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FOREWORD

The Space Station Needs, Attributes, and Archi-
tectural Options Study contract (NASW 3683) was
conducted by the Rockwell Shuttle Integration and
Satellite Systems Division for NASA.

The final report summarizes the results of this
study in five volumes, which are:

• Final Executive Summary Report

• Missions and Requirements

• Program Options, Architecture, and Technology

• Cost and Benefits

• DOD Task

Any questions regarding this final report should
be directed to G.M. Hanley, study manager, at
(213) 922-0215.
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1. PROGRAM OPTIONS

PROGRAM OPTIONS TASK SUMMARY

In this task, six program options were identified and defined, as indi-
cated in Figure 1-1. The Mission Scenario 4 mission model defined the pay-
loads, the payload missions, and their operational schedule. Elements to
support the operation of the payloads on-orbit were defined as were elements
needed to transport the various payloads to their operational destinations.

PROGRAM BUILDING BLOCKS

• P/L ORBITAL SUPPORT
ELEMENTS

• TRANSPORTATION
ELEMENTS

MISSION SCENARIO 4

• PAYLOAD DEFINITIONS

• P/L MISSION DEFIN

• FLIGHT SCHEDULES

PROGRAM OPTIONS

• MANIFESTS

• COSTS

• EVALUATION

1. GEO-STAGING
2. SPACE PROCESS.
3. MAX.-ACTIVITY
4. SCIENCE/APPLIC
5. NO STATION
6. 2 STATIONS

MISSION
SCENARIO 6

SPACE
STATION
ORIENTED

• MANIFESTS

• COSTS

• TIME PHASED
MISSION REQ'S

• DESIGN REQ'S

Figure 1-1. Study Summary—Program Options

Five of the options featured a Space Station as the primary support
element for orbital operations. Option 5 was defined to form a basis for
comparison. It was determined that almost all the payload missions in Mission
Scenario 4 could, in fact, be accomplished by operations with the Shuttle.
The major exception was the long-duration life sciences missions. Some of
the orbiter operations represented relatively inefficient approaches to
accomplishing some of the payload missions, but the capability to accomplish
all the Mission Scenario 4 missions provided a simple evaluation criterion:
lowest total cost to accomplish all the payload missions. For the five
Space Station options, the payload missions captured by the station were
costed. The costs for accomplishing the rest of the missions with the Shuttle
were costed and the two costs added to get the total.

- 1 -

SSD 83-0032-2



Shuttle Integration &
Satellite Systems Division

Rockwell
International

Option 3, which provided the maximum activity feasible at a 28.5-degree
inclination station, was found to have the lowest total cost and was selected
for further study along with the no-station option, which forms the basis for
comparisons.

The Option 3 selected used a large single-stage reusable OTV to perform
all phases of the high energy missions. Two alternative OTV designs were
evaluated. Provisions for aerobraking were added to the large single stage.
This variation was designated as Option 7. Option 8 substituted a smaller
OTV that was sized to perform the perigee burn and return to the station.
Circularization at apogee was accomplished by the most appropriate one of
several standard storable propellant apogee stages, which would be integrated
with the spacecraft. Option 8, which used the smaller reusable PKM OTV,
offered some advantages and was selected for the final Space Station program
definition. This definition was based on the Mission Scenario 6 mission
model, which assumed that a Space Station would be available. Mission Model
6A was developed to reflect the scenario judged most likely if no Space Station
should exist to form the basis for definition of the Shuttle-only program.

Airborne support equipment needed for each of the payloads was estimated
and cargo manifests developed using computer programs developed at Rockwell
during the past year. These program definitions formed the basis for program
cost estimates as well as the development of time-phased mission requirements
and Space Station design requirements.

Table 1-1 summarizes the Mission Scenario 4 mission model, which defined
the payload program for the six program options. The upper portion of the

Table 1-1. Mission Scenario 4 Mission Model Summary (1990-2000)

MISSION AREA

SPACE SCIENCES/APPLICATIONS
& TECHNOLOGY

COMMERCIAL COMMUNICATIONS

SPACE PROCESSING

DOD

FUTURE TECHNOLOGY
DEVELOPMENT

TOTAL

NO.
OF

PAYLOADS

117

120

229

271

TBO

737

MISSION LOCATION

GEO NODE

LEO

52

—

231

43
—

326

HIGH

16

120
—

61
—

197

MED INCL

LEO

25

—

—

15
—

40

HIGH

—

—

—

80
—

80

HIGH INCL

LEO

24

—

—

72

—

96

HIGH

—

—

—

—

—

PAYLOAD
WEIGHT

(KIPS)

905.4

5874

634.4

2739.2

—

4866.4

CREW
HOURS

REQUIRED

27,290

31,020

56,329

46,744

—
161,383

PAYLOAO SERVICES

LEO PLACEMENT & RETRIEVAL

GEO PLACEMENT & PLANETARY

SERVICING — LEO & HIGH ENERGY

ATTACHED/INTEGRAL

STORAGE

ASSEMBLY/CONSTRUCTION

TOTAL

NO. OF
PAYLOADS

261

183

165

126

TBD

2

737

PAYLOAD WEIGHT
(KIPS)

2859.9

1026.4

586.9

347.4

—
45.8

4866.4

CREW HOURS
REQUIRED

22,205

75,326

13,379

49,063

—
1,410

161,383
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table segregated the payloads into the major user categories. The lower por-
tion of the table segregates the payloads by the type of payload service
involved. This mission mo'del was frozen in early October to form the basis
for the program options evaluation presented at the mid-term briefing in
November. Based on insights gained from user contacts, significant revisions
were made to the commercial communications, DOD, and space processing areas
of Rockwell Mission Scenario 3. Some revisions were made to Mission Scenario 3
in the laboratories and pallets portion of the science, applications, and tech-
nology area. These revisions were based on insights gained from user contacts.

Table 1-2 summarizes the major characteristics of the six program options
evaluated. Options 1 and 2 performed only the functions shown. Option 4 gave
first priority to science, applications, and technology payloads, but as a
second priority, also performed the space processing missions. Options 2 and 4
performed all the high energy missions in the Shuttle-only mode, since neither
included a reusable OTV. The Mission Scenario 4 mission model included some
payloads stated to consider either 28.5-degree or 57-degree inclinations as
acceptable destinations. Both Options 3 and 4 included these payloads.
Option 6 located these payloads at 57 degrees. Option 1 was capable of deploy-
ing some of the payloads to their medium inclination destinations from a 28.5-
degree station. These payloads were included in Option 3 as well as Option 1.
Options 1, 3, and 6 use propellant scavenging from the orbiter and from the
external tank as shown. Capability of the standard orbiter to the appropriate
location is used as the reference for 100 percent load factor, which by this
definition permits load factors greater than one to occur in Options 1, 3, and
6. Option 6 conducted space processing research and process development activ-
ities at the 57-degree station since their logistics requirements are low and
they prefer the quieter environment. Space processing factories are located
at the 28.5-degree station to accommodate the heavier logistics requirements
of these free-flyers.

Table 1-2. Program Options Definition

SPACE STATION

OPTION

1

2

3

4

5

6

FUNCTIONS

HIGH-ENERGY
MISSION STAGING

SPACE PROCESSING

MISSION SUPPORT

MULTIPLE MISSION
SUPPORT

SPACE PROCESSING
& SCIENCE &
APPLICATIONS
MISSION SUPPORT

NO SPACE STATION

TWO SMALL
MULTIFUNCTIONAL
STATIONS

SIZE

4-MAN

4-MAN

4-MAN
8- MAN

4-MAN

4-MAN
4-MAN

LOCATION

ALT/INCL

200 NMI
28.5°

200 NMI
28.5°

200 NMI
28.5°

200
57"

160 NMI
28.5°
57"
98°

200 NMI
28.5°
57°

OTHER ELEMENTS

STS PERFORMANCE

STD (LB)

61,000

61,000

61,000

47,500

70,000
49,000
25,000

61,000
47,500

SCAVENGE

8,000

-

8,000

-

\

8,000
8,000

OTV

SPACE-BASED
REUSABLE
SINGLE-STAGE
CRYOGENIC

PAM A&D
(US •
(US FIRST STAGE
CENTAUR F&G

SAME AS
OPTION 1

SAME AS
OPTION 2

PAM A&D
IUS
IUS FIRST STAGE
CENTAUR F&G

SAME AS
OPTION 1

TMS

GROUND & SPACE
BASED REUSABLE
BI-PROPELLANT

GROUND & SPACE
BASED REUSABLE
BI-PROPELLANT

SAME AS
OPTION 2

SAME AS
OPTION 2

GROUND-BASED
REUSABLE
BI-PROPELLANT

SAME AS
OPTION 2
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Figure 1-2 shows the arrangement of the basic elements used in the Space
Station program options. All five use the four-man station, which is shown
at the right side. The first station is initiated in 1990 for all options.
The IOC for the OTV is 1992 for Options 1, 3, and 6. Option 3 grows to the
eight-man size in 1993.

The same core Space Station concepts are used for the Option 3 program,
which is defined in the latter part of the study for the Mission Scenario 6
mission model. For that program, the four-man station is initiated in 1991.
It grows to eight men in 1993. IOC for the OTV is 1994.

Figure 1-3 shows the dimensions and weights of the core Space Station
elements and their capabilities to accommodate experiment hardware. The
module dimensions shown were used in all the cargo manifests developed during
the study. The weights shown in the figure are the most current values used
in manifesting Option 3 to accommodate Mission Scenario 6. Options 1, 2, 3,
4, and 6 used weights that could be found in the mid-term briefing brochure
for the manifests to accommodate Mission Scenario 4. In general, the earlier
weight estimates were heavier than the current values presented here.

• 8- TO 12-MAN CREW • 3- TO 4-MAN CREW

-SOLAR ARRAYS

LOGISTICS
MODULE

Ku-BAND
ANTENNA

ENERGY
MODULE COMMAND

MODULE

AIRLOCK (2)

PAYLOAD
SERVICE
ASSEMBLY

Figure 1-2. Core Space Station Concept
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ELEMENT LENGTH
WEIGHT (Ibs)

GROSS EXPT
VOLUME
FOR EXPTS

COST
CATEGORY

ENERGY MODULE

INITIAL
SOLAR ARRAY,

FULL-UP
SOLAR ARRAY

20ft
53ft
PACKAGE

31,382 1,980 330

EXP'T
VOL

CORE
SPACE
STATION

COMMAND MODULE INITIAL S/S

EXP'T VOL

40ft 30,271

29,627

456

4,714

76 ft3

786 ft3

EXP'T VOL

CORE
SPACE
STATION

LOGISTICS MODULE

Mm 1%; 20ft

15,784 3,480 125

CORE
SPACE
STATION

HABITAT MODULE NO. 1

40ft 22,864 2,929 488 fr
CORE
SPACE
STATION

HABITAT MODULE NO. 2

40ft 22,864
CORE
SPACE
STATION

TUNNEL MODULE

40ft 18,421 11,721 1953 ftj

EXP'T VOL

CORE
SPACE
STATION

AIRLOCK

7f t 1,983
CORE
SPACE
STATION

Figure 1-3. Core Space Station Building Blocks
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ELEMENT LENGTH
WEIGHT (Ibs)

GROSS EXPTS
VOLUME ,

FOR EXPTS FT1
COST

CATEGORY

PAYLOAD SERVICE
ASSEMBLY

17,206 8,129 CORE
SPACE STA

MANNED MANEUVERING
UNIT

225 STS
MOD

DOCKING MODULE

4,500 STS
MOD

Figure 1-3. Core Space Station Building Blocks (Cont)

The Space Station elements and all the payload elements defined in the
various levels of Mission Scenario 6 were manifested to form the basis for
cost estimates, the development of time-phased mission requirements, and
Space Station requirements.

For any equivalent level of mission accomplishment, the Space Station
program option showed a significant advantage in number of required Shuttle
launches and in total program cost.
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MISSION SCENARIO 4

OPTION 1: GEO STAGING

In Option 1, the function of staging high-energy missions from a Space
Station located at 28.5 degrees inclination was examined in depth. To enable
this function, the building blocks defined in Figure 1-4 were utilized. The
teleoperator maneuvering subsystem (TMS) used primarily to transport payloads
to nearby locations, is also used as the means for remote servicing of high-
energy payloads. In this function, it is transported to the proper orbit by
the orbiter transfer vehicle (OTV) in a loaded condition and returned empty.
Its load consists of propellant for maneuvering to each payload plus servicing
packs. (In later Scenario 6 studies, this operation was changed.)

ELEMENT

TELEOPERATOR 9
MANEUVERING /^fe.SYSTEM (Krin
STORABLE r̂TSiK
PROPELLANT vJu^Tll
TANKS WsliRlSgfp

ORBIT j—
TRANSFER £j3 1 «/K\

VEHICLE rfl *' * ' fj$JTT)

SCAVENGEAOP-OFF f ^
TANK !f:r-Tsy
PROPELLANT

STORAGE / f / ^ i

UJ9

LENGTH
(ft)

3.1

9

30.2

9

27

WEIGHT
GROSS

(Ibs)

8,245

(2,545)

31,153

(7,153)

53,020

(5,020)

26,550

(2,550)

59,700

(5,700)

WEIGHT OF
PROPELLANT

(Ibs)

-

5,700

_

24,000

-

48,000

-

24,000

-

54,000

COST
CATEGORY

UPPER
STAGES

STS
MODIFICATIONS

UPPER
STAGES

STS
MODIFICATIONS

STS
MODIFICATIONS

Figure 1-4. Option 1 Building Blocks
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The storable propellent tanks are brought to the station full and used
for bulk storage, from which IMS propellant is supplied. The propellant
storage module has a similar function for servicing the OTV, but is brought
up empty to the station and then filled by transfer from the scavenge/top-off
tanks carried in the orbiter cargo bay. The OTV was sized to a nominal deliv-
ery capability of 12,000 pounds to geosynchronous orbit (GEO). In this respect,
it is similar to ground-based cryogenic OTV's with a gross weight near the
orbiter lift capacity; however, it is significantly lighter since it is space-
(station) based and is only subjected to the high launch inertial loads when
empty. Conceptual design studies established that a propellant fraction of
0.906 was achievable using an engine thrust/initial weight ratio of near 0.1.

Option 1; STS Launch Summary

The results of analysis of the Option 1 payload traffic are illustrated
in Figure 1-5. Payloads that did not go to the station involved 65 Shuttle
polar flights and 270 that were deployed by the Shuttle. They do not use the
station since, by definition, Option 1 relegates the station to high-energy
payload staging only. These high-energy payloads require 166 Shuttle launches.
The cryo propellant needed for the OTV to carry these payloads is also included
in the 166 launches.

50

32

30

20

10

n
POUR
65 LAUNCHES

SHUTTLE
270 LAUNCHES
0 55 LOAD FACTOR

SPACE STATION
166 LAUNCHES
1 01 LOAD FACTOR

501 TOTAL LAUNCHES

0 73 L F LOW & MED INCL

44

40

48
50 51

48
45 46

I I I I I I I I i I I
1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000

YEAR

Figure 1-5. Option 1 Launch Summary, 28.5-Degree Space Station
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Option 1: OTV Flight/Operations Summary

Figures 1-6 through 1-8 illustrate the results of computer analysis of
the high-energy payloads manifested on the OTV. Low-inclination payloads,
principally to GEO, totaled 164. Medium-inclination payloads (up to 65 degrees
inclination) that were within the OTV capability totaled 67. The number of
individual payloads decreased in the end years of Scenario 4, reflecting a
trend to larger payloads. In Figure 1-7, the OTV flight summary, the number
of OTV flights and their destination class are shown for each year. Also
listed is the number of OTV's required to be manufactured, their disposition,
and the number of Shuttle deployments for required OTV's. Although not shown
on the figure, the code established data by year to enable Shuttle manifesting,
and used ground rules of ten flights between overhauls with one overhaul per
vehicle. (This was increased to 20 flights for Scenario 6.) The results of
computer-code manifesting of the OTV are shown in Table 1-3. Two OTV's were
on station at all times, and the flight history of each serial unit was tracked
to establish its disposition regarding overhaul. For each flight, the best
unit and a compatible payload set were selected. Ground rules for manifesting
used required compatible destinations (not more than two DOD payloads or more
than three commercial communication payloads per flight), and a compatibility
matrix that restricted payload companions, e.g., DOD payloads traveled only
with other DOD payloads.
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LOW INCLINATION - 164
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Figure 1-6. High Energy Payloads
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Table 1-3. OTV Manifest

Flight

No.

42

43

44

45

46

47

48

49

50

51

52

53

54

Payloads

RCA DBS F/0 4.5 KLB CLASS 4.5 KLB CLASS

4 KLB CLASS 4.5 KLB CLASS 4.5 KLB CLASS

4.5 KLB CLASS 4.5 KLB CLASS NASA growth GEO's

4.5 KLB CLASS 4.5 KLB CLASS

DOD 9G DOD 9G

DOD 9G DOD 9G

DOD 21

DOD 21

Mars geochem orbit

Uranus/Neptune
probe

DOD 1G DOD 7G

DOD 19G

DOD 23 SERVICE-2

j:oo .
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Table 1-3. OTV Manifest (Cont)

Flight
No.

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

Payloads

Westar F/0 ODSRS Telstar Z F/0

Satcom KF/0 Intelsat VII P

RCA DBS F/0 L-SAT F/0

4 KLB CLASS - 4.5 KLB CLASS 4.5 KLB CLASS

4 KLB CLASS 4.5 KLB CLASS 4 KLB CLASS

4 KLB CLASS

ACTS 2 or P-#

DOD 9G DOD 9G

DOD 9G DOD 9G

DOD 21

DOD 21

DOD 22

DOD 1G

DOD 3 SERVICE- 2

DOD 5G SERVICE-2

DOD 19G

DOD 23 SERVICE-2

4.5 KLB CLASS Intelsat VII P

4.5 KLB CLASS 4.5 KLB CLASS NASA growth GEO's

ACTS 2 or P-#

ACTS 2 or P-#

DOD 9G DOD 9G

DOD 9G DOD 9G

DOD 20

DOD 21

DOD 21

Mars NETWORK ORBIT

4J
f
60
f4
<U
2

O
>,
l<
U

48150

44493

43167

48303

47541
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45256

37990

37990
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33064
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45256
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46017
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37990
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33602

8853

L
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F

a
c
to

r

944
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982
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784
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694
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95
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5

6

5

6

5

6

5

6

5

6

5

6
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6
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6

5

6

5

6

5

6

5

6
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OPTION 2: SPACE PROCESSING

Option 2 consisted of one Space Station, orbiting the earth in a circular
orbit, inclined 28.5 degrees with respect to the equator, and 200 nautical miles
above the surface. All activity at the Space Station was related to either
space processing or station operations. All other activity accomplished by
Mission Scenario 4 (e.g., GEO staging) was accomplished using the existing
space transportation system, i.e., these other activities were accomplished
independent of the existence of a Space Station. The station acquires IOC in
1990, with an initial crew size of two. The crew size grows to three in 1992
and to four in 1998. It remains at four through the year 2000.

The space processing model of Mission Scenario 4 consisted of three phases.
Phase I accomplished all space processing research. All such research activity
was accomplished on the Space Station. Phase II accomplished all space pro-
cessing related prototype hardware demonstration. Prototype hardware could be
demonstrated either on the Space Station attached to a research pallet (if the
demonstration could stand the station environment), or on the prototype hard-
ware demonstration satellite, which is a separate co-orbital satellite serviced
by the station. Phase III accomplished all space processing factory (SPF)
production. All such production occurred on a fleet of SPF's. The factories
were all separate co-orbital satellites, serviced by Space Station.

The space processing model of Mission Scenario 4 required the following
Option 2 building blocks: one energy module, one command module, one payload
service assembly (PSA), one growth Spacelab, two space processing laboratory
modules, one research pallet, one prototype hardware demonstration satellite
(PHDS), three TMS's, one set of station-attached TMS propellant storage tanks,
two generic types of SPF's, and continuous station resupply via logistics
modules. The energy, command, and logistics modules, the PSA, and the TMS
were described in the previous section. The new (space processing related)
building blocks are described in Figure 1-9. A summary of when the new build-
ing blocks are required and how long they remain operational is presented in
Figure 1-10.

The various payloads required to accomplish the space processing model
of Mission Scenario 4 and Space Station operations were grouped, by calendar
year, into files called payload data lists. The payload data lists were then
manifested into STS missions using the SOSMAN computer program. The Shuttle
payload cargo bay was loaded using a maximum payload weight of 61,000 pounds
or a length of 55.5 feet (4.5 feet must be reserved on all Space Station
destined missions for the docking module). The number of such STS missions
per year, required to support Option 2, is presented in Figure 1-11.

Close inspection of Figure 1-11 will reveal two basic facts. First, the
number of STS missions per year necessary to support the space processing model
of Mission Scenario 4 is very low (too low, in fact, for timely return of the
high value finished products). Second, the total Option 2 STS load factor
for Space Station destined missions is very low. This is because the number
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ELEMENT
LENGTH

(ft)

WEIGHT (Ibs)

GROSS EXPT

VOLUME FOR
EXPTS (ft3)

COST
CATEGORY

GROWTH SPACE LAB 14 13,300 4,700 783 PAYLOAD
SUPPORT
ELEMENTS

LAB MODULE NO. 1
LAB MODULE NO. 2

40
40

27,100
23,400

12,100
8,400

2,017
1,400

PAYLOAD
SUPPORT
ELEMENTS

PROTOTYPE
HARDWARE
DEMONSTRATION
SATELLITE
(PHDS)

6.5 6,300 4,000 667 PAYLOAD
SUPPORT
ELEMENTS

RESEARCH PALLET 10 5,650
(1,650)

4,000 667 PAYLOAD
SUPPORT
ELEMENTS

TELEOPERATOR
MANEUVERING
SYSTEM 3.1 8,245

(2,545)
5,700 LB
PROPELLANT

UPPER STAGES

SPACE PROCESSING FACTORY
• BIOLOGICAL PROCESSORS 22.5 25,100 11,000 1,700 USER

ELEMENTS

SPACE PROCESSING FACTORY
• CRYSTAL GROWER 10.0 12,500 5.000 700 USER

ELEMENTS

Figure 1-9. Option 2 Building Blocks
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COMMAND MODULE LABORATORY

GROWTH SPACE LABORATORY

LABORATORY MODULE 1

LABORATORY MODULE 2

PROTOTYPE HARDWARE DEMO SATELLITE

PROTOTYPE HARDWARE DEMO PALLET

SPACE PROCESSING FACTORY: BIOLOGICALS

SPACE PROCESSING FACTORY: CRYSTALS

SPACE PROCESSING FACTORY: BIOLOGICALS

SPACE PROCESSING FACTORY: METALS

SPACE PROCESSING FACTORY: BIOLOGICALS

Figure 1-10. ESTS Option 2 Operations Summary
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Figure 1-11. Option 2 STS Launch Summary
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of payloads per year necessary to support space processing is very low, and
because very little propellant is required at the Space Station. (The only
propellant required on orbit is that needed by the TMS, to service the various
SPF's and PHDS.) The propellant is very dense relative to the average density
of most spaceborne payloads, and is able to be manifested almost wherever extra
cargo bay length and load-carrying capability exist on a given STS mission.
The net result of the inclusion of much propellant in a set of STS manifests
is a high load factor. Option 2 cannot take advantage of this situation;
hence, the low total load factor.

The net result of this entire analysis is that because space processing,
as defined in Mission Scenario 4, requires infrequent and inefficient utili-
zation of the STS, which results in a higher cost per value received; a Space
Station dedicated to only space processing is not a viable option. Space
processing is, by nature, a low mass flow to orbit, high labor intensive,
large volume operation, as is activity in the life science and physical science
mission categories. Low-mass flow to orbit, high labor intensive, large volume
operations must be integrated with high-mass flow to orbit, low labor intensive,
low volume operations (e.g., GEO staging), and with high-mass flow to orbit,
high labor intensive, high volume operations (e.g., space construction) in
order to achieve the most efficient utilization of the STS and Space Station,
thus achieving the maximum value per monetary unit spent.

OPTION 4: SCIENCE AND APPLICATIONS

Option 4 placed the Space Station at an inclination of 57 degrees.
Missions for space processing for Option 2, when the Space Station was at
28.5 degrees, were relocated to the new Space Station inclination of 57 degrees
because of the independence of space processing to inclination. All of the
science/applications/technology (S&A) payloads at 57 degrees were run through
the station. Of the S&A payloads at 28.5 degrees, 49 payloads had optional
locations and were moved to the station location of 57 degrees. All DOD flights
at 57 degrees were included, which then total 399 payloads through the station.
The building blocks for space processing were described under Option 2 and
include the growth Spacelab, the two lab modules, the prototype hardware demon-
stration satellite and pallet, and the factories. The building blocks for S&A
include servicing of the free-flyers such as space telescope, S&A pallets, and
experimental modules (Figure 1-12).

Launch Summary

The launch manifest was run with the computer SOSMAN. The Shuttle launches
are shown for each year in Figure 1-13. The Shuttle payload bay was loaded
using a maximum payload weight of 47,500 pounds or a length of 53 feet, which-
ever value controls for the mix of payloads. The number of launches and the
respective load factors are summarized as follows.
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Item

Space Station
Shuttle only
Polar

Total

Launches

99
247
65

411

Load Factor

0.64
0.75
0.77

The weighted average load factor for the Space Station and the Shuttle-only
flights was 0.71. The load factor for the polar flights was not included in the
average value because a Space Station was not considered as an option at a polar
orbit and its value should not influence the comparison of Space Station options.
The maximum number of flights was 49 per year; the minimum number of flights
was 27, with an average number of 37.4 per year.

Service missions are conducted from the Space Station to the free-flyer
space processing factories that are orbiting in the Space Station orbit.
Service missions are also conducted for the S&A free-flyer satellites in a
470 nautical mile orbit, as shown in Figure 1-14. These missions were conduc-
ted with a storable bipropellant TMS by visiting and servicing the free flyers

ELEMENT

SERVICED FREE FLYERS (-gy
•SPACE \ fX~ aS\

TELESCOPE ^JfXJ^fcA

SCIENCE/APPLICATIONSAECHNOLOGY

*"^" °̂̂ ~>-

\G>
SPACE LAB

/^/^~^

*<Q
SCIENCE/APPLICATIONSAECHNOLOGY
PALLET

H^

LENGTH

(ft)

42

20

22

10

WEIGHT (Ibs)

GROSS

24,200

14,300

27,000

8,450
(1,650)

EXPT

_

6,300

•

14,000

6,800

VOLUME FOR
EXPTS (ft3)

_

1,050

2,333

1,133

COST
CATEGORY

PAYLOAD
SUPPORT
ELEMENTS

PAYLOAD
SUPPORT
ELEMENTS

PAYLOAD
SUPPORT
ELEMENTS

PAYLOAD
SUPPORT
ELEMENTS

Figure 1-12. Option 4 Building Blocks
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Figure 1-13. Option 4 Launch Summary, 57-Degree Space Station

in orbit. The SPAS-01, the space telescope, and the LDEF were returned to the
Space Station for servicing and returned to their orbits. The TMS propellant
required for the space processing was 45.7 kips and for the S&A free flyers was
91.1 kips for a total of 136.8 kips. The storable propellant tank assembly
described in Option 1 and used in Option 2 contained the four QMS tank version
with a capacity of 37 kips. Using this tank, the Shuttle delivered a total of
145 kips in five years.

NO OF
SATELLITES
ON-ORBIT

SPAS-01

SPACE TEL
LOEF

LARGE SOUR OBSERVATION
GAMMA RAY OBSERVATION

IR INTERFERENCE
X-RAY TIME EXP

X-RAY OBSERVATION
OSTA .

X SATELLITE
GROUND LAUNCH

>V^ SATELLITE RETURN
TO GROUND

1990 T991 1992 1993 1994 1995 1996 1997 1998 1999 2000

Figure 1-14. Option 4 Free-Flyer Operations (57-Degree,
47.5 kips Shuttle) Service Missions
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Labs and Pallets

The labs and pallets scheduled for Space Station are shown in Figure 1-15.
Each pallet used for Experiments 1 through 10 has a capacity of 6,800 pounds.
Because of the phasing, not all pallet experiments are attached to the Space
Station at one time, and only three or four pallets will be required to assemble
and check out the experiments. Each pallet remains on the Space Station for
two to three years.

