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ABSTRACT

The quality of semiconductor crystals grown by the vertical Bridgman
technique is strongly influenced by the axial and radial variations of
temperature within the charge. The present work examines the relationship
between the thermal parameters of the vertical Brldgman system and the
thermal behavior of the charge. .

Thermal models are developeu which are capable of producing results
expressable in analytical form and which can be used without recourse to
extensive computer work for the preliminary thermal design of vertical
Bridgman crystal growth systems. These models include the effects of
thermal coupling between the fiurnace and the charge, charge translation
rate, charge diameter, thickness and thermal conductivity of the confining
crucible, thermal conductivity change and liberation of latent heat at the
growth interface, and infinite charge length. The hot and cold zone
regicns, considered to be at spatially uniform temperatures, are separated
by a "gradient control™ region which provides added thermal design
flexibility for controlling the temperature variations near the growth
interface.

One-dimensional thermal models show that the thermal coupling between the
furnace and the charge and the change in thermal conductivity at the growth
interface are the primary factors influencing the axial temperature
gradients near the interface. The effect of the crucible is analytically
described in a way which does not compromise the simplicity of the one-
dimensional models; its effect is to reduce the thermal coupling between
the charge and the fuwnace. Criteria for the neglect of charge translation
rate, charge length and liberation of latent heat are developed.

Two~dimensional models show that the interface shape is primarily affected
by thermal conditions near the growth interface. Heat transfer to or from
the charge near the interface is shown to provide a means for altering the
interface shape. The combined effects of a crucible and the liberation of
latent heat and/or condustivity change at the growth interface produce
radial temperature variations at the growth interface. For the grcwth of
semiconductors, this effect leads to an adverse interface curvature and
remains an unresolved problem inherent to the Bridgman technigue.

Thesis Supervisor: W. M. Rohsenow
Title: Professor of Mechanical Engineering
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NOMENCLATURE
cross sectional area; without subscript denotes the charge cross
sectiocnal area

i =1 to 5; coefficients in the concentric fin equations (c.f.,
eq. [6.1])

Biot number, hD/k
dopant concentration in the melt

specific heat; without subscript denotes the specific heat of the
charge

diffusion coefficient of the dopant in the melt
diameter; without subscript denotes the diameter of the charge
diameter of the inner charge fin (c.f., Fig. 6.2)

radial location for the temperature of the inner charge fin in the
concentric fin model (c.f., Fig. 6.2)

radial location for the temperature of the outer charge fin in the
concentric fin model (c.f., Fig. 6.2)

radial lo. tior for the crucible temperature in the concentric fin
model (c.f., Fig. 6.2)

radiation surface heat exchange factor between the furnace and the
crucible (c.f., eq. [C.4])

dimensional axial gradienc G/D

average charge/crucible axial temperature gradient at the growth
interface

heat transfer coefficient

conduction heat transfer coefficient across the furnace cavity gap
radiation heat transfer coefficient across the furnace cavity gap
latent heat of solidification

function defined by eq. [7.1lal

function defined by eg. [(7.11bl]

electric current per unit cross sectional area

- 15 -
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thermal conductivity; without subscript denotes the thermal
conductivity £ the charge

kep/k

equilibrium partition ratio of the phase diagram
langth of a portion of the charge

length of the pull rod

mean free path length of a molecule of the gas in the furnace cavity
qap

slope of the liquidus of the phase diagram

radius of curvature of an isotherm in number of charge radii
pressure of the gas in the furnace cavity gap

surface area per unit length of the charge

Peclet number; VDi/ (fcp) = VD/ &

heat transfer to the surface of the charge per unit surface area of
the charge

radial coordinate

growth rate of the crystal, or thermal resistance between adjacent
fins

KGhAg/ kA
Re/ (1 + Kg(§2- 1))
AHgy/cp(Te,g - Tf,C)
Ry/ (1 + Kg(§*- 1)1
ki/Ks
[Rg + Rg(8'- 1)1/11 + Rg(§*-1)]
xee/ ot
Seebeck coefficient
time
gap width between the furnace and the crucible

temperature

- 16 -
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lowering rate of the charge
eigenvalues of the fin equaticns used in the various thermal models
axial coordinate measured from the center of the gradient zone

axial distance between the locations of an isotherm at the center
and surface of the charge

axial distance from the end of the charge/pull rod boundary

Greek symbols

0

S I Y m on

x

A

thermal diffusivity; without subscript denotes the thermal
diffusivity of the charge

Der/D

surface emissivity

dimensionless axial coordinate, /D

axial location of the cold end of the charge
axial location of the hot end of the charge
axial location of the growth interface

dimensionless axial distance from the end of the charge/pull rod
boundary, zp/Dp

dimensionless distance between the axial locations of an isotherm at
the center and surface of the charge, Z,/D

"infinite" charge length (c.f., section 5.5)
latent heat parameter defined in eqg. (5.12]

dimensionless temperature determined from cne—dimensional models,
(T = T¢,0)/ (Tg,5 - Tg,Q)

dimensionless solidification temperature
dimensionless length of a portion of the charge, L/D
dimensionless length of the pull rod, Ly/Dp

AG/Z

dimensionless radial coordinate, r/D, or mass density

-17 -




& o © 9

~

ORIGINAL PAGE g

OF POOR QuaLiTy
Stefan-Boltzmann constant, 5.729 x 10~8 w/me-g4
dimensionless time, t/ (D/V)

dimensionless temperature determined from two-dimensionless models,
(T - T¢,¢)/ (Tg, g ~ Tf,C)

(¢00f- ¢|’n) 1 ya

average charge/crucible temperature at a particular axial location
(c.f., eq. [4.21]) or, when considering the gradient zone annulus,
the average charge/crucible/gradient zone annulus temperature (c.f.,
eq. [6.17])

parameter defined by eq. [5.16]

Subscripts

C cold zone

cp boundary condition to be used at the cold end of the charge
accounting for the effect of the pull rod

cr crucible

end ends of the charge

f furnace

G gradient zone or gradient zone annulus

H hot zone

i growth interface

in inner charge fin

loc charge properties or boundary conditions at a particular axial
location

m mean cross sectional charge temperature

out outer charge fin

P pull rod

s surface of the charge

I S T N T T S T TP T
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Superscripts

*%

denotes alternative dimensionless formulation (c.f., eq. [4.3b]) or
axial derivative in egs. [6.3] and [6.4]

represents effective values of Bi, Pe, Rg, Ry, and Rg, accounting
for the presence of the crucible in the moving fin model

effective Biot number accounting for the radial thermal resistance
of the charge in addition to the crucible (c.f., eq. [4.14])

values of K and § which maximize Bi*

- 19 -
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1. INTRODUCTION

The “asic material property requirements of semiconductors used for

advanced electronic devices are:

(1) absence of grain and twin boundaries (single crystal)
(2) low crystal defect density
(3) uniform distribution of the dopant

(4) minimized contamination by electrically active elements

Numerous techniques exist for the production of semiconductors ip single
crystal form (c.f., (1,2]). The choice of a technique for a particular
appli-ation is dictaved by the inherent physical andé chemical properties of
the seriiconductor and the desired resultant electronic properties [3].
Increasingly stringent requirements for the electronic properties of
semiconductor crystals necessitate the modification and refinement of
conventiocnal growth techniques.

Growth from the melt describes several techniques used for the pro-
duction of bulk crystals by the controlled transformaticn of a liguid into
a solid of high degree of crystalline perfecticn. The majority of bulk,
single crystal semiconductors is currently grown from the melt. The
commonly used melt growth techniques are depicted in Fig. l.1. 1In each
case, growth of a single crystal is initiated by partial melting of a seed
crystal; continued growth of the crystal occurs by the relative moticn orf
the charge (crystal and melt) through the thermal boundarv conditions
imposed by the apparatus.

Each of the melt-growth techniques has advantages and shortcomings.

The Czochralski techniqgue (Fig. l.la), for example, has relatively high
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rates of production and can produce crystals with a low defect density.
Axial and radial segregation of the dopant is tyw»oically significant,
however, due to the effects of time-varying, naturazl convective fluid flcw
in the melt. Also, precaution must be taken to prevent depletion of
volatile elements from the melt.

Crystals grown by the float-zone technique (Fig. l.1b) are relatively
free from contamination since the melt is uncontained; radial segregation
of the dopant is appreciable, however, due to the strong two-dimensional
thermal field near the growth interface and the resulting naturval
convective fluid flow. '

Use of a sealed crucible in the vertical Bridgman technique
(Fig. l.lc) provides a simple means of minimizing the depletion of volatile
elements from the melt. (The crucible used in the horizontal Bridgman
technique is typically open.,) Crystals grown by the Bridgman techique,
however, have high defect densities generally attributed to mechanical
stresses associated with the confining crucible. The boundary between the
growth interface and the crucible also provides sites for heterogeneous
nucleation of crystal grains which can prevent single crystal growth.
Further, although the vertical Bridgman configuration is relatively stable
for natural convective fluid flow (the melt is heated from above), radial
segregation of the dopant in Bridgman grown crystals has not been
demonstrated to be consistently superior to that in crystals produced by
other melt-growth techniques.

It is evicdent that heat transfer is involved in the phase transforma-
tion at the crystal/melt (growth) interface and it is now understood that
thermal phenomena greatly affect the quality of melt—grown crystals. Basic

thermal considerations have not, however, been adequately applied in the
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analysis or design of melt-growth apparatus. There is, therefore, a strong
motivaticn for a reassessment of the inherent capabilities of the various
melt-growth techniques from the point of view of improved thermal design.
Compared to other melt-growth technigues, the thermal configuration of
the vertical Bridgman technique offers several features that appear

advantageous for semiconductor crystal growth:

(1) The thermal boundary conditions associated wity the furnace
are relatively simple and axisymmetric.

(2) The furnace configuration is readily adéptable to thermal
design changes deemed necessary to accommodate the growth of
different semiconductor materials with varying thermal
properties.

(3) Natural thermal convection in the melt is reduced since the
melt is heated from above and is completely enclosed by the

crucible.

For these reasuns a combined analytical and experimental program is being
conducted to investigate the potential for improvement in the thermal
design of the vertical Bridgman crystal growth technique. The present work
is the analytical portion of this program. The methodology of the analysis
if to develop simplified thermal models which are capable of showing the
governing parametric behavior of the growth system. Particular emphasis is
given to obtaining approximate analytical expressions which easily
demorstrate the interaction among the thermal parameters.

Thermal requirements for satisfactory melt—growth are shewn in section

2.1 to depend on both axial and radial temperature variations within the

- 25 -
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charge. One-dimensicnal (i.e., axial temperature variations only) and two-
dimensional thermal models are formulated in Chapters 4 and 6 respectively.
The temperature field within the charge obtained from the models is then
used to evaluate the effects of the thermal parameters from the viewpoint

of satisfying the thermal requirements (Chapters 5 and 7).
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2. SQOZE OF THE THERMAL, ANALYSIS

A combined analytical and experimental program for the improvement of
semiconductor crystal growth by the vertical Bridgman technigue is peing
undertaken in the Department of Materials Science and Eagineering. The
analysis presented in this thesis comprises the aralytical porticn of this
program.

The objective cf the thermal analysis is to identify and provide an
understanding of the thermal characteristics of_semiconductor crystal
growth by the vertical Bridgman technique; in this way, problems likely to
be enccuntered, and the means for their possible reslolution, are expacted
to be identified. To perform tais task requires, of course, an adequate
knowledge of the effents of the principal thermal parameters. Models are
formulated to ascertain these effects with special emphasis directed
towards obtaining results which cun be presented in analytical form and can
therefore be used without recourse to extensive computer work. Design
alternatives s.ggested by the thermal analysis are to be evaluated in the
experimental program. .

Section 2.1 points out that the beuaviér of the axial and radial
temperature gradients near the growth interface is of primary importance in
determining the guality of crystals grown by tne Bridiman technicue. The
results of the thermal analysis are therefore discussed in this context.
Thapters 4 and 5 deal ~ith the axial temperature distribution of the charge

and Chapters 6 and 7 treat radial temperature variations within the charge.
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The electronic properties of a crystal grown by a melt-growth
technique depend strongly upon the temperature distribution near the growth
interface during solidification. The thermal requirements leading to the
growth of high quality semiconductor crystals by the vertical Bridgman
technique are: (1) that the axial temperature gradient at the growth
interface is greater than a critical value and (2) that the radial
temperature gradients near the growth interface produce an interface shape

which is slightly concave toward the solid (Fig. 2.1).

2.1.1 Axial Temperature Gradient At The Growth Interface

During solidification, a concentration boundary layer of the dopant is
generated in the melt in advance of the growth interface. Within this
boundary layer the solidification temperature varies in accordance with the
phase diagram. The phenomenon termed constitutional supercooling occurs
when the sensible temperature in the melt is less than the local
solidificaticn temperature (4]. Under such conditions the morphology of the
interface becomes unstable ard it is difficult to maintain single crystal
growth (5,6,7]. If the concentration boundary layer in the melt is
diffusion dominated (i.e., neglecting natural convective fluid flow), the
axial temperature gradient in the melt at the interface required to prevent

constituticnal supercooling is [8]:

(%Laf Co ML({ - -;-O) -%— [2.1]

growth rate

where: R

]

my, slope of the liquidus of the phase diagram

- 28 -
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where: Co = concentraticn of dopant in the melt
Ko = equilibrium partiticn ratio of the phase diagram

d = diffusion coefficient of the dopant in the melt

Equaticn (2.1] indicates that the axial gradient criteria is, to a certain
extent, controlled by the crystal grower. By decreasing the. lowering rate,
V, the growth rate, R, likewise decreases (9,10,11] and the axial gradient
criteria becomes less restrictive.

The axial gradient criteria is less restrictive in the presence of a
convective component to the mass transfer of dopant near the interﬁace (4]).
The axial gradient requirement given by eq. [2.1] represents, therefore, an

upper limit,

2.1.2 Shape of the Growth Interface

Heterogeneous nucleation can occur at the boundary between the growth
interface and the crucible. When allowed to grow, crystal grains initiated
by such nucleation destroy single crystal growth. These unwanted crystal
grains do not propagate into the single crystal, hcwever, if the interface
is concave toward the crystal as shown in Fig. 2.1. It is desired,
therefore, that radial temperature variations within the charge near the
growth interface produce an interface which is slightly concave toward the
solid.

The shape of the interface is also a factor concerning the radial
segregation of the dcpant in the solidified charge. For the special case
of a diffusion dominated concentration bcundary layer at the growth
interface, analysis shows (12,13] that the radial mass transfer of the
dopant decreases with interface curvature. Thus, to achieve a desired

level of radial segregation under such conditions, it is only required that
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the interface curvature be reduced to an appropriate level. For dilutely
doped semiconductors, even in the presence of radial segregation, the
interface is very nearly an isotherm. The interface shape criteria
therefore translates into a thermal criteria -- the interface isotherm
should be nearly flat., That is, heat transfer near the interface should be
nearly one-dimensional,

Cases of practical significance occur in which the assumpticns leading
to the flat interface criteria discussed above are not valid. For example,
the theoretical studies of Chang [14] and Chang and Brown [15] show that
natural convective fluid flows mavy have a significant effect on the radial
segregation of the dopant while having only a minor effect on the
temperature distribution in the charge for melts which have small Prandtl
numbers. Under these ccnditions a flat growth interface is not directly
correlated with satisfactory radial segregation of the dopant. Also, in
systems which exhibit a large separaticn of the liquidus and solidus (e.q.,
HgCdTe), the interface shape is coupled to the radial segregation of the
dopant as well as the radial variation of the temperature in the vicinity
of the interface. Such cases as these require a detailed analysis of the
mass, momentum and heat transfer within the charge in order to predict the
radial segregation,

Dopant mass transfer is not within the scope of the present thermal
analysis. The behavior of isotherm shapes to be described in subsequent
chapters may therefore te correlated to radial segregaticn behavier only
for the special case of dilutely doped, ditffusion dominated systems., When
these ideal conditi- ns are not approximated, results from the present

analysis are nevertheless expected to describe the thermal behavior >t the
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charge and may thus be used in conjunction with analyses which consider
mass transfer of the dopant (e.q., [14,15]) to aid in understanding the
manner in which radial segregation is affected by the thermal parameters of

the Bridgman growth system.

2.2 THE THERMAL MODEL

The two-dimensional temperature field in the solidifying charge is
described by partial differential equations subject to complex boundary
conditions. The solution of these equations may be effected by standard
numerical techniques (e.g., finite difference or finite element methods).
Numerical solution methods preclude, however, the description of résults in
simple analytical form. The present work emphasizes the development of
spproximate models which lead to analytical results. The increased
accuracy of more exact numerical formulations is not considered warranted

at the present time for the following reasons:

(1) Thermal property values (e.g., thermal conductivity of the
melt, emissivities of the furnace wall and crucible) are
often not well known and introduce uncertainty into the
results of any thermal analysis.

(2) The development of approximate thermal models itself leads to
a better understanding cf the thermal behavior of the
Bridgman system.

(3) Approximate results presented in analytical form and
indicating the primary thermal behavior of the Bridgman
system are more conveniently used to evaluate the effects of

various furnace design alternatives.
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The present work models the vertical Bridgman configuration being
constructed for the experimental portion of the program. The experimental
apparatus, described in section 2,2.1, contains the features basic to all
vertical Bridgman growth systems; therefore, results obtained in this work
can be used in a qualitative manner for any vertical Bridgman furnace
configuration. It is necessary, of cours'e, that simplifying approximations
be made in the development of any thermal model; the thermal effects
incorporated in and excluded from the present models are outlined in

Section 2.2.2.

2.2.1 The E . ] Vertical Brid c 1 G b S

Vertical Bridgman crystal growth denotes the solidification of a
molten charge, contained in a chemically inert crucible, by its descent
from a hot to a cold environment. In conventional Bridgman growth
(Fig. l.1c) the hot environment is a tube furnace of varying design and the
cold environment is the surroundings (e.g. the laboratory). The present
work formulates a thermal model of a system, currently under construction,
which incorporates several modifications of a conventional Bridgman system.

There are two objectives for these modificaticns:

(1) To permit flexibility for controlling the thermal envircnment
exposed to the charge. In this way, through the adjustment
of design and operation parameters, the system is expected to
provide for a wide range of axial temperature gradients, and
radial temperature gradients which lead to interface shapes
ranging from convex to concave,

(2) To permit the formulation of more accurate thermal models of

the system, particularly in describing the thermal toundary
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conditions exposed to the charge. In this way, the thermal

analysis is expected to provide more applicable results.

The experimental Bridgman system is depicted in Fig. 2.2. The cold
environment is a separate furnace whose temperature can be independently
controlled. Stockbarger [16] first introduced a separate furnace for the
cold environment which was separated from the hot furnace by a simple
radiation shield as a means for increasing the axial temperature gradient
at the growth interface. In the present system, heat pipes are used for
the hot and cold furnaces. The temperature boundary condition is therefore
uniform in both the axial and circumferential directions. The gap between
the heat pipes and the charge can be made smaller in order to simplify the
description of radiant heat transfer and also, if desired, to obtain
significant heat transfer by thermal conduction. Between the heat pipes is
a "gradient control" region in which the growth interface is to be located.
Chang and Wilcox [17] suggested the use of an adiabatic gradient control
region as a means of reducing the curvature of isotherms near the growth
interface. The present work considers the thermal design of the gradient
control region as a design variable. It is anticipated that judicious
design of heat transfer between the gradient control region and the charge

will assist in obtaining the requisite control over the interface shape.

2.2.2 Effects Incorporated In and Excluded From the Thermal Models

The following thermal parameters, considered to be of primary
importance in determining the thermal characteristics of Bridgman crystal

growth, are included in the thermal models of Chapters 4 and 6:
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Thermal coupling between the charge and the
heat pipe furnace.

Thermal communication between the charge and the
furnace is due to both radiation and conduction heat
transfer. The radiative contribution strongly depends
on the values of surface emissivities which are
oftentimes not accurately known. The conductive
contribution 1is determined by the thickness of the gap
between the charge and furnace and the conductivity of
the gas in the gap. Thus, evacuating the gas from thg
gap can eliminate the conduction heat transfer.
Appendix C discusses the quantitative evaluation of
typical heat transfer coefficients associated with both

modes of heat transfer across the gap.

(2) Thermal design of the gradient zone region.

(3)

(4)

The gradient zone portion of the furnace is modelled as
an annular ring between the hot and cold heat pipes.
Changes in the thermal conductivity and thickness of
the annular ring are expected to alter the distribution
of heat transfer to the charge and, as a conseguence,
the shape of the isotherms within the gradient zone.
Thermal conductivity of the charge and the
ratio, Rg, between the melt and crystal
conductivities.

For semiconductors, the melt conductivity is greater

than that in the solid, i.e., Rg > 1.

Generation of latent heat at the growth
interface.
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(6)

(7)

(8)

Several effects have not been included in the thermal models.
excluded effects are of relatively small importance for typical‘crystal
growth situations or do not contribute to the primary thermal behavior of
the Bridgman growth system; it is therefore considered that the increased

complexity of thermal models that would be required for inclusion of these
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Thickness and thermal ceraductivity of the
crucible.

Lowering rate of the charge.
Lowering rates for typical semiconductor crystal growth
range from 0.1 um/s to 10 um/s.

Length of the charge and its position in the
furnace.

Diameter of the charge.

effects is not warranted. The excluded effects are:

(1)

(2)

Natural convection in the melt.

The temperature field in the charge is not greatly
affected by natural convective fluid flow during
typical vertical Bridgman growth of semiconductors
(i.e., materials with a small Prandtl number) [14,15].
Transients.

All models are gquasi-steady; i.e., the transient terms
of the heat balance equations are assumed negligible.
This assumption is normally valid due to the small
lowering rates used in typical Bridgman growth.
(Appendix E provides a brief discussion of temperature

transients.)
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(3) Thermal coupling between the furnace and the

(4)

charge.

Thermal coupling between the chazge and the furnace is
described in the present work by a heat transfer
coefficient, h. The heat transfer coefficient varies
with position due, for example, to temperature
dependent radiation heat transfer. The present thermal
models assume that the heat transfer coefficient is
constant within the hot furnace, c¢o0ld furnace and
gradient control region. Since the expected maximum
spatial variation of h within a furnace zone is
approximately a factor of 2, it is considered that the
variation of h is of secondary importance compared to
the overall thermal coupling described by a suitable
average value., Additionally, the hot and cold zone
furnace temperatures are assumed to be uniform
reflecting the heat pipe action. The lengths ot the
furnace zones are assumed infinite. (Appendix D
develops a criterion for the validity of this
assumption) .

Constant thermal properties.

Except for the change in thermal conductivity at the
growth interface, all thermal properties are assumed

independent of temperature.
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da LITERATURE SURVEX

& number of thermal analyses of Bridgman-type crystal growth systems
have been reported in the literature in recent years (9-11,17-28]. They
can be classified according to the type of analysis which was performed, as
shown belcw in Table 3.l1:

TYPE OF THERMAL ANALYSIS REFERENCES

One-Dimensional (axial tem- 9-11, 17-23

perature variations only)

Two~Dimensional (axial and 17, 24-28 _
radial temperature variations) |
Dimensional Variables 10, 11, 18-20, 25, 27, 28
Nondimensicnal Variables 9, 17, 21-24, 26
Analytical Results 17, 22, 23

Numerical Results (i.e.,
camputer generated results) | 9-11, 18-21, 24-28

Table 3.1: Current literature containing thermal analysis
of Bridgman-type crystal growth systems.

3.1 ONE-DIMENSTONAL_ ANALYSES

All of the one-dimensional models describe the axial temperature
distribution of a solidifving charge by equations sitﬁilar to those used by
Davis [18]. 1In these models, the charge is analogous to a fin moving

through spatially varying boundary conditions. The equations for a mcving
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fin are found in many heat transfer texts [(e.g., 29,30]. The principal
results obtained through a one-dimensional analysis are the axial
temperature gradient at the growth interface and the axial position of the
growth interface.

a conjuction with his model, Davis [18] obtained experimental results
by solidifying lzad-tin alloys at various growth rates and hot and cold
zone furnace temperatures. Good correlation between experimental and
calculated results demonstrated the usefulness of one-dimensional models
for predicting the axial temperature distribution of the charge. Further
experimental verification of cne-dimensicnal modeling has been provided by
Clyne [10,11] who solidified aluminum at various lowering rates.

The differences among the one-dimensional analyses listed in Table 3.1
concern several factors. The most apparent distinction is the type of
system which is modeled. Some works deal with the furnace configurations
of experimental growth systems employed for the growth of specific metals
or metal alloys (Pb-Sn [18), Al [10,19], Ag=-Si ([20]); others treat
idealized furnace boundary conditions without reference to a specific
charge material (9,17,21,22,23]. The former analyses, being limited to
specific charge materials, primarily analyze the effects of furnace and
operation parameters such as the thermal coupling between the charge and
furnace, position of the charge within the furnace, and lowering rate. The
latter models are nondimensional and their results are more readily applied
to an extended variety of growth systems.

The one—dimensional analyses differ also with regard to the sclution
technique. Several employ finite difference or finite element methods

10,11,19-21]); others carry out analytical solutions which are sufficiently

complicated to require computer evaluation of the resulting expressions
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(9,18,22,23]. Only Chang and Wiicox [17] and Sukanek (23] have been able
to present results in simple analytical form. Generally, the shift from
numerical to analytical methods occurs as the modeling of the growth system
becomes more idealized.

Finally, differences among the one dimensicnal analyses also pertain
to the specific effects incorporated into the thermal models: inclusion of
the crucible (10,11,18,20], generation of latent heat &t the growrh
interface [(10,11,17,28,21-23], unecual melt and crystal thermal
conductivities [9-11,18-23), gradient control region 19,11,18,22,23,261,
lowering rate of the charge (10,11,17,18,21-23], and-texﬁperature trénsients
(10,11,21].

