General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)

NASA Technical Memorandum 83423

Space Power Tubes-Very Much Alive

(NASA-TM-83425) SPACE POWER TUBES - VARY N83-28295 MUCH ALIVE (NASA) 13 p HC A02/MF A01 CScl 17B Unclas

G3/32 03995

Henry G. Kosmahl Lewis Research Center Cleveland, Ohio

Prepared for the Cleveland Electronic Conference (CECON '83) sponsored by the Institute of Electrical and Electronics Engineers, Inc. Cleveland, Ohio, October 4-6, 1983

SPACE POWER TUBES - VERY MUCH ALIVE

Henry G. Kosmahl, Fellow IEEE

National Aeronautics and Space Administration Lewis Research Center Cleveland, Ohio 44135

ABSTRACT

The application of the TWT - the backbone of all civilian and military space communication programs - to past, present and future satellites is discussed. Performance characteristics and the trends and challenges in the future are reviewed. Finally, a comparison with Solid State devices - as derived from fundamental laws - is

made and limitations discussed.

Traveling Wave Tubes (TWT's) have been and have remained the backbone of all civilian and military space communication programs since 1960 in near earth and synchronous orbits and in the historic NASA-JPL deep space missions. The presently experienced growth in commercial Space Communications has been, to a large part, due to the excellent performance of TWT's as output amplifiers in space transponders. These modern light weight amplifiers are typically 40 to 52 percent efficient, provide 40 to 60 dB of gain and consume 80 to 90 percent of spacecraft power. Currently, ultimate satellite life time is limited by the life of the thermionic cathodes (100 000 to 150 000 hr); the life of the NiCd battery cells and the hydrazine supply required for station keeping. In this presentation, Fig. 1, we shall review the state-of-art of Electron Beam Devices (EBD's) in space applications and discuss the challenges and limitations and draw a comparison, derived directly from Maxwell's equations, between Solid State (SS) and EB Devices.

There are four industrial companies in the Western World: Hughes and Watkins-Johnson in the USA, and Telefunken and Thompson-CSF in Western Europe, who develop and manufacture space qualified TWT's. U.S. companies have been involved in space communication and the exploration of the solar system since the early 1960's. Figure 2

summarizes the historic deep space missions of NASA in the past and those planned in the future. Let it be said that NASA has not lost a single TWT in its deep space missions, but lost two SS amplifiers. Figures 3 to 5 list some of the many dozens of TWT's built and flown by Hughes since 1960. The sheer number indicates the degree, diversity and the success of this activity that includes commercial satellites. military applications, near earth orbit and deep space missions. Some of the lower power TWT's that use oxide cathodes have surpassed 100 000 hours in space flights. The average life span of these devices is about seven years. All tubes have light weight ppm focusing and depressed col-lectors. The new developments, Fig. 5, concentrate on high frequencies >10 GHz and higher power, >20 W. The latter employ B and M type cathodes. Figure 6 provides a list of selected W-J space TWT products. Noteworthy are the TWT's that participated in the famous deep space missions, the Mariner, Pioneer, Viking and Voyager, and the newer developments in the Ku Band above 20 W level that involve M cathodes. Next, we shall review the European developments. In contrast to USA, where Direct Broadcasting (DB) was ruled out initially for strictly non-technical reasons, the majority of European space tubes have been developed for DB satellites. Figure 7 is a summary of Thompson-CSF TWT developments for higher and medium power. All French high power TWT's have a well proven double braze technique where a copper helix is brazed to a BeO rod and the latter to the envelope. The result is a low temperature gradient of $\Delta T = 2^{\circ}$ C/W dissipation which is, according to CSF, 10 times better than interference fit. These tubes employ a pyrolytic graphite self radiating collectors and achieve above 50 percent efficiency in the higher power range. Very similar developments are being pursued by Telefunken in Germany. Figure 8 is a list of Telefunken Space TWT's. Noteworthy are low voltage (4.5 kV) 20/30 GHz helical TWT's, the 12 GHz - 260 W helical tube for DBS and the 450 coupled cavity TWT, the latter two with more than 50 percent efficiency. The designs are programmed such as not to disturb the strict linearity requirements for AM/PM and group delay. Common to all these efforts are rigorous thermalvacuum tests, burn-in routines, mechanical tests and controlled processing procedures.