The initial three experimental modules used an upgraded short and long
Spacelab module with experiments weighing 6,300 pounds and 14,000 pounds,
respectively. The last three experimental modules used improved experiments
based on early results using standard Space Station construction components.

OPTION 3: MAXIMUM ACTIVITY AT 28.5 DEGREES

Option 3 provided the Space Station at an inclination of 28.5 degrees.
The mission payloads include the space processing, S&A, DOD payloads, and
commercial communications. An addition to this includes some of the medium-
inclination DOD flights that are launched from the Space Station with a high-
energy upper stage to make a plane change from 28.5 to 57 degrees, as in
Option 1. The Space Station evolution is shown in Figure 1-16 to accommodate
the payload traffic. Early Space Station elements of energy module, command
module, PSA, and storable propellant tank with a four-man crew support the
servicing flights with the TMS and low-energy free-flyer deliveries. As the
traffic through the Space Station increases, the station is increased by adding
two habitat modules, a tunnel module, and an eight-man crew.

Launch Summary

The major activities for 1990 consists of activating the four-man Space
Station, servicing the space processing labs, and servicing the low-energy
free-flyer missions. In 1991, the development of cryo propellant handling is
started with transfer to propellant storage tanks and loading the OTV. In
1992, the high-energy OTV flights begin.

The launch summary is shown in Figure 1-16. The number of launches for
each year is also shown to the Space Station for Shuttle only, and the polar
flights. The total summary is:

Item

Space Station
Shuttle only
Polar

Total

Launches

233
49
65

347

Load Factor

0.98
0.57
0.77
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Figure 1-15. Option 4 Free-Flyer Operations (57-Degree,
47.5 kips Shuttle) - Labs and Pallets
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• MMU 1
• MMU 2
• T M S 1
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LANT TANK
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NOT SHOWN

> TMS 2
RESEARCH
PALLET (SP)

1 SPACE
PROCESSING (SP)
SCIENCE
APPLICATION
TECHNOLOGY
(SAT)

SPACELAB
SPACE PROCESSING
(SP)

• PROTOTYPE
HARDWARE
DEMONSTRATION
SATELLITE
(SPACE PROCESSING)
(SP)

EXPERIMENT
MODULE NO. 1
SCIENCE
APPLICATIONS
TECHNOLOGY
(SAT)

Figure 1-16. ESTS Option 3—Evolution
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ELEMENTS
NOT SHOWN

• RESEARCH
PALLET
(SAT)

1992

SPACELAB
(SP)

CRYO
PROPELLANT
TANK 2

ELEMENTS
NOT SHOWN

' STORABLE
PROPELLENT
TANK

RESEARCH
PALLET
(SAT)

SPACE
PROCESSING
LAB

EXPERIMENT
MODULE NO. 1
(SAT)

EXPERIMENT
MODULE NO. 2
(SAT)

TUNNEL
MODULE

EXPERIMENT
MODULE NO. 3
(SAT)

EXPERIMENT
MODULE NO. 4
(SAT)

1995

HABITALE
MODULE 1 & 2

LAB
MODULE
(SP)

Figure 1-16. ESTS Option 3—Evolution (Cont)

The weighted average for the Space Station and Shuttle-only flights was
a 0.92 load factor. As in Option 4, the polar flights load factor was not
included in the average value, because the Space Station was not an option in
a polar orbit. Figure 1-17 shows the number of launches to reach a maximum
of 35 per year, a minimum of 26 per year, and an average value of 31 per year.

Option 3 is different from Option 4 in that it has the addition of the
high-energy flights to geosynchronous orbit from Option 1. Additional high-
altitude payloads delivered to 57 degrees were launched in the Shuttle to the
Space Station at 28.5 degrees. The OTV then launches them from the Space
Station through an orbit plane change to 57 degrees. These flights required
the orbiter to carry propellant tanks for the liquid oxygen and liquid hydro-
gen. These flights required 6,485 kips of propellant, and the flights pro-
vided 6,590 kips as manifested. The yearly propellant balance is shown in
Figure 1-18. The cryo propellant stored at the Space Station includes the
two storage tanks for 108 kips and the two OTV's for 96 kips, with a total of
204 kips.

The TMS storable propellant for the space processing servicing was
45.7 kips and for the S&A free-flyer servicing, was 75.2 kips for a total of
120.9 kips. A total weight of 130 kips of propellant was delivered in five
Shuttle flights. In retrospect, a smaller storable propellant tank than the
37-kip tank could have been used for the transfer tank in the Shuttle to
permit at least one delivery in each year instead of five deliveries in
11 years.
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Figure 1-17. Option 3 Launch Summary (28.5-Degree Space Station)

SPACE STATION SURPLUS

O CRYO DELIVERED. 6 6M LB

D OTV CRYO REOD 6 5M LB

1,990 1,991 1,998 1,999 2.000

Figure 1-18. Option 3 Cryo Propellant Space Station Status
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Manifest

Table 1-4 is a typical example of the manifest for each Shuttle payload.
The Shuttle is loaded to a maximum of 61 kips, or a maximum of 53 feet, which-
ever value controls. The scavenging or cryo propellant tanks are added to
carry the cryogenic propellant to the two Space Station propellant tanks and
two OTV's. The payload bay is loaded with all the payloads, including the
docking module, for a maximum of weight or length. The use of the scavenging
and top-off tanks permit the Shuttle to be loaded to a higher load factor of
0.98, as compared to Option 4, which had a 0.64 load factor.

Takle 1-4. Manifest for Each Shuttle Payload (Typical Example)

ID.
No.

1

2

3

4

5

Payload Name

Docking module
DOD 3S
DOD 23
Scavenge tank
Scavenge fuel
Topoff fuel

Docking module
DOD 3S
DOD 1G
Scavenge tank
Scavenge fuel
Topoff fuel

Docking module
Propellant tank (2)
Lab resupply:mod
Scavenge tank
Scavenge fuel

Docking module
Lab module start
SPF resupplytBlO
PHD start imodule
Scavenge tank
Scavenge fuel
Topoff fuel

Docking module
DOD 21 (M)
DOD 6A
DOD 6A service (1)
Scavenge tank
Scavenge fuel
Topoff fuel

OTV Type

USA-P
USA-M

USA-P
USA-M

None
None

None
None
None

USA-M
USA- 1
USA-P

Payload
Mass
(kips)

4.5
45.0
6.9
2.5
8.0
2.1

4.5
45.0
4.6
2.5
8.0
4.4

4.5
26.6

.8
2.5
8.0

4.5
24.3
8.0
4.0
2.5
8.0
16.0

4.5
23.0
20.0
1.0
2.5
8.0
10.0

JPayload
Length
(feet)

7.0
35.0
6.5
9.0
0.0
0.0

7.0
35.0
6.5
9.0
0.0
0.0

7.0
9.5
2.0
9.0
0.0

7.0
40.0
2.0
2.0
9.0
0.0
0.0

7.0
18.5
18.0
3.5
9.0
0.0
0.0

Mass
To LEO
(kips)

69.0

69.0

69.0

67.3

69.0

Unused
Mass
(kips)

0.0

0.0

0.0

0.0

0.0

Load
Factor

1.13

1.13

1.13

1.10

1.13
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Table 1-4. Manifest for Each Shuttle Payload (Typical Example) (Cont)

ID.
No.

6

7

Payload Name

Docking module
DOD 21 (M)
DOD 5G
Scavenge tank
Scavenge fuel
Topoff fuel

Docking module
SPF start :CRS
Logistics mod
IR Intrferomtr ser
SPF resupply:CRS
Scavenge tank
Scavenge fuel

OTV Type

USA-M
USA-M

None
None
USA-P
None

Payload
Mass
(kips)

4.5
23.0
11.5
2.5
8.0
16.0

4.5
22.0
20.6
9.9
1.5
2.5
8.0

Payload
Length
(feet)

7.0
18.5
22.5
9.0
0.0
0.0

7.0
11.0
20.5
10.5
2.0
9.0
0.0

Mass
To LEO
(kips)

65.5

69.0

Unused
Mass
(kips)

0.0

0.0

Load
Factor

1.07

1.13

OPTION 6: TWO STATIONS

Option 6 was concepted with two, small, four-man Space Stations with one
at 28.5 degrees inclination and the other at 57 degrees. Payloads were
assigned to each station as follows .

28.5-Degree Station 57-Degree Station

• All geosynchronous payloads

• All planetary spacecraft

All low inclination (25 to 32
degrees) mandatory spacecraft
(those stated to be optional
at 28 degrees or 57 degrees
will be located at 57 degrees)

• All five space processing
factories (SPF)

• All S&A technology experiment
modules and research pallets

• All space processing research
pallets

• All space processing process
development and demonstration
payloads (pallet and free-flyer)

• All medium inclination (54 to
60 degrees low altitude [<1200 nmi]
spacecraft)

• All medium inclination, high-
altitude spacecraft OTV

• Any high-inclination (90 to 98
degrees) high-altitude spacecraft
feasible with single-stage
reusable OTV
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Option 3 contained some payloads that were launched from the Station at
28.5 degrees using an OTV to be delivered through a plane change to a medium
inclination. A second station at 57 degrees would provide a launch platform
location that would reduce the OTV cryo propellant requirement. Option 3
required 6,485 kips of propellant. Option 6, with two stations, required
4,588 kips of propellant at 28.5 degrees, and 1,060 kips of propellant at
57 degrees for a total of 5,648 kips. The propellant savings for Option 6
was 837 kips over Option 3. An offsetting factor in the OTV propellant
savings is the reduction in Shuttle payload capability from 61 kips at
28.5 degrees to 47.5 kips at 57 degrees. Option 6 launch summary is shown
in Figure 1-19. The maximum number of launches was 44 with a minimum of 29
and an average of 33.1. The total number of launches was 364 compared to 347
for Option 3.

The propellant savings can be equated to a single- launch cost of $77 X
for $l,262/pound at 28.5 degrees inclination, and $l,621/pound at 57 degrees
inclination. Using these costs and assuming a 1.0 load factor, gives a total
mission propellant cost of $8.184 X 109 for Option 3. For Option 6, the pro-
pellant costs $7.508 X 109 for a cost savings of $676 X 106. The load factors
for flights to the Space Station were 0.98 for Option 3, and 0.97 at 28.5
degrees and 0.87 for 57 degrees for Option 6. If these load factors are used
to correct the cost of propellant, the propellant costs for Option 3 are $8.35
X 109, and for Option 6 are $7.944 X 109 , for a cost savings of $407 X 106.
Comparing the two options to the number of launches gives a greater cost of
$131 X 106 of Option 6 over Option 3.

F-....3 LOW SPACE STATION
163 LAUNCHES
0 97 LOAD FACTOR

( 1 LOW SHUTTLE ONLY
17 LAUNCHES
0 67 LOAD FACTOR

Uiiiil HIGH SPACE STATION
110 LAUNCHES
0 87 LOAD FACTOR

a HIGH SHUTTLE ONLY
9 LAUNCHES
0 73 LOAD FACTOR

IH POLAR
65 LAUNCHES
0 77 LOAD FACTOR

'50

40

30

20

10

TOTAL STS LAUNCHES = 364
TOTAL LOAD FACTOR = 0 85

LOW PLUS MEDIUM LOAD FACTOR = 0 91

30

1 t. I lit ..I i l l ! I i t i L 1 r J I :
I I I I i i I i i i i

1990 1992 1994 1996 1998 2000

FISCAL YEAR

Figure 1-19. Option 6, STS Launch Summary
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OPTION 5: NO STATION

The building blocks for Option 5 are illustrated in Figure 1-20.
Option 5 assumes that Mission Scenario 4 is executed without a Space Station.
All detached payloads are deployed to their final or transfer orbit by the
Shuttle. Accordingly, missions with final orbital inclinations greater than
28.5 degrees are assumed deployed by the Shuttle at or near their final
orbital plane.

GEO missions and other high-energy missions use expendable upper stages.
These are shown in Figure 1-19. Each upper stage is dedicated to one payload.
Servicing is performed either directly from the orbiter (EVA, RMS) or with a
TMS. The TMS is ground-based and carried to LEO with each servicing mission.
On high-energy (e.g., GEO) servicing missions, the TMS is mounted on an upper
stage and launched to the high-energy orbit. The TMS is normally retrieved
after servicing missions. For servicing missions to high-energy orbits,
however, it is expended.

Manned on-orbit research and development (R&D) is needed for commercial
space processing and for NASA science and applications. This work is performed
with the Spacelab module, sometimes including a pallet. The number of Spacelab
missions was selected'to give a number of R&D hours on orbit equivalent to that
of the Space Station. For Space Processing, this is achieved with 129 dedi-
cated Spacelab missions from the year 1990 through 2000. For S&A, 33 such
missions are needed.

Launch Summary

The launch manifest was created with the SOSMAN program. Figure 1-21
shows the Shuttle launches by year. The Shuttle was assumed to have the
following lift capacity :

1. 70,000 pounds to 160 nmi/28.5 degrees
2. 49,000 pounds to 160 nmi/57 degrees
3. 25,000 pounds to 160 nmi/98 degrees

Since no fuel scavenging or docking equipment was carried, all 60 feet
of the payload bay length were available.

A major part of the launch total is the Spacelab flight scenario.
Spacelab flights are summarized as follows:

Inclination
(Degrees)

28.5
57.0

User Area

Space Processing R&D
NASA science and applications

Number of
Flights

129
33

Spacelab flights are assumed to be dedicated and to lift 35,000 pounds
into LEO. This gives each low-inclination Spacelab flight a load factor of
0.5. The large number of such flights reduces the average load factors for
launches to each orbital inclination are shown in Figure 1-20. Low-inclination
launches have the lowest average load factor. This is because of the large
number of Spacelab flights at that inclination.
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ELEMENT
LENGTH WEIGHT (IBs)

GROSS EXPT

VOLUME FOR
EXPTS (ft3)

COST
CATEGORY

SPACE LAB
MODULE

40 29,350 18,000 3,000
PAYLOAD
SUPPORT
ELEMENT

SPACE LAB PALLET

10 5,650
(1,650)

4,000 667
PAYLOAD
SUPPORT
ELEMENT

TELEOPERATOR
MANEUVERING SYS 3.1 8,245

(2,545) 5,700lbs
PROPELLANT

UPPER
STAGES

PAM D

8,600 UPPER
STAGES

PAM A

a 7.6 14,700 UPPER
STAGES

PAM II

10.8 13, 000 UPPER
STAGES

IUS 1st STAGE
(SRM-1)

10.4 36,200
UPPER
STAGES

CENTAUR -F

29.5 52,000 UPPER
STAGES

CENTAUR - G

20 40,000 UPPER
STAGES

Figure 1-20. Option 5 Building Blocks
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60

40

20

29

D

LOW INCLINATION
318 LAUNCHES
0 65 LOAD FACTOR

MEDIUM INCLINATION
129 LAUNCHES
0 72 LOAD FACTOR

POLAR ORBIT
65 LAUNCHES
0 77 LOAD FACTOR

49

38-,
'S•-*"

45

TOTAL STS LAUNCHES = 512
0 68 L/F ALL FLIGHTS

60

55

47
49

47 48
45

1990 1991 1992 1993
I I

1994 1995

FISCAL YEAR

I
1996

I
1997 1998 1999 2000

Figure 1-21. Option 5 STS Launch Summary

Key Comparisons

The most significant differences between Options 5 and the Space Station
options are shown in Table 1-5. These fall into two areas: upper stages and
Spacelab flights.

Options 1 and 3 involve the Space Station in loading, servicing, and
launching reusable OTV's. These vehicles boost the high-energy payloads.
In Option 5, the OTV does not appear. The same payloads must be boosted with
expendable upper stages. As shown in Table 1-5, Option 5 requires 248 expend-
able upper stages of various types to boost the Mission Scenario 4 high-energy
traffic. The same thing can be done in Option 3 with 13 OTV's, serviced and
launched at the Space Station. These OTV's consume 6.5 million pounds of
propellant.

In the Space Station options, commercial and NASA R&D are performed in
experiment modules and in the command module. There is no permanent manned
orbiting facility in Option 5; therefore, the equivalent research must be
done on ten-day Spacelab missions. As shown in Table 1-5, it takes 162
Spacelab missions to do the R&D planned for the Space Station.

PROGRAM OPTIONS EVALUATION

It was determined that essentially all of the payload missions defined
in the Mission Scenario 4 mission model could, in fact, be accomplished by
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Table 1-5. Option 5 Key Comparisons

OPTION 5 SPACE STATION
NO. STATION OPTIONS

GEO NODE 57" TOTAL

UPPER STAGES TOTAL

PAM-D-

PAM-II:

PAM-A:

1US 1ST STG-

CENTAUH-F:

CENTAUR-G:

193 TOTAL:

2

14

17

76

35

39

EXPENDED IMS 10

PAM-0:

PAM-A:

IUS 1ST STG:

CENTAUR-F:

CENTAUR-G:

72 248 VS

10
2

17

1
25

13 OTV'S & 6.5 MLB

PROPELLANT

OPTIONS 1 & 3

SPACE LAB FLIGHTS

• SPACE PROCESSING 129 129 VS 3 EXPERIMENTAL

MODULES & CM LAB

— OPTIONS 284

NASA RSO 33 33 VS 6 EXPERIMENTAL

MODULES & CM LAB

— OPTION 4

the Shuttle even though some were not accomplished very efficiently. This
capability provided a straightforward quantitative criterion to evaluate the
relative merits of the program options, which is the total cost to accomplish
the entire Mission Scenario 4 mission model. For each Space Station option,
the payload missions captured by the station are identified. The costs of
conducting the mission and the costs of the station and the other supporting
elements are estimated. The costs for conducting the rest of the payload
missions in Mission Scenario 4 with the Shuttle-only mode were then estimated
and added to the costs for the Space Station missions. Total costs to accom-
plish all the Mission Scenario 4 payload missions by each of the program
options were derived in this manner and compared.

Figure 1-22 shows the total number of Shuttle launches required to per-
form all the Mission Scenario 4 payload missions by each of the six program
options. The lower segment of each bar (except for Option 5) indicates the
number of launches associated with the Space Station operations. The upper
segment of each bar indicates the number of Shuttle launches to polar orbit
that are required by Mission Scenario 4. This segment is the same for each
option. The middle segment of each bar indicates the number of Shuttle
launches required by Mission Scenario 4 to inclinations other than polar. The
figures to the right of the bars indicate the average load factors for the
adjacent segments. For example, in Option 3, the average load factor for
Space Station logistics flights is 0.98. The average load factor for Shuttle
flights to inclinations other than polar is 0.57 and the weighted average load
factor for all flights to inclinations other than polar is 0.92.
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uixo

tc.
Ill
CD

500

400

300

200

100

501

SHUTTLE (POLAR)

SHUTTLE (MED & LOW INCL)

SPACE STATION

TOTAL LAUNCH SUMMARY
CONCLUSION

512

0.73

0.55

417 411

1.01

0.71
347

0.71

0.68

0.92
0.57

0.98

0.71

0.73

0.64

0.67

364

0.67

0.91
0.69

0.93

1 2 3 4
HIGH ENERGY SPACE MULTI-MISSIONS 57<>

28° PROCESSING 28<> COMB.
280

OPTION NUMBER

5 6
NO STATION TWO STATION

280-570

Figure 1-22. Total Launch Summary (1990-2000)>'

It can be seen that the two stations of Option 6 capture the highest
proportion of the total number of flights. Option 3 results in the lowest
number of launches, and the no station (Shuttle only) Option 5 requires more
launches than any of the Space Station options.

Figure 1-23 compares the total costs of each program option to accomplish
all the Mission Scenario 4 payload missions. In the left-hand side of the
figure, the lower segments identify the development and production costs for
each of the Space Station options. The upper segment, which is identical for
all options, indicates the costs of Shuttle operations in polar orbit. In the
right-hand side of the figure, the lower segments indicate the costs associated
with Space Stations and the middle segments indicate costs associated with
Shuttle operations at inclinations other than polar.

It can be seen that the costs follow the same pattern as the launch
summary. The two stations of Option 6 require the highest proportion of total
cost, but the evolutionary growth station of Option 3 (maximum activity at
28.5 degrees) requires a somewhat lower total cost. Option 3 was therefore
selected as the most desirable option for further study.
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Figure 1-23. Options Cost Comparison (1986-2000)

OTV TRADES

Propulsion Candidate Definitions

Three types of orbit transfer vehicles were considered: a single-stage
reusable OTV with a capability for delivery of 12,000 pounds to GEO and return
of the stage, the same stage modified for aerobraking on return, and a small
reusable OTV sized for the same GEO capability as the single stage when used
in a two-stage mode, with the second stage being a storable liquid propulsion
unit integrated with the payload. Characteristics assumed for these vehicles
are shown in Table 1-6. The basis for the single stage was, as previously
noted, a conceptual study. The smaller two-stage OTV was scaled from that
concept. The second stages were treated as "rubber" at a constant propellant
fraction of 0.9 and specific impulse of 325 seconds. (A subsequent conceptual
study for Scenario 6 showed that both of these values are somewhat high for a
pressure-fed storable propulsion unit. More representative values are 0.85
and 310 seconds.) The aerobraker characteristics were adapted from the NASA/JSC
briefing, "OTV Candidates," August 16, 1982. Return propulsive velocity was
reduced by 7,000 feet per second, but not reduced below 1,000 feet per second
in order to allow for return to LEO and station rendezvous maneuvers.
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Table 1-6. OTV Candidate Characteristics

STUDY OPTION

PROPELLANTS (OX/FUEL)

SPECIFIC IMPULSE - (SEC)

MAX PROPELLANT CAPACITY - LBS

CUTOFF WEIGHT - LBS

PROPELLANT FRACTION

AEROBRAKING AV - (FPS)

MINIMUM RETURN AV - (FPS)

1 &3
SINGLE STAGE

LOX/LHo

A7t\

AfiAnn

5022

0.906

NA

NA

7
AEROBRAKER

5982

0.890

7000

1000

8
TWO STAGE

1ST STAGE

22900

2830

0.890

NA

NA

2ND STAGE

N204/MMH

325

AS REQ'D

VARIABLE

0.90

NA

NA

Propulsion Options Evaluation

A comparison of the candidates is shown in Figure 1-24, using data listed
in Table 1-7. The aerobraker and the two-stage concepts (Options 7 and 8) are
nearly equal in their improvement over the single stage in Shuttle lift mass,
number of Shuttle launches, and number of OTV's used. Since the aerobraking
concept is still in a technology development phase, it was not selected for
further application in this study. It is considered a potential second-genera-
tion OTV. In comparing the single- and two-stage concepts (Options 3 and 8),
it is clear at the outset that two stages always save mass over one stage in
any application, but the added cost of doubling the number of propulsion units
and their support operations is a counter factor to be considered. In this
case, the saving in mass is best measured by the saving in Shuttle launches.
The reduction of Shuttle launches by 25 at $77 million each will offset a $9.6
million average cost for second-stage production and launch support. Any
second stage average cost less than this break-even point would be a system cost
savings, e.g., a $5 million average second stage cost (a plausible assumption)
would imply a $1 billion system saving over the nine-year operational OTV model
of Scenario 4. On the basis of these positive implications, the two-stage con-
cept was selected for further study effort.

The most significant uncertainty in this evaluation is the cost of the
second-stage launch support. Current Shuttle operational practice indicates
this cost can vary widely—up to $8 million; however, improvement can be antici-
pated since the 200 second stages could have substantial commonality and Shuttle
operations are expected to follow a repetitive operation learning curve. A
resolvable (in future studies) uncertainty is the best size for the OTV. A
somewhat larger unit than selected here could add high-energy mission capability
and flexibility with little penalty.
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CRYO PROPELLANT

?ND STAGES

8380

-»f

1900

SHUTTLE LIFT MASS

(KL8S)

6780

1905

6600

3490

NO SHUTTLE LAUNCHES

OTV'S USED

347
332

322 13

12

3 7 a

SINGLE STAGE 2 STAGE
AEROBRAKER

OTV OPTION

Figure 1-24. OTV Candidate Comparisons

Table 1-7. OTV Candidate Comparisons Data

11

OPTION

NO. OF SHUTTLE LAUNCHES

NO. OF OTV'S MFC

NO. OF OTV DEPLOYMENTS

NO. OF OTV FLIGHTS

, NO. OF APOGEE STAGES

SHUTTLE LIFT MASS - (KLBS)

PAYLOADS

APOGEE STAGES

ASE

OTV'S - DRY

SUB TOTAL

CRYO PROPELLANT

TOTAL

DELTA MASS

DELTA SHUTTLE LAUNCHES

3
SINGLE STAGE

347

13

24

150

0

0

232

118

1899

6485

8384

1785

25

7
AEROBRAKER

332

12

21

138

0

iRjin1D43

0

232

124

1905

4870

6775

176

10

8
TWO STAGE

322

11

20

153

200

1438

448

55

3490

3109

6599

0

0

- 32 -

SSD 83-0032-2



Shuttle Integration &
Satellite Systems Division

Rockwell
International

MISSION SCENARIO 6

MISSION SCENARIO 6: MEDIUM TRAFFIC MODEL

Table 1-8 summarizes the Mission Scenario 6, medium traffic mission model.
The medium model is our best estimate of the expected levels of mission
activity and the types of missions likely to fly through the year 2000. It
reflects the existence of a manned Space Station and other complementary STS
elements including a space-based OTV, a station-based TMS, and Shuttle/
station-tended platforms.

All of the Scenario 6 models were developed in close coordination with
the users. The model summarized in the table reflects the maximum practical
use of the Space Station and station-based services. More detailed informa-
tion on the mission models can be found in the Task 1 final report.

Table 1-9 compares Mission Scenario 6 with Mission Scenario 4, which was
the model used for all the analysis of alternative program options described
previously in this report. The first difference noted between the two mission
models is a significantly larger number of payloads in Scenario 6 as compared
with Scenario 4, although the total payload weight is slightly lower for the
Scenario 6 model. These two differences indicate the more detailed definitions

Table 1-8. Mission Scenario 6, Medium Traffic Model

YEARLY TOTALS FOR ALL LOCATIONS

NUMBER OF PAYLOADS

TOTALS 1916 1917 1913 1919 1990 1991 1992 1993 1994 199S 1996 1997 1998 1999 2000 TOTAL
IS 20 19 26 51 59 87 81 91 96 97 110 105 111 127 964

INCLINATION
ALTITUDE

CATEGORIES
1 COM COMMUNICATIONS
2 COM PROCESSING
3 COM RESOURCE DBS
4 ODD
5 GEO SERVICING
6 COVT ENVIRONMTL
7 NASA SCI >j APPL
8 NASA TECHNOLOGY

TOTALS

X LOW
LOW HIGH

0 152
195 0

0 1
41 39
0 11
0 5

108 5
20 0

564 213

VMED
LOW HIGH

0 0
0 0
0 0

40 50
0 0
0 0
8 0
0 0

ZHIGH
LOW HIGH

0 0
0 0

10 0
57 0
0 0
5 0

17 0
0 0

41 50 1 89 8

SUM
LOW HIGH

0 152
395 0

10 1
138 89

0 11
5 5

133 5
20 0

701 263

TOTAL
19912000

152
395
11

227
11
10

138
20

964

WEIGHT (KLB)

TOTALS

INCLINATION
ALTITUDE

CATEGORIES

1 COM COMMUNICATIONS
2 COM PROCESSING

COM RESOURCE DBS
DOO
GEO SERVICING
GOVT ENVIRONMTL
NASA SCI S APPL
NASA TECHNDLOGV

TOTALS

1991 1992 19'
3354 3762 38

X-lOW
LOW HIGH

0 5223
8391 0

0 4
'552 291

0 118
0 21

4047 172
857 0

18147 973 S

93 1994 1995

7 457 4 426 9

VMEO
LOW HIGH

0 0
0 0
0 0

824 208.2
0 0
0 0

588 0
0 0

682 8 208 1

1996 1997

5064 5231

ZHIGH
LOW HIGH

0 0
0 0

35 0
5528 0

0 0
20 0
86 0

0 0

6938 0

1998 1999 2000
512 5 477 1 445 3

SUM
LOW HIGH

0 5223
639.1 0

35 4
1932 4992

0 118
20 21

549.5 172
8S.7 0

3261 3 1181 7

TOTAL
4443

TOTAL
1991 2000

522.3
6391

39
24312

118
41

5667
857

4443
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Table 1-9. Comparison of Mission Scenario 6 With Scenario 4 Space station
Oriented Models

MISSION AREA

• COM. COMMUNICATIONS

• COM. PROCESSING

• COM. RESOURCE DBS.

