases the axial gradient in the melt: the latent 

heat eifect disappears for small values of ~ • 

(The effect of latent heat and the Peclet number effect described in 

section 5.1 are coupled through their mutual dependence on the lowering 

rate, V. In order to isolate the latent heat effect in Fig. 5.7 , Pe is 

chosen sufficiently small so that Eq. [5.6] is satisfied. Such a small-

value for pf> would normally also eliminate the latent heat effect; i.e., 

eq. [5.12] would also be satisfied. The values of >7 in Fig. 5.7 were 

obtain~ oy choosing awrcpriately large values of Rtf.) 
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When the charge is infinitely long, the temper~ture field of the 

charge does not cbanne during growth and, hence, the interface position 

remains fixed. Fi~ure 5.8 shows the progression of axial temperature 

profiles as the charge is lowered from the hot zone to the cold zone for 

charge lengths less then infinite. It can be seen that charge temperatures 

are displaced tow4rd the hot zone furnace tempe,atur~ when most of the 

charge is in the hot zone and vice-versa. Accordingly, to achieve CC"'1stant 

interfac~ position for non-infinite c.harge lengths, the nondimensional . 
solidificatiCll temperature, 9i, must be reduced as the experiment proceeds. 

At constant 9i, the growth rate is great.:!r than the lcwering rate while t.he 

interface moves from the cold to the hot zone. 

The cClltribution fro~ the positive characteristic root, eq. [5.2], to 

the solution of eq. [4.17] is normally small and is zero for an infinite 

charge length. ~he charge thus appears infinite in length when the 

contribution from the negative root also becomes small, i.e., for large 

l;. The temperature change within the hot or cold zone re~ches 

appro,~ imately 99% of its total value whE'!'. exp I \t.'m 4 I • 0.01. Using this as 

a criterion for infinite length: 

'tD = 5/ t w~ \ [5.13] 

where: l;fD • length of c~ .. J.rge wi thin the hot or cold zone for 
. charge to c.ppear infinitely long. 

If Pe* is small so that eq. [s.6J i~, 3atisfied, the characteristic roots 

are giv~ by eq. [5.7]. Substituting ~q. [5.7] into eg. [5.13]: 
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[5.14] 

which is a useful expression for determining Cco • Fquation [~.14] is in 

agreement with the experimental results of Clyne [Ill which suggest that 

longer charges and higher Biot numbers tend to stabilize the interface 

position (i.e., the growth rate is equal to the lowering rate). 

Results from the one-dimensional numerical model of Riquet and 

Durand [9] suggest that the growth and lowering rates are equal when the 

length of charge within the hot and cold zones is about 1.S<IU-1/2). This 

result agrees well with eq. [5.14]; the difference in the constant 

coefficient is attributed' the choice of criteria defining "infinite" 

charge length. 

When the charge leI:'2_h is not infinite, appropriate boundary 

cooditions must be awlied to the ends of the charge. For example, a solid 

pull rod contacting the crucible at the bottom of the charge can be 

approximated by treating it as a Simple fin exchanging heat with the 

environment. In this way, a Biot number can be calculated for the end 

boundary condition. Appendix 0 describes a method to determine the end 

boundary condition for some simple end geometries. The curves of Fig. 5.8 

have been calculated using the same Biot number for the ends of the charge 

as for the circumference. 

Any change in the charge diameter, 0, affects the dimensionless 

parameters Bi, Pe, ~ ,t:-, C· , and A • Further, changes in 0 may 
..... L 4 

alter the heat transfer coefficients between ~~e furnace and charge as the 

geometry of the furnace cavity changes. The effect of a change in 0 is 

assessed by reevaluating the necessary parameters and then using the 
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appropriate expressions for the axial gradient. In general, increases in 0 

may either increase or decrease the axial temperature gradient in the 

gradient zone de~ending on the corresponding changes in the other 

parameters. 

As an illustrative example, consider a symmetric system of infinite 

charge length. The appropri~te expression for the axial temperature 

gradient in the gradient zone is given by eq. (5.81. Since, however, 

changes in diameter are to be analyzed, it is more informative to compare 

the axial gradients of eq. [5.81 based on the dimensional axial 

coordinate, Z: 

Defining the variable: 

d [1> /~ ~ ~ .. ) 1/2J 

dD 

-\ (5.15] 

(5.16] 

Taking 1(; as constant, eq. (5.15] shows that the dimensional axial 

gradient, gt, increases with 0 when 'f is negative and vice-versa. 

For an increase in 0 accompanied by a proportional increase in Ocr' 

(i.e., ~ remains constant), eqs. (4.7] and (4.14] show that Bi ** increases 

at most linearly with 0 (assuming that all other thermal parameters are 

constant). Consequently (using eq. (5.16] ), 'f is posi ti ve and the 

dimensional axial gradient, 9L' according to eq. [5.15], decreases as 0 

increases. 

The crucible diameter may, on the other hand, remain constant as 0 
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increases. This occurs when increasing the charge diameter within a 

constant diameter furnace cavity at the expense of the thickness of the 

crucible. Fig. 5.9 shows the corresponding behavior of 'IJ for various Bi 

and K with 8. 1.25. Accordingly, 'f is either positive or negativ'e 

depending on the values of Bi and K: the axial gradient of eq. [5.15] may 

therefore increase or decrease with an increase in D. 

In summary, the effect of a change in charge diameter on the axial 

temperature gradient at the growth interface should be examined on a case 

by case basis. 
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Thermal criteria for satisfactory Bridgman crystal growth include 

requirements for the shape of the melting temperature isotherm (c.f., 

section 2.1.2). The one-dimensional model of Chapter 4 does not permit 

evaluation of the isotherm shape since it neglects radial temperature 

variations in the charge. Therefore, a two-dimensional model of the 

Bricgman growth system is developed in this chapter. Results from the two­

dimensional model are used in Chapter 7 in order to establish the causes of 

radial temperature variations within the charge and to study their 

dependence on the thermal parameters of the Bridgman growth system.' 

The present two-dimensional thermal model of vertical Bridgman growth 

treats the entire system as a set of coaxial fins. Radial temperature 

variations are therefore accounted ~or by differences in the fin 

temperatures at the same axial location. The mochl can thus be considered 

a hybrid between a continuous description in the axial direction and a 

finite difference description in the radial direction. This approach, 

rather than a complete finite difference or finite element formulation, is 

taken for several reasons: 

(1) The primary objective of the two-dimensional model is to 

develop inSight into the origin and behavior of radial 

temperature gradients near the growth interface for the 

purpose of cc,ntrolling the shape of this interface through 

system design. The increased accuracy achievable using a 

fine grid networK in a finite difference or finite element 
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model is not considered essential for this objective and, 

furthermore, does not awear wananted for systems for which 

reliable thermal property data are not yet available. The 

present model incorporates all the criti:al thermal effects: 

it is expected, therefore, to be able to predict the radial 

gradient behavior at least to first order approximations. 

(By utilj :ing -enough coaxial fins, the pr~~ent model should, 

in principle, be as accurate as a finite difference model.) 

(2) The present model is easily implemented on the computer and 

is a simple extension of the one-dimensional moving fin mqdel 

developed in Chapter 4. 

(3) Even with t.1e Simplifications inherent to the concentric fin 

approach, the ~dded complexity of a two-dimensional 

formulation necessitates the use of a computer to calculate 

the two-dimensional temperature distribution of the charge. 

The concentric fin model can be simplified, however, without 

loss of pertinent information, to a point which permits 

presentation of some relevant results in analytical form. 

~ ]liE DESOUBIOO mUATIONS roB 'mE CDNCENrRIC FIN OODEL 

The factors of concern for the development of the concentric fin model 

of the Bridgman growth system depicted in Fig. 2.2 are indicated in 

Figs. 6.1 and 6.2. The two-dimensional thermal model incorporates the 

following assumptions in addition to those described in Section 2.2.2: 

(1) Radial temperature variations within the charge are accounted 

for by modeling the charge as two radially distinct fins. 
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The irner fin is a cylinde~-o diameter Din and has an axial 

temperature distribution Ti~(Z). The outer fin is an annulus 

of inner and outer diameters, Din and 0, and has an axial 

temperature distribution Tout(Z). The diameter Din is chosen 

so that the inner and outer fins have equal cross sectional 

area. The telnperature of each charge fin is not considered a 

function of radius. The difference in temperature between 

Tin and Tout is indicative of radial temperature variations 

~ :. within the charge. 

. 
I 

! 
I 
~ 
I 
! 

L ____ ~ 

(2) The crucible is modeled as a coaxial annular fin in contact 

with the outer charge fin. The crucible fin temperature, 

Tcr(Z), is not a function of radius. 

(3) As opposf;d to the corresponding assumption in the one-

dimensional model, the gradient zone is not adiabatic: i.e., 

h(; ,. O. This assumption is relaxed in the two-dimensional 

model so that the effect of radial heat transfer between a 

non-perfectly insulating gradient zone and the charge can be 

studied. 

(4) The portion of the furnace in the gradient zone is considered 

to bE' an annulus of conductivity kG and cross sectional area 

Ar, located coaxially with the charge and crucible. The 

temperature of the gradient zone annulus is assu~ed constan~ 

in the radial direction: its axial tem~rature distribu~ion, 

TG(Z), depends on its thermal interaction with t.~e charge .;md 

crucible. Temperature boundary condi tions at e used at the 

ends of the gradient zone annulus and no heat loss is assu~ed 

at its outer diameter. (This model of the gradient zone 



~-T----- -

annulus was also used in section 4.4.4 in order to determine 

the effect of a non-perfp.ctly inSulating gradient zone on the 

axial temperature behavior of the charge.) 

On the basis of the above assumptioos, each of the concentric fins is 

analogous to the moving thin rod treated by carslaw and Jaeger [29]: 

eq. [4.1] (neglecting the transient term by virtue of the quasi-steady 

assumption) therefore describes the axial temperature distribution within 

each fin. In the concentric fin model, the q" term of eq. [4.1] accounts 

for the heat transfer between radially adjacent fins. -In Appendix, F, this 

radial heat transfer is approximated resulting in the following set of 

coupled ordinary differential equations for the axial temperature 

distribution of the fins: 

[6.1a] 

[6.lbl 

[6.lcl 

[6.1dl 

where: 
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where: 

?e\Oc. 2 V::J f~ /k,w, 

'Pe,,(':' \J n ( f c.?/k ) Co(" 

'rhe coefficients Al' A2' A), A4, and AS depend on the radial thermal 

resistance be'cween the ConCe.1t.ric fins. They are 9i ven by: 

8 
: -

h {f' .. ..!... ~ (~)"2 
J 3 Kioe 2 

[6.2al 

Az= 
32 

hff 
[6.2bl 

A'3 -: A, 
K, (~1. -I) 

oc. 

[6.2cl 

A4 :. 8 
Kloc.(~2.-1J 2 

I (: 2 t -to ~.Q..... J-r&-z ~ Bi.\tIc. \ DC. 

[6.2dl 

As':. A ~ K12," (~~ - , 1 [6.2eJ 
Rc" J 10(.. 

The fin equations for <POut. and ~,'~ have beE:2n added to and suotracted 

from one another in Appendix F in order to produce eqs. [6.lal and [6.1bl 

for ¢'H\ and ¢t,. respectively. Since the cross '!ctional a:eaE of the inner 
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and outer charge fins are equal, ¢~ is interpreted as the mean cross 

sectional temperature of the ~narge; ¢4 is a measure of t~e radial 

temperature difference within the charge. fNithin the hot and cold zone~, 

the furnace temperature, ¢~ , is the temperature of the hot and cold heat 
;. 

pipes, respecti vf!ly, and eq. [6.ldl for the gradient zone aMulus in not 

needed. Within the gradient zone, ~ is identified with ¢4(') and 

eq. [6.1d] has .10 Peclet term since the gradient zone annulus is 

stationary • 

The set of eqs. [6<1] has clJnstant coeffi~i'::-.ts if a separate set of 

equations iS~1T1ployed for each axial region of unifor:n thermal properties 

and furnace bou"dary conditions. As in the one-dimensional model. four 

such axial region~ are present in the concentric fin model: the hot and 

cold zones and 'che liquid and solid portions of the gradient zone. (It is 

assumed that the growth interface is in the gradient zone.) The hot and 

cold zones are therc:!!. ,,:,e described by eqs. [6.la1, [6.lbJ and [6.1c1 ~ 

the two regions within the gradient zone include, in addition, eq. [6.1d1, 

representing the gradient zone annulus. 

The solution of eqs. [6.11 within a particular axial regio!' is 

described in many texts (e.g., [36,3j~'. The system of r ~econd order 

differential equations can be changed to an equivalent system vI 2p first 

order differential equations by the definition: 

¢' - d¢ -
de 

(6.31 

Performing this transformation and ~tting the result in matrix notation, 
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eqs. (6.1] become: 

[6.4) 

where: 

1>rfl 
<P~ 

X - <Pcr -
:t>~ 
¢a 
¢~f' 

rA.,. 
t/JA 
¢,( 

X - ¢Jr., - ¢'rv. 
c;.'6 
<tJ(.f' 

(hot and cold zones) 
¢~ 

(gradient zone) 

(Variables in boldface denote matrices.) The elements of P and F are found 

by direct substitution. In the gradient zone, F is an empty matrix. 

The solution to eq. [6.4] is of the :or.m: 

x = c E ew,l; ~ c E eVl,; ...... ~ c e. e.W2.pc,t- X [6.5] 
I \ 2. Z 2.p Z, P 

The values of ware commonly called ~,e eigenvalues of the matrix P and the 

values of E are commonly called the eigenvectors of P. The eigenvalues and 

eigenvectors are easily found by standard computer subroutines. The 

coefficients denoted by c in eq. (6.5] are the unknown constants of 

integration. xp denotes the particular solution of eq. [6.4]. 

Equation [6.5] is written for each axial region. The hot and cold 

zones each contribute six unknown constants of integration: the liquid and 

solid parts of the gra~ient zone each ccntribute eight unknown constants of 

integration. ~n~re are, therefore, 28 unknown constants of integration 
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which must be determined by using boundary conditions of (a) equality of 

temperature and (b) continuity of flux between corresponding fins of 

adjacent axial regions as well as (c) heat transfer coefficients at t~e 

ends of charges of finite length and Cd} imposed temperature boundary 

conditions at the ends of the gradient zone annulus. Appli.::ation of the 

boundary cCXlditiCXlS results in a set of 28 simultaneous linear algebraic 

equations whose unknowns are the required constants of integration. The 

solution of these simultaneous equations is easily accomplished by standard 

computer subroutines. 

The solution of the fin equations requires a trial and error procedure 

when the extent of each axial regioo is not initially known. For eumple, 

the one-dimensional model of Chapter 4 shows that the interface location, 

~i ' and the interface temperature, Eh , are functionally related. When 

€h is chof""'n as the independent variable, l;i. must be fOlmd by iteration 

(c.f., the analytical results of Appendix B). When ~l is taken as the 

independent variable, the location of the interface boundary conditions is 

known a priori resulting in a direct solution for 9L as well as the entire 

axial temperature distribution. 

Figure 6.3 shows that the axial position of the growth interface in 

the inner and outer charge fins is, in general, not the same: they are the 

same only when the interface is flat. The correct application of the 

concentric fin model requires that a separate set of eqs. [6.1] be written 

for the short region between the axial locations ot the interface. In this 

case, the interface temperature, e~, depends on the interface locations of 

both the inner and outer charge fins, ~L)l1 and (. t respectively: 
~/OU 
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Approximated Interface 
Location 

~------------~~--------------~ 

Liquid 

Actual Interface 
Location 

Solid 

Crucible 

Outer charQe fin 

Inner charQe fin 

Pia. 6.3: ~ooroximation ~or t..'":e interface boundar" 
cond.l. tions used in t.~e .:oncentric :i." rrcx:iel. 
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f (e~ ,C~,i" } C:tlOllt) :. 0 [6.6] 

Since this functional relationship is not known a priori, it is not 

possible to choose initial values of C,i)~fI and '"out which satisfy 

eq. [6.6]; the solution therefore requires an iterative procedure. The 

present section describes an approximate model of the interface which 

precludes the use of a trial and error solution for the concentric fin 

model. 

The length of the region separating the interface in the inner and 

outer charge fins is normally small since it is desired to ,have an 

interface of small curvature. The present model neglects this axial region 

and applies the boundary conditions of the interfa~e at a Single axial 

location for each of the inner and outer charge fins. The axial location 

of the interface is taken to be the location where the mean charge 

temperature, <Pm' is equal to the interface temperature, e· , (see 

Fig. 6.3). In this sense, the axial location where ¢111 = eL denotes an 

"average" interface position <i.e., between the actual interface positions 

of the inner and outer charge fins). The value of cPa at this location, 

~o(~j)' is indicati~e of the curvature of the interface. 

The use of the above approximation for the interface boundary 

condition permits the a priori choice of the "average" interface location 

and, therefore, the solution for the temperature field in the charge is not 

a trial and error procedure. The approximation introduces no error if 

~ = I and PeSRa = ~ or if the interface is flat. Otherwise, when the 

interface curvature is small, the error should likewise be small and the 

predictions or the present model concerning the radial temperature 

variations in the charge are expected to be correct to a first-order 
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The interface flux boundary conditions, assuming that the melt/crystal 

conductivity change and the generation of latent heat occur at the same 

axial location in each of the charge fins, are: 

[6.7al 

R Ii:&) ~l~) ~ \ de; \.. Je: s 
[6.7bl 

(~\ -: (~) 
d~ )L de $ 

[6.7cl 

(~\ - (~) 
dC'll. de;, s 

[6.7dl 

where the subscripts "Ln and nsn refer to the melt and crystal side of the 

interface, respectively. ~tions [6.7J assume that the growth rate, R, 

is equal to the lowering rate, V (see section 4.4.2>. 

~ THERMAL PARAMetERS OF THE CDNCENrRIC FIN ~PPEL 

The thermal parameters required by the concentric fin model are those 

necessary for the one-dimensional moving fin model (see Table 4.1) and, 

additionally, those listed in Table 6.1. 