1714

2

That much about TWT's that are either in production and/or testing for existing or to be developed satellite systems. In addition, NASA has developed a 200 W CTS Tube 1973 and is developing 100 - 200 W CW space transmitters for future electronic mail services at 40 and 84 GHz, 100 W for deep space stations around 100 GHz and 25 W linear TWT's at 59 to 64 GHz for Inter-Satellite links (Fig. 9). With regard to RF design all the above requirements can be met with slow wave-ppm focused-light weight structures that do not (and never did) require cryogenic cooling. However, at the high frequency end, the required cathode loading of perhaps 2 to 3 A/cm² may be a challenge beyond 50 000 hours, although a verified performance with M type cathodes at 2 A/cm² indicates a safe operation up to about 100 000 hours.

A real challenge faces the tube community in the requirement to provide a voltage tunable Local Oscillators Sources of 1 mW output over the range of 600 to 2000 GHz. Here, novel approaches to the circuit design, its cooling and beam generation and its focusing are required. A possible concept, that uses diamond as heat conducting base and photo etched structure shows Fig. 10.

Now, what challenges face space tubes The answer is clearly: competition with Solid States. And how to meet it: Since for a given bandwith and frequency, tubes outperform SS in power output, gain and efficiency by a wide margin and in weight/watt at power levels >20 watt, the critical issues are life, reliability and simplicity. Though the performance of TWT's was mostly good, the few blemishes, mainly in the military projects, did much damage to the reputation of tubes. To win the future space tubes must face several challenges some of which are listed in Fig. 11.

Do they have chances to succeed? Yes, both free electron devices and SS must obey Maxwell's equations. Free electrons, moving in a lossless medium (vacuum) and surrounded by perfectly conducting metallic surfaces are far more efficient than SS Devices in which bulk charges move 1000 to 100 000 times slower than free electrons. The SS medium is a far more lossy and a much poorer heat conductor than copper. Because of their poor electronic efficiency, that decreases as f^{-2} and low temperature of operation, the heat rejection in SS is a serious problem (and deficiency) that forces the use of large surfaces for radiation. Their weight must be charged against the SS devices be it in phased arrays or in single units. Finally, the comparison in performance between EBD's and SS, as derived directly from Maxwell's equation is presented in Fig. 12. Proceedings from the fundamental relation that the power flow is equal to the integral over the cross-section, filled with charges, of the group velocity times the stored energy, this integral was evaluated at f = 20 GHz for an optimum SS case (Vg = 10' cm/sec); a slow wave travelling wave tube, and a fast wave EBD. A factor of about a thousand for slow wave and of about a million for fast wave devices results as the ratio of power of EBD to SSD at frequencies where SS do not cut off (<100 GHz). The frequency limit for free electron devices are X-ray frequencies, demonstrated 1894:

What about progress in performance?

Although they seem to get most of the headlines, progess in device technology and performance is not limited to SSD's. During the past 10 years introduction of ultrahigh-vacuum technology, modern depressed collectors, and diamond IIA and BeO structural-support dielectrics in microwave tubes has produced a tenfold increase in CW output power, doubled to guadrupled efficiency, and pushed frequency ranges into the terahertz region (orders of magnitude beyond the SSD cutoff).

As a matter of fact, the rate of progress in power amplification and generation is presently larger for EBD's than for SSD's.

The limitations that solid-state devices exhibit in frequency, power output, efficiency, and heat dissipation show that if wave-type, electron-beam devices for microwave frequencies did not exist, it would be necessary to reinvent them.