• DOD

• GEO SERVICING

• GOV'T ENVIRONMENTAL

• NASA SCIENCE & APPL

• NASA TECHNOLOGY

• SPACE STATION ASSEMBLY,
LOGISTICS & UPPER
STAGE LOGISTICS

TOTAL

NUMBER OF

PAYLOADS

6

153

407

11

227

11

10

143

19

^

981

4

120

229

—

271

—

—

117

—

—

737

TOTAL PAYLOAD
WEIGHT (KLB)

6

522.3

639.1

39.0

2,431.2

118.0

41.0

566.7

85.7

^~

4,443 0

4

587.4

634.4

—

2,739.2

—

—

905.4

—

"

4,866.4

TOTAL CARGO
WEIGHT (KLB)

6

2,848.6

661 3

138.3

5,535.9

458.4

240.6

1,127.4

126.7

2,332.8

13,470.0

4

3,314.9

657.8

—

7,652.0

—

—

1,248.4

—

3,351.0

16,141.1

EQUIV STS

FLIGHTS

6

45

11

7

125

7

4

31

4

39

273

4

63

12

—

175

—

—

41

—

58

347

developed for Scenario 6, particularly in the commercial processing and the
NASA science and applications areas. Mission Scenario 6 also defined payloads
that were not identified in the four areas indicated (commercial resource
observation, GEO servicing, government environmental, and NASA technology).

The table also shows the total cargo weights, including propellants and air-
borne support equipment, and the equivalent STS flights associated with each
of the payload categories.

Airborne Support Equipment (ASE)

Payloads and upper stages carried in the orbiter require ASE provisions
to properly distribute launch loads into orbiter primary structure. These
elements have a significant Shuttle lift mass impact ranging from 8 to 25 per-
cent of the cargo load. Cradles for existing upper stages place in the upper
penalty range, as do any for payloads or stages with diameters much less than
the cargo bay's 15 feet. The bulk of the payloads and storable second stages
used in Scenario 6 were modeled to represent the Shuttle STS era by being
designs that match the cargo bay diameter and require only trunnions and keel
fittings as opposed to cradles. In Figure 1-25, the ASE weights are defined
for the range of cargoes considered. Combinations of pallets were used for
small (less than 11.9 feet diameter) cargo longer than 30 feet in length or
heavier than 12,000 pounds.

For the storable second stages, it was assumed that total integrated pro-
pulsion and payload length was the same as the payload model except in a few
special cases. For example, all payload lengths for commercial communications
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FOR PAYLOADS > 11 9 FT TOTAL ASE WT = 740 LB

FOR PAYLOADS < 11.9 FT
/.TOTAL ASE WEIGHTS
/(BASED ON SPACELAB

PALLET DESIGNS)

JU

25

on

15

3-PALLET/TRAIN

- /
3254

2-PALLET TRAIN -

2022

SINGLE PALLET

1282

1055 1/2

1/4 | l i i

5 10

PAYLOAD WEIGHT ( 1000 LB)

15

ALL TOTAL ASE WTS INCLUDE
640 LB FOR BRIDGE FITTINGS
SILL = 113 X 4
KEEL = 187 X 1

TOTAL ASE WEIGHTS
FOR EXISTING CRADLES

RAM D
PAN II
IUS
CENTAUR
FSSA'

2690
2690
7640
8640
3140

Figure 1-25. ASE Considerations

satellites were established by assuming integrated propulsion. At full cargo
bay diameter, representative design layouts revealed that payload/propulsion
overlap made this possible.

Maximum Activity atMission Scenario 6, Medium Traffic Model, Option 3:
28.5 Degrees

Option 3 consisted of one Space Station, orbiting the earth in a circular
orbit, inclined 28.5 degrees with respect to the equator, and 200 nmi above
the surface. All activity contained within Mission Scenario 6 (as previously
described) occurs at the Space Station, with the following three exceptions:

1. All high inclination missions (greater than 65 degrees) are
Shuttle-launched out of the Western Test Range.

2. Those few medium-inclination payloads too heavy to be launched on
the Space Station OTV are Shuttle-launched out of the Eastern Test
Range.

3. All high-energy payloads launched in 1991, 1992, and 1993 are
Shuttle-launched out of ETR or WTR. (The Space Station based
OTV does not become operational until 1994.)
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All three of these classes of activities are accomplished independent of
the Space Station.

Mission Scenario 6 was fully described in a previous section. The various
building blocks necessary to accomplish Mission Scenario 6 at the Space Station
are: one energy module, one command module, one payload service assembly, two
habitability modules, three LEO TMS's, two GEO IMS ' s , one GEO IMS service
module, one set of station-attached TMS propellant tanks, seven OTV's, two sets
of station-attached OTV propellant tanks, one (life sciences lab) tunnel module,
one growth Spacelab (monkey module), one MPS module, two generic types of space
processing factories, one astronomy platform, and continual supplies via the
logistics module. All of these building blocks have been described in previous
sections, with the exception of those new building blocks appearing in Fig-
ure 1-26. A summary of when all the Option 6 building blocks are required is
presented in Table 1-10.

Launch Summary. The various payloads required to accomplish Mission
Scenario 6 and Space Station operations were grouped by calendar year into
files called payload data lists. The payload data lists were then manifested
into STS missions using the SOSMAN computer program. The Shuttle payload cargo
bay was loaded using a maximum payload weight of 61,000 pounds or a length of
53 feet for all payloads destined for the Space Station (7 feet must be reserved
on all Space Station destined missions for the docking module). Payloads
destined for medium inclination and launched there directly by the Shuttle,

ELEMENT
LENGTH
(FT)

WEIGHT (LB)

GROSS EXPT
VOLUME FOR
EXPTS (FT3)

COST
CATEGORY

GEO TMS

3FT
X 14.5 FT

DIA
3,785 B.O. UPPER STAGE

GEO TMS SERVICE MODULE

22 FT
X 13.0 FT

DIA
2,400

PAYLOAD
SUPPORT
ELEMENTS

52 96,000 61,600 9,200

ASTRONOMY
PLATFORM

PAYLOAD
SUPPORT
ELEMENTS

ASTRONOMY
SERVICE
flfcttJTY

52 71,300 61,600 9,200
PAYLOAD
SUPPORT
ELEMENTS

Figure 1-26. Option 3 Building Blocks; Scenario 6

- 36 -

SSD 83-0032-2



Shuttle Integration &
Satellite Systems Division

Rockwell
International

Table 1-10. Option 3 Building Block Phasing Summary

FISCAL YEAR

BASIC SPACE STATION BUILDING BLOCKS
ENERGY MODULE
AIR LOCK
COMMAND MODULE
LOGISTICS MODULE (4-IYIAN STATION)
LOGISTICS MODULE (8-MAN STATION)
MANNED MANEUVERING UNIT
PAYLOAD SERVICING ASSEMBLY (PSA)
HABITABILITY MODULE

TMS RELATED BUILDING BLOCKS
LEO TMS
GEO TMS
GEO TMS SERVICE MODULE
TMS PROPELLANT TANKS

CTV RELATED BUILDING BLOCKS
OTV
OTV PROPELLANT TANKS

SCIENCE AND APPLICATIONS BUILDING BLOCKS
PSA (ASTRONOMY PLATFORM)
ENERGY MODULE (ASTRONOMY PLATFORM)
TUNNEL (LIFE SCIENCES LAB) MODULE
SPACELAB (MONKEY) MODULE

SPACE PROCESSING BUILDING BLOCKS
MPS MODULE

BIOLOGICAL PROCESSORS
CRYSTAL GROWER

1990

1

1991

1
2
1
1

2
1

1

1

1

1

1992

4

1

1

1

1993

2
3

2

1
1

1
1

1

1994

6

-

2
1

1

1
1

1995

6

1

1
1

1996

6

1

2

1997

6

1

1998

6

4

1

1

1999

6

1

2000

6

1

were manifested to a maximum cargo bay capacity of 49,000 pounds or a length
of 60.0 feet. Payloads destined for high inclination were manifested to a
maximum cargo bay capacity of 25,000 pounds or a length of 60.0 feet. The
number of such STS missions per year required to accomplish Mission Scenario 6
is presented in Figure 1-27. The comparison between Space Station's efficiency
of handling Mission Scenario 6 and the space transportation system's efficiency
of doing the same job will be discussed in a future section.

OTV Operations.

Propulsion Vehicle Definitions. For Scenario 6, the high-energy propul-
sion subsystem characteristics were refined. Apogee second stages were sized
over the payload range of interest as shown in Table 1-11. Figure 1-28
illustrates the points used in the computer code algorithm to approximate a
"rubber" second-stage model. For the smallest sizes, the second-stage propel-
lant is assumed to be contained in enlarged payload attitude control system
tanks. The resulting weight saving yields an increase in propellant fraction
over a small unit with separate tanks for delta-V propellant. For GEO payloads,
the second-stage velocity increment used was 6,000 feet per second. For
medium-inclination payloads, the increment varied, but included at least the
apogee burn, unless the resulting stage exceeded the maximum stage size of
12,000 pounds gross weight.
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40

30

20

10

26

n
I LOW INCLINATION

192 LAUNCHES
0 97 LOAD FACTOR

MEDIUM INCLINATION
26 LAUNCHES
0.64 LOAD FACTOR

I HIGH INCLINATION
55 LAUNCHES

1 0 82 LOAD FACTOR

32 32

28

TOTAL STS LAUNCHES = 273
TOTAL LOAD FACTOR = 0 93

29
27

24
25

29

21

1991
I

1992
I

1993
I

1994 1995
I

1996
I

1997
I

1998
I

1999

Figure 1-27. Option 3, STS Launch Summary, Mission Scenario 6,
Medium Model

Table 1-11. Liquid Apogee Stages

2000

PAYLOAD AT 6000 FPS

PROPELLANT FRACT

SPECIFIC IMPULSE

USABLE PROP-MAX

CUTOFF WEIGHT

12000

0.878

310

11227

1559

9000

0.869

<= =

8508

1278

6000

0.861

<= =

5736

929

3500

0.828

310

3478

723

2500

0.811

<= =

2547

592

1000

0.86 <= USE

<= =

952

155
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0.90

o
<c

"• 0.85

LLJa.
o

0.80

ACS TANK
INTEGRATED ALGORITHM MODEL

CURVE FIT

4 6 8 10

PAYLOAD MASS TO 6000 FPS (KLB)
(GEO PAYLOAD)

12

Figure 1-28. Apogee Stage Propellant Fraction Model

OTV concept characteristics were derived using the data shown in
Table 1-12. A study of perigee stage velocity requirements resulted in
selecting 100 and 200 feet per second allowances over impulsive requirements
for outbound and return legs (respectively) to provide for outbound gravity
losses and return phasing and station rendezvous. The low outbound allowance
at the selected engine thrust (10,000 pounds) implies multiple perigee burns.

Recent reusable OTV engine concepts (e.g., Rocketdyne's RS44 advanced
expander cycle) are rated at ten-hour service life. At 10,000 pounds thrust,
this equates to 31 flights. For Scenario 6, the model ground rule used
20 flights to overhaul and one overhaul. For the 130 flights required in the
medium traffic model, the resulting OTV usage history is shown in Table 1-13.
Two units on station at any time were assumed. The average utilization of
units expended on planetary missions was 23 flights.

High-Energy Mission Model Results. Summary data on OTV operations with
medium traffic are listed in Table 1-14. The number of OTV units deployed by
the Shuttle (11) and the number manufactured (7) are less than the numbers
required in Scenario 4 because the service life to overhaul was increased from
10 to 20 flights. Other data listed (payloads, apogee stage, and ASE weight)
represent the results of computation methods and models that were refined over
Scenario 4, Option 8, however, no significant differences resulted other than
that attributable to the payload traffic changes. Apogee stages are only
slightly heavier and ASE represents about the same proportional weight contri-
bution. OTV operation trends, as shown in Figure 1-29, show a relatively flat
number of flights per year, indicating that multiple payload manifesting helps
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Table 1-12. Reusable OTV Concept Data

STAGE TYPE

BASING MODE

PROPELLANT FRACT

SPECIFIC IMPULSE

USABLE PROP-MAX

CUTOFF WEIGHT

LENGTHS: (FT)

NOZZLE EXTENSION

STAGE (INCL NOZ)

PERIGEE

SPACE

0.869

470

23500

3554

2 5
(RETRACTED)

25.0

SINGLE

SPACE

0.906

470

48400

5022

Table 1-13. OTV Usage History, Scenario 6, Medium Traffic

YEAR DEPLOYED

YEAR OVERHAULED

YEAR EXPENDED

YEAR LIFE LIMIT REACHED

NUMBER OF FLIGHTS

FINAL STATUS

OTV UNIT SERIAL NO

1

93

—

—

93

—

DEVELOPMENT

2

94

' 96

-

97

40

RETIRED

3

94

96

97

—

22

EXPENDED

4

97

99

99

-

26

EXPENDED

5

97

99

99

-

22

EXPENDED

6

99

-

-

—

10

ON
STATION

7

99

—

—

—

10

ON
STATION

TOTAL/NO.

7

4

3

2

130

-
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Table 1-14. OTV Operations Summary

CASE NO. 1 PERIGEE OTV AND RUBBER APOGEE STAGES
CATEGORY 1 TOTAL MANIFEST

YEAR

NO. OF PAYLOADS
PAYLO GROSS WT-KLBS
APSTAGE GROSS-KLBS
ASE WEIGHT-KLBS
PAY -(- APSTG + ASE-KLBS
PAY + APSTG + ASE-FEET
USABLE PROPELLANT
C/D, RESID & B/0 PROP
CRYO PROPELLANT-KLBS
NO. OF FLIGHTS
AVE LOAD FACTOR-OTV
NO. OF OTVS MFC
RETURNED FOR OVHAUL
EXPENDED
RET'D AT LIFE LIMIT
OTV DEPLOYMENTS
NO. APOGEE STGED PAYLDS

91

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

92

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

93

0
0
0
0
0
0
82
8
90
0
0
1
0
0
1
1
0

94

25
153
122
29
304
349
324
32
356
16
826
2
0
0
0
2
24

95

30
172
151
32
355
374
387
38
425
21
752
0
0
0
0
0
30

96

34
183
160
28
371
417
396
39
435
20
808
0
2
0
0
2
34

97

35
195
162
32
389
423
414
41
455
21
804
2
0
1
1
2
34

98

25
169
139
18
326
349
342
34
376
18
775
0
0
0
0
0
25

99

24
190
137
24

351
358
377
37

2-14
18
854
2
2
2
0
4
22

2000

26
159
135
21
315
322
329
32
361
16
839
0
0
0
0
0
26

TOTAL

199
1221
1006
184

2411
2592
2651
261

2912
130
806
7
4
3
2

11
195

""STATION PAYLOAD PROPULSION MANIFEST****
STAPPMAN
- SCENARIO 6 OPTION 3 MEDIUM TRAFFIC

35

30

25

20

SHUTTLE

LIFT MASS 15

(KLB)

400

TOTAL

300

NO. PAYLOADS

NO. OTV FLIGHTS

199

130

CRYO PROPELLANT 2910

OTHER:
• PAYLOAD
• APOGEE STAGES
• ASE

i« OTVs-DAY

2447

1994 95 96 97
YEAR

98 99 2000

i CMFI

Figure 1-29. Option 3, OTV Operations Trends, Scenario 6, Medium Traffic
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smooth out operations. The peak year for all parameters shown is 1997. The
immediate drop the following year is primarily because of an absence of
planetary payloads in 1998.

Mission Scenario 6, Medium Traffic Model, Option 5; No Station

The building blocks for Option 5 are the same as those previously
described, with additions described in the following. As in Scenario 4, most
of the high energy payloads are launched one to an upper stage; however, some
DOD missions to medium inclination share upper stages. This does not
introduce any new upper stages beyond those already listed. Thus, the total
number of expendable upper stages does not correspond exactly to the number of
high-energy payloads.

The new Scenario 6 elements are the GEO TMS and the GEO TMS service
module. These are the same as in the Space Station option. They are depicted
in Figure 1-26.

Launch Summary. The execution of Mission Scenario 6, medium traffic,
requires 523 STS launches when no Space Station is used. The breakdown of
these by year and inclination is shown in Figure 1-30. The same Shuttle capa-
bilities used for Scenario 4 were assumed. The Spacelab sorties of Scenario 4
were retained. Mission Scenario 6 covers the years 1991 to 2000, rather than
starting in 1990, like Scenario 4; therefore, the Spacelab flights are adjusted
as follows:

Inclination (Degrees) User Area No. Flights

28.5 Space Processing R&D 233

57.0 NASA Science and Applications 30

As in Scenario 4, Spacelab flights are assumed to be dedicated. Payload
weight is 35,000 pounds. The load factor of low-inclination Spacelab flights
is thus 0.5. This lowers the average load factor for low-inclination missions.
The average load factors and total number of flights for each type of orbit
are given in Figure 1-30.

Key Comparisons. The Shuttle-only option, Option 5, and the Space Station
Option 3 are compared in Figure 1-31. The two key comparisons are the use of
upper stages and OTV, and the conduct of orbital manned R&D.

Option 5 does not include an OTV for high-energy orbital boost. Boost
is done by various expendable upper stages. Figure 1-3.1 shows the number and
type required from 1994 to 2000. This period is taken for comparison, since
it corresponds to the operational period of the Option 3 OTV. A total of
163 expendable upper stages is needed under Option 5 during this period. By
comparison, Option 3 uses seven OTV's and 2.9 million pounds of propellant.
A few small satellites are expected to fly on expendable upper stages, even
after the OTV is operational. These expendable stages are shown in the figure.
The comparison thus becomes one between 163 expendable upper stages in
Option 5, and seven OTV's complemented by 11 expendables in Option 3.
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377 LAUNCHES
0 62 LOAD FACTOR

D MEDIUM INCLINATIO
91 LAUNCHES
0 77 LOAD FACTOR

FT— 1 POLAR ORBIT
ISSF 55 LAUNCHES
tlMJ 0 82 LOAD FACTOR

53 52
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N
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65 L/F ALL FLIGHTS
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-
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23
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Figure 1-30, Option 5, STS Launch Summary, Mission Scenario 6,
Medium Model

OPTION 5
UPPER STAGES, '94-00

28.5 57° TOTAL

PAM'D

PAM-0 II

PAM-A

IUS 1ST STG

CENTAUR-G

CENTAUR-F

TOTAL

8
22
55
43
6

134

1

14
14

1
2

33
69
57
6

• 29 163

SPACELAB FLIGHTS, '91-00

SP PROC

233

NASA R&D

30

TOTAL

263

OPTION 3

UPPER STAGES & OTV, '94-00

EXPENDABLE.

PAM-D II

PAM-A

TOTAL

4

7

11

OTV

VEHICLES

PROPELLANT 2.9 MLB

STATION R&D FACILITIES

SP PROCESSING

• MPS MODULE

NASA R&D

• 7 PALLETS ON PSA

• SPACELAB MODULE

Figure 1-31. Option 5 Key Comparisons, Mission Scenario 6,
Medium Model
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Orbital manned R&D in Option 3 is performed in station-attached modules
and pallets. An equivalent amount of R&D for 1991-2000 under Option 5 would
require 263 fifteen-day Spacelab missions. The comparison between the manned
orbital R&D requirements and those of Option 3 is detailed in Figure 1-31.

MISSION SCENARIO 6A: SHUTTLE ORIENTED (MEDIUM TRAFFIC)

To aid in establishing Space Station benefits and for additional program-
matic comparisons, a medium model was established for Mission Scenario 6A, the
case without a Space Station. It reflects changes from the model in Scenario 6
resulting from different ways of doing some of the missions without a Space
Station. Significant reductions are made in most user areas (except DOD).
Constrained research and limited productivity are predicted for space proces-
sing. Life sciences would be reduced to sorties, LEO on-orbit servicing mis-
sions would be reduced in number, GEO servicing and space-based OTV's would
be deleted, and technology development missions would be refocused to include
station-related technologies that would likely occur to support a Space Station
beyond the year 2000.

Table 1-15 compares this Shuttle-oriented mission model (6A) with the
Scenario 6 medium model (6) discussed previously. The reduced number of pay-
loads in space processing and NASA science and applications provide the best
indication of the reduced accomplishment of objectives associated with Shuttle-
only Model 6A when compared with the Space Station oriented model (6). The
equivalent STS flight, columns at the right side of the table also show that
significantly more Shuttle launches are required to accomplish the reduced
mission objectives when no Space Station is available.

Mission Scenario 6A, Option 5: Shuttle-Only

Option 5 Approach. Option 5 executes Mission 6A using the same building
blocks as in Mission Scenarios 4 and 6. The Shuttle transports all payloads
to LEO. High-energy payloads are boosted on expendable upper stages. Payloads
deployed to lower orbits are either released into their final orbit from the
orbiter, or boosted with a reusable TMS. The TMS is also used for some servic-
ing missions. Other servicing missions, such as those to space processing
free-flyers, are performed directly from the orbiter. As in the other sce-
narios, there is no space-based transfer vehicle. A significant aspect of
Scenario 6A is the departure from Spacelab sortie space processing. The
requirement for a large number of Spacelab missions thus disappears. Spacelab
is still used for NASA R&D. This activity requires three flights per year.

Launch Summary. The execution of Mission Scenario 6A through Option 5
requires 297 launches. The breakdown of these by year and inclination is shown
in Figure 1-32. The 297 launches include 30 Spacelab flights. These support
NASA R&D programs.

The smaller number of Spacelab flights accounts for higher load factors
than when Option 5 executes other scenarios. The average load factor and total
number of flights for each type of orbit are given in Figure 1-32.
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Table 1-15. Comparison of Mission Scenario 6A: Shuttle Oriented
With Scenario 6—Space Station Oriented

MISSION AREA

• COM. COMMUNICATIONS

• COM. PROCESSING

• COM. RESOURCE OBS.

• OOD

• GEO SERVICING

• GOV'T ENVIRONMENTAL

• NASA SCIENCE & APPL

• NASA TECHNOLOGY

• SPACE STATION ASSEM.
LOGISTICS & UPPER
STAGE LOGISTICS

TOTAL

NUMBER OF
PAYLOADS

6

153

407

11

227

11

10

143

19

—

981

6A

159

175

11

226

0

10

69

21

—

671

TOTAL PAYLOAO
WEIGHT (KLB)

6

522.3

639.1

39.0

2,431 2

118.0

41.0

566.7

85.7

—

4,443 0

6A

5050

730.0

39.0

2,441.7

0

41.0

483.4

90.3

—

4,330.4

TOTAL CARGO
WEIGHT (KLB)

6

2,848.6

661.3

138.3

5,535 9

458.4

240.6

1,1274

126.7

2,332.8

13,470.0

6A

3,065.1

796.3

111 3

5,984.8

0

159.6

1.969.0

46.4

0

12,132.5

EQUIV STS
FLIGHTS

6

45

11

7

125

7

4

31

4

39

273

6A

60

13

7

151

0

4

60

2

0

297

C/9
LLJ

C/J
h—
00

60

40

20

23

LOW INCLINATION
144 LAUNCHES
0 73 LOAD FACTOR

MEDIUM INCLINATION
97 LAUNCHES
0 70 LOAD FACTOR

POLAR ORBIT
56 LAUNCHES
0 83 LOAD FACTOR

32 31 31 32

TOTAL STS LAUNCHES = 297
0 73 L / F A L L FLIGHTS

31 30

26

30 31

1991 1992 1993 1994 1995 1996 1997 1998 1999

FISCAL YEAR

Figure 1-32. Option 5, STS Launch Summary, Mission Scenario 6A,
Medium Model
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MISSION SCENARIO 6: LOW TRAFFIC MODEL

The low model presumes lower funding is available for both government and
private space endeavors because of pressures from other priority programs and
continued sluggish patterns of world economic growth. It reflects budget con-
straints in government programs, pessimistic market forecasts for commercial
activities! and continues the current DOD space functions with no new types
of DOD missions introduced. It is unlikely that world events could produce a
more severe downturn in space activity. Thus, the low model represents a very
high probability of occurrence, almost certain to be achieved, not necessarily
on a miss ion-by-miss ion basis, but as a representative total.

Table 1-16 compares the low model (6L) with the medium model (6M) dis-
cussed previously. The table indicates the degree of activities reduction for
each of the mission areas shown.

Mission Scenario 6, Low Traffic Model, Option 3 Space Station

The low traffic model Option 3 had all the same basic ground rules as
previously described in the medium traffic model Option 3 section.

The various building blocks necessary to accomplish the Mission Scenario 6
low traffic model at Space Station are as follows: one energy module, one
command module, one payload service assembly, two LEO TMS's, one set of station-
attached TMS propellant tanks, five OTV's, two sets of station-attached OTV
propellant tanks, one life sciences laboratory module, one MPS module, two
generic types of space processing factories, one astronomy platform, and con-
tinual resupply via the logistics module. All of these building blocks have
been described in previous sections. A summary of when the Option 3, Mission
Scenario 6 low traffic level model building blocks are required is presented
in Table 1-17.

The station acquires initial operational capability in 1991, with an
initial crew size of two. The crew size grows to three in 1993, and to four
in 1994. It remains at four through the year 2000.

Launch Summary. The various payloads required to accomplish Mission Sce-
nario 6 low traffic model and Space Station operations were manifested, using
the SOSMAN program, as previously described. The Shuttle payload cargo bay
was loaded using a maximum payload weight of 61,000 pounds or a length of
53 feet for all payloads destined for Space Station. Payloads destined for
medium inclination and launched there directly by the Shuttle, were manifested
to a maximum cargo bay capacity of 49,000 pounds or a length of 60.0 feet.
Payloads destined for high inclination orbits were manifested to a maximum
cargo bay capacity of 25,000 pounds or a length of 60.0 feet. The number of
such STS missions per year required to accomplish Mission Scenario 6 low
traffic model is presented in Figure 1-33.