~ CDMPAR,ISON WITH me W=DlMENSION8L ropEr. OF ru AN[) WILCDX [26] 

The figures of Fu and Wilcox [26J plot the shape of various isotherms 

within the charge by the use of two-dim~~sional finite difference computer 
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definition carments 

hGD/ks BiG,L • BiG,slR{{ 

kGAGlksA %,L • Rc;,glRJ< 

VD ( f cplk) cr Pecr • PeglRO(,S 

Table 6.1: Thermal parameters of the concentric fin model, in addition 
to those listed in Table 4.1. 

solutions. Isotherm shapes taken from their paper are used in this section 

in order to check the results of the present tWCHlimensional model. 

In the figures which f()llow, the shape of an isotherm is indicated by 

the axial distance between the location of th! isotherm at the center of 

the charge and the outer diameter of the charge and is denoted by r:, q, • 

t;q, is scaled directly from the isotherm plots of Fu and Wilcox [26]; the 

representative axial location of each isotherm is taken to be the axial 

location of the isotherm at the diameter Din (c.f., Fig. 6.2). The present 

model predicts 4>a and <PM as functions of [,. In Appendix G, z: 4> is 

related to cPA and q,M through eqs. [G.21 and (G.S]: 

[6.8] 

The system modeled by Fu and Wilcox [26] has an adiabatic gradient 

zone, infinite charge length, and does not include a crucible, generation 

of latent heat, or change in the:mal conductivity at the growth interface. 

The results of the concentric fin l;:~del are therefore obtained using the 
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following parameter values: ~. 1, RK • 1, RH • 0, and an adiabatic 

gradient zone. Four cases, each with different Biot or Peelet numbers, are 

compared in the graphs of Fig. 6.4; the parameters tested are listed in 

Table 6.2. It is seen tha~ there is good agreement between the results of 

the two models. (The apparent scatter in the results taken from Fu and 

Wilcox [26] is attributed to difficulty in scaling the values of '. from 

their plotted isotherms.) It is therefore concluded that the present 

concentric fin model of the charge predicts, at least to first-order 

approximation, the correct two-dimensiooal thermal behavior of the charge. 

L.1 TEST OF 'mE EfFECl'IVE Bm WMBER 

The efrective Biot number, Si **, is developed in Sections ,&.2.2 and 

4.2.3 in order to ~cco~,t for the effects of crucible conductivity and 

thickness as well as radial temperature variatioos within the charge on the 

axial temperature distribution of the charge. Section 4.6 provides a 

partial verification of the effective Siot number coocept by comparing the 

one-dimensional results of this work, using Si**, to the results of the 

two-dimensional model of Fu and Wilcox [26]. This comparison, however, 

included only the effects of radial temperature gradients within the charge 

on Bi** since the model of Fu and Wilcox [26] does not provide for a 

crucible. The present two-dimensional model can be used to verify the 

quantitative accuracy of Si**, including the effects of the crucible. For 

this purpose, a symmetric system with BiG • 0 and of infinite length is 

used. The applicable relation for the axial temperature gradient in tt,e 

gradient zone from th~ one-dimensional results of Chapter 5 is eq. [5.8]: 

[5.81 
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Adiabatic gradient zone: 
0.30 

BiG = 10-4 
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Symmetric system 

~G=I.O 

~H = ~c :: '0:» 

- concentric fin model 

o x Fu and Wilcox 

o 

Bi=O.4 

0.20 

Bi=4.0 

0.10 

o 

-I 

hot zone -............ - .. - gradient zone 

Fig. 6. -la: C~arison of isot.~el11l shapes frcr1 t.he re::;ul ts of the 
concentric fin rrodel and Fu and l'lilcox [2Ei 1: Bi = o. -l, 4.0, and 
Pe = 0.0. 
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..... -. 

-I 

hot zone gradient 
zone 

0.15 

0.10 

0.05 

-0.05 

-0.10 

-0.15 

Aaiaba1 ic gradient zone: 
BiGa 10-4 

RG = 10-8 

Symme~ric system except: 

eiH = 2 

Bic =4 

~G= 1.0 

~H= ~c = 'G' 
- concentric fin model 

o Fu and Wilcox 

cold zone 

o 

ria. 6. 4b: CorrDarison of isotherm shanes fran t.1Le results of the 
concentric fin frodel and Fu and Nilcox [ 261: BiH = 2. 0, BiC = 4. 0 , 
and Pe = 0.0. 
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0.15 

0.10 

0.05 

-0.05 

-0.10 

-0.15 

BiH= Bi C=2 

Ad;abatic gradient zon~: 

BiG: 10- 4 

RG = 10-8 

Symmetric system except: 

Pe = 0.4 

AG=I.O 

AH = AC = 'II' 
- concentric f in model. 

o Fu and Wilcox 

c 

cold zone 

Fia. 6. 4c: Comna.rison of isotherm shapes :rorn the results of t.'1e 
co{lcentric fin in:del and Fu and Ni1co~:- (26]: Bi = 2.0 and 
Pe = 0.4. 

- 120 -



I Fig. 6.44 

Fig. 6.4b 

Fig. 6.4<: 
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Figure from I 
Fu & Wilcox [26] Bia 

Fig. 4 0.4 

Fig. 4 4.0 

Fig. S 2.0 

Fig. 7 2.0 

" • 1.0 
).." • Ac. • ,~ 
RI( • 1.0 

4.0 

4.0 

2.0 

& • 1.0 
Ra • 0.0 

adiabatic gradient zone 

Pe 

0.0 

0.0 

0.0 

0.4 

Table 6.2: Parameters used for c,mparing the results of 
Fu and Wilcox [26] and the present concentric 
fin model. 

The system used in this comparison is further specified by taking A~. 1 

and S • 1.25. 

The axial gradient given by eq. [5.8] is compared in Table 6.3 to that 

determined by the concentric fin model for several values of Bi and K. It 

is seen that the agreement is excellent. It is concluded, therefore, that 

8i ** is an accurate approximaticn for the effects of the crucible on the 

heat exchange between the furnace and the charge. 

U ElGEN\1ALUES OF THE cpNCEmro:C FIN ropEr,. 

The eigenvalues reflect, in a qualitative sense, the thermal 

interactions amoog the fins which caU$e their temperatures to equilibrate 

in the axial direction. Larger eigenvalues suggest faster equilibration. 

It is expected that the eigenvalues increase as the ratio of axial to 

radial thermal resistance increases. As an illustrative example, consider 
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or!fH:1imensional tw~imensional 
mc.Jel model 

Bi** d8m1d~ 
eqs. [4.7] ~dC; 

Bi K and [4.14] eq. ~5.8] .. 
0.1 0.473 -0.407 -0.415 

0.3 0.684 -0.453 I -0.459 I 
I 

1.0 1.0 0.660 -0.448 ! -0.453 I 
I 
I 
I 

3.0 0.427 -0.395 -0.397 

10.0 0.183 -0.300 -0.299 
, 
: 

I 
0.1 0.103 -0.243 

I 
-0.244 I , , 

, 
0.3 0.101 -0.241 I -0.242 

I 
0.1 1.0 0.078 -0.219 I -0.219 I 

J.O 0.046 -0.177 -0.176 

t 10.0 0.019 -0.120 -0.120 

o • 1. 25 Pe • o. 0 
RK • 1.0 ~ • 1.0 
f<a • 0.0 A • Ac. • GO 

adiabatic gradient z~e 

Table U: Testing the effect of the crucible on 
Bi ** by using the concentric fin model. 
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the ~cvir.g fin model of Olapter 4: ti,e Biot n\'~nber expresses t.."1e ratio of 

axial to radial thermal resistance in this C3se. Equation [5.8] and 

Fig. 5.2 show that as the Biot number increases, the significant 

temperature difference in the model, e ... -e"", decreases more rapidly with ,. 

distance into the hot and cold zones. 

As eq. [6.S] indicates, the eigenvalues only partially express the 

thermal behavior of the concentric fins. The eigenvector:!, B, and the 

constants of integration, c, combine to determine the importance which each 

eigenvalue has for each of the fin temperatures. ~ertheless, a study of 

the parametric ~"1avior of the eigenvalues serves to emphasize the nature 

of the thermal interactioos occuring amoog the concentric fins. 

6,8,1 Hot and Qold Zones 

By subst~tuting a solution of the form: 

(6.9J 

into eqs. (6.1], the characteristic equation for the eigenva]";f::; of the hot 

and cold zones is found to be: 

[6.10] 
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Tbe six roots cf equation [6.10] are the eigenvalues of the hotlnd cold 

zones. By inspection of eqs. [6.21 which define the coefficients Al, A2, 

A3, A4 and AS, it is seen that the eigenvalues depend on four paramoters! 

$, Rloc' Biloc and Peloc. 

When Peloc • 0, eq. [6.10] becomes a cubic polynomial in w2 indicating 

that the eigenval'Jes, in this case. awear in pairs of opposite: sign. w11~n 

Peloc ~ a but Rloc • 1, It may be shown by direct substitution tbat thp. 

eigenvl.lue pales have the following form: 

[6.11a] 

vJ - = - a. [6.1:b] 

where: a is a posi ti ve nlJlI1)er 

When Kloc ~ 1, results suggest th&t the eigenvalue paizs a(e separated by Q 

number whose magnitude is of the oro.:r Peloc/K loc: 

\v . [6.1.2aJ 

w - :- - a. [6.12bl 

where: t. is of order uni t~' 

Since the Peclet number is typically small, it is appropriate to study the 

behavior of the eigenvalue pairs assuming that Pe • O~ in this way, the 

order of the characteristic equation, eq. [6.10], i:; halved. 

Figure 6.5 illustrates the variation of the three eigenvalue pairs as 

a function of b with Kloc and Siloc as parameters. ':"~e lowest set of 

curves is seen to vary greatly with Biloc. Further, the values of the 

eigenvalues repre~~ted by the lowest set of curves is found to be clvsely 
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Bi =0.01 
Pe=O 

0.10 ..... - ....... -----....... I111111111. ___ ...... ...;;:;.~ .... ......,;;~_ ....... ..;;:a., ..... 
0.01 0.10 1.0 

( 8 - I ) 

Fig. 6.5a: Eiqenvalues for the hot and cold zones, Pe = 0.0 
and Bi = ().Ol. 
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Bi=O.1 
Pe=O 

0.10 .... _ ....... ___ ................. ____ ..... ___ ........ ____ __ 

0.01 0.10 1.0 

( 8 - I) 

~iq. 6. Sb: Eigenvalues for the hot and cold zones, Pe = 0.0 
and Bi = 0.1. 
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!&/~ / 
~ 

Bi - I. 0 
Pe-O 

O.IO ..... _ ..... _ .... ___ .... __ ...... _~ ......... ~ ____ ___ 

0.01 0.10 1.0 

(S - I) 

F'i\~. 6. 5c: Ei..:rerwalues for t.!1e !1Ct :md I..L'ld :ones, Pe = I~. I) 
and Bi :: loll. -
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8i s 5.0 
Pea 0 

0.10'-_ ..... ___ ....,1.._ .... _______ ............... ------

0.0\ 0.10 1.0 

( 8 -\) 

Fia. 6.Sd: Eiaenv31ues ~or the hot and cold =ore5, Pe = 0.0 
3ndBi = :;.0. 
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[5.7) 

<The largest difference betWNr\ the eigenvalues predicted by eq. [5.7] and 

those in Fig. 6.5 is 26' at Kloc • 0.2, b • 5 and Biloc • 5.0: the 

difference decreases for smaller & and Bi.) ~ese eigenvalues, therefore, 

can be associated with the variation of the mean charge temperature 4nd are 

denoted by wm• As wm increases, <1>", tends to approach more rapidly the 

temperature boundary conditions of the furnace. 

The eigenvalues represented by the middle and uR'4!r set of curves in 

Fig. 6.5, denoted by WI and w2 respectively, are relatively insensitive to 

Biloc. They do exhibit, however, a strong sensitivity to Kloc and &, 
parameters which describe the tl,ermal interactioo bet ..... een the charge and 

the c ruc ible. 

For the limiting case of & - 1, i.e., no crucible, it is seen that 

Wl approaches a constant value (approximately 7.6) independent of band 

Kloc' This value is therefore most easily identified with the thermal 

characteristics of the charge alone. Results derived in section ~ ., , .. 
indicate ~,at radial temperature gradients in a charge without a crucible 

attenuate at a rate proportional to exp<-7.63, ). Thus, WI' is indicative 

of the rate of decay of 4>,) for systems when ~ is small. The value ot w~ 

is very much larger ~~ either wl or w:n for small values of S suggesting 

that the crucible temperature equilibrates rapidly with the temperature of 

the oLter charge fin. 

A second limiting .:ondition is that of 13rge S. Figure 6.5 shows 

that w: approaches the v.,l ue of 7.6 .lS .s increases; further, the 3pproach 

- 1';9 -

1 

j 

-d. '.$ ti 



_.d_~_.U' p, -~ •.. F ,. H+_·· -.~. -;;Ci!" __ 4---~,5""'_"_'=-' -.--..... '..,.4¥ .... l!I!IIIjl-~ 

• j 

ORIGINAL PAGE'S 
OF POOR QUALITY 

to the limiting value takes place at smaller values of 6 as Kloc 

decreases. These facts suggest that the charge is, in this case, 

-insulated- in the sense that heat transfer within the charge is much 

better than that between the charge &ld the crucible. 

6.8.2 Gradient Zone 

The characteristic equation for the eigenvalues in the gradient zone 

is determined in a manner analogous to that used to develop eq. [6.101: 

- A3 (wl. -l>e.1oc. W J \ -wt_ l'e1oc.w - At) ( W' - As ) 

- A I (VJ~-l'<!,,,,VJ J~wt- ~:w KII'- As) - A4 W' 1 = 0 
[6.13] 

~tion [6.13] is a polynomial of eighth order in w: there are therefore 

eight eigenvalues in the gradient zon~. 

In eq. [6.13], the term of lowest order in w is the linear term: 

[6.14] 

Since there is no term of order zero in w, one of the eigenvalues is zero. 

Further, when Peloc = 0, eq. [6.14] shows that the linear term disappears; 

in this case, a second eigenvalue is zero. The solution for the fin 

temperatures given by eq. [6.5] is valid only when there are no repeated 

roots. When Pe10c • 0, the term which would include the second zero 

eigenvalue is replaced by a term linear in 4 . 
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The linear component of equation [6.5] ~n the gradient zone can be 

demonstrated by multiplying eq. [6.lal by klocA, eq. [6.1c] by kcrAcr and 

eq. [6.1d] by kGAG and then adding. With Peloc "'II 0, the result is: 

or: 

where: 

4J ~ k"ac. A ~ ... \y Au <tel' .. kG! Ao 4>4 
k',oc.A .. KU' Av ... ~ ftc. 

[6.15] 

[6.16] 

[6.17] 

i is interpreted as an average temperature of the 

charge/crucible/gradient zone annulus combination. P,kJuation [6.15] results 

in a linear variation in ~ within the gradient zone. The physical 

interpretation is that there is only internal heat exchange between the 

fins of the gradient Zale: there is no external heat addition or removal to 

the charge/crucible/gradient zone annulus combination by virtue of the 

assumption that the gradient zone annulus is adiabatic at its outer 

circumference. Therefore, neglecting Pe, the axial conduction of heat is 

constant within the gradient zone. The definition of ¢ as an average of 

¢Nt' ¢>c.r and 4t. weighted according to their respective axial heat 

conducting capacities is demonstrated by eq. [6.15] to correctly express 

the constant total axial heat transfer. 

As occurs for the eigenvalues of the hot and cold zones, results show 

that the eigenvalues of the gradient zone occur in pairs of opposite sign 

which are separated by a number whose order of magnitude is that of 

Peloc/Kloc (c.f., eq. [6.12». The p3ltner of the zero eigenvalue 
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.. 
therefoce has a value of order of magnitude Peloc. Since Peloc is 

typically small, the exponential function of eq. [6.51 with this eigenvalue 

is very nearly linear in the gradient zone. 

The additional fourth pair of eigenvalues introduced by the gradient 

zone annulus within the gradient zone are associated with the rate of 

equilibration of ¢" with ~. An analytical expression for this 

eigenvalue based on a symmetric, one-dimensional system was developed in 

section 4.4.4: 

[6.181 

Table 6.4 compares the values of wG determined from the concentric fin 

model and from eq. [6.181. The comparison is favorable, indicating that 

this eigenvalue pair of the concentric fin model is correctly associated 

with the rate of equilibration of ~ and 4'"". 
The eigenvalue pairs wl and w2 are shown in Section 6.8.1 to be 

relatively insensitive to conditions external to the charge and crucible. 

Table 6.5 demonstrates that the additional parameter introduced into 

eqs. [6.1] by the gradient zone annulus, i.e., RG, also has a second order 

effect on these eigenvalues. Therefore, approximations for wl and w2 of 

the gradient zone may be obtained from Fig. 6.5. 
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BiG 

key: 

c , 

0.01 

0.01 2.452 
2.010 

0.1 7.729 
6.356 

1.0 23.22 
21.10 

10.0 43.34 
44.9" 
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Ro,loc 

0.1 1.0 

.7908 .2943 

.6633 .2828 

2.476 .9218 
2.098 .8944 

7.601 2.653 
6.63 2.828 

14.25 3.967 
14.83 6.325 

10.0 

.1810 

.2098 

.5663 

.6633 

1.644 
2.098 

2.742 
4.690 

WG fran concentric fin model 
WG fran eq. [6.18] 

Pes • 0.001 K10c • 1.0 Rt< • 1.0 

Table 6.4: CompariSon of wG determined from the concentric 
fin model and from eq. [6.18] 
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I 
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0.01 

0.01 9.635 
4.838 

0.1 9.641 
4.824 

Bi(;,loc 
1.0 9.631 

4.828 

10.0 9.631 
4.827 

Pes • 0.001 

PAGE 1S 
~tt\G\NAL QUAL\TY 
Of POOR 

RG,loc 

0.1 1.0 10.0 

9.635 9.635 9.635 
4.837 4.837 4.837 

9.637 9.637 9.637 
4.859 4.854 4.853 

9.686 9.657 9.656 
4.729 5.054 5.009 

9.577 9.741 9.718 
4.763 6.255 5.569 

key: r;jl 
~ 

RI( • 1.0 

I 

Table 6.5: The relationship of wI and w2 in the gradient zone 
to the parameters B!(;,loc and R(;,1oc. 
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L. RADIAL 'm:lPEBATtlRE )7ARIATIONS WITHIN THE CHARGE 

Radial temperature variations near th~ growth interface are shown in 

this chapter to result from several effects usually present in Br idgman 

crystal grow~ Systems with an adiabatic gradient zone, first studied by 

Chang and Wilcox [17], addresses only one of these factors. The other 

fac~ors have not been adequately considered in the literature: non­

perfectly insulating gradient. zone (hG ~ 0), and thermal conductivity 

change and/or generation of latent heat at the growth interface in the 

presence of a crucible. Computer solutiaus of the CCX'lc~..ntric fin model are 

used to graphically illuRtrate the behavior of the radial temperature 

variations under the influence of these factors. Special attention is 

given, however, to the development of approximate analytical expressions 

which serve to emphasize the functional dependence of the radial 

temperature variations on the various system parameters. 