SUMMARY OF PRESENTATION

- 1. NASA JPL HISTORIC DEEP SPACE MISSIONS.
- 2. SURVEY OF SYNCHRONEOUS ORBIT TWT'S UP TO 20 GHz
- 3. HIGH POWER DBS TWTS AT 12 GHz
- 4. NEW DEVELOPMENTS AT 42 AND 86 GHz
- 5. VOLTAGE TUNABLE L. O. SOURCES FOR 600-2000 GHz
- 6. CHALLENGES FOR FUTURE
- 7. COMPARISON WITH SOLID STATES AND BASIC LIMITATIONS

Figure 1,

MISSION	YEAR	TUBE TYPE	Po. W	F,	MODEL	MFR	NO. OF
				GHz			FLIGHTS
PIONEER 1-9	58-69	TWT	8	S	214-Н	HAC	9
10-11	72-73	TWT	9	S	274-10	WJ	2
RANGER	62-65	TRIODE	3	L	ML-6771	MAC	6
MARINER VENUS	62	TRIODE	3	L	ML-6771	MAC	1
MARS	64	TWT	10	S	216-Н	HAC	1
		TRIODE	10	S	7H7C	SIEMENS	1
VENUS	67	TWT	10	S	216-H	HAC	1
		TRIODE	10	S	7H7C	SIEMENS	1
V/M	69-73	TWT	20	Ś	242BH	HAC	4
SURVEYOR	66-68	TWT	10	S	21Н	HAC	7
LUNAR ORBITER	66-67	TWT	20	S	WJ-274	WJ	5
APOLLO	65-70	TWT	5/20	S	394-H	HAC	14
LEM		AMPLITRON	20	S	QKS-1300	RAY	
SATURN		TWT	23	S	WJ-274-1	WJ	7
HELIOS	75	TWT	10/20	S	WJ-274-12	WJ	2
SKYLAB	73-74	TWT	5/20	S	395-н	HAC	3
VIKING	75	TWT	20	S	242-BH	HAC	1
ERTS A & B	?	TWT	10/20	S	WJ-274	WJ	2
MJS-77	77	TWT	25	s	WJ-274	L.W.	1
	İ	TWT	22	x	WJ-3616	WJ	ī
GALLILEO						-	-
VOYAGER	1976						
PIONEER	1975			ļ			
VENUS-MAPPER				Í			

SPACECRAFT TRANSMITTERS FOR DEEP SPACE MISSIONS

Figure 2.

HUGHES EDD Summary of L- AND S-BAND SPACE TWI AND TWIA EXPERIENCE

Figure 3.

ORIGINAL PAGE IS VTIJAUO ROOG 70

ORIGINAL PAGE IS OF POOR QUALITY

0	
<u> </u>	
_	
ŝ	
I	
5	
Ŧ	
-	

...

EXPERIENCE
TWTA
AND
TWT
SPACE
C-BAND
OF
SUMMARY

.

SPACECRAFT	TUBE TYPE	SATURATED	VTED JT	CENTER FREQUENCY	NOMINAL TOTAL	CATHODE	LIFE	UFE TEST	SPACE	CE	NOTES
		POWER WATTS	N 89	GHz	EFFICIENCY 5	AIcm ²	NO. OF TUBES	TOTAL HOURS	NO. OF TUBES	TOTAL	
EARLY BIRD	21 9 H	ę: ()	4	4.07	36	0.176	8	162, 098	2	56, 200	THRU 31 MAR. 75
INTELSAT II	21 31	6.0	41	4, 07	*	0, 176	12	65, 754	16	200, 160	THRU 31 DEC. 81
INTELSAT III	23 9 H	12.0	¥	3.95	33	0, 140	,	,	10	711,772	THRU 5 JAN. 79
INTELSAT IV	361 H	6° 0	*	3.95	æ	0, 190	1	1	168	4723, 040	THRU 30 JAN, 80
INTELSAT IV	262H	i. 5	*	3.95	15	0. 281	æ	117, 844	26	286, 879	T:4RU 31 MAR. 80
INTELSAT IVA	275HA	5.0	55	3.95	*	0, 178	1	4, 340	110	1766, 390	THRU 30 JUNE 80
INTELSAT IVA 271H	271H	6.0	52	3.95	8	0, 190	4	191, 056	8	743, 580	THRU 30 JUNE 80
WESTAR	279HA	5.0	55	3.95	*	Q. 178	,	136, 784	*	1243, 782	THRU 30 JUNE 80
TELESAT	H515	5.0	55	3.95	*	0, 178	,	,	*	1753.228	THRU 31 MAR. 80

Figure 4.