OTV Operations. The reduced traffic in the low model resulted in OTV
operations characteristics as listed in Table 1-18. Only about 13 OTV flights

- 46 -

SSD 83-0032-2



Shuttle Integration &
Satellite Systems Division

Rockwell
International

Table 1-16. Comparison of Mission Scenario 6.- Space Station
Option Medium With Low Traffic Level

MISSION AREA

•COM COMMUNICATIONS

• COM PROCESSING

• COM RESOURCE OBS

• DOD

• GEO SERVICING

• GOVT ENVIRONMENTAL

• NASA SCIENCE &APPL

• NASA TECHNOLOGY

• SPACE STATION ASSEM
LOGISTICS & UPPER
STAGE LOGISTICS

TOTAL

NUMBER OF
PAYLOADS

6M

153

407

11

227

11

10

143

19

—

981

6L

106

314

6

153

0

10

127

15

—

731

TOTAL PAYLOAD
WEIGHT (KLB)

6M

522.3

639.1

39.0

2,431.2

118.0

41.0

566.7

85.7

—

4,443.0

6L

349.0

440.0

28.0

1,257.0

0

41.0

467.0

43.0

—

2,625.0

TOTAL CARGO
WEIGHT (KLB)

6M

2,848.6

661.3

138.3

5,535.9

458.4

240.6

1,127.4

126.7

2,332.8

13,470 0

6L

2002.4

455.3

72.2

3.369.0

0

240.6

908.5

77.1

2087.9

9,213.0

EOUIV STS
FLIGHTS

6M

45

11

7

125

7

4

31

4

39

273

6L

33

8

4

89

0

4

25

3

36

202

Table 1-17. Phasing Summary for ESTS Option 3, Executing Mission
Model 6, Low Traffic Level

FISCAL YEAR

BASIC SPACE STATION ELEMENTS
ENERGY MODULE
AIRLOCK
COMMAND MODULE
LOGISTICS MODULE (4-MAN STATION)
MANNED MANEUVERING UNIT
PAYLOAO SERVICE ASSEMBLY

TMS-RELATEO HARDWARE
LEO TMS
TMS COMMAND CENTER (CM)
TMS PROPELLANT TANKS
TMS STOR/MAINT/ REPAIR FACILITY (PSA)

OTV-RELATED HARDWARE
OTV
OTV COMMAND CENTER (CM)
OTV PROPELLANT TANKS
OTV STOR/MAINT /REPAIR FACILITY (PSA)

SCIENCE & APPLICATIONS HARDWARE
PSA (ASTRONOMY PLATFORM)
LIFE SCIENCES LAB MODULE
ENERGY MODULE (ASTRONOMY PLATFORM)

SPACE PROCESSING LABORATORIES
MPS MODULE

SPACE PROCESSING FACTORY HARDWARE
MDAC BIOLOGICAL PROCESSORS
CRYSTAL GROWER
SPF COMMAND CENTER (CM)
SPF STOR/MAINT /REPAIR FACILITY (PSA)
SPF MATERIAL STORAGE (PSA)

1990 1991

1
2
1
1
2
1

1
1
1
1

1

1

1
1
1

1992

4

1

1

1

1993

4

1
1
1
1

1

1994

4

2

1

1

1995

4

1996

4

1
1

1997

4

3

1

1998

4

1999

4

1

2000

4
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30

TOTAL STS LAUNCHES = 202

TOTAL LOAD FACTOR = 0.86

LOW PLUS MEDIUM LOAD FACTOR = 0.85

LLJ

GO

C/5

20

10

24

22
23 23

24

20

17

LOW INCLINATION
141 LAUNCHES
0.91 LOAD FACTOR

MEDIUM INCLINATION
18 LAUNCHES
0.50 LOAD FACTOR

HIGH INCLINATION
43 LAUNCHES
0.79 LOAD FACTOR

18 18

13

1991 1992 1993 1994 1995 1996 1997 1998 1999 2000
FISCAL YEAR

Figure 1-33. Option 3, STS Launch Summary, Mission Scenario 6,
Low Model

Table 1-18. OTV Operations Summary—Low Traffic

YEAR

NO. OF PAYLOADS

PAYLOAO GROSS WT-KLB
APSTAGE GROSS-KLB

ASE WEIGHT-KLB
PAY + AP STG + ASE-KLB

PAY + AP STG + ASE-FEET
USABLE PROPELLANT

C/0, RESIDAB/OPROP
CRYO PROPELLANT-KLB
NO. OF FLIGHTS

AVG LOAD FACTOR-OTV
NO OF OTVS MFG

RETURNED FOR OVHAUL
EXPENDED
RETD AT LIFE LIMIT

OTV DEPLOYMENTS
NO. APOGEE STAGED PAYLOADS

1991

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

1992

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

1993

0
0
0
0
0
0

82
8

90
0
0
1
0
0
1
1
0

1994

25
96
99
35

230
346
277

27
304
14

807
2
0
0
0
2

24

1995

24
93

101
29

223
279
272
27

299
15

740
0
0
0
0
0

24

1996

26
112
122

23
257
388
304
30

334
16

775
0
0
0
0
2

26

1997

26
118
118
32

268
363
309
30

339
16

788
1
2
1
0
1

25

1998

17
64
69
18

151
225
187

18
205
10

763
0
0
0
0
0

17

1999

19
71
71
24

166
261
121
21

233
11

786
1
1
1
0
2

18

2000

19
67
77
22

166
211
197

19
216
10

804
0
0
0
0
0

19

TOTAL

156
621
657
183

1461

2098
1840

180
2020

92
780

5
3
2
1
8

153

CASE 1 PERIGEE OTV & RUBBER APOGEE STAGES
CATEGORY 1 TOTAL MANIFEST
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per year are necessary to accommodate this traffic. All but 3 of the 156 pay-
loads require storable apogee stages. The average OTV load factor is a low
78 percent of capability which reflects a lack of compatible payloads each
year for full manifesting.

Mission Scenario 6, Low Traffic Model, Option 5; Shuttle Only

Launch Summary. The execution of the Mission Scenario 6 low traffic model,
requires 382 launches when no Space Station is used. The breakdown of these by
year and orbital inclination is shown in Figure 1-34. The same Shuttle capa-
bilities as those assumed for the medium model and for Scenario 4 were used.
The Spacelab space processing sortie mission level was selected to be equiva-
lent to the reduced Space Station activity in this area. This results in an
approximately 25 percent reduction in sortie flights over the medium model.
NASA science and applications Spacelab flights are kept the same as in the
medium model. This is because the low model for science and applications is
the same as the medium model in the research areas appropriate to Spacelab.
The Spacelab flight summary is:

Inclination (Degrees) Item No. Flights

28.5

57

Space processing R&D

NASA science and applications

173

30

Spacelab flights account for 45 percent of the low model. The load factor
of low inclination Spacelab flights is 0.5. The large number of such flights
lowers the overall load factor. The overall load factors and total number of
flights for each type of orbit are given in Figure 1-34.

Key Comparisons. The Shuttle-only option, (Option 5) and Space Station
Option 3 are compared in Figure-1-35. The operative comparisons here, as in
the medium model, are the use of upper stages and OTV and the conduct of
orbital manned R&D.

Option 5 does not include an OTV for high-energy orbital boost. Boost is
done by various expendable upper stages. Figure 1-35 shows the number and type
required from 1994 to 2000. This period is taken for comparison, since it
corresponds to the operational period of the Option 3 OTV. A total of 131
expendable upper stages are needed under Option 5 during this period. By com-
parison, Option 3 uses five OTV and 2.02 million pounds of propellant. Even
after the OTV is operational, a few small satellites are expected to fly on
expendable upper stages which are shown in the figure. The comparison thus
becomes one between 131 expendable upper stages and five OTV complemented by
45 expendables in Option 3. Orbital-manned R&D in Option 3 is performed in
Station-attached modules and pallets. An equivalent amount of R&D for 1991 to
2000 under Option 5 would require 203 10-day Spacelab missions. The compari-
son between the Option 5 manned orbital R&D requirements and those of Option 3
is detailed in Figure 1-35.
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60

CO
LU
:c
u

CO
I—
CO

40

20

30

LOW INCLINATION
278 LAUNCHES
0.61 LOAD FACTOR

MEDIUM INCLINATION
61 LAUNCHES
0.65 LOAD FACTOR

POLAR ORBIT
43 LAUNCHES
0.78 LOAD FACTOR

40
38

40

TOTAL STS LAUNCHES = 382
0.62 L/F ALL FLIGHTS

0.62 L/F LOW & MEDIUM INCLINATION FLIGHTS

39
41 42

38 39
35

1991 1992 1993 1994 1995 1996 1997 1998 1999
FISCAL YEAR

Figure 1-34. Option 5, STS Launch Summary, Mission Scenario 6
Low Traffic Level

2000

OPTION 5

UPPER STAGES, 1994-2000

PAM-D

PAM-DII

PAM-A

IUS 1ST STG

CENTAUR-G

CENTAUR-F

TOTAL

28.5°

0
7

25
44
25

0

101

57°

30
0
0

0
0
0

37

TOTAL

30
7
25
44
25

0

131

OPTION 3

UPPER STAGES & OTV, 1994-2000

EXPENDABLE

PAM:
PAM-A:
IUS 1ST STG:
CENTAUR-G:

TOTAL

28
11
1
2
42

OTV

VEHICLES:

PROPELLANT: 2.02 MLB

SPACELAB FLIGHTS 1991-2000

SP PROCESSING

173

NASA R&D

30

TOTAL

203

STATION R&D FACILITIES

SP PROCESSING

• MPS MODULES

NASA R&D

• 7 PALLETS ON PSA

• LIFE SCIENCES
MODULE

Figure 1-35. Option 5, Key Comparisons, Mission Scenario 6,
Low Model
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1993

ELEMENTS NOT SHOWN

GEO TMS |
GEO TMS SERVICE '
MODULE

P/OF

STARLAB

GEO
ORBIT

LIFE SCIENCES
LABORATORY

HABITAT
MODULE 1 & 2

PROPELLANT
TANK

OTV1

1994-1997

ELEMENTS NOT SHOWN

XUVTF

OTV2
PROPELLANT
TANK NO. 2

1998-2001

LIFE SCIENCE
RESEARCH AREA

Figure 2-18. Space Station Growth

SOLAR OPTICAL
TELESCOPE(SOT)

PINHOLE SOLAR SOFT X-RAY
OCCULTER TELESCOPE FACILITY
FACILITY (SSXTR)

EXTREME ULTRA-VIOLET
TELESCOPE FACILITY
(XUVTF)

COMMUNICATION
ANTENNA

ENERGY MODULE

ASTRONOMY SERVICE
FACILITY
(SIMULATED PAYLOAD
BAY STRUCTURE ASSY)

RADIATOR

Figure 2-19. Solar Physics Platform
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addition of the life sciences research area module in the year 1998. Fig-
ure 2-18 defines the build-up sequence and module locations for the years
1993, 1994 through 1997, and 1998 through 2001. In 1995, a modified energy
module is mated to the astronomy service facility. This facility will then
be separated from the station and will operate as a free-flying astronomy
platform tended from the station. This configuration concept is illustrated
in Figure 2-19.

Because both stellar and solar observation instruments are identified for
the astronomy services activity, separation of these disciplines onto individ-
ual platforms may be desirable. Figure 2-20 illustrates two platform config-
uration concepts that will accommodate this separation. As stated earlier,
the astronomy service facility is similar in construction to the PSA service
bay. The energy module is identical in construction to the Space Station
energy module, but only the subsystems required for platform operations are
provided.

System Z Platform

An earth observation group of instruments, System Z, has been identified
as a potential scientific mission of the Space Station program. These instru-
ments want to operate in a sun-synchronous polar orbit at 500 km altitude.
A concept for placing these instruments on a free-flying platform is shown in
Figure 2-20.

The System Z platform consists of two major elements that share a com-
monality with the Space Station. The first is the payload bay instrument rack,
which is constructed similar to the PSA without the manipulator arms. This
rack contains the standard pallet attaching interfaces as provided both in the
Shuttle payload bay and the PSA. Thus, attachments of the instrument pallets
to the payload bay instrument rack replicate the orbiter payload bay attachments.

The second element to share a commonality with the Space Station is the
System Z energy module. This module is identical in construction to the Space
Station energy module. The subsystems supplied are those required for plat-
form operation only. An example is the 35-kW solar array assembly and elec-
trical power subsystem required by System Z.

SPACE STATION EVOLUTION OPTIONS

The previous discussion has been concerned with the multidiscipline Space
Station development and its capability and facilities arrangements that accom-
modate the mission requirements. It became apparent that the varied activities
being performed simultaneously on this station may have some incompatibility
(i.e., vibration levels, contamination, etc.). Consequently, a station concept
that essentially replicates the initial station but separates the various
mission disciplines into more compatible groups was investigated. Figure 2-21
shows the station development options of either performing the mission activi-
ties via a single multidiscipline station or via two four-man stations.
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HABITAT MODULE 1

GALLEY/DINING
WARD ROOM

LABORATORY

LIFE SCIENCE MODULE

ANIMAL SCIENCE
AREA

HUMAN SCIENCE
AREA

HABITAT MODULE 2 COMMAND MODULE (GROWTH)

MEDICAL/EXERCISE

CONTROL
CONSOLE

AVAILABL
LABORATORY/SHOP

Figure 2-17. Growth Station Modules

Command Module. The command module will have all of the crew habitability
provisions, such as crew staterooms, hygiene facilities, galleys, and dining/
ward room removed after the build-up has been completed. Also removed will be
the medical/exercise facility and the back-up station operations console. All
of these facilities are now contained in Habitat Modules 1 and 2. The scar
wiring and plumbing lines will remain. The subsystem components in the equip-
ment bay are retained to maintain the redundancy and safety requirements. The
space now available in the living/working volume can be utilized for labora-
tories and workshops, which have yet to be defined.

Growth Build-Up Sequence

The growth core Space Station, to accommodate a crew of eight, is com-
pleted within the year 1993 with the addition of two habitat modules and a life
sciences module. During this build-up, the 70-inch-diameter Ku-band antenna
is removed from the command module. A 13-foot Ku-band antenna and a 5.1-foot-
diameter S-band antenna, dedicated for Department of Defense use, are added to
the top of the life sciences module. The initial station solar array assem-
blies are replaced with larger array assemblies capable of providing the
required 50 kW of bus power. An OTV propellant storage tank is also mated to
the command module. A second OTV propellant storage tank is mated to the end
of the first tank in the year 1994. With this configuration, six berthing
ports on the life sciences module are available for the addition of other
modules or pallets. Of these, the forward berthing port is dedicated for the
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Table 2-5. Baseline Subsystem Hardware Matrix—Growth Space Station

SUBSYSTEMS

• ELECTRICAL
POWER (EPS)

• THERMAL
CONTROL

• LIFE SUPPORT

• ENVIRONMENTAL
CONTROL

• PROPULSION

• GN&C

• COMMUNICA-
TIONS

• DATA
MANAGEMENT*

ENERGY
MODULE

CONCENTRATOR SOLAR
ARRAYS, FUEL CELLS,
ELECTROLYSIS

RADIATOR, WATER/FREON
PUMPS, HEAT
EXCHANGER

—

CABIN VENTILATION &
PRESSURIZATION

LO?/LH2
PROPELLANT TANKS
(SMALL), ACCUMULATOR,
VALVE ASSEMBLY, &
FOUR THRUSTER QUADS

CMC's (3), LASER
RENDEZVOUS SENSOR

INTERCOM

—

COMMAND
MODULE

FUEL CELLS,
ELECTROLYSIS, POWER
CONDITIONING

SAME AS ENERGY
MODULE (EM)

—

AIR REVITALIZATION,
VENTILATION &
PRESSURIZATION

FOUR THRUSTER QUADS,
VALVE ASSEMBLY

CMC's (2), LASER
RENDEZVOUS SENSOR

INTERCOM

SPACE OPERATIONS
CONTROL CENTER

HABITABILITY

MODULE 1

LIGHTING

SAME AS EM

GALLEY, WASTE
MANAGEMENT,
CLOTHES WASH, EMU

MODULE 2

LIGHTING

SAME AS EM

WASTE MANAGEMENT,
SHOWER, BACKUP
GALLEY, EMU

AIR REVITALIZATION, VENTILATION,
& PRESSURIZATION

—

INTERCOM

—

—

INTERCOM

STATION OPERATIONS
CONTROL CENTER

•INFORMATION MANAGEMENT SYSTEM CONSISTS OF DISTRIBUTED LOCAL MICROPROCESSORS IMBEDDED IN VARIOUS
SUBSYSTEMS THROUGHOUT THE STATION, AND AT LEAST ONE LEVEL OF SUPERVISORY PROCESSORS. DATA BUS SERVICES
TO ALL STATION MODULES

SUBSYSTEMS

• ELECTRICAL
POWER (EPS)

• THERMAL
CONTROL

• LIFE SUPPORT

• ENVIRON-
MENTAL
CONTROL

PROPULSION

• GNSC

• COMMUNICA-
TIONS

• DATA
MANAGEMENT*

PAYLOAD SERVICE
ASSEMBLY (PSA)

PAYLOAD
INTERFACES

PAYLOAO
INTERFACES

—

VENTILATION &
PRESSURIZATION

TWO THRUSTER
MODULES

LASER RENDEZ-
VOUS SENSOR

INTERCOM

—

LOGISTICS
MODULE

LIGHTING

SAME AS EM

FREEZER

VENTILATION &
PRESSURIZATION

INTERCOM

—

TUNNEL
MODULE

LIGHTING

—

TBD

VENTILATION &
PRESSURIZATION

STAR SENSORS,
IRU, GPS NAVIGA-
TION, SET, DIGITAL
SUN SENSORS

13 FT DIA Ku-BAND
ANTENNA
5 1 DIA. S-BAND
ANTENNA, INTERCOM

—

AIRLOCK

LIGHTING

SAME AS EM

—

DEPRESSURI-
ZATION, REPRES-
SURIZATION

INTERCOM

—

PROPELLANT
STORAGE MODULE

—

REFRIGERATION
SYSTEM

—

—

L02/LH2 PRO-
PULSION TANKS,
ACCUMULATORS,
VALVES, PROPULSION
TRANSFER EQUIPMENT

—

•INFORMATION MANAGEMENT SYSTEM CONSISTS OF DISTRIBUTED LOCAL MICROPROCESSORS IMBEDDED IN VARIOUS
SUBSYSTEMS THROUGHOUT THE STATION, & AT LEAST ONE LEVEL OF SUPERVISORY PROCESSORS. DATA BUS SERVICE
TO ALL STATION MODULES
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The subsystem hardware definition and their locations within the individual
modules are identified in Table 2-5.

Growth Station Configuration

The standard modular construction elements described earlier are used for
the 40-foot-long habitat modules. The interior floor location, aisle widths,
false ceiling, and integrated environmental protection subsystem are also
incorporated. The structural arrangement of the life sciences module is iden-
tical to the command module except that the pressure bulkhead separating
Volume I and Volume II is not required.

The internal arrangements and features of each module are described in this
section. The build-up sequence from the initial station architecture to the
growth station arrangement is also described.

Habitat Module 1. Located in the living/working area of this module are
four crew staterooms, the galley, a dining/ward room/quiet recreation facility,
a hygiene facility without a shower, and a larger volume, 490 cubic feet, iden-
tified as a workshop/laboratories facility. The requirements for this facility
have not been fully defined. Each stateroom, nominally accommodating one crew-
member, has the capability to accommodate two during overlap or emergency.
The required components of the subsystem, as defined in Table 2-5, are located
in the equipment bay below the floor. The end cones provide storage for infre-
quently needed items and access to the interface connectors. This arrangement
is illustrated in Figure 2-17.

Habitat Module 2. Located in the living/working volume of this module
are four crew staterooms of the same configuration and capability as those
located in Habitat Module 1, a back-up galley with 21-day food storage capa-
bility, a medical/exercise facility, a full hygiene facility including a
shower, and a control center, containing the station operations console. The
subsystem equipment identified in Table 2-5 is located in the equipment bay.
Similar to Habitat Module 1, the end cones provide storage for infrequently
needed items and access to the interface connectors. Figure 2-17 illustrates
the arrangement.

Life Science Module. This module is divided into two volumes by parti-
tions above and below the floor. The resulting areas are utilized for life
science research (animals) and medical research (humans). A slight pressure
differential between the volumes will contain any animal odors. The research
facilities are located in the working volume above deck. Only the air circu-
lation equipment has been identified, to date, to support this facility. Con-
sequently, the equipment volume below the floor is available for the installa-
tion of special equipment or storage. The end cones provide storage for four
emergency escape subsystems and other infrequently required items as well as
access to any interface connectors. This arrangement is illustrated in Fig-
ure 2-17. In 1998, this module will be reconfigured to a full medical research
facility equivalent to a two-bed hospital and the life science research area
(LSRA), shown mated to the forward end of this module, will provide the animal
research facility. At this time, some reconfiguration of the medical/exercise
facility in Habitat Module 2 may be desirable.
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-VOLUME II

HABITAT MODULE NO. 2

STATION OPERATIONS CONTROL CONSOLE
BACKUP GALLEY (21-DAY SUPPLY)
HYGIENE FACILITY
PRIMARY MEDICAL FACILITY
ECLSS FACILITY
SLEEP STATION

COMMAND MODULE
- •

SECONDARY ELECT
POWER

ORBITER DOCKING
PORT

PRESSURE
BULKHEAD

VOLUME I-

HABITAT MODULE NO. 1 |

• PRIMARY GALLEY - 21-OAY SUPPLY FROM
LOGISTICS MODULE

• HYGIENE FACILITY
• BACKUP MEDICAL FACILITY
• ECLSS FACILITY
• SLEEP STATION
• WORKSHOP/LABS

ENERGY SECTION MODULE

• PRIMARY/SECONDARY
ELECT POWER

ORBITER DOCKING
PORT

AIRLOCK]

CORE MODULE |

> SPACE OPS CONTROL CONSOLE

>PANTRY -
NOMINAL SUPPLIES
•f 21-OAY EMERGENCY
SUPPLIES

Figure 2-15. Baseline Space Station Concept Arrangement for Crew Safety

Ku-BAND
ANTENNA

S-BAND
ANTENNA

PHOPEUANT
STORAGE
I?)

PAYLOAO
SERVICE
ASSEMBLY

FUNCTION:
• ACCOMMODATE SPACE OPERATIONS

• LEO SERVICING OF SATELLITES
• SCIENCE EXPERIMENT MODULES/PALLETS
• R&D DEVELOPMENT
• SPACE PROCESSING

• PROVIDE ELECT POWER, COMMUNICATIONS, CREW
ACCOMMODATIONS

CHARACTERISTICS:
• 7 MATING PORTS TO ACCEPT EXPT MODULES

• PALLET MATING ACCOMMODATIONS ON PSA

• OTV/SPACECRAFT SERVICING ACCOMMODATIONS
ON PSA

• CRYO STORAGE

• 50 kW POWER AT RUS

• ACCOMMODATIONS FOR 8 CREW

• REPLACEABLE SOLAR ARRAYS & RADIATOR

• DUAL VOLUMES FOR CREW SAFETY

• EVA ACCOMMODATIONS

Figure 2-16. Growth Eight-Man Space Station Architecture
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Build-Up Sequence

All of the basic station elements are launched and assembled in 1991 with
the ASF being added in 1992. Figure 2-14 presents a detailed build-up sequence
for the year 1991. When the logistics module is delivered, on the third launch,
the initial station is then capable of being occupied. Figure 2-14 also illus-
trates the configuration of the initial station in 1992.

The station's operations elements, such as the MMU's and the first TMS,
are not shown within the PSA as was indicated in Figure 2-13. The placement of
the astronomy sensors within the ASF is also not shown on the figure; however,
the installation of these sensors is shown within the free flying astronomy
platform illustrated in Figure 2-9.

GROWTH STATION ARCHITECTURE

The growth Space Station, designed to provide a habitable and working
environment for a crew of eight, is assembled by building on to the initial
Space Station. The core station modules added are: Habitat Module 1, Habitat
Module 2, and a life sciences module that interconnects the two habitat mod-
ules. These modules are arranged, as shown in Figure 2-15, to provide two
exits out of each occupied area and to provide dual independent volumes for
emergency safe havens. The baseline configuration is defined in Figure 2-16,
which also lists the principal functions and characteristics of the growth
station.

1991

FLIGHT 1
ENERGY
MODULE
AIRLOCK NO. 1

FLIGHT 2 FLIGHT 3

LOGISTICS
MODULE

FLIGHT 4

SPACE
PROCESSING
LAB

1991 1992

ELEMENTS NOT SHOWN
MMU1
MMU2
LEO TMS 1
STORABLE PROPELLANT TANK
TMS MAINTENANCE FACILITY

ELEMENTS NOT SHOWN
LEO TMS 2
SSXRT
SOT
SIRTF
SAMEX-C

Figure 2-14. Initial Station Buildup
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Figure 2-12. Pay load Service Assembly Concept
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Figure 2-13. Payload Service Assembly Space Allocation
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An important aspect of the PSA design is its payload accommodation flex-
ibility. Within the service bay, the arrangements of payloads are only limited
by their aggregate length, which cannot exceed 42.3 feet. Similar flexibility
is provided on the service fixture. For example, one set of payload retention
devices can be utilized to retain two OTV's in line, as seen in Figure 2-13,
and the other set can accommodate the storage of free-flying spacecraft or
other payloads. A payload arrangement concept within the PSA service bay that
provides for the storage of two TMS vehicles and its servicing facilities is
shown. The flight support subsystem for servicing satellites and the earth
observation instrument SAMEX-C are also accommodated within the service bay.

Astronomy Service Facility (ASF)

The concept of an astronomy service facility (ASF) was developed to
accommodate the three astronomy observation sensors: soft solar X-ray tele-
scope (SSXRT), solar optical telescope (SOT), and solar infrared telescope
facility (SIRTF), which need to be supported by the initial Space Station.
The ASF is a structure similar to the PSA, Figure 2-8, without manipulators
or a control module. The ASF is mated to a command module side port where
its viewing path to stellar space is clear (Figure 2-9). The ASF will even-
tually be detached from the Space Station and become a free flyer as discussed
in subsequent sections of this report.

Logistics Module

The logistics module assumes the same basic exterior configuration as the
other pressurized elements. This includes standard end cones, frames, cylin-
drical body section, and interface ports. A mating port is attached to one
end cone while a pressure plate seals the second end cone. On the periphery
of the second end cone, a structural skirt is attached to protect external
tank installation provisions, as seen in Figure 2-8. The total length of the
logistics module is 23 feet.

Inside the logistics module are two structural bulkheads that coincide
with the external frames. In the center of each bulkhead is a 40-inch diam-
eter opening. On both sides of each bulkhead, pie-shaped, 20-inch-deep
storage compartments with hinged doors are mounted to provide the majority
of storage space. Storage compartments are also provided on the end cones.
On the near end cone, 10-inch deep by 50-inch wide compartments are mounted
around the periphery. On the far end cone, a 48-inch-diameter by 24-inch-deep
freezer is provided. Around the freezer, additional storage compartments are
mounted. The internal arrangement features 36-inch-wide aisles between stor-
age compartments and between each storage compartment and the end cone. This
width is sufficient for opening storage compartment doors and for crewmen,
carrying supplies, to easily maneuver. Of the total logistics module internal
volume of 2,565 cubic feet, 1,014 cubic feet are available for storage, which
satisfies the average requirements for a 60-day resupply period for an eight-
member crew.
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capable of supporting both volumes. Redundant station control consoles are
located in each volume. The main staterooms are in Volume II with back-up
sleep stations in Volume I. Other features, their locations, and volume
requirements are noted in Figure 2-11.

Payload Service Assembly (PSA). An important feature of the Space Station
is its ability to provide servicing operations in low earth orbit. The ser-
vicing operations cover a spectrum of in-space support activities such as
refueling, repairing, and maintaining free flyers and co-orbiting satellites.
In addition, the Space Station is to support major assembly and deployment of
large spacecraft and their eventual launch to operational orbit. The PSA is
the principal element of the Space Station on which most of these servicing
activities will take place. Consequently, its architecture is an important
factor in simplifying the servicing operations and, in turn, the viability of
the Space Station as a cost-effective member of the national space program.

Present and future STS missions and operations performed from the orbiter
payload bay prior to Space Station IOC can be considered as forerunners to PSA
operations. The PSA architecture tapped this legacy by simulating the orbiter
payload bay in many of its features. The most important of these are a service
bay and a manipulator arm similar to the orbiter payload bay and its remote
manipulator subsystem (RMS), as can be seen in Figure 2-8. Payload latching
mechanisms, subsystem interfaces, manipulator design, and controls will also
be similar to the orbiter's payload bay interfaces.

The major architectural features of the PSA are shown in Figures 2-8 and
2-12. The service bay will be utilized in a similar capacity as the orbiter
payload bay (i.e., for servicing free flyers, housing research experiments on
pallets, storing spares, etc.). The back side of the service bay is the ser-
vice fixture where a mobile manipulator arm and two sets of payload retention
devices on carriage assemblies are featured. The service fixture will be uti-
lized for servicing OTV's. The two retention devices will allow simultaneous
servicing of two OTV's. In that event, the service fixture manipulator arm is
complemented by the service bay manipulator arm in servicing the OTV's. Both
manipulators are operated by crewmen within the control module, which is perma-
nently attached to the service bay structure. The control module incorporates
a standard mating port for interfacing with the Space Station. Internally, it
accommodates two control stations, one for each manipulator. The control sta-
tions simulate the Shuttle aft deck from where the RMS is controlled and oper-
ated. Observation windows similar to those of the Shuttle are also provided.
The other end of the PSA features a mating port where incoming OTV's dock for
subsequent transfer to the service fixture for servicing. The service fixture
manipulator arm is used for OTV transfer to the service fixture.

The PSA will be packaged within the orbiter payload bay for launch to LEO.
The packaging concept is illustrated in Figure 2-12. The side structures of
the service bay are designed to fold so the entire PSA fits within the 15-foot-
diameter payload envelope of the orbiter.
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Figure 2-11. Energy Module and Command Module Initial Station Baseline
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Energy Module. The energy module, shown in Figure 2-8, provides the main
source of electrical power for the Space Station. It is constructed in accord-
ance with the standardized concept having cone ends and a cylindrical center
location that contains four mating ports. Mating ports are also provided at
each end of the energy module. The overall length of the module is 20 feet;
the maximum inside diameter of the center section is 164 inches (13 feet
8 inches). Peripheral rings between the 90-inch-long center section and each
cone end are 178 inches in diameter. The module is of welded aluminum with
external meteoroid bumper and insulation as shown in Figure 2-4.