The variable CPA defined by the concentric fin model of Olapter 6, is 

used to indicate the radial temperature variations within the charge. 

'ttle results for 4>11 to be shown in the following sections are conveniently 

approximated to the interface shape by the following relation developed in 

Appendix G: 

[7.11 

where N is the radius of curvature of an isotherm in number of charge radii 

at a particular axial location. (N is positive for an interface which is 

concave toward the crystal as shown in Fig. 2.1.) Accordingly, the degree 
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of flatness of isotherms is enhanced by large axial temperature gradients 

( dqt...J ~ Co) and Slta~l radial temperature gradients (4) ~ ) • 

1al CAUSES OF RADIAL TEMPERATpRE yw:ATIONS WITHIN THE GBApIENI' ZONE 

Subtracting eq. [6.1b] from eq. [6.1a], and assuming that the Peclet 

term is regligible (c.f., section 5.1), yields: 

[7.2] 

The particular solutial of eq. [7.2], denoted by ¢! ' may be solved by using 

the appropriate Green's functioo: 

G (~) X ) = - 2. ~ "1 eX? (- A'~t. \ c, - x \ ) 
t 

[7.3] 

Using eq. [7.31, the particular solutioo of eq. [7.21 is: 

[7.41 

where the value of A2 given by eq. [6.2b] has been used, x is a dummy 

variable of integration, and C;c:. and C~ are the axial locations of the 

cold and hot ends of the charge, respectively. (Nc::e that eq. [7.4] is not 

the complete solution for s~l since ¢'fII\ and cP
6 

are not independent by 

virtue of the coupled nature of ~he fin equations. Nevertheless, the 

actual distributions for cfJ: and cl>wt must satisfy eq. [7.4].) 

d2.cp ... / d r:, L is non-zero when the combined axial heat conduction within 

the inner and outer charge fins is not coostant with axial position; i.e., 

when there is heat addition to or removal from the charge. Equation [7.4], 
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therefore, clearly demonstrates that radial temperature gradients within 

the chatge are caused by heat exchange between the charge and its 

surroundings. Such heat exchange occurs: 

1) if, in the idealized case of no crucible, there is a 

difference between the temperatures of the outer charge fin 

and the furnace, and the heat tr""sfer coefficient between 

them is not zero. 

(2) if, when a crucible is present, there is a difference between 

the temperatures of the crucible and the o~ter charge fin. 

Equation [7.41 expresses cPt at a particular axial location as the 

superposed effects of heat transfer to the charge along its entire leng~ 

However, the effect of heat transfer to the charge at one location, x, on 

the radial temperature gradient at another location, C , attenuates rapicly 

wi th the d~stance between the two locations, being proport;.onal to the 

factor exp(-7.63 I ,- x I). For example, when I ~ - x I • 1, the value of 

this exponential functioo is 0.00049. 'therefore, the radial variation in 

temperature at the location C. is primarily affected by heat exchange wi th 

the charge within the range ,: 1 <i.e., one charge diameter to either 

side of the gi" .. en location). 

~ Analysis of Badial Temperature Variations In the Gradient ZQOe 

'the total solution for <p~(C;) inclu=~s, in addition to eq. [7.4], the 

homogeneous part of the solution: 

[7.5] 
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Equati~n [7.5] is applied separately to each region of the charge of 

uniform ~roperties; given the assumptions of the concentric fin model, 

there ara two such regions -- the liquid and the solid portions of the 

charge. The coefficients Cl and C2 in eq. [7.5] are foun~ by applying 

boundary cooditions at the ends of the charge and at the growth interfaca. 

Radial temperature variations near the growth interface are of primat'"'j 

concern. Since the interface is assumed to be ir. the gradi€nt zone, 

eq. [7.5] is applied, in the remainder of this c!&~pter, only to the 

gtadient zone; i.e~, -'Ao,IZ" ~ )..."I'z. • It is alsC? assumed that ~here is 

at least one diameter of cr.1rge in both the hot and cold Z~;:les: 

t:H <: - lAe:./2.. ... \) 

Cc: < ('Aa. /z. + \) 

{7.6a] 

[7.6bl 

As noted earlier, heat exchange with the charge at distances gr~ater than 

about one diameter from th~ ends of the gradient zone contribute little to 

the radial temperature variations in the gradient zone. Equations [7.6] 

thus permit the limits of integration in eq. (7.5] to be contracted if 

desired, and fu .. ;.:her, the effects of the boundary conditions at the ends ~f 

the charge on q,~ can be neglected 

When the solid and liquid thermal properties of the charge are equal, 

Le., RK • 1, eq. (7.5] need be applied only once to the entire length of 

the charge. The homogeneous part of the solution disappears under the 

restrictions of eq. (7.6] and the total solution f~r ~A(') within the 

gradienc zone becomes: 
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I \ I \~~ \ d
t
<;>M1 '... \ ) \ cp~ \ , J = - \.5".2" l d )(2. e:<. p \ - t. ,,~ £: - x \ 0)( 

,~ 

where: - >"~/2. ~ C ~ ).,4./2. 

R'tC.. • \ 

[7.7] 

When RK ~ 1, eq. [7.5] must be applied separately to the liquid ahd 

solid portions of the charge using the following boundary conditions at the 

growth interface: 

Applying these boundary conditions yields: 

where: _ \ j [' r 
I\.c. Z~ ~ ~ r.,; 

where: ,.. '" r 4:, ~ / 
<...., ..... I...:. - "4 2. 

[7. Sa] 

[7.Bb] 
(alsoeq. [6.7b]) 

The variables IL(l;) and IS(l;) represent the respective cOl,tributions of 

radial heat exchange with the liqujd and solid portions of the charge to 

the value of <PA at any axial location c: within the gradient zone. They 

are defined as follows: 
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[7.llal 

[7.1lb] 

The first term in each of eqs. (7.9] and [7.10] represents a 

contribution to q,~ (~) which is produced at the growth interface and which 

attenuates with distance from the interface. This contribution is absent 
1 

when Rt< • 1. 1 

'l11e value of <1A at the int~rface, 4>A (~i)' is determined from either 

eq. [7.9] or eq. [7.10]: 

[7.12] 

An attractive possibility for the quantitative utilization of eqs. 

(7.9] and (7.10] is to provide d2.cp",/J' z. from the results of one­

dimensional modeling; that is, to at;:proximate d 14>fVll dr. J. with d toe"" I d r. z.. In 

this way, a two-dimensional temperature distribution is obtained only 

through these equations and a one-dimensional model. The error in CP.1 

calculated in this manner would be due to approximations in (1) the one­

dimensional model which estimates dZ.e,~J dl; ~ and (2) the concentric fin 

model which provides eq. (7.2]. 

One-dimensional models do provide good at;:proximations for the charge 

mean temperature distribtuion, 9~ (Z;). Taking two derivatives of such a 

distribution in order to obtain a good at;:proximation for d~~JJ~Z. is more 

likely to be unreliable. Results presented later in this chapter, in fact, 
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demonstrate that the presence of a crucible produces a distribution of 

radial heat exchange with the charge which is not predicted by a one­

dimensional model: therefore, the use of J2cPf'II/d'C," calculated from one­

dimensional models is not appropriate for use in eqs. [7.111. 

Nevertheless, even in these cases, the Green's function approach develo~ 

in this section may be used to obtain a qualitative understanding of the 

behavior of radial temperature variations within the charge. 

U PENETRATION OF RADIAL '1'EMPERM1JRE VARIATIONS :rmp THE GRADIENt' ZONE 
F!Q1 'mE mr A9) mIn ZONES 

Heat transfer to the charge in the hot zone and from the charge in the 

cold zone must occur so that the required axial temperature gradient at the 

growth interface is obtaineCL Such heat exchange, according to the results 

of section 7.1, produces radial temperature variations within the charge 

which, even within an adiabatic gradient zone, influence the shape of the 

growth interface. 

Fu and Wilcox [26] studied the penetration of radial temperature 

variations into an adiabatic gradient zone for systems without a crucible 

through the use of a two-dimensional finite difference model. Isotherm 

shapes indicate, for various Bi and Pe, that radial temperature variations 

within the charge in the hot and cold zones attenuate rapidly from the ends 

of the gradient zone. If the gradient zone is sufficiently long, there 

exists a region within which the shape of isotherms is quite flat. 

~~ Systems Without a Crucible 

Figure 7.1 shows the variation of 4>" in an adiabatic gradient zone, 

obtained by the concentric fin model of Chapter 6 for systems without a 

c ruc ible. (Note tha t the ver tical sca .. e of ,:' ig. 7.1 changes from 
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Fig. 7 .1 : variation of II ~ in an adiabatic gradient 
zone tori thout a crucible. The S'.'Ste.111 is s:r.rrnetric. 
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logarithmic to linear at ~ 10-4 so that both iliI9ative .!nd poaitiv. valuII 

of ~~ may be plotted in the same fiqure.) Accordingly, it is seen that 

.;,~ attenuates at a rate approximately proportional to exp(-7.6 ~ .. ) where 

~ - il mHlured from the ends of the gradient zone. It is also seen that 

~ in the gradient :01'1' increase. with the 8i"t number of the hot and cold 

zones reflecting 9reatlr amounts "t radial heat trAMfer to the charge in 

these :ones. 

The variation of the radius of curvature of isotherm. for the same 

cases considered in Fiq. 7.1 is shown in Fig. 7.2. The •• curve. were 

c.llculated using eq. r7.1J along with value. of Q>o\ atId d~iJc;, determined 

from the concentric fin model. i\ccordingly, there is a central r~ioo ot 

t.~e 9radient zone where the isotherm shapes are ~i te flat. To obtain an 

interf.!ce which is slightly concave t.oward the crystal, i.e., small but 

posi ti ve N-l, requi res that the interface be located slightly to the hot 

side of the .:;entf~r of th~ gradient zone. Also seen in Fig. "'!.2 is that 

isc,t.'erms are :'llore curved 4S 81 inCrHSes. Thoreft"lre, for the parameter 

values considered, increaSing the Biot nlm\t:ler of the hot ~nd cold =ones has 

a '3reater effect on incre3sin~ ~~ than upon increasin9 tbe axial 

temperature gradient of the charge in the '3radient :001. 

The effect of un~ual hot and cold ~one Bi~t numbers in 3n otherwise 

symmetri(" system is sh0wn in Fi~. 7.3 • . !\s the hot :ontt Siot number 

posltive in the hot portien \.,f the <.jr.3dient =one. In this [(-;:;ion, 

therefore, is<."ltherm sh.1pes ~'ome mere ,:-ooC.3ve tl"lw3rd the ('ryst.3l ~nd the 

effect (It ch..'\nging t11errn.11 ,:-cl1dith'J1s 1.n the hot :lmt:' .3ttenuates r.3~~idly 
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Fig. 7.2: Variation of isotherm sha?€s for the sarre cases 
considered in Figure 7 .1. 
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from the end of the hot zone and affects only slightly the radial 

temperature variations near the cold end of the gradient zone. 

Figure 7.4 shows the variation of 4>11 in systems which are symmetric 

except RK ~ 1. In the systems considered, the cold zone Biot number 

remains constant; the hot zone Biot number therefore changes with RK 

(BiH • BiC/RK). As RK increases, it is seen that (j}fA in the hot part of 

the gradient zone decreases whereas 4>t. in the cold part of the gradient 

zone is little affected. This behavior is simiiar to that of a changing 

value of BiH exhibited in Fig. 7.3. Further, a disturbance awears at the 

interface which increases as ~ increases and whic~ dies out with distance 
• 

from the interface. This disturbance represents the first term in eqs. 

[7.9] and [7.10] where it is shown that it awears only when R!( ~ 1. 

An analytical expression for the variation of CPA in an adiabatic 

gradient zone may be obtained by using eM determined by the moving fin 

model in order to approximate Jl.cp", / Jl; z. in eqs. [7.11]. The charge is 

assumed infinite in length: in this case, em is described by a simple 

exponential function in both the hot and cold zones. Further, the Peclet 

number is assumed small enough to satisfy eq. [5.6]; the argument for the 

exponential function is then given by wm in eq. [5.7]. Hence: 

hot zone: l; S - Ac.. / z.. 

[7.13a] 

cold zone: C; ~ A~ /2. 

[7.13bl 

Substituting the second derivatives of eqs. [7.13] into eqs. [7.11] and 
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noting that d'9f\'\/cir.l • a in the adiabatic gradient zone, yields: 

[7.14al 

[7.14bl 

Fquaticn [7.14a1 represents the effect of radial heat transfer between the 

charge and the furnace in the hot zone on the radial temperature variations 

in the gradient zone. The effect of the hot zone dies out exponentially 

with distance from the hot end of the gradient zone at approximately the 

same rate observed in Fig. 7.1. Equation [7.14bl has an analogous 

interpretation with regard to heat transfer in the cold zone. 

Substituting eqs. [7.141 into eqs. [7.9] and [7.10] produces the 

desired awroximation for <i'A in the gradient zone due to "ctenuation of 

radial gradients from the furnace zones. Evaluating eqs. [7.14] at ,. 'i 
and substituting the result into eq. [7.12] yields CPA at the growth 

interface. 

The one-dimensional results required by eqs. [7.14] are the effective 

Biot numbers and the mean charge temperatures at the hot and cold ends of 

the gradient zon~. For a system with BiG • a and which has a negligible 

Peclet number, the axial temperature gradient in the gradient zone, G, is 

constant except for a step change at the growth interface. The 

t~mperatures at the ends of the gradient zone are therefore approximated by 

the following expressions: 
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l->..e:,IZ) s e~ (C,i) - '4\. ~(tc.°?z.R. ~~fTY 

em (A6J/2.) = 9'(t'1 ll;i)'" ~~. ()..~/2. -~i) 

where: Pe satisfies eq. [5.6] 

BiG • a 
- )..fa I z. ~ z:; ~ )...~ /2. 

[7.1sa] 

[7.1sb] 

The non~imensiooal interface temperature, at. ' is given by eq. [B.IO], 

GL is given by eq. [B.9], and GS is related to GL in eq. [4.25]. 

The circled points in Figs. 7.1, 7.3, and 7.4 indicate values 9f q,~ 

calculated through the use of eqs. [7.14]. The values of Gt., <is and e~ 

required by eqs. [7.14] have been calculated us::'!;; eqs. [7.15] as described 

aboVe. It is seen that the values of 4>4 obtained by the two ruethods agree 

very closely indicating that the moving fin model provides a good 

awroximation for Jlq,,,./Jl.l for the systems considered, i.e ••. those without a 

crucible and with ~. adt~~ic gr~dient zone. The largest difference occurs 

for the largest value \')f Bi reflecting the slight decrease in accuracy of 

the effective Biot nunber as Bi increases. 

7.2.2 Systems With a Crucible 

The effects of the presence of a cruciblc:: on radial temperature 

variations in an adiabatic gradient zone are shown in Figs. 7.5 and 7.6. 

The systems examined are symmetric and infinite in length; Fig. 7.5 

considers variable b (with K • 1) while Fig. 7.6 considers variable K 

(with &. J.S). The primary effects of the crucible are seen to be a 

reduction in the value of ¢~ at the ends of the gradient zone and a 

reduction in the rate at which 4'fl attenuates toward the center of the 
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rig. 7.5: Varirttion of ~~ in an adiabatic gradient zone 
wi th a crucible. The systens are symretric with 
variable diameter ratio C (K = 1.0). 
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gradient zone. 

The ~eauction in the valul! of ¢~ C\t the ends of the gradient zone 

wl~en a crucible is present is ah:ributat:. h to the effect of the crucible on 

the effc'!Ctive Biot number, Bi**. In most C·!lSes, the presence of a crucible 

decreases Bi** compared to a charge without a crucible (c.f., 

section 4.2.2). A redurtion in the heat exchange between th~ charge and 

furnace is therefore expected, resulting in decreased radi ~ 1, t.emperature 

variations within the charge. The individual curves of :'1gs. 7.5 and 7.6, 

labeled with their respective values of Bi**, cemons rate the correlation 

between <;\ (t>.c../z) and Bi **. 

The reduction in the rate of attenuation of ¢~ when a crucible is 

present results from radial heat exchange between the crucible and the 

charge near the ends of the gradient zone. Such heat transfer occurs when 

the crucible and the charge temperatures are not equal. j~ value of zero 

for the local Biot number i£ no longer sufficient to eliminate hea~ 

transfer to the charge in the gradient zone. 

The variation of (4)ey-- 4>M) near the hot end of the gradient zone, is 

shewn in Fig. 7.7 for the case of cS • 2 from Fig. 7.5. It is sep.n that 

the differenca in the crucible ~nd charge temperat~res created by h~at 

transfer in the hot zone furnace extends intt) the adiabatic gradient zone. 