ORIGINAL PAGE IS OF POOR QUALITY

NOTES		DISPENSER M	DISPENSER CATHODE	1581 BEAMOFF CYCLES	DISP CATHODE TYPE B	DISP CATHODE TYPE M	DISP CATHODE TYPE B		DISPENSER CATHODE		DISPENSER CATHODE	DISPENSER CATHODE	MULTIMODE
IION	TOTAL HOURS		1	1	1	•	•	•	1	ı	ł	1	,
SPACE OPERATION	NO, OF Tubes		1	1	ł	ŀ	ı	1	ł	ı	'	۱	I
EST	TOTAL HOURS		,	52, 841	58, 914	35, 570	6' 9'.5	1	,	'	١	•	ı
LIFE TEST	NO. OF TUBES		ı	2	æ	2	2	1	,	,	·	1	'
CATHODE	A/cm ²	W	M 0.700	B 0.190	B 0.500	M 0.500	B 0.500	8 0.330	B 0.700	0, 280	M 1.0	B 0.700	0.400
NOMINAL TOTAL	EFFICIENCY %	46	42	¥	40	40	9 0	40	35	50	40/25	35	R
CENTER FREQUENCY	GHz	12	11.1	7.5	15.0	15.0	11. 9	8.2	20.0	12.4	19. 5	22132	22
ATED	GAIN dB	ន	\$	8	8	93	93	40	45	45	50/20	46	R
SATURATED OUTPUT	POWER WATTS	200	20.0	40.0	20.0	20.0	20.0	50.0	15.0	5.0	75125	10.0	3-30
1UBE TYPE			289H	793H	286HP	286HP	286HP	287H	H288	274H	91 8 H	950HA	H056

Figure 5.

HUGHES EDD Summary of X-Band and Higher Frequency Space IWI and Twia Experience

WATKINS-JOHNSON EXPERIENCE IN SPACE AMPLIFIERS

•

·

DATES	PROGRAM/CUSTOMER	DESCRIPTION
1966-67	MARS HARD LANDER/JPL	WJ-398, TWT, 20 WATT, S-BAND, DEVELOPMENT PROGRAM, HIGH IMPACT
1968-69	MARINER 69/JPL	WJ-1084, TWTA, 10/20WATT, S-BAND, FLIGHT PROGRAM, HAC TWT
1970-72	PIONEER JUPITER/TRW	WJ-1171, TWTA, 8WATT, S-BAND, FLICHT PROGRAM, WJ-274 T.VT
1971-73	VIKING LANDER/RCA	WJ-1185, TWTA, 20WATT, S-BAND, FLIGHT PROGRAM, WJ-274 TWT
1974	VOYAGER '77/ JPL	WJ-1280, TWTA, 10/30WATT, S-BAND, FLIGHT PROGRAM, WJ-274 TWT
1974	VOYAGER '77/ JPL	WJ-1290, TWTA, 15/26WATT, X-BAND, FLIGHT PROGRAM, WJ 5616 TWT
1977	DEVELOPMENT	WJ-XXXX, TWTA, 30 WAIT, Ku-BAND, DEVELOPMENT PROGRAM, WJ-3710 TWT
1976-77	DEVELOPMENT	WJ-XXXX, TWTA, 50WATT, Ku-BAND, DEVELOPMENT, WJ-3619
1978	LAND SAT -D/GE	WJ-1227 TWTA, 22 WATT, KU-BAND, FLIGHT PROGRAM, WJ-3710 TWT
1982		20 GHz, 25 WATT, 40% EFFICIENCY TWT

Figure 6.

.

TUBE No.	OPERATING FREQUENCY	OUTPUT POWER	TYPICAL OVERALL EFFICIENCY (%)	PROGRAMS	REMARKS
TH 3579	11.7-12.5	100 - 150	50	BS2	
TH 3619	11.7-12.5	200 - 230	50	TdF1	
TH 3660	12, 50 - 12, 75	30	40		UNDER DEVELOPMENT
TH 3669	12.0-12.5	70	46	**	IN DESIGN PHASE