The internal structure consists of two bulkheads for equipment mounting,
one at each end of the center section. Equipment mounted within the module
includes fuel cells, electrolysis units 'and electrical power conversion, and
distribution components. The control moment gyros and their associated com-
puter and inertial measurement units are also mounted in the energy module.
Docking radar and communication equipment is mounted in one end of the module.

Four reaction control engine modules are mounted on one cone end with
provision for shirtsleeve servicing from inside the energy module. Figure 2-8
illustrates this concept.

The reaction control subsystem propellant storage and accumulator tanks
are mounted outside the energy module around the cone ends. All internally
mounted equipment is accessible from a 40-inch-wide aisle for service or
removal and replacement. Electrical, fluid, air, and gas lines to other mod-
ules, externally mounted equipment, and to a docked orbiter are provided
through the interface connections at the mating ports. Air circulation is
provided through the interface with the command module, assisted by fans
internal to the energy module.

Station access to the orbiter in its normal docked location is through
the energy module.

The four berthing ports on the center section are interfaces for two
solar arrays, a deployable radiator and an airlock, all detachable and pack-
ageable within one orbiter cargo bay, as indicated in Figure 2-10. The ini-
tial solar arrays, which provide a total of 50 kW of power, are replaced for
the growth configuration by arrays that provide 100 kW of power.

Command Module. The command module, Figure 2-8, is of a similar con-
struction as the energy module except its longer center section contains two
segments of four berthing ports each and a cylindrical section. Its total
length is 40 feet. The volume above deck houses staterooms, hygiene facili-
ties, galleys, dining/ward room, and medical/exercise facility. All of these
provisions are removable for the growth phase. A station operations console
also located within this volume remains throughout the life of the station.
The volume below deck is used primarily for subsystem equipment.

A combined internal arrangement of both the energy and command modules is
illustrated in Figure 2-11, noting the two independent pressure volumes. Each
volume has an independent environmental control and life support subsystem
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Table 2-4. Baseline System Hardware Matrix—Initial Space Station

SUBSYSTEMS

• ELECTRICAL
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• ENVIRONMENTAL
CONTROL

• PROPULSION

• GUIDANCE.
NAVIGATION,
t CONTROL
(GN4C)
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MANAGEMENT*

ENERGY MODULE
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•SYSTEM CONSISTS OF DISTRIBUTED MICROPROCESSORS IMBEDDED LOCALLY IN SUBSYSTEMS THROUGHOUT STATION, & ONE
LEVEL OF SUPERVISORY PROCESSORS DATA BUS SERVICES PROVIDED THROUGHOUT
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floor, the aisle is 40-inches wide, which provides for a pressure-suited crew-
man to perform maintenance operations. Both aisle widths are compatible with
the equipment envelope sizes identified in Figure 2-3.

A false ceiling is provided in each module, which contains the lighting
fixtures and air supply registers. The space behind the false ceiling is for
wiring and air recirculation subsystem (ARS) ducts.

An integrated environmental protection subsystem consisting of meteoroid
protection, thermal control radiators and insulation, and radiation protection
is provided on each module.

An implication of the standardized floor location is the orientation of
the floor within each pressurized element of the Space Station relative to
each other. It is important to minimize the need for reorientation whenever
a crewman moves from one element to another. The result of a specific analy-
sis that addressed this aspect of Space Station architecture is shown in Fig-
ure 2-6 where the floor orientations are shown.

The standard docking/berthing interface accommodates module mating,
orbiter-to-station mating, and user module/pallet mating to the station. It
features standard mechanical alignment and latching provisions and a standard
utilities interface arrangement. A 30-inch by 40-inch clear opening provides
for passage of equipment and pressure-suited crewmen. All the utility inter-
faces are remotely activated after completing and verifying the mechanical
mating. In addition, all connections feature manual override provisions per-
mitting servicing or maintenance to be performed by either a shirtsleeve or a
pressure-suited crewman.

The crew safety requirements are fulfilled by dividing the Space Station
into two independent pressure volumes, each capable of serving as an emergency
safe haven for the entire crew. Safety features and characteristics of both
pressure volumes are summarized in Figure 2-7. A pressure bulkhead within the
command module separates the two volumes. Volume I contains the energy module,
the forward end of the command module and the logistics module. The aft end
of the command module is in Volume II.

Initial Station Configuration

The elements that make up the initial Space Station are the energy module,
the command module, two airlocks, the logistics module, and the payload service
assembly. One airlock is mounted on the energy module and the other on the
crew module, thus providing EVA egress from either pressure volume. The indi-
vidual modules are illustrated in Figure 2-8 along with the packaging arrange-
ment of the module within the orbiter's payload bay. The arrangement of these
elements into a baseline configuration is shown in Figure 2-9. The generic
functions and characteristics of the initial Space Station are also shown in
Figure 2-9. Eight major subsystems were considered in developing the initial
Space Station architecture. The subsystems and the allocation of their compo-
nents among the modules of the initial Space Station are listed in Table 2-4.
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Temporary storage facilities for multiple communication and/or DOD satel-
lites have been identified. A volume has been allocated to provide this
capability.

A construction and assembly operations volume has been identified as was
indicated in Figure 2-1. No particular facility requirements have been iden-
tified at this time for construction and assembly of large space elements;
however, past studies, such as the Space Construction Systems Analysis that
was performed by Rockwell under a NASA JSC contract, have indicated that the
volume identified in Figure 2-1 is compatible with future planned platforms
and large satellites.

SPACE STATION ARCHITECTURE

The initial Space Station architecture and growth concept are described
in this section. The modular elements that make up each of the station con-
cepts are also described as are the standardized module construction concepts.
The station build-up sequence for each station arrangement is also included in
the description.

INITIAL SPACE STATION ARCHITECTURE

Architectural development of the initial Space Station considers two
categories: external architecture and internal arrangements of the basic
station elements. The external architecture is concerned with overall station
configuration and standardization of the construction of the modular elements.
Internal arrangements were developed that fulfill the habitable needs of the
initial four-man crew and, at the same time, minimize the scars that may result
when the initial station progresses to the full-up architecture.

Configuration of the pressurized basic station elements evolved from a
standardized module concept that opted for common diameters, bulkheads, envi-
ronmental protection, floor locations, and docking/berthing interfaces (Fig-
ures 2-4 and 2-5). The pressurized modules are of monocoque aluminum, welded
for minimum leakage. Each module is two standardized end cones and a center
cylindrical section. A standard segment that contains four standard inter-
faces is also available. The standard interfaces are also incorporated in the
end cones. The cylindrical sections feature standard structural rings 7 inches
deep, which allow handling the modules during manufacturing and transportation
and are of sufficient depth to allow installation of the environmental shield
within a 14-foot outside diameter envelope. A standard floor location was also
incorporated into the internal arrangements.

In the habitable volume above deck, a 32-inch wide by 82-inch high aisle
is provided, which will allow the simultaneous passage of two pressure-suited
crew members in an emergency condition. In the equipment section below the
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Table 2-3. Time-Phased Support Systems Requirements

FISCAL YEAR 1990

• FACILITY

• BASIC SPACE STATION ELEMENTS
ENERGY MODULE

AIRLOCK (2)

COMMAND MODULE

LOGISTICS MODULE (4 MAN STA)

LOGISTICS MODULE (8 MAN STA)

MANNED MANEUVERING UNIT (2)

PAYLOAD SERVICE ASSY

ASTRONOMY OBSERVATION PLATFORM

HABITAT MODULE 1

HABITAT MODULE 2

• TMS RELATED HARDWARE
LEO TMS

GEO TMS

GEO TMS SERVICE MODULE

TMS PROPELLANT TANKS

SPARES & TOOL STORAGE PALLET

FLIGHT SUPPORT SYSTEM

• OTV RELATED HARDWARE
OTV
OTV PROPELLENT TANKS

• EXPERIMENTS/MISSIONS

• LIFE SCIENCES HARDWARE
LIFE SCIENCE MODULE

LSRA

• SPACE PROCESSING LAB
MAT! PROCESSING SPACE MODULE

• SPACE PROCESSING SPACECRAFT
MDAC BIOLOGICAL PROCESSORS X

CRYSTAL GROWER

• SPACE SCIENCE
SSXRT

SOT
SIRTF

SAMEX-C

P/OF

STARLAB

XUVTF

• SYSTEM "Z"
• COMMUNICATIONS/DOD

INITIAL
STATION
91 92

X

X

X

X X

X

X

X

X X

X

X

X

X

X X

X
X
x
X

GROWTH STATION -

93 94 95 96 97 98 99

X

X

X X X X X X X

X
X

X

X X

X

X X X X X

X X

X
X

X X X X X

X X

X "

X
x

ASTRONOMY
OBSERVATION

x x PLATFORM
X X

X X ,

X

ALLOCATE APPROXIMATELY 7000 FT3 FOR TEMPORARY STORAGE OF SATELLITES
ALLOCATE VOLUME FOR ASSEMBLY AND CONSTRUCTION
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Tails 2-1. Subsystem Requirements

SUBSYSTEM

ELECTRICAL POWER (AT BUS)
STATION
PAYLOAD

TOTAL
ENVIRONMENTAL CONTROL
& LIFE SUPPORT

CREW SIZE
THERMAL CONTROL
HEAT REJECTION

STATION
PAYLOAD
TOTAL

REACTION CONTROL
ORBIT MAKEUP IMPULSE
ATTITUDE CONTROL IMPULSE

GUIDANCE, NAVIGATION & CONTROL
MOMENTUM STORAGE CAPACITY
ATTITUDE DETERMINATION ACCURACY
ATTITUDE CONTROL ACCURACY
ATTITUDE STABILITY

COMMUNICATION
DOWN LINK DATA RATE
UP LINK DATA RATE
POINT TO POINT DATA RATE
BIT ERROR RATE

INFORMATION MANAGEMENT
STATION OPERATIONS
PAYLOADS

INITIAL STATION

14.3 kW
9 kW

23.3 kW

4

19.3 kW
9.6 kW

28.9 kW

0.8 X 106 LB-SEC/YR

13,000 FT-LB-SEC
0.1 DEG
0.3 DEG
0.008 DEG/SEC

150 MBPS/ORBIT
10 MBPS/ORBIT

16 KBPS T
1 X 10-5

109 BITS/DAY
1 X 1013 BITS/DAY

GROWTH STATION

35 kW
15 kW
50 kW

8

42 kW
15 kW
57 kW

1.8X 106 LB-SEC/YR

22,000 FT-LB-SEC
0.1 DEG
0.3 DEG
0.005 DEG/SEC

287 MBPS/ORBIT
12 MBPS/ORBIT

9 300 MBPS
1 X ID'5

1011 BITS/DAY
2 X 1013 BITS/DAY

Table 2-2. Logistics Resupply Requirements

ITEM

• STATION OPERATIONS SUPPLIES

- CONSUMABLES
• FOOD
• FOOD PACKAGING
• SPARES

SUBTOTAL

- SUPPLIES
PERSONAL EQUIPMENT
HOUSEKEEPING/HYGIENE
SHIP STORES
MAINTENANCE EQUIPMENT
EVA SUPPLIES
STORAGE PACKAGING
N2

SUBTOTAL
• CRYO CONSUMABLES

- LOX
- LH2

SUBTOTAL

• EXPERIMENT SUPPLIES

— sr.lFNfJF/APPI ICATIONS/
SPACE PROCESSING SUBTOTAL

WT

INITIAL*

936.0
360.0

55.0
1351.0

684
612.0

255
255

684.0
961.2
177.8

2554.4

8210
114.0
935.0

LBS)

GROWTH**

1248.0
480.0
322.3

2050.3

91.2
816.0

34.0
34.0

912.0
1281.6
237.0

3405.8

3480.0

VOL

INITIAL

121.0
81.0
4.0

206.0

3.6
59.1
3.2
2.9

52.6
46.8
257

V>* R
193.9

11.4
25.9

37.3

(FT3)

GROWTH

148.0
108.0

23.6
2796

4.8
78.7
4.3
3.8

70.1
62.4
34.2

2583

124.0
* 90-DAY SUPPLY FOR A CREW OF 8

** 60-DAY SUPPLY FOR A CREW OF 4
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5. Minimize orientation change between modules

6. Consider both shirtsleeve and pressure-suited equipment repair and
replacement capability

7. Dining capability for maximum of four at one sitting for the initial
station and eight for the growth station

The significant subsystem requirements and characteristics that influence
the station architecture concerning the external arrangements, sizing of the
modules, and the interior space allocation are listed in Table 2-1. The solar
array concept particularly influences the replaceable solar array panel goal
identified earlier.

The logistics supply requirements that dictate the size and volume of the
logistics module are listed in Table 2-2. These logistics supply requirements
are separated into the station operation supplies: those supplies that are
needed to support the crew and maintain the station systems; experiment sup-
plies; those consumable supplies identified to perform science experiments and
the life science disciplines; and the cryo supplies required during initial
station operations only. The L02 and LH2 are required for initial station RCS
and ECLSS operation. When the cryo storage tank is introduced for the support
of the OTV, the RCS and ECLSS cryo need is supplied from this central storage
facility, thus eliminating this requirement from the logistics module.

The time-phased mission requirements that affect the Space Station build-
up and, consequently, the station arrangement are shown in Table 2-3. These
requirements are separated into those that influence the station facilities
and those that are identified for the implementation of the experiments and
missions activities. The facility capabilities that need to be provided for
the operation of the TMS are also indicated, such as the storage capabilities
for tools and spares items.

Various facilities and capabilities that the station must provide to
implement the experiment and mission tasks are identified. Specific modules
are indicated for the life science activities and the space processing devel-
opment activities. Even though the space processing factories are free flyers
in the vicinity of the station, the servicing of these elements either at the
station or remotely via a TMS indicates that supporting elements are needed at
the station, such as the FSS, which was identified as a facility requirement.

The space science astronomy observation instruments are planned as Space
Shuttle sortie elements, which are to be accommodated later by the Space
Station. To minimize changes to these instrument packages that are mounted
on Shuttle pallets, the facility to accommodate the Shuttle pallets at the
Space Station introduced the astronomy observation platform as a station
facility element. This platform is attached to the station until the station
activities become so intense that they interfere with the proper functioning
of these instruments. At this time, a modified energy module will be attached
to the platform and it will then become a free flyer tended from the station.
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Figure 2-2. Rockwell System Analysis Approach

STANDARD HATCH OPENING (36" X 40" DIA)
'MINIMUM AISLE WIDTH, 32"

ALLOWANCE FOR CARGO HANDLING DEVICE

CARGO PKG SIZES:
26" X6" X50"
28" DIA X 50"
20" X 30" X 50"

LOCAL PROTUBERANCES ALLOWED WITH
DESIGN GROUP APPROVAL

CARGO HANDLING DEVICE

-132 I—

2" CLEARANCE-

26' SD / 28" OIA/

HATCH OPENING

Figure 2-3. Equipment Clearance Envelope
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The general ground rules and goals are:

1. Ground rules

• Two pressure volumes

• Two ways out of each module

• Emergency operational and living accommodations in each pressure
volume

• EVA egress from each pressure volume

• One orbiter docking position on each pressure volume

• All equipment sized for passage through 40 in. by 36 in. opening

2. Goals

• Replaceable solar array panels

• Access to three sides of all equipment—utility interfaces
accessible for manual connection

• Smooth interior walls — exterior frames

• Interior surface of pressure vessel visible and accessible

• Integrate micrometeoroid, thermal insulation, radiation protec-
tion, and module structure

• Standardize module construction

The first five ground rules are directly associated with providing a safe hab-
itat for the crew by principally providing dual exits from all occupied areas
and dual independent volumes that provide safe havens of pressurization. Res-
cue operation capabilities are also identified.

Figure 2-3 shows three equipment envelopes that must be adhered to in
order to provide passage through the standard hatch openings of the modules.
This requirement in particular influences the subsystem component specifica-
tions. It also places constraints on items that may be involved in the evo-
lutionary growth plans considered for interior rearrangements.

Those items listed as goals are principally concerned with maximizing
maintenance efficiency and standardizing module construction to minimize costs
of fabrication.

The crew accommodation requirements that significantly influence the
interior arrangement of the individual habitable modules are:

1. Habitable volume per man--240 ft^

2. Provide private quarters per crewman—gross volume 150 ft^

3. Crew overlap or emergency sleep provisions in each stateroom

4. Locate staterooms as remote as possible from noisy equipment
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Figure 2-1. Space Station Architecture

Zones-cuf-Operations Allocation

ARCHITECTURE REQUIREMENTS

A number of Space Station program analysis areas generate requirements
that must be integrated in order to determine a viable station architecture
that can implement all of the requirements. Figure 2-2 shows the system anal-
ysis approach flow diagram. Significant requirements to be implemented in the
Space Station are mission system support requirements, space support system
options, space operations system parameters, crew requirements, facility sub-
system requirements, and Space Station system requirements. All of these
requirements are integrated within the optional architectures development
task.

These requirements have been categorized into five groups, which also
include certain goals that are desirable and some basic ground rules associ-
ated with crew safety. The five requirement areas are:

1. General ground rules and goals

2. General accommodation

3. Subsystems

4. Logistics supplies

5. Time-phased mission requirements

- 63 -

SSD 83-0032-2



Shuttle Integration & fllA Rockwell
satellite systems Dwsion ^^^ International

Storage of satellites that comprise multiple payloads on a single trans-
port vehicle are provided. This capability is utilized for the placement of
multiple small-sized communications and/or DOD-type satellites by a single
OTV.

Construction operations are provided for deployment and assembly of satel-
lites. Space is allocated for future large construction missions as indicated
in the following:

1. Crew living accommodations

• Living space for crew--four to eight or ?

• Environmental control

• Environmental protection

2. Logistics resupply

• Station operations

• Spares

3. Station operations

• Electrical power

• RCS

• GN&C

• Data management/communications

Attached or integral missions that require the pressurized atmosphere
such as dedicated modules for process development are accommodated via the
standard interface ports that provide not only the physical attachment but
also the utility services. Integral laboratory requirements within the core
station are also provided.

Figure 2-1 illustrates the allocation of zones-of-operation that provide
the accommodation of the mission operations. The active-type operations are
principally allocated to the area around the payload servicing assembly (PSA).
This area is utilized for the accommodation and servicing of OTV's, TMS's, the
deployment and mating of satellites to transport vehicles, and the servicing
of LEO satellites, if desired. The functions requiring pressurized, shirt-
sleeve accommodations are within the zone occupied by the core station modules.
Large construction missions are allocated to the area at the opposite end of
the station from that reserved for the mating of the orbiter.

The remainder of this section will identify the significant functional
and mission requirements that drove the station architecture. A description
of the implementation of these requirements for both the initial station and
growth station follows.
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2. SPACE STATION ARCHITECTURE

The objective of the Space Station architecture task is to develop initial
and full-up station arrangements that will support selected programs and deter-
mine the build-up sequence for the evolution of the initial station to a growth
station.

The primary function of the Space Station is to accommodate the missions
and provide the services required to sustain the mission activities. The prin-
cipal areas of mission support and services and the facility services that need
to be provided are listed in the following:

1. Space operations

• LEO placement of satellites (goes through station)

• GEO transfer (decouples payloads, OTV, propellant)

• Servicing--OTV's, TMS's, satellites

• Storage--mission-oriented requirements, time phased

• Construction—deployment and assembly of satellites

--large assemblies

2. Shirtsleeve operations

• Attached/integral missions

Two principal divisions are made of the mission support and services functions:
those functions that principally occur around the exterior of the station that
may be considered as active operations, and those operations that principally
require a pressurized, shirtsleeve atmosphere.

Satellites that will be operating within the vicinity of the station and
those going to GEO are delivered to the station via the Shuttle. At the sta-
tion, these satellites are deployed into their operating configuration, systems
verified, mated to an OTV for transport to GEO, or for the LEO satellites,
mated to a TMS for placement.

The LEO satellites that need frequent service, such as the space process-
ing factories, can be serviced at the station. This service may be the extrac-
tion of completed materials and the installation of raw materials for processing
as well as refueling the satellites. A routine inspection and verification of
readiness may also be accomplished. If remote servicing via the TMS is utilized,
the servicing functions performed on the TMS to maintain its usefulness are
provided. Servicing the reusable OTV1s and maintaining their usefulness are
also performed at the station.
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Figure 1-41. Option Cost Comparison

For any of the comparisons where Space Station Option 3 and the Shuttle-
only Option 5 perform the same missions, it can be seen that significant cost
savings result from the availability of a Space Station. It seems significant
that a cost advantage results for the Space Station even with the most pessi-
mistic forecast of the level of space activity. This comparison of the two
options in performing the low traffic level model is shown at the center of
the chart. The comparison of the two options in performing the high traffic
level model is shown on the right side of the chart.

The significant advantage of the Space Station option for any equivalent
level of mission accomplishment is determined from two factors:

1. A Space Station enables the operation and maintenance of reusable
OTV's. This, in turn, allows high energy payloads to be launched
from earth in the Shuttle without heavy and bulky upper stages.
More payloads can be accommodated in each Shuttle launch, for a
decrease of overall launch costs. The use of propellant scav-
enging and top-off adds to Shuttle efficiency by taking full advan-
tage of the weight-life capacity on each flight.

2. A Space Station enables a high level of in-orbit manned R&D. This
R&D fulfills both commercial and scientific objectives. Especially
in the commercial area such work will foster the development of a
space processing industry. In theory, the same R&D could be done
with Spacelab sortie missions; however, the number of sortie missions
needed to meet the same objectives is so large as to make the costs
of such a program prohibitive. For all practical purposes, a
Space Station is essential to a high level of on-orbit manned R&D.
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The most significant comparison is between Options 3 and 5 at the left in
performing Mission Scenario 6, which is the best estimate of the expected level
of mission activity. The Space Station Option 3 shows a large advantage over
Option 5 (no station) in number of launches required. A significant part of
this advantage is derived from the better load factors developed by the Space
Station option.

Mission Scenario 6 describes the best estimate of space activity based
on the assumption that a Space Station exists. Some of the missions defined
could not be accomplished very efficiently without a Space Station. Space
processing research or production of material in a laboratory is the primary
example of a mission that could be efficiently accomplished on a station, but
would require a relatively large number of Shuttle sortie flights if no Space
Station were available.

Mission Scenario 6A was constructed to represent the most likely space
activities with the assumption that no Space Station would exist. The total
number of launches required for this scenario approaches the number required
by the Space Station option, but it should be recognized that nowhere near
the same mission objectives are accomplished. More launches are required to
achieve the reduced mission objectives.

Space Station Option 3 shows a large advantage over Option 5 (no station)
in number of launches required for the Scenario 6 low model shown in the
center, and for the Scenario 6 high model shown at the right side of the
figure.

Program Option Cost Comparison

Figure 1-41 compares the costs of the seven mission model/program option
combinations developed in the study.

The most significant comparison is that between Option 5 and Option 3 in
performing Mission Scenario 6, medium mission model, which is regarded as the
most likely level of space activity.

The lower cost for Option 5 in performing Mission Scenario 6A (shown at
the right) must be recognized to be derived primarily from the reduced mission
objectives achieved by the Scenario 6A mission model. The relative merits of
Mission Scenario 6 versus Mission Scenario 6A are discussed in the Benefits
volume. The operations cost of Option 3 to achieve the more beneficial mission
objectives of Scenario 6 are lower than the operations costs of Option 5 to
achieve the reduced objectives of Scenario 6A. The margin of cost advantage
is sufficient to balance the production cost of the Space Station but not
quite enough to pay the development costs during the operational period studied
(1991 to 2000). It should be noted that the Space Station is estimated to have
a 20-year life as compared with the 10-year operational period studied. The
more beneficial mission achievements of Scenario 6 will be obtained for much
less cost than the reduced achievements of Scenario 6A before the life cycle
of the Space Station is completed.
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With respect to a medium versus high traffic model comparison, the dif-
ferences are seen to be slight. The high model payload average mass drops
only 10 percent and the OTV load factor increases less than 1 percent. In
fact, all of the OTV operational parameters are roughly equal in the two
models, indicating that a saturation effect is reached at the medium traffic
level.

These operational characteristics have a significant influence on any
OTV and apogee concept design and programmatic conclusions. The wide disparity
evidenced here indicates that many- such conclusions are tenuous without traf-
fic model projections from which statistical inferences can be drawn.

STS Launch Summary Comparisons

Figure 1-40 compares all seven combinations of the two program options
(Options 3 and 5) in performing the several Scenario 6 mission models devel-
oped in the study.

The numbers at the top of the bars are the total number of launches; the
numbers inside the bars and to the right of the bars are the cargo load
factors associated with the sector of traffic described. For example, in
Program Option 3, Mission Scenario 6, medium traffic level, there are
273 launches to all inclinations; the load factor associated with low-
inclination operations (Space Station) is 0.97; the load factor for medium-
inclination (Shuttle) missions is 0.64; and load factor for high inclination
operations is 0.82.
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Figure 1-40. STS Launch Summary for all Program Options
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Figure 1-39. Time-Phased Launch Summary

Table 1-22. OTV Operations, Comparison of Traffic Models

• NO. OF PAYLOADS

• PAYLOAD WEIGHT

• CRYO PROPELLANT — KLB

• OTHER SHUTTLE LIFT MASS
— KLB

• NO. OTV FLIGHTS

• OTV LOAD FACTOR

• PAYLOAD AVG MASS — KLB

• CRYO PROPELLANT TO
PAYLOAD RATIO

• OTHER LIFT TO PAYLOAD
RATIO

• PAYLOAD MASS PER FLIGHT
— KLB

MEDIUM
TRAFFIC

199

1221

2912

2455

130

.81

6.1

2.4

2.0

9.4

LOW
TRAFFIC

156

621

2020

1493

92

.78

4.0

3.3

2.4

6.8

HIGH
TRAFFIC

285

1566

3868

3225

173

.81

5.5

2.5

2.1

9.1
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Figure 1-38. Option 5, Key Comparisons, Mission Scenario 6,
High Model

MISSION SCENARIO 6 COMPARISONS

This section provides a summary comparison of the data developed for the
two program options (Options 3 and 5) in performing Mission Scenario 6 medium
traffic level and for the Shuttle-only program option (Option 5) in performing
the Mission Scenario 6A medium traffic level (Shuttle-oriented). Comparisons
are also provided of the two program options in performing the low traffic
level and the high traffic level models.

Figure 1-39 summarizes the launch data presented previously for the four
program options of primary interest. The launch requirements associated with
Space Station Option 3 in performing the medium, low, and high level models
are shown as are the launch requirements associated with performing the Shuttle-
oriented medium mission model without a Space Station.

OTV Operations Comparisons

In comparing the medium and low traffic models with respect to OTV opera-
tions, it is clear that substantial differences exist between the two. As
shown in Table 1-22, the most notable difference is in the average payload
mass, which drops 34 percent from medium to low. This effect would be expected
to make full OTV manifesting predominate but, as noted previously, the reduced
traffic caused a decline in the OTV load factors from 81 to 78 percent. Other
parameters of the table follow these two drivers. For example, cryo propellant
to payload ratio increases 38 percent from medium to low models.
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Figure 1-37. Option 5, STS Launch Summary, Mission Scenario 6,
High Traffic Level

the medium model. The Spacelab flight summary that results is shown in Fig-
ure 1-38. Spacelab flights account for 47 percent of the high model. The
load factor of low inclination Spacelab flights is 0.5. The large number of
such flights lowers the overall load factor. The average load factor and
total number of flights for each type of orbit are given in Figure 1-37.