The resultant effect on radial heat exchange with the charge is indicated 

by the distribution of J1cp", /dr,l. in Fig. 7.8 (lower solid curve). It is 

seen that d1
¢frI/Jc. 1 is not zero inJle adiabatic gradient zone: the effect 

of the crucible is to extend radial heat transfer taking plact:: in the hot 

zone :nto the g;:adient zone. Analysis of eqs. [7.11] verifies that this 

extension of radial heat excrange serves to decrease the apparent rate of 

attenuation of 4>fi at the ends of the gradient zone. 
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Assuming that the Pe term in eq. [4.17] is negligible, the one-

dimensional moving fin model of Chapter 4 predicts: 

[7.16] 

Since BiG • 0, the moving fin model predicts that dZeM /dl;l • 0 in an 

adiabatic gradient zone, whether a crucible is present or not. The dashed 

curve of Fig. 7.8 is the distribution of J2.e"",/cll;z. determined from the 

moving fin model. The moving fin model is unable to account for the 

particular nature of radial heat transfer between the charge and crucible 

caused by the abrupt change in furnace boundary conditions at the ends of 

the gradient zone. Although the error is of minor consequence in 

calculating the distribution of 8m, results from the moving fin model, in 

particular d'eM/d~~, are inadaquat~ to describe the local variation of 

radial heat transfer near the ends of an adiabatic gradient zone when a 

crucible is present. 

Table 7.1 compares values of t.P/J at the end of the hot zone (i.e., at 

l; =-~ = -0.5) calculated by ecr [7.14al (i.e., with the use of the moving 

fin model) and by the concentric fin model for the cases shown in Figs. 7.S 

and 7.6. It a];:pears that eq. [7.14al predicts well the qualitative trends 

as K and S change as well as being, to a certain degree, quantitatively 

accurate. This conclusion provides further evid~nce for the correlation 

between Bi ** and ¢~ (t.>v./z.) noticed in F i9S. 7.S and 7.6. Such a 

favorable comparison may seem, however, surpr ising in ,,_j ew of the 

limitations in the moving fin model discussed in the preceeding para~tap~ 

This apparent anomoly is explained by a closer examination of the 
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movln<; fin model 

Bi** Jam / d l: 
0.471 -0.407 

0.291 -0.350 

0.205 -0.312 

0.0619 -0.199 

0.357 -0.374 

0.356 -0.374 

0.200 -0.309 

0.121 -0.258 

Bi = BiC • BiH = 0.5 

Symmetric system 

Ac:;,. 1.0 

A}4 = .Ac.. CQ) 

eM (-~) 
0.703 

0.675 

C.656 

0.600 

0.687 

0.687 

0.654 

0.629 

·"" .. h'~-;f>"?I' ¥. t.,,'" . J ~ 

J 

q,A (-A~/Z.) 
concentric 

eq. [7.14al fin model 

0.00407 0.00407 

0.00284 0.00263 

0.00216 0.00193 

0.000797 0.000683 

0.00331 0.00318 

0.00331 0.00310 

0.00212 0.00197 
• 

0.00141 0.00132 

Table 7.1: Comparison of eq. (7.141 and the concentric fin model to 
predict <P~ at the end of the gradient zone. The systems are 
those examined in Figs. 7.5 and 7.6 

------------------------------------------------------.--------

distributions of dZ8",,/ ~r.z. and J2.q,,,./Jc,l. shown in Fig. 7.8. 

The abrupt change in d1 ~/J4l. predicted by the movmg fin model at the 

end of the gradient zone becomes smoothed out in the clistribution of J~Pl/dc,z 

given by the concentric fin model. The movmg fin model overpredicts the 

radial heat transfer to the charge in the hot zone while underpredicting 

this heat transfer in the gradient zone. The overpredicted heat transfer 

in the hot zone contributes to while the lack of heat transfer in 
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the gradient zone reduces q,~ ; if the effects of the two errors in 

J1.~/d z:; z. approximately balance, the moving fin model provides a good 

estimation of ¢4 (- ~) • 'ttle balance of the two errors is illustrated by the 

dotted curve in Fig. 7.8 which is plotted by reflecting the section of the 

curve for d~""/d'&. labeled "a" about the axial location ,. -.5 • - )y./1. 

and adding to the section of the same curve labeled "b". If the 

distribution of d Z.er;t/dlo z. calculated by the moving fin model was +:0 exactly 

match the dotted curve, the value of tP~(-~/7...) from eq. [7.14a1 would 

equal that given by the concentric fin model. Figure 7.8 shows that these 

curves, while not exactly coinciding, are nevertheless close. Therefore, 

the use of the moving fin model approximation for J~f,,./d,,,Z.can be expected 

to provide a reasonable estimate of <P/l at the end of an adiabatic gradient 

zone. Table 7.1 indicates that this calclusioo is valid at least over the 

range of K and ~ examined. 

1....l mill 'l'E%1PEPAlWE GRAOIENl'S GENEBATEp AT mE GlDlm INl'ERFACE IN THE 
PRFSENCE OF A CRUCIBLE 

The axial temperature gradient in the charge, d~ Id" must undergo an 

abrupt change at the growth interface when PesRH ~ 0 or when Rt< ~ 1. (c.f., 

eq. [6.7a]). The axial gradient in the crucible, on the other hand, does 

not change at the growth interface. Figure 7.9 shows that such conditions 

produce a difference between the charge and crucible temperatures at the 

interface which diminishes with distance from the interface. The exchange 

of heat between the charge and the crucible which results from this 

temperature difference has a profound effect on the distribution of cPt:. in 

the vicinity of the interface. 

Figure 7.10 shows the variation of ¢~ in an adiabatic gradient zone 

for systems which are symmetric except RK ~ 1. The presence of a crucible 
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Fig. 7.9: Crucible and mean charge terru::erature distributions 
near t."1e interface ~vhen RK ~ 1 and/or PesRH ~ o. 
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is indicated by a value of 1.5 for the diameter ratio ~. As R!{ increases, 

it is seen that the distr ibution of cP~ , and more importantly, the value 

of 4;~ at the interface, becomes more negative, causing isotherm shapes 

to be curved in the adverse direction (concave toward the melt). Even a 

small difference in melt and crystal thermal conductivities (e.g., RK· 1.1 

in Fig. 7.10) has a pronounced effect on <P~ (c..i) • 

Values of Rp: greater than unity, being typical of semicond'.!.::tors, have 

been considered in Fig. 7.10. The variation of ¢~ which occurs when Rl{ is 

less than unity is similar to that shown in Fig. 7.10 except that the 

curves would be displaced toward more positive values of ¢A, compared to 

the symmetric case of Rt< • 1. 

'!be effect of the generation of latent heat at the growth interface on 

ctJb in the gradient zone is shown in Fig. 7.11. The systems considered are 

symmetric except that PegRa ~ O. It is seen that as Rfi i:lcreases, 4>6. (Z',j) 

becomes more negative, similar to the effect of RK > 1 shown in Fig. 7.10. 

Although the curves of Fig. 7.11 are plotted with RH as a parameter, 

it must be noted that the effect of the generation of latent heat is 

proportional to the product PeSRH. The curves of Fig. 7.11 may also be 

interpreted as indicating the effects of changing Pe with a constant value 

of RH. The vcalue of PeS I: 0.05 used in Fig. 7.11 has been chosen so that 

PeSRH would be sufficiently large to have an effect on ~~ for typical 

values of RH. 

The generation of radial gradients at the interface is due to the 

presence of a crucible. Figure 7.12 shows the effect of the crucible 

diameter ratio, ~ , on ¢~(l;) for systems which are symmetric except 

RK = 2. Accordingly, very thin crucibles are required to eliminate the 

- 160 -

h- __ , 

1 
~ 
" 
j 

1 , 



i 

I 

10-4 

¢~ 
0 

-10-4 

OR:GINtll P.GG~ :.; 
OF POOR QUALITY 

9i H
a SiC a 0.5 

Pe a 0.5 (eq. CS.6l is 
satisfied) 

RK-1.0 

Adiabatic gradient zone 
-4 

BiG-IO 
RG -10-4 

8 -1.5 Kal.O 
AG-1. 0 

AHa AC - '. 

interface 
-10-2 .... ____ ........... ___ ....... _ ..... -"-___ ....... -.....1 

-.5 
hot end 

.5 
cold end 

Fig. 7.11: The effect of ~,e generation of latent heat on 
the radial t~at'...lre variations in ~~e qradient zone. 
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SiH
a SiC· 0.5 (based on kS) 

Pe· 0.001 
RKa 2..0 
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Adiabatic gradient zone 

BiG a 10-4 
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KSal.O 

~G a 1.0 

~ • ~ • C He· 

1.001 

interface 

0 .5 
in gradient zone cold end 

Fig. 7.12: The effect of t.l-te thick."1ess of the crucible on 
the radial temperature variations generated at ~'e 
interface. 
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interface effect. 

Figure 7.13 shows the effect of changing the location of the interface 

on the distribution of q>~ in the adiabatic gradient zone for systems which 

are symmetric except that RK • 2. As the interface approaches the hot 

zone, the value of CPt1 at the interface becomes more posi ti ve due to the 

influence of radial temperature variations created Ll the hot zone (see 

section 7.2). For the systems considered in Fig. 7.13, however, the 

dominant factor is clearly the conductivity change at the interface. In 

general, the importance of radial temperature variations generated at the 

interface depends on their relative magnitude compared to radial 

temperature variations created by other effects. 

l...l..l '!be 'lWo=E'in '!berma,l Model 

In order to obtain from the results of section 7.1 a useful analytical 

relation which expresses the primary effects of the thermal parameters on 

the radial temperature variations near the growth interface, a simple and 

accurate analytical expression for .d~q;~ /dl; Z is necessary. Radial heat 

exchange between the charge and crucible in the vicinity of the interface 

is not a,":counted for in the one-dimensional moving fin model; approximating 

d4 cp."./dr.,· by J~~,d~l, t-herefore, is not accurate near the interface when 

a crucible is present. The concentric fin model is too complex to yield a 

Simple analytical solution for Jtt.jJ'M/dr:,l. The present section describes a 

thermal model of the heat transfer rear the interface which provides a 

simple approximation for J2~~/d4L. 

The new thermal model is equivalent to the concentric fin model 

described in Chapter 6 except for the following: 

(1) The charge is modeled as a Single fin as shown in Fig. 7.14. 
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Since then: are only t·wo conr.:entric fins -- the crarge and 

t."le crucible - the present thermal model is called the "t',n­

fin" thermal model. The representative radial iocation for 

the charge temperature is taken as Din/2, defined in Fig. 

6.2, since this location jivides the charge ~ually with 

r~gard to its cross seccional area. The representative 

radial location for the cruc;"ble temperature is again 03/2 

(c.f., Fig 6.2). 

(2) Thl' Peclet number is assumed negligible. 

(3) The gradient zone is assumed adiabatic; h,1Ilce, trle gradient 

zone annulus is neglected. 

(4) Only the region in the vicinity of the in~_erface i:... modeled. 

This region extends from the interface, ~. eit.her dir.ection, 

at least the distance required for the interface effp.cc to 

significal~tly die out. The effec t of the ['emainder of the 

gmwth system is included only throUtjh imposing the average 

cr"arge!crucible axial temperature gradients i::-I the gradient 

zone, Gt and Gs in the solid and llquid respectively. These 

parameters are obtained from the one-dimensional moving fin 

model. Radial temperature gradients generated by other 

factors are neglected. 

In accordance with the assumptions listed above, the fin equacions ror 

the charge and crucible are: 

[7.171 
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The thermal resistance, Rmcr,loc' which defines the thermal coupling 

bE:tween the crucible and the charge, is given by [30]: 

!7.19] 

Define the following non-dimensional temperatures: 

[7.20a] 

[7.20b] 

~ is the average charge/crucible temperature weighted by their respective 

axial thermal condl:ctances. Using eqs. [7.191 and [7.20] in eqs. [7.17] 

and [7.18], and nondimensionalizing, results in the folloWll'lg form for the 

two-fin model fin equations: 

[7.21] 

[7.22] 

[7.231 
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-Equation [7.21] indicates that q, varies linearly in the gradient zone 

under the present assumptions. This conclusion is also obtained in section 

-4.4.3 where the axial gradient of cP is also denoted by GL and GS in the 

liquid and solid respectively. Section 4.4.3 also explains that the axial 

temperature gradients in the gradient zone predicted by the moving fin 

model should be intert;)reted as GL and GS. The present two-fin model 

therefore assumes that GL and GS are known a priori from the results of the 

moving fin model. 

The solution of eq. [7.22] is: 

in the liquid: C < c: i 
[7.24a] 

in the solid: ~ > c,j 

[7.24b] 

where the coefficients denoted by C are the unknown constants of 

integration. 

The assumptions of the two-fin model require that <PM c~ .... 0 as 
) 

Z;: .. t%) : therefore, CIL = C2S = O. Continuity of temperature at the 

interface requires (~Plj"r)1. = (~~)c.(') s therefore C 2L = C IS· Finally, 

continuity of flux in the crucible fin at the interface requires 

(d<P"/J~\. = (d¢~f/d~)s: this boundary condition yields: 

G~- GS [7.25] 
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The difference between Gt, and C-g is found from eq. [4.25]: 

[7.26] 

substituting these results into eqs. [7.24] produces the solution for 

(4)M
J
Gr\ .. :II C. e.)(? t- 'w\. (Cti -~)1 

lq,"'Jc:.t")~ = Cel't' l-ws lc:;-~;)l 
where: 

[7.27a] 

[7.27b] 

[7.28] 

The constant C defined by eq. [7.28] includes in the numerator the 

superposed effects of the generation of latent heat and the change in 

charge thermal conductivity at the interface. The axial gradient in the 

liquid, C1LI is always negative~ if ~ > 1, as is typical of semiconductors, 

these two effects reinforce each other, causing a larger disturbance at the 

interface than would occur by either effect acting alone. On the other 

hand, if RK < 1, it may be possible to eliminate the interface effect by 

choosing a value for the product PesRH that would make the numerator of eq. 

[7.28] equal to zero. This could be accomplished by changing either the 

lowering rate (thus changing PeS) or the temperature difference between the 

hot and cold zone furnaces (thus changing Rg). Either possibility, 

however, has potentially harmful side effects on the constitutional 

supercooling requirement. 
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~ Radial Temperature variations Near the Growth Interface 

substituting eqs. [7.27] into the nondimensional form of eq. [7.18] 

yields an expression for d4>~ !Jc,z. due to the heat exchange between the 

charge and the crucible near the interface: 

W\.'I<s (~2._I) 

'R ~ .. Ks ( ~ 1. - \ ') 

[7.29a] 

(7.29b] 

Using eqs. [7.29] in eqs. [7.11] and [7.12] produces the value of cf>~ at the 

interface due to the ~terface effect: 

[7.30] 

The value of <P11 at the interface determined by eq. [7.30] is compared 

to the results shown previously in Figs. 7.10 to 7.13 in Table 7.2. In 

general, the comparison is favorable, indicating that the two-fin model 

provides a reasonable approximation for dl.~~/d~~ in the vicinity of the 

jnterface. The largest differences occur for those cases which consider 

effects not included in the two-fin model. For example, the cases 

considered in Fig. 7.11 use a larger Peclet number, 0.05, compared to that 

used for the other figures, 0.001, in order to accentuate the liberation of 

latent heat. The effect of the larger Peclet number, not included in the 

two-fin m~:l, is to create a more negative value of ~~(~i) . 

A difference between eq. [7.30] and the results from the concentric fin 

model is also apparent for the cases of small ~ considered in Fig. 7.12. 
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variable 
Figure parameter 

7.10 Ri( • l.0 
1.1 
1.25 
1.5 
2.0 
4.0 

7.11 Ra • 0.0 
0.25 
0.5 
1.0 
2.0 

7.12 b • 1.0001 
1.001 
1.01 
1.05 
1.1 
1.25 
1.5 

7.13 ~i • 0.0 
-v.l 
-0.2 
-0.3 
-0.4 

concentric 
fin model 

.000000 
-.000493 

I -.00110 
-.00186 
-.00274 
-.00343 

-.000023 
-.000219 
-.000416 
-.000810 
-.00160 

-.000021 
-.000040 
-.000214 
-.000818 
-.00136 
-.00227 
-.00274 

-.00274 
-.00245 
-.00210 
-.00166 
-.00108 

The values of GL and 

I 

I 

9· \, 

<:PA tC,i) 
eq. [7.30] plus 

attenuation effect 
eq. [7.301 fran eq. [7.9], 

[7.10], and [7.14] 

.000000 .000000 
-.000464 -.000464 
-.00114 -.00114 
-.00176 -.00175 
-.00261 -.00260 
-.00330 -.00329 

.000000 .000000 
-.000179 -.000179 
-.000358 -.000360 
-.000716 -.000720. 
-.00143 -.00144 

-.000002 -.000021 
-.000021 -.000039 
-.000183 ·'.000201 
-.000730 -.000744 
-.00122 -.00123 
-.00207 -.00207 
-.00261 I -.00260 

I 
-.00261 I -.00260 
-.00258 -.00248 
-.0025~ -.00231 
-.00252 -.00200 
-.00249 -.00138 

required for use in 

eqs. [7.14] and [7.30] are listed in Tables 7.3 and 7.4. 

Table 7.2: Comparison of the approximate methods of calculating ¢~l~i) 

to results of the concentric fin model for the cases 

considered in Figs. 7.10 to 7.13. 
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This error is attributable to the neglect by the two-fin model of radial 

gradients generated in the furnace zones. In order to include an 

approximation of the attenuation effect, the value of <:/>(1 (~i) determined by 

c.qs. [7.9], [7.10], and [7.14] is simply added to that determined by eq. 

[7.30]. The results of this approximation, shown in the last column of 

Table 7.2, are seen to improve the estimation of cP~ (~i) for small values of 

~. As ~ increases, the contribution to <:P~ (~i) due to the attenuation 

effect becomes less important than the radial gradients generated at the 

interface. 

Table 7.2 also demonstrates that eq. [7.30] is unable to acc,?unt for 

the effects of the changing interface location on c:t>~tr;i). This error is 

again attributable to the relative importance at the interface of radial 

gradients generated in the hot and cold zones compared to those generated 

at the interface. As the interface approaches the end of the gradient 

zone, the influence of radial gradients generated in the adjacent furnace 

zone becomes increasingly important. 

The last column of Table 7.2 also provides an approximation for the 

effect of changing interface location on <P~ (l;j). This correction to 

eq. 17.30] has been calculated assuming that the radial gradients generated 

in the hot and cold zones attenuate at a rate proportional to exp(-7.63l; ). 