The majority of the one-dimensional models are conczrned with the
relationship between the position of the charge within the furnace and
either the axial temperature gradient at the growth interface or the axial
position of the growth interface. Chang and Wilcox [17] demonstra“e that
the interface position changes as the end of the charge approaches the
region between the hot and cold zone furnaces. Their results suggest that
larger Biot numbers (see Section 5.2) and longer charge lengths tend to
maintain a stationary interface location., Riquet and Durard (9] extend the
results of Chang ana Wilcox (17). They show the manner in which the growth
and lowering rates differ during a solidificaticn experiment and indicate
how the Zfurnace temperatures should be varied with time in order to keep
the interface locaticn stationary, Sukanek (23] offers a simple criterion
under which growth and lowering rates will be nearly equal during

solidification of a significant portion of the charge (see Section 5.5).
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4.2 THWO-DIMENSIONAL ANALYSES

Two-dimensional thermal models are employed in order to obtain the
interface shape. The difference between the one- and two-dimensional
models is the ircorporation of radial temperatu-e variations, This
addition, however, makes the solution significantly more complex. Chang
and Wilcox [17] used a highly idealized system (no crucible, gradient zone,
or generation of latent heat, and equal thermal conductivites of crystal
and melt) and obtained a solution in the form of two Fourier-Bessel
infinite series. Evaluation of these series was carried out by computer.
Sen and Wilcox [24], Fu and Wilccex [26], El-Mahallaway and Farag {25] and
Domanski et al [27] used finite difference methods. Jones et al (28] used
an electrical analogue model whose solution was also obtained by computer.

A series of outstanding publications by Wilcox et al [17,24,26]
demonstrate the usefulness of nondimensional variables in order to describe
the thermai characteristics of a Bridgman growth system. Their results
present two- dimensional isotherms in a solidifying charge for different
values of several of these nondimensional variables. The effects of
thermal coupling between the charge and the furnace (represented by the
Biot number) and the lowering rate (Peclet number) was thus determined by
Chang and Wilcox (17]. A significant conclusion is that the shape of the
solidification isotherm depends strongly on its axial location within the
furnace. Although not including a gradient control region in their
thermal model, Chang and Wilcox [17] suggested the use of an insulating
gradient control region in order to reduce isotherm curvature near the
interface. Fu and Wilcox [26] later demonstrated the validity of this
concept for a system which did not consider a crucible, latent heat, and

conductivity change at the growth interface. Sen and Wilcox ([24] showed
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the effect of crucible conductivity on the isotherm shape for various Biot
numbers; they also found that the thermal conductivity of the crucible
should be close to that of the charge in order to maintain large axial
temperature gradients in the gradient zone.

El-Mahallawy and Farag {25] calculated the two—dimensional temperature
distribuvtion in a solidifying Al-AljNi eutectic grown under various
conditions, including an abrupt change in the inner diameter of the
crucible along the axial direction. Several comparisons of calculated

results with experimental data showed good agreement.

d.3 EVALURATION OF THE LITERATURE

The cited literature provides a valuable background for further
thermal analysis of Bridgman-type growth systems. In particular, the
nondimensional formulation of Wilcox et al [17,24,26] identifies the
significant combinations of thermal properties and system parameters which
govern the thermal behavior of the system. Taken in part or as a whole,
however, the previous work has not yet led to a systematic approach for

Bridgman furnace design. The areas found deficient are:

(1) Several important effects have not been studied, have been
analyzed only in simple systems or have been addressed only
for systems with specific thermal property values. For
example, a general treatment of the behavior of radial
temperature gradients near the growth interface is not
available; only the case of a perfectly insulating gradient
zone has received attention; generation of latent heat has

been includad only in one-dimensional models without
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crucibles; the effects of unequal thermal conductivities of
the crystal and the melt, and crucible thickness have been
considered only for systems of specific property values . It
is difficult to draw general conclusions regarding these
effects,

Conclusions drawn from those analyses which did not use a
nondimensional formulation are difficult to extend to systems
of different parameter values.

As seen in Table 3.1, all results, excepting parts of
(17,22,23], have been determined by éoméutation. The
presentation of these results is necessarily in graphical
form and their interpretation quickly becomes awkward when
several effects are acting simultaneously. In this respect,
results presented in simple analytical form are more

desirable.
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4. THE ONE-DIMENSIONAL THERMAL MODEL

The axial temperature distributicn of a solidifying charge deternines

two i urtant characteristics of a particular growth experiment:

(1) the axial temperature jra.ient in the melt at the growth
interface. This must be Jreater than a critical value in
order to prevent c¢onstitutional supercooling (c.f.,
section 2.1.1).

(2) the axial locatior ~¢ the growth interface. In addition to
strongly influencin, the interface shape, the temporal
sequence of interface locations indicates the growth rate (as

opposed to the lowering rate).

Since neither of these factors pertains to radial temperature variaticns
within the charge, the common approach has been to determine the axial
temperature distiibution through a one-dimensional thermal model, i.e.,
neglecting tne radial temperature variations. Such models neglect the
radial thermal resistance within the charge compared to the thermal
resistance between the charge and the furnace. The ratio of internal to
external thermal resistance is expressed by the Biot number, Bi. A one-
dimensional model is therefore valid for sufficiently small Bi (c.f.,
sectiond.2.3),

The one-dimensional thermal model developed in this chapter posesses
several unique features. The crucible and the radial thermal resisitance
of the charge are accounted for in a way which readily demonstrates their

effects on the axial temperature distribution without compromising the
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simplicity afforded by the one-—dimensional modeling. Additiocnally, small
lowering rates common in semiconductor crystal growth is recognized to lead
to simple analytical results from the one-dimensional model. Such results
are used in Chapter 5 to demonstrate the effects of the various parameters
of the Bridgman growth system on the axial temperature distribution of the

charge.

4.1 IHE MQVING FIN APPROACH

A heat balance performed on a slice of the charge of infinitesmal
length in the axial direction results in eq. [4.1] (see section 4.?.1) for
the axial temperature distribution of the charge. The heat balance points
out that the amount of heat conducted through the charge in the axial
direction, and hence the axial temperature gradient in the charge, depends
directly on the amount of heat transferred to the charge in the hot furnace
and from the charge in the cold furnace. Factors which affect the rafial
transfer of heat to or from the surface of the charge are therefore
expected to affect the axial temperature distribution of the charge.

The one-dimensional thermal model is initia'ly developed in
section 4.2.1 neglecting the crucible and the radial thermal resistance
within the charge. The charge is, in this case, analogous to a fin moving
through the spatially varying boundary conditions imposed by the furnace.
The crucible, however, may provide a significant radial thermal resistance
between the surface of the charge and the furnace boundary conditions.
Further, a large Biot number indicates that the internal radial thermal
resistance of the charge affects the radial heat exchange with the charge.
These effects are approximated in sections 4.2.2 and 4.2.3 where it is

shown that they can be included in the moving fin model as a modification
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of the thermal coupling between the charge and the furnace (i.e., as a

modification of the Biot number).

4.2 THE DESCRIBING EQUATIONS FOR THE MCOVING FIN MODEL

The factors of concern for the development of a one-dimensional heat
transfer model of the modified Bridgman growth system depicted in Fig. 2.2
are shown in Fig. 4.1. The hot and cold heat pipes comprise the hot and
cold zones; the region between them is called the gradient zone. The
length of the charge is broken down into Ly, Lg, and L¢ within the hot,
gradient and cold zones respectively. The charge is ;owered through the
furnace with a velocity V, has crystal and melt portions with different
thermal conductivities, and has a crystal-melt interface which generates
latent heat. A crucible provides containment for the charge.

The thermal mode. makes the assumptions described in section 2.2.2.
Additionally, the gradient zone is assumed adiabatic (i.e., hg = 0) in the
one—dimensional model; this assumption is relaxed for the two-dimensicnal

model of Chapter 6.

4.2.1 The Charge
With the assumption of negligible radial thermal resistance within the

charge, and neglecting the crucible, the charge is analogous to the moving
thin rod treated by Carslaw and Jaeger [29]; the equation describing the
axial temperature distribution is:

T,
A giz, ?\n Y)\OQVA az + q'" f\o‘C?x\OcA %_t:‘ = O [4.1]

where: A = cross sectional area of the charge

P = surface area per unit length of the charge
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where: 2 = axial coordinate measured from thz center of the
gradient zone

k = thermal conductivity
f = mass density
Cp = specific heat
t = time
Subscript "loc" serves to distinguish boundary
conditions or charge properties of a particular
furnace zone.
Tm denotes the area-averaged charge temperature as a function of Z. The
first term of equation [4.1] represents axial conduction of heat within the
charge and the second term represents axial convection of heat due to
motion of the charge at velocity V. The factor g" in the third term
accounts for radial heat transfer to the surface of the charge, per unit
surface area of the charge. The final term represents heat storage due to
temperature transients at fixed axial location, Z. According to assumptiocn

3 in section 2.2.2, q" is given by:

CU“ =h, (T;Jl“- o) (4.2]

where: h = heat transfer coefficient between the furnace and the
charge

T¢ = furnace temperature

Substituting eqg. (4.2] into eq. [4.1], neglecting the transient term
according to assumption 2 in section 2.2.2, and nondimensionalizing the
resulting expression, yields:

b4
e"" '™ .
iC,‘ B Pe\u%% * 45‘\°¢(9¥,)n’ em) =0 [4.3a)
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An equivalent nondimensiocnal form of eq. [4.3a] is:

“ D
iw l“ Aa (9; e 9") = (4.3b]

where: C' = (Z ‘B'Lm)
Pg‘;‘_i PQ‘“ /(ZJ—E-"_\:)

Equation (4.3b] has one fewer parameter than eq. (4.33] but the axial

coordinate, C‘ » is less physical since the Biot number is included in its

definition.

4.2.2 The Crucible

In Bridgman growth a charge is confined in a crucible which, depending
on conditions, varies in dimension and composition. Containment of the
charge typically tends to decrease axial temperature gradients (Sen and
Wilcox [24]). A crucible of low thermal conductivity lowers the axial
gradient by adding thermal resistance between the charge and furnace,
thereby decreasing the thermal coupling between the charge and the furnace;
one of high thermal conductivity lowers these gradients by conducting heat
transferred from the furnace axially within the crucible rather than within
the charge.

The domain of eq. (4.3]) is considered to be the charge only and the
crucible is not explicitly included. However, a model of the heat transfer
. within the crucible approximates its effect on q" of eq. [4.1] which is
then expressed through modified Biot and Peclet numbers.

Several previous one-dimensional models [18,22,23] have included the

crucible only as a radial resistance between the furnace and the charge.
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The present model for the crucible includes axial conduction as well as

radial resistance by solving in an approximate manner the heat conduction

equation for the temperature distribution of the crucible:

V9 Iler 2 Te, V9T
+ 5 T=)- "

ar gzz B aCf ;2 - O [4.4]

where: ¢y = radial coordinate
X = thermal diffusivity, k/gcp

Subscript "cr" denotes the crucible.

The first term of eq. [4.4] accounts for the radial thermal resistlance of
the crucible, while the second term accounts for the axial conduction of
hieat within the crucible.

Thz principal assumptions involved in utilizing eq. [4.4] are that, at
each axial location of the crucible, 3%,/d2 and 2'T,, /22 are independent of
the radial coordinate r and equal to dTw/d2 and d'T./J2* of the charge.
(See section 4.4.1 for a discussion of these approximations.) Tre first
term of eq. [(4.4] can then be integrated to yield a radial distribution of
Tcr in terms of the axial gradients in the charge. The boundary conditions

at che crucible surfaces are:

3lev
- - — (at the outer (4.5a]
h'“O}»l“ w) k" J2 crucible surface)

{at the inner {4.5b]
Tc.f = Tm crucible surface)

The heat transfer coefficient in egq. [4.5a) is between the furnace and the

outer crucible surface. Equation [4.5b] assumes that the crucible ang the
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charge are in contact. The radial heat flow to the charge in eq. [4.1l],

q", is related to the radial distribution of T¢r by:

o= = (at the inner (4.6]
ﬂ'\x e ar crucible surface)
The heat flow given by eq. [4.6] is substitated for g° in the third term of
eg. [4.1]. When nondimensionalized, the resulting expressicn has the same
form as eq. [4.3] if Bi and Pe are replaced by their respective "effective"
values, Bi* and Pe*:

x
ﬁ.'_".s_ = \ 5 [4.7]
SBue 1+ 8B |1 g )-S5 [+ K (0D ¢ £

Pep, _ I+ R.noi. (8 ) - s | + Bl (52 zmm

= (4.8]
Pew | 530, [ Tieh-p e K\, Ty Bl
where: § = Dcr/D

Kloc = %cr/Kloc

Re,loc = %er /“\oc.

The relationship between the effective Biot number and the
conductivity ratio K is shown in Fig. 4.2 for § = 1.25 and various Bi.
It is seen that Bi* is significantly reduced by both low and high values of
K, especially for larger Bi. In section 5.2 it is shown that increasing
Bi* tends to increase the axial gradient at the growth interface. The
conductivity ratio, K*, which maximizes Bi* for given & and Bi can be

obtained from eq. (4.7]:
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effective Biot number, Bi*, for § = 1.25.
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K* = M e (4.9)
loe 2(]-1)

For typical values of Bi and § , the conductivity ratio providing the
meximum effective Biot number is found to lie between 0.1 and 1.0.

It is sometimes possible to increase Bi* by increasing the thickness
of the crucible (i.e., by increasing § ). This effect is similar to the
Scritical radius of insulation" effect whereby a wire which is conducting
electricity may be able to dissipate more heat to its surroundingg with a
layer of insulation on its surface [30]. For the charge/crucible system,
an increase in § increases the charge surface area expos¢ 0 2at
transfer with the furnace. If this effect more than offsets the yposing
effects of increased radial resictance and axial conductance of the
crucible, then Bi* increases with § .

Consider that Bi* in eq. [4.7) is a function of § with constant K
and Bi. The value of § which maximizes Bi*, $t, is given by the roots of

the following equation:

%"L(S*Y* K (67)7 - 2 K\‘“—c\ () * (K, -1) =0 14.10]
Equation [4.10] has positive rocts greater than unity ( § > 1 when a
crucible is present) only vuen K < 1/2 and Bi < 1/4. Figure 4.3 plots the
values of &* for various K and Bi. Tt is seen that it is advantageous to
have a thicker crucible when Bi is small, but only if K is also small.
Figure 4.4 shows the increase in Bi* when § = §* compared to a bare

charge (i.e., compared to § =1). (It is found that this ratio is not a
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strong function of K but correlates well with §%.) Accordingly, for those
cases where an increase in § results in an increase in Bi*, the maximum
effect is not large. Therefore, increasing the crucible thickness should
not be considered as a viable method for increasing the axial temperature

gradients near the growth interface.

123 Radial T Gradients Within the G

Equation (4.1] considers that the temperature within the charge at
each axial location is uniform. Presently, radial gradients in the charge
are considered insofar as they affect the thermal coupling betw‘een the
furnace and the charge and thereby the axial temperature distribution.

When radial temperature variations in the charge are taken into

consideration, eq. [4.3] assumes the form (see Appendix A):

Jlem o)
1t Pe,\* %‘f’ 4B &% o~ Bm) = mﬂ 0 [4.11)

where: Gs = surface temperature of the charge, i.e., at § = 172

The term ©g - Op in eq. [4.11] accounts for the effect of radial
temperature variations within the charge on the g" term of eq. [4.1]. An
approximation for g - 6y is obtained by solving in an approximate manner

the two-dimensicnal heat conduction equation in the charge:

\

_l_baae> e 22 (4.12]
7 2 aa* loe 32

Assuming that the Peclet term is negligible (see section 5.1), and, as in

the crucible effect, that 7 9/6* is only a weak function of the radial

coordinate, § , eq. [4.12] can be integrated in the radial direction with
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A"Bm/ac‘as a variable. The integration indicates a parabolic variation for

the charge temperature at a particular axial location:

) 4% L
B-0m=-7 A (s -5) [4.13a]
and:
__ ) d%6m
By~ Om=" 33 A [4.13b]

Combining egs. [4.11] and [4.13b] leads to a new effective Biot number,
Bi**, replacing Bi in the third term of eq. [4.3al, which accounts for
radial temperature gradients within the charge as well as within the

crucible:

. Bk
lec | + 3\‘;/8

(4.14]
According to eq. [4.14], Bi** = Bi* for Bi* << 8; i.e., the radial
thermal resistance within the charge does not affect the axial temperature
distribution, Equation [4.14] indicates also that the maximum value that

s R
Bi

can attain is 8 when Bi* is very large. The internal radiail
resistance of the charge thus limits the degree to which axial temperature
gradients can be increased by an augmentation of the thermal coupling
between the charge and the furnace.

The validity of eq. [4.14] may be tested by comparing the axial
temperature distributions for a system whose internal thermal resistance in

the radial direction is considered (1) exactly through the use of a two-

dimensional mcdel and (2) through the use of eqg. (4.14]. A stationary fin
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(without crucible) of infinite length provides a simple system for which
analytical results for both models are readily available (see Fig. 4.5).
In order to consider the most extreme case, the hear transfer coefficient
at the surface of the fin is taken to be infinite; for these conditions,
Bi* is infinite and Bi** = 8, In this case, the expression for the cross

secticnal area-averaged temperature for the two-dimensional fin is [31]:

O 20 (CF B E-%; eXp (-2Cw.) [4.15]
n=|

where:

J-o(wn) =0

J o ® Bessel function of order zero

and the axial temperature distribution for the one-dimensional fin is [31]:

B, (5) = Bpexp[-26 (Bix*)2] [4.16]

Equation [4.16] with Bi** = 8 is compared to eq. [4.15] in Fig. 4.6 with
good results. Equation [4.14] is theretore taken to be a reasonable
anaytical approximation for the effect of radial gradients in the charge on
the overall axial temperature distribution.

Abrupt changes in surface boundary conditions affect the temperature
of the charge more at its surface than at its center. The assumption of
constant J*9/¢4* over the cross section of the charge and, as a
consequence, eq. [4.14], are expected to be less valid near such changes in
boundary conditions. The moving fin model considers an abrupt change in
the heat transfer coefficient at the e3ds of the gradient zone. Equation
[4.14] is least accurate near these locations but becomes increasingly

valid with distance into the furnace zones. A further verification of
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(a) Two-dimensional model
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(b) One-dimensional model used with eq.[4.l4]
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Fiq. 4.5: Models of a simple stationary £in used to check the validity
of eq. [4.14].
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stationarv f£in used to check the validity of eq. r4,14].
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eq. (4.14] obtained for the conditions of an adiabatic gradient zone is

provided in secticn 4.6.

4.2 SOLUTION OF THE MOVING FIN EQUATIONS

Using the results of sections 4.2.2 and 4.2.3 in order to include the
effects of the crucible and radial thermal resistance within the charge,
eq. [4.3a] becomes:

Jzen S dem

L SO ACTRERECI

The parameters Pe*, Bi**, and 6¢ are not constant thr'pughout the ‘furnace.
According to assumptions 3 and 4 in section 2.2.2, however, they are
constant within each of four separate furnace regions: the hot and cold
zones and the liquid and solid parts of the gradient zone. (It is assumed
that the growth interface is located within the gradient zone.) The
solution of eq. (4.17] within each region yields two exponential terms for
the homogeneous solution and a particular solution that depends on 8¢. The
assumption of uniform hot and cold zone furnace temperatures yields a
simple constant for the particular solution in these zones. A particular
solution is not needed in the gradient zone sincehg = 0.

The constants of integration for the homogeneous solution of eg. [4.17]
are found using the boundary conditions of equality of temperature and
continuity of heat flux between adjacent regions. The temperature boundary

condition is:

B

m)j =

B

K [4.18]

where the subscripts "j" and "k" refer to opposite sides of a boundary
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between adjacent regions. The flux boundary conditions used in the moving

fin model are:

between the hot and

dOm;  dBmk gradient zones
N- oz —or — (4.19]
db a6 between the gradient
and cold zones

\-.RK + Ky (S‘-\ﬂ(ﬂ%\ =

- t th owth (4.20]
Q* Ks (S"-\)-Kiec S + Pe, Ra a' intzrg;ce

Section 4.4.3 explains that the axial gradients in the gradient zone which
result from the use of eq. [4.20] should be interpreted as average
charge/crucible axial gradients; these average gradients will be denoted by
Gp and Gg for the liquid and solid sides of the interface respectively.
Unavoidable radial heat transfer between the charge and the crucible near
the growth interface causes Gy and Gg to significantly differ from their
respective counterparts in the charge,(d8,/d&). and (39.\/3535 . The
relevant axial gradient for the supercooling requirement is, however, that
in the charge. Evaluation of the difference between G and 49,/J{ at the
growth interface requires two-dimensional modeling and is therefore
considered in Chapter 7.

Boundary conditions at the end of the charge must be applied when the
charge length can not be considered infinite fc.f., section 5.5).
Aprendix D discusses the calculation of approximate Biot rbers for the
nondimensional end boundary conditions.

The constants of integration have been determined cnalytically for

systems of infinite charge length; expressic-s for the axial gradient in
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the melt at the interface and for the axial position of the interface cf
such systems zre given in Appendix B. Of special interest are the
simplified results obtained for the small lowering rates common to
semiconductor crystal growth, egs. [B.9] and (B.10]. If the complete axial
temperature distribution is desired, or if the charge length is not
infinite, it is more convenient to determine the constants of integration

by computer.

4.4 ASSUMPTIONS IN THE MOVING FIN MODEL
The validity of the primary assumptions employed in the development of

the moving fin thermal model of section 4.2 is discussed in this section.

440 Equal Axial Gradi £ the OO 3 Crucib)

In order to obtain a simple analytical expression for the effect of
the crucible thickness and conductivity on the axial temperature
distribution of the charge, the crucible model (section 4.2.2) assumes that
the first and second axial temperature derivatives in the crucible are
independent of the radial coordinate, f » and equal to their respective
values within the charge. These approximations are motivated by the two-
dimensional temperature distributions presented by Wilcox et.al. [24,26].
Sen and Wilcox [24] determined isotherm shapes in a charge/crucible system
for various K and Bi by a two—dimensional finite difference computer model
under the following simplified conditions: § = 1.25, )\c-.:: 0.0, Pe = 0.0,
Ao = ’\H = .75, Rg = 1.0, Rg = 0.0. The shapes of their numerically
computed isotherms indicate that the assumptions are reasonable for values
of K greater than about 1/2. As K decreases below 1/2 (e.g., as Kk¢p

decreases), increasing radial resistance of the crucible produces a
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pronocunced radial temperature variation in the crucible; the axial
gradients in the crucible are larger than those in the charge near the ends
of the hot and cold zone, It is therefore expected that the crucible
effect, as described by egs. (4.7] and (4.8] will be most in error for
small values of K.

The temperature distributions of Fu and Wilcox [26] indicate that the
radial variation of the axial gradients are most pronounced at the ends of
the hot and cold zones, especially for systems without a gradient zone.
The absence of a gradient zone in the model of Sen and Wilcox [24)
therefore accentuates the error in the approximation for systems with a
gradient zone.

The two—dimensional thermal model developed iii Chapter 6 does not
assume that axial temperature gradients in the charge and crucible are
equal. The effect of the crucible on the axial temperature gradients of
the charge determined by the two-dimensional model are compared to results
given by the one-dimensional model using Bi**. Agreement is good even for
values of K as small as 0.l. It is therefore concluded that the effective
Biot number provides a reasonable estimate of the crucible effect on the

axial temperature distribution of the charge.

4.4.2 Bqual Growth and [owering Rates

The term PegRy in eq. [4.20] represents the generation of latent heat
at the growth interface; the velocity used in Peg should therefore be the
actual growth rate,R. When the charge length is not infinite, however, the
jrowth rate exceeds the lowering rate, V, [9,11,22]. The present model
neglects the difference between V and R under such conditions and uses Peg

based on the lowering rate V. In this way, the mathematical solution is
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simplified since the rate of generation of latent heat then has a known and
constant value. On the other hand, if the growth rate, R, were used, the
rate of generation of latent heat would not be known a priori or constant.

The assumption that RsV in not exessively restrictive. Riquet and
Durand [9] and Sukanek [22] show that the growth rate is most different
from the lowering rate when the ends of the charge are passing zone
boundaries. When the length of the charge in both the hot and cold zones
can be considered infinite (see section 5.5), the growth rate and lowering
rate are equal. Further, growth conditions may be such so that the effect
of latent heat on the axial temperature profiie is negligible (see
section 5.4); the error created by the use of V rather than R in Peg would
then be likewise small. Lastly, if desired, the solution of eg. (4.17] can
be modified so that Peg in eq. [4.20] is based on R as follows: The axial
position of the growth interface for two closely spaced locations of the
charge in the furnace is calculated with an initial assumed value of R.
The difference in position of the interface for these two locations
indicates a growth rate which need not be equal to the original assumed
value. The growth rate is accordingly modified and the proredure iterated

until convergence is achieved.

443 Flux Boundary Condition at the Growth Interface

Consider that the charge and crucible temperatures, <l>m and cb,_,
respectively, are each represented by a single value at each axial
location. (The variable ¢ is used in this work to denote non—dimensional
temperatures employed in two-dimensional thermal models.) When PegRy # 0
and/or Rg # C, the axial gradient in the charge, Jqﬁ"/AC , must undergo an

abrupt change at the growth interface. The axial gradient in the crucible,

- 6 -
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on the other hand, does not change at the growth interface. Figure 4.7
shows that such conditions lead to a difference between the charge 2nd
crucible temperatures as well as their axial temperature gradients. The
temperature difference leads to an exchange of heat between the charge and
crucible near the growth interface. The relaticnship between this radial
heat transfer and the shape of isotherms is discussed in section 7.3; the
present secticn addresses its effect on the flux boundary condition at the
growth interface for the moving fin model, eq, [4.20].