THOMSON - CSF TV-SATELLITE TWT'S

THOMPSON - CSF MEDIUM POWER SATELLITE TWT'S

TUBE No.	OPERATING FREQUENCY (GHz)	MINIMUM OUTPUT POWER AT SATURATION (W)	TYPICAL OVERALL EFFICIENCY (%)	P ROG RAMS	REMA RKS
TOP 1369" TH 3525	10, 95 - 11, 70 10, 95 - 11, 70	20 20	30 42	STP OTS	45 IN LIFE TEST 13 IN LIFE TEST 4 FLEW IN OTS2 ⁴
TH 3559°	10. 95 - 11. 76	10. 5	40	INTELSAT V PROPOSED FOR INTELSAT VI	82 FLIGHT COELS (FM) DELIVERED 80 FMs ON ORDER 30 FMs IN ORBIT
TH 3593	10. 95 - 11. 70	20	42	ECS	32 FMs FOR THIS PROGRAM
TH 3609	8.0-8.5	20	42	SPOT AND ISPM	QUALIFIED IN 1980 6 FMs FOR SPOT 4 FMs FOR ISPM 4 FMs FOR JPL
TH 3626	12, 50 - 12, 75	20	40	TELECOM 1	QUALIFIED IN 1981 30 FMs TO BE DELIVERED
TH 3628	7. 250 - 7. 375	20	45	TELECOM 1	QUALIFIED IN 1981 10 FMs TO BE DELIVERED
TH 3629	3.7-4.2	16	40	TELECOMM SATELLITES	UNDER DEVELOPMENT
TH 3660	12.50-12.75	30	4C	TELECOMM SATELLITES	UNDER DEVELOPMENT
TH 3662	20-GHz BAND	25	TBD	TELECOMM SATELLITES	UNDER DEVELOPMENT

* SINGLE-STAGE COLLECTOR

TWO-STAGE COLLECTOR

.

TWO FREQUENCY VARIANTS ALSO FLEW IN CTS/HERMES

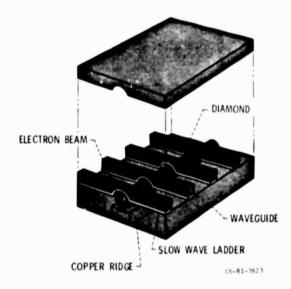
Figure 7.

PROGRAM	3471 1WI	SAT OUTPUT POWER (N)	FREQUENCY (GHz)	EFFICIENCY RJ	NUMBER OF COLLECTOR STAGES	PROGRAM STATUS
SYMPHONIE	11. 40 03	13	3.7-4.2	×	1	IN SPACE
015	TL 12027	R	10, 9- 11, 8	8	2	IN SPACE
MARATS	TL 12022	R	10, 9- 1L8	8	2	11 GHZ NOT APPLIED
ANIK "8"	0109 11 20021 11	88	11, 7-12, 5 3,7-4,2	83	č	IN. SPACE
TDRSS	0021 11	R	11,7-12,2 UND 13,4-14,05	41	Ci	IN PRODUCTION
SBS	11 12026	8	11, 7 - 12, 2	2,5	3	IN PRODUCTION
ANIK "C"	11 12016	2	11, 7 - 12, 2	2.5	•	IN PROGUCTION
20/30 GHz	11 20030 11 30010	anz	Q Q	12,686	r	IN PRODUCTION
D8S	HELK	æ	12	52	C	TESTED
Des	COUPLED	2	n	\$.	TESTED

COMMUNICATION SATELLITES EQUIPPED WITH AEG-TELEFLAKEN TWT'S

Figure 8.

ORIGINAL PROE IS OF POOR QUALITY


NEW DEVELOPMENTS FOR 30-100 GHz

- A. UPLINK TRANSMITTERS AT 30 GHz
 - 1. COUPLED CAVITY TWTs: 200-2000 WATTS, 2 GHz BW
 - 2. TUNNELADDER TWTs: 200 WATTS, TUNABLE OVER 2 GHz
 - 3. KLYSTRONS, SEVERAL KW, MECHANICAL TUNING
- B. SPACE TRANSMITTERS AT 40 GHz
 - 1. COUPLED CAVITY TWTs: 200 WATTS
 - 2. TUNNELADDER TWTs: 200 WATTS
- C. INTER SATALLITE LINKS AT 59-64 GHz
 - 1. COUPLED CAVITY TWT: LINEAR, 25 WATTS
- D. SPACE TRANSMITTERS AT 84-86 GHz (NOT YET UNDER DEVELOPMENT)
 - 1. COUPLED CAVITY TWT
 - 2. IN LINE LADDER TWT
 - 3. STAGGERED LADDER TWT
 - 4. GYROTRON OR PENIOTRON DEVICES
- E. STATE OF ART:

IN LINE LADDER TWT: 1 kW cw AT 94 GHz GYROTRONS: 10 kW cw AT 120 GHz

Figure 9.