The actual rate of attenuatior. is, however, smaller when a crucible is 

present (c.f., section 7.2). It is expected that use of the actual rate of 

attenuation would produce a better correction to eq. [7.30] for the effect 

of changing interface location. Unfortunately, a simple analytical 

expression for the attenuation of cPA from the ends of the gradient zone 

in the presence of a crucible is not available. 
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7.3,3 eorrectign to ~'e Axial Temperature Gradient In the Ligyid At The 

Growth Interface 

The moving fin model predicts the value of GL • d ~\,jd c. for the 

axial temperature gradient in the liquid at the interface. The 

constitutional supercooling requirement, however, depends on the value of 

\.d~,"/dl;)L at the interface. The difference between these temperature 

gradients can be approximated from the results of the two-fin model. 

Differentiating eqs. [7.20] with respect to l; and solving for dd>",,(C;i)/dl; 

yields: 

[7.31] 

Differentiating eq. [7.27a] with respect to C and substituting into 

eq. [7.31] yields: 

[7.32] 

The second term on the right side of eq. [7.32] is a correction to be 

applied to GL in order to account for the effect of radial heat transfer 

near the interface on the axial gradient in the charge at the interface. 

The axial temperature gradient in the liquid at the interface 

calculated by the moving fin model, GL' and by eq. [7.3;] are compared to 

results from the concentric fin model in Table 7.3 for the cases considered 

in Figs. 7.10 to 7.13. It is seen that eq. [7.32J provides an excellent 

approximation to ~¢""ll;i)/dz:;l_ even though the correction term may be 

significant (e.g., large RK or large RH)' The approximation is most in 
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axial temperature gradient in the 
liquid at the grcwth interface 

variable concentric 
muv ... r~\j 4. J..Il 

model 
Figure parameter fin model Gt eq. (7.32] 

7.10 Rr< =- 1.0 I -.351 -.350 
I 

-.350 I 1.1 -.332 -.340 I -.332 
1.25 -.308 -.326 -.307 
1.5 -.275 -.306 I -.275 
2.0 -.228 -.272 -.228 
4.0 -.140 -.190 I -.140 

7.11 Ra = 0.0 -.351 -.350 -.350 
0.45 -.344 -.348 -.344 
0.5 -.338 -.345 -.338 
1.0 -.325 -.339 -.325 
2.0 -.300 -.328 -.300 

, 

7.12 = 1.0001 -.251 -.252 -.252 
1.001 -.251 -.252 -.252 
1.01 -.251 -.252 -.251 
1.05 -.249 -.256 -.249 
1.1 -.247 -.260 -.246 
1.25 -.240 -.267 -.239 
1.5 -.228 -.272 -.228 

7.13 = 0.0 -.228 -.272 -.228 
-0.1 -.225 -.269 -.225 
-0.2 -.222 -.266 ·-.223 
-0.3 -.217 -.262 -.220 
-0.4 -.211 -.260 -.217 

Table 7.3: Compar ison of the approximate methods of calculating d cP,., (~j) jd, 

to results of the concentr ic f in model for the cases 

considered in Figs. 7.10 to 7.13. 
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error as the interface approaches the hot zone (c.f., Sj • -0.3, -0.4 in 

Fig. 7.13) due to the addi tional influence of radial heat tra~::;"er in the 

hot zone. 

~ Correction To the Tnterface Temperature 

The moving fin model predicts for the interface temperature the 

average charge/crucible temperature: i.e., et is interpreted as ¢(f;j) • 

The difference between ~ (C,i) and cP,.. (l;i) found by the two-fin model may be 

used as a simple correctial to the value of eL. found by the moving fin 

model: 

[7.33] 

Rearranging eqs. [7.20] yields: 

[7.34a] 

[7.1·ibl 

Since both ~)cr( l;i) and 4>,..(l;j) have the same value in the liquid and solid 

at the interface, eqs. [7.34] imply that ¢l.(l;j) ~ 4>5 (z;;) that is, the 

two-fin model predicts a step change in ~ at the interface. This is due 

to the definition of ~ WlllCh ave~ages the charge and crucible 

temperatures according to their respective axial thermal conductances. 

Since the moving fin model neglects the temperature difference between 9',.., 

and <7>cr' it does not predict this step change in <p at the interface. 

In order to approximate the effect of radial heat transfer near the 

interface on the interface temperature, the correction term within brackets 
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in eq. (7.33] is taken simply as the arithmetic average of eqs. (7.14al and 

[7.34b]. Using eq. [7.27] evaluated at ~ • ~i yields: 

[7.35] 

The interface temperature determined by eq. [7.35] is compared to that 

found from the calcentric and moving f~!': models in Table 7.4 for the cases 

considered in Figs. 7.10 to 7.13. It is s~en that the moving fin model, 

pro"'ides a reasonable estimation to the interface temperature, e· L 
, 

, 
without the correction afforded by eq. [7.35]; this indicates that radial 

heat transfer at the interface between the charge and the crucible has a 

relatively small ef~ect on the interface temperature or location. 

Utilizing the corresponding values of GL listed in Table 7.3, the moving 

fin model would mislocate the interface by at most 0.1 charge diameter for 

the cases considered (c.f., RK Z 4 from Fig. 7.10). Results calculated 

from eq. (7.35), however, compare yet more favorably to those of the 

concentric fin model. 

The largest errors in the estimate of the interface temperature 

considered by Table 7.4 are attributable to the larger Peclet number 'used 

in the cases of Fig. 7.11. calculating e· L through the use of the non-

zero Pec1et number relation, eq. [B.B], increases the accuracy of 

eq. (7.35); for the cases considered by Fig 7.11, th~ difference 

between 9L calculated in this way and by the concentric fin model is no 

more than one digit in' the third significant figure. 
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-
temperature of i'Jhe growth interface 

variable concentric moving fin 
Figure parameter fin model model eq. [7.35] 

(Pe =- 0) 

7.10 Rtt • 1.0 .500 .500 .500 
1.1 .509 .507 .509 
1.25 .522 .518 .522 
1.5 .540 .534 .540 
2.0 .570 .561 .512 
4.0 .648 .634 .651 

7.11 Ra • 0.0 .517 .500 .500 
0.25 .522 .504 .505 
0.5 .527 .508 .509 
1.0 .536 .516 .519 
2.0 .554 .532 .537 

7.1~ ~ • 1.0001 .619 .619 .619 
1.001 .619 .618 .618 
1.01 .617 .617 .617 
1.05 .610 .610 .611 
1.1 .603 .602 .604 
1.25 .587 .584 .588 
1.5 .570 .561 .572 

7.13 l;i =- 0.0 .570 .561 .572 
-0.1 .602 .593 .604 
-0.2 .633 .624 .635 
-0.3 .664 .655 .665 
-0.4 .693 .685 .695 

The values of GL required for use in eqs. [7.35] are 

listed in Table 7.3. 

Table 7.4: Comparison of the approximate methods of calculating e· t. 
to results of the concentric fin model for the cases 

considered in Figs. 7.10 to 7.13. 
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Two additional parameters are required by the concentric fin model 

when heat transfer in the gradient zone is considered: BiG and R(;. The 

Biot number In the gradient zone, BiG' indicates the thermal coupling 

betweell the grac1ient zone annulus and the charge. R(; is the ratio of the 

axial heat conducting capacities of the gradient zone annulus and the 

charge (c.f., eqs. [6.2]). The one-dimensional model of a cliabatic 

gradient zone developed in section 4.4.4 shows that the gradient zone 

approaches abiadatic conditions as either BiG or R(; approaches zero. 

Otherwise, the temperature difference between the gradient zone annulus and 

the charge (q,(i - 4>", j produces heat transfer which affects axial 

temperature gradients and also, as shown in this section, radial 

temperature gradients within the charge. 

7.4.1 Results Frgm the Concentric Fin Model 

Figures 7.1Sa, 7.1Sb, and 7.1Sc show the variation of ¢fJ in a 

diabatic gradient zone as calculated by the concentric fin model. The 

systems in these figures are symmetric and do not consider a crucible. 

Since the systems are symmetric, the curves have been plotted only for the 

hot side of the gradient zone. Each figure considers a constant Biot 

number throughout the furnace while the separate curves in each figure 

consider various values of RG. The graphs inserted in each figure are 

axial temperature distributions of ct>M and 4>4 corresponding to the 

indi vidual curvES of <P
A

• As a reference, the distribution of ~ in an 

adiabatic gradient zone (i.e., BiG ~ 0) is also included in each figure. 

According to Figs. 7.15, the value of p~ significantly affects the 

distribution of ~A in the gradient zone. When RG is small, heat exchange 
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Fig. 7 .1Sa: t::.. ' ''m and ~G in a diabat.ic gradient zone with no 
cr'J.cible and a syrnnetric system: Bi = 0.05. 
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Fia. 7 .1Sb: t.:., ~ and 0G in a diabatic gradient zone wit., no 
crucible a."1.d a s:./fm"etric systen: Bi = 0.5. 
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.5 ........ ___ ........... !Ioo ___ .......... _ ......... 

-.5 c: 0 -.5 

hot end center 

C in 9radient 
zone 

Fit;. 7 .1Sc:?::., -brn and :!lr; in a diaba":ic gradie.'1t zone ~ . .;i th :10 

crucible and a s:ll'!Tn;tric system: Bi = 5.0. 
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between the charge and the gradient zone annulus occurs only near the ends 

of the gradient zone: toward the center of the gradient zone 4>4 is nearly 

equal to ¢~. In s:.lch cases, the distribution of <PA :is only slightly 

altered from that in the ct'rresponding system with a'l adiabatic gradient 

zone. As R G increases, t-lle temperature clifference ~ _,..t, .is more c, 't',..., 

pronounced and increases the radial heat transfer to t.'1e charge; ,"'Is a 

consequence, ~ increases as well. For sufficiently large values of RGI 

<:P4 is a.pproximately linear; further increases in R G do not affect 

either q,~ - <PM or ~ but serve only to conduct more heat from the hot to 

the cold zone furnaces through the gradient zone annulus. 

Figure 7.16 demonstrates the effect of increasing BiG for systems 

which have a linear vanation of q:>~ ".:. ""alculated by the concentric fin 

model. A linear variation of CPq has been obtained by choosing a large 

value of RG (i.e., RG=lOO, I. Increasing BiG has a slight effect on the 

axial temperature dist.."'i.C!ltion in the gradient zone, tencllng to reduce th~ 

driving force for radial heat transfer in the gradient zone, <p. -,+, 
Ca 't'",' 

This effect, however, is more than offset by the augmented thermal couplmg 

between the charge and gradient zone annulus represented by the larger 

value of BiG' As shown in Fig. 7.16, the result is that <PAo increases with 

BiG' The curve for BiG = 5 &hows, for example, that <P~ increases, rat.her 

than attenuates, from the end of the gradient zone when the gradient zone 

Biot n..lmber is greater than that in the furnace zones. 

Figure 7.17 shows that the effect of hea+: transfer in the gradient 

zone when a crucible is pre~ent is similar to those systems exa~ined above 

without a crucible. (The system conside,:ed in Fig. 7.17 .is analogous to 

that of Fig. 7.lSb except for the presence of d. crucible.) 
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¢G linear; RG = 103 
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~----------~--~ 

C:!~:i:.,;~L PtGE !S 
OF POOR QUAUTY 

.5'-"' ....................... ~ 
-.5 

. 5, ________ ~ __ • 

-.5 1: 

-.5 0 
hot end center L 0 ~"'I'--"..,......,.......,..~ 

r: in gradient 
zone 

Bi~=5.0 
~ 

.5 .............................. ...",;0. 

-.5 c, 

Fig. 7 .16 : 1>::. ' ':Dm anC: ~G in a diabatic gradient zone for 
increasing B~. ~ crucibl-3, s,,:mretric svstA.!tl ana 
linear ¢G' 
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S = 1.5 KS= 1.0 
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i.O ,.. .... ..,.-~ ........ ~-................. ~ .... 

-.5 
hot end 

~ in gradient 
zone 

. 5 .. ------~--~ ~ __________ w 
-.5 C. 0 

a 
center 

R =10 
G 

o 

Fig. 7.17: ttl!:., ¢m and ¢r; in a diabatic gradient: zone with a 
cruci>Jle. 'The ot.."1er oararreters are the sane ;"AS those used in 
Figure 7.1Sb. -
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7.4.2 AnalytiCAl Agproximatign for the Effect of Heat Transfer In the 
GrAdient Zone 

The effect of radial heat exchange between the furnace and the char.ge 

on the value of eli. at a particular axial location is described by 

eq. [7.4]. Analytical expressions for the effects of radial temperature 

gradients created in the hot and cold zones and at the growth interface 

have been developed using eq. [7.4] in sections 7.2 and 7.3 respectively. 

The present section conm.ders a simple model of heat transfer to or from 

the charge in the gradient zone in order to analytically approximate its 

effect on <P~ • 
The present model considers tr.:~~ the primary effect of heat transfer 

between the gradient zone annul~ .....: .. e charge is attril:>utable to thermal 

conditions near the axial locati'';''' .... r. interest. This assumption is 

qU?.litatively justified by the high rate of attenuation of the effects of 

radial heat transfer distant from the location of interest; c.f., 

eq. [7.4]. Accordingly, a linearized description for d~ Id C.z' about the 1M 

location of interest, C, , is employed: 

[7.36] 

bubstituting eq. [7.36] into eq. [7.71 yields: 

[i .37~ 

N (716]
' d ~ . \'...+.._1'''2,. this .' ext, eq. • 1$ use ... 0 approXl.mate d ~ .. d. \.., approXlmation 

assumes that d~9yw1l Je/' of the moving fin model accurately rf.!presents 

d7.¢~/dC,z. of the concentric 0.1 model and that BL~Jq,~)\o~- <=PM) varies 
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linearly near the location of interest. Subsituting eq. [7.16] into [7.37] 

yields: 

[7.38] 

(Withi:. the gradient zone, <P-f becomes <P(1') According to eq. [7.38], the 

value of ~ at a certain location, C , depends only on the local Biot 

number and the local temperature difference between the furnace and the 

charge. 

Equation [7.38] is expected to be a good approximation of ¢A when 

l4>",/Jr,l. is approximately linear in the vicinity of the axial location of 

interest. Linearity of d~",/J'l. is not expected, however, near th~ ends of 

the gradient zone (see section 7.2) or at the interface (see section 7.3). 

In these regions, eq. [7.38] should be interpreted as an order of magnitude 

estimation of the effect of heat exchange in the gradient zone on the value 

of C;~ which would exist in the absence of such heat exchange (i.e., due to 

the attenuation and interface effects). 

7.4.3 Constant Inter~ace Shape in the Gradient Zone 

Equation [7.38] suggests, in accordance with its limitations discussed 

above, that ~ may be maintained at a constant value over a portion of the 

gradient zone if the product BiG~ ( <P4 - ¢W/ ) is constant over a 

sufficiently long region near the center of the gradient zone, i.e., not 

near the ends of the gradient zone. The following set of "design rules" 

illustrates how the heat transfer in the gradient zone can be "tailored" so 

tr.at the~e conditions may be approximately achieved for a system in wh:ch 

the interface disturbance is not present: 
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(1) calculate d6 ... /d' in the gracient zone, assuming that BiG • 0, by 

using the results of the moving fin model. A sy~metric system is 

presently used to demonstrate this procedure: consequenty, eq. [S.S] 

provides the required value of d elM /J l; • 
(2) Allow R(; to be sufficiently large so that <Pe:. is linear. 

(3) Alter the end temperatures of the gradient zone annulus so that 

04'
GJ

/JC • d& ... /Jc'. In this way, <Pat -¢"" is constant in the gradient 

ZCl£le, negecting the effects of the crucible near the ends of the gradient 

zone. In the present development, it is arbitrarily chosen to maintain 

<Po (-A~/z):: I while altering 4>G, ~/z) . In thi.J case: 

cf;~ (Ar:./Z.): I + ~fJ ~~ [7.39] 

) \ ( de,.. ) 
f!~ -<P,., = 1: I + A ~ d {; [7.40] 

(4) '!be desired value of <1>4 determines the required value of BiG* by 

substituting eq. [7.40] into eq. [7.38]: 

...... 2~.1 ¢" 
11· .. '" ~ 
DL : --------------

C:a \ ... A~ (Je~/dz;) (7.41] 

A non-zero value of BiG* leads to a non-symmetric system and non-constant 

( <Po. - <P", ), thu' contn'dicting the assumptions of steps (1) and (3) above. 

These effects are shown, however, to be of secondary importance in the 

results which follow. 

(5) The desired radius of curvature of the :nterface, Ni, is next 

used to eliminate 1>4 from eq. (7.41]. Using eq. [G.6]· 
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[7.42] 

[7.43] 

Three tes~ cases are employed to demonstrate the procedure described 

above. The parameters defining the systems and the results of the 

calculations of steps (1) through (5) are -shown in Table 7.5. 

Figures 7.18, 7.19, and 7.20 plot the resultant distr ibutions of 

temperature and isotherm curvature calculated by the concentric fin model: 

part (a) of each figure plots the distribution of 4>A in the gradient zone 

while part (b) shows the distribution of ~ and ¢M and the inverse 

radius of curvature, ~l, of isotherms in the gradient zone. The desired 

constant r3dius of curvature chosen for use in eq. [7.43] is Ni = 20~ 
therefore "J.0r: 0.05. 

Figure 7.18 considers a system without a crucible and with a gradi~~t 

zone length Aea:: 1.0. It is seen t..l-}at the distribution of CPA and N tend 

to flatten out near the center of the gradient zone, approximating the 

desired values of ¢A • 0.00127 and Nil. 0.05. It is expected that the 

distributions of ~A and N will be yet more flat when the influence from 

the ends of the gradient zone are more diminished at its center. This may 

'Je accomplished by increasing the length of the gradient zone to A4 = 2.0 

(Fig. 7.19). The curves for cPA and N are quite flat in a large portion of 

the center of the gradielt zone in this case. Note that the required value 

of ¢b, , 0.000903, for Ccade 2 (see Table 7.5) is larger than actually 
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Sig =- Sic 

B'** B'·· 18 • lC 
de". /Jr.. 