Key Comparisons. The Shuttle-only option, Option 5, and the Space Station
Option 3 are compared in Figure 1-38. The operative comparisons here are the
use of upper stages and OTV, and the conduct of orbital manned R&D. Option 5
does not include an OTV for high energy orbital boost. Boost is performed by
various expendable upper stages. Figure 1-38 shows the number and type
required from 1994 to 2000. This period is taken for comparison, since it
corresponds to the operational period of the Option 3 OTV. A total of 251
expendable upper stages would be needed under Option 5, during this period.
By comparison, Option 3 uses eight OTV and 3.86 million pounds of propellant.
A few satellites are expected to fly on expendable upper stages, even after
the OTV is operational. These are shown in Figure 1-38. The comparison thus
becomes one between 251 expendable upper stages in Option 5, and eight OTV
complemented by expendable upper stages in Option 3. Orbital manned R&D in
Option 3 is performed in station-attached modules and pallets. An equivalent
amount of R&D for 1991 to 2000 under Option 5 would require 323 10-day Spacelab
missions. The comparison between the Option 5 manned orbital R&D requirements
and those of Option 3 is detailed in Figure 1-38.
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Figure 1-36. Option 3, STS Launch Summary, Mission Scenario 6,
High Traffic Level

Table 1-21. OTV Operations Summary, High Traffic

CASE NO. 1 PERIGEE OTV & RUBBER APOGEE STAGES

CATEGORY 1 TOTAL MANIFEST

YEAR

NO. OF PAYLOADS

NO. OF APOGEE STAGED
PAYLOAOS

PAYLOAD GROSS WT-KLB

APOGEE STAGE GROSS-KLB

ASE WEIGHT-KLB

ORBITER LIFT WITHOUT CRYO-KLB

ORBITER LIB WITHOUT CRYO-FT

UABLE PROPELLANT

C/0, R E S I D & B / O PROPELLANT

CRYO PROPELLANT-KLB

NO. OF OTV FLIGHTS

OTV AVG LOAD FACTOR

NO. OF OTVs MANUFACTURED

RETURNED FOR OVERHAUL

EXPENDED

RETURNED AT LIFE LIMIT

OTV DEPLOYMENTS

1991

0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

1992

0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

1993

0
0

0
0
0
4
25
82
8
90
0
0
1
0
0
1
1

1994

45
44

232
195
44
479
560
487
48
535
24
828
2
0
0
0
2

1995

44
44

237
206
43
494
540
509
50
559
27
769
0
2
0
0
2

1996

43
43

194
176
35
409
480
440
44
484
23
780

1
0
0
1
1

1997

48
46

257
228
41
534
642
589
58
647
30
801

1
1
1
0
2

1998

33
32

201
180
24
409
432
438
43
481
22
812
0
1
0
0
1

1999

34
31

232
185
31
460
535
500
50
550
24
850
3
0
2
1
3

2000

38
37

213
194
29
436
451
475
47
522
23
842
0
0
0
0
0

TOTAL

285
277

1566
1364
247
3225
3665
3520
348
3868
173
811
8
4
3
3
12
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Table 1-20. Phasing Summary for ESTS Option 3 Executing Mission
Model 6, High Traffic Level

Fiscal Year

Basic Space Station Elements

Energy module
Air lock
Command module
Logistics module (4-man station)
Logistics module (8-man station)
Manned maneuvering unit
Payload service assembly
Habitability module

IMS-Related Hardware

LEO TMS
GEO TMS
GEO TMS service module
TMS CM
TMS propellant tanks
TMS storage/maintenance/repair

facilities (PSA)

OTV-Related Hardware

OTV
OTV CM
OTV Propellant Tanks
OTV storage/maintenance/repair

facilities (PSA)

Science and Applications Hardware

PSA (astronomy platform)
Tunnel (life sciences lab) module
Energy module (astronomy platform)
Spacelab (monkey) module

Space Processing Laboratories

MPS module

Space Processing Factory Hardware

MDAC biological processors
Crystal grower
SPF CM
SPF storage/maintenance/repair

facilities (PSA)
SPF material storage (PSA)

1990

1

1991

1
2
1
1

2
1

1

1
1
1

1

1

1
1

1

1992

4

1

1

1

1993

2
3

2

I
1

1
1
1
1

1

1

1994

6

2

1

1

1

1995

6

1

2

1
1

1996

6

1

1

1

1

1
1

1997

6

1

2

1
1

1998

6

1

1

1999

6

3

1

2000

6

1

2001
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Table 1-19. Comparison of Mission Scenario 6, Space Station Option,
Medium With High Traffic Level

MISSION AREA

• COM COMMUNICATIONS

• COM PROCESSING

• COM RESOURCE OBS

• DOD

• GEO SERVICING

• GOVT ENVIRONMENTAL

• NASA SCIENCE & APPL

NASA TECHNOLOGY

• SPACE STATION ASSEM
LOGISTICS & UPPER
STAGE LOGISTICS

TOTAL

NUMBER OF
PAYLOADS

6M

153

407

11

227

11

10

143

19

—

981

6H

233

524

13

324

15

10

144

22

—

1285

TOTAL PAYLOAD
WEIGHT (KLB)

6M

522.3

639.1

39.0

2,431.2

118.0

41.0

566.7

85.7

—

4,443.0

6H

802.0

864.0

47.0

4,803.0

165.0

41.0

580.0

136.0

—

7,398.0

TOTAL CARGO
WEIGHT (KLB)

6M

2,848.6

661.3

138.3

5,535.9

458.4

240.6

1,127.4

126.7

2,332.8

13,470.0

6H

4,682.4

942.0

123.3

9,018.7

717.0

240.6

1,155.6

181.1

2,500.3

19,561

EQUIV STS
FLIGHTS

6M

45

11

7

125

7

4

31

4

39

273

6H

48.8

10.6

5.4

175.3

5

4

26.6

4.4

47.7

392

Mission Scenario 6, High Traffic Model, OTV Operations

The increased traffic in the high model resulted in the OTV operation
characteristics listed in Table 1-21. Of the 285 payloads, all but 8 use an
apogee stage. The level of activity results in a reasonable 0.811 average
load factor for the OTV. OTV requirements increase to eight manufactured units
and 12 Shuttle deployments to the station of new and overhauled units.

Mission Scenario 6, High Traffic Model, Option 5, Shuttle Only

Launch Summary. The execution of the Mission Scenario 6 high traffic
model, would require 693 STS launches in the absence of a Space Station. The
breakdown of these by year and orbital inclination is shown in Figure 1-37.
The same Shuttle capabilities assumed for the medium model, and for Scenario 4,
were used. The Spacelab space processing sortie mission level was selected to
be equivalent to the increased Space Station activity in this area. This
results in an increase of approximately 25 percent over the medium model.
NASA Spacelab R&D activity is the same in the medium and the high models.
Thus, the Science and Applications Spacelab sortie level is the same as in
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MISSION SCENARIO 6: HIGH TRAFFIC MODEL

The high model presumes a vigorous space program driven by a return to a
strong world economy, particularly in the high technology sector. It reflects
modest increases in some of the NASA programs (planetary, life sciences, etc.),
significant increases in commercial programs associated with optimistic market
forecasts, and significant increases in DOD programs associated with the addi-
tion of survivability and strategic/tactical missions over those in the medium
model.

Table 1-19 compares this more vigorous program (6H) with the medium model
(6M) that is considered most likely and discussed previously. The pattern of
increased activities is indicated in the table.

Mission Scenario 6, High Traffic Model, Option 3, Space Station

The high traffic level Option 3 had the same basic ground rules as those
previously described in the medium and low traffic level Option 3 sections.

The various building blocks necessary to accomplish the Mission Scenario 6
high traffic model are as follows: one energy module, one command module, one
payload service assembly, one tunnel module, four LEO TMS's, two GEO TMS's,
one GEO TMS service module, 1 set of station-attached TMS propellant tanks,
eight OTV's, two sets of station-attached OTV propellant tanks, two habitabil-
ity modules, one life sciences Spacelab (Monkey) module, two MPS modules, two
generic types of space processing factories, one astronomy platform, and con-
tinual resupply via the logistics module. All of these building.blocks have
been described in previous sections. A summary of when the Option 3 Mission
Scenario 6 high traffic level model building blocks are required is presented
in Table 1-20.

The Station acquires Initial Operational Capability in 1991, with an
initial crew size of 2. The crew size grows to 3 in 1992, to 5 in 1993, and
to 8 in 1994, to 9 in 1995, and to 10 in 1996. It alternates between 9 and 10
for the rest of the decade.

Launch Summary. The various payloads required to accomplish the Mission
Scenario 6 high traffic model and Space Station operations were manifested
using the SOSMAN computer program, as previously described. The Shuttle pay-
load cargo bay was loaded using a maximum payload weight of 61,000 pounds or
a length of 53 feet for all payloads destined for Space Station. Payloads
destined for medium inclination and launched there directly by the Shuttle
were manifested to a maximum cargo bay capacity of 49,000 pounds or a length
of 60.0 feet. Payloads destined for high inclination were manifested to a
maximum cargo bay capacity of 25,000 pounds or a length of 60.0 feet. The num-
ber of such STS missions per year required to accomplish Mission Scenario 6
high traffic level model is presented in Figure 1-36.
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Figure 2-20. Space Science Platforms

GROWTH OPTIONS

1991

1994
8-MAN STATION

• MULTI-DISCIPLINE

TWO 4-MAN STATIONS

SPACE STATION 1

• RESEARCH & TECHNOLOGY

• GROWTH CAPABILITY TO
ACCOMMODATE 8 CREW
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Figure 2-21. Alternate Space Station Architecture Options
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The two four-man stations have divided the mission activities into science
and technology and space operations activities. The science and technology
station provides the capabilities to accommodate the space processing develop-
ment activity, the life sciences experiments, the astronomy observation activ-
ity, and the earth resources activity. This combination permits the astronomy
observation instruments to be retained on the station, thus eliminating the
need for a dedicated station-tended platform. No space transportation vehicles
(i.e., the TMS or OTV) are operating from this station arrangement.

Growth to accommodate more than a crew of four can be accommodated with
the addition of two habitat modules. The life sciences laboratory module
becomes the interconnecting tunnel module. A solar array sized to accommodate
these science and technology disciplines with a four-crew complement may be
provided at the outset without the need to grow unless crews greater than four
are necessary. Figure 2-22 illustrates this science and technology station in
a four crew member arrangement and a growth arrangement that will accommodate
greater than four.

The space operations Space Station, Figure 2-22, provides the capabili-
ties for the high-energy missions, utilizing an OTV, and the servicing of the
space processing factories by the TMS. This station also provides the capa-
bility for temporary storage of satellites for a multiple satellite launch
mission. Construction operations may be performed at this station utilizing
the dedicated zone as indicated in Figure 2-1.

RESEARCH & TECHNOLOGY SPACE STATION
I BASIC CAPABILITY |

EM

LSRA (SPACE LAB)
2'SIDED PSA
(FOR PALLETS ONLY)
| GROWTH CAPABILITY |

LSL

HM1

HM2

SPACE OPERATIONS SPACE STATION
BASIC CAPABIUTY"i

EM

PROP TANKS
(1 EACH SIDE)

CM
OTV'S

| GROWTH CAPABILITY |

TM

HM-2

HM-1

Figure 2-22. Space Station Options
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The addition of two habitat modules and a tunnel module will provide the
growth to accommodate crews greater than four.

Further study of these and other evolutionary options is desirable in
order to fully explore and compare Space Station arrangement options that
accommodate the user mission/experiment requirements.
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3. SPACE STATION SUBSYSTEM ARCHITECTURE

Space Station subsystem sizing requirements are shown in Table 3-1 for
both the initial and all-up operational Space Station. These requirements
represent the evolution of the Space Station from an initial configuration
manned by a crew of four to a growth station manned by a crew of eight.

The architecture of each subsystem was derived to satisfy the require-
ments of Tables 3-1 and 3-2, top level requirements of NASA requirements docu-
ment (yellow book), and detailed requirements generated by previous Rockwell
studies and on-going Space Station study activities.

Trade studies were conducted that considered weight, power, volume, devel-
opment status, reliability, and overall costs as evaluation criteria before
arriving at subsystem concept selection. A major trade was conducted to eval-
uate an integrated subsystem approach for the electrical power subsystem
(EPS), environmental control and life support subsystem (ECLSS), and reaction
control subsystem (RCS) integrating a common usage of oxygen and hydrogen.
Additional subsystem trades were conducted to define thermal control; guidance,
navigation, and control (GN&C); information management subsystem (IMS); com-
munication and tracking (C&T); and fluid subsystem architectures. The follow-
ing sections describe these trade studies and a resulting subsystem
architecture.

INTEGRATED EPS, ECLSS, AND RCS ARCHITECTURE

Trade studies of an integrated EPS, ECLSS, and RCS subsystem were con-
ducted using the following selection criteria: life-cycling cost (DDT&E,
recurring, spares resupply, consumables, crew maintenance, and transportation
to LEO), reliability, weight factor, maximum ability to retain power, and
minimum operation constraint. Based on these comparisons, the regenerative
fuel cell energy storage subsystem was selected as the architecture for the
Space Station program. Results showed cost savings over the life cycle of the
station. Trade studies included open fuel cells, regenerative fuel cells, and
Ni-H2 battery concepts in an evolutionary process of going from an initial
station to a growth, all-up operational station. Figure 3-1 shows cost com-
parisons for three of these concepts. A schematic of an integrated subsystem
(EPS/ECLSS/RCS) is shown on Figure 3-2.

The selected integrated concept incorporates solar arrays, regenerative
fuel cells for energy storage, and oxygen and hydrogen gas for reaction control
jets. The solar array is the primary energy source to satisfy stationkeeping
and payload electrical requirements, and provide electrical power to the elec-
trolysis unit to meet the eclipse fuel cell energy and ECLSS ocygen supply
requirements.
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Table 3-1. Subsystem Requirements

SUBSYSTEM

ELECTRICAL POWER (AT BUS)
STATION
PAYLOAD

TOTAL

ENVIRONMENTAL CONTROL
& LIFE SUPPORT

CREW SIZE
THERMAL CONTROL
HEAT REJECTION

STATION
PAYLOAD

TOTAL
REACTION CONTROL

ORBIT MAKEUP IMPULSE
ATTITUDE CONTROL IMPULSE

GUIDANCE. NAVIGATION & CONTROL
MOMENTUM STORAGE CAPACITY
ATTITUDE DETERMINATION ACCURACY
ATTITUDE CONTROL ACCURACY
ATTITUDE STABILITY

COMMUNICATION
DOWN LINK DATA RATE
UP LINK DATA RATE
POINT TO POINT DATA RATE
BIT ERROR RATE

INFORMATION MANAGEMENT
STATION OPERATIONS

PAYLOADS

INITIAL STATION

14.3 kW
9 kW

23.3 kW

4

19.3 kW
9.6kW

28.9 kW

0.8 X 106 LB-SEC/YR

13,000 FT-LB-SEC
0.1 DEC
0.3 DEC
0.008 DEG/SEC

150 MBPS/ORBIT
10 MBPS/ORBIT

16 KBPS T
1 X 10-5.

109 BITS/DAY

1 X 1013 BITS/DAY

GROWTH STATION

35 kW
15 kW
50 kW

8

42 kW
15 kW
57 kW

1.8 X ID6 LB-SEC/YR

22,000 FT-LB-SEC
0.1 DEG
0.3 DEG
0.005 OEG/SEC

287 MBPS/ORBIT
12 MBPS/ORBIT

D 300 MBPS
1 X 10-5

1011 BITS/DAY

2 X 1013 BITS/DAY

Table 3-2. Space Station Electrical Power Requirements

SUBSYSTEMS LOAD

• ECLSS
• COMM DATA MANAGEMENT

• PROPULSION

• THERMAL CONTROL

• ATTITUDE CONTROL

• LIGHTING

• CREW ACCOMMODATIONS

• SUBTOTAL

• CONTINGENCY 10%

TOTAL

MISSION SUPPORT

• COMMERCIAL PROCESSING

• SCIENCE & APPLICATIONS

• TECHNOLOGY DEVELOPMENT

• NATIONAL SECURITY

• COMMERCIAL COMMUNICATIONS

TOTAL

INITIAL STATION

(WATTS)

3,700

4,000

100

1,500

250

1,800

1,600

12,950

1,550

14,500

INITIAL STATION

(WATTS)

7,100

350

1,480

40

30

9,000

GROWTH STATION

(WATTS)

13,600

5,140

200

4,020

600

3,600

4,400

31,560

3,440

35,000

GROWTH STATION
(WATTS)

13,100
350

1,480

40

30

15,000

TOTAL SPACE STATION 23,500 50,000

- 92 -

SSD 83-0032-2



Shuttle Integration &
Satellite Systems Division

Rockwell
International

FUEL
OPEN-CLOSED

2000
S1943M

t/i

1500 -

CO
en

C/3

O
1000 -

C/3
o
O

SAB FUEL CELL
_ CLOSED

$183°M S1789M

DEVELOPMENT

RECURRING

RESUPPLY AND
REPLACEMENT

TANKS TO CARRY
CONSUMABLES

CONSUMABLES

CREW MAINT

1 TRANSPORTATION
TO LEO

Figure 3-1. Cost Comparison of Open Versus Closed Subsystems

ELECTRICAL POWER BUS

REG

I

POWER
SW

l

I
O

SOLAR
0 ARRAY

H2
••

EL

°Jr H2x"[ f
H20

MM UIII VJilS

[

02

V

TT1

r\
)|

FU
CE

J|
^/

EL CLL C

CABIN 02

RECLAIMED POTABLE H20

l

1
~ l

i
>.-J

r\ '
- DV

A

Figure 3-2. Integrated EPS/ECLSS/RCS Schematic

- 93 -

SSD 83-0032-2

RCS



Shuttle Integration &
Satellite Systems Division ^A]^ International

EPS ARCHITECTURE

The Space Station EPS has been divided into four assemblies: power
generation, energy storage, power conditioning, and distribution. In the power
generation area, Rockwell is completing an investigation of photovoltaic con-
centrator arrays for NASA/MSFC. Results show that designs incorporating low-
concentration-ratio optical subsystems with simple planar reflectors yield the
lowest solar array recurring cost (dollar per watt). The concentrator array
design concept is based on multiple square panels, which are deployed and
supported by lattice masts, and sized for optimum storage in the Shuttle, as
illustrated in Figure 3-3. Several of the most common concerns of the concen-
trating arrays are its stowage, deployment, and pointing accuracy capabilities.
These areas are presently under prototype concentrator verification. Prelimi-
nary analytical results indicate that the penalties for off-axis pointing and
tilt orientation have a minor effect (see Figure 3-A). Optical ray trace
analysis results also show that no catastrophic fall-off in optical efficiency
is observed in angles of up to 10 or 15 degrees. The configuration of Space
Station solar array wing design is shown in Figure 3-5. Table 3-3 shows the
comparison of gallium arsenide (GaAs) versus silicon (Si) solar cells and
illustrates the higher efficiency of the GaAs-type cells. The multi-100 kW
low concentration ratio solar array technology offers the advantage of high
design load, low life-cycle cost, and low-radiation degradation, and adapts
to GaAs solar cell capability, as compared to the power extension package (PEP)
type of planar array.

Regenerative fuel cells for the energy storage concept is the most favorable
candidate based on life-cycle cost comparisons.

For power conditioning and distribution, a clearer definition of the nature
of the loads and their magnitude (both of Space Station housekeeping and mission
payload activities) is required. Preliminary EPS architecture includes two
solar array wings, energy storage devices, and four independent electrical
channels. Energy is supplied to the load through four separate busses. Cross-
straps are available to link the busses if necessary or desirable. An EPS
functional design block diagram with regenerative fuel cells for energy storage
is shown in Figure 3-6. An ac subsystem is thought to be user friendly and it
is of minimum weight, low cost, high reliability, and higher efficiency.

ECLSS ARCHITECTURE

Preliminary studies of Space Station subsystem loop closure show a signif-
icant cost advantage to integrate the EPS/ECLSS as a closed subsystem. Fig-
ure 3-1 showed the cost savings when comparing an open-loop subsystem to a
completely closed regenerative type of subsystem.

The selected architecture for the ECLSS (Figure 3-7) is a closed regener-
ative air revitalization subsystem used for removing and reducing C02, and
using the byproduct (water) from the C02 reduction process to provide usable
oxygen and hydrogen. The oxygen would be used for breathing and cabin leakage,
and the hydrogen would be used in the C02 reduction process.
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INITIAL STATION

GaAs61
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FULL UP STATION

FULL-UP ARRAY
• WEIGHT = 4517 LBS WITHOUT BOOM
• MAXIMUM ACCELERATION = 0.012 Gs
• AR = 2.62
• TOTAL AREA = 11,000 Ftf

GaAs SOLAR CELLS
65.5 kW/WING BOL
(32.8 kW/WING INITIAL)
39.4 W/CONCENTRATOR ELEMENT
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116 S/W

Si SOLAR CELLS
• 30.8 kW/WING BOL
• (14.3 kW/WING INITIAL)
• 18.5 W/CONCENTRATOR ELEMENT
• 5% POWER LOSS OVER 10-YR LIFE SPAN
• 134 S/W

Figure 3-5. Low Concentrator Solor Array Concept

Table 3-3. Comparison of GaAs Versus Silicon Solar Cells

Low Concentrator Solar Array Concept

Description

Solar Cells

GaAs Silicon

Full-up array

• Weight: 4517 pounds
without boom

• Maximum acceleration:
0.012 g

• AR = 2.62

• Total area: 11,000 ft2

•65 .5 kW/wing (BOL)

•32 .8 kW/wing initial

• 39.4 W/concentrator
element

• 5% power loss over
10-year life span

• $116/watt

• 30.8 kW/wing (BOL)

• 14.3 kW/wing initial

• 18.5 W/concentrator
element

• 5% power loss over
10-year life span

• $134/watt
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Figure 3-6. Space Station Energy Balance (EPS Architecture Summary)
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Cabin pressure levels are being traded off with the assistance of United
Technology. The goal is to select a pressure level compatible with the orbiter
and one that eliminates long prebreathing requirements for EVA operations.
At this time, 10.2 psia is favored for the station and compatible with a suit
pressure of 5.0 psia. The orbiter has a capability to manually reduce its
14.7 psia normal atmosphere to 10.2 psia in a docking mode operation. There
has been considerable development of an 8 psia suit that would allow a
14.7 psia cabin pressure and no prebreathing. This is a technology issue
that needs to be pursued for high EVA activities.

The command module and the two habitat modules are to be kept in a habit-
able condition at all times. All of these modules will be devoted to crew
habitation, and this is where the majority of the ECLS equipment will be
located. To provide for ease of moving from one module to another, all
interfacing hatches will be kept open. The arrangement of the modules are
located such that a failure or malfunction causing a module to be uninhabit-
able can be isolated from the active modules. Each habitable module will
have its own ECLS subsystems necessary for survival.

The water subsystem will also be a fully-closed regenerative water recovery
and management subsystem, thereby eliminating the need for potable water resupply
from the ground. Figure 3-8 shows a mass balance schematic of the ECLSS closed-
loop subsystem for a crew of four men. This is considered to be the basic sub-
system for each habitat module and the command module for crew needs. Nitrogen,
used for cabin atmosphere leakage, will be supplied from the ground. All proc-
essing equipment is redundant and distributed among the modules for safety.
Cabin ventilation architecture will use forced convection to simulate free
convection. This convective force is not present at zero-gravity, making
necessary an artificially induced convective ventilation to simulate the free
convection, which is lost. This phenomenon has been evaluated and lived with
in all previous spacecraft, and a fan-induced average velocity of 25 feet/minute
has evolved as the accepted ventilation design value for spacecraft. Health
and hygiene equipment such as the clothes washer/dryer and dishwasher will
interface with the water management subsystem for water processing.

High pressure oxygen for extra vehicular activity (EVA) operations will
be by cryo oxygen storage tanks utilizing Shuttle technology.

RCS ARCHITECTURE

The basic functions of the RCS are to provide AV for orbit makeup stabi-
lization and attitude control, and periodic control moment gyro (CMC) desatura-
tion. The RCS was sized to satisfy the orbit makeup requirements because the
other control requirements are relatively minor.

A general schematic of the L02/LH2 bipropellant subsystem (selected on
the basis of its higher specific impulse compared to hydrazine) is shown in
Figure 3-9. The cryogenic oxygen and hydrogen propellants are stored in
separate tanks and delivered to the conditioning unit to be converted to gas.
From the conditioning units, some of the gaseous propellants are returned to
the storage tanks to maintain the tank feed pressure and the remainder are

- 98 -

SSD 83-0032-2



Shuttle Integration &
Satellite Systems Division

Rockwell
International

-»• 02 0 24

-» H 2 0 7 4

H20 0 80

-» C02 TRACE

HAND WASH 10 20
SHOWER 32 00
CLOTHES WASH 1100

RETURN TO EARTH

Figure 3-8. ECLSS—Closed Loop

VENT VALVE

4)1 CHECK
I ' lVALVE

BLOWER

R / V - RELIEF VALVE
L/V LATCH VALVE
C/V - CHECK VALVE
PCU - PROPELLANT
CONDITIONING UNIT

Figure 3-9. LO /LH RCS Schematic (Typical)

- 99 -

SSD 83-0032-2



Shuttle Integration & ^Pl̂ B Rockwell
Satellite Systems Division ^A^ International

routed to the accumulator tanks. Propellants are then passed through the
regulators and later to the thruster assembly when the thruster valve is
actuated on. The majority of the components considered for this subsystem
are either existing or modified versions of existing components. The major
development items are the 5 Ibf and 25 Ibf thrusters and the PMD in the
cryogen tanks.

The RCS propellants are stored as subcritical cryogenic fluids that are
recovered from scavenge tanks in the orbiter cargo bay on the initial station
and recharge from the propellant tank modules on the all-up operational station.
The cryogens are vaporized using energy from the Freon heat transport loop and
distributed to the thruster locations in gaseous form.

On the initial station, eight thruster modules are required: four modules
of four 5-pound thrusters each on the energy module, two modules of four
5-pound and two 25-pound thrusters on the command module, and two modules with
5-pound thrusters on the PSA.

Preliminary analysis indicates that the initial station thruster location
could satisfy all-up station requirements, as shown in Figure 3-10.

TCS ARCHITECTURE

The thermal control heat loads and associated heat rejection area require-
ments of the initial station configuration module are shown in Table 3-4. The
rejection area requirements have been established on the basis of radiator
coating degradation in a of 0.02 per year in space. A review of module heat
loads and available rejection area indicates: the rejection capability of the
available command module area is sufficiently close to meeting heat load
requirements of 12.2 kW, the energy module with a relatively high heat load is
limited in heat rejection area and requires significant supplemental area to
meet heat load requirements, and the process laboratory module and logistic
module rejection requirements are satisfied without utilizing the total area
available.

The thermal control subsystem architecture for the initial station con-
figuration is shown on Figure 3-11. The supplemental heat rejection area
required by the energy module is obtained by a deployable heat pipe radiator.
The potential extension of wraparound radiators to achieve the additional
239 ft^ for the energy module (Table 3-4) was evaluated and found to be
impractical because of docking requirements.

As indicated on Figure 3-11, each module contains an independent thermal
control subsystem composed of a wraparound heat pipe radiator, dual water, and
dual Freon loops, which interface through an interface heat exchanger. The
water loops are utilized in the pressurized volumes, and the Freon loops and
interface heat exchangers are installed outside of the pressurized volume to
meet safety (toxic fluid) requirements.
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Table 3-4. Initial Station Heat Rejection Requirements

SPACE STATION
MODULES

• ENERGY MODULE

• COMMAND

• SPACE PROCESS
LAB

• PAYLOAD SERVICE
ASSEMBLYS

• LOGISTIC

• TOTAL

ELECT.
kW

3.50

8.8

7.0

2.57

1.33

23.2

PWR GENERATION
WASTE HT ~ kW
LIGHT

2.25

2.25

0

0

0

4.5

DARK

10.00

10.00

0

. 0

0

20.0

METABOLIC
kW

0

1 172

0

0

0

1.172

TOTAL HEAT LOAD
kW

LIGHT

5.75

12.20

7.0

2.57

1.33

28.85
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COOLANT SYSTEM

Figure 3-11. Space Station TCS Architecture (Initial Station)

The independent thermal control subsystem architecture has the technical
advantages of eliminating the thermal control interface between modules; pro-
viding the simplicity of an autonomous unit throughout the design, development,
and operation of that specific module; and, from the programmatic aspect of
facility support requirements sizing (power, weight, and volume), presenting
a maximum case to which improvements can be evaluated. On the other hand, the
independent subsystem concept has the disadvantage of higher costs and mainte-
nance activities associated with the larger number of dynamic components that
might wear out.