Define an average charge/crucible temperature weighted by their

respective axial thermal conductances:

P s RicAdm + R A ey [4.21]
h\oc.A ’buAc.r

K1oc is respectively k;, and kg .or the liquid and solid portions of the

charge. Nondimensionalizing eq. {4.21]) yields:

¢m + K\x(sz“') ¢cr

¢ = K (5500 (4.22]
Differentiating eq. [4.22] in the liquid and solid yields:
d 2_\(S%%
G 5(35\ - R“(l%n)t.* s (8 ")(acs")L (4.23a]
ARVY N Ry + K (821
d) .o rco o [ddhe)
G i(a‘;\ = (JC )s KS“I"\(ac I [4.23b]
s\dG s | + K5<Sz-\>

~J

PR ——




GE 1S
RIGINAL PA

Fig., 4.7: Crucible and mean charge tamperature distributions
near the interface when PegRy # 0 and/or Rg # 1.
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The moving fin model assumes that B'g = 0, In th..s case, thete is no heat

transfer to or from the surface uf the crucible in the gradient zone and G
must be invariant in the gradient zone except for a step change at the
growth interface. The relationship between Gy, and Gg is rfound by
considering the heat flux boundary condition at the growth interface. In

nondimensional form:

é;em_) =(c\¢n . e
RK( dG L,i A )5); PCSR"‘ 24a
dge\ . (¢ |

(d'& ) -L dG )S,L . [4.24b)

where subscript "i" denotes the interface

By multiplying eq. [4.24b] by Ks(8%-1) , adding to eq. [4.24a] and using

eqs. [4.23], the following relation is obtained:
[RK’ KS(SZ“)]C’\.=\-_\"KS(82'\\} Gs + Pe.sRu [4.25]

The one-dimensional mcving fin model neglects the differznce hLetween

¢ and ¢, ; i.e., B3, 26, . Inchis case, eqs. [4.23] show that:

G = (—dj%'"—jl_ [4.26al
G® (C:QC'" )s (4.260)

Substituting egs. [4.26] into eq. [4.25] results in the interface boundary
condition used by the moving fin model, eg. [(4.20]. These results suggest

that the axial temperature gradient in the gradient zone predicted by the
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moving fin model, JG,“/'C‘,(, , should be interpreted as the average
charge/crucible axial gradient, G. The difference between G and de. /bl is

discussed in section 7.3.

44,4 Diabatic Gradi - 1 Regi

The moving fin model assumes that there is no heat exchange betw- en
the charge and the furnace within the gradient control region; 1i.e.,
hg = 0. Chang and Wilcox [17] suggested the use of an adiapatic gradient
control region as a means of reducing isotherm curvature near the growth
interface. Further motivation for this assumption is that it simplifies
the analytical expression of the temperature distribution in the
solidifying charge.

A perfectly insulating gradient control region is a conceptual limit
and is unobtainable in practice. Radial heat transfer to or from the
charge in the gradient one affects isotherm curvature; the assumption of
an adiabatic gradient control region is therefore eliminated in the two~
dimensional model described in Chapter 6. The present section formulates a
simple model of heat exchange within the gradient control region in order
tc determine when this heat exchange is negligible with regard to the axial
temperature distribution of the charge.

Consider the portion of the furnace in the gradient control region to
be an annulus located between and in contact with the hot and cold heat
pipes. The gradient zone annulus has conductivity kg, cross sectiocnal area
Ag, and has a temperature, Tg(Z) which depends only on the axial
coordinate. Heat exchange between the gradient zone annulus is described
by the gradient zone heat transfer coefficient hg. No heat loss is assumed

at the outer diameter of the qradient zone annulus. (This model of the
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gradient control region is identical to that used in Chapter 6; c.f.,
section 6.2 and Figs. 6.1 and 6.2.)
In order to develop a relatively simple expression for the temperature
distributions of the charge and gradient zone anntclus, the present system

is specified by the following parameter values:

1. Equal heat transfer coefficients in the hot and
cold zcones.

2. Axial convection of heat due to the charge motion
is negligible; i.e., Pe is small. (See
section 5.1.)

3. The effect of the generation of latent heat is
negligible; (PegRy = 0). (See section 5.4.)

4. Equal thermal conductivities of the melt and
crystal (Rg = 1). With condition 1 above,
Big"™ = Bic*".

5. Equal charge lengths in the hot and cold zones

(Ay = e ).

A system which has the above parameter values is referred to in the present
work as a "symmetric" system. The axial temperature distribution of the

charge for a symmetric system is:

B (G) * O (-C) = | (4.27)

It is only necessary to consider one-half of a symmetric system,
either § >0 or [ < 0. An additional assumption used in this secticn

is that the charge length is infinite; in this way, the absence of the end
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boundary conditions and charge length as thermal parameters simplifies the
expressions for the temperature distributions of the charge and gradient
zone annulus.

A schematic of the temperature distributions in the charge and
gradient zone annulus is shown in Fig. 4.8. Only the cold portion of the
symmetric system is shown. At the center of the gradient zone (i.e., at
C = (), the assumption of a symmetric system dictates that 6p = 8g = 0.5.
The cold end of the gradient zone annulus is at. the cold zone heat pipe
temperature.

The equation governing the mean charge temperature in the cold zone is

adapted from eq. [4.17] assuming that Pe = 0.0:

AAZT + 4B (6 -0n) =0 [4.28]

where: [, 2 M 2 A, /2

The charge temperature in the gradient zone is described by eq. [4.28] with
Bi&* replaced by Bi&" and 6, replaced by 6g:

d*6m
46"

+ 4B (8,-8.)=0 [4.29]

where: 0% G s M

The fin equation for the gradient zone annulus can be derived by noting
that the transfer of heat between it and the charge/crucible requires the

following relation between the second axial derivatives:

Cifzm (hA*thw\ =" %(‘R&AG\ (4.30]
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dient \e
C grgoaeen - cold zone C

igq. 4.8: Schematic of the temperature distribution in the charge and

F
ne annulus for a syvmmetric svstem when Big # 0.

gradient zO
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(Equation [4.30] assumes that the axial conduction of heat in the crucible

is described by the axial derivatives of By .) Substitucing eq. [4.30]

into eq. [4.29]:

2 +Kq 2,
iff s ol A Y (4.311
a,$
where: 1) = Re, Acr
EOKe =
RaA
0¢ 6K -

Equations [4.28), [4.29] and [4.31] are simultaneously solved

utilizing the .uilowing boundary conditions:

6.(0) =0.5

6 (p)=0

Bm(0)= 0.5

Bm (@) = O

By, = Lom )1,

il el

The resulting distribution for the temperature difference between the

(4.32]

charge and gradient zone annulus is:
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(8,.-8.\= 2_aimh (wy ) 4.33]
el \ + R;— #V—L + W/,
RE~+ | Rzﬂ tanh (/uwc,) AW

where: \y = 2 (.B'\:* (\+ RZ - Y_‘\”L
W = 2 (BUF)R

RZ = R@/D + Ks (Sz-lﬂ

[y

BEquation [4.33] demonstrates that the difference in temperature between the
gradient zone annulus and the charge varies exponentionally and decreases
more rapidly for larger Big" and smaller R§. A large value of Bid* is
indicative of effective thermal coupling between the charge and gradient
zone annulus. A small value of R} indicates that the gradient zone annulus
has a relatively small capacity to conduct heat in the axial direction
compared to that of the charge/crucible combination; conseguently, any heat
transfer to or from the gradient zone annulus serves to rapidly equilibrate
B¢ to Om .

The importance of heat transfer in the gradient zone compared to that
occuring in the hot and cold zones on the axial temperature distribution of
the charge is revealed by the expression tor the axial temperature gradient

in the charge at the center of the gradient zone:

& ]
2-G(&=0) = R‘:"‘ Loimh (W) tanh (#wa) " [4.34)

. Re H W
RE+L T RZ+T Tank (pwgy TAYm
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Figure 4.9 shows the variation of G( 4 = 0) with R§ for systems with
Big" = Bif". When R§ = C, the gradient zone does not conduct heat from the
hot or cold zones for subsequent excnange to or from the charge; in this
case, the gradient zone may be called adiabatic even though Big # 0. As RE’;
increases, the temperature distribution of the gradient zone annulus
becomes increasingly linear providing a temperature difference between it
and the charge; the resulting heat exchange increases the axial temperature
gradient of the charge. As RE approaches infihity, the heat exchange
between the gradient zone annulus and charge is little affected by
changes in Ré since 6g( %) approaches its limiting linear variation.

Figure 4.10 demonstrates the effect of Bigd"

for systems with
R& = 1,0. The adiabatic gradient zone case is indicated by the curve
labeled Bid*/Bid* = 0.0. Heat exchange between the charge and gradient
zone annulus becomes increasingly important as Bij® increases relative to
Bié*, resulting in a significant increase in the axial gradient of the
charge. In the limit as Bié* approaches infinity, the temperature
distribution of the charge in the gradient zone varies linearly between the
boundary conditions imposed hy the hot and cold zone furnace.

The results presented in this section were based on a model which
assumed infinite charge length. Further, Figs. 4.9 and 4.10 examined the
special case of Ac., = 1.0. It is expected that the effect of a diabatic
gradient zone increases as the relative length of the gradient zcne
increases (e.g., finite charge length and increasing )\G). Nevertheless,

the results of this section suggest that the gradient zone can be made

effectively adiabatic by two design options:

(1) Small Rg. A material of poor thermal conductivity placed
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between the hot and c¢old zone furnaces provides for a small
value of Rg.

(2) Small Big relative to the Biot numbers in the hot and cold
zones, This may be accomplished in systems where the
conductive component to the gap heat transfer coefficient is
small (see Appendix Q) by placing highly reflecting radiation
shields between the gradient zone annulus and the charge,

4.0 THERMAL PARAMETERS OF THE MOVING EIN MOLLL
The thermal parameters which appear in the moving fin model are

summarized in Table 4.1

Results derived from the present one-dimensional model can be compared
to similar results of Fu and Wilcox [26] who included radial temperature
gradients within the charge in a two-dimensional finite difference model.
Figure 3 of their paper presents the radial variation of the axial gradient
at the growth interface for systems of infinite charge length in the
absence of a crucible. Point values, estimated from the curves of their
Fig. 3, were numerically integrated to obtain the average axial gradient
over the cross section at the growth interface, These results are compared
to the values obtained using eqgs. [4.14] and (5.8] for several values of
Bi and Mg in Table 4.2.

Since the model of Fu and Wilcox [26] does not include a crucible, the
comparison shown in Table 4.2 tests the validity cf eq. [4.14] in
accounting for the effect of radial thermal resistance of the charge con the
effective Biot number. Considering the approximations required in the

derivation of eq. [4.14], the agreemert of the data must be taken as
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excellent. It is considered, therefore, that eq. [4.14] provides a
reasonable correction for the effect of radial temperature variations
within the charge on the axial temperature distribution of the charge.
(The validity of eq. (4.7] in accounting for the effect of the crucible on

the effective Biot number is provided in section 6.3.,

parameter definition comments
Big hgD/kg,
Bic hcD/kg
Peg VDkg/ ¢ p Per, = PegRg
S Der/D
Ks ker/Ks | K = Kg/Rg
Re,s °‘cr/°‘g Rx,L = Rae,5/RK
Ry kp/ks
Ry AHg)/cp(Te, g = Tf, Q)
!
N Lg/D ; |
N Lg/D |
required only if the !
Ne Le/D | charge can not be |
— considered infinitely
Big, end hy, engD/Ky, long (c.f., section 4.2.5)
. i !
Bic,end | BC,endD/ks |
C. 2i/D {
(T{ - T¢, Q) 1 only one is independent
8
(Tg, g - Tf,0Q)

Table 4.1: Thermal parameters in the moving fin model.
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(30/9C)av G
Ng | Fuand Wilcox (26] | Egs. [4.14] and [5.8]
0.0 1.310 1.261
Bi = 2 0.25 0.975 0.961
(Bi** = 1.6)
0.50 0.778 0.775
Bi = 0.4 0.0 0.616 0.617
(Bi** = 0.38)
0.5 0.464 0.472

Table 4.2: Axial temperature gradients at the growth interface,
G . as obtained through eqs. [4.14] and (5.8], and
average axial temperature gradients, @8/3¢)av , aS
determined from the two—dimensional model of Fu and

Wilcox [26].

(Symmetric system and no crucible.)
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2. IHE AXIAL TEMPERATURE DISTRIBUTION OF THE CHARGE

This chapter describes the effects of the thermal parameters of the
vertical Bridgman growth system on the one~dimensional thermal behavior of
the charge. The presentation of the results emphasizes the thermal
requirements for satisfactory single crystal growth developed in
section 2.1 which relate to the axial temperature distribution in the
charge: (1) the axial gradient in the liquid at the growth interface
(constitutional supercooling) and (2) the axial position of the growth
interface (a factor strongly affecting the shape of thé interface):

Axial temperature distributions in the charge are calculated bv
computer using the moving fin model described ir Chapter 4. Such results
indicace how the interface position (or the nondimensionzl melt
temperature) is affected by the thermal parameters. The axial temperature
gradient within the melt in the gradient zone, is studied by utilizing the
analytical results presented in Appendix B.

Section 4.4.3 explains that the axial temperature gradient at the
interface calculated from the moving fin model must be interpreted as the
average of the charge and crucible axial gradients. The variable G is used
to denote this average value. The difference between G and the axial
temperature gradient in the charce is discussed in section 7.3.

For a particular growth experiment faving constant process parameters
(e.q., furnsce temperature, lowering rate) the temperature of the interface
and its location within the furnace are functionally related. Since the
shape of the interface strongly depends on its axial location (17,26 and

Chapter 7], it is expedient to consider the interface location as the
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independent variable. Given the interface location, the thermal model
predicts a nondimensional interface temperature, ©y; the dimensional
interface temperacure, Ti, is related to the hot and cold zone furnace

temperatures and 6; as follows:

T = Tee * 9 (Th -'rﬁc) [5.1]

The desired interface location is achieved by adjusting the hot and/or cold
zone furnace temperatures so that eq. [5.1] is satisfied.

In consideration of the many variables in the movirg fin model, the
symmetric system defined in section 4.4.4 is used as a reference: against

which the éffects of individual parameters will be compared.

5.1 PECLET NUMRFR EFFECT

The Peclet number expresses the ratio of axial heat transfer in the
charge due to the lowering velocity, V, and due to ronduction. The
effective Peclet number, Pe*, incorporates the effect of the crucible on
the convection term of eqg. (4.lal. The unmodified Peclet number is used to
describe the generation of latent heat (eg. [4.201).

The effect of Pe* on the axial temperature distribution in an
otherwise symmetric system obtained through eq. [4.17) is shown in
Fig. 5.1. It is seen that Pe* tends to increase the temperature of the
charge at all locations; the effect is more pronounced as pe* increases
(e.g., high lowering rate or low tr- . mal conductivity of the chargel. As a
consequence, in systems with fixed hot and cold zone furnace temperatures
(i.e., the nondimensional melting point temperature is constant), the
growth interface moves toward the cold zone as Pe* increases;

alternatively, the nondimensional melting point temperature must increase

- 33 -



_VB—

o

ALITYND ¥ood 3o
Si 39vd TUNIDIY

J 1n | R R
e — ‘ 10 ' B,Iti =Bic =0.1
| | Pe# 0O
: : System otherwise symmetric
!' "'.75 l XH =AG = Q0
|
N
:.50
|
' I
1251 |
.
| R
L 1 | | | | 1 \ | | l : =) g
-« lq— i ——»l >
Hol Zone IGmdientl Cold Zone
Zone
Ficg, 5.1: EBifect of ¢! avge motion on the axial temperature distribution

of the charge.




CRGINAL PRGE 1S
OF POOR QUALITY

(i.e., one or both of the furnace temperatures must be lowered) if the

T T,

interface is to remain at the same axial location as Pe* increases.

Table 5.1 gives expressions for the Peclet number based on solid
properties for Ge and CdTe (materials with high and low thermal
conductivity, respectively) as a function of lowering rate V and charge
diameter D. Using lowering rates common to Bridgman growth experiments
(€«Ger .1-10 Ium/sec), it is seen that the Peclet number is small compared
to unity. A test criterion for its relative magnitude is provided through

the characteristic roots of eq. [4.17]:

et B TH s
Rk R - Y

Expanding eq. {5.2]:

Pt L) (a1 1 el

\A/m="2—: . - +oe (5.3}
g Peg
Ge .097 cml/sec VD/967
CdTe .011 cm?/sec VD/111
« = thermal diffusivity
V measured in /(m/sec
D measured in cm
Table 5.1: Magnitude of typical Peclet numbers.
- 8f -
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If the following inequality holds, the characteristic values, wp, are of

opposite sign and their sum is equal to Pe’:

*\2
g, Pe . << 1 [5.4]
2 \oB™
R /2
then: Wy, = -f— x 2 (be) [5.5]

Further, Pe* disappears from the characteristic roots under the following

conditions:
*
if: Pe — << (5.6]
4 (bu**) .
then: W, = £2 (B**)'"* [5.7]

Equation [5.6] agrees with Chang and Wilcox [17] who c=ported that the
Pecle: effect is stronger for smaller Bict numbers.

If the inequality in eqg. [5.6] holds, the Peclet effect is small enough
to satisfy the Peclet number criterion for symmetric systems (i.e., Pe=0);
in addition, simplified analytical expressions are obtained for the axial
gradient within the melt in the gradient 2zone (Appendix R). Since
eqg. [5.6] does hold for typical Bridgman growth, the~ implified
expressions are used in the remainder of this chajter.

Equation (4.20] shows that the generation of latent heat at che growth
interface is also dependent on Pe. The charge lowering rate, therefore,
has a small effect on the axial temperature distribution if both eq. [5.6]

holds and the latent heat effect ic small., (Sections 5.4 and 7.3 address
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the effect of latent heat on the axial temperature distribution in the
charge and on the radial temperature variations near the interface,

respectively.)

2.2 BIOT NUMBER EFFECT

The Biot number, through the heat transfer coefficient, h, is a direct
measure of the thermal coupling between the charge and the furnace. The
effective Biot number, Bi**, incorporates the effects of the crucible and
radial temperature gradients within the charge on this thermal coupling.
Typical vaices fcr the effective Biot number vary from 0.05 for high
conductivity materials such as Ge to 5.0 for low conductivity materials
such as CdTe. (Appendix C gives approximate values for typical heat
transfer coefficients.) Axial temperature profiles for several Bi** are
shown in Fig. 5.2, In agreement with the results of Chang and Wilcox (17!,
it is found that the charge temperature follows more closely the furnace
temperature and, as a result, the axial temperature gradient in the

* increases.

gradient zone increases, as Bi"

The expression for the axial gradient near the growth interface
presented in Appendix B for infinite charge length can be simplified for
symmetric systems:

G, = A B [5.8]

The dependence of the axial gradient on Bi**, according to eq. [5.8], is
plotted in Fig. 5.3 for various gradient zone lengths, >‘Cv . The curves
show that the dependence of the axial gradient on }\c7 becomes stronger with

increasing Bi**. It can also be seen (curve )‘a = 0) that there exists a
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minimum Bi** for any desired nondimensionai axial gradient.

The Bict numbers of the hot and cold zones are generally not egual
due, for example, to the temperature dependence of radiative heat transfer.
For such conditions, the z2one with the larger effective Biot number more
strongly influences the overall temperature level (Fig. %A). Compared to
the symmetric case where Big"* = Bic**, the charge temperature for
asymmetric systems increases when Big** > Bic** and decreases when
Bic** : Big*". If the location of the crystal-melt interface for each
curve of Fig. 5.4 is considered to be the center of the gradient zone, the
effect of unequal Biut numbers appears as a change>in nondimehsional
interface temperature. To retain the interface in a given location
requires lowering the hot and/or cold zone furnace temperatures as Big™™
increases relative to Bic*™.

The expression for the axial temperature gradient in the gradient
zone for a system with infinite length which is symmetric except hy # hc
is:

G (5.9]
© e[, (Row)E]

Equation (5.9] indicat.s that the smaller of the effective Biot numbers has
a greater effect on decreasing the axial gradient. Efforts to increase
axial gradients by adiusting the heat transfer coefficients should

therefore first be directed at the zone with the smaller Bi**,

3
1;
;
i.
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Rg expresses the ratio of melt to crystal thermal conductivity.
Semiconductors have Rg values greater than unity whereas, for metals, the
value of Rg is less than unity. The effect of Ry on the axial temperature
distribution in the charge obtained through eq. ({4.17] iz demonstrated in
Fig. 5.5 for systems with § = 1 and which are otherwise symmetric (i.e.,
Big = Bic/Rg). The charge phase with the higher thermal conductivity tends
in all instances to have a lower axial gradient because of lower thermal
resistance to heat transfer in the axial direction.- The axial gradient in
the melt rear the interface is therefore less than in the crystal for
charges v 'th Rg > 1.

The expression for the axial gradient in the melt near the growth
interface for a system of infinite length which is symmetric except Rg # 1
is (Appendix B):

-2
G, = [5.10]
S OREIBEYE A - 20 By, v26]

A comparison of egs. [5.4] and [5.10] shows that a value of Rg greater than
unity is detrimental to the establishment of large axial gradients in the
melt. The axial gradient as a function of Rg according to eg. [5.10] is
plotted in Fig. 5.6 for several values of Bic. It is found, for example,
that this conductivity effect may reduce the gradient in a germanium melt

(Rg = 2.5) by about 50%.
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2.4 LAIENT HEAT EFFECT
The quantity of latent heat of solidification liberated at the

crystal-meit interface is given in nondimensicnal form by the product PegRyg
(eq. [4.20]1). The expression for the axial gradient in the melt near the
growth interface in a system of infinite length which is symmetric except

PegRy # 0 is:

-2+ Pe Ry [(Bi™) "+ Na - 26 [5.11]
2@ Na)

G,®

It can be seen that the effect of latent heat on the axial gradient (and

also on the axial temperature profile) is small if:

; N 2% P, RY ‘_(B;**)"/ﬂ e, - Zﬁal <« [5.12]

Equation [5.12] demonstrates that the effect of latent heat on the axial
E temperature behavior is larger for smaller Bi** and for larger lowering
rates of the charge (Peg is proportional to W).

Axial temperature profiles for various values of 7 are given in

Fig. 5.7. It is seen that the generation of latent heat both increases the

charge temperature and decreases the axial gradient in the melt; the latent

Tab T TR T R e TR

heat erfect disappears for small values of » .
(The effect of latent heat and the Peclet number effect described in

section 5.1 are coupled through their mutual dependence on the lowering

rate, V. In order to isolate the latent heat effect in Fig. 5.7 , Pe is
chosen sufficiently small so that eqg. [5.6] is satisfied. Such a small.
value for Pe would normally also eliminate the latent heat effect; i.e.,
eq. [5.12] would also be satisfied. The values of » in Fig. 5.7 were

obtained by choosing apprcpriately large values of Ryg.)
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2.5 ZINFINITE® CHAPGE LENGTH

When the charge is infinitely long, the temperature field of the
charge does not chanre during growth and, hence, the interface position
remains fixed. Figure 5.8 shows the progression of axial temperature
profiles as the charge is lowered from the hot zone to the cold zone for
charge lengths less then infinite. It can be seen that charge temperatures
are displaced toward the hot zone furnace tempecrature when most of the
charge is in the hot zone and vice-versa. Accordingly, to achieve ccnstant
interface position for non-infinite charge lengths, the nondimensional
solidification temperature, 64, must be reduced as éhe experiment éroceeds.
At constant 6j, the growth rate is greator than the lcwering rate while the
interface moves from the cold to the hot zone.

The contribution from the positive characteristic root, eq. (5.2], to
the solution of eq. [4.17] is normally small and is zero for an infinite
charge length. The charge thus appears infinite in length when the
contribution from the negative root also becomes small, i.e., for large
C . The temperature change within the hot or cold zore reaches
appro-imately 99% of its total value when explwpl | = 0.01. Using this as

a criterion for infinite length:

Cw =5/ W | (5.13]

where: Z;o = length of c¢l.irge within the hot or cold zcne for
- charge to acpear infinitely long.

If Pe* is small so that eq. [S5.8] is satisfied, the characteristic roots

are given by eq. {5.,7]. Substituting c<g. (5.7] into eg. [5.13]:
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Cop = ‘i‘ (m**)“”- [5.14]

which is a useful expression for determining C;” . Bquation (f.14] is in
agreement with the experimental results of Clyne [11] which suggest that
longer charges and higher Biot numbers tend to stabilize the interface
position (i.e., the growth rate is equal to the lowering rate).

Results from the one-dimensional numerical model of Riquet and
Durand [9] suggest that the growth and lowering rates are equal when the
length of charge within the hot and cold zones is about 1.5(Bi"1/2), This
result agrees well with eg. [5.14]; the difference in the constant
coefficient is attributed * the choice of critefia defining "infinite”
charge length.

When the charge ler; h is not infinite, appropriate boundary
conditions must be applied to the ends of the charge. For example, a solid

pull rod contacting the crucible at the bottom of the charge can be

it i L

approximated by treating it as a simple fin exchanging heat with the
environment. In this way, a Biot number can be calculated for the end
boundary condition. Appendix D describes a method to determine the end
boundary condition for some simple end geometries. The curves of Fig. 5.8
have been calculated using the same Biot number for the ends of the charge

as for the circumference.

2.6 CHARGE DIAMETER EFFECT

Any change in the charge diameter, D, affects the dimensionless
parameters Bi, Pe, $ , Ca,, gi , and A& . Further, changes in D may
alter the heat transfer coefficients between the furnace and charge as the

geometry of the furnace cavity changes. The effect of a change in D is

assessed by reevaluating the necessary parameters and then using the

.
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appropriate expressions for the axial gradient. In general, increases in D
may either increase or decrease the axial temperature gradient in the
gradient zone depending on the corresponding changes in the other
parameters.

As an illustrative example, consider a symmetric system of infinite
charge length. The appropriate expression for the axial temperature
gradient in the gradient zone is given by eq. (5.8]. Since, however,
changes in diameter are to be analyzed, it is more informative to compare
the axial gradients of eq. [5.8] based on tye dimensional axial

coordinate, Z:

9 ;_(5_9_"‘) = G _ -1 [5.15]
L \d2), D T Lg+D/B)™

Defining the variable:

vz /9] [5.16]
4D

Taking Lg as constant, edq. [5.15] shows that the dimensional axial
gradient, g, increases with D when ¥ is negative and vice-versa.
For an increase in D accompanied by a proportional increase in Dcr.

* increases

(i.e., & remains constant), egs. [4.7] and (4.14] show that Bi”
at most linearly with D (assuming that all other thermal parameters are
constant). Consequently (using eq. [5.161), Y is positive and the
dimensional axial gradient, gp, according to eq. [5.15]1, decreases as D

increases.