(eq. [5.S1) 

1 

7.1S 

1.0 

1.0 

0.5 

0.471 

~.407 
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case 

2 

7.19 

1.0 

1.0 

0.5 

0.471 

~.2S9 

i--- . 

¢>f:a(>--r./z.) 0.393 0.422 
(eq. [7.39]) 

(~ - <Pm) 0.297 0.211 
(eq. [7.40]) 

I siG'" 0.0625 0.0625 
I (eq. (7.43]) -

BiG 0.0625 0.0625 

L cp~ 0.OOU7 0.000903 

Symmetric system except ~~(A~Jt) ~ 0 

AH = Ac • C: CD 

Desired value of Ni is 20 

3 

7.20 

1.5 

2.0 

0.5 

0.291 

-0.259 

0.4S1 

0.241 

0.0491 

0.0735 

0.000S11 

Table 7.S: Description of the systems usad in Figures 7.18. 

7.19, and 7.20. 
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BiHlIBiC -0.5 

BiG II 0.0625 

No crucible 

Symmetric system except: 
~G (~G/2) = 0.593 

RG= 10 

~GlII.O 

AH:I AC II l:= 

-10-
2 ~---.---.-.....-------...... - ............ - ... 
-.5 
hot end 

o 
C in the gradient 

zone 

.5 
cold end 

Fig. 7.18a: Derronstration of the EJrocedure used to obtain 
an appro.xi.nately constant isotherm shape in the gradient 
zone. ~ crucible, symretric system and \c; = 1.0. 

Distribution of ilL.. 
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BiH:I BiC • 0.5 

BiG =0.0625 
No crucible 

S ymme'ric system except: 
q,G(~G/2) a 0.593 

RG 11 10 

XGal.O 

~H· XC· Ceo 

('C'. ".,/\ I" 
~ r' ". PAGE ,. 
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1.0 ----------------..... 

0.2 

0.1 

-. -. 
0.5 

a 

. -0.1 

N-1 

-0.2 

O~~-~~-------~----~~---.5 

cold end 
-.5 
hot end 

o 
C in the gradient 

zone 

Fig. 7 .1Sb: Derronsuation of thE procedure used to obtain 
an approximately constant isot.."':.e....""Il1 shaF€ in the gradient 
zone • ~ crucible, syrmet=ic system and \':; = 1.0. 

Distribution of ~m, q>G and :.1. 
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Symmetric system except: 

<t>G (~G/2) = 0.422 

R,.. = 10 
\:J 

~G= 2.0 

~Hs~C= C~ 

-10- 2 '-~ __ - ..... ---..... --I.-..Itt..----........ _ 
-1.0 0 1.0 

'1. 

hot ~nd Co in the gradien~ cold end 
zone 

Flg. 7 .19a: Analogous to :igure 7.l8a e.xcept ':.he ';:r-"dient 
zone is longer; Le. I \(; = 2.0. 

Dist~ibution of ~'. 
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Symmetric system excepti 

cpG( ~G/2) • 0.422 
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1.0 ..----------------.... 

0.5 

0.2 

0.1 

o 

-I 
N 

-0.2 

o~~ __ ~~ __ ~~~~ __ ~~ __ ~~ 
1.0 

cold end 
-1.0 0 

hot end C. in the gradient 
'70ne 

rig. 7 .19b: Analogous to Figure 7.1gb e.">cept the 
gradient zone is longer; i.e' f AG = 2.0. 

Distribution of !lm, 'G and ~. 

1 

l 

_ __ _ __ _ _____ ~c~_~ ----~ 
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BiH a BiC a 0.5 

Bt G a 0.073~ 

S a 1.5 

K al.O 

>-'G a 2.0 

>-'H a ~C· t;1» 
Symmetric system except: 

~G(AG/2) =0.481 

R = 10 G 

-10 -2 "'-...... _ ............ ----.1.---------..... ---... 
-1.0 0 1.0 

.,;¢' --_ .. 

hot end 'In gradient zone cold end 

Fig. 7.20a: Analcg(!U!.~ .. ,O Fiqcre 7.19a exc;cpt a cIUcib:"e 
is !Jresent: i.e., 5 =. L 5. 

Distributlon ~f ~t. 
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1.0 ...... --------------. 

0.5 

O~--------------------------~ -\.O 0 1.0 

0.2 

0.1 

N 
-\ 

o 

-0.\ 

-C.2 

hot end C In gradient cold zone 
zone 

Fig. 7.20b: Analogous to Figure 7.19b except a crucible 
is present; i.e., 5 = 1.5. 

Distribution of Om, ¢G and N. 
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present as shown in Fig. 7.19. This is due to heat transfer to the charge 

in the gradient zone, not considered in eq. [7.40], which causes 4'(a - 1:>,." 

to be slightly smaller than the value predicted for a symmetric system. 

Reduced heat transfer to the charge, and therefore a reduced value of ~ 

results. The value of ¢4 can be adjusted upward by an appropriate 

alteration in BiG. 

Figure 7.20, which considers a system similar to that of Fig. 7.19 

except S. 1.5, demonstrates that the presence of a crucible is adequately 

accounted for in this procedure. 

The procedure outlined i this section is not intended as a 

generalized design method leading to optimized heat transfer for Bridgman 

crystal growth. Systems of pra~' leal interest do not behave as those 

considered in Figs. 7.18 to 7.20 due to the generation of radial 

temperature variations at the growth interface (c.f., section 7.3). Its 

intent, rather is to accentuate three important features concerning the 

radial temperature distribution in the charge: 

(1) Heat transfer in the gradient zone is a useful tool for 

altering the interface shape in the gradient zone. 

(2) Hhere appropriate, results from one-dimensional models, in 

conjunction with the Green's function approach, can be used 

to help predict radial temperature variations in the charge. 

In the model developed in this section, eq. [7.38] is seen to 

provide at least or~er of magnitude accuracy. 

(3) Generation of radial temperature variations at the interface 

(RK ~ 1 and/or PeSRH ~ 0) is detrimental for achieving a 

region about Lhe interface which exhibits a relatively 

constant isotherm curvature. 
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.aa. FUBNACE PESIGN CPNSmEBATIONS 

U AXIAL TEMfEBA'ruRE PISTRIBtmQN 

The principal object'ives of the thermal. design of a Br:'dgman growth 

system regarding the axial temperature dlstribution of the charge are 

(1) to obtain a sufficiently large axial temperature gradient in the melt 

at the growth interface and (2) to control the location of the interface. 

The thermal parameters affecting the attainment of these objectives may be 

classified as fixed, i.e., the thermal properties of the charge, or 

variable, i.e., the furnace process parameters such as the lowering rate, 

diameter of the charge, diameter and thermal conductivity of the crucible, 

gradient zone length, furnace heat transfer coefficients and furnace 

temperatures. 

8.1.1 Tbermol Prgperties af the Charge 

The thermal properties of the charge are fixed parameters and 

therefore constrain the thermal behavior of the growth system. The most 

important of the thermal properties of the charge is its thermal 

conductivity. A small thermal cooductivity leads to a large Biot number; a 

Bridgman system for the growth of edTe, for example, can have a Biot number 

in excess of unity. In such cases, satisfying the constitutional 

supercooling requirement may not be difficult. Additiooally, since the 

"infinite" charge length is s~aller when the Biot number is larger, a 

charge with a small thermal conductivity exhibits decreased thermal 

transients associated with growth near the ends of the charge and therefore 

tends to stabilize the growth interface. Biot numbers are smaller, on the 

o~her hand, when the thermal conductivity of the ~r~rge is relatively large 

(e.g., germanium). In this case, it is important to verify that the axial 
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temperature gradient at the growth interface is sufficiently large; if not, 

efforts to increase the Biot number by augmenting the heat trar.sfer 

coefficients may be necessary. Further, a longer charge and furnace is 

necessary for the growth of an equivalent length of crystal under quasi­

steady thermal conditions when the thermal conductivity is relatively 

large. 

Relate<: to the magnitude of t.'e thermal conductivity is the change in 

thermal conductivity between the melt and the crystal at the growth 

interface <denoted ~~ the symbol RK)' When the melt conductivity is 

greater than that of the crystal (i.e., RK > 1) the axial gradient in the 

liquid at the interface is adversely affected, becoming less than that on 

the solid side of the interface. The magnitude of this effect may be 

significant (c.f., section 5.3) and is a potential problem for the growth 

of semiconductors which typically have values of RK greater than unity. 

When RK is less than unity, as is the case for metals, satisfying the 

constitutional supercooling requirement is more easily effected as a 

consequence of this effect. 

Other thermal properties of the charge which affect its axial 

temperature distribution are the thermal diffusivity, oc. , mass density, 

f ' and latent heat of solidification, ~ Hsl' The thermal diffusivity is 

a factor in the Peclet number which accounts for the effect of convection 

of sensible heat due to the motion of the charge. The product of f and 

A Hsl is contained in the product of nondimensional parameters PeS~ which 

accounts for the effect of the liberation of latent heat at the growth 

interface. Additionally, the convection and latent heat effects are 

proportional to the lowering rate, V. The significance of these heat 
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.. 
:1.ows, however, depends upon their relative magnitude compared to the 

primary heat flow in the system, i.e., the heat flow between the furnace 

and the charge in the hot and cold zenes. These comparisons are made in 

eqs. [5.6] and [5.12] where Bi1l2 indicates the importance of the furnace­

to-charge heat transfer. The effects of the thermal properties"', f , and 

A Hsl therefore depend on the prevailing values of Bi and V1 typical values 

of these parameters for semiconductor growth systems produce small 

convection and latent heat effects. It may be concluded, therefore, that 

these thermal properties are of secondary importance to the axial 

temperature distribution of the charge compared to the thermal conductivity 

of the charge. 

a.l~ Furnoce Process Pft'ometers 

A number of furnace design parameters can be used to alter the axial 

temperature distribution of the cf4rge. The most obvious of these are the 

hot and cold zone furnace temperatures. An increase in the hot and cold 

zone fur~ace temperature difference results in a roughly proportional 

increase of the axial temerature gradient within the charge. On the other 

hand, lowering one or both of the furnace temperat\.lres moves the growth 

interface toward the hot zone while an increase moves the 9rowth interface 

toward the cold zone. Furthermore, alterations of the axial gradient and 

interface location can be made independently of each other by the proper 

choice of furnace temperatures; for example, the axial gradients can be 

made to increase while maintaining the interface in the same location or 

vice-versa. Typically, temperature limits in the hot and cold zone furnace' 

constrain the application of these techniques. The heat pipes used in the 

experimental system described in section 2.2.1 may b~ used only between the 
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temperatures of SOO'C and 1100·C. Furthermore, the hot zone furnace 

tempe~ature may be limited by the development of excessive vapor pressure 

of ~ne of the constituent elements in the melt or by the mechanical 

properties of the crucible at elevated temperatures. 

The most important of the dimensionless parameters regarding the axial 

temperature distribution of the charge are the Biot numbers of the hot and 

cold zones. The Biot numbers reflect the thermal coupling between the 

furnace and the charge; eq. [5.9] indicates that as ~he Biot numbers 

lncrease, so do the axial temperature gradients in the gradient zone. The 

effect of the thermal conducti vi ty of the charge on Bi has been d~scussed 

in seGtion 8.1.1. The furnace process parameters which affect the Biot 

numbers are the furnace to charge heat transfer coefficients, h, charge 

diameter, D, and the thermal cooductiv';.ty and thickness of th~ crucible, K 

and b through their effect on the effective Bivt number, Bi *. It must be 

noted, however, that the internal radial ther!::~l resistance of the charge, 

accounted for by Bi **, limits the degree ttl which ,,'(ial gradients "'lay be 

increased through augmentati, 4\ of the Biot nL'mber. As shown by eq. [4.14], 

Bi** can not exceed the valued of 8: changes in h, K and ~ have little 

effect on increasing Bi ** when it is cl~e to this maximum value. 

The value of the furnace to charge heat transfer coefficient, h, 

includes both radiative and conductive components~ The radiative component 

may be minimized by employing reflecting surfaces between the inner furnace 

and outer crucible surfaces: it may be increased by utilizing surfaces of 

large emissivity. The magnitude of radiation r.eat transfer is, however, 

limited to that which would occur between black surfaces. Additional 

amounts of heat transfer may be obtained by conduction heat transfer across 

the furnace cavity gap. Appendix C indicates that the conductive part of 
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the gap heat transfer can be as large as the radiative part by uSing an 

interjacent gas of high thermal conductivity, such as helium, and a gap 

width of the order of one to three millimeters. Higher conduction heat 

transfer coefficients may, of course, be obtained by further decreasing the 

gap width. Small gap widths accentuate, however, the error in misaligr.,....,~t 

of the axe9 of the charge and furnace cavity which lead to non-radially 

symmetric heat t:r!Uosfer coefficients and interface ~j'l.\pe. (The radiation 

component to the gap heat transfer is less sensitive to the g~p width, 

especially for gap widths which are small compared to the furnace cavity 

diameter. 

The thermal coupling between the furnace and the charge, is in most 

cases adversely affectEd by the crucible~ i.e., the effective Biot number, 

Bi * is usually less than the Biot number, Bi (see section 4.2.2). In order 

to maintain a large value of Bi*, it is desirable to use a crucible which 

has a small thickness compared to the charge diameter; i.e., S should be 

as close to unity as possible while maintaining structural integrity. The 

use of crucibles which have a very high or very small thermal conductivity 

compared to that of the charge should also be avoided since they tend to 

cause a significant reduction in Bi*. Equation [4.7] may be used to reveal 

which amon; several potential crucible materials will yield the largest 

effective Biot number. 

An increase in charge diameter, D, tends to increase the dimensionless 

axial gradient in the gradient zone through its effect on the Biot number. 

As section 5.6 demonstrates, the corresponding effect on the dimensional 

axial gradient depends on the prevailing values of Bi, K and S . Unless 

accompanied by a decrease in ~ , an increase in D causes .3 decrease in the 
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axial temperature gradient at the intprface. A decrease in <5 , however, 

does not guarantee an increased axial gradient; such cases should be 

evaluated individually. 

The length of the gradient zone, '>"G ' has an awreciable effect on the 

axial temperature gradients at the interface. For example, Fig. 5.3 

demonstrates that the axial gradient may always be increased by decreasing 

~. The effect is most significant when the hot and cold zone Biot 

numbers are large (greater than about 0.1). The absence of a gradient 

zone, (Le •. , A" • 0), however, limits the extent of this effect; if the 

axial tempera1:ure gradient is not sufficiently large when )..". ~, other 

methods to increase the axial gradient must be employed. '!be gradient zone 

length additionally affects the distribution of radial temperature 

varitions near the growth interface. :-:hanges in A(;i must therefore be 

evaluated on the basis of its effect on the interface shape as well as on 

the axial temperature gradient at the interface. 

U BAD;AL 'rOOERA'llJRE VARIATIONS NEAR THE GlPlIE INrERFACE 

Radial temperature variations within the charge have been shown in 

Chapter 7 to attenuate rapidly with axial distance from the location at 

which they are generated. This behavior permits the formulation of a 

thermal design procedure leading to a satisfactory interface shape for 

systems in which radial temperature v~rlations created at the interface are 

not present. In summary: 

The interface should be located in a gradient zone which is 

made approximately adiabatic through the use of a thermal 

insulating material placed between the hot and cold zones and 
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radiation shields in the f~rnace cavity gap. The gradient 

zone should be sufficiently long so that radial temperature 

gradients generated in the hot and cold zones have largely 

attenuated at the interface location; this length is 

approximately one to two charge diameters and depends on the 

effect of the crucible in reducing the rate of attenuation of 

the radial temperature gradients created in the furnace zones 

(see section 7.2.2). The exact location of the interface 

within the gradient zone is chosen 51) t.hat the shape of the 

interface is slightly curved toward the SCJlid.· Additionally, 

small amounts of heat transfer to the charge in the gradient 

zone, as described in sections 7.4.2 and 7.4.3, can be used 

alter the interface shape or to maintain a large axial region 

of nearly constant isotherm curvature. 

The thermal deSign is complete at this stage if the axial temperature 

gradient in the melt at the interface is sufficiently large to satisfy the 

constitutional supercooling requirement. If the axial gradient is not 

sufficiently large, however, techniques to increase its value, as described 

in section 8.1, can be evaluated while attempting to maintain satisfactory 

interface shape. 

Radial temperature variations generated at the interface are, however, 

the dominant factor with regard to the interface shape. The procedure 

outlined above, therefore, does not lead to desirable interface shapes 

unless the interface effect can be eliminated. This.' "~c;ue is of particular 

importance for the growth of semiconductor materials which haw~ values of 

RK greater than uni ty; for Such materials, the interface effect tends to 
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produce an interface shape which is curved in the adverse direction, i.e., 

toward the melt. 

a,l.l Coynteracting the Effects of B1d101 Temgeroture Variations Generated 
at the Growth Interface 

The analysis of section 7.1 suggests that heat transfer from the 

furnace to the charge tends to produce isotherm shapes which are concave 

toward the solid. Such heat transfer in the gradient zone thus serves to 

make the interface shape more favorable if it is originally concave toward 

the melt. The gradient zone, in such a case, resembles somewhat an 

extension of the hot zone furnace. The potential for completely 

eliminating an adverse interface curvature may be estimated by comparing 

the value of 4a produced at the interface due to the interface effect 

(eq. [7.30]) to a rep7:esentative value of ~ caused by heat exchange with 

the furnace at the prevailing Biot numbers. '!be value of ~~ at the end of 

an adiabatic gradient zone (see section 7.2) may be used to estimate this 

latter value of~6. If radial temperature gradients caused by heat 

transfer in the furnace zones are of comparable magnitude, or larger, than 

those generated due to the interface effect, additional heat transfer to 

the charge in the gradient zone may prove useful in reverEiing an adverse 

interface curva~ure. If, on the other hand, radial temperature gradients 

caused by heat transfer to the charge are less than those generated at the 

interface, this technique can not be expected to change the dire~tion of 

the shape of the interface. 

A decrease in the value of b likewise decreases the magnitude c! the 

radial temperature gradients generated at the interface, as shown in 

Fig. 7.12. The value of S can be decreased by ei ther an increase in the 

charge diameter or by a decrease in the thickness of the crucible. A 
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decrease in S, while not elirr inating the interface effect, may be useful 

in combination with heat transfer to the charge as de3cribed in the 

previous paragraph. 

