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SUMMARY

A procedure is outlined for the numerical solution of the complete elas-
tohydrodynamic lubrication of rectangular contacts incorporating a non-
Newtonian fluid model. The approach uses a Newtonian model as long as the
shear stress is less than & limiting shear stress. If the shear stress exceeds
the limiting value, the shear stress is set equal to the limiting value. The
numerical solution requires the coupled solution of the pressure, film shape,
and fluid rheology equations from the inlet to the outlet. Isothermal and
no-side-leakage assumptions were imposed in the analysis.

The influence of dimensionless speed U, load W, materials G, and
sliding velocity U* and limiting-shear-strength proportionality constant

on dimensionless minimum film thickness H was investigated. Fourteen

min
cases were used in obtaining the minimum-film-thickness equation for an elas-
tohydrodynamica]]y.lubricated rectangular contact incorporating a non-Newtonian
fluid model

3.85

= H

0.60,0.23
Hmin min,N U

{exp[-a.ocaxio'g(u*) (WG)

0.71 0.71
+ 2.06(y - 0.07)] + U*} (1 - Uu*)



where

0.71,0.57,~0.11
Hgn,n = 307 U706 "W

Computer plots are also presented that indicate in detail pressure distribu-
tion, film shape, shear stress at the surfaces, and flow throughout the

conjunction.

INTRODUCTION

To obtain a better understanding of the failure mechanism in machine
elements, the next generation of elastohydrodynamic lubrication analysis
should incorporate such effects &s

(a) Non-Newtonian fluid

(b) Surface roughness

(c) Temperature
Although a Newtonian solution for elliptical contacts had been obtained by
Hamrock and Dowson (1981), it was felt that a rectangular or line-contact
analysis should be used to incorporate these effects because of their added
complexity. A rectangular or line-contact analysis was performed by Hamrock
and Jacobson (1982). The analysis required the simultaneous solution of the
elasticity and Reynolds equations. lhe equations were coupled from the inlet
to the outlet assuming isothermal conditions and no side leakage. The re-
sults from Hamrock and Jacobson (1982) are the foundation for the more com-
plicated analysis incorporating non-Newtonian fluid, surface roughness, and
temperature. When considering these effects, the initial pressure profiles
are those obtained from the authors' earlier work.

The present paper considers incorporating a non-Newtonian fluid model
into the theory of elastohydrodynamic lubrication of rectangular contacts.

The geometry of the problem is a roller, rolling and sliding against a plate,
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where the roller length is large as compared with the radfus. The lubricant
in an elastohydrodynamic conjunction experiences vapid and very large pres-
sure variations, a rapid transit time, possible large temperature changes, and
particularly in sliding contacts, high shear rates. The great severity of
these conditions has called into question the normal assumption of New- tonfan
behavior. The approach to be used in this paper is to redefine the pressure
and mass flow rate equations depending on how the values of shear stress at
the surfaces compare with the limiting shear stress. The limiting shear
expression used is a semiempirical linear function of pressure.

Gacim and Winer (1981) used a non-Newtonian fluid rheological model in
their elastohydrodynamic lubrication studies, Some limitations of this work
are listed below:

(1) The analysis assumes a non-Newtonian fluid model for the entire
conjuction including the inlet region. The present paper uses a non-
Newtonian fluid model only when the shear stress at the surfaces exceeds the
1imiting shear stress,

(2) The Gacim and Winer analysis relies on using a Grubin type of
solution rather than employing a complete soluttion of the Reynolds, rheology,
and film shape equations as is used in the present paper.

(3) The Gacim and Winer paper assumes that the limiting shear stress is
zero when the fluid pressure is zero. The present paper assumes that the
limiting shear stress is equal to an initial shear strength when the pressure
is zero.

Figure 1 shows the effect of shear stress on shear strain rate for the
present model and that of a Newtonian fluid. From this figure it is observed
that, in the present model, if the Newtonian shear stress exceeds the limit-

ing shear stress, the shear stress is set equal to the limiting shear stress.