The crucible diameter may, on the other hand, remain constant as D
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increases. This occurs when increasing the charge diameter within a
constant diameter furnace cavity at the expense of the thickness of the
crucible. Fig. 5.9 shows the corresponding behavior of ¥ for various Bi
and K with & = 1.25. Accordingly, ¥ is either positive or negative
depending on the values of Bi and K; the axial gradient of eq. [5.15] may
therefore increase or decrease with an increase in D.

In summary, the effect of a change in charge diameter on the axial
temperature gradient at the growth interface shoﬁld be examined on a case

by case basis.
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8. THE TWO-DIMENSIONAL THERMAL MODEL

Thermal criteria for satisfactory Bridgman crystal growth include
requirements for the shape of the melting temperature isotherm (c.f.,
section 2.1.2). The one-dimensional model of Chapter 4 dces not permit
evaluation of the isotherm shape since it neglects radial temperature
variations in the charge. Therefore, a two-dimensional model of the
Bridgman growth system is developed in this chapter. Results from the two-
dimensional model are used in Chapter 7 in order to establish the causes of
radial temperature variations within the charge and to study their

dependence on the thermal parameters of the Btidgmaﬁ grbwth systemf

6.1 ITHE CONCENTIRIC EIN APPROACH

The present two-dimensional thermal model of vertical Bridgman growth
treats the entire system as a set of coaxizl fins. Radial temperature
variations are therefore accounted Zor by differences in the fin
temperatures at the same axial locaticn., The mod2l can thus be consicdered
a hybrid between a continuous description in the axial direction and a
finite difference description in the radial direction. This approach,
rather than a complete finite difference or finite element formulation, is

taken for several reasons:

(1) The primary objective of the two—~dimensional model is to
develop insight into the origin and behavior of radial
temperature gradients near the growth interface for the
purpose of ccntrolling the shape of this interface through
system design., The increased accuracy achievable using a

fine grid network in a finite difference or finite element
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model is not considered essential for this objective and,
furthermcre, does not appear warranted for systems for which
reliable thermal property data are not yet available. The
present model incorporates all the criti~al thermal effects;
it is expected, therefore, to be able to predict the radial
gradient behavior at least to first order approximations.
(By utilizing snough coaxial fins, the precent model should,
in principle, be as accurate as a finite.difference model.)

(2) The present model is easily implemented on the computer and
is a simple extensicn of the one-dimensional moving fin model
developed in Chapter 4.

(3) Even with tye simplifications inherent to the concentric fin
approach, the ~dded complexity of a two-dimensional
formulation necessitates the use of a computer to calculate
the two-dimensional temperature distribution of the charge.
The concentric fin model can be simplified, however, without
loss of pertinent information, to a point which permits

presentation of some relevant results in analytical form.

6.2 IHE DESCRIBING EQUATIONS FOR THE CONCENTRIC FIN MODEL

The factors of concern for the development of the concentric fin model
of the Bridgman growth system depicted in Figa. 2.2 are indicated in
Figs. 6.1 and 6.2. The two-dimensional thermal model incorporates the

following assumptions in addition to those described in Section 2.2.2:

(1) Radial temperature variations within the charge are accounted

for by modeling the charge as two radially distinct fins.
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The irner fin is a cylindef“%g’diameter Din and has an axial
temperature distribution Ti,(2). The outer fin is an annulus
of inner and outer diameters, Djn and D, and has an axial
temperature distribution Tgue(2). The diameter Dyn is chosen
so that the inner and outer fins have equal cross sectiocnal
area., The temperature of each charge fin is not considered a
function of radius. The difference in temperature between
Tin and Toyr is indicative of radial temperature variaticns
within the charge.
The crucible is modeled as a coaxial annular fin in contact
with the outer charge fin. The crucible fin temperature,
Ter(2), is not a function of radius.
As opposed to the corresponding assumption in the one-
dimensional model, the gradient zone is not adiabatic; i.e.,
hg # 0. This assumption is relaxed in the two-dimensional
model so that the effect of radial heat transfer between a
non-perfectly insulating gradient zone and the charge can be
studied.
The porticn of the furnace in the gradient zone is considered
to be an annulus of conductivity kg and cross sectional area
Ag located coaxially with the charge and cruciktle. The
temperature of the gradient zone annulus 1s assumed constant
in the radial directicn; its axial temperature distribution,
Tg(2), depends on its thermal interaction with the charge ond
crucible. Temperature boundary conditicns are used at the
ends of the gradient zone annulus and no heat loss 1s assumed

at its outer diameter. (This model of the gradient zone
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annujus was also used in section 4.4.4 in order to determine
the effect of a non-perfectly insulating gradient zone on the

axial temperature behavior of the charge.)

On the basis of the above assumptions, each of the concentric fins is
analogous to the moving thin rod treated by Carslaw and Jaeger [29];
eq. [4.1] (neglecting the transient term by virtue of the quasi-steady
assumption) therefore describes the axial temperéture distribution within
each fin. In the concentric £in model, the g" term of eq. (4.1] accounts
for the heat transfer between radially adjacent fins. . In Appendix F, this
radial heat transfer is approximated resulting in the following set of
coupled ordinary differential equations for the axial temperature

distribution of the fins:

£00 R L2 A0 Bun ) 7O 6.12
L8 R, 2% A ) AR 0 6.0
% i Pe“% Ay (B Bn- ) A(#-@,)=0  tea
% v As (Ber- B) = 0 6.14]

where: o, = 'lz ( Poot * Pin )
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where:

—< ¢0ut - ¢in >

Pe\oc= V3 fc? /k""'

Pe.,_,. = VD (fc?l/k)cr

The coefficients A3, Az, A3, A4, and Ag depend on the radial thermal

resistance between the conceatric fins. They are given by:

(6.2a]
Sl = JL“ =)
32
= (6.2b]
At T
Y
A, = (o) [6.2¢]
A e '
& Kjoe (85-1) ' A 2 \"a (6.2d)
| SBLW_ K\oc b (}"S-Z)

As= Ay K (82-1) (6. 2e]

RC-:,‘oc,

The fin equations for %t and @, have been added tc and subtracted
from one another in Appendix F in order to produce egs. [6.1a] and [6.1b]

for ¢M and ¢A respectively. Since the cross -actional areas of the inner
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and outer charge fins are equal, ¢,,, is interpreted as the mean cross
sectional temperature of the charge; gJA is a measure of the radial
temperature difference within the charge. Within the hot and cold zones,
the furnace temperature, P v is the temperature of the hot and cold heat
pipes, respectively, and eq. [6.1d] for the gradient zone annulus in not
needed. Within the gradient zone, ¢‘. is identified with ¢G(C) and
eq. [6.1d] has a0 Peclet term since the gradient zone annualus is

stationary.

6.d SQLUTION OF THE CONCENTRIC FIN FOUATICNS

The set of egs. [6.1] has cunstant coeffici-~ts if a separate set of
equations is mployed for each axial region of uniform thermal properties
and furnace bouxdary conditions. As in the one—dimensional model, four
such axial regions are present in the concentric £in model: the hot and
cold zones and the liquid and solid portions of the gradient zone. (It is
assumed that the growth interface is in the gradient zone.) The hot and
cold zones are there:i ~e described by egs. [6.1a], [6.1k] and [6.lc];
the two regions within the gradient zone include, in addition, eq. [6.1d1,
representing the gradient zone annulus.

The solution of egs. [6.1] within a particular axial regior is
described in many texts (e.g., (36,37.'. The system of p <econd order
differential equations can be changed to an equivalent system our 2p first

order differential equations by the definition:

@’ d @

= = (6.3]
dG

Performing this transformation and putting the result in matrix notation,
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egs. (6.1] become: 2 Y

é—x = PX+ F (6.4])

4
where: X ) .
o G
@y
Py |
x ¢cr ¢c!
B X = |%
%, 2;*
Pee T ‘8
h dL ‘ dd ) Per
(hot and cold zones i ¢/6 ]

(gradient zone)

(Variables in boldface denote matrices.) The elements of P and P are found
by direct substitution. In the gradient zone, P is an empty matrix

The solution to eq. {6.4] is of the form:

x= C'E‘ eW|C + CZEZewz;-b tee = CZPEZ'eszGf xP (6.5]

The values of w are commonly called the eigenvalues of the matrix P and the
values of B are commonly called the eigenvectors of P. The eigenvalues and
eigenvectors are easily found by standard computer subroutines. The
coefficients denoted by ¢ in eq. [6.5] are the unknown constants of
integration. Xp denotes the particular solution of eq. [6.4].

Equation [6.5] is written for each axial region. The hot and cold
zones each contribute six unknown constants of integration; the liquid and
solid parts of the gradient zone each centribute eight unknown constants of

integration. .ncre are, therefore, 28 unknown constants of integration
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which must be determined by using boundary conditions of (a) equality of
temperature and (b) continuity of flux between corresponding fins of
adjacent axial regions as well as (¢) heat transfer coefficients at the
ends of charges of finite length and (d) imposed temperature boundary
conditions at the ends of the gradient zone annulus. Application of the
boundary conditions results in a set of 28 simultanecus linear algebraic
equations whose unknowns are the required constants of integration. The

solution of these simultaneous equations is easily accomplished by standard

computer subroutines.

The solution of the fin equations requires a trial and error procedure
when the extent of each axial region is not initially known. For example,
the one-dimensional model of Chapter 4 shows that the interface location,
C( » and the interface temperature, 8; , are functionally related. When
8; is chor-n as the independent variable, C;_ must be found by iteration
(c.f., the analytical results of Appendix B). When Q is taken as the
independent variable, the location of the interface boundary conditions is
known a priori resulting in a direct solution for 95 as well as the entire
axial temperature distribution.

Figure 6.3 shows that the axial position of the growth interface in
the inner and outer charge fins is, in general, not the same; they are the
same only when the interface is flat. The correct application of the
concentric fin model requires that a separate set of egs. [6.1] be written
for the short region between the axial locations of the interface. In this
case, the interface temperature, 8., depends on the interface locations of

both the inner and outer charge fins, i, and G, respectively:
p)

¢, out
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- condations used in the concentric £in model.
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NSL,CL,M ) CL,WJ =0 (6.6]

Since this functional relationship is not known a priori, it is not

possible to choose initial values of éi)in and C(_‘wt which satisfy
eq. [6.6]; the solution therefore requires an iterative procedure. The
present section describes an approximate model of the interface which
precludes the use of a trial and error solution for the concentric fin
model.

The length of the region separating the inﬁerface in the inner and
outer charge fins is normally small since it is desired to have an
interface of small curvature. The present model neglects this axial region
and applies the boundary conditions of the interface at a single axial
location for each of the inner and outer charge fins. The axial location
of the interface is taken to be the location where the mean charge
temperature, ¢m r is equal tc the interface temperature, 9[ (see

Fig. 6.3). 1In this sense, the axial location where @

2 = 9& denotes an

"average" interface position (i.e., between the actual interface positions
of the inner and outer charge £ins). The value of ¢A at this location,
®,(G;)+ is indicative of the curvature of the interface.

The use of the above approximation for the interface boundary
condition permits the a priori choice of the "average' interface locaticn
and, therefore, the solution for the temperature field in the charge is not
a trial and error procedure. The approximation introduces no error if
Rg = 1 and PegRy = 0 or if the interface is flat. Otherwise, when the
interface curvature is small, the error should likewise be small and the
predictions or the present model concerning the radial temperature

variations in the charge are expected to be correct to a first-order
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approximation.

The interface flux boundary conditions, assuming that the melt/crystal
conductivity change and the generation of latent heat occur at the same

axial location in each of the charge fins, are:

Ry (d_:;,.l)l. = Pe Ry (%L [6.7a]
R, (%%)L _ (%L N [6.7b]
(gi_%[j’- - ( _j__?_c_r)s (6.7c]
(%}L - (d"%): (6.7a)

where the subscripts "L" and "S" refer to the melt and crystal side of the
interface, respectively. Equations [6.7] assume that the growth rate, R,

is equal to the lowering rate, V (see section 4.4.2).

6.5 THERMAL PARAMETERS OF THE CONCENTRIC FIN MODEL
The thermal parameters required by the concentric fin model are those

necessary for the one-dimensional moving fin model (see Table 4.1) and,

additionally, those listed in Table 6.1.

The figures of Fu and Wilcox [26] plot the shape of various isotherms

within the charge by the use of two~dimensional finite difference computer
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parameter defingi_tﬁion . camments

Big,s hP/ks | Bigy = Big,o/R
Rg,s kGAG/ksh Rg,L * Rg,s/Rx
Pecy VD( P cp/K) ¢y Pecr = Peg/Ru,s
M OWH

B; (Mal2)

Table 6.1: Thermal parameters of the concentric fin model, in addition
to those listed in Table 4.1.

solutions. Isotherm shapes taken from their paper a‘re‘ used in thisi section
in order to check the results of the present two—dimensional model.

In the figures which follow, the shape of an isotherm is indicated by
the axial distance between the location of th2 isotherm at the center of
the charge and the outer diameter of the charge and is denoted by Cd, .
C(‘, is scaled directly from the isotherm plots of Fu and Wilcox [26]1; the
representative axial location of each isotherm is taken to be the axial
location of the isotherm at the diameter Dijn (c.f., Fig. 6.2). The present
model predicts ¢, and &, as functions of {,. In Appendix G, Lg¢ is
related to ¢, and ¢, through egs. [G.2] and [G.5]:

4 2,

oY ————— {6.8]
bo = To it

The system modeled by Fu and Wilcox [26] has an adiabatic gradient
zone, infinite charge length, and does not include a crucible, generation
of latent heat, or change in thermal conductivity at the growth interface.

The results of the concentric fin wodel are therefore obtained using the
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following parameter values: § = 1, Rg = 1, Ry = 0, and an adiabatic
gradient zone. Four cases, each with different Biot or Peclet numbers, are
compared in the graphs of Fig. 6.4; the parameters tested are listed in
Table 6.2. It is seen tha“ there is good agreement between the results of
the two models. (The apparent scatter in the results taken from Fu and
Wilcox [26] is attributed to difficulty in scaling the values of &, from
their plotted isotherms.) It is therefore concluded that the present
concentric fin model of the charge predicts, at least to first-order

approximation, the correct two-dimensicnal thermal behavior of the charge.

.

$.7 IEST QF THE EFFECTIVE RIOT NUMBER

The effective Biot number, Bi**, is developed in Sections 4.2.2 and
4.2.3 in order to account for the effects of crucible conductivity and
thickness as well as radial temperature variations within the charge on the
axial temperature distribution of the charge. Section 4.6 provides a
partial verification of the effective Biot number concept by comparing the
one-dimensional results of this work, using Bi**, to the results of the
two-dimensional model of Fu and Wilcox [26]. This comparison, however,
included only the effects of radial temperature gradients within the charge
on Bi** since the model of Fu and Wilcox [26] does not provide for a
crucible. The present two-dimensional model can be used to verify the
quantitative accuracy of Bi**, including the effects of the crucible. For
this purpose, a symmetric system with Big = 0 and of infinite length is
used. The applicable relation for the axial temperature gradient in the

gradient zone from the one—dimensional results of Chapter 5 is eq. [5.8]:

G - d Bm - -1 (5.8]
L0 Mg (Bom)E
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dcf ‘ Adiabatic gradient zone:
Blea 10° -4
1o-8
Rg fop
Symmetric system except:
Biy®2
Bic 24
XGg l.O
>\H= )\c3 C@

© 0.5

'y

— concentric fin model
o .Fu and Wilcox

| .

! ="

t | !

| |

| $-005 |

I* |

hot zone l gradient cold zone
. zone
l +-0.10
+-0.15 o

Fic. 6.4b: Corparison of isotherm shares fram the results of the
Soncentric fin model and Fu and Wilcox [26]: Biy = 2.0, Bic = 4.0,
and Pe = 0.0.
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Adiabatic gradient zone:

. = - 4
| BWS 10 .
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| RG 210
-+0.10 .
, l Symmetric system except:
| Pe=0.4
1
": ng |.O )
F
’ l — concentric fin model.
| | 0 Fu and Wilcox
| - | N
!
_ l
-+-0.05
I
l gradient
hot zone zone cold zone

-+-0.10
‘ +-0.15
E
;
!
3
1
4
' Fiqg. 6.49: ;onpa.rison of isotherm shapes from the results of the
3 concentric fin model and Fu and Wilco:: [26]: Bi = 2.0 and

Pe = 0.4,

- 120 -

K R T At sy A e E RS e
Eara o sl o o T .




ORIZIN"L PRGE |18

OF FOUR GUALITY

Figure from ( ) i
Fu & Wilcox [26] | Big Bic l Pe
Fig. 4 004 0.4 0.0 J
Fig. 6.4a 5 ‘
Fig. 4 4.0 4.0 ‘ 0.0
Fig. 6.4b Fig. 5 2.0 4.0 0.0
Fig. 6.4c Fig. 7 2.0 2.0 0.4
Aﬁ = l.o 8 = loo
A“ = AG = Ca k = 0.0

Rg = 1.0
adiabatic gradient zcne

Table 6.2: Parameters used for comparing the results of‘
Fu and Wilcox [26] and the present concentric
fin model.

The system used in this comparison is further specified by taking A =1
and § = 1.25.

The axial gradient given by eq. [5.8] is compared in Table 6.3 to that
determined by the concentric fin model for several values of Bi and K. It
is seen that the agreement is excellent. It is concluded, therefore, that
Bi** is an accurate approximaticn for the effects of the crucible on the

heat exchange between the furnace and the charge.

6.8 EIGENVALUES OF THE CONCENTRIC FIN MODEL

The eigenvalues reflect, in a qualitative sense, the thermal
interactions among the fins which cauge their temperatures to equilibrate
in the axial direction. Larger eigenvalues suggest faster equilibration.
It is expected that the eigenvalues increase as the ratio of axial to

radial thermal resistance increases, As an illustrative example, consider
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crie-dimensional two~dimensional
ncuel model
Bi** 3Bn/ds
eqs. (4.7] @p/dl,
K and (4.14] eq. .5.8]
g _ﬂ
0.1 0.473 -0.407 -0.415 ;
0.3 0.684 -0.453 | -0.459 |
L.
1.0 0.660 -0.448 | -0.453
3.0 0.427 -0.395 = -0.397
10.0 0.183 -0.300 -0.299 '
!
0.1 0.103 -0.243 | -0.244
0.3 0.101 -0.241 -0.242
1.0 0.078 -0.219 -0.219
3.0 0.046 -0.177 -0.176
10.0 0.019 -0.120 -0.120
L
§ =1.25 ?Pe = 0.0
Rg = 1.0 Ay = 1.0
kg = 0.0 Ay ® A =@
adiabatic gradient zcone
Table 6.3: Testing the effect of the crucible on
Bi™ " by using the concentric fin model, 1




CRIGINAL Prgu
wac IS
OF POOR QuaLiTy

the mevirg fin model of Chapter 4; tne Biot niinber expresses the ratio of
axial to radial thermal resistance in this case. Equation (5.8] and
Fig. 5.2 show that as the Biot number increases, the significant
temperature difference in the model, 5@ - 8., , decreases more rapidly with
distance into the hot and cold zones.

As eq. [6.5] indicates, the eigenvalues only partially express the
thermal behavior of the concentric fins. The eigenvectors, E, and the
constants of integration, ¢, combine to determine the importance which eich
eigenvalue has for each of the fin temperatures. Nevertheless, a ;tudy of
the parametric behavior of the eigenvalues serves to emphasize the nature

of the thermal interactions occuring among the concentric fins.

6.8.1 Hot and Told Zones

By substituting a solution of the form:

o Co
6, | = |¢ wé
¢¢( C‘(.(

into egs. [6.1], the characteristic equation for the eigenvalues cf the hot

and cold zones is found to be:

(W ey =) P A w2 =2 -4.)

- AB(WZ— ?e\oc\ﬂ)(wz - .PC\“_W ‘Az)

- A (w?- Pemw)(wz- Pein e AA = 0 (6.10]
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Thie six roots ¢f equation [6.10] are the eigenvalues of the hot and cold
zones. By inspection of egs. [6.2] which define the coeificients Ay, A2,
A3, A4 and As, it is seen that the eigenvalues depend on four parameters:
&+ Kioer Bijoe and Pejpe.
When Pejoc = 0, eq. [6.10] becomes a cubic polynomial in w2 indicating
that the eigenvalues, in this case, appear in pairs of opposite sign. When
Pejoc # 0 but Kjoc = 1, it may be shown by direct substitution that the

eigenvalue pairs have the following form:
+ [6.11a]
W = Q< Pe‘oc ‘ ‘
W™ = -a (6.1.b]
where: a is a positive number

When Kjoe # 1, results suggest that the eigenvalue pairs aice separated by a

number whose magnitude is of the order Pejoc/Kjoc:

w' =a+€& Pe‘%/\(m [6.122]
W- T -a [6.12b)

where: & is of order unity

Since the Peclet number is typically small, it is appropriate to study the
behavior of the eigenvalue pairs assuming that Pe = 0: in this way, the
order of the characteristic equaticn, eg, (6.10], is halved.

Figure 6.5 illustrates the variation of the three eigenvalue pairs as
a function of § with Kjgc and Bijge as parameters. The lowest set of
curves is seen to vary greatly with Bijge. Further, the values of the

eigenvalues represented by the lowest set of curves is found to be clusely
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;
Q.01 Q.10 .O
(8-1)
Fig. 6.5a: Eigenvalues for the hot and cold zones, Pe = 0.0
and Bi = 0.01. :
4
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0.0l — —
0.0l 0.10 1.0

Fig. 6.5b: Eigenvalues for the hot and cold zones, Pe = 0.0
—%—_
and Bi1 = 0.1.
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(5-1)

Elgenvalues for the ot and cold ones, Fe = 0,0
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(&6-1)

Fig. 6.5d: CEicenvalues for the hot and celd zores, Fe = 0.0

and Bi = S.0.
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Wy =22 (B L‘\’:‘)\u (5.7]

(The largest difference between the eigenvalues predicted by eq. [(5.7] and
those in Fig. 6.5 is 26% at Kjoc = 0.2, § = 5 and Bijge * 5.0; the
difference decreases for smaller § and Bi.) These eigenvalues, therefore,
can be associated with the variation of the mean charge temperature and are
denoted by wp. As wpy increases, ¢“ tends to approach more rapidly the
temperature boundary conditions of the furnace.

The eigenvalues represented by the middle and upper set of curves in
Fig. 6.5, denoted by w] and wy respectively, are relatively insensitive to
Bijoce They do exhibit, however, a strong sensitivity to Kjgc and §,
parameters which describe the thermal interaction between the charge and
the crucible.

For the limiting case of § — 1, i.e,, no crucible, it is seen that
w] approaches a constant value (approximately 7.6) independent of § and
Kjoce This vaiue is therefore most easily identified with the thermal
characteristics of the charge alone. Results derived in section 7.2
indicate that radial temperature gradients in a charge without a crucible
attenuate at a rate proporticnal to exp(~7.63{). Thus, w), is indicative
of the rate of decay of ¢, for systems when & is small. The value of w»
is very much larger than either wj or wy for small values of § suggesting
that the crucible temperature eguilibrates rapidly with the temperature of
the oiLter charge fin.

A second limiting condition is that of large §. Figure 6.5 shows

that wo approaches the value of 7.6 as § increases; further, the approach

i
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to the limiting value takes place at smaller values of & as Kjoc
decreases. These facts suggest that the charge is, in this case,
minsulated” in the sense that heat transfer within the charge is much

better than that between the charge and the crucible.

6.8.2 Gradient Zope
The characteristic equation for the eigenvalues in the gradient zcne

is determined in a manner analogous to that used to develop eq. (6.10]:

(We- T w-A ) (w?- Pemw-Az)[(w‘- ?E'icw)(w‘f/*s) - Am‘]

= As(wl' ?e—\o.."") (wz" ?e,“w ) A’-) (wz - AS)

- A.(Wz-?e,%wmwz- %lﬁw)(w‘- As) - A‘w‘] =0

0. (6.13]
Bquation [6.13]1 is a polynomial of eighth order in w; there are therefore

eight eigenvalues in the gradient zone.

In eq. [6.13]1, the term of lowest order in w is the linear term:

-W ?e_'x{&_\é;ﬁi « A A, As] (6.14]

\oc

Since there is no term of order zero in w, one of the eigenvalues is zero.
Further, when Pejoc = 0, eg. [6.14] shows that the linear term disappears;
in this‘case, a second eigenvalue is zero. The solution for the fin
temperatures given by eq. [6.5] is valid only when there are no repeated
roots. When Pejoc = 0, the term which would include the second zero

eigenvalue is replaced by a term linear in G.
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The linear component of equation [6.5] in the gradient zone can be
demonstrated by multiplying eq. (6.1al by k1ocA/ eq. [6.1c] by kerAqr and
eq. [6.1d] by kgAg and then adding. With Pejoe - 0, the result is:

33 K.k\ocA¢m + ka A¢¢¢c,r * k@ A“¢"1 = 0 (6.15]

or: 0P 6.16]
a5 0
where:

P2 KeAdur kAt tko A2, (6.17]

kle * kaAu +k, Aa

# is interpreted as an average temperature of the
charge/crucible/gradient zone annulus combination. Bquation [6.15] results
in a linear variation in ¢7 within the gradient zone. The physical
interpretation is that there is only internal heat exchange between the
fins of the gradient zone; there is no external heat addition or removal to
the charge/crucible/gradient zone annulus combination by virtue of the
assumption that the gradient zone annulus is adiabatic at its outer
circumference. Therefore, neglecting Pe, the axial conduction of heat is
constant within the gradient zone. The definition of 5 as an average of
Dy ¢“ and ¢a weighted according to their respective axial heat
conducting capacities is demonstrated by eq. [6.15] to correctly express

the constant total axial heat transfer.
As occurs for the eigenvalues of the hot and cold zones, results show
that the eigenvalues of the gradient zone occur in pairs of opposite sign’
which are separated by a number whose order of magnitude is that of

Pejoc/Kiloc (c.f., eq. [6.12]). The partner of the zero eigenvalue
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therefore has a value of order of magnitude Pejoc. Since Pejge is
typically small, the exponential function of eq. [6.5] with this eigenvalue
is very nearly linear in the gradient zocne.