'lbe ideal method of dealing with the interface effect is to eliminate 

it. If this il possible, the design procedure for obtaining the desired 

interface shape, described in sectioo 8.2, becomes awlicable. 'lbe cause of 

the interface effect is the change in the axial temperature gradient wi thin 

the charge at the growth interface which is not present in the crucible. 

Efforts to eliminate the interface ef!ect therefore must either (1) remove 

the change in axial gradient within the charge at the interface or (2) 

produce an equivalent change in axial gradient within the crucible. 

Equation [7.26] suggests that the slope change at the interface 

disappellrs for an appropriate value of the lowering rate, V, when RK < 1. 

'lbe effiocy of this technique depends, however, on the interplay between 

the value of V required to eli~~te ~~e slope change at the interface and 

the effect of V on the cau;titutional supercooling requirement. Further, 

this techniqu~ is not awlicable when Rl( > 1. 

Since the electron potentials are not equal in the solid and liquid 

portions of the charge, the passage of an electric current across the 

growth interface produces or absorbs heat (depending on the direction of 

the current) by virtue of the Peltier effect. Such heat can be used to 

eliminate the change in axial temperature gradient at the interface caused 

by the change in thermal conductivity and the liberation of latent heat. 

Rewriting the h-'1!t balance at the interface in order to Ulclude the Peltier 

heat yie:Js: 
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Se Ti r'D rS.ll 

where: Gt. Gs in ord4!r to eliminate the slope change at tile 
interface 

Se • Seebeck coefficier.t 

r· • current per unit cross &ectional area 

SeTiI- • rate of generatia'l of Peltier heat per unit 
cross sectional area 

Ti • absolulte melting temperature 

Using germanium as an exampl~ (Se • 70"V/K, Ti • 1211#!), eq. (S.ll shows 

that the required current density is in excess of 200 amps/cm2 for' typical 

operating conditions. Such large current densities may be difficult to 

attain experimentally and may also produce significant Joule heating 

effects. Although each case should be examined individually, it a~rs 

that Peltier heating is not a viable method for eliminating the slope 

change at the interface. 

Peltier heating/cooling has, howtever, greater potential for mcx:Ufying 

the intprface shape in small amounts. For example, a flat interface shape 

may be made slighlty concave toward the solid by the application of a small 

amount of Peltier cooling. This technique yields a similar result as that 

of transferring small amounts of heat to the charge in the gradient zone as 

described in section 7.4.3. 

The interface effect may also be eliminated by producing a slope 

change in the crucible at the interface which is equivalent to that in the 

charge. This may be done by adding the appropriate amount of heat to the 

crucible in a very narrow region near the axial lCi-:ation of the interface. 

The remainder of the gradient zone may be adiaba.ic if desl:ed. A thin 
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'nle objectives of thia analysis are to determine the prima!'J· thermal 

behavior of the vertical Bridgman crystal growth method and, wher~ 

possible, to develo~ simplified analytical results to indicate 

quantitatively the relationship between the thermal parameters of the 

system and its thermal response. The purpose of these objectives are (1) 

to aid in both the preliminary thermal d~sign of a Bridgman growth system, 

(2) to better interpret experimental results of existing systems in order 

to improve their design and (3) in a more general sense, to critically 

evaluate the capabilities of the Bridgman technique. The major efforts 

involved in attainir~g these objectives has been the development of 

appropriate simplified thermal models of the Bridgman growth system. The 

major findings of this study are reviewed, and possible directions for 

future research are outlL,ed,in this chapter. 

U mNCLPSIQNS 

A one-dimensional thermal model was developed in order to determine 

the axial temperature distribution within the charge. Approximations for 

the radial thermal resistance offered by the crucible and by the charge 

itself are incorporated in a straightforward manner into the one­

dimensional model through the definition of the "effective" Biot number. 

In general, these radial resistances decrease the effective thermal 

coupling between the furnace and the charge, leading to redwced effective 

Biot numbers an~ axial temoer~ture gradients at the growth interface. The 

relationship betwF .~ the ~rucible thickness and thermal conductivity and 

the effective Biot number is analytically described by eq. [4.7]. This 

relatir "ship demonstrates that the ratio of thermal conductivity of the 

- 208 -



ORIGINAL PAGE IS 
OF POOR QUALITY 

crucible to that of the charge, K~ should be between 0.1 and 1.0 in order 

to prevent severe reduction of the effective Biot number. Equation [4.14] 

incorporates the effect of the radial thermal resistance within the charge 

and indlcates that axial gradients are limited since the effective Biot 

number can not exceed the value of 8. Efforts to increase the heat 

transfer coefficient between the furnace and crucible therefore does not 

increase axial temperature gradients in systems which already have an 

effective Biot number which approaches this value. 

The axial temperature distribution within the charge is easily 
. 

obtain~ from the one-dimensialal mcx1el by computer. Analytical solution, 

however, yields several imp:>rtant results. Criteria are developed which 

indicate when the effects of axial cawection of sensible heat, generation 

of latent heat and length of the charge can be neglected. Additionally, 

analytical expressiau; for the axial temperature gradient in the melt at 

the growth int :fa. ~ (required for the constitutional supetcooling 

requirement) and the axial location of the interface are developed. (When 

the axial convection of sensible heat is sufficiently small, these 

analytical results reduce into yet more Simple forms.) These expressions 

assume a charge length which satisfies the infinite length criteria but 

includes the effects of: hot and cold zone effective Biot numbers, unequal 

mel t and crystal thermal conducti vi ty, axial convection of sensible heat, 

generation of latent heat, length of an adiabatic gradient zone, and 

interface position within the gradient zone. The effects of the charge 

diameter and thermal properties are included by virtue of the non­

dimensional formulation of the th~tmal model. Such results indicate that 

the principle factors affecting the axial temperature gradient at the 
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interface are: level of the effective Biot numbers, unequal melt and 

crystal thermal cOo"\ducti vi ty, gradient zone length and generation of latent 

heat. 

Two-dimensional thermal modeling is utilized to predict the shape of 

the growth interface. The two'"1:iimensional thermal models developed here 

are extensiClls of the one-dimensiooal model: i.e., the charge is considered 

as two radially concentric fins, the crucible is a third fin and, in the 

gradient zone, the furnace is considered to be a fourth annular fin. This 

approach is taken, rather than a finite difference or finite element 

computer formulation, for the potential to develop analytical results. 

The equations describing the temperature distributions of the 

concentric fins indicates that radial temperature variations within the 

charge are created by heat exchange between the charge and its 

surroundings (see eq. [7.2]). Heat transfer to the charge leads to 

interface shapes which are concave toward the solid, and heat transft:r from 

the charge tends to produce an interface shape which is concave toward the 

liquid. The effect of heat transfer to the Charge at a particular axial 

location dies out rapidly with distance from that location. Thermal 

conditions as little as one charge diameter from ~~e interface have only a 

very small effect on its shape. The design of a Bridgman At;:PBratus for the 

proper interface shape may therefore be interpreted as providing the proper 

amount and distribution of heat exchange to or from the charge in the 

vicinity of the interface. 

The two-dimensional results identify for the first time a potentially 

serious problem for the satisfactory growth of materials, such as 

semiconductors, which have a thermal conductivity of the melt which is 

greater than that of the solid. In the presence of a crucible, inherent to 
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the Bridgman technique, such conditions lead to heat transfer from the 

charge to the crucible. This is the dominant effect on the shape of the 

interface since it occurs at the interface itself. Further, the shape of 

the interface produced through this effect is curved in the undesirable 

direction, i.e, toward the liquid. 

The results of the one- and two-aimensional models presented in this 

work compare well to published analytical results from more accurate 

computer models. Published experimental results arl!, however, few. and not 

suitable for the direct verification of the conclusions presented here. 

Such verification is coosidered necessary and is, in part, the motivation 

for the experimental program currently in progress. 

The numerical ~ccuracy of the simple thermal models of this work is 

expected to be sufficient fnr initial furnace design as well as to indicate 

the expected parametric thermal behavior. Increased numerical accuracy 

obtainable from a two-dimensional finite difference or finite element 

computer model will, however, be required for final system design and for 

quantitative comparison with experimental results. Effects such as thermal 

conductivity change and/or generation of latent heat at the interface in 

the presence of a crucible, presently not included by computer models 

described in the literature, must be included in any new computer model. 

Modeling assumptions used in the present work, but anticipated to have a 

minor effect in actual growth systems, can also be relaxed: these include 

temperature dependent ~ermal properties and heat transfer coefficients and 

temperature uniformity of the hot and cold zone furnaces. Finally, the 

furnace boundary conditions should be flexible, especially in the gradient 
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zone, in order to study the effect of different distributions of heat 

exchange between the furnace and the charge on the shape of the growth 

interface. 

The two-dimensional concentric fin model assumes that the axial 

location of the growth interface is the same within both the inner and 

outer charge fins. The error in predicted radial temperature variations 

obtained through the use of this assumption is expected to increase with 

interface curvature but presently is not known quantitatively. A two­

dimensional comp,lter model as described above may be used to determine this 

error. 

The accuracy of a computer model of Bridgman growth as described above 

will be compromised by thermal property data of questionable reliability. 

Unfortunately, the thermal properties of many semiconductors, especially 

those of the liquid, are not accurately known. In such cases, data of 

increased reliability must be found by experimental means. 

Adverse interface curvature is expected for the growth of 

semiconductor materials due to radial temperature gradients created at the 

interface. Section 8.2.1 offers several methods to counteract this effect. 

Detailed evaluation of these (and any other) methods must take place in 

order to solve this potentially serious problem inherent to the Bridgman 

growth technique. 

The technique presently considered most promiSing for counteracting 

the interface effect is locally heating the crucible near the interface in 

conjunction with a thin crucible. Analysis of these conditions is required 

to examine the potential of this method. The relationship between the 

thickness of the crucible and the amount and distribution of heat transfer 
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to the surface of the crucible to the shape of the growth interface will 

require the solution of an appropr iate two-dimensional thermal model of the 

interface region. 

This work considers furnace boundary conditions as an independent 

variable which, in combination with the other system parameters, determines 

the interface shape. It would be useful, however, to be able to solve the 

inverse problem: i.e., what must the furnace boundary conditions be in 

order to produce a desired interface shape? There may be multiple 

solutions or no solution at all. In the first case, such results would 

provide a direct indication of the thermal design required for satisfactory 

interface shape; in t.."le second c=ase, the knowledge that no set of furnace 

boundary conditions exist which can produce the desired interface shape 

indicates that other parameters of the growth system require alteration. 

'!be ability to make such conclusions will require the computer solution of 

the appropriately modeled inverse heat transfer problem. 
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'Ibis appendix presents the derivation of eq. [4.111. 

In nondimensional form, the heat conduction equation in the charge is 

given byeq. (4.12]. Integrate each term in eq. (4.12] according to the 

formula: 

[A.l] 

(Subscript ftmft in eq. [A.l] denotes an area-averaged quantity.) 

Equation (4.121 becomes: 

[A.2] 

The boundary condition at the surface of the charge is, in nondimensional 

form: 

(A.3] 

where Ss is the surface temperature of the cr.arge. Substituting eq. [A.3] 

into eq. (A.2] yields: 

The crucible effect (section 4.2.2) is included by using the effective Biot 

and Peclet numbers in eq. [A.41 resulting in eq. [4.11]. 
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ANALYTICAL SOwrION OF THE ONE-DIMENSIONAL ~mEt.; 

INFINITE cmRGE Wpm 

Acco:d:;' .. g to the moving fin model described in Chapter 4, eq. [4.17] 

gives the axial temperature distribution in each of the four regions listed 

below: 

1. Hot zone. 

2. Liquid part of the gradient zone. 

3. Solid part of the gradient zone. 

4. Cold zone. 

The solution of eq. [4.17] for each zone is: 

[B.ll 

where: n· 1, 2, 3, 4 

(The subscript "n" denotes the zone number according to the list above). 

The constant term, 1.0, in eq. [B.l] is the particular solution for the hot 

zone and is zero for the other zones. The characteristic roots, 'vJ;' , are 

given by: 

[B.l] 

Since the moving fin model assumes that BiG • 0, the characteristic roots 

in the gradient zone can be simplified: 
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- . 
W""-l, = 0 

J 

• 
'VJ""J :, = ?e: [B.3] 

W'M-~ - 0 -J 

There are eight unknown coefficients in eq. [B.l], two for each of the 

four zones. For the results given in this appendix, it is assumed that the 

length of charge in the hot and cold zones is infinite; under these 

conditions, B1 • A4 • o. Boundar~' conditions between adjacent zones, 

given by eqs. [4.18], [4.19] and [4.20], are used to calculate the 

remaining coefficients. The boundary condition of equality of temperature 

between adjacent zones, eq. [4.18] yields: 

- 'YtI + 11 "" + IJ AI e "~Jr -to \ :. Az e- ~ll."" + ~2. 

~1. e W:I 7.l:,i + f,2. = A:, e W:'lt;; ~ B ~ [B.4] 

where: 

l;" • axial location of the growth interface 

At the ends of the gradient zone, the boundary conditicns of equality of 

heat flux between adjacent zones, eq. [4.19], gives: 

[B.s] 
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The flux boundary cCX1dition at the interface, eq. [4.20], yields: 

where: 
~. R~"K~(~l-\) 
t\"" .. 

\ + K$(~t-I) 

R~ = ~'" 

[B.6] 

Eqs. [B.4], [8.5], and [8.6] present six linear. equations in the six 

unknown coefficients Al, A2, 82' A3, 83' and 84. After solving for these 

coefficients, the axial gradient in the liquid near the interface, Gt." and 

the nCX1dimensional interface temperature are given by: 

t:'e~ 1<.: + 
\N:~\ 

1+ (:t -1) ell P [+ '-":.~ (~-1;;)1 ... 
~l...:: 

, + (W"'~l _I) ex? -W';'lljJ + ~i)l 
[B.7] 

R ~ - ,oJ:.} VI,.,. I 

'" w.. 
I +(~i: -11 e~p~w:)~ ~f' 4)1 ~,l. 

\ (~ - I )e~p tW'':,~ (J.'~C;)] -+ + 

\-9·=-~' 
'HIM I , (B.8] 

L L VJ.t .. ,,, 

(Section 4.4.3 explains that the axial gradient at the interface calculated 

from the one-dimensional model must be interpreted as the average of the 
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~harge and crucible axial gradients. Gt, denotes this average value.} Note 

that eq. [B.8] requires an iterative solution if it is desired to determine 

l;; given 9i. 

For small Pe*, eq. [5.6] holds and w;,l and wm,4 can be approximated 

by eq. [5.7]. This leads to a simplified form of the above ,:,xpressions: 

-. z .-. I tBL~)-'/Z ___ ~t:a - 2l;j 1 ?~s 'R ~ [B.9] 

~ l(j)l:)-I/\ Aa, -2£;] + ~ l~c.'*:)-1/2 + AGJ +2t;;1 

1- e~:. 
[B.IO] 

The assumptions that Bi<; • a and ~" • Ac. : co yield relatively simple 

analytical results. When it is desired to r"!lax these assumptions, the 

preceding development can be appropriately modified. When BiC " 0, for 

example, wm,2 and wm,3 are no la'1ger described by eq. [8.3] • .Additionally, 

a particular solution must be included in eq. [B.ll for the gradi~nt zone 

regions: the form of the particular solution depends on the tem?erature 

distribution in the gradient zone annulus. When >.'" and/ or ).c. is not 

infinity, the coefficients Bl and/or A4 is not zero. Additional boundL'.ry 

conditions at the ends of the charge must then be employed. In these cases 

it is more calvenient to determine the coefficients An and Bn by computer. 

This has been the procedure used to determine the results presel"'ted in 

section 5.5 for finite charge length. 
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APPENDIX C 

PTlJMTION OF HEAT TRANSFER aJEFFICUNIS 

Beat transfer between the furn.ace walls and the outer crucible surface 

occurs by conduction and radiatior.1 across the annular gap which separates 

the~ The gap width is here considered sufficiently small so that natural 

convective flow of the gas in the gap does not occur. 'll'le magn 'l tude of the 

conduction and rediat~.on heat transfer is here described by heat transfer 

coefficients, he al1d hr respectively. Since the conduction and radiation 

heat transfer occurs in parallel, tbe overall h is simply the su., ~·f he and 

[C.Il 

w SAMPI..E HEAT TRANSFER aJEFFICIENl'S 

Fer an aMl'la:: gap whose width j s small compared to the diameter, the 

condr . .:tion heat transfer coefficient can be awroximated by: 

[C.2l 

Table C.l gives heat transfer coefficients across a 1 mIT! gap for air and 

helium at a number of temperatures. (Helium has a high thermal 

conductivity compared to most gases.) For different gap widt.'s, eg. [C.2) 

ca." be used to adjust the sample values given in the table. 

Radiation heat transfer across the gap, as shown in Fi~. C.l, is 

described by the following equaticns assuming that the surfaces are grey: 

[C.41 
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crucible (cr) 

cr) 

Fig. C .1 : Geanetr! used to describe radiation heat transfer 
be1:'-)een t...'e furnace anc 1±e cuter crucible surface. 



Temperature 
( ·e) 

500 

700 

900 

1100 

Helium 

kgap [32] 

0.00299 

0.0035 

0.00409 

0.00462 

.. 
or7'C!~Ml PAG:: IS 
OF POOR Qur~lITY 

Air 

he kqap [33] 

299 0.000564 

355 0.000663 

409 0.000769 

462 0.000876 

he measured in W/m2-K 

kqap measured in W/cm-! 

tgap • 1 :tin 

he 
56.4 

66.3 

76.9 

87.6 

Table C.l: Conduction heat transfer coefficients across a 
1 mm thick gas layer. 