LEWIS PROPOSED CONCEPT FOR SUBMILLIMETER BWO'S

OF POOR QUALITY

1. IMPROVE RELIABILITY AND SIMPLICITY

2. LINEARIZE THE POWER TRANSFER OF TWT'S

3. IMPROVE THE EFFICIENCY OF TWT'S TO: 60% AT 4-25 GHz

50% AT 25-50 GHz

Figure 11. - Challenges for space EBD'S.

	STORED ENERGY DENSITY	WE - 1/2 COFF C	
	POWER FLOW	$P = 1/2 \epsilon_0 \epsilon_T V_g \int_A E^{2} dd$	A.
PARAMETER	SOLID STATE D	S. W. EBD	FW EBD
TRANSIT TIME	DESTRUCTIVE: 1-2	CONSTRUCTIVE	CONSTRUCTIVE
٤٢	~10	1	1
É	2V/1µm = 2.10 ⁴ V/cm	<u>5</u> - β√2 K P ≈1.10 ⁴ V cm	2, 10 ³ V/cm
v _g	10 ⁵ - 1, 10 ⁷ cm/sec	8. 10 ⁹ cm/sec	1. 10 ¹⁰ cm/sec
AREA	(150 µn) ² - 0, 015 ² cm ²	$\left(\frac{\lambda_0}{15}\right)^2 = 0.1^2 \text{ cm}^2$	λ ₀ ² • 2, 25 cm ²
MEDIUM	SEMICONDUCTOR	VACUUM	VACUUM
MATERIAL	SEMICONDUCTOR CONDUCTOR	CONDUCTOR	CONDUCTOR
SOURCE	BULK CHARGES	FREE ELECTRONS	FREE ELECTRONS
POWER	$P \approx 0.5 \eta_{SS}$	P = 360 π _{EB}	$P = 10^6 \eta_{EB}$

COMPARISON OF SOLID STATES AND EBD_s (20 GHz)

STORED ENERGY DENSITY WE + 1/2 $\epsilon_0\epsilon_r~\epsilon^2$

Figure 12.

1. Report No.	2. Government Accession No.	3. Recipient's Catalog No.
NASA TM-83425		
4. Title and Subtitle		5. Report Date
Space Power Tubes - Very N	luch Alive	6. Performing Organization Code
		506-58-22
7. Author(s)		8. Performing Organization Report No.
		E-1714
Henry G. Kosmahl		10. Work Unit No.
		10. WOR ONLING.
9. Performing Organization Name and Address		
National Aeronautics and S	inner lidministration	11. Contract or Grant No.
Lewis Research Center	space nummistration	
Cleveland, Ohio 44135		12. Type of Report and Period Covered
12. Sponsoring Agency Name and Address		-
· · · · · ·		Technical Memorandum
National Aeronautics and S	Space Administration	14. Sponsoring Agency Code
Washington, D.C. 20546		
Institute of Electrical an October 4-6, 1983. Materi International Electron Dev 13-15, 1982 (NASA TM-8297) 16 Abstract The application of the TWT communication programs - 1 Performance characteristic reviewed. Finally, a comp	Electronic Conference (CECO d Electronics Engineers, Inc al also partially presented vices Meeting, San Francisco, b). T - the backbone of all civil to past, present and future s cs and the trends and challen barison with Solid State devi e and limitations discussed.	., Cleveland, Ohio, at the IEEE 1982 California, December ian and military space atellites is discussed. ges in the future are
17. Key Words (Suggested by Author(s)) TWT's for space communicat	18 Distribution Stat tions Unclassif STAR Cate	ied - unlimited
19. Security Classif (of this report)	20. Security Classif (of this page)	21 No of pages 22 Price*
Unclassified	Unclassified	