The additional fourth pair of eigenvalues introduced by the gradient
zone annulus within the gradient zone are associated with the rate of
equilibration of ¢a with é., An analytical expression for this
eigenvalue based on a symmetric, one-dimensiocnal system was developed in

section 4.4.4:

w2 {3l (R3]S oo

Table 6.4 compares the values of wg determined from the concentric fin
model and from eq. [6.18). The comparison is favorable, indicating that
this eigenvalue pair of the concentric fin model is correctly associated

with the rate of equilibration of ¢ and ¢M .

G

The eigenvalue pairs wj; and wp are shown in Section 6.8.1 to be
relatively insensitive to conditions external to the charge and crucible.
Table 6.5 demonstrates that the additional parameter introduced into
eqs. [6.1] by the gradient zone annulus, i.e., Rg, also has a second order

effect on these eigenvalues. Therefore, approximations for wj and wp of

the gradient zone may be obtained from Fig. 6.5.
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Rg,1loc

0.01 | 0.1 1.0 10.0

0.01 2.452 | .7908 | .2943 | .1810
2.010 | .6633 | .2828 | .2098

0.1 7.729 | 2.476 | .9218 | .5663

6.356 | 2.098 | .8944 | .6633

Big

1.0 23,22 | 7.601 | 2.653 | 1.644

21.10 | 6.63 | 2.828 | 2.098

10.0 43.34 | 14.25 | 3.967 | 2.742
44.94 | 14.83 | 6.325 | 4.690

key': wg from concentric fin model

Table 6.4: Comparison of wg determined from the concentric
fin model and from eq. [6.18]

Peg = 0.001

wg from eq. [6.18)

le = 1.0

133 -
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Rg,loc
0.01 | 0.1 1.0 10.0 1
0.01 9.635 | 9.635 | 9.635 | 9.635

4.838 | 4.837 | 4.837 | 4.837

0.1 9.641 | 9.637 | 9.637 | 9.637
4.824 | 4.859 | 4.854 | 4.853

1.0 9.631 | 9.686 | 9.657 | 9.656
4,828 | 4.729 | 5.054 | 5.009

10.0 9.631 | 9.577 | 9.741 | 9.718
4.827 | 4.763 | 6.255 | 5.569

key: w1

w2

Peg = 0.001 Kjoc = 1.0 Rg = 1.0

Table 6.5: The relationship of w; and w9 in the gradient zcne
to the parameters Big,joc and Rg,loc-
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Radial temperature variations near the growth interface are shown in

this chapter to result from several effects usually present in Bridgman
crystal growth. Systems with an adiabatic gradient zone, first studied by
Chang and Wilcox [17], addresses only one of these factors. The other
factors have not been adequately considered in the literature: non-
perfectly insulating gradient zone (hg # 0), and thermal conductivity
change and/or generation of latent heat at the growth interface in the
presence of a crucible. Computer solutions of the c.mcé.ntric fin model are
used to graphically illustrate the behavior of the radial temperature
variations under the influence of these factors. Special attention is
given, however, to the development of approximate analytical expressions
which serve to emphasize the functional dependence of the radial
temperature variations on the various system parameters.

The variable ¢, defined by the concentric fin model of Chapter 6, is
used to indicate the radial temperature variations within the charge.
The results for ¢A to be shown in the following sections are conveniently

approximated to the interface shape by the following relation developed in
Appendix G:

N = - = (92m/db) (711

o~ o,

where N is the radius of curvature of an isotherm in number of charge radii
at a particular axial location. (N is positive for an interface which is

concave toward the crystal as shown in Fig, 2.1.) Accordingly, the degree
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of flatness of isotherms is enhanced by large axial temperature gradients

(d# /4G) and sma.l radial temperature gradients (@, ).

Subtracting eq. (6.1b] from eq. (6.1a], and assuming that the Peclet

term is regligible (c.f., section 5.1), yields:
4y 8
— = =1 [7.2]

The particular solution of eq. (7.2], denoted by ¢°", may be solved by using

the appropriate Green's function:

GI(Z x\-‘-"-z—\— exp (-AF\&- x)) (7.3]

b

Using eq. (7.3], the particular solution of eq. [7.2] is:

\ 1
&)=~ \S.206 %C [3 1619( ? L31C-x1)dx (7.4

L

where the value of A2 given by eq. [6.2b] has been used, x is a dummy

variable of integration, and C,c_ and CH are the axial locations of the
cold and hot ends of the charge, respectively. (Nc:te that eq. [7.4] is not
the complete solution for c,‘)A’ since @, and d>A are not independent by
virtue of the coupled nature of the fin equations. Nevertheless, the

actual distributions for ¢P and ¢, must satisfy eq. (7.4].)

Az¢m/AZ;" is non-zero when the combined axial heat conduction within
the inner and outer charge fins is not constant with axial position; i.e.,

when there is heat addition to or removal from the charge. Equation [7.4],
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therefore, clearly demonstrates that radial temperature gradients within

the charge are caused by heat exchange between the charge and its

surroundings. Such heat exchange occurs:

1) if, in the idealized case of no crucible, there is a
difference between the temperatures of the outer charge fin
and the furnace, and the heat transfer coefficient between
them is not zero.

(2) if, when a crucible is present, there is a difference between

the temperatures of the crucible and the outer charge fin.

Equation [7.4] expresses d:Ap at a particular axial location as the
superposed effects of heat transfer to the charge along its entire length.
However, the effect of heat transfer to the charge at one location, x, on
the radial temperature gradient at another location, C , attenuates rapicly
with the d.stance between the two locations, being proportional to the
factor exp(-7.631 & - x1). For example, when | L - x! =1, the value of
this exponential function is 0.00049. Therefore, the radial variation in
temperature at the location { is primarily affected by heat exchange with
the charge within the range ([ *1 (i.e., one charge diameter to either

side of the given location).

2.1, Analysis of Radial T Yariations In the Gradient Z
The total solution for &, (G) includzs, in addition to eg. (7.4], the

homogeneous part of the soluticn:

by (0)=Ce 7?0 (@0 + @] (7.51
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Equatien (7.5] is applied separately to each region of the charge of
uniform properties; given the assumptions of the concentric fin model,
there are two such regions -- the liguid and the solid portions of the
charge. The coefficients C; and C; in eq. [7.5] are found by applying
boundary conditions at the ends of the charge and at the growth interface.,
Radial temperature variations near the growth interface are of primary
concern. Since the interface is assumed to be ir the gradient zone,
eq. [7.5] is applied, in the remainder of this chapter, only to the
gradient zone; i.e., -AG/Z $Z ¢ )\6/2 . It is also assumed that there is

at least one diameter of chirge in both the hot and cold zaries:

Gu <= (Ng/2+1) (7.6a)
o< (Ma/2+) [7.6b)

As noted earlier, heat exchange with the charge at distances greater than
about one diameter from the ends of the gradient zone contribute little to
the radial temperature variations in the gradient zone. Equations [7.6]
thus permit the limits of integration in eq. [7.5] to be contracted if
desired, and fu:cher, the effects of the boundary conditions at the ends of
the charge on ¢, can be neglected

When the solid and liquid thermal properties of the charge are equal,
i.e., Rg = 1, eq. [7.5] need be applied only once to the entire length of
the charge. The homogeneous part of the solution disappears under the
restrictions of eq. [7.6] and the total solution for ¢, (L) within the

gradienc zone becomes:
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Ce ,

where: 'AG/Z € C € >\C-/Z
Rg =)

When Rg # 1, eq. [7.5] must be applied separately to the liquid aind
solid portions of the charge using the following boundary conditions at the

growth interface:

[a(e)] = Lea(a)]s (7.8a)

A% G; B‘X K.Adn 531 [7.8b]
P (alsoeq. [6.7bl)

Applying these boundary conditions yields:

To(Qa)+Re-MT G - -
[.¢A(C5\L= 2 (c; (R\ DI () & Po3lGi=2) VI (7.9] |
where: ')\C./ZS [ < Z
LSl *ZR | - *
B’a(‘;)] -(Re-1)Is(5;) I.%) o 2.63(5-2:) LI o |

Re+ |

where:

CisCs NJ/2

The variables Iy (§) and Ig(& ) represent the respective contributions of

radial heat exchange with the liquid and solid portions of the charge to

M e

the value of ¢A at any axial location { within the gradient zone. They

are defined as follows:
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l G Td%b
I.(%)=- — &C v_‘&ex?( 2 631C-x1)dyx [7.11a]
L}

Is(§)=“_l"‘gc F""]ex‘;( 2.6312-x1)dx  (7.1181

S.26
) G d

The first term in each of egs. [7.9] and [7.10] represents a
contribution to ¢, (%) which is produced at the growth interface and which
attenuates with distance from the interface. This contribution is absent
when Rg = 1.

The value of ¢, at the interface, cpA (g;) » is determined from either

eq. [7.9] or eq. (7.10]:

@)+ R (20 ] [7.12]

¢A (C:) =

An attractive possibility for the quantitative utilization of egs.
[7.9] and [7.10] is to provide d2¢,/dL? from the results of one-
dimensional modeling; that is, to approximate d%¢,,[d&* with 4%B,./4C%. In
this way, a two-dimensional temperature distribution is obtained only
through these equations and a one-dimensional model. The error in @,
calculated in this manner would be due to approximations in (1) the one-
dimensional model which estimates d28,/d5G% and (2) the concentric fin
model which provides eq. [(7.2].

One-dimensional models do provide good approximations for the charge
mean temperature distribtuion, 8,(&) . Taking two derivatives of such a
distribution in order to obtain a good approximation for A’Ebm /4% is more

likely to be unreliable. Results presented later in this chapter, in fact,
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demonstrate that the presence of a crucible produces a distribution of
radial heat exchange with the charge which is not predicted by a one-
dimensional model; therefore, the use of Jiig/AQ‘ calculated from one-
dimensional models is not appropriate for use in egs. (7.1l1].
Nevertheless, even in these cases, the Green's function approach developed

in this section may be used to obtain a qualitative understanding of the

behavior of radial temperature variations within the charge.

Heat transfer to the charge in the hot zcne ané from the charéé in the
cold zone must occur so that the required axial temperature gradient at the
growth interface is obtained. Such heat exchange, according to the results
of section 7.1, produces radial temperature variations within the charge
which, even within an adiabatic gradient zone, influence the shape of the
growth interface.

Fu and Wilcox [26] studied the penetration of radial temperature
variations into an adiabatic gradient zone for systems without a crucible
through the use ¢f a two-dimensional finite difference model. Isotherm
shapes indicate, for various Bi and Pe, that radial temperature variations
within the charge in the hot and ccld zones attenuate rapidly from the ends
of the gradient zone. If the gradient zone is sufficiently long, there

exists a region within which the shape of isotherms is quite flat.

1,.2.1 Systems Without a Crucible

Figure 7.1 shows the variation of q% in an adiabatic gradient zone,
obtained by the concentric fin model of Chapter 6 for systems without a

crucible. (Note that the vertical sca.e of sig. 7.1 changes from
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Biy = 8ic -.

Pe = Q.01 1

RK= 1.Q .

RH= o] |

Adiabatic gradient zone s’
BiG=O.000| ) i
RG‘ 10-8 ]

$ =1.001 .

Ayt )\C= o

concentric fin
model

f 0 eqs.[79],(7.10],(7.14]

-1078F
1 L 1 1 l )
-5 0 .
hot end Z, in gradient zone coid end

Fig. 7.1: Variation of 95 in an adiabatic gradient
zone without a crucible., The svstem is svmmetric.
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logarithmic to linear at £ 1074 so that both negative and positive values
of ¢, may be plotted in the same figure.) Accordingly, it is seen that
".; attenuates at a rate approximately proportional to exp(=7.6 5* ) where
¥ is measured from the ends of the gradient zone. It is also seen that
#, in the gradient zone increases with the Biot number of the hot and cold
zones reflecting greater amounts of radial heat transfer to the charge in
these tones.

The variation of the radius of curvature of isotherms for the same
cases considered in Fig. 7.1 is shown in Fig. 7.2. These curves were
calculated using eq. [7.1] along with values of @, and d&, 4G determined
from the céncentric fin model. Accordingly, there is a central region of
the gradient zone where the isotherm shapes are Jquite flat. To obtain an
interface which is slightly concave toward the crystal, i.e., small but
vositive N~1, requires that the interface be located slightly to the hot
3ide of the center of the gradient zone. Also seen in Fig. 7.2 is that
isctherms are wmore curved as Bi increases. Therefore, for the parameter
values considered, increasing the Biot number of the hot :nd cold zones has
A greater etffect on increasing ¢, than upon increasing the axial
temperature gradient of the charge in the gradient zone.

The effect of unequal hot and ceold =one Riot numbers in an otherwise
symmetric system is shown in Fig. 7.3. As the hot cone Biot number
increases relative to the constant cold Zone Biot number, ¢, beccmes more
positive in the hot portion of the gradient :zone. In this region,
therefore, isotherm shapes become more cancave toward the crystal and the
location of the flat 13otherm shifts slightly toward the cold zone, The

effect of changing thermal conditions in the hot zone attenuates rapidly
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0.4 gum 2.5
0.3
0.2 5
0.l 10
| 20 .
N N
oF‘ B. B. s 8 ®)
Igs |
H c -
Pe = 0.00f 20
-OlF  Ry=10 -10
Ry=0
.02  Adiabatic gradient zone 4-5
Big=10"%
-8
Rg210
03F §=1.00
HE N = e
'04 L‘ 1 1 1 { 1 1 { ] | — '2.5
-5 0 .5
hot end G in gradient zone cold end
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considered in Figure 7.1.
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from the end of the hot zone and affects only slightly the radial
temperature variations near the cold end of the gradient zone.

Figure 7.4 shows the variation of d’A in systems which are symmetric
except Rg # 1. In the systems considered, the cold zone Biot number
remains constant; the hot zone Biot number therefore changes with Rg
(Big = Bic/Rg). As Rg increases, it is seen that @, in the hot part of
the gradient zone decreases whereas ¢, in the cold part of the gradient
zone is little affected. This behavior is similar to that of a changing
value of Big exhibited in Fig. 7.3. Further, a disturbance appears at the
interface which increases as Rg increases and which dies out with distance
from the interface. This disturbance represents the first term in egs.
(7.9] and [7.10] where it is shown that it appears only when Rg # 1.

An analytical expression for the variation of ¢, in an adiabatic
gradient zone may be obtained by using ©,, determined by the moving £in
model in order to approximate A"c#n/AC" in egs. (7.11]. The charge is
assumed infinite in length; in this case, ©mw is described by a simple
exponential function in both the hot and cold zones. Further, the Peclet
number is assumed small enough to satisfy eq. [5.6]; the argument for the

exponential function is then given by wp in eg. [5.7]. Hence:
hot zone: & S ")\C-/Z

QM(C) = |- D - Bal- >\e/2ﬂ QXPK.Z QEL:*Y{Z (Ca "'M/Zﬂ (7.13al

cold zone: 7 > N\ /2

B (Z) = B Nal2) exp 2 (BE*)* (N /2-Z)) [7.13b]

Substituting the second derivatives of egs. [7.13] into egs. [7.11] and
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noting that dzenléﬁl = 0 in the adiabatic gradient zone, yields:

B i- o al2)]
I.(%)= 382> +2(Bum)]

exﬂ- 263(Z+ )\(./2)1 [7.14a]

B Omlre/2)
Ls(e)= 3.82@.@52‘:(/;1:*)"‘] eXP{'%s(}‘G/ Z‘Cﬂ {7.140l

where: = A\, /2 €T € Mo /2

BEquaticn [7.14a] represents the effect of radial heat transfer between the
charge and the furnace in the hot zone on the radial temperature variations
in the gradient zone. The effect of the hot zone dies out exponentially
with distance from the hot end of the gradient zone at approximately the
same rate observed in Fig. 7.1. Equation [7.14b] has an analogous
interpretation with regard to heat transfer in the cold zone.

Substituting egs. [7.14] into egs. [7.9] and (7.10] producés the
desired approximation for ‘PA in the gradient zone due to actenuation of
radial gradients from the furnace zones. Evaluating egs. [7.14] at &= &;
and substituting the result into eq. [7.12] yields <, at the growth
interface.

The one-dimensiocnal results required by egs. [7.14] are the effective
Biot numbers and the mean charge temperatures at the hot and cold ends of
the gradient zone. For a system with Big = 0 and which has a negligible
Peclet number, the axial temperature gradient in the gradient zone, G, is
constant except for a step change at the growth interface. The
temperatures at the ends of the gradient zone are therefore approximated by

the following expressions:
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Ben(-2eal2 ) = B (Gi) = Gy* {Af zﬂ,gﬁurv (7.15a]
Om (Mal2) = O (i) * Gs- (ha/2-Gi) [7.15b]

where: Pe satisfies eq. [5.6]

Big = 0
-ral2 2l S Xg/2

The non-dimensional interface temperature, 8. , is given by eg. [B.10],
G, is given by eq. (B.3], and Gg is related to G, in eq. (4.25].

The circled points in Figs. 7.1, 7.3, and 7.4 indicate values of ¢A
calculated through the use of egs. [7.14]. The values of Gr, Gg and R
required by egs. [7.14] have peen calcula:ed using egs. [7.15] as described
above. It is seen that the values of ¢, obtained by the two methods agree
very closely indicating that the moving fin model provides a good
approximation for d%,/d&’ for the systems considered, i.e., those without a
crucible and with ar adizkatic gr»dient zone. The larcest difference occurs
for the largest value of Bi reflecting the slight decrease in accuracy of

the effective Biot number as Bi increases.

7.2.2 Systems With 3 _Crucible

The effects of the presence of a crucible on radial temperature
variations in an adiabatic gradient zone are shown in Figs. 7.5 and 7.6.
The systems examined are symmetric and infinite in length; Fig. 7.5
considers variable & (with K = 1) while Fig. 7.6 considers variable K
(with & = 1.5). The primary effects of the crucible are seen to be a
reduction in the value of ¢, at the ends of the gradient zone and a

reduction in the rate at which dDA attenuates toward the center of the
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gradient zone.

The reauction in the value of ¢, at the ends of the gradient zone
wien a crucible is present is arcributakle to the effect of the crucible on
the effactive Biot number, Bi**. In most cases, the presence of a crucible
decreases Bi** compared to a charge without a crucikle (c.f.,
section 4.2.2). A redurtion in the heat exchange between the charge and
furnace is therefore expected, resulting in decreased radi-~! temperature
variations within the charge. The individual curves of igs. 7.5 and 7.6,
labeled with their respective values of Bi**, cdemons rate the correlation
between ¢ (%)\./2) and Bi**,

The reduction in the rate of attenuation of ¢A when a crucible is
present results from radial heat exchange between the crucible and the
charge near the ends of the gradient zone. Such heat transfer occurs when
the crucible and the charge temperatures are not equal. i value of zero
for the local Biot number is no longer sufficient to eliminate hea“
transfer to the charge in the gradient zone.

The variation of (¢cf-¢m} near the hot end of the gradient zone, is
shewn in Fig. 7.7 for the case of & = 2 from Fig. 7.5. It is seen that
the difference in the crucible and charge temperatures created by heat
transfer in the hot zone furnace extends into the adiabatic gradient zone.
The resultant effect on radial heat exchange with the charge is indicated
by the distribution of A‘¢M/AC" in Fig. 7.8 (lower solid curve). It is
seen that Jz¢m /JC" is not zero in ‘he adiabatic gradient zone; the effect
of the crucible is to extend radial heat transfer taking place in the hot
zone into the gradient zone. Analysis of egs. [7.11] verifies that this
extension of radial heat exchange serves to decrease the apparent rate of

attenuation of ¢, at the ends of the gradient zone.
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Fig. 7.7: The distribution of tep - ¢ near the hot end of an adiabatic
gradient zone, calculated bv the concentric fin model.
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Assuming that the Pe term in egq. (4.17] is negligible, the one-

dimensiocnal moving fin model of Chapter 4 predicts:

d*Om
d&*

2 - '** -
4B (eF)\“ 8, ) [7.16]

Since Big = 0, the moving fin model predicts that d°6,,/dG* = 0 in an
adiabatic gradient zone, whether a crucible is present or not. The dashed
curve of Fig., 7.8 is the distribution of d%*8,/d&* determined from the
moving fin model. The moving fin model is unable to account for the
particular nature of radial heat transfer between i:he'charge and crucible
caused by the abrupt change in furnace boundary conditions at the ends of
the gradient zone. Although the error is of minor consequence in
calculating the distribution of 6y, results from the moving fin model, in
particular d°,/d&*, are inadaquate to describe the local variation of
radial heat transfer near the ends of an adiabatic gradient zone when a
crucible is present.

Table 7.1 compares values of ¢, at the end of the hot zone (i.e., at
Z =-'\.§= ~0.5) calculated by eq. [7.14al (i.e., with the use of the moving
fin model) and by the concentric f£in model for the cases shown in Figs. 7.5
and 7.6. It appears that eq. [7.14a] predicts well the qualitative trends
as K and & change as well as being, to a certain degree, quantitatively
accurate. This conclusion provides further evidence for the correlation
between Bi** and @, (tN,/2) noticed in Figs. 7.5 and 7.6. Such a
favorable comparison may seem, however, surprising in view of the
limitaticns in the moving fin model discussed in the preceeding paragraph.

This apparent anomoly is explained by a closer examination of the
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moving fin model by (-Aal2)
Kloc S Bi** dBm/dL | Bm ("s\f) eq. (7.l4a) °‘f”£ﬁe¥&§§é§
1.0 1.001 0.471 -0.407 0.703 0.00407 0.00407
1.0 1.5 0.291 -0.350 0.675 0.00284 0.00263
1.0 2.0 0.205 -0.312 C.656 0.00216 0.00193
1.0 5.0 0.0619 | -0.199 0.600 0.000797 0.000683
0.25 | 1.5 0.357 -0.374 0.687 |- 0.00331 0.00318
0.50 | 1.5 0.356 -0.374 0.687 0.00331 0.00310
2.0 1.5 0.200 -0.309 0.654 0.00212 0.00197
4.0 1.5 0.121 -0.258 0.629 0.00141 0.00132

Bi = Bic = Big = 0.5
Symmetric system
Ag = 1.0
A= A = Co
Table 7.1: Comparison of eg. [7.14] and the concentric fin model to

predict @, at the end of the gradient zone. The systems are
those examined in Figs. 7.5 and 7.6

distributions of d°B,,/d0* and d%¢,/dT} shown in Fig. 7.8.

The abrupt change in 42 9,.,./,:1(,z predicted by the moving fin model at the
end of the gradient zone becomes smoothed out in the distribution of azém [4G?
given by the concentric fin model. The moving fin model overpredicts the
radial heat transfer to the charge in the hot zone while underpredicting
this heat transfer in the gradient zone. The overpredicted heat transfer

in the hot zone contributes to ¢A while the lack of heat transfer in
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the gradient zone reduces d?_} ; if the effects of the two errors in
A"B“/AE,‘ approximately balance, the moving fin model provides a good
estimation of 4’5(’ J.\f.'\) The balance of the two errors is illustrated by the
dotted curve in Fig. 7.8 which is plotted by reflecting the section of the
curve for qubn/a;" labeled "a" about the axial location [ =-5=-),/2
and adding to the section of the same curve labeled "b"., If the
distribution of d%6m/d4* calculated by the moving fin model was “o exactly
match the dotted curve, the value of 454(-)‘0/2.) from eq. (7.14a] would
‘equal that given by the concentric fin model. Figure 7.8 shows that these
curves, while not exactly coinciding, are nevertheless close. Therefore,
the use of the moving fin model approximation for Jz¢~/¢l;‘can be expected

to provide a reascnable estimate of ¢, at the end of an adiabatic gradient

zone. Table 7.1 indicates that this conclusion is valid at least over the

range of K and & examined.

The axial temperature gradient in the charge, d% /d% » must undergo an
abrupt change at the growth interface when PegRy # 0 or when Rg # 1. (c.f.,
eq. [6.7al). The axial gradient in the crucible, on the other hand, does
not change at the growth interface. Figure 7.9 shows that such conditions
produce a difference between the charge and crucible temperatures at the
interface which diminishes with distance from the interface. The exchange
of heat between the charge and the crucible which results from this
temperature difference has a profound effect on the distribution of @, in
the vicinity of the interface.

Figure 7.10 shows the variation cf ¢A in an adiabatic gradient zone

for systems which are symmetric except Rg # 1. The presence of a crucible
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Fig. 7.9: Crucible and mean charge temperature distrikutions
mear the interface when Rg # 1 and/or PesRy # O.
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is indicated by a value of 1.5 for the diameter ratio &. As Rg increases,
it is seen that the distribution of ¢A , and more importantly, the value
of ¢A at the interface, becomes more negative, causing isotherm shapes
to be curved in the adverse direction (concave toward the melt)., Even a
small difference in melt and crystal thermal conductivities (e.g., Rg = l.l
in Fig. 7.10) has a pronounced effect on &, (&;) .

Values of Rg greater than unity, being typical of semiconductors, have

been considered in Fig. 7.10. The variation of ¢, which occurs when Ry is

less than unity is similar to that shown in Fig. 7.10 except that the
3 curves would be displaced toward more positive valuesb of N comi:ared to
A the symmetric case of Rg = 1.

The effect of the generation of latent heat at the growth interface on
¢, in the gradient zone is shown in Fig. 7.11. The systems considered are
symmetric except that PegRy # 0. It is seen that as Ry increases, cﬁa(c;)
becomes more negative, similar to the effect of Rg > 1 shown in Fig. 7.10.

Although the curves of Fig. 7.11 are plotted with Ry as a parameter,
it must be noted that the effect of the generation of latent heat is

proportional to the product PegRy. The curves of Fig. 7.11 may also be

bl i

interpreted as indicating the effects of changing Pe with a constant value
of Rg. The value of Peg = 0.05 used in Fig. 7.11 has been chosen so that
; PegRy would be sufficiently large to have an effect on ¢, for typical
values of Ry.

The generation of radial gradients at the interface is due to the
presence of a crucible. Figure 7.12 shows the effect of the crucible
diameter ratio, § , on ¢A(I;) for systems which are symmetric except

Rg = 2, Accordingly, very thin crucibles are required to eliminate the

et g
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Figure 7.13 shows the effect of changing the location of the interface
on the distribution of @, in the adiabatic gradient zone for systems which
are symmetric except that Rg = 2, As the interface approaches the hot
zone, the value of ¢, at the interface becomes more positive due to the
influence of radial temperature variations created i.1 the hot zone (see
section 7.2). For the systems considered in Fig. 7.13, however, the
dominant factor is clearly the conductivity change at the interface. In
general, the importance of radial temperature variations generated at the

interface depends on their relative magnitude compared to radial

temperature variations created by other effects.