( 
\ ) 1)1 ( \ ) \. --I • '; --\ 

E:c.... l)f €~ 

[C.4] 

where: qr (f to cr) • radiation heat flux from the furnace to 
the outer crucible surface (c.f., 
Fig. C.l) per unit surface area of the 
crucible 

cr • 5.729 x 10-8 W/m2-K4 

D :a diameter 

e • surface emissivity 

Tf • furnace temperature 

Tcr = crucible temperature 
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If the gap width is small compared to the diameter of the charge (Le., 

Df ~ Dcr>, eq. [C.4] becomes: 

I 
1" - \ E.p €c.w--

Further, if the surfaces are black, E-; ':: e~ ... 'a 1 

radiation heat transfer is maximized as ~f c.V" = 1 • • 

[C.S] 

in this case, the 

When Tf is not extremely different from Tcr ' cq. [C.3] can be 

conveniently approximated in order to yield a radiation heat transfer 

coefficient in simpl form [30]: 

[C.6] 

[C.7] 

where: T = (Tf + Tcr)/2 

Equation [~7) shows tr~t the radiation heat transfer coefficient increases 

as the absolute temperature cubed. Table C.2 lists sample values of the 

radiation heat transfer coefficient for various T, calculated accorjing to 

eq. [C.7] and assuming that ~~.c.y- =1 • 

.u RAREFIED GAS mNDUCnON 

The values listed in Table C.l for the conduction heat transfer 

coefficient assume that the pressure of the gas in the gap is sufficiently 

large so that the gas can be considered as a continuum. As the gas 

pressure decreases to a sufficiently low value, however, the gas no longer 

behaves as a continuum and the conduction heat transfer across the gap 
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T(C) 

500 

700 

900 

1100 

hr CW/m2-K) 

106 

211 

370 

593 
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Table C.2: Radiation heat transfer coefficients between black 
surfaces which are separated by a narrow annular gap. 

decreases. Devienne (34] distin~uishes the following limiting regimes for 

conduction heat transfer in a gas: 

L~.;~ < 0.00 \ 
t~ .. p 

continuum regime [C.8a] 

llWt.fl2 >\0 
t':tr 

free molecule regime [C.Bb] 

where: Lmfp· mean free path length of a molecule 
of the gas 

In the free molecule regime, a gas molecule has little probability of 

colliding with other gas molecules between collisions with the furnace and 

crucible walls; in the continuum regime, this probability is very high. 

The mean free path length of a gas molecule, Lmfp' is given by [30J: 

[C.91 
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d • "effective" diameter of the gas molecule 

n • number of molecules per unit volume 

The ideal gas law may be used to express the molecule density of the 

gas, n: 

n = [C.IO] 

where: N • Avagadro's number, 6.02 x 1023/gm-mole 

Ru • universal gas constant 

T • teJt1?erature 

p • pressure 

Subsituting eq. [C.IO] into [C.9] the mean free path length becomes: 

Helium and air are again used as typical examples. 

diameters, d, are (30]: 

He: d· 2.18 x 10-8 em 

Air: d. 3.72 x 10-8 em 

[C.ll] 

Their effective 

(C.12a] 

[C.l2bl 

Using these values, eq. [C.lll gives the mean free path length at a 

temperature of 900·C as: 

He: [C.13al 

- 226 -



Air: L ,.. = 0.0 \~"" eM 
,-\1", p (t ot't' ') 

ORIGINAL Pf,GE IS 
OF POOR QUALITY 

[C.l3b] 

Equations [C.l3] can be used in eqs. [C.S] in order to determine the 

pressure limits for the continuum and free molecule regimes. 

In the free molecule regime, the cooduction heat transfer coefficient 

is given by Devienne [34]: 

a 

where: "'f == cplcv 

cp • specific heat at constant pressure 

Cv • specific heat at constant volume 

M = molecular weight of the gas 

a == accomodation coefficient 

[C.l4] 

The parameter a in eq. [C.l4] depends on the effectiveness of energy 

transfer during collisions between a gas molecule and the walls of the 

furnace and crucible. If this energy transfer is complete, the value of a 

is equal to unity and heat transfer is maximized. A value of unity is 

presently used so that eq. [C.l4] will give an upper limit for the free 

molecule conduction heat transfer coefficient. A reasonable approximation 

to the temperature T in eq. [C.l4] is the mean value of the furnace and 

crucible surface temperatures. Evaluating eq. [C.l41 at T=900·C, for 

helium and air: 

at 900 °c 
He: hc(W/m2-K) = 47.6 p(torr) 

Air: hc(W/m2-K) = 34.6 p(torr) 
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At pressures required so that conduction heat transfer across the gap is in 

the free molecule regime, eq. [e.lS] shows that the conduction heat 

transfer coefficient is much smaller than the radiation heat transfer 

coefficients given in Table C.2. Conduction heat transfer is, in this 

case, essentially eliminated. 

~ TEMPERATURE DEPENDENCE OF THE HEAT mANSFEB mEFFICIENl' 

The thermal models developed in Chapters 4 and 6 assume that the Biot 

number is not a function of position within the hot, gradient and cold 

zones. The temperature dependence of the conductive and radiative heat 

transfer coefficients, as indicated in Tables C.l and C.2, affects the use 

of these models as follows: 

(1) The temperature distribution in the system is not known 

a priori. Since the heat transfer coefficients are 

temperature dependent, the Biot numbers are also not 

initially known. An estimate of the temperature levels 

must be made in order to calculate an initial estimate of 

the heat transfer coefficients. From the resulting 

temperature response of the system the accuracy of the 

initial estimate can be checked. New estimates can be 

made for the heat transfer coefficients and the precedure 

is repeated until the desired level of accuracy is 

obtained. 

(2) Since the temperatures are not spatially uniform within 

the system, the heat transfer coefficients are also not 

spatially uniform. A reasonable estimate of a Single 
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APPENDIX Il 

END mtJNpARY (I)NPITIONS AND INfINITE FURNACE LOOm 

lW. END OOUNDARY mNDITION 

When the length of the charge in the hot and/or cold zone is not 

infinite (see section 5.5), boundary conditions at the end of the charge 

must be included in the thermal model of the charge. The hot end of the 

charge, for example, receives heat from the hot zone furnace by radiation 

and cawection (Fig. 0.1). A heat transfer coefficient describing the heat 

transfer between the hot end of the charge and the hot zone furnacti! can be 

approximated in order to calculate a Biot number for use in the hot end 

boundary condition. If AM > 'f»~H ' the magnitude of this Biot number has 

little effect on conditions near the interface~ on the other hand, if 

the value of the hot end Biot number is required in order 

to completely specify the thermal model of the charge at the hot end. 

The cold end of the charge is attached to the lowering rod and, hence, 

the cold end boundary condition is more complicated. A simple thermal 

model for this case, shown in Fig. 0.2, is presently used in order to 

calculate an approximate Biot number for the cold end boundary condition. 

A pull rod of therma: conductivity ~, diameter 0p' cross sectional area 1p 

and length~, is attached to the cold end of the charge; the heat transfer 

between the furnace and the pull rod is described by a heat transfer 

coefficient, hp• The pull rod and charge are assumed to be in perfect 

thermal 'contact, the cold zonp. heat pipe is assumed to be infinitely 10Ilg, 

and radial temperature gradients are neglected. Motion of the system is 

neglected (i.e., Pe is assume<. 1egligible). 
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rio. 0.1: Sc.~Em3.tic of t.~e ~eat transfer at the hot end 
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~ -~ 
melt 

""""" ....... crystal 

he 

pull rod 

kpt Opt 
hp 

Ap 

--

. 

radient 
one ..--i 

I 

~cold 
furn 

zone 
ace 

'-

Fig. D.:: Sc.~ematic of the cold end of t..'1e charge \vhich camn.micates 
thermally 't,i th the cold zone furnace through the pull rod. 
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The cold end of the charge exteriences a heat loss to the pull rod 

which may be used in order to definll a heat transfer coefficient for the 

cold end. F the charge, hcp: 

where: Zp. axial distance from the charge/pull tvd boundary, 
~ee Fig. 0.2 

(The subscript ·cp· denotes the charge/pull rod boundary.) 

Nondimensionalizing eq. [0.11 defines a cold end Biot number for ~e cold 

end boundary condition: 

[o.2al 

(O.2bl 

The thermal conditions at the ends of t."a pull roc are descr ibed by the 

"transmission· matrix developed by Kraus (3~]. In nondimensional form, the 

transmission matrix equation for the pull rod is: 

[0.3] 
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where: • noodimensional axial coordinate, based on diameter Op, 

z~ 

• 2[B~* 
• effective Biot number for the pull rod. 

• Biot number for the pull rod ~ to calculate B~*; 
Bip. Wkp. 

The transmission matrix relates the temperatur~ and the gradient in 

temperature at one end of the pull rod to these <.~onditions at the other 

end. Equation [0.3] may be used to develop an expression for the axial 

gradient of temperature in the pull rod at the charg.elpull rod b 0 un d a ry: . 

If the pull r.od is very long, the second term within the brackets of 

eq. [0.4] becanes negligible~ eq. [0.4] then takes the form: 

[D.S] 

Substituting eq. [0.5] into eq. [0.2]: 

[0.61 

BiCp given by eq. [0.6] can be used as an approximation for the cold end 

boundary condition of the charge, i.e., e<:!. [D.2bl. 

Equation [0.6] gives the Biot number for the cold end boundary 

condition ior an infinite length pull r~ of uniform properties and cross 

section. The transmission matrix concept [35] can also be conveniently 
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employed to approximate the end Siot number for pull rcds of varying 

composition and cross section. E:quation [0.61 also applies for extensions 

at the hot end of the charge. 

The charge would appear infinitely long at on of its ends if it was 

attached to an extension at that end which has the same thermal properties, 

cross sectional area and heat transfer coefficient as the charge itsel/. 

In this case, eq. [0.6] indicates that the end Biot number is twice the 

square root of the local charge Biot number: 2 J Bi i~. This leads to the 

conclusion, reported by Chang and Wilcox [17], that the charge appears 

infini tely long if the end Biot number is 2 J Bi ~~c~ Bence, eci. [0.61 

indicates the manner : _. which ~.he end BioL number may be!' adjusted, by the 

proper choice of Kp' ~ and/or Bi;*, in orcl~r to approximate infinite 

length cooditions with an extenstion attached to the end of the charge: 

[0.7] 

ll...1 INfINITE FtJRNAC:: WIjTH 

An assumption in the thermal model of the 13ridgmaI". system i~ that the 

furnace temperature boundary coodition is of infinite extent in both the 

hot and cold ends (~~ction 2.2.2>. The actual case of finite furnace 

length is illustrated in Fig. D.3 for the cold zone furnace. The part of 

the charge not within the furnace experiences different boundary conditions 

than that part of the charge within the furnace. The folJcwing brief 

analysis explains under what conditions the furnace boundary conditions may 

be considered infinite in extent, thereby making unnecessary the inclusion 

of t:le thermal coodi tions outside of the f!Jrnace in the thermal models. 
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The analogous expression to eq. (0.4] for the charge within the cold 

zone of Fig. (0.3] is: 

j't'l. . ~ ... -' where: 'W"",,(.:: Z. 0 I.e. 

(0.8] 

Equation [0.8] indicates that the thermal conditions at the hot end of the 

cold zone (i.e., at l; • >"'j).. ) are little affected by the conditions at 

the end of the cold zone furnace if: 

(0.9] 

Equation [0.9] is analogous to the infinite charge length criteria 

developed in section 5.5. Therefore, if the length of the furnace 

satisfies eq. (5.14], the furnace length can be considered infinite. This 

conclusion is valid for either the hot or cold zone furnace. 
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The dimensionless form of eq. (4.1] for the one-dimensional thermal 

model of the charge is: 

[E.I] 

where: 't::a t I CD Iv) 

'lbe nondimensional time, t , in eq. [Eel] is measured with reference to the 

time required for the charge to be lowered a distance equal to one charge 

diameter. 

'lbe axial coordinate in the present work, C; , is measured with respect 

to a stationary reference frame (i.e., the center of the gradient zone); 

the transient term of eq. [E.I] therefore accounts for changes in the 

charge temperature with time at a given location within the furnace (i.e., 

not the changes in temperature of a material portion of the charge). The 

quasi-steady assumption in the thermal model of section 2.2.2 implies that 

the transient term of eq. (E.l] is negligible • 

.E....l THERMAL TRANSIEm'S cwsm BY OON-INFINITE mARGE LEOOrH 

Terr.perature transients do not occur when the charge length is infinite; 

therefore, when the length of charge within the hot and cold zones 

satisfies the infinite :ength criteria, eq. [5.14], the quasi-steady state 

assumption is vali~ 

When the charge length can not be considered infinite, temperature 

transients in the charge occur. Results obtained frQm a quasi-steady model 
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:nay still, howe\'er, provide infor:nallV1~ which is useful in a qualitative 

sense. F~r ex~mpl., the ~urv~s of [19. S.S indicate that the aXial 

POSl tlcn of the lnterface mcves fr'~~l the cold to the hot furnace as the 

~r.arc;~ is lewered. 

transient heat tr~nsfer in their ~tudies of the dependence of the ~rowth 

rate on the axial position 0f the char'. 

Large Biot numbers deere.:!se tll~ infinite ch~rge length criteri~, 

eq. [5.14]: a larger portion ot ~~e charge is solidified under quasi-steady 

condi tions as the (Hot number j,r'<.r~as.s. An al ternath·e to larger Biot 

numbers for making the chargt :'pPf'ar infinitely long is to incr~as. the 

.!wsrent lenqth ef the ch~r'J~ t'Oth the hot and ~ld ends by the addition 

of extensicns to the ~nlcible. \See Appendix D.) This is normally 

accomplished 3t the cold end 0f the ch3rge thr0ugh its thermal 

communlc3tiun -.-ith the pull rC\.i. 

Secti0n E.l discusses temper.!ture tr3nSlents ~.!used by the ste3dy 

cold :one tem~'er3tures) ... x,,\:urs, the c('tl'ffid~nts ~'f eq. I Eoll (i.e., Pe .md 

tr.:msient term under these cir~umst.:mces would indh,'3te ..'1 sudlien shift fr\'m 

l ---...... --~"'.--------
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initial to final quaSi-steady position in an exponential fashion: 

= eY-p(-f) [E.21 

where: C;')i = quasi-steady interface position after change in 
lowering rate 

l;~ 1. • quasi-steady interface position before change in 
~ lowering rate 

The time constant of the exponential function in eq. [E.21, f; , is shown to 

decrease for larger Biot numbers, smaller gradie~t zone length, 1(;, and 

smaller latent heat factor, RH. They suggest that the time constant is 

similar for transients caused by a sudden change in furnace temperature. 
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PEmJ'OPMOO OF THE FIN mUATIONS roR THE '1m=QIMEN$IONAL THERMAL r=l)PEL 

Wi th the assumptions of Sections 2.2 and 6.2, each of the 

concentrically located fins (i.e., inner charge, outer charge, crucible, 

gradient zone annulus) can be considered as a moving thin fin. According 

to CArslaw and Jaegar [29], the axial temperature distribution for the fins 

in the hot and cold zones is given by the following equations: 

[F.lal 

[F .lb] 

[F.lcJ 

where: A· cross sectional area of a fin 

R • thermal resistance per unit length between fins 

subse r ipts : 

loc • local charge phase, liquid or solid 

in • inner charge fin 

out • outer charge fin 

cr • crucible 

f • hot or cold zone furnace 

When considering the fins within the gradient zone, Tf and Rcr,f in 

eq. (F.lc] change to TG and Rcr,G, where the subscript "G" denotes the 
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representing the gradient zone annulus: 
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[F .ldl 

The radial geometry of the concentric fins shown in Fig. 9.2 

specifies the cross section areas and thermal resistances in eqs. [F.ll. 

The cross section areas Ain and Aout are chosen equal; therefore, 

Din • D/ff. The radial locations for the representative temperatures of 

the fins are Dl/2, D2/2 and D3/2 for the inner an~ outer charge fins and 

crucible fin respectively; they are chosen so that there is an equal area 

within the fin to either side: 

D, = "0/2- [F.2al 

D-z. = ~ 1) [F .2bl 

'D~ = J (b'-.I)/ z' D [F .2cl 

The thermal resistances can then be expressed as (Rohsenow and Choi [261): 

'R jn ~ovt :. 
~~ 
Zit'" R\oc:. 

[F.3al 

~sr ~ l s ~.\ )' '2-

"RovT C-.'I"' = + 
) 

'2.1iR\oc:. 2.11 Rc.V'" 
[F .3bl 

[F.3cl 
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h • heat transfer coefficient from furnace or gradient 
zone annulus to the surface of the crucible based on 
the crucible outer surface area 

Substituting eqs. [F.2l into eqs. into eqs. (F.ll and non-dimensionalizing 

results in eqs. [6.1] and [6.2]. 
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This appendix employs simple approximations in order to develop a 

useful relation between isotherm curvature and the axial and radial 

temperature gradients obtained from the one- and two-dimensional thermal 

models. 

An isotherm within the charge is assumed to be spherical; its 

curvature can then be represented by a single number -- its radius. The 

axial distance between the locations of an isotherm ~t the center and the 

surface of the charge is denoted by It;. The assumed isotherm geometry, 

shown ;.n Fig. G.l, yields the following relation between l <p and the 

isotherm curvature: 

.f.£. = r :11-
1) -L,c; 

[G.l] 

where N is the radius of curvature of the isotherm in number of charge 

radii. (The reciprocal of N is the curvature.) Eq. [G.l] gives a positive 

vall.~s of N when the isotherm is curved as shown in Fig. G.l. If the axial 

gradient does not vary greatly over the cross section: 

[G.21 

d 4>~ Id c:, 

where: 'Psc. ~ cP ( f" 'It) - if.> ( f :0) 

Substituting eq. [G.21 into [G.l]: 

[G.31 
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For the purpose of relating ~ to ¢~ , the heat conduction equation 

within the charge is used: 

(G.41 

f 
If the Pe term ;.s neglected and if it is assumed that 'i',¢ I~t;,'- is not a 

function of 1, the resulting temperature distribution in the radial 

direction is parabolic. In this case, it is easily shown that: 

Using eq. (G.S] in eq. [G.3J: 

[G.6] 

Equation [G.6] indic~t.es that isotherm curvature is small (i.e., large N) 

when the axial temperClture gradient is large as well as when the racial 

temperature gradients ar.e small. 
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