Referring to Table 3-4, compares the heat load totals, a 28.85 kW heat
load requires a rejection area of 2,481 ft^ and has a capability of 60 kW if
all of the module's exterior surface area of 5,166 ft^ were utilized. This
indicates that there is the potential for a space station central architec-
ture, which would not require deployable radiators.

Table 3-4 also shows that only the energy module will require an additional
240 ft^ of wraparound radiator area, or 267 ft^ of deployable radiator area,
however, the additional radiator could be eliminated for the initial station by
reducing surface coating degradation, utilizing thermal capacitor, operating
the radiator at slightly higher temperature on the sun side, and utilizing the
capillary pump loop (CPL) concept. Preliminary analyses show that the CPL
will reduce the area requirements by 33 percent.
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The initial station evolves into a growth station with the addition of
modules and has the heat rejection requirements shown in Table 3-5. Other
than additional modules, the significant difference between the initial and
growth station is that the growth station will be exposed to a space environ-
ment for a 20-year period and will have a significant degradation in radiator
coating. In addition, as indicated on Table 3-5, the surface area on the
energy module and command modules is greatly reduced in effectiveness. In
the case of the energy module, as the evolution of the station takes place,
the shadowing effect of added modules with the docked orbiter in place results
in the heat rejection area becoming zero.

In generating the data shown on Table 3-4, it was assumed that the basic
station modules would last the life of the station without cleaning or replac-
ing radiator coatings. In the case of laboratory and experiment modules,
coating degradation was based on the orbit stay time of individual modules.

A review of data presented on Table 3-5 indicates that the heat loads for
the energy module and crew module are increased in conjunction with area reduc-
tion; therefore, supplemental radiator area for these modules is required. As
was the case with the initial station, the extension of wraparound radiators
is impractical and a larger deployable radiator is used with approximately
2,500 ft^ radiating from both sides. Noting the large deployable area
required (resulting from coating degradation) and the requirement for a deploy-
able radiator change between the initial and growth station, the use of a
plug-in deployable radiator is warranted. For example, if a plug-in radiator
is used and is replaced at four year intervals, the area for the growth sta-
tion can be reduced to approximately 1,000 ft^ radiating from both sides.

Table 3-5. Growth Station Heat Rejection Requirements

SPACE STATION
MODULES

• HABITAT (?)

• HABITAT (|)

• COMMAND
MODULE

• ENERGY MODULE

• LIFE SCIENCE
MODULE

• LOGISTICS

• LIFE SCIENCE
RESEARCH AREA

• SPACE PROC LAB

• PAYLOAD SERVICE
ASSEMBLY

• TOTALS

ELECT
kW

7.52

6.22

8.8

3.5

2.20

133

2.5

9.0

2 5

43.6

POWER GENERATION
WASTE

LIGHT

0

0

4.5

4.5

0

0

0

0

0

9.0

DARK

0

0

20.0

20.0

0

0

0

0

0

400

METABOLIC
kW

1.172

1.172

1.172

0

0

0

0

0

0

3.5

TOTAL HEAT LOAD
kW

LIGHT

8.7

7.4

14.5

8 0

2.22

1.33

2.5

9.0

2.5
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DARK
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29.97

23.5

2.22

1.33

2.5

9.0

2.5
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REQUIRED
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1696

1443

2827

1560

432

259

487

1755

487

10950

DARK

479

407

1258

987
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73
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495
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4096

AVAILABLE
WRAPAROUND

1530

1530

200

0

1000

570

570

1800

1540

8740
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Table 3-5 presents a breakdown of the heat loads distribution, radiator
area required, and available area on a module-to-module basis. For practical
purposes, all modules provide adequate surface area to satisfy individual heat
rejection loads requirements except the command and energy modules. These two
modules will lose most of their effective surface area when the Space Station
is fully operational. The total heat rejection requirement for the all-up
station is about 56.0 kW and the corresponding radiator area required is about
11,000 ft . The required area exceeds the total available area of all modules
combined by 2,210 ft^; therefore, the deployed radiator is provided in the
selected architecture.

The architecture of the thermal control subsystem is identical to the
initial station with independent subsystems in each module, except the command
and energy modules. For the growth station, each module has a dual water loop
internal to the module and dual Freon loops, which transport the combined heat
load of both modules to the deployable radiator.

The radiator panels for either wraparound or deployable radiators con-
sist of heat pipe and a pin-fin heat exchanger where Freon is circulated.
Early studies comparing heat pipe radiator panels with pumped liquid through
parallel tubes demonstrated that heat pipe radiators are superior.

The present sizing of heat pipe radiator is based on an overall radiator
efficiency of 0.80; however, the final sizing of radiator panels will be
evaluated with aid of in-house heat pipe radiator optimization computer
program.

Articulating radiators provide a tremendous advantage over the deployed
radiator in terms of size. Preliminary data analysis shows that an articulat-
ing radiator subsystem will reduce radiator size by about a factor of 4.0.

GN&C SUBSYSTEM ARCHITECTURE

The principal GN&C subsystem requirement drivers arise from:

1. The large magnitude of the external disturbance torque environment
(aerodynamics and gravity-gradient)

2. Subsystem architecture for evolutionary growth

3. Dynamic operations: the movement of large masses relative to the
main body

4. Dynamic complexity: multibody control, structural flexibility, large
sloshing masses, and manipulator controlled operation

5. Docking of unmanned spacecraft
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The subsystem functional requirements are summarized in Table 3-6.

A functional block diagram of the GN&C subsystem is presented in Fig-
ure 3-12. The subsystem sensor devices are shown on the left and the control
actuators are on the right. The heart of the subsystem is the control logic
software (center of the figure), which is contained in the various distributed
computer processors in the subsystem. The distributed processing architecture
offers promise of reducing the high costs normally associated with software

Table 3-6. CN&C Functional Requirements

Function Requirement

Attitude control

Navigation

Guidance

System operation

• Accommodate time varying configuration with and
without orbiter attached

• Accommodate dynamic operations, assembly/
construction, moving modules, etc.

• Stabilization of multiple controlled bodies,
structural flexibility, and fluid slosh modes

• Momentum management to minimize control sizing

• Attitude reference determination

• LVLH and inertial attitude hold

• Space Station relative to earth

• Relative motion navigation for co-orbital space-
craft, rendezvous vehicles, and other hazardous
debris

• Orbit makeup AV, and deorbit for Space Station

• Rendezvous, docking, and stationkeeping commands
for other vehicles in station proximity

• Autonomous and automatic control of all normal
operations

• Capable of unmanned operation

• Capable of normal attitude hold operation without
RCS firings for periods >90 days

• Automatic fault detection, annunciation, and
correction for flight critical functions

• Accommodate evolutionary growth
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Figure 3-12. GNSC Subsystem Functional Diagram

development and software/hardware subsystem verification. Other potential
advantages are: software development and testing at the lowest functional
level, separation of dissimilar computations and alleviation of the con-
straints that they impose on each other, reduced data traffic (under normal
operating conditions), and fewer complex interfaces, both in the subsystem
and the people developing them.

In addition, improved control performance, safety, and crew time savings
are possible as a result of larger available processing capacity, and the
opportunity to utilize more automation, more sophisticated control algorithms,
and failure detection algorithms.

CMC's provide the primary control torques for the attitude hold modes.
These include local vertical-local horizontal (LVLH) orientation, as well as
inertial orientation. The RCS thrusters provide the control torques to
accommodate the infrequent high torque/high angular momentum control functions
such as attitude maneuvering, docking transients, and high-torque nonstandard
attitudes.

To minimize the CMC size requirements, torque equilibrium attitudes
(TEAS) are employed. This is accomplished by approximately balancing the
aerodynamic torque with gravity-gradient torque. A torque equilibrium adap-
tive momentum management subsystem (TEAMS) concept, which adaptively searches
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for the torque equilibrium attitude, is employed for this purpose. It accom-
plishes this by trimming the Space Station attitude (gravity-gradient torques)
to control the momentum build-up in the CMC's. Five double-gimbaled CMC's
with spin momentum of 4,500 ft/lb per second each are employed.

The attitude is determined with a stellar-aided inertial subsystem
employing star trackers (ST), an inertial reference unit (IRU), and digital
sun sensors.

The navigation function is accomplished by Navstar global positioning
system (GPS) receivers and provides an accuracy better than 50 meters. The
relative motion navigation for co-orbiting spacecraft and long-range rendezvous
also utilizes the GPS receivers but contains an additional Space Station-to-
spacecraft link. This feature improves the relative motion navigation
accuracy down to better than 3 meters. TDRSS navigation is used as a backup.

The navigation sensing for short-range rendezvous, proximity operations,
and docking is provided by a scanning laser radar. The subsystem provides for
automatic docking of unmanned vehicles while retaining the safety of a Space
Station crew-initiated abort. The automatic subsystem can enhance the manual
control of Shuttle orbiter docking and berthing.

A variable altitude guidance strategy (VAGS) for controlling the orbit
altitude and performing the drag-making AV maneuvers is employed. The strat-
egy is based on flying on-orbital altitude, which satisfies one of the follow-
ing two criteria:

1. Maximizes the useful payload delivered by the orbiter to the Space
Station

2. Provides a safe orbit decoy time (typically < 90 days) in presence of
+3 sigma high atmospheric densities

The new Shuttle direct insertion technique offers promise of achieving higher
orbital altitudes without the use of OMS kits; however, this technique does
not significantly alter the altitude that maximizes the useful delivered
payload.

The sizing of the momentum storage requirements for the CMC's is important
since it can impact not only the CMC mass itself but also influence the mass
of the momentum dumping elements and RCS propellant requirements. Figure 3-13
shows the momentum storage requirements and the related CMC mass necessary to
accomplish a variety of attitude control functions. Based on these data, the
CMC's have been sized to accommodate the functions that are highly repetitive
and would otherwise require large RCS propellant quantities. This includes
LVLH attitude hold (near the torque equilibrium attitude), inertial attitude
hold, and dynamic payload operations. The other items that involve large
momentum storage but are only required infrequently are accomplished with
RCS control. These include attitude maneuvering, docking disturbance transient
damping, and attitude hold in nonstandard attitudes. The subsystem is auto-
mated for normal operations and requires only minimal crew participation for
special operations. It is capable of autonomous and unmanned operation.
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Figure 3-13. Momentum Build-Up From Various Sources

The number of components is also indicated in Figure 3-12. Ultimately,
the redundancy levels should be based on an understanding of actual component
reliabilities, the potential failure modes, and total subsystem reliability
apportionments. As a preliminary basis for allocating redundancy requirements
the following criteria was employed:

1. Flight critical failures:
fail safe (FO/FRC/FS)

Fail-operational/fail-reduced-capacity/

2. Failures effecting mission success: FO/FS

3. Noncritical failures: FS

IMS ARCHITECTURE

The IMS architecture was based on requirements for a fault-tolerant, self-
healing, technology-transparent, user-friendly, and autonomous subsystem con-
trol and data management subsystem.

The data rate requirements known at this time are summarized in Table 3-7.
It is anticipated that these requirements are soft and will grow as the sta-
tion concept matures. It is necessary for the IMS architecture to provide the
flexibility to accommodate these changing requirements.
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TaJble 3-7. Data Rate Requirements

DATA SOURCE

TECHNOLOGY DEMONSTRATIONS

SCIENCE & APPLICATIONS SENSORS

PERSONNEL COMMUNICATIONS

SUBSYSTEMS H&S

MATERIALS PROCESSING

MILITARY COMMUNICATIONS

TOTAL

RAW DATA
RATE (MBPS)

1069

124.20

100.4

0.04

T O O

1 00

237.40

DATA RATE*
(MBPS)

020

44.50

5.1

004

0.06

1.00

51 90

BITS/ORBIT
(MB)

1,171

245,777

33,672

220

780

5520

286,693

REMARKS

26 PAYLOADS ALL ON-WORST CASE

EARTH & COSMOS LOOKING

INCLUDES 1 FULL VIDEO, 2 SLOW
SCAN VIDEO, 10 VOICE & 2 FACS

ALL SPACE STATION SUBSYSTEMS

32 KBPS - 1 MBPS

•EQUIVALENT CONTINUOUS DATA RATE
WITH DATA REDUCTION UPLINK-12 0 MBS

(BURST MODE)

While the IMS architecture design is of paramount importance, suitable
devices must be available to mechanize the functions, i.e., the device must be
sufficiently fast to provide the bandpass, small to permit packaging in low
volume, and low-power consuming to ease the power generation and thermal loads
of the Space Station. VHSIC technology appears to satisfy these requirements.

In order to quantify the power, weight, and volume of VHSIC, a comparison
of the data processing equipment for the Shuttle (1972), Galileo (1982), and
the Space Station (1992) was made. For example: power requirements in terms
of processor operations/watt change from 570 in 1972 to 250,000 in 1992. The
reduced power requirements translate into less fuel cells and solar panels,
loads less heat dissipation (radiators), and the smaller size allows many
functions to be packaged in the same volume. This reduction in power and
weight can provide for greater user capability or reduced parasitic facility
requirements, i.e., smaller panels; therefore, less drag that in turn reduces
reboost requirements.

A modular subsystems approach was used to arrive at an IMS architecture.
Two major IMS architectural features are:

1. Data network: the IMS data network provides a data communications
media, an interconnect topology, an access scheme, and a communications
protocol. A specific design requirement is that network operations
and functional performance will be totally transparent to the system
users whose operations are intersystem dependent.
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The two attributes of the IMS network are:

• A dual data bus

• A standard BIU

The IMS data network is reconfigurable and adaptable to support Space
Station build-up, operational growth, and technology infusion.

2. Fault-tolerant/self-healing control: the attributes of the data
processing function are:

• Fault detection and compensation

• Hierarchical processor structure

• High-order language (HOL)

BUS STRUCTURE

The bus structure was predicated upon the need for a high data rate user
requirement and a lower data rate facility requirement. The initial approach
is to include a dual bus, wire and fiber optic. The rationale for this
approach is to address the weaknesses and strengths associated with each type
as well as the combinations (synchronization, layout, and interfacing) of a
dual bus structure. The wire bus provides reliability and sufficient capability
during the initial build-up phase; the fiber optic bus provides the projected
high data rate capability required for future user functions. The installation
of two buses minimizes the impact of user requirements of the 1990's from the
facility requirements of the 1980's. Figure 3-14, dual bus structure, presents
a possible approach to solving the system problem generated by integrating
facility and user functions. Separate functional busses minimize integration
complexity and scheduling and allow the flexibility to incorporate soft future
user requirements into an operational facility.

USER DATA BUS

DEDICATED
USER
F1

CRITICAL
STATION

F2 NON-CRITICAL
STATION

F3

GENERAL
SUPPORT

F3

FACILITY DATA BUS

Figure 3-14. Dial Bus Structure
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BIU

The BIU provides a standard interface between the subsystem or subassem-
blies and the IMS. Any device with a BIU can communicate over the data network
with any other device containing a BIU. It interfaces the module level bus to
the subassemblies, as depicted in Figure 3-15. The BIU is considered to be
the building block of the IMS; it collects and distributes sensor and effector
data. The subtlety of this approach cannot be overlooked; it forces sub-
assembly design to be compatible with this standard interface. This approach
permits the design, build-up, checkout, and verification of each subassembly
to be the responsibility of the appropriate vendor while the interfacing
requirements specification is the responsibility of the integrating contractor
or agency. This methodology provides a clear distinction between local func-
tions and regional functions. The former is accomplished by embedded micro-
processors and is considered indistinguishable from the subassemblies. The
latter, regional functions pertain to intersubassembly functions, module,
and intermodule functions, and station functions. The data and control
resources of this architecture are primarily based on the computational power
of a regional processor as opposed to logical power (local control).

FAULT DETECTION AND COMPENSATION

Fault tolerance by reallocation of control functions, commonly termed
dynamic dealing, allows separation of processors from the assigned functions
and reassignment to other functions. In essence, to be flexible throughout

USER BUS
1 —

MODULE

PANEL

-3

\

iTsus/
P\ COUPLERS

MODULE
PROCESSOR

|l

If

FACILITY BUS
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, USER 1
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1 PROCESSOR 1

L 1

EMBEDDED
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s
u
B
S
Y
S
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SENSORS/EFFECTORS

LEGEND- BIU — BUS INTERFACE UNIT

SUBASSEMBLY
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RIU - REMOTE INTERFACE UNIT

SENSORS/EFFECTORS

Figure 3-15. Hierarchal Structure
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the build-up phase and to satisfy deactivation and reconfiguration requirements,
a means has to be provided to allow a module processor to perform diverse func-
tions. Figure 3-16 shows how functions from one processor can be reallocated
to another processor. This allows for reconfiguration because of failures" or-.
maintenance while providing continuous monitoring and control capability"at
the local, regional, and station levels.

HIERARCHICAL STRUCTURE

The processor-hierarchical structure evolves from the requirement for
station control while providing the capability of module autonomy. These
requirements translate into a station-distributed processing structure and a
centralized module processing subsystem. Figure 3-17 is indicative of the
station distributed/mode centralized concept and the design goal of minimizing
architectural hierarchical levels. The objectives are to force subsystems
toward modularity and local control, isolate failures to subassemblies (mini-
mize propagation of faults), provide a clear distinction between subassembly
and integration activities, and incorporate in the design provisions for
future technology advancements. This design approach incurs cost savings
throughout the Space Station life cycle, from development through integration,

CONTROL FUNCTION
STATUS/COMMAND LOGIC

STATION PROCESSOR LEVEL

PROCESSOR 0
I

PROCESSOR 1

RESOURCE BUS

MODULE
PROCESSOR LEVEL

PROCESSOR 2
I

AC2 = ATTITUDE CONTROL FUNCTION 2
THO = THERMAL CONTROL FUNCTION 0
CON 0 = CONSOLE CONTROL FUNCTION 0
COM 0 = COMMUNICATIONS CONTROL FUNCTION 0
COM 1 = COMMUNICATIONS CONTROL FUNCTION 1

Figure 3-16. Reconfiguration Caused by Maintenance or Failure
of Module Processor
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Figure 3-17. Distributed Processor Architecture

verification, operation, and maintenance. The development phase allows a
parallel, piecewise building block approach; the integration phase can proceed
along functional paths as opposed to specific hardware and software component
checkout; the flight software and hardware can be verified at the module level;
the operational phase provides for flexible modes as well as graceful degrada-
tion options; and the maintenance phase provides manual or automatic
reconfiguration.

HIGH ORDER LANGUAGE (HOL)

The integrating contractor or agency will use a HOL that is adaptive to
support the Space Station build-up, operational growth, maintenance, and
contingency control. HOL attributes are:

1. User friendly subsystem

2. Consistent commands and options

3. Simple functions and commands

Use of the HOL and its support tools will result in reduced costs, shorter
production time, and increased reliability and maintainability by providing a
structured approach that supports modern software engineering practices.

The language is designed .for embedded computer applications. HOL provides
a means for converting statements into code. Thus, the subsystem (subassembly)
suppliers are able to use embedded microprocessor and software, including pre-
viously developed off-the-shelf subsystems, to provide cost savings over
installing a new microprocessor and developing the required subsystem software.

SOFTWARE SIZING

Facility requirements are driven by the station data and logical functions
to be performed, e.g., input/output servicing (the number, type, and frequency
of signals monitored and commanded), fault detection (error detection, isola-
tion, reporting, and recovery), memory management, and network control. The
range of user capabilities includes mode control, signal acquisition and data
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storage, data compression and reformatting, and active payload support. The
latter requires the DMS to provide the resources necessary for filtering,
thresholding, correlation, tracking, pointing, ranging, sequencing, staging,
activation/deactivating, and repairing of known and currently unknown payloads.

In order to scope the software requirements the on-orbit phase of the
Shuttle (-375KOPS maximum) and a portion of the necessary ground support can be
used as a reference point for the facility requirements. For the user require-
ments there appears to be two drivers: one assuming large storage and data
manipulation, and the second assuming high speed throughput associated with
imaging-type tasks.

C&T SUBSYSTEM ARCHITECTURE

The C&T subsystem architecture is driven from the overall mission and
operational objectives, performance requirements of the Space Station and the
C&T subsystem, and the unique characteristics (i.e., phased growth, blockage
and coverage) of the Space Station and other interfacing subsystems (i.e.,
TDRSS, STS, etc.). The C&T subsystem receives health and status data from
the TMS, EMU, various Space Station modules and subsystems, payloads, Space
Station experiments, free flyers and platforms, and close proximity vehicles
and the OTV/STS vehicles. Also, communications with the EMU, Space Station
modules, and space vehicles (e.g., STS) must be provided. Docking navigation
data from the OTV, STS, free flyers, EMU, and other close proximity vehicles
may be part of the communications link or on a separate link. GPS data will
be received by the Space Station for position and tracking. Sensor (i.e.,
mission) data must be received from the free flyers and close proximity
vehicles, as well as on-board payloads, experiments, and laboratories. The
received data are sent either to on-board processors or to the ground.

The C&T subsystem sends commands to the TMS, payloads and subsystems,
free flyers and close proximity vehicles, and possibly the OTV. All communi-
cations with the Space Station are duplex; that is, the Space Station has
voice video with the EMU, STS, and between the modules of the Space Station.

There are many data sources that must be handled by the C&T subsystem.
Also, hardware characteristics and limitations during construction of the Space
Station must be considered. A final consideration for the architecture analysis
is the mutual impact of the C&T subsystem and other Space Station subsystems.

There are three primary functions of the C&T subsystem: communications
and data transfer between the Space Station and the ground, internal communi-
cations between Space Station elements, and detection and tracking of vehicles
interfacing with the Space Station.

As seen in Figure 3-18, the Space Station C&T RF subsystem architecture
includes a number of different communications and tracking interfaces with
various space objects. For the initial, full-up station, the primary method
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Figrure 3-18. Space Station Potential Communications Links
and Tracking Objects

of data communication will be via the TDRSS. This system is designed to
handle high data rate intersatellite communications to low-altitude orbiting
satellites on a time-sharing basis with nearly 100 percent orbital coverage.

The RF and other subsystem characteristics of the TDRSS will dictate
many of the C&T subsytem requirements. During C&T subsystem architecture
analysis, alternatives to using TDRSS were evaluated and the conclusions were
that, at this time, there is not a clear economic or performance characteristic
to warrant the use of another dedicated or laser relay subsystem. The primary
area of concern regarding the use of the TDRSS is the time-sharing feature of
the high data rate relay links. Other concerns are whether continuous, full-
time data relay to the ground of high data rate (> 50 Kbps) information is
required, and the requirement to process and store data for a period of time
in order to burst these data via the Ku-band single access (KSA) link, with
its limited 300 Mbps data rate capabilities, which may cause increased risk
or degradation for some users.

It is anticipated that the evolution from TDRSS to TDAS usage by Space
Station will alleviate many of the limitations of the space-to-ground links
early in the Space Station operation.
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Use of the TDRSS KSA link for both forward and return links of full-up
Space Station operation is baselined. In order to minimize the length of time
required to transfer data to the ground, the maximum KSA data rate of 300 Mbps
is used. A lower data rate increases burst time duration and usage cost with-
out significantly decreasing other costs. It has been estimated that the
relay will last about 20 minutes each"orbit. The forward link has also been
analyzed, and a 25 Mbps data rate requirement has been estimated to monitor,
command, control, and communication to the payloads, subsystems, and personnel
on-board.

Real-time communications of subsystem health and status, some critical
mission data, and limited personnel communications will be transmitted via a
full-time, dedicated TDRSS multiple access (MA) link; likewise, critical real-
time command and control will also be available via the S-band MA link.

As a back-up subsystem, a lesser capability direct space-to-ground sta-
tion link will also be available in the event either the Space Station or
TDRSS relay equipment fails.

The RF links to the various other spaceborne elements of the Space
Station, such as free-flying platforms and satellite payloads, the STS, OTV,
EVA, and GPS, will require multiple-access systems at L, S, C, Ku, and possibly
higher frequency bands. Since some of these interfacing systems have similar
or identical characteristics (i.e., STS and OTV), there will be reduced hard-
ware requirements for the C&T subsystem.

The C&T subsystem, as shown in Figures 3-19 and 3-20, interfaces with the
IMS processors and data bus to receive, transmit, and display data on the
Space Station. The health and status of all subsystems and payload, as well
as the crew communications (voice and video) are transmitted via a data bus
and IMS processor to either a storage device or directly to the C&T trans-
mitter for real-time transmission. Some of the H&S data will be displayed
on a control panel.

The attached payloads and sensors (those that can be hardwired to the
high-rate IMS data bus) will also be processed and either stored or sent
directly to the ground. Since there will be too much data generated to
transmit down for any reasonable burst period via TDRSS KSA (at 300 Mbps),
there will have to be reduction and compression processing by the IMS or
payload.

All nonattached data sources (such as free-flyers), as well as EVA data/
communications and operational interface data (STS and OTV) will communicate
via a compatible antenna and RF subsystem.

The tracking, ranging, and docking information for the many objects
expected to be in the Space Station environment will require two different
subsystems. One subsystem will utilize the GPNDS satellite system for active
space objects. The navigation data from each vehicle/object will be trans-
mitted to the Space Station via the communications link and relative ranging/
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position data determined from an advanced processor on the station; likewise,
ranging data obtained from TDRSS contact with some of the vehicles may be
used for Space Station tracking purposes.

For passive or unknown space objects, a UHF radar subsystem has been
baselined for use in the ranging/tracking subsystem. An integrated monopulse
antenna subsystem with multiple antennas for spherical coverage will' be
employed.

The C&T baseline subsystem includes communications transponders for TDRSS
S-band (MA) and K-band (SA) links, S-band with STS, and OTV, as well as a UHF
radar set, as shown in Figure 3-21. A GPS antenna and receiver is also shown
for L-band navigation data sent to the GN&C subsystem. The active components
of all subsystems will be spared and there will be no single-point failure
modes of any active device.

The KSA equipment will be composed of two modules, one mounted on the
antenna and one located in the command module. The antenna subsystem consists
of an 11 to 13 foot tracking parabolic reflector and feed subsystem.

As the data requirements increase with station capabilities, the antenna
may be increased in size to accommodate higher transmit power (EIRP) and
receive noise bandwidth. The parabolic antenna will have both K-band and
S-band feeds to communicate in both KSA and MA services. Only one parabolic
antenna is baselined. When the higher power requirements cause a larger
parabolic antenna to be employed by the Space Station, the smaller dish may
be used as a TDRS link backup or for other Ku-band or S-band links (e.g.,
STS and OTV).

RECEIVE
PROCESSOR
DECODER
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GPS
RCVR/PIDA
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• TDRSS COMMUNICATIONS TRANSPONDERS
KSA VIS PARABOLIC ANTENNA
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Figure 3-21. Space Station Communications Subsystem Architecture
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The parabolic antenna is baselined to be located on the uppermost module
on top of a mast of sufficient length to eliminate blockage in communicating
with TDRS at any orbital position.

The S-band transponders are standard TDRSS/GSTDN components capable of
interfacing with either the relay satellite or the ground subsystem. The
antennas are omnicoverage spirals with hemispherical coverage. Two or more
will be placed to cover the 360-degree sphere for any possible attitude and
shadowing requirements.

The S-band communications links to the STS and OTV will use similar
transponders but will employ higher gain horn antennas.

A signal conditioning processor will multiplex and buffer signals between
the IMS data bus and the RF components. A communications display and record-
ing device (solid state) will also be located in the command module.

PROPELLANT TRANSFER AND STORAGE ARCHITECTURE

Mission model activities have identified propellant resupply requirements
of 300,000 pounds per year. Cryogenic oxygen and hydrogen (6:1 ratio) are
required to satisfy full-up operational Space Station requirements.

The resupply propellants are stored in the orbiter bay, as shown on Fig-
ure 3-22. After the orbiter is berthed to the station, a fuel transfer arm
is automatically attached. The resupply propellants are transferred to the
station for distribution. Distribution plumbing is provided to fuel OTV's
attached to PSA or to station-attached propellant modules.

Figure 3-23 shows the preliminary schematic of the selected LH£ (oxygen
identical) subsystem installed on Space Station for conveying cryopropellants
from the orbiter supply tanks to the station storage tanks or directly to an
OTV at the flight servicing facility. Transfer is accomplished by two-phase
pumps with little or no pressurization of the supply tank required.