The fluid model is Newtonian except when the shear stress reaches the shear
strength value. At that point, slippage occurs and the shear stress s equal
to the shear strength, \

Besides the dimensionless 10ad, speed, and materials plrlnoicrs that were
found to have an influence on film thickness in the authors' earlier paper
(Hamrock and Jxcobson, 1982), when non-Newtonian effects are considered, two
additional parameters were found to influence the minimum film thickness,
namely:

(1) Sliding velocity

(2) Limiting-shear-strength proportionality constant

Fourteen cases were used in obtatning a fully flooded film thickness
equation when considering non-Newtonian effects of the 1iquid. Besides the
film thickness calculations that were made, calculations of the force com-
ponents, shear forces, coefficient of friction, and center of pressure were
also performed. Computer plots are presented that indicate pressure distri-

bution, lubricant film shape, flow, and shear stresses within the conjunction.

SYMBOLS
1/n
semiwidth of Hertzian contact, RY8W/w, m

b/n, m
modulus of elasticity, N/mé

m ol o o

£ effective elastic modulus, 2/[(1 - v2)/E* (1 - v2)IE,), NIme

dimensionless shear force i

shear force per unit length, N/m

dimensionless materials parameter, of'

T O -

dimensionless film thickness, h/R

Hmin dimensionless minimum film thickness, hyin/R
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Tlnin
Rnin, N

Pmin

dimensionless minimum film thickness obtained from
least-squares fit of data

dimensionless minimum f{iim thickness obtained from
least-squares fit of data while assuming a Newtonfan fluid
model .

film thickness, m

minimum film thickness, n

dimensionless distance from inlet to the center of Hertzian
contact

number of nodes in semiaxis of contact
dimensionless pressure, p/E’

pressure, N/m2

dimensionless mass flow per unit length, q/pousR
mass flow per unit length, kg/(s<m)

effective radius in x direction, m

curvature radius, m

geometrical separation, m

dimensionlec; speed parameter, nouS/E'R

dimensionless velocity, u/ug
dimensionless sliding velocity, “d/“s

ORIGINAL PAGE IS
velocity in direction of motfon, m/s OF POOR QUALITY
velocity difference, (ua - ub)lz. m/s

velocity sum, (ua + ub)/2. m/s

(Fmin - Hmin)100/Hnin

(w - u) 100/u
dimensionless load parameter, wz/E'R
load'per unit length, N/m

dimensionless coordinate, x/b

T



Subscripts:
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dimensionless coordinate in direction of film, 2/h

coordinate in direction of motion, m

coordinate in direction of film thickness._m
pressure-viscosity coefficient of lubricant, nzln
1imiting-shear-strength pronortionality constant
elastic deformation, m

coefficient of determination

absolute viscosity at gage pressure, N s/me

dimensionless viscosity, “’“0

viscosity at atmospheric pressure, N s/ml
coefficient of friction

Poisson's ratio

lubricant density, kg/m3

dimensionless density, 0/sg

density at atmospheric pressure, kg/m3
shear stress, N/ml

dimensionless shear stress, ¢ /E'

shear stress ratio, v/t

1imiting shear stress, N/m

dimensionless 1imiting shear stress, TL/E'

dimensionless initial shear stress constant

solid a
solid b
coordinate in direction of motion

coordinate in direction of film thickness




THEORY

The non-Newtonian approach will be to consider the flow conditions at the
surfaces. The flow has two components, the flow due to velocity (Couette) and
the flow due to the pressure gradient (Poiseuille).

In figure 2 we attempt to explain the velocity of the fluid for the five
distinct zones that might exist in an elastohydrodynamic conjunction when non-
Newtonian effects of the lubricant are considered. In each zone the velocity
of the top surface is greater than that of the bottom surface. To better

indicate the difference between the 2ones, values of u, and Uy will be

2
kept constant for each zone. In figure 2(a), zone 0, the normal Newtonian
zone, the shear stresses at the surfaces are less than the 1imiting shear
stress, and no slippage of the fluid at the surfaces occurs. In figure 2(2),
zone 1, the Newtonian shear stress at the top surface is larger than the
limiting shear stress and slippage occurs at the top (faster) surface. In
figure 2(a), zone 3, the shear stresses at both the top and bottom surfaces
are outside the limiting range (v, < - ¥ and v,> v ) and s1ippage occurs at
both surfaces, but the slippage velocity is less than the velocity at the sur-
faces. In figure 2(b), zone 2, the Newtonian shear stress at the bottom sur-
face is larger than the l1imiting shear stress, and slippage occurs at the
bottom (slower) surface. In figure 2(b), zone 4, the same sort of situation is
present as in zone 3 with the exception that the fluid slippage is greater than
the surface velocity.