1.3.1 Ihe Two-Fin Thermal Model

In order to obtain from the results of secticn 7.1 a useful analytical
relation which expresses the primary effects of the thermal parameters on
the radial temperature variations near the growth interface, 2 simple and
accurate analytical expression for éﬁﬁ“/éﬁz' is necessary. Radial heat
exchange between the charge and crucible in the vicinity of the interface
is not accounted for in the one-dimensiocnal moving fin model; approximating
d*¢,,/dL* by d*8,,/d52, therefore, is not accurate near the interface when
a crucible is present. The concentric fin model is too complex to yield a
simple analytical solution for Aﬂa,/aa‘ . The present section describes a
thermal model of the heat transfer rear the interface which provides a
simple approximation for d%¢,/dG%.

The new thermal model is equivalent to the concentric fin model

described in Chapter 6 except for the following:

(1) The charge is modeled as a single fin as shown in Fig. 7.14.
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Since there are only two concentric fins -- the charge and
the crucible - the present thermal model is called the "two-
fin" thermal model. The representative radial location for
the charge temperature is taken as Din/2, defined in Fig.
6.2, since this location 3divides the charge ecually with
tegard to its cross sectional area. The representative
radial location for the crucible temperature is again D3/2
(c.f., Fig 6.2).

(2) The Peclet number is assumed negligible.

(3) The gradient zone is assumed adiabatic; honce, trie gradient
zone annulus is neglected.

(4) Only the region in the vicinity of the in‘erface i: modeled.
This region extends from the interface, in either direction,
at least the distance required for the interface effect to
significantly die out. The effect of the remainder of the
growth system is included only through imposing the average
crarge/crucible axial temperature gradients in the gradient
zone, Gr, and Gg in the solid and liquid respectively. These
parameters are obtained from the one—dimensional moving fin
model. Radial temperature gradients generated by other

factors are neglected.

In accordance with the assumptions listed above, the fin equations ror

the charge and crucible are:

ézTCr "‘-- ‘T(.r
h"A"Az‘ . R"‘ =0 (7.17])

Mc.r’\cc
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l’(,w_A 42t

(7.18]

=0
Rmer, loc

The thermal resistance, Rpcr,locr Which defines the thermal coupling
between the crucible and the charge, is given by [30]:

R = iz . Q,“ki?:_‘)\lz 17.19]
merloe T 2wk, 2T Rer

Define the following nun=dimensional temperatures:

— ¢ Cr Tev l
P = Bioc A fn * By Aer [7.20a]

- h\ogA+ k(.f Acf

Puer = P~ 2. [7.20b]

-

¢ is the average charge/crucible temperature weighted by their respective
axial thermal condictances. Using egs. (7.191 and [7.20] in egs. [7.17]

and [7.18], and nondimensionalizing, results in the following form for the

two-fin model fin equations:

3

-IZ? =0 [7.21]
2

S Gmer _ WA =0 (7.22]
dG? loe Vmer

t 8D . —\'(‘oc\(sz“\-\ (7.23]

loc ! z 2
Ry ap— _S_*_L\
Z« < Q‘( 5
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Equation [7.21] indicates that ¢ varies linearly in the gradient zone
under the present assumptions. This conclusion is also obtained in section
4.4.3 where the axial gradient of 5 is also denoted by Gp, and Gg in the
liquid and solid respectively. Section 4.4.3 also explains that the axial
temperature gradients in the gradient zone predicted by the moving fin
model should be intervreted as Gy, and Gg. The present two=-fin model
therefore assumes that Gy, and Gg are known a priori from the results of the
moving fin model.

The solution of eq. [7.22] is:

in the liquid: & <5
(¢"">° )L= C\LexP[—W\.(Ci't‘ﬂ N CzLexP[WL(Ci'Cﬂ [7.24al

in the solid: [ > C;

K.Cbm,r.fjs = (isexp Lwe (8-0)] + Cos explwsia-a)]  17.240

where the coefficients denoted by C are the unknown constants of
integration.
The assumptions of the two-fin model require that cpm “—’O as
}

[+ ; therefore, Cj; = C2s = 0. Continuity of temperature at the

’

interface requires (cbm"_rk: (d’m,cr>s ; therefore Cpp = Cjg. Finally,
continuity of flux in the crucible fin at the interface requires

(“\%,/JC)L-'-‘ (é¢c,/éﬁ)s; this boundary condition yields:

GL." C‘ls
- - 7.25
Cis=Ca Ws Re W 7231

[+ K. (55-1) | Re+Ke(52-)
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The difference between Gp, and Gg is found from eq. [4.25]:

_ PesRu= Gu(Re-Y) [7.26)
QL= Gs= TR

Substituting these results into egs. (7.24] produces the solution for

¢m)°r
(Cbmaw\‘_’ C exP \._- W (Q; -C')-l [7.27a]
(ctm,c.r g - C— 6)(?1- W (C,.- L;)‘l [7.27b]
wheres

p€’—s Ru-G L(Rv\x . -\
Ws N Rg\A/L \ =+ KS (Sz‘l)
L +K(8%1) R+ Ke(8*-1)

C=

(7.28]

The constant C defined by eq. [7.28] includes in the numerator the
superposed effects of the generation of latent heat and the change in
charge thermal conductivity at the interface. The axial gradient in the
liquid, G, is always negative; if Rg > 1, as is typical of semiconductors,
these two effects reinforce each other, causing a larger disturbance at the
interface than would occur by either effect acting alone. On the other
hand, if Rg < 1, it may be possible to eliminate the interface effect by
choosing a value for the product PegRy that would make the numerator of eq.
{7.28]1 equal to zero., This could be accomplished by changing either the
lowering rate (thus changing Peg) or the temperature difference between the
hot and cold zone furnaces (thus changing Rg). Either possibility,
however, has potentially harmful side effects on the constitutional

supercooling requirement.
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7.3.2 Radial " ariati he . c
Substituting egs. (7.27] into the nondimensional form of eqg. [7.18]
yields an expression for :E#M /AGZ due to the heat exchange between the

charge and the crucible near the interface:

‘Az¢m‘\ _ WLKs(Sz-” -'. o, )
\.&E" L R Ks(sm) Cexp Lwelerg \-\ (7.29a]

B;: L - \w: T(:((S;_\?\ C expl-ws (6-44)) (7.29b]

Using egs. [7.29] in egs. (7.11] and [7.12] produces the value of 4543 at the

interface due to the interface effect:

2 2 1t
¢A(.413 = C Ks($2-1) &Ws/(ws*?. b3) \EI\W:,*?-OS)R‘\J [7.30]

TF6> Rl |TKe(ED  Res Kl

The value of ¢, at the interface determined by eq. [7.30] is compared
to the results shown previously in Figs. 7.10 to 7.13 in Table 7.2. In
general, the comparison is favorable, indicating that the two-fin model
provides a reasonable approximation for A"¢M /d5* in the vicinity of the
interface. The largest differences occur for those cases which consider
effects not included in the two-fin model. For example, the cases
considered in Fig. 7.11 use a larger Peclet number, 0.05, compared to that
used for the other figures, 0.001, in order to accentuate the liberation of
latent heat. The effect of the larger Peclet number, not included in the
two-fin mod>l, is to create a more negative value of &, (Z;) .

A difference between eq. [7.30] and the results from the concentric fin

model is also apparent for the cases of small § considered in Fig. 7.12.
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$a (G:)
eq. [7.30] plus
variable concentric attenuation effect
Figure | parameter fin model eq. (7.30] from eq. (7.9],
(7.101, and (7.14]
7.10 Rg = 1.0 .000000 .000000 .000000
1.1 -.000493 -.000464 -.000464
1.25 -.00110 -.00114 -.00114
1.5 -.00186 -.00176 -.00175
2.0 -.00274 -.00261 -.00260
4.0 -.00343 -.00330 -.00329
7.11 Ry = 0.0 -.000023 .000000 .000000
0.25 -.000219 -.000179 -.000179
0.5 -.000416 -.000358 -.000360
1.0 -.000810 -.000716 -.000720.
2.0 -.00160 -.00143 -.00144
7.12 S = 1.0001 ~.000021 -.000002 -.000021
1.001 -.000040 -.000021 -.000039
1.01 -.000214 -.000183 -,000201
1.05 -.000818 -.000730 -.000744
1.1 -.00136 -.00122 -.00123
1.25 -.00227 -.00207 -.00207
1.5 -.00274 -.00261 -.00260
7.13 g, = 0.0 -.00274 -.00261 -.00260
-G.1 -.00245 -.00258 -.00248
-0.2 -.00210 -.00254 -.00231
-0.3 -.00166 -.00252 -.00200
0.4 -.00108 -.00249

-.00138

The values of Gy and

8

eqs. (7.14] and [7.30] are listed in Tables 7.3 and 7.4.

required for use in

Table 7.2: Comparison of the approximate methods of calculating ¢5(QQ

to results of the concentric fin model for the cases

considered in Figs. 7.10 to 7.13.
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This error is attributable to the neglect by the two-fin model of radial
gradients generated in the furnace zones. In order to include an
approximation of the attenuation effect, the value of @, (4;) determined by
cgs. (7.9], (7.10], and [7.14] is simply added to that determined by eq.
(7.30]. The results of this approximation, shown in the last column of
Table 7.2, are seen to improve the estimation of ¢°(§;) for small values of
$. As § increases, the contribution to ¢, (3;) due to the attenuation
effect becomes less important than the radial gfadients generated at the
interface.

Table 7.2 also demonstrates that eq. [7.30] is unable to account for
the effects of the changing interface location on ¢A(C;). This error is
again attributable to the relative importance at the interface of radial
gradients generated in the hot and cold zones compared to those generated
at the interface. As the interface approaches the end of the gradient
zone, the influence of radial gradients generated in the adjacent furnace
zone becomes increasingly important.

The last column of Table 7.2 also provides an approximation for the
effect of changing interface location on ¢A(C;) . This correction to
eq. 17.30] has been calculated assuming that the radial gradients generated
in the hot and cold zones attenuate at a rate proportional to exp(~7.63%).
The actual rate of attenuation is, however, smaller when a crucible is
present (c.f., section 7.2). It is expected that use of the actual rate of
attenuation would produce a better correction to eg. [7.30] for the effect
of changing interface location. Unfortunately, a simple analytical
expression for the attenuaticn of d>A from the ends of the gradient zone

in the presence of a crucible is not available.
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7.3.3 C : he Axial T cradi In the Liquid At T
Growth Inferface
The moving fin model predicts the value of G, =dg_/4g for the

axial temperature gradient in the liquid at the interface. The
constitutional supercooling requirement, however, depends on the value of
@‘PM/JC)L at the interface. The difference between these temperature
gradients can be approximated from the results of the two-fin model.

Differentiating egs. [7.20] with respect to & and solving for cld’n(;;)/AC

yields:
TM} = G + Ke(81) KM@] | (7,311
\_ AC L - RK*'Ks(Sz-Q A‘; w

Differentiating eq. [7.27a] with respect to C and substituting into
eq. [7.31] yields:

MX = KS(SI") W, (7.32]
K ST S Ay C

The second term on the right side of eq. [7.32] is a correction to be
applied to Gy, in order to account for the effect of radial heat transfer
near the interface on the axial gradient in the charge at the interface.
The axial temperature gradient in the liquid at the interface
calculated by the moving fin model, Gr,, and by eq. (7.32] are compared to
results from the concentric fin model in Table 7.3 for the cases considered
in Figs. 7.10 to 7.13. It is seen that ed. [7.32] provides an excellent
approximation to —‘éct,n(‘;;)/&ﬂ\_ even though the correction term may be

significant (e.g., large Rg or large Ry). The approximation is most in
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axial temperature gradient in the
liquid at the grcwth interface
moviTg T
variable concentric model
Figure | parameter fin model G, eq. (7.32]
7.10 Rg = 1.0 -.351 -.350 -.350
1.1 -.332 -.340 -.332
1.25 -.308 -.326 -.307
1.5 -.275 -.306 -.275
2.0 -,228 -.272 -.228
4.0 -.140 -.190 -.140
7.11 Rg = 0.0 -,351 -.350 -.350
0.%5 -.344 -.348 -.344
0.5 -.338 -.345 ) -.338
1.0 -.325 -.339 -.325
2.0 -.300 -.328 -.300
7.12 = 1,0001 -.251 -.252 -.252
1.001 -.251 -.252 -.252
1.01 -.251 -.252 -.251
1.05 -.249 -.256 -.249
1.1 -.247 -.260 -.246
1.25 -.240 -.267 -.239
1.5 -.228 -.272 -.228
7.13 = 0.0 -.228 -.272 -.228
-0.1 -.225 -.269 -.225
-0.2 -.222 -.266 -.223
-0.3 -.217 -.262 -.220
-0.4 -.211 -.260 -.217

Table 7.3: Comparison of the approximate methods of calculating A¢%JCQHC
to results of the concentric fin model for the cases

considered in Figs. 7.10 to 7.13.
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error as the interface approaches the hot zone (c.f., Q'- = -0.,3, -0.4 in
Fig. 7.13) due to the additional influence of radial heat transier in the

hot zone.

Z.3.4 Correction To the Tnterface Temperature

The moving fin model predicts for the interface temperature the
average charge/crucible temperature; i.e., B: is interpreted as 5(4;) .
The difference between & (G;) and @, (G;) found by the two-fin model may be
used as a simple correction to the value of B(, found by the moving fin

model:

Bi- & (5) = Y_J;(C:)‘ P (C;)‘l (7.33]

Rearranging egs. (7.20] yields:

~Kg($2-1)
(8- dmizd)] = RK:KS(\SZ_‘) P e (G0 BCED

- K (St
[$(Z,;) = 43». &'ﬂs = |+ Ks((sz\i\) ¢m,cr (Cﬂ) (7.54b)

Since both ¢, .(3;) and @, (5;) have the same value in the liquid and solid
at the interface, egs. [7.34] imply that 51_(?;;) # 55(4,-) ; that is, the
two~fin model predicts a step change in 5 at the interface. This is due
to the definition of ¢ which averages the charge and crucible
temperatures according to their respective axial thermal conductances.
Since the moving fin model neglects the temperature difference between ¢,
and ¢_., it does not predict this step change in 5 at the interface.

In order to approximate the effect of radial heat transfer near the

interface on the interface temperature, the correction term within brackets
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in eq. (7.33] is taken simply as the arithmetic average of egs. [7.34al] and
(7.34bl. Using eq. (7.27] evaluated at & = 3; yields:

Ve ga bl KD | Ke(sr) )
¢M((;|) e\,"’ 2. CU"‘KS(SL"l) R;*KS(S"-\) J {7.35]

The interface temperature determined by eq. (7.35] is compared to that
found from the concentric and moving fi~ models in Table 7.4 for the cases
considered in Figs. 7.10 to 7.13. It is seen that the moving fin model,
provides a reasonable estimation to the interface temperature, e:
without the correction afforded by eq. [7.35]; thi.s ihdicates that radial
heat transfer at the interface between the charge and the crucible has a
relatively small effect on the interface temperature or location.
Utilizing the corresponding values of Gy, listed in Table 7.3, the moving
fin model would mislocate the interface by at most 0.1 charge diameter for
the cases considered (c.f., Rg = 4 from Fig. 7.10). Results calculated
from eq. (7.35], however, compare yet more favorably to those of the
concentric fin model.

The largest errors in the estimate of the interface temperature
considered by Table 7.4 are attributable to the larger Peclet number used
in the cases of Fig. 7.11. Calculating 9£ through the use of the non-
zero Peclet number relation, eq. [B.8], increases the accuracy of
eq. {7.35]; for the cases considered by Fig 7.11, the difference
between 9(. calculated in this way and by the concentric fin medel is no

more than one digit in the third significant figure.

- 176 -



g CRTINAYL T
5 OF "GO UALITY
temperature of the growth interface
variable concentric moving fin
Figure | parameter fin model model eq. (7.35]
(Pe = Q)
7.10 Rg = 1.0 .500 .500 .500
1.1 .509 .507 .509
1 1.25 .522 .518 .522
1.5 .540 .534 .540
2.0 .570 .561 572
4.0 .648 .634 .651
7.11 Rg = 0.0 .517 .500 .500
0.25 .522 .504 .505
0.5 .527 .508 . .509
1.0 .536 .516 .519
2.0 .554 .532 .537
7.12 S = 1.0001 .619 .619 .619
1.001 .619 .618 .618
1.0 .617 .617 .617
1.05 .610 .610 .611
1.1 .603 .602 .604
1.25 .587 .584 .588
1.5 570 .561 572
7.13 &, = 0.0 .570 .561 .572
-0.1 .602 .593 .604
-0.2 .633 .624 .635
-0.3 .664 .655 .665
~0.4 .693 .685 .695

The values of Gy required for use in egs. [7.35] are

listed in Table 7.3.

Table 7.4: Comparison of the approximate methods of calculating GL
to results of the concentric fin model for the cases

considered in Figs. 7.10 to 7.13.
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Two additional parameters are required by the concentric f£in model
when heat transfer in the gradient zone is considered: Big and Rg. The
Biot number in the gradient zone, Big, indicates the thermal coupling
between the gradient zone annulus and the charge. Rg is the ratio of the
axial heat conducting capacities of the gradient zone annulus and the
charge (c.f., egs. [6.2]). The one-dimensicnal model of a diabatic
gradient zone developed in section 4.4.4 shows that the gradient zone
approaches abiadatic conditions as either Big or Rg approaches zero.
Otherwise, the temperature difference between the gradient zone annulus and
the charge ( ¢, - ¢, ) produces heat transfer which affects axial
temperature gradients and also, as shown in this section, radial

temperature gradients within the charge.

7.4.1 Results From the Concentric Fin Model

Figures 7.15a, 7.15b, and 7.15c show the variation of ¢, in a
diabatic gradient zone as calculated by the concentric fin model. The
systems in these figures are symmetric and do not consider a crucible.
Since the systems are symmetric, the curves have been plotted only for the
hot side of the gradient zone. Each figure considers a constant Biot
number throughout the furnace while the separate curves in each figure
consider various values of Rg. The graphs inserted in each figure are
axial temperature distributions of ¢, and d’c; corresponding to the
individual curves of <;t>A . As a reference, the distribution of Q in an
adiabatic gradient zone (i.e., Big = 0) is also included in each figure.

According to Figs. 7.15, the value of Rg significantly affects the

distribution of ¢, in the gradient zone. When Rg is small, heat exchange
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A G‘ 1.0
XH s XC' C@

‘0‘2 .-__

0
hot end center

[ in gradient
zone

Fig. 7.15a: 01, %y and dg in a diabatic gradient zone with ro
crucibie and 4 svmmetric system: Bi = 0.05.
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Fig, 7.15b: 9, ¢y and oz in a diabatic gradient zone with no
crucible and a svmmetric svstem: Bi = 0,5.
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1 1

hot end

G in gradient
zone

insa——

0
center

Fig, 7.15¢c: ., by and ¢ in a diaba%ic gradient zone with no
crucible and a symmetric svstem: Bi = 5.0.
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between the charge and the gradient zone annulus occurs only near the ends
of the gradient zone; toward the center of the gradient zone 656 is nearly
equal to ®,. In such cases, the distribution of ¢A is only slightly
altered from that in the corresponding system with a. adiabatic gradient
zone. As Rg increases, the temperature difference d’c, - ¢, is more
pronounced and increases the radial heat transfer to the charge; s a
consequence, g% increases as well. For sufficiently large values of Rg,
CPG is approximately linear; further increases in Rg do not affect
either c% - cpm or Ac% but serve only to conduct more heat from the hot to
the cold zone furnaces through the gradient zone annulus.

Figure 7.16 demonstrates the effect of increasing Big for systems
which have a linear vanation of <I>Q «>. <alculated by the concentric fin
model. A linear variation of <¢’q has been obtained by choosing a large
value of Rg (i.e., Rg=100\,. 1Increasing Big has a slight effect on the

axial temperature distritution in the gradient zone, tending to reduce tt.2

driving force for radial heat transfer in the gradient zone, ¢c: -cpm .
This effect, however, is more than offset by the augmented thermal coupling
between the charge and gradient zone annulus represented by the larger
value of Big. As shown in Fig. 7.16, the result is that ¢, increases with
Big. The curve for Big = 5 shows, for example, that qbA increases, rather
than attenuates, from the end of the gradient zone when the gradient zone
Biot number is greater than that in the furnace zones.

1 Figure 7.17 shows that the effect of heat transfer in the gradient
zone when a crucible is present is similar to those systems examined above
without a crucible. (The system conside:ed in Fig. 7.17 is analogous to

that of Fig. 7.15b except for the presence of a crucible.)
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BiG=5.O

[ond N .
-5 0
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{. in gradient o @
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_‘5

Fig, 7.16: 9:, 3y and jn in a diabatic gradient zore for
increasing Biz. No cruciblz, svmmetric svstem ana
linear ¢g.
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>\G= 1.0

>\H3 XCs Cd)

hot end center
C in gradient
zone

Fig. 7.17: oa, ¢q and ¢ in a diabatic gradient zone with a
crucinle. The other parameters are the same x4s those used in
Figure 7.15b.
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Gradient Zone

The effect of radial heat exchange between the furnace and the charge
on the value of 4% at a particular axial location is described by
eq. (7.4]. Analytical expressions for the effects of radial temperature
gradients created in the hot and cold zones and at the growth interface
nave been developed using eq. [7.4] in sections 7.2 and 7.3 respectively.
The present section considers a simple model of heat transfer to or from
the charge in the gradient zone in order to analytically approximate its
effect on @, . o

The present model considers th-~ the primary effect of heat tfansfer
between the gradient zone annulus ~ - ‘e charge is attributable to thermal
conditions near the axial locatiun ¢ interest. This assumption is
quelitatively justified by the high rate of attenuation of the effects of
radial heat transfer distant from the location of interest; c.f.,
eq. [7.4]. Accordingly, a linearized description for A’a;_ /dC? about the

location of interest, C. , is employed:

Azd;’m A2¢m z) Z (%)
Ax‘m = Al:‘( . jx F f#@l =r.' (x-C) (7.36]

substituting eq. [7.36] into eq. [7.71 yields:

H,(C) =~ e\b.z d fz(fj [7.37)

Next, eq. [7.16] is used to approximate Azdam /AC,Z; this approximation
assumes that AZQM/AU' of the moving fin model accurately represents

2 ¥ .
a P, /AC,Z' of the concentric fii model and that BL‘ e (dbf loo™ @,,) varies
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linearly near the location of interest. Subsituting eq. [7.16] into [7.37]

yields:

B*::. ¢ oc ¢M(a)
& (2) = - {lf{ljs ) [7.38]

(Within the gradient zone, QF becomes d’s J) According to eq. [7.38], the
value of 4% at a certain location, & , depends only on the local Biot
number and the local temperature difference bet@veen the furnace and the
charge.

Equation [7.38] is expected to be a good approximation of .d% when
JZ¢M/ACI is approximately linear in the vicinity of the axial location of
interest. Linearity of e:l’me/‘:lllz is not expected, however, near the ends of
the gradient zone (see section 7.2) or at the interface (see section 7.3).
In these regions, eq. [7.38] should be interpreted as an order of magnitude
estimation of the effect of heat exchange in the gradient zone on the value
of ¢, which would exist in the absence of such heat exchange (i.e., due to

the attenuation and interface effects).

7.4,3 Constant Interface Shape in the Gradient zone

Equation (7.38] suggests, in accordance with its limitations discussed
above, that daA may be maintained at a constant value over a portion of the
gradient zone if the product Bié"( 4:6 - ¢m ) is constant over a
sufficiently long region near the center of the gradient zone, i.e., not
near the ends of the gradient zone. The following set of "design rules”
illustrates how the heat transfer in the gradient zcne can be "tailored" so
trat these conditions may be approximately achieved for a system in which

the interface disturbance is not present:
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(1) Calculate d6,/d in the gradient zone, assuming that Big = 0, by
using the results of the moving fin model. A symmetric system is
presently used to demonstrate this procedure; consequenty, eq. [5.8]
provides the required value of d0,/dG.

(2) Allow Rg to be sufficiently large so that ¢G is linear.

(3) Alter the end temperatures of the gradient zone annulus so that
c‘cbé/cm = d9,/40 . 1In this way, ¢,-®, is constant in the gradient
zcile, negecting the effects of the crucible near the ends of the gradient

zone. In the present development, it is arbitrarily chosen to maintain

b, (-A,/2)=| while altering ¢ (\,/2) . In this case:

®, (M2 = |+ /\C,djef- [7.39]

ae...)

(‘%‘%):'\z‘('*’\eﬁ (7.40)

(4) The desired value of ¢, determines the required value of Bi§' by

substituting eg. [7.40] into eq. [7.38]:

aw . 2214
e e N (48m/42) [7.41]

A non-zero value of Bi&* leads to a non-symmetric system and non-constant
( ¢G-¢m ), thu controdicting the assumpticns of steps (1) and (3) above.
These effects are shown, however, to be of secondary importance in the
results which follow.

(5) The desired radius of curvature of the interface, Nj, is next

used to eliminate ¢, from eq. [7.41]. Using eq. [G.6]"
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Using eq. [5.8] to eliminate 46./40:
29.1 %\
ey _ R* (7.43]
BLG‘ 1o Ny ( “H 3

Three tes. cases are employed to demonstraté the procedure described
above. The parameters defining the systems and the results of the
calculations of steps (1) through (5) are shown in Table 7.5.
Figures 7.18, 7.19, and 7.20 plot the resultant distributions of
temperature and isotherm curvature calculated by the concentric fin model:
part (a) of each figure plots the distribution of 4’5 in the gradient zone
while part (b) shows the distribution of ¢

G
radius of curvature, N~1, of isotherms in the gradient zone. The desired

and ¢’,., and the inverse

constant radius of curvature chosen for use in eqg. [7.43] is Nj = 20;
therefore . 1= 0.05.