Acquisition of propellants in zero-g in both orbiter resupply and pro-
pellant module storage tanks is provided by capillary vane devices. In addi-
tion to the two-phase pump, a scavenging compressor is provided to evacuate
supply tank residual vapors.

Venting of chilldown vapors can be avoided by compressing and condensing
them in the bulk liquid of the storage tank or the resupply tank itself. A
total operation time of 9 hours is considered adequate for series transfer
of 1X>2 and LH2- The chief hardware development items are zero-g quantity
gages and remotely actuated disconnects. Safety provisions include routing
of propellant lines around enclosures, and use of leak detectors, and fail-
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safe subsystem design and control interlocks to preclude hazardous situations.
It is anticipated that propellant transfer operations will be automatic; how-
ever, manual override by the crew in the event of contingency can be conducted
at the refuel control panel.

The propellant module tanks have been sized to contain a total of
108,000 pounds of cryogens at the desired ratio of 6:1.

Meteorite bumpers are provided to reduce the probability of tank puncture
to once in approximately 2,700 years. Double wall construction can also be
provided to present catastrophic fragmentation of the tanks in the unlikely
event of collision with space debris (once in approximately 5,000 years). No
electric heaters or other pressurization means are used in the storage tanks
since pressurization is not required by the two-phase pumps in the subsystem.

Even with the best available insulation (ML1 and vapor-cooled shields),
total bailoff from the two propellant storage modules is expected to be
approximately 8,000 Ib/yr compared to a projected two-sigma RCS usage of
approximately 2,640 Ib/yr. Other potential uses for bailoff include fuel
cell peak power generation (open cycle) and space processing. Complete
reduction of bailoff can be accomplished by active refrigeration or deep
subcooling of resupplied propellants prior to Shuttle launch.
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4. TECHNOLOGY

TECHNOLOGY DEVELOPMENT PLAN

NASA is presently pursuing two new space objectives: the next generation
of support and mission satellites and increased operational efficiency through
a space operations system (SOS).

The following presents Rockwell's recommendations incorporated into a
technology development plan for-the development of a cost-effective Space
Station program,

SPACE STATION GENERAL FEATURES

The Space Station technology plan was developed using the following gen-
eral guidelines. The Space Station will

1. Assume a Phase C/D start by or before FY 1987 to support a flight
as early as 1990

2. Be in LEO and Shuttle compatible for delivery, assembly, and
disassembly

3. Be a manned system

4. Support resupply by the Shuttle

5. Provide for nonhazardous, planned disposal at the end of useful life

6. Be designed for indefinite life through on-orbit maintenance, repair,
or replacement

7. Have a modular-evolutionary design that permits growth and accepts
new technology

8. Have a time-phased capability to accommodate mission needs and
requirements

9. Have initial development cost and life-cycle costs as design driver

10. Be user-oriented to the maximum extent possible

11. Have a design goal of commonality for hardware and software of
identical or similar functions in terms of systems, subsystems, and
interfaces
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12. Incorporate on-orbit autonomous operations to minimize crew and/or
ground involvement as a design driver

13. Provide for a safe haven and/or escape capability

USER INTERFACE REQUIREMENTS

The subsystems on the Space Station will be designed, integrated, and
operated to be user-oriented and compatible to the user to the maximum extent
possible. These subsystems will provide simple, standard, and stable inter-
faces for users. Operations and design will provide for independent user
operation and monitoring of payloads. The Space Station subsystems will be
compatible with payloads providing their own services.

MAJOR SPACE STATION PROGRAM CONSIDERATIONS
AFFECTING DEVELOPMENT OF THE TECHNOLOGY PLAN

Current studies are investigating ways to better utilize STS capabilities
and improve space operations systems. The following system definitions and
technology development items are under investigation through 1986 in order to
define the most efficient Space Station program.

1. Space Station Facility

• Facility modules

• Payload support subsystems

• OTV and servicing subsystems

• Checkout equipment

• Satellite servicing subsystems

• TMS support and servicing subsystem

2. Payload Satellites

• Large satellites (10,000 Ib) assembled in space

• Deployable structures

• Scientific experiments

• Small communication satellites (staging at LEO for launch to GEO)

3. Transition From Development to Fully-Operational Capability:
Initially, the Space Station facility development will be the primary
program driver. The transition from a development program to fully
operational program will require investigations concerning:
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• An orderly transition from requirements and proposed technology
development to a space hardware program

• Developing unique and efficient space operation capabilities

• Developing direct manned support for LEO

• Developing direct manned support for the OTV at LEO and GEO
operations by 1990

• Developing direct manned support for the TMS at LEO (possible GEO)
operations by 1990

• Developing potential user area:

- NASA

- DOD

— Commercial (foreign and domestic)

• Communications

• Space processing

SCHEDULE

A technology development schedule is provided in Figure 4-1. This
schedule shows various engineering phases and milestones that need to be con-
sidered. The schedule covers new technology development from the analysis
through component development and design to ground tests and flight test
verification.

ADVANCED DEVELOPMENT TECHNOLOGIES

The principal role of developing advanced technology is to provide mature
technology options for use on the Space Station program. Technology will
decide the ultimate operational capability, utilization, and growth potential
of the Space Station program. The level of technology used will determine
system cost effectiveness. Fortunately, several years of lead time are avail-
able at this time to develop and implement advanced technology concepts into
the initial design. The following technology issues are designed to provide
the opportunity to attain the desired levels of technology for use in the
initial design, as well as long-term technology advancement to be used in later
applications for improved capabilities and configuration growth. The following
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Figure 4-1. Technology Development Schedule

critical to a successful Space Station program. They are derived for applica-
tion on the Space Station.

TECHNOLOGIES THAT ENABLE A HIGH LEVERAGE ON DEVELOPMENT

A research study was made to leverage out the system impacts of technology
alternatives for the initial and the all-up stations, as illustrated in Fig-
ure 4-2. The configuration shown was developed to be used as a pathfinder.
Our goal is to identify those technologies that enable a high leverage on
development. (Enable, as used here refers to an increase in system capability
at the same cost and a decrease in facility service requirements resulting in
a lower life-cycle cost.) Those parameters of the system that can be related
to lower cost fall in the following areas: electrical power, thermal dissipa-
tion and cooling, status and monitoring, control and memory, and crew mainte-
nance time and logistic launch costs. In the search for high-technology
leverage items, the seven technology readiness levels identified in Figure 4-3
were followed.* Also influencing the selection of candidates were the objectives
and technological drivers that were established by the Space Station Technology
Steering Committee:

Carlisle, Richard F. Space Station Technology Readiness. American Society of
Mechanical Engineers, Winter Annual Meeting, Phoenix, Arizona, (November 17,
1982).
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Objectives

The objectives were to:

1. Establish the desired level of technology to be used in the initial
design and operation of an evolutionary long-life Space Station and
the longer term technology to be used for later applications for
improved capabilities; initial technology should be available by
approximately 1986 to support a Space Station launch as early as
1990

2. Assess the level of technology forecast to be available from that
portion of the current research and technology program that will be
applicable to a Space Station

3. Plan, recommend, and monitor a program to move the current technology
to the level stated

4. Identify, evaluate, and recommend opportunities to utilize the Space
Station as a research and technology facility

Technological Drivers

Technological drivers included:

1. Operational costs, which should be reduced to a minimum consistent
with the initial resources available

2. Design life and reliability, which must be improved with minimum
service and maintenance

3. Automation, which must be implemented to the maximum to reduce
direct operational labor costs

4. Performance, which must be improved to the maximum consistent with
the above items

Figure 4-4 illustrates Rockwell's Space Station subsystem organization.
This subsystem organization was structured to technology development in high
leverage areas only and does not show a complete subsystem work breakdown
structure (WBS). All subsystem disciplines were reviewed to determine those
candidates for technology development, as well as advanced development items.
A summary of selected subsystem candidates is presented in Figure 4-5. A
more detailed list of technology items for each subsystem is given in Table 4-1.
The high leverage items are noted in the figure. Using the technology levels
of readiness that were defined and the technological drivers, Rockwell com-
piled a matrix of subsystem technology developments. A summary of development
items that could potentially provide a high leverage on development and a
high rate of dollar return over the life of the Space Station is given in
Table 4-2, The figures identify areas of current technology, potential advances,
performance, and cost impact.
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Table 4-2. Evaluation of Technology Improvements (High Leverage Items)

SUBSYSTEM

THERMAL CONTROL
• THERMAL BUS

• THERMAL COATINGS

EPS
• POWER GENERATION

• ENERGY STORAGE

• FUEL CELLS

• POWER DISTRIBUTION

• INVERTER

ECLSS
• WASTE MANAGEMENT

• CLOTHING

CURRENT
TECHNOLOGY

CIRCULATING PUMP —
SINGLE-PHASED FLUID SYST

u = 0.1 + 0.02 x LIFE

PLANAR SILICON SOLAR
ARRAYS

NlCd BATTERIES

10,000 kWh LIFE

28 VDC

75-80% EFFICIENCY

FECAL BAG COLLECTION

DISPOSABLE

IMS |

• DATA COMPRESSION

• COMPUTER PROCESSING
HARDWARE — PROCESSING
DESIGN & SIGNAL
CONDITIONING

• DATA BUS STRUCTURE

• INTERFACE UNITS

COMMUNICATION |
• DATA RELAY

GN&C |
• DOCKING

• PROCESSING

• CMC

RCS/FLUIDS |
• THRUSTERS

• OTV FUEL FORM (OTV HIGH
ENERGY PROPELLANTS)

21, 41 (TOLERATE
ERRORS)

LSI

WIRE

MDM

TDRSS

MANUAL

CENTRAL

SKYLAB

HYDRAZINE

LOX/LH;
(GROUND CONVERSION)

POTENTIAL
ADVANCES

CAPILLARY PUMP — TWO-
PHASE FLUID SYSTEM

a = 0.1 + 0.01 x LIFE

LOW CONCENTRATION GaAs
SOLAR ARRAYS - 100 kW

REGEN. FUEL CELLS
NIH2
IPAC

10,0000-200,000 kWh LIFE

HIGH VOLTAGE

• 120 VDC ^^^
• 220 VDC J^>> 50 kWe
• 416 VAC-"""^

90-93% EFFICIENCY

INTEGRAL WASTE & TRASH
DISPOSAL (INCINERATOR)

REUSABLE —
WASHER/DRYER

8 1 (WITH ACCEPTABLE
ERROR RATES)

VHSIC

FIBER OPTICS

BIU (WITH VHSIC CHIPS)

ADVANCED TDRSS

AUTOMATIC

DISTRIBUTED

LARGER SIZE, LOWER
WEIGHT

GOX/GH2

LF2/LH2
(NFa + LH2
— . N2H4 +
LF2) (ON ORBIT
CONVERSION)

PERFORMANCE/
COST IMPACT

• MINIMIZE (OR ELIMINATE)
DEPLOYED RADIATOR

• 5 kWe PUMP POWER SAVINGS

• LONGER LIFE SYSTEM

• 50% RADIATOR AREA SAVINGS

• ONE-FOURTH RECURRING COST
(CONC RATIO, 6:1)

• GaAs SAVES 1/2 NO. OF CELLS

• ONE-HALF (LOWER) WEIGHT
• POWER FLEXIBILITY
• SIMPLER INTEGRATION

• LOWER REPLACEMENT COSTS

• LIGHTER OISTR WEIGHTS
• HIGHER DISTR EFFICIENCY

• LOWER ARRAY AREA

• ELIMINATE 384 CHANGEOUTS —
20 YEARS

• S45M-J60M SAVINGS

• 83,000 LB SAVINGS
• S60M-80M LESS COST

• INCREASED DATA RATE
CAPABILITY GIGA BITS

• POWER SAVINGS. SMALLER SIZE
ENHANCES REDUNDANCY & FAULT
TOLERANCE

• HIGHER DATA RATE CAPACITY
» MBPS

• STANDARDIZATION USING
"SMART" INTERFACE UNIT —
ALLOWS CONTROL DOWN TO
LOWEST POSSIBLE LEVEL

• PERMITS HIGHER TRANSMISSION
RATES •• 60 MPS (EQUIV)

• REQUIRED FOR UNMANNED OPS
• CREW TIME SAVINGS
• HIGHER RELIABILITY & SAFETY

• LOWER COST. HIGHER RELIABILITY

• LOWER LAUNCH COST. SIMPLER
SYSTEM

• HIGHER SPECIFIC IMPULSE —
380 SEC

• LAUNCH SAFETY
• HIGHER SP IMPULSE — 490 SEC
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TECHNOLOGY HIGH LEVERAGE ITEMS

The section describes a few high leverage candidates from each subsystem
area and the resulting potential cost savings or increase in capability. Indi-
vidual paragraphs identify each subsystem discipline:

1. Electrical power

2. Thermal control

3. Environmental control and life support

4. IMS

5. C&T subsystem

6. Guidance, navigation, and attitude control

7. Fluid systems and reaction control

Electrical Power Technology Leverage Candidates

A 20-year Space Station evolution model shows a growth from the 4-year
initial station of 4 crewmen and a 23 kW load power, to the 16-year all-up
station of 8 crewmen and a 50 kW load power. By using the low recurring cost
(Figure 4-6) GaAs low-concentration type solar array, a total of $80 million
savings can be achieved comparing the conventional silicon planar solar array
in the 20-year operational period. GaAs solar cell has the advantage of high
cell efficiency, radiation hardening, and self-annealing capability over the
silicon cell. Also, the GaAs solar cell manufacturing technology (MANTEC)
development program presently being pursued under Air Force contract will
reduce the GaAs cell cost.

The low concentration GaAs solar array configuration, Figure 4-7, illus-
trates the benefits over the silicon solar array in the following areas: array
stiffness, less radiation degradation, more efficient Shuttle stowage, less
array area, and low recurring cost. These benefits show that the GaAs solar
array is the best of the Space Station power generation candidates.

An attractive alternative to the battery and regenerative fuel cell
energy storage subsystems most often considered for this application is the
integrated power and attitude control subsystem (IPACS). The IPACS concept
stores electrical energy in wheels as kinetic energy. Simultaneous energy
and momentum management in these subsystems also permits the subsystem to
replace the control moment gyros (CMC's) and to perform the attitude control
function. Rockwell trade studies of this concept in the early seventies*
have shown it to be an attractive option to the other competing techniques.
Technology development work in the IPACS area is recommended in order that
it be available by the Space Station technology need date.

Integrated Power/Attitude Control System (IPACS) Study. Vol I and II, NASA
CR-2383. Prepared by Rockwell International for NASA LaRC (April 1974).
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TCS

Two-Phase Thermal Control. The capillary pump loop (CPL) technology
(Figure 4-8) could be utilized to remove waste heat from the pressurized
cabin coldplate directly to the radiator. This concept will not only reduce
power penalty, weight, and cost, but will also reduce radiator area require-
ments drastically, which is greatly needed.

Heat rejection requirements for a full-up station are about 50 kW. The
conventional Freon pump power requirements are estimated to be about 4 kW and
the CPL pumping power requirements are estimated to be about 0.5 kW. This
savings can be translated into a 1,560 ft^ radiator area, 8.0 kW solar array
power generation, and a 670 ft^ solar array area savings.

The basic subsystem (refer to Figure 4-8) consists of a centralized two-
phase thermal bus with heat sources (coldplates and heat exchangers) and sinks
(radiators and heat exchangers) connected in parallel. This subsystem can
share radiators between modules, heat-load share between modules or individual
coldplates to minimize TCS power, and utilize thermal capacitors to damp out
peak heat load conditions. This subsystem can also provide considerable

I CPL ISSUES I

• REDUNDANCY
REQUIREMENT

• WICK TRANSPORT OF
THERMAL ENERGY

• LOW AP DISCONNECT

• ISOLATION HEAT
EXCHANGER

• SYSTEM GROWTH

— RADIATOR HX

- ISOLATION HEAT EXCHANGER

LIQUID LINES

Figure 4-8. Two-Phase TCS Concept
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flexibility in growth and mission load profiles. A comparison between CPL
and the pumped liquid loop concepts is presented in Figure 4-9. The CPL pro-
vides numerous advantages as compared to the pumped liquid loop. For example,
the flow rate requirements for the pumped liquid loop is about 35 times higher
than the CPL loop for the same heat rejection capability. As a result, the
pumped liquid loop requires higher pumping power and radiator sizing as com-
pared to the CPL loop. Also, reliability and growth potential are excellent
for the CPL loop.

Thermal Degradation Influence on Radiator Area. The effects of radiator
surface properties' degradation rate (solar absorptivity) in Figure 4-10 can
strongly influence requirements for radiator area. Presently, the degradation
rate of solar absorptivity is assumed to be about 0.02 per year. This value
is based on data utilizing FEP/AL coating. An improvement of degradation
rate from 0.02 to 0.005 per year, combined with the application of CPL, will
further reduce the radiator requirement. One potential impact of this for
the initial station is to avoid the requirement for radiators on the PSA
modules.
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Figure 4-9. Two Phase Thermal Bus Versus Pumped Liquid Loop
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Figure 4-10. Thermal Degradation Influence on Radiator Area

ECLSS

The major ECLSS functions, such as CC>2 removal, CC>2 reduction, water
electrolysis, water recovery and management, waste management, and health
and hygiene, were reviewed for possible technology candidates that may have
a high leverage of dollar return (Figure 4-11).

The two ECLSS areas that require new technology are in the waste manage-
ment subsystem and the crew hygiene of controlling the cleanliness of
clothing.

The present waste management subsystem (Figure 4-12) now being used on
the Shuttle orbiter for the STS program is the feces slinger-commode air
transport unit built by General Electric Corporation. This unit has a capacity
of only 150 man-day uses, and for an 8-man Space Station with two units, it
would require removal and replacement every 38 days. This results in 384
changes over the 20-year life of the Space Station. A cost study has indicated
that a total of $60 million to $73 million of 1984 dollars are required to
cover the DDT&E, recurring, crew maintenance, and launch-ground turnaround
costs over the 20-year period. New technology of space disposal is needed to
reduce the high cost of present waste management subsystems. The type of
technology contemplated is one that would integrate body waste and trash dis-
posal into one process (Figure 4-12). This would reduce the cost of crew
maintenance for change of units and eliminate the expensive launch, ground,
and turnaround costs.
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It is estimated that a funding of $10 million 1984 dollars for DDT&E
would be required over 3 years (1984 through 1986) to develop the concepts,
build components, conduct breadboard testing, and fabricate a phototype unit.
The recurring costs for the space disposal subsystem is estimated at $5 mil-
lion. Total estimated cost for the new technology subsystem is $15 million.
The potential savings of this new technology program to the present Shuttle
orbiter-type waste management subsystem would be between $45 to $58 million^
over a 20-year period, as illustrated in Figure 4-13.

Space Station crew clothes management and cleaning is another area where
new technology may have a high leverage of dollar return. A study of dispos-
able clothes versus a Space Station washer-dryer unit was conducted to
determine if there would be a large cost advantage of using a washer-dryer
to that of disposable clothes. Including recurring, launch, and ground
handling costs over a 20-year period, the cost of disposable clothes is
approximately $106.8 million dollars; a washer-dryer unit including DDT&E,
recurring, and launch cost over the same time period is $25.3 million.

The potential savings to the program (Figure 4-14) shows that with an
investment of $7.2 million for new technology, a zero washer-dryer would save
approximately $82 million over the 20-year life span of the Space Station;
therefore, on a high-cost leverage return on investment, these new technologies
of Space Station waste disposal and the washer-dryer are warranted.

• INTEGRATE BODY WASTE & TRASH DISPOSAL INTO ONE PROCESS

• REDUCE CREW ACTIVITY

• ELIMINATE LAUNCH, GROUND & TURNAROUND COST

• TECHNOLOGY UNKNOWN -
- REQUIRES RESEARCH, ANALYSIS, IMPLEMENTATION OF IDEAS
- DEVELOPMENT OF CONCEPTS & COMPONENTS
- BREAD BOARD TESTING
- FABRICATION & FLIGHT TESTING OF PROTOTYPE UNIT

• ESTIMATED TECHNOLOGY FUNDING $10M OVER 3 YRS 1984 THRU 1986

PARAMETERS
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* MAJOR PORTION OF THIS S10M IS ADVANCED TECHNOLOGY DEVELOPMENT

Figure 4-13. Waste Management Process Subsystem—New Technology
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Figure 4-14. ECLSS Hygiene—Disposable Clothes

Versus Washer/Dryer Technology

IMS

The prime IMS function (i.e., facility and user subsystem management and
control) was reviewed as a technology candidate that would provide the greatest
benefit from utilizing advanced technology.

Several areas of new hardware technologies appeared to be viable candidates,
e.g., bubble memory, optical disc, fiber optics, andVHSIC; however, when
dollar investment and its effect upon advancing the maturity of these tech-
nologies was considered, the leverage was miniscule. Investigation of areas
not related to particular hardware technology development but rather to their
application to the Space Station system control and data management require-
ments seems to provide the greatest leverage. The choice, therefore, is
investment in components or investment in architecture.

Investment in systems engineering at the concept stage will provide the
greatest long-term life cycle savings for lowest initial cost. The savings
will be reflected throughout the Space Station maturation cycle (i.e., the
development integration, verification, operation, and maintenance phases).

The translation of Space Station goals into architecture by means of
systems engineering technology should precede component level selection and/or
development. This methodology reflects a sound planning and strong manage-
ment approach to a complex technical problem. (Refer to Figure 4-15).
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Figure 4-15. Subsystem Control and Data Management

The architecture initially chosen for the IMS is depicted to Figure 4-16,
distributed processor architecture. The salient features of this architecture
include a dual data bus structure (a user bus and a facility bus), a gateway
switch that enables a remote module processor to access the module bus and,

thereby, monitor and control applicable subassemblies, a remote interface
unit for direct interface with the module processor for those functions that
do not lend themselves to embedded microprocessor organization, and provision
for flexible user-demanded configurations (dedicated processors).

C&T Subsystem

The C&T subsystem will require new and sophisticated technological
developments in the areas shown in Figure 4-17. In particular, these develop-
ments are multiple access and spherical coverage, communications and tracking
to space objects, as well as high data rate communications to the ground. It
is felt that technology readiness (Level 7) has been reached for the new
developments. The initial station requirements, having fewer space objects
and on-board payloads, will be designed using existing state-of-the-art hard-
ware. Some minor improvements will be necessary, especially in the area of
integrated control. Also, compatibility with existing systems, such as TDRSS
for data relay and STS and Cansats for space-to-space communications, con-
strain new technology requirements.
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Figure 4-17. C&T Subsystem Technology Leverage Candidates
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The many and varied RF communication links that Space Station must pro-
vide present problems of coverage, blockage, RFI, and flux-density limits.
Major areas to be developed include higher frequency (i.e., EHF) and optical
(laser) hardware to alleviate overcrowded frequency spectra. Electronically
steered, phased orvax antennas provide directive spherical coverage, and
integrated navigation data processing from GPS receivers will provide tracking.
Coding techniques for multiple access and reduced bit error rate communications
will relieve the RFI multipath and potential blockage problems for space-to-
space and space-to-ground limits.

The on-board Space Station communications do not require new technology,
but rather improvements in existing systems for greater capacity and distri-
bution, and space-qualified reliability. Miniaturization of wireless video
and telephone equipment may be useful to reduce crew maintenance and operations
time and costs.

For full Space Station operations, a high data rate real-time communica-
tions link requirement at low (i.e., 10"̂ ) bit error rate is anticipated.
Since the existing relay systems, TDRSS, operates in a time-shared mode for
high data rates, a possible solution, as shown in Figure 4-18, might be a
Space Station dedicated relay satellite system that would involve major

TDRSS KSA TIME SHARED RELAY vs
DEDICATED SPACE STATION RELAY SYSTEM

TIME SHARED
(300 MBPS)
BURST RATE

DEDICATED
TO SPACE

STATION USE

TDRSS RELAY SYSTEM DEDICATED RELAY SYSTEM

• STORAGE OF ALL DATA

• 20 MIN DATA BURST PER ORBIT

• DELAY IN DATA USE

• AT S5K/HR COST (TDRSS USER
COST) $97.5 M FOR 10 YRS

• MAX EQUIVALENT DATA RATE =
60 MBPS (BURST RATE = 30 MBPS)

• CHANGEOVER TO TDAS
(1993-1994) SYSTEM ESTIMATE
$10-20 M

• LITTLE STORAGE REQUIRED

• REAL TIME DATA TO GROUND

• AT S100M/SAT COST OF SYSTEM
— $350-400 M (3 SATS, + GRND)

• MAX DATA RATE = 500 MBPS

Figure 4-18. Space Station C&T Technology Development
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developments in the areas of EHF or laser cross-links and base-band on-board
processing. The costs of such a dedicated relay satellite system might be
less than the costs of reducing data on the Space Station and the time costs
of using TDRSS over ten years.

GN&C Subsystem

Figure 4-19 shows the systematic screening of GN&C high leverage tech-
nology development candidates. The top-level function at the left, and the
status of each item and reflected. The number on the right is the assessment
of the technology readiness level. Items that are known to be under an
applicable development program or scheduled for development have been excluded
from the candidate list. Those indicated as potential candidates were
selected in the preliminary screening and were judged to offer attractive
potential for return-on-investment, in terms of enablement, performance,
reliability, and/or cost. The selected candidates resulted from the final
screening and were selected on the basis of having the highest potential for
good return on a minimal investment in technology development dollars.

The three selected candidate items for GN&C are:

1. Advanced momentum storage subsystems

2. Automatic rendezvous docking sensor

3. Distributed processing for GN&C
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Figure 4-19. GN&C Survey for Technology Leverage Candidates
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Figure 4-19. GN&C Survey for Technology Leverage Candidates (Cont)
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The first item is motivated by the perceived need for larger momentum
capacity than the existing Skylab CMC's. The second item is enabling for
unmanned rendezvous and docking, and provides advantages for Space Station
operations. The third item reflects a perceived need for special attention
to the more extensive processing requirements of GN&C and the high cost of
software development and software and hardware system testing.

Fluid Systems and Reaction Control

With Space Station, the inherent hazards of launching fluorine propellant
can be overcome by coverting safe fluorine compounds such as NF3 (a cryo-
liquid reactant used for space-based lasers) into L?2 on-orbit (see Figure 4-20),

Use of LF2/LH2 propellant for very high AV missions has been a goal of
mission planners because of its superior ISp and smaller required tankage (com-
pared to L02/LH2). Extensive testing of LF2/LH2 engines has shown launch
hazards to be the only serious obstacle to their use.

On-orbit, NF3 can be dissociated to N2 and F2 by heat provided from a
solar concentrator. N2 itself can be used for cold gas thrusters, purging,
and pneumatic actuation. It can also be reacted with hydrogen to form the
storable monopropellant/bipropellant hydrazine, N2 tfy, which can be used in
large quantities for space-based propulsive units such as TMS and AKM.

Another potential candidate for in-space processing is the conversion of
oxygen (02) to ozone (03) by electric corona discharge. LC>3/LH2 propellant is
superior to LF2/LH2 in Isp, although larger tankage, comparable to LC>2/LH2
tankage, is required.

i
Figure 4-21 shows the percent of payload improvement that is possible with

fluorine oxidizer (versus oxygen) for a single-stage expendable vehicle
launched from a 200 nmi orbit. Initial gross weight (stage, propellant, and
payload) was held constant in this comparison. An ISp of 489 (versus 470 for
LG>2/LH2) and a propulsive stage mass fraction of 0.915 (versus 0.906 for
L02/LH2) were used.

Significant improvements in payload capability are seen for GEO-manned
OTV' s , deep space DOD payloads, and planetary missions. If a fixed-size pro-
pulsive stage were assumed, the benefits would be even greater at low and
medium AV requirements (below 30K feet per second).
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EARTH
• LF2/LH2 STAGES LONG RECOGNIZED GOAL
• ENGINE PERFORMANCE ESTABLISHED IN 1960's
• LF2 LAUNCH HAZARD HAS BEEN MAIN OBSTACLE

Figure 4-20. Nonhazardous Delivery of Fluorine Propellant
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Figure 4-21. Fluorine Propellant Benefits
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