The relevant equations for the five distinct zones that can occur in an
elastohydrodynamic lubrication contact when non-Newtonian effects are con-

sidered are developed next. Before we define these relevant equations for the



five zones, we need to define the dimensionlass limiting shear strength. For
most materials the shear strength varies linearly with pressure over wide
pressure ranges, and there normally is a certain shear strength even at 2ero

pressure. It is written as

‘L - :0 + 7P (l)
where

ro dimensionless initial shear strength

Y limiting-shear-strength proportionality constant

Jacobson (1970) found values of ;b for a rangs of fluids to be
between 1x10-5 and 1x10~4. For the results given in that paper %

was assumad $o be 9x10'5. Bair and Winer (1979) found y to be between 0.05
and .10 for a complete range of natural and synthetic lubricating oils.
Tevaarwerk (1976) used similar values of y in his traction studies. In the

present paper we consider a range of y between 0.04 and 0.10.

Zone 0

The Newtonian model gives 1, <, and v, <t,. In this zone the

rheological model is a Newtonian fluid and no slippage occurs at either sur-
face. The velocity distribution across the lubricant film for this situation
is depicted in figures 2(a) and (b), zone O. The velocity, the velocity

gradient across the film, and the shear stress at the surfaces can be written

directly from Hamrock and Dowson (1981) as
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equations (2) to (5) can be written in dimensionless form as

2
. H x dpP
U=1-0U*1-22)+— 2(z -1
AL Yo

(2)

(3)

(4)

(8)

(6)

(7)

(8)

(9)

(10)
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Since this s zone 0, the Newtonian model gives t, < 7t and W < T
The dimensionless mass flow per unit length and its gradient set equal to

zero give

1
0s 5t -:u/o' oz -5 f;-u Vo i) (1)

dQ/dX = 0 gives

d (43 op W d
'Ji(g—ai)' 2 Y2 4 G (12)

The second term on the right side of equation (11) is the Poiseuille or
pressure term. For a Newtonian fluid equation (12) is the familiar Reynolds
equation when sidc leakage is neglected. This equation will be referred to

as the pressure equation since it will change for the respective zones.

Zone 1

The Newtonian model for zone 1 gives |;;! >t and I;Ll <17
The velocity distribution across the film that exists in this zone 1s shown in

figure 2(a). Slippage occurs at the top surface so that the velocity at the

fluid-solid boundary is denoted by Ua. This implies that in this zone the

velocity, the velocity gradient, and the shear stresses can be directly

obtained from equations (2) to (5) with the substitution for u,
with Ga' the s1ip velocity. Making use of the non-Newtonian model discussed

earlier leads to the observation that, since 1, > T, then ||

is set equal to «¢. Solving for this slip velocity at surface a, we get

d
Uy = Uy * - 77 O (13)

10




Making use of this equation, we can write the dimensionless velocity,

velocity gradient, and shear stress at the bottom surface as

H2 .
(z -2) P .4y T
v’_ t1-U ¢ = ORIGINAL PAGE g (14)
OF POOR QUALITY
?b"-L"g ‘zﬁ%; (16)

The dimensionless mass flow rate per unit length and the pressure equation for

this zone can be written as

- 'L'NI Hz [ dP)
= = |"| 1 -U**—-—“ 17
¢ pgusk ~ ° ( 2 G YW X (7

3 n2y
(5 28) < V[ - -2
]