Figure 7.18 considers a system without a crucible and with a gradient
zone length A\ @ 1.0. It is seen that the distribution of ¢, and N tend
to flatten out near the center of the gradient zone, approximating the
desired values of ¢ = 0.00127 and Njl= 0.05. It is expected that the
distributions of ¢>A and N will be yet more flat when the influence from
the ends of the gradient zone are more diminished at its center. This may
e accomplished by increasing the length of the gradient zone to )‘c. = 2.0
(Fig. 7.19), The curves for ¢A and N are quite flat in a large portion of
the center of the gradient zone in this case. Note that the required value

of ¢A » 0.000903, for case 2 (see Table 7.5) is larger than actually
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Case
1 2 3
7.18 7.19 7.20
§ 1.0 1.0 1.5
Ag 1.0 1.0 2.0
Big = Bic 0.5 0.5 0.5
Big" = Bi&" 0.471 0.471 0.291
dBm /4L -0.407 -0.289 -0.259
(eg. [5.81)
®u(al2) 0.593 0.422 0.481
(eg. [7.391)
(¥g - &) 0.297 0.211 0.241
(eqg. [7.40])
Bil” 0.0625 0.0625 0.0491
(eq. 7.43])
Big 0.0625 0.0625 0.0735
&, 0.00127 0.000903 0.000811

Symmetric system except ¢, (\./2) # 0
>‘H = )‘C = C'a:
Desired value of Nj is 20

Table 7.5: Description of the systems usad in Figures 7.18.

7.19, and 7.20.
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ok BiHseiC=0.5 i
BiG= 0.0625
No crucible
-10'4 . Symmmetric system except:
RG= 10
[ A3 ¢ lw
1073
'io-z [ { 1 | \ l [l \ 1
-5 0 S
hot end G in the gradient cold end
zone

Fig. 7.18a:

an approximately constant isotherm shape in the gradient
zone. No crucible, symmetric svstem and g = 1.0.

Distribution of 3.

Demonstration of the procedure used o cbtain
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Fig. 7.18b: Demonstration of the procedure used to obtain
] an approximatelv constant isotherm shape in the cradient
f zone. Mo crucible, svmmetric system and g = 1.0.
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Fig. 7.19a: Analogous to Tigure 7.18a except the gradient
zone is longer; i.e., ‘g = 2.0.

Distribution of »-.
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rig. 7.19%b: Analogous to Figure 7.18b except the
gradient zone is longer; i.e., Ag = 2.0,

Distribution of om, 3g and XN.
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Fig. 7.20a: Analogeus +o Figure 7.19a except a crucible
is oresent; i.e., & = 1.5.

Distribution of ¢x.
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Fig. 7.20b: Analogous to Figure 7.19b except a crucible
is present; i.e., § = 1.5.

Distribution of ¥mq, ¢g and N.
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present as shown in Fig. 7.19. This is due to neat transfer to the charge
in the gradient zone, not considered in eq. [7.40], which causes ¢, - @,
to be slightly smaller than the value predicted for a symmetric system.
Reduced heat transfer to the charge, and therefore a reduced value of q%
results. The value of ¢A can be adjusted upward by an appropriate
alteration in Big.

Figure 7.20, which considers a system similar to that of Fig. 7.19
except § = 1.5, demonstrates that the presence of a crucible is adequately
accounted for in this procedure.

The procedure outlined i this section is not intended as a
generalized design method leading to optimized heat transfer for Bridaman
crystal growth., Systems of pra-*ical interest do not behave as those
considered in Figs. 7.18 to 7.20 due to the generation of radial
temperature variations at the growth interface (c.f., section 7.3). 1Its
intent, rather is to accentuate three important features concerning the

radial temperature distribution in the charge:

(1) Heat transfer in the gradient zone is a useful tcol for
altering the interface shape in the gradient zone.

(2) \here appropriate, results from one-dimensional models, in
conjunction with the Green's function approach, can be used
to help predict radial temperature variaticns in the charge.
In the model developed in this section, eq. (7.38] is seen to
provide at least order of magnitude accuracy.

(3) Generation of radial temperature variations at the interface
(Rk # 1 and/or PegRy # 0) is detrimental for achieving a
region about the interface which exhibits a relatively

constant isotherm curvature,
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§. FURNACE DESICGN CONSIDERATIONS

8.1 AXIAL TEMPERATURE DISTRIBUTION

The principal objecvives of the thermal design of a Bridgman growth
system regarding the axial temperature distribution of the charge are
(1) to obtain a sufficiently large axial temperature gradient in the melt
at the growth interface and (2) to control the location of the interface.
The thermal parameters affecting the attainment of these objectives may be
classified as fixed, i.e., the thermal properties of the charge, or
variable, i.e., the furnace process parameters such as the lowering rate,
diameter of the charge, diameter and thermal conductivity of the crucible,
gradient zone length, furnace heat transfer coefficients and furnace

temperatures.

f.l.1 Thermal Propertjes of the Charge

The thermal properties of the charge are fixed parameters and
therefore constrain the thermal behavior of the growth system. The nmost
important of the thermal properties of the charge is its thermal
conductivity. A small thermal conductivity leads to a large Biot number; a
Bridgman system for the growth of CdTe, for example, can have a Biot number
in excess of unity. In such cases, satisfying the constitutional
supercooling requirement may not be difficult. Additionally, since the
"infinite" charge length is smaller when the Biot number is larger, a
charge with a small thermal conductivity exhibits decreased thermal
transients associated with grcwth near the ends of the charge and therefore
tends to stabilize the growth interface. Biot numbers are smaller, on the
other hand, when the thermal conductivity of the charge is relatively large

(e.g., germanium). In this case, it is important to verify that the axial
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temperature gradient at the growth interface is sufficiently large; if not,
efforts to increase the Biot number by augmenting the heat trarsfer
coefficients may be necessary. Further, a longer charge and furnace is
necessary for the growth of an equivalent length of crystal under quasi-
steady thermal conditions when the thermal conductivity is relatively
large.

Related to the magnitude of the thermal conductivity is the change in
thermal conductivity between the melt and the crystal at the growth
interface (denoted by the symbol Rg). When the melt conductivity is
greater than that of the crystal (i.e., Rg > 1) thé axial gradiené in the
liquid at the interface is adversely affected, becoming less than that on
the solid side of the interface. The magnitude of this effect may be
significant (c.f., section 5.3) and is a potential problem for the growth
of semiconductors which typically have values of Rg greater than unity.
When Rg is less than unity, as is the case for metals, satisfying the
constitutional supercooling requirement is more easily effected as a
consequence of this effect.

Other thermal properties of the charge which affect its axial
temperature distribution are the thermal diffusivity, < , mass density,
4 + and latent heat of solidification, AHg). The thermal diffusivity is
a factor in the Peclet number which accounts for the effect of convection
of sensible heat due to the motion of the charge. The product of { and
AHg) is contained in the product of nondimensional parameters PegRy which
accounts for the effect of the liberation of latent heat at the growth
interface. Additionally, the convection and latent heat effects are

proportional to the lowering rate, V. The significance of these heat
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£lows, however, depends upon their relative magnitude compared to the
primary heat flow in the system, i.e,, the heat flow between the furnace
and the charge in the hot and cold zones. These comparisons are made in
egs. (5.6] and (5.12] where Bil/2 indicates the importance of the furnace-
to—charge heat transfer. The effects of the thermal properties ¢, £ , and
AHg] therefore depend on the prevailing values of Bi and V; typical values
of these parameters for semiconductor growth systems produce small
convection and latent heat effects. It may be conciuded, therefore, that
these thermal properties are of secondary importance to the axial
temperature distribution of the charge compared to the thermal conductivity

of the charge.

8.1.2 Fumnace Process Parameters
A number of furnace design parameters can be used to alter the axial

temperature distribution of the charge. The most obvious of these are the
hot and cold zone furnace temperatures. An increase in the hot and cold
zone furnace temperature difference results in a roughly proportional
increase of the axial temerature gradient within the charge. On the other
hand, lowering one or both of the furnace temperatures moves the growth
interface toward the hot zone while an increase moves the growth interface
toward the cold zone. Furthermore, alterations of the axial gradient and
interface location can be made independently of each other by the proper
choice of furnace temperatures; for example, the axial gradients can be
made to increase while maintaining the interface in the same location or
vice-versa. Typically, temperature limits in the hot and cold zone furnace
constrain the application of these techniques. The heat pipes used in the

experimental system described in section 2.2.1 may be used only between the
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temperatures of 500°C and 1100 °C. Furthermore, the hot zone furnace
temperature may be limited by the development of excessive vapor pressure
of one ¢f the constituent elements in the melt or by the mechanical
properties of the crucible at elevated temperatures.

The most important of the dimensionless parameters regarding the axial
temperature distribution of the charge are the Biot numbers of the hot and
cold zones. The Biot numbers reflect the thermal coupling between the
furnace and the charge; eq. [(5.9] indicates that as the Biot numbers
increase, so do the axial temperature gradients in the gradient zone. The
effect of the thermal conductivity of the charge on Bi has been discussed
in section 8.1.1. The furnace process parameters which affect the Biot
numbers are the furnace to charge heat transfer coefficients, h, charge
diameter, D, and the thermal conductivity and thickness of the crucible, K
and § through their effect on the effective Bict number, Bi*. It must be
noted, however, that the internal radial thermal resistance of the charge,
accounted for by Bi**, limits the degree to which axial gradients may be
increased through augmentati-n of the Biot number. As shown by eq. [4.14],

Bi** can not exceed the valued of 8; chanyes in h, K and § have little

effect on increasing Bi**

when it is cluse to this maximum value.

The value of the furnace to charge heat transfer coefficient, h,
includes both radiative and conductive components. The radiative component
may be minimized by employing reflecting surfaces between the inner furnace
and outer crucible surfaces; it may be increased by utilizing surfaces of
large emissivity. The magnitude of radiation reat transfer is, however,
limited to that which would occur between black surfaces. Additional
amounts of heat transfer may be obtained by conduction heat transfer across

-~

the furnace cavity gap. Appendix C indicates that the conductive part of
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the gap heat transfer can be as large as the radiative part by using an
interjacent gas of high thermal conductivity, such as helium, and a gap
width of the order of one to three millimeters. Higher conduction heat
transfer coefficients may, of course, be obtained by further decreasing the
gap width, Small gap widths accentuate, however, the error in misaligrm~nt
of the axes of the charge and furnace cavity which lead to non-radially
symmetric heat traisfer coefficients and interface snipe. (The radiation
component to the gap heat transfer is less sensitive to the gap width,
especially for gap widths which are small compared to the furnace cavity
diameter. |

The thermal coupling between the furnace and the charge, is in most
cases adversely affected by the crucible; i.e., the effective Biot number,
Bi* is usually less than the Biot number, Bi (see section 4.2.2). In order
to maintain a large value of Bi*, it is desirable to use a crucible which
has a small thickness compared to the charge diameter; i.e., & should be
as close to unity as possible while maintaining structural integrity. The
use of crucibles which have a very high or very small thermal conductivity
compared to that of the charge should also be avoided since they tend to
cause a significant reducticn in Bi*. Equation (4.7) may be used to reveal
which amonj several potential crucible materials will yield the largest
effective Biot number.

An increase in charge diameter, D, tends to increase the dimensionless
axial gradient in the gradient zone through its effect on the Biot number.
As section 5.6 demonstrates, the corresponding effect on the dimensional
axial gradient depends on the prevailing values of Bi, Kand & . Unless

accompanied by a decrease in & , an increase in D causes a decrease in the
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axial temperature gradient at the interface. A decrease in & , however,
does not guarantee an increased axial gradient; such cases should be
evaluated individually.

The length of the gradient zone, }‘6 » has an appreciable effect on the
axial temperature gradients at the interface., For example, Fig. 5.3
demonstrates that the axial gradient may always be increased by decreasing
)\a. The effect is most significant when the hot and cold zone Biot
numbers are large (greater than about 0.1). The absence of a gradient
zone, (i.e.. Ag = 0), however, limits the extent of this effect; if the
axial tempera:ure gradient is not sufficiently large when /\Q = 0, other
methods to increase the axial gradient must be employed. The gradient zone
length additionally affects the distribution of radial temperature

varitions near the growth interface. hanges in AG must therefore be

evaluated on the basis of its effect on the interface shape as well as on

the axial temperature gradient at the interface.

Radial temperature variations within the charge have been shown in
Chapter 7 to attenuate rapidly with axial distance from the location at
which they are generated. This behavior permits the formulation of a
thermal design procedure leading to a satisfactory interface shape for
systems in which radial temperature variations created at the interface are

not present. In summary:

The interface should be located in a gradient zone which is
made approximately adiabatic through the use of a thermal

insulating material placed between the hot and cold zcnes and

i
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radiation shields in the furnace cavity gap. The gradient
zone should be sufficiently long so that radial temperature
gradients generated in the hot and cold zones have largely
attenuated at the interface location; this length is
approximately one to two charge diameters and depends on the
effect of the crucible in reducing the rate of attenuation of
the radial temperature gradients created in the furnace zcnes
(see section 7.2.2). The exact location of the interface
within the gradient zone is chosen su that the shape of the
interface is slightly curved toward the svlid,. Additionally,
small amounts of heat transfer to the charge in the gradient
zone, as described in sections 7.4.2 and 7.4.3, can be used
alter the interface shape or to maintain a large axial region

of nearly constant isotherm curvature.

The thermal design is complete at this stage if the axial temperature
gradient in the melt at the interface is sufficiently large to satisfy the
constitutional supercooling requirement., If the axial gradient is not
sufficiently large, however, techniques to increase its value, as described
in section 8.1, can be evaluated while attempting to maintain satisfactory
interface shape.

Radial temperature variations generated at the interface are, however,
the dominant factor with regard to the interface shape. The procedure
outlined above, therefore, does not lead to desirable interface shapes
unless the interface effect can be eliminated. This /~sue is of particular
importance for the growth of semiconductor materials which have values of

Rg greater than unity; for such materials, the interface effect tends to
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produce an interface shape which is curved in the adverse directicn, i.e.,

toward the melt.
8.2.1 Counteracting the Effects of Radial Temperature Variations Generated
at _the Growth Interface

The analysis ofv section 7.1 suggests that heat transfer from the
furnace to the charge tends to produce isotherm shapes which are concave
toward the solid. Such heat transfer in the gradient zone thus serves to
make the interface shape more favorable if it is originally concave toward
the melt. The gradient zone, in such a case, resembles somewhat an
extension of the hot zone furnace. The potential for completely
eliminating an adverse interface curvature may be estimated by comparing
the value of ¢l\ produced at the interface due to the interface effect
(eq. [7.30]) to a representative value of ¢A caused by heat exchange with
the furnace at the prevailing Biot numbers. The value of ¢A at the end of
an adiabatic gradient zone (see section 7.2) may be used to estimate this
latter value of 456 . If radial temperature gradients caused by heat
transfer in the furnace zones are of comparable magnitude, or larger, than
those generated due to the interface effect, additional heat transfer to
the charge in the gradient zone may prove useful in reversing an adverse
interface curvature. If, on the other hand, radial temperature gradients
caused by heat transfer to the charge are less than those generated at the
interface, this technique can not be expected to change the direction of
the shape of the interface.

A decrease in the value of & likewise decreases the magnitude cf the
radial temperature gradients generated at the interface, as shown in
Fig. 7.12. The value of § can be decreased by either an increase in the

charge diameter or by a decrease in the thickness of the crucible. A
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decrease in S5, while not elirinating the interface effect, may be useful
in combination with heat transfer to the charge as described in the
previous paragragh.

The ideal method of dealing with the interface effect is to eliminate
it. If this is possible, the design procedure for obtaining the desired
interface shape, described in section 8.2, becomes applicable. The cause of
the interface effect is the change in the axial temperature gradient within
the charge at the growth interface which is not present in the crucible.
Efforts to eliminate the interface effect therefore must either (l) remove
the change in axial gradient within the charge &t the interface or (2)
produce an equivalent change in axial gradient within the crucible.

Equation [(7.26] suggests that the slope change at the interface
disappears for an appropriate value of the lowering rate, V, when Rg < 1.
The e;ficacy of this technique depends, however, on the interplay between
the value of V required to eliminate the slope change at the interface and
the effect of V on the constitutional supercooling requirement. Further,
this technique is not applicable when Rg > 1.

Since the electron potentials are not equal in the solid and liquid
portions of the charge, the passage of an electric current across the
growth interface produces or absorbs heat (depending on the direction of
the current) by virtue of the Peltier effect. Such heat can be used to
eliminate the change in axial temperature gradient at the interface caused
by the change in thermal conductivity and the liberation of latent heat.
Rewriting the hrat balance at the interface in order to include the Peltier

heat yields:

ik
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SeT, I'D
hs (Tﬂﬂ - TF.G)

where: Gr, = Gg in order to eliminate the slope change at the
interface

(8.1]

(R\«‘]\) = Pe, Rq *

Se = Seebeck coefficiert
i" = current per unit cross secticnal area

SeT;I" = rate of generation of Peltier heat per unit
cross sectional area

T{ = absolulte melting temperature

Using germanium as an example (Se = 70,,.V/K, Ty = 1211°K), eq. [8.1] shows
that the required current density is in excess of 200 amps/cm2 for typical
operating conditions. Such large current densities may be difficult to
attain experimentally and may also produce significant Joule heating
effects. Although each case should be examined individually, it appears
that Peltier heating is not a viable method for eliminating the slope
change at the interface.

Peltier heating/cooling has, however, greater potential for modifying
the interface shape in small amounts. For example, a flat interface shzpe
may be made slighlty concave toward the solid by the application of a small
amount of Peltier cooling. This technique yields a similar result as that
of transferring small amounts of heat to the charge in the gradient zone as
described in section 7.4.3.

The interface effect may also be eliminated by producing a slope
change in the crucible at the interface which is equivalent to that in the
charge. This may be done by adding the appropriate amount of heat to the
crucible in a very narrow region near the axial lc:tation of the interface.

The remainder of the gradient zone may be adiaba.ic if desired. A thin
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The objectives of this analysis are to determine the primary thermal
behavior of the vertical Bridgman crystal growth method and, whers
possible, to develop simplified analytical results to indicate
quantitatively the relaticnship between the thermal parameters of the
system and its thermal response. The purpose of these objectives are (1)
to aid in both the preliminary thermal design of a Bridgman growth system,
(2) to better interpret experimental results of existing systems in order
to improve their design and (3) in a more general sense, to critically
evaluate the capabilities of the Bridgman techniciue. The major .efforts
involved in attaining these objectives has been the develcopment of
appropriate simplified thermal models of the Bridgman growth system. The
major findings of this study are reviewed, and possible directions for

future research are outlined, in this chapter.

2.1 CQONCLUSTONS

A one—dimensicnal thermal model was developed in order to determine
the axial temperature distribution within the charge. Approximations for
the radial thermal resistance offered by the crucible and cy the charge
itself are incorporated in a straightforward manner into the one-
dimensicnal model through the definition of the "effective" Biot number.
In general, these radial resistances decrease the effective thermal
coupling between the furnace and the charge, leading to reduced effective
Biot numbers and axial temperzture gradients at the growth interface. The
relationship betwe ™ the crucible thickness and thermal conductivity and
the effective Biot number is analytically described by eq. [4.7]. This

relatir aship demonstrates that the ratic of thermal conductivity of the
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crucible to that of the charge, K, should be between 0.1 and 1.0 in order
to prevent severe raducticn of the effective Biot number. Bquation [4.14]
incorporates the effect of the radial thermal resistance within the charge
and indicates that axial gradients are limited since the effective Biot
number can not exceed the value of 8. Efforts to increase the heat
transfer coefficient between the furnace and crucible therefore does not
increase axial temperature gradients in systems which already have an
effective Biot number which approaches this value.

The axial temperature distribution within the charge is easily
obtained from the one-dimensicnal model by compute}. Analytical solution,
however, yields several important results. Criteria are developed which
indicate when the effects of axial convection of sensible heat, generation
of latent heat and lengtlh of the charge can be neglected. Additionally,
analytical expressions for the axial temperature gradient in the melt at
the growth int :fa 2 (required for the constitutional supercooling
requirement) and the axial location of the interface are developed. (When
the axial convection of sensible heat is sufficiently small, these
analytical results reduce into yet more simple forms.) These expressions
assume a charge length which satisfies the infinite length criteria but
includes the effects of: hot and cold zone effective Biot numbers, unegual
melt and crystal thermal conductivity, axial convection of sensible heat,
generation of latent heat, length of an adiabatic gradient zone, and
interface position within the gradient zone. The effects of the charge
diameter and thermal properties are included by virtue of the non-
dimensional formulation of the thermal model. Such results indicate that

the principle factors affecting the axial temperature gradient at the
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interface are: level of the effective Biot numbers, unequal melt and

crystal thermal conductivity, gradient zcne length and generation of latent
heat.

Two~dimensional thermal modeling is utilized to predict the shape of
the growth interface. The two-dimensicnal thermal models developed here
are extensions of the one-dimensional model; i.e., the charge is considered
as two radially concentric fins, the crucible is a third fin and, in the
gradient zone, the furnace is considered to be a fourth annular fin. This
approach is taken, rather than a finite difference or finite element
computer formulation, for the potential to develop analytical results.

The equations describing the temperature distributions of the
concentric fins indicates that radial temperature variations within the
charge are created by heat exchange between the charge and its
surroundings (see eq. (7.2]). Heat transfer to the charge leads to
interface shapes which are concave toward the solid, and heat transfer from
the charge tends to produce an interface shape which is concave toward the
liquid. The effect of heat transfer to the charge at a particular axial
location dies out rapidly with distance from that location. Thermal
conditions as little as one charge diameter from the interface have anly a
very small effect on its shape. The design of a Bridgman apparatus for the
proper interface shape may therefore be interpreted as providing the proper
amount and distribution of heat exchange to or from the charge in the
vicinity of the interface.

The two-dimensicnal results identify for the first time a potentially
serious problem for the satisfactory growth of materials, such as
semiconductors, which have a thermal conductivity of the melt which is

greater than that of the solid. In the presence of a crucible, inherent to
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the Bridgman technique, such conditions lead to heat transfer from the
charge to the crucible. This is the dominant effect on the shape of the
interface since it occurs at the interface itself. Further, the shape of

the interface produced through this effect is curved in the undesirable

direction, i.e, toward the liquid.

The results of the ocne- and two~dimensional models presented in this
work compare well to published analytical results from more accurate
computer models. Published experimental results are, however, few.and not
suitable for the direct verification of the conclusions presented here.
Such verification is considered necessary and is, in part, the motivation
for the experimental program currently in progress.

The numericai accuracy of the simple thermal models of this work is
expected to be sufficient for initial furnace design as well as to indicate
the expected parametric thermal behavior. Increased numerical accuracy
obtainable from a two-dimensional finite difference or finite element
computer model will, however, be required for final system design and for
quantitative comparison with experimental results. Effects such as thermal
conductivity change and/or generation of latent heat at the interface in
the presence of a crucible, presently not included by computer models
described in the literature, must be included in any new computer model.
Modeling assumptions used in the present work, but anticipated to have a
minor effect in actual growth systems, can also be relaxed; these include
temperature dependent thermal properties and heat transfer coefficients and
temperature uniformity of the hot and cold zone furnaces. Finally, the

furnace boundary conditions should be flexible, especially in the gradient
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zone, in order to study the effect of c‘fEerent distributions of heat
exchange between the furnace and the charge on the shape of the growth
interface.

The two-dimensional concentric fin model assumes that the axial
location of the growth interface is the same within both the inner and
outer charge fins. The error in predicted radial temperature variations
obtained through the use of this assumption is expected to increase with
interface curvature but presently is not known quantitatively. A two-
dimensional computer model as described above may be used to determine this
error. o ‘

The accuracy of a computer model of Bridgman growth as described above
will be compromised by thermal property data of questionable reliability.
Unfortunately, the thermal properties of many semiconductors, especially
those of the liquid, are not accurately known. In such cases, data of
increased reliability must be found by experimental means.

Adverse interface curvature is expected for the growth of
semiconductor materials due to radial temperature gradients created at the
interface. Section 8.2.1 offers several methods to counteract tnis effect.
Detailed evaluation of these (and any other) methods must take place in
order to solve this potentially serious problem inherent to the Bridgman
growth technique.

The technique presently considered most promising for counteracting
the interface effect is locally heating the crucible near the interface in
conjunction with a thin crucible. Analysis of these conditions is required
to examine the potential of this method. The relationship between the

thickness of the crucible and the amount and distribution of heat transfer
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to the surface of the crucible to the shape of the growth interface will
require the solution of an appropriate two-dimensional thermal model of the
interface region.

This work considers furnace boundary conditions as an independent
variable which, in combination with the other system parameters, determines
the interface shape. It would be useful, however, to be able to solve the
inverse problem: i.e., what must the furnace boundary conditions be in
order to produce a desired interface shape? .There may be multiple
solutions or no solution at all. In the first case, such results would
provide a direct indication of the thermal design required for satisfactory
interface shape; in the second case, the knowledge that no set of furnace
boundary conditions exist which can produce the desired interface shape
indicates that other parameters of the growth system require alteration.
The ability to make such conclusions will require the computer solution of

the appropriately modeled inverse heat transfer problem.
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ARPENDIX 3
DERIVATION OF EQUATION 4,11

This appendix presents the derivation of eq. [4.11].
In nondimensicnal form, the heat conduction equation in the charge is
given by eq. [4.12]. Integrate each term in eq. [4.12] according to the

formula:

g:lz Q(f,Z)Z-TV‘&r 712
el B(,C) 795 (A1)
&

BmlC) =

(Subscript "m" in eq. [A.l] denotes an area;averaged quantity.)

Equation [4.12] becomes:

d*6., 40 36
- P, 8Pm 438 - (A.2]
alb* € a0 491’ f='/’- Y

The boundary condition at the surface of the charge is, in nondimensional

form:

8

( af = Bil9:-6) (A.3]
{='h

where ©g is the surface temperature of the charge. Substituting eq. [A.3]

into eq. (A.2] yields:

22 4B [ 6u)- (8-8.)] =0 s

Q.

29M
qr: e

The crucible effect (section 4.2.2) is included by using the effective Biot

and Peclet numbers in eg. [A.4] resulting in eq. [(4.11].