The nonunity terms in parentheses in equation (17) are the Poiseuille terms.
Equation (18) is referred to as the pressure equation but also can be viewed
as the Reynolds equation for a non-Newtonian fluid when conditions in 20ne 1

prevail,

lone 2

The Newtonian model for zone 2 gives ?; <t  and T, > ?L.
The velocity distribution across the film that exists in this zone is shown
in figure 2(b). Slippage occurs at the bottom surface (slower moving

surface) so that the velocity at the fluid-solid boundary {is denoted by

11



5b. This implies that in thy; zone the velocity, the velocity gradient,

and the shear stresses can be written directly v.om equations (2) to (5) with

the substitution for u, with Eb. Since the Newtonian model gives

T, 2 ?l. the shear stress at surface b {s set equal to ;l. Solving

for the slip velocity at surface b, we get

v _L_ (19)
Up = Ya = ’TB‘E
Making use of this equation, we can write the dimensionless velocity,
velocity gradient, and shear stress at the top surface as
2 v, (1-2)H
_.LZ__'_I). “4100'-1__2_ (20)
& U
2 - o H
dy ZW [idP L {21)
z 2?0&“ U
- - % dP
T, =T ? m“ (22)
Note that, in order to be in zone 2, |;;|< ;l. From equation (22) we
observe that this is only possible 1f dP/dX is negative. Likewise, in
zone 1, |?5| < ?L. From equation (16) we observe that this is only
possible if dP/dX is positive.
The dimensionless mass flow rate per unit length and the appripriate
pressure equation for this zone can be written as
- « 9HoWw2 e
Q-oﬂ(l*l' - —_—-— (23)
w0 Gay VA X
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3 7 T K2
-‘;ﬁ(_" "").su{_ 1+um(pu)-m“(nl ) (24)

n

The nonunity terms in the parentheses in equation (23) are the Poiseuille terms.
Zone 3

The Newtonian model for zone 3 gives t, > v, and equation (16} gives
;5'5 -?L. Figure 2(a) shows the velocity distribution across the lubricant
film. Slippage occurs at both the top and bottom surfaces, and the slip
velocity is less than the velocity of the slow surface (surface b). In this
zone the velocity, the velocity gradient, and the shear stresses can be written

directly from equations (2) to (5) with the substitution for u, with

Ga and u with Eb. Since the Newtonian model gives ©, >, the shear

stress at the top surface, surface a, is set equal to ?L and since

equation (16) gives ;b.i J;L, the shear stress at surface b is set equal

to -?l. From these equations we find that u. = Gb' The dimensionless

a

velocity gradient can be written as

o HZZ-27 @
U —mmm+ (25)

=
[t
(=
v |

a = =, (26)

The dimensionless mass flow rate per unit length and the appropriate pressure

equation can be written as

- W
°'°"(1' s"s‘a's;t) (@)

g- 4{7— e (28)

Tk> nonunity terms in parentheses in equation (27) are the Poiseuille terms.

13
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The Newtonian model for zone 4 gives Fb > ;L and equation (22) gives

?‘ < -?L. Figure 2(b) shows the velocity distribution across the lubricant

fiim. Slippage occurs at both the top and bottom surfaces. The difference
between zone 3 and zone 4 is that in zone 3 the slip velocity is less than the
slower surface velocity and in zone 4 the slip velocity is greater than the
faster surface velocity. In zone &4 the velocity, the velocity gradient, and

shear stresses can be written directly from equations (2) to (5) with

the substitution for uy with ;a and Uy with ;b° Since equation (22)
gives T, < =, the shear stress at surface a is set equal to - ; and
since the Newtonian model gives ;b >'?L. the shear stress at surface b is set
equal to ?L' The dimensionless velocity, velocity gradient, mass flow, and
pressure can be directly written from the equations developed in zone 3

(eas. (25) to (28)) if < s substituted for 1 . Note that in

order to be in zone 3 from eauation (28), the pressure gradient must be
positive; and in order to be in zone 4, the pressure gradient must be

negative,
Density, Viscosity, and Film Shape Equations

The equations that define velocity, velocity gradient, shear stress, flow.
and pressure for the five zones have been defined. Before proceeding, however,
the dimensionless density, viscosity, and film shape need to be expressed. For
a comparable change in pressure the density change is small as compared with
the viscosity chaﬁge. However, very high pressure exists in elastohydrodynamic
films, and the liquid can nc longer be considered as an incompressible medium.
From Dowson and Hiéginson (1966) the dimensionless density can be written as

- 0.6E'P
R R RS 3 0/ (29)

14




where E' {is expressed in gigapascals.

The effects of pressure on viscosity can be written as

op _ (8P ORIGINAL PAGE Ig (30)
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.

where

a pressure-viscosity coefficient of lubricant, me/N
n, Viscosity at atmospheric conditions, N s/m

The film shape equation can be written from Hamrock and Jacobson (1982)
in dimensionless form as

2(.2
h 1{x(b 2
H =g =Hy* ﬁ[’i‘ (R") + ;Zipinj] (31)
where
jek-1+1

D = b[(X - B)1n(X = B)Z = (X + B)In(X + B)2 + 48(1 - 1n b))

and
b semiwidth of the Hertzian contact, R</8BW/x
B 1l/n

n number of nodes in semiaxis of contact

The last term in equation (31) represents the elastic deformation at a
point x due to the contribution of various rectangular areas of uniform
pressure in the conjunction.

Having defined density, viscosity, and film shape, we can return to the
solution of the mass flow and pressure equations for the five zones. The first
step is to rewrite these equations by finite difference approximations which
rely on the fact that a function can be represented with sufficient accuracy
over a small range by a quadratic expression., Standard finite central-
difference representation was used, and a procedure similar to that given in
Hamrock and Jacobson (1982) was followed. Figure 3 shows the flow chart of the

pressure loop in the computer program used to evaluate the mass flow and pres-

15



sure from the inlet tu the outlet. In this figure the procedure used in
evaluating zone 0, the Newtonian model, was quite similar to that used in
Hamrock and Jacobson (1982). A similar procedure was used in evaluating the
other zones.

Having defined the pressure from the inlet to the outlet for the non-
Newtonian fluid model, we can evaluate the force components, the shear forces,
and the coefficient of friction. The relevant expressions are presented in

Hamrock and Jacobson (1982) and are not repeated here.

RESULTS
- vxGE 18

NIRRT

rv‘ sk QUALITY

Dincnsionless Grouping

From the variables of the numerical analysis the following dimensionless

groups can be defined:

(1) Dimensionless film thickness: H = %

w
(2) Dimensionless load parameter: W "E$R

' Y
(3) Dimensionless speed parameter: U = tgui

(4) Dimensionless materials parameter: G = of'

e Uy Uy - Uy
(5) Dimensionless sliding velocity: U R TR TR BT
s a b
(6) Limiting-shear-strength proportionality constant: «
The first four groups were used for the Newtonian rluid analysis in Hamrock and
Jacobson (1982). The dimensionless film thickness for a rectangular contact with
a non-Newtonian fluid can be written as

Hoin = hmin’Nf(U*.y.U,H.G) (32)

16




The dimensionless minimum f11m thickness for a Newtonian fluid as obtained from

Wamrock and Jacobson (1982) can be written as

In the present analysis the dimensionless parameters U* and y were varied

and the effect on the minimum film thickness was studied.

Pressure and Film Profiles

Representative variations of dimensionless pressure, film thickness, shear
stress distribution, and mass flow are shown in figures 4 t2 6. In these
figures the inlet region is to the left and the outlet region is to the right.
Figure 4 shows the variation of dimensionless pressure and film thickness on
the X axis for four dimensionless sliding velocities. The Hertzian pressure is
also shown in this figure. The characteristic pressure spike is clearly
evident for each dimensionless sliding velocity, but the spike diminishes as
the sliding velocity increases. Also clearly evident for each sliding velocity
is the parallel film shape through the central part of the contact, with a
minimum film thickness occurring near the outlet of the contact. As the dimen-
sionless sliding velocity increases, the central parallel film thickness
decreases more than the minimum film thickness decreases. As a result the nip
decreases with increasing sliding velocity, where the nip is that portion of
the film shape from the tip of the pressure spike to the outlet of the

conjunction.

Variation of Shear Stress

The shear stress ratio is defined as the shear stress divided by the

1imiting shear stress. Variations of the shear stress ratio at the top

17




(?.) and bottom (;b) surfaces on the X axis are shown in figure 5 for the

four dimensionless s1iding velocities given in figure 4. Recall that the top
surface (surface a) is moving with a greater velocity than the bottom surface
(surface b). For the condition of no sliding (U* « 0) zone O, the Newtonian
model, is valid for the entire conjunction, and the shear stress ratio of the

top surface Y. 1is symmetrical to the shear stress ratio of the bottom

2
surface 3, about the 2ero axis. From equations (9) and (10) this effect

is clearly evident, In these equations the first term on the right is set
equal to zero since U* = 0, and the only remaining effect is the pressure
gradient. There is a difference in sign for the different surfaces. For
sliding velocities U* of 0.01 and 0.02 zones 1 and 2 appear at the tip of the
spike and zone 0, the Nevtonian model, occurs elsewhere. For U* = 0.04 the
zone alloration going from the inlet to the outlet (left to right) is 2one O to
zone 1, to 20ne 2, back to zone 0; then in the spike zones 1 and 2 reoccur.
Zones 3 and 4 do not occur in the final results for figure 5, but these zones
are used to derive a converged solution. For the higher load cases, however,
zones 3 and 4 do appear in the final converged solution.

The shear stress ratio in the inlet up to the beginning of the Hertzian
contact is quite similar for all four sliding velocities. From the beginning
of the Hertzian contact to the tip of the pressure spike there is substantial
change in the shear stress ratio from U* « 0 to U* = 0.04, As the dimen-
sionless sliding velocity increases, the shear stress ratio increases until
for U* = 0.04 there is a large region where the shear stress is equal to the
limiting shear stress, From figure 4 we found that the pressure spike de-

creases with increasing sliding velocity. The result of this is clearly

18



evident in figure 5, where from the tip of the pressure spike to the exit the

shear stress ratio at the top surface T, becomes less negative with in-

3
creasing dimensionless s1iding velocity. The effect of using the non-Newtonian
model 1s quite significant for the largest dimensionless s1iding velocity in

figure 5.

Flow Results

A typical variation of dimensionless flow and the Poiseuille flow terms
on the X axis is shown in figure 6. Since there was very little difference
for the various sliding velocities, a typical result is shown. Equations (11),
(17), (23), and (27) define the dimensionless mass flow rate for the five zones
considered. The Poiseuille flow term in these equations is the term or terms
other than the unity in the parentheses on the right side of these equations,
From figure 6 we find the flow to be constant throughout the contact. Great
care was taken to assure that this was maintained for all the results pre-
sented. As in the authors' earlier publication (Hamrock and Jacobson, 1982)
slight adjustments in pressure profile were necessary in the inlet region to
assure a constant flow. The Poiseuille term approaches unity at the inlet, is
near zero from the beginning of the Hertzian contact to the location of the

pressure spike, and is negative from the pressure spike to the outlet.

Effect on Coefficient of Friction

Figure 7 shows the effect of dimensionless sliding velocity U* on the
coefficient of friction y for three dimensionless loads. For higher loads
the asymptotic value of the coefficient of friction is reached at lower dimen-

sfonless sliding velocities. The dimensionless s1iding velocity given in this
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figure can be equated to the conventional sliding velocity in percent by
multiplying the value of U* by 200. For example U* = 0.03 corresponds to
a conventional 6 percent sliding speed. The results for a Newtonian fluid
are shown in this figure with dashed 1ines. The asymptotic value of the co-
efficient of friction {s between 0.07 and 0.08 for a 1imiting-shear-strength
proportionality constant y of 0.07.

Influence of Sliding Velocity

Cases 1 to 6 of table I show the effect of six values of dimensionless
sliding velocity U* on dimensionless minimum film thickness for constant
values of the other dimensionless parameters. From these results it is ob-
served that as the sliding velocity is increased the minimum film thickness
decreases. However, the influence of sliding velocity was found to be not
simply a function of minimum film thickness but had to be coupled with the

dimensionless speed, 1oad, and materials parameters. Table I also shows these

results. The resulting relationship is

v 3.85
min L1 - a.07x1079(u)0-600- 2362y (34)

H

min,N

The influence of the maximum pressure is represented in this equation by the
grouping HGZ. The coefficient of determination ¢ was also calculated for
these results. The value of ¢ reflects the fit of the data to the resulting
equation: unity representing a perfect fit, and zero the worse possible fit.
The coefficient of determination for these results was 0.9990, which §s

excellent,

20




Influence of Limiting Shear Strength

Cases 9 and 10 of table I show the influence of the 1imiting-shear-

strength proportionality constant y on dimensionless film thickness for
constant values of the other dimensionless parameters. From these three cases
covering the complete range of natural and synthetic lubricating fluids, the

following relationship was found:

ﬁﬁin
Hﬁin.N

The coefficient of determination was found to be 0.9995, which is excellent. i

« 1+ 2,06(y -0.07) (35)

Minimum F{lm Thickness

The proportionality equations (34) and (35) have established how the non-
Newtonian fluid rheological model affects the minimum film thickness for low

sliding speeds. At high sliding speeds the oil film thickness is mainly

governed by the velocity of the slower surface. The reason for this is that
the shear strength is reached at the faster surface and the oil velocity is
given by the slower surface. This phenomenon occurs in the inlet of the con-
junction, The high-sliding-speed cases have not been numerically computed
because of numerical instability. For the film thickness equation to accommo-
date these high-sliding-speed situations, the film thickness equation had to be
modified as indicated below.

3.85

. «H {exp [-4.o9x10'9(u*)°'5°u°'23(us") )

min =~ “min,N + 2.06(y - 0.07i]

. U‘})'n(l _ l',,,)0.71 (36)
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This dimensionless minimum-isothermal-f11m thickness formula is foi ully
flooded rectangular lubricated contacts incorporating non-Newtonian rheological
effects. Asymptotically this equation gives the minimum film thickness at high
pressures (>1 GPa as equal to zero if one of the surfaces is stationary.

Table 1 gives the fourteen cases used in evaluating equation (36). In
this table H,, ., the minimum fiim thickness obtained from equation (36),
corresponds to the minimum film thickness obtained from the non-Newtonian
elastohydrodynamic lubrication theory developed earlier. The minimum-
fiim-thickness equation obtained from Hamrock and Jacobson (1982) for the
Newtonian elastohydrodynamically lubricated rectangular contact is denoted
by Hmin,N ond is given in equation (33). The ratios Hyin/Fmin,N
and Tpin/Fpin,N 2re 21so given in table 1. The percentage difference
between Hyin and Hyin s expressed by Vi, which is defined as

H - H
V. = min min 100 37
1 ( ”min ) (37)

In table I the values of V1 are within 1.0 percent.

ORIGINAL PAGE 1g
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The values of the coefficient of friction for the 14 cases studied are
given in table I. Making use of these results, we can write an approximste
formula for the coefficient of friction as

3.32

T = o.csmo‘s(u*r)o'muo'26 2)

v (w6 when u; < 0.8 y (38)

If the coefficent of friction ]ﬁ is greater than 0.8 y, the following
approximate expreséion should be used:

1]
v = 0.80 y + 0.021 tanh L—l - 0.80] when :1 >0.8¢y (39)
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This coefficient of friction is mainly determined by the shear strength of

the lubricant. The percentage difference between u and u s expressed
by Vﬁ. where

In table Il the values of ¥y are within &9 percent. Equation (39) was
derived from eight calculations of the coefficient of friction with sliding

velocities up to 20 percent and different y values. In these calculations

the pressure distributions from the lower sliding velocities were used. %

CONCLUS IONS

A procedure for the numerical solution of the complete elastohydrodynamic
lubrication of rectangular contacts incorporating a non-Newtonian rheological
model is outlined. The approach uses a Newtonian model as long as the shear
stress is less than the limiting shear stress. If the shear stress exceeds the
limiting shear stress, the shear stress is set equal to the limiting shear
stress. The limiting shear stress is expressed as a semiempirical linear
function of pressure. The numerical solution therefore requires the coupled
solution of the pressure, film shape, and fluid rheology equetions from the
inlet to the outlet without making any assumptions other than neglecting side
leakage.

By using the procedures outline in the analysis the influence of the
dimensionless speed U, load W, and materials G parameters, dimensionless
sliding velocity U*, and 1imiting shear-strength proportionality constant
on minimum film thickness “min has been investigated. Fourteen cases were
used to generate the minimum film-thickness equation for an elastohydro-
dynamically lubricated rectangular contact incorporating a non-Newtonian

rheological medel:
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3.85
Fatn = Ftn, {exp[-4.07x10'9(u*)°°6°U°'23(H62) + 2.06(y - 0.07)]

The minimum-f1lm-thickness equation obtained for an elastohydrodynamically
lubricated rectangular contact incorporating a Newtonian fluid rheology model
'was developed by the authors in an earlier publication (Hamrock and Jacobson,
1982) where

" 0.7150.57,-0.11

Miﬂ," = 3007 U

Besides the dimensionless film thickness formula, formulas for the coefficient
of friction were developed.

3.32
uy = 0.67x1078(u%)0-81,0-28(yg?) for 3, < 0.8 v

*]

Computer plots are presented that indicate in detail pressure distribution,
film shape, shear stresses at the surface, and mass flow throughout the con-
junction. The characteristic pressure spike is clearly evident for each of the
sliding velocities, but the spike diminishes as the s1iding velocity increases.
Also clearly evident in the computer plots is the parallel film shape through
the central part of the contact, with a minimum occurring near the outlet of
the contact. The central parallel film thickness decreases more than the
minimum film thickness decreases with increasing sliding velocity. The result
of this is that the nip decreases with increasing s1iding velocity, where the
nip is that portion of the film shape from the location of the pressure spike
to the outlet of the conjunction. The computer plots of the shear stress at
the surfaces indicate that as the sliding velocity increases these stresses
approach or equal the 1imiting shear stress. A sample computer plot of the

CRIGINAL PAGE IS
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flow shows that it is constant throughout the conjunction. The effect of
sliding velocity on coefficient of friction for various loads fndicates that
as the load increases, the limiting value of the coeffictent of fricton {is
reached for a much lower value of sliding velocity.

National Aeronautics and Space Administration

CRIGINAL. PAGE IS
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TABLE [. - EFFECT OF DINENSIONLESS PARANETERS ON MINDRM FILM THICKNESS

ALITVAD

BB O PAE e e

Olmension- | Otmsnsion— | Dimensionless | Ofmension- Lieiting- Dimension- {lHnip [ Difference, | Coefficient [Coefficient |Differesce,
less load Tess speed materials less sliding shear- less miniawm . of friction,|of friction n,
perancter, | parameter, parameter, velocity, strength | film thickress,|Tnin n Hatn,n percent » from least- percent
" v 6 ue propo - Nain seuares fit,
tiomality . -
constant, »
v
2.0478210-5 | 1.0000x10-11 5000 0 0.07 19.524x10-6¢ 1.000 1.000 0 0.00054
m 19.300 989 . .15 .01227 0.012% 1.87
R 9.204 .588 .906 - .23 02015 .0219 .73
.020 19.260 906 .978 - .74 03613 03062 .M
.03 18.97¢ .72 .97; ? 08 05309 05336 .51
.040 18.687 .957 .96 o .06316 .06403 .
1.6382 0 . 1.000 1.000 o .00081 .3__?
1.6382 .080 20.133 -9%0 906 - .47 .03479 03210 -7.73
2:7': .020 11)4 18.448 lo,;!l' 1.021 - .5 03618 03534 2.3
K .020 0 20.134 . . - .035% 03002 .
.00%¢ $.5975% 3591.1 [} .07 . 1.000 1.000 .00202 §.%
0094 $.597% 3591.1 .01¢ 51.068 .973 .73 0 00678 00658 - .49
0000 1.0000 5900 0 19.05% 1.000 1.000 0 00087 — —
.0000 1.0000 5000 .00% 18.442 .968 .958 - 89 04784 .08441 -£.39
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TABLE II. - EFFECT OF DIMENSIONLESS PARAMETERS ON
DIMENSIONLESS CENTER OF PRESSURE

Case Dimension- |Dimension- |Difference, | Coefficient | Coefficient |Difference,

less center |less center Vo, of friction,| of friction V3,
of pressure,|of pressure percent u from least- percent
Xep from least- squares fit,
squares fit, u
Xep

1 -0.1487 -0.1487 0 0.00054 | - —
2 - .1480 - .1469 - .71 .01227 €.01250 1.87
3 - .1430 - .1452 