L
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ANALYTTCAL SOLUTION OF THE ONE-DIMENSIONAL MODEL:
INFINITE CHARGE LENGTH

Accozdi..g to the moving fin model described in Chapter 4, eq. [4.17]

gives the axial temperature distribution in each of the four regions listed

below:

1. Hot zone.
2. Liquid part of the gradient zone.
3. Solid part of the gradient zone.

4. Cold zone.

S T R R TR A TR AT

The solution of eg. [4.17] for each zone is:

o T AR AT

W WA
em)r'o= Ane m’"c - bne AT . V_i] (B.1]
where: n=1, 2, 3, 4

% (The subscript "n" denotes the zone number according to the list above).
The constant term, 1.0, in eg. [B.l] is the particular solution for the hot

zone and is zero for the other zones. The characteristic roots, W, , are
given by:

E + ?; ':‘* 2
; WwT,n = —2—'1 {\ :{hle,@é’\zl } (B.1]

/

Since the moving fin model assumes that Big = 0, the characteristic roots

{ in the gradient zcne can be simplified:
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There are eight unknown coefficients in eq. [B.l], two for each of the
four zones. For the results given in this appendix, it is assumed that the
length of charge in the hot and cold zones is infinite; under these
conditions, B = A4 = 0. Boundary conditions between adjacent zones,
given by egs. [4.18], [4.19]1 and (4.20], are used to calculate the
remaining coefficients, The boundary condition of equality of temperature

between adjacent zones, egq. [4.18] yields:

_— * -w¥
A.ew""'u*'\ = Azewm,z#_, B,

+ +
: _ G
A, e o B, = A, @™+ B, [B.4]
* -
Ay pVm3K %, = B,’ew‘""“
where: n = >\c-./2-

C-l = axial location of the growth interface

At the ends of the gradient zone, the boundary conditicns of equality of

heat flux between adjacent zones, eqg., [4.19], gives:

-w+ . -W+
W* A‘e M)'M 3 w\:)?. )ﬁ{ze "‘)LH -
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The flux boundary condition at the interface, eq. (4.20], yields:

(B.6]

- W:,'.ca; - \ - r.
wm,z A:_ e = 'ﬁz[w::s Abewm,s;. -+ ’PesR:-X

where: R* . R‘* K.s (Sz_\\
* \ -+ KS(SI-O
RY = —u

T e K (8-

Egs. [B.4], [B.5], and [B.6] present six linear equations in the six
unknown coefficients Ay, Az, B3, A3, B3, and B4. After solving for these
coefficients, the axial gradient in the liquid near the interface, G, and

the nondimensional interface temperature are given by:

\A/+
Pe, R RPN
€ Ry * (‘_‘E‘fl-\\exp +w..‘.',5(#-4;)]

- We 4
e (éfﬁ - l\ exp\;-wm’,x(;x +€;3]

W l+(\'—‘i‘ﬁ-l\exp(‘f~/{s(}* Ca)]

W S

[807]

!
R:-“"‘L

(B.8)

-6, = -G - \ *(_:%% } \)\ZTEW&}(WC;)}

(Section 4.4.3 explains that the axial gradient at the interface calculated

from the one—dimensional model must be interpreted as the average of the

T T T

L i
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charge and crucible axial gradients. Gp, denotes this average value.) Note
that eq. [B.8] requires an iterative solution if it is desired to determine
G; given 64.

For small Pe*, eq. [5.6] holds and wi,1 and wg 4 can be approximated

by eq. (5.7]. This leads to a simplified form of the above :xpressions:

G < <2+ (BE)YA N =261 e R (B.9]
. R‘: Y(BL:’)-‘M*AG‘ 26.‘] . [(B i.m-l/z.._ }\&*ZC;]
=B = | - 'LZ Pe: R*ﬂ s (B> "/2'4-)\4, -ZC:l

| + R* LB )™« Ao - 28] (B.10]
w [(BL:*B-III*.& "ZCiT

The assumptions that Big = 0 and M')\,fw yield relatively simple
analytical results. When it is desired to r2lax these assumptions, the
preceding development can be appropriately modified. When Big # 0, for
example, wg 2 and wp 3 are no longer described by eg, [B.3]. Additicnally,
a particular solution must be included in eq. [B.1] for the gradient zone
regions; the form of the particular sclution depends on the temperature
distribution in the gradient zone annulus. When A, and/or Ae is not
infinity, the coefficients By and/or A4 is not zero. Additional boundary
conditions at the ends of the charge must then be employed. In these cases
it is more convenient to determine the coefficients Ay and By by computer.
This has been the procedure used to determine the results presented in

section 5.5 for finite charge length.
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CALCULATION OF HEAT TRANSFER COEFFICIENTS

Heat transfer between the furrace walls and the outer crucible surface
occurs by conduction and radiatior: across the annular gap which separates
them. The cap width is here considered sufficiently small so that natural
convective flow of the gas in the gap does not occur. The magnitude of the
conduction and radiat.on heat transtfer is here described by heat transfer
coefficients, hc and hy respectively. Since the conducticn and radiation
heat transfer occurs in parallel, the overall h is simply the su. ~f ho and

hr:

qD“ =(he*h M (T - T 2h (T - T0) [C.1]

C.l SAMPLE HEAT TRANSFER COEFFICIENTS ;
Fcr an anni'lar gap whose width is small compared to the diameter, the
conducticn heat transfer coefficient can be apyroximated by: ;

_ Rag
he= '{ﬁ (C.2]

3P

S atanblon il . Ll L

Table C.1 gives heat transfer coefficients across a 1 mm gap for air and
helium at a number of temperatures. (Helium has a high thermal
conductivity compared to most gases.) For different gap widths, eq. [CG2]
can be used to adjust the sample valtes given in the table,

Radiation heat transfer across the gap, as shown in Fic. C.1, is

describted by the following eguaticns assuming that the surfaces are grey:

-~

9 (5 o) = e {T-TH &, (c.4

- 221 -

I
|
:
?
|
|
|




ORIGINAL PAGE 18
OF POOR QUALITY

gy (f to cr)

crucible (cr)

Fig. C.1l: Gecmetrv used to describe radiation heat transfer
beteen the furnace and the cuter crucible surface.
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Helium Air
Temperature
(*°C) kgap (32] l he kgap (33] he
500 0.00299 299 0.000564 56.4
700 0.0035 355 0.000663 66.3
900 0.00409 409 0.000769 76.9
1100 0.00462 462 0.000876 87.6

he measured in W/m2-K

kgap measured in W/cm-X é
tgap = 1

Table C.1: Conduction heat transfer coefficients across a
1 mm thick gas layer.

Dok AL it

¥ o= (C.4] !
d},w ( \ j DE \
L+ | — - =5 —-\) !

where: gr(f to cr) = radiation heat flux from the furnace to
the outer crucible surface (c.f.,
Fig. C.1) per unit surface area of the
crucible

b il e el

5,729 x 1078  w/ml-k4

C‘
|

D = diameter
€& = surface emissivity
T¢ = furnace temperature

crucible temperature i

-3
Q
2

f
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If the gap width is small compared to the diameter of the charge (i.e.,

De = Dey) s eq. [C.4] becomes:

T =
Yfer

\
AL \ [C.5]
¢ &
Further, if the surfaces are black, €=€.,.21 in this case, the
radiation heat transfer is maximized as ?;’ e = Lo

When T¢ is not extremely different from Tep, eq. [C.3] can be
conveniently approximated in order to yield a rgdiation heat transfer

coefficient in simpl form [(301:

%"r (f o er)=h (T; -Tr) (C.6]
\"\rzAS':wG':‘:z, [C.7]

where: T = (Tg + Tor)/2

Bquation [C.7] shows that the radiation heat transfer coefficient increases
as the absolute temperature cubed. Table C.2 lists sample values of the
radiation heat transfer coefficient for various T, calculated acccrding to

eq. [C.7] and assuming that ?;'u_ =1,

C.2 RAREFIED GAS QUNDUCTION

The values listed in Table C.1 for the conduction heat transfer
coefficient assume that the pressure of the gas in the gap is sufficiently
large so that the gas can be considered as a continuum. As t:he~ gas
pressure decreases to a sufficiently low value, however, the gas no longer

behaves as a continuum and the conduction heat transfer across the gap
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T(C) l hy (W/mé=K)

500 106

700 211

900 370

1100 593
Table C.2: Radiation heat transfer coefficients between black
surfaces which are separated by a narrow annular gap.

decreases.

Devienne [34] distinguishes the following limiting regimes for

conduction heat transfer in a gas:

Laty . 5 00

" continuum regime [C.8al

E&'_>\O

t‘3‘?

free molecule regime [C.8b]

where: Lmfp = mean free path length of a molecule
of the gas

In the free molecule regime, a gas molecule has little probability of

colliding with other gas molecules between collisions with the furnace and
crucible walls; in the continuum regime, this probability is very high.

The mean free path length of a gas molecule, Lmfpr is given by [30]:

LM\CP - O.?O?‘/G"h (C.9]
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where: 2
T a4

d = "effective" diameter of the gas molecule

n = nunter of molecules per unit volume

The ideal gas law may be used to express the molecule density of the

gas, n:

N = N _ [C.10]
R T

where: N = Avagadro's number, 6.02 x 1023/gm-mole
Ry = universal gas constant
T = temperature

P = pressure

Subsituting eq. [C.10] into [C.9] the mean free path length beccmes:

_0.30*RuT

- [C.11]
mfp T TpN

L

Helium and air are again used as typical examples. Their effective

diameters, 4, are [30]:

He: d = 2.18 x 1078 cm [C.12al]
Air: d =3.72 x 1078 cm [C.12b]

Using these values, eq. [C.11) gives the mean free path length at a

temperature of 900 °C as:

0.0433
He: | | = =TT (. [C.13a]
L‘MT? P(tb«r) ( M\)
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_ 0.0164

8 = ———m [C.13b]
mTe pktorr)

air: |

Equations [C.13] can be used in egs. [C.8] in order to determine the

. 4 A PO,

. pressure limits for the continuum and free molecule regimes.
In the free molecule regime, the conduction heat transfer coefficient

is given by Devienne [(34]:

Lo P
he=Zz O e, (ZTTRu.T)VZ. @ [C.14]

M

where: Y = cp/cy
Cp = specific heat at constant pressure
cy = specific heat at constant volume
M = molecular weight of the gas

a = accomodation coefficient

The parameter a in eq. [C.14] depends on the effectiveness of energy
transfer during collisions between a gas molecule and the walls of the
furnace and crucible. If this energy transfer is complete, the value of a
is equal to unity and heat transfer is maximized. A value of unity is
presently used so that eq. [{C.14] will give an upper limit for the free

molecule conduction heat transfer coefficient. A reascnable approximation

to the temperature T in eq. [C.14] is the mean value of the furnace and
crucible surface temperatures. Evaluating eq. [C.14] at T=900°C, for

helium and air:

He: he(W/m2-K) = 47.6 p(torr) (C.15a]
at 900 °C
Air: ho(W/m2-K) = 34,6 p(torr) [C.15b]
- 227 -
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At pressures required so that conduction heat transfer across the gap is in
the free molecule regime, eq. [C.15] shows that the conduction heat
transfer coefficient is much smaller than the radiation heat transfer

coefficients given in Table C.2. Conduction heat transfer is, in this

case, essentially eliminated.

The thermal models developed in Chapters 4 and 6 assume that the Biot
number is not a function of position within the hot, gradient and cold
zones. The temperature dependence of the conductive and radiative heat
transfer coefficients, as indicated in Tables C.1 and C.2, affects the use

of these models as follows:

(1) The temperature distribution in the system is not known
a priori. Since the heat transfer coefficients are
temperature dependent, the Biot numbers are also not
initially known. An estimate of the temperature levels
must be made in order to calculate an initial estimate of
the heat transfer coefficients. From the resulting
temperature response of the system the accuracy of the
initial estimate can be checked. New estimates can be
made for the heat transfer coefficients and the precedure
is repeated until the desired level of accuracy is
obtained.

(2) Since the temperatures are not spatially uniform within
the system, the heat transfer coefficients are also not

spatially uniform. A reasonable estimate of a single
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When the length of the charge in the hot and/or cold zone is not
infinite (see section 5.5), boundary conditions at the end of the charge
must be included in the thermal model of the charge. The hot end of the
charge, for example, receives heat from the hot zone furnace by radiation
and convection (Fig. D.1). A heat transfer coefficient describing the heat
transfer between the hot end of the charge and the hot zone furnack can be
approximated in order to calculate a Biot number for use in the hot end
boundary condition. If Ay >(g, ¢ the magnitude of this Biot number has
little effect on conditions near the interface; on the other hand, if
Ay < C,,,’H ’ the value of the hot end Biot number is required in order
to completely specify the thermal model of the charge at the hot end.

The cold end of the charge is attached to the lowering rod and, hence,
the cold end boundary condition is more complicated. A simple thermal
model for this case, shown in Fig. D.2, is presently used in order to
calculate an approximate Biot number for the cold end boundary condition.
A pull rod of thermal conductivity kp, diameter Dp, cross sectional area A.p
and length Lp, is attached to the cold end of the charge; the heat transfer
between the furnace and the pull rod is described by a heat transfer

coefficient, h The pull rod and charge are assumed to be in perfect

p.
thermal ‘contact, the cold zone heat pipe is assumed to be infinitely long,
and radial temperature gradients are neglected. Motion of the system is

neglected (i.e., Pe is assumec 1egligible).
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4 furnace

heat flow
to the end
of charge
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charge —

2= Ly/0

-1

gradient
zone
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Figq. D.l: Schematic of the heat transfer at the hot end
of the charge.
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C >N
o~ melt —~——~—
crystal /gzroandeiem
T
An——
Le he
cold zone
furnace
T pull rod
Zp H
Lp kD’DP' ——-p—'u
Ap

Fig. D.2: Schematic of the cold end of the charge which communicates
thermallv with the cold zone furmace through the pull rod.
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The cold end of the charge ex,ariences a heat loss to the pull rod
which may be used in order to define a heat transfer coefficient for the

cold end .f the charge, hcp‘

\“cpA‘.Tm(?-vTO‘) helt \‘R\QGAM hPA?_T%;LO). (D.1]

where: Zp = axial distance from the charge/pull rod boundary,
see Fig, D.2

(The subscript "cp" denotes the charge/pull rod boundary.)

Nondimensionalizing eq. [(D.1] defines a cold end Biot number for the cold

end boundary condition:

d B Zp =
Bi, (.. (Z=0) -8 ) a(z 0) [D. 2a]
B = heoD _ _ Re Ap dBpGe=0) _ | [D.2b]
P Rie Re A 4Gy  Bpl&pm0)

The thermal conditions at the ends of th e pull roC are described by the
"transmission" matrix developed by Kraus [35]. In nondimensional form, the

transmission matrix equaticn for the pull rod is:

- ; | , 1
9p Gy 0)| | coshlwphy) - v Bimn (Werp )| | SGy= hed

-— - - - . - - -

2o | airh(wey) " coshlehe) iﬁeﬁf—*eﬁ
P L P i

- b

[D.3]
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where: CP = nondimensional axial coordinate,based on diameter Dp,
zP/EE
LR
WP = Blp
Bi{; = effective Biot number for the pull rod.
Bi.p = Biot number for the pull rod used to calculate Bi;*;

Bt = Pk

The transmission matrix relates the temperaturz and the gradient in
temperature at one end of the pull rod to these conditions at the other
end. Equation [D.3) may be used to develop an expression for the axial

gradient of temperature in the pull rod at the charge/pull rod boundary:

6.(0. =
d 2“(22 0) . W?Y: 85(C,=0) coth(wohe) Bp (5= ’\P)“‘wa)‘pﬂ (D.4]

If the pull rod is very long, the second term within the brackets of

eq. [D.4] becomes negligible: eq. [D.4] then takes the form:

c; 9? (,C.ﬁ O)

i,

Substituting eq. [D.5] into eq. [D.2]:

= - WpBp (Lo =0) (D.5]

. B_?_ ﬁg. ETR (D.6]
BL&":Z—\Q\“_ A J_LP*

Bicp given by eq. [D.6] can be used as an approximation for the cold end
boundary condition of the charge, i.e., eq- (D.2b].

Equation [D.6] gives the Biot number for the cold end boundary
condition for an infinite length pull ro>d of uniform properties and cross

section. The transmission matrix concept [35] can also be conveniently
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employed to approximate the end Biot number for pull rcds of varying
composition and cross section. Equation (D.6] alsc applies for extensions
at the hot end of the charge.

The charge would appear infinitely long at on of its ends if it was
attached to an extension at that end which has the same thermal properties,
cross sectional area and heat transfer coefficient as the charge itself.
In this case, eq. [D.6] indicates that the end Biot number is twice the
square root of the local charge Biot number: 2 BiI;c. This leads to the
conclusion, reported by Chang and Wilcox [17], that the charge appears
infinitely long if the end Biot number is 2/Bil,.. Hence, ed. [D.6]
indicates the manner ... which the end Biou number may be adjusted, by the
proper choice of kp, Ap and/or Bi;*, in oréer to approximate infinite

length conditions with an extenstion attached to the end of the charge:
, ETE . Yok [D.7]
b\\% A BL\“ = h? AP BL P

D.4 INFINITE FURNACE LENGTH

An assumption in the thermal model orf the Bridgman system is that the
furnace temperature boundary condition is of infinite extent in both the
hot and cold ends (section 2.2.2). The actual case of finite furnace
length is illustrated in Fig. D.3 for the cold zone furnace. The part of
the charge not within the furnace experiences different boundary conditions
than that part of the charge within the furnace. The follzwing brief
analysis explains under what conditicns the furnace boundary conditions may
be considered infinite in extent, thereby making unnecessary the inclusicn

of the thermai conditions outside of the furnace in the thermal models.
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Schematic of a finite length furmace in the cold zone.
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The analogous expression to ed. [D.4] for the charge within the cold

zone of Fig. (D.3)] is:

!/\c-.
: 6:\ G 2) = We E Bm(G= '-\27")50{'\«\ (e de) + 9, (6 Fe0) “&('w""/\‘ﬂ

(D.8]
where: Wm ¢ =2 B

Bquation [D.8] indicates that the thermal conditicns at the hot end of the
cold zone (i.e., at § = /\b/z. ) are little affected by the conditions at

the end of the cold zone furnace if:

aach (W, Ae ) <1 -9

Equation [D.9] is analogous to the infinite charge length criteria
developed in section 5.5. Therefore, if the length of the furnace
satisfies eq. (5.14], the furnace length can be considered infinite. This

conclusicn is valid for either the hot or cold zone furnace.
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APPENDIX £
TRANSIENT THERMAL BEHAVIOR

The dimensionless form of eq. (4.1] for the one-dimensional thermal

model of the charge is:

: 3 Oy
93_49’? -Pe3g 4%L(9;‘9,\ - ?eg‘eg =0 (E.1]

where: T = t/(‘D/V)

The nondimensional time, T , in eq. [E.l] is measured with reference to the
time required for the charge to be lowered a distance equal to one charge
diameter.

The axial coordinate in the present work, G , is measured with respect
to a stationary reference frame (i.e., the center of the gradient zone);
the transient term of eq. [E.l1] therefore accounts for changes in the
charge temperat;re with time at a given location within the furnace (i.e.,
not the changes in temperature of a material portion of the charge). The

quasi-steady assumption in the thermal model of section 2.2.2 implies that

the transient term of eq. [E.l] is negligible.

Temrperature transients do not occur when the charge length is infinite;
therefore, when the length of charge within the hot and cold zones
satisfies the infinite length criteria, eq. [5.14], the quasi-steady state
assumption is valid.

When the charge length can not be considered infinite, temperature

transients in the charge occur. Results cbtained from a quasi-steady model
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may still, however, provide informatior. which 1s useful in a qualitative
sense, For example, the curves of Iig., 5.8 indicate that the axial
positicon of the 1nterface mcves from the cold to the hot furnace as the
charge is lowered. Rigquet and Durand (9] and Sukanek (22,23] also neglect
transient heat transfer in their studies of tlie dependence of the growth

rate on the axial position of the char e

Large Biot numbers decrense tliz infinite charge length criteria,
eq. [5.14]; a larger portion ot the charge is solidified under Juasi-steady
conditions as the Biot number :rcreases, An alternative to larger Biot
numbers for making the charge uppear infinitely long is t¢ increase the
apparent length of the charyn = ~oth the hot and cold ends by the addition
of extensicns to the crucibie. See Appendix D.) This is normally

accomplished at the c¢old end of the charge through its thermal

communication with the pull rod.

Secticn E.l discusses temperature transients caused by the steady
motion of a finite length charge throuah the furnace. When a sudden change
in ore of the furnace operational parameters (e.q., lowering rate, hot and
cold zone temperatures) occurs, the coefficients of eq. [E.l] (i.e., Pe and
B8¢) likewise change and temperature transients occur. The neglect of the
transient term under these circumstances would indicate a sudden shift from
the gquasi-steady temperatur. tield in the charge btefore the change to the
new guasi-steady state after the change.

Fu and Wilcox [21] have studied the transient intertace position atter
a sudden change in the lowetrina tate for a charge of intinite lenuath,

Their vesults indicate that the interface changes with time {rom ita




-

ORIGINAL PAGE IS
OF POOR QUALITY

initial to final quasi-steady position in an expenential fashion:

Giy - 6ul)
2Tl eXP(‘ 5’) (E.2]

CC 2 ‘CL)L

3

where: G ; = quasi-steady interface position after change in
lowering rate

i1 " quasi-steady interface position before change in
) lowering rate

The time constant of the exponential function in eq. (E.2], /5 , is shown to
decrease for larger Biot numbers, smaller gradient zone length, LG, and
smaller latent heat factor, Rg. They suggest that the time constant is

similar for transients caused by a sudden change in furnace temperature.
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With the assumptions of Sections 2.2 and 6.2, each of the
concentrically located fins (i.e., inner charge, ocuter charge, crucible,
gradient zone annulus) can be considered as a moving thin fin, According
to Carslaw and Jaegar [29], the axial temperature distribution for the fins

in the hot and cold zones is given by the following equations:

T . dlin  Toot-Tin _ [F.1a]
b\\ogA\n 122 A\“Vfc? az * Rin,mﬁ O ‘

Aznvf dT;of .rin -Tour Ter ‘-ro\.ﬁ
- - = (F.1bl]
h\oe,AO\.v"f d42* AW*V'?C? 42 i R\'n,oof Rw‘f)cf 0

&Ta Tout-Ter . W_F ‘Tc.'.r

+ =0 (F.1lc)
Az‘ Rw‘hcf Ra){:

Jz
h<.rAc.r :;iﬁF _'Atv\/fircﬁbcf

where: A = cross sectional area of a fin
R = thermal resistance per unit length between fins
subscripts:
loc = local charge phase, liquid or solid
in = inner charge fin
cut = outer charge fin
Cr = crucible

f = hot or coléd zone furnace

When considering the fins within the gradient zone, Tf and Rcr,f in

eq. [F.lc] change to TG and Rer,G, where the subscript "G" denotes the
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gradient zone annulus. Further, there is an additional equation

representing the gradient zone annulus:

<
k. A d T‘; - T -Te | 0 ORIGINAL PAGE IS (F.1d]
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The radial geometry of the concentric fins shown in Fig. 6.2
specifies the cross section areas and thermal resistances in egs. [F.1l].
The cross section areas Ajn and Agyt are chosen equal; therefore,

Din = D/J2. The radial locations for the representative temperatures of

the fins are D1/2, D2/2 and D3/2 for the inner and outer charge fins and
crucible fin respectively; they are chosen so that there is an equal area

within the fin to either side:

D, = D/2 [F.2a]
D‘z.= 2’/4‘ D (F.2b]
Dy={(E+)/2 D [(F.2¢c]

The thermal resistances can then be expressed as (Rohsenow and Choi [26]):

e
R, a2 [F.3a]
oy 2w h\c»c
2 ‘ly
]‘4 ‘ kN
v = o +QM(Z) [F.3b]
TV LI e
’ 27T R0 27 Rer
2 V2
P\ . R Q"‘(H 8"'\) | [F.3c]
er,F = DNerjea T +
’ ’ 2T kc.r \’\\ocTi“Dcr
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h = heat transfer coefficient from furnace or gradient
zone annulus to the surface of the crucible based on
the crucible outer surface area

Substituting egs. (F.2] into egs. into egs. [F.l] and non-dimensionalizing

results in egs. (6.1] and (6.2].
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This appendix employs simple approximations in order to cevelop a
useful relation between isotherm curvature and the axial and radial
temperature gradients obtained from the one- and two-dimensional thermal
models.

An isotherm within the charge is assumed to be spherical; its
curvature can then be represented by a single number -- its radius. The
axial distance between the locations of an isotherx_n at the center and the
surface of the charge is denoted by Z‘d" The assumed risotherm géometry,
shown jin Fig. G.1, yields the following relation between 24; and the

isotherm curvature:

- (N2
éﬁg C a - N (N \3 ~ - _.\—. (‘be m\??;) (G.1]
¢ 2 4N
where N is the radius of curvature of the isotherm in number of charge
radii. (The reciprocal of N is the curvature.) Eq. [G.1] gives a positive
value of N when the isotherm is curved as shown in Fig. G.1. If the axial

gradient does not vary greatly over the cross section:

~ ¢sc {G.2]
G 3¢ /4L

where: cPs‘! ¢(~f,‘/z) - ¢(-f=o)

Substituting eq. [G.2] into [G.l]:

N‘-";_ 34;5/32; [G.3]
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isotherm curvature. N is posititve for the isotherm curqature

shown aocve,
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For the purpose of relating d.}.‘_ to ¢A , the heat conduction equation

: within the charge is used:

U2y, 38\, B¢ _o 28 _
7 af(f 3f> N Pe 3C =0 (G.4]

If the Pe term ‘s neglected and if it is assumed that 2% /96t is not a
function of f, the resulting temperature distribution in the radial

direction is parabolic. In this case, it is easily shown that:

|
P = e Pse | (G.5]

Using eq. [G.5] in eq. [G.3I:

N=- \\b A%/AC (G.6]
A

Equation [G.6] indicates that isotherm curvature is small (i.e., large N

when the axial temperature gradient is large as well as when the radial

temperature gradients are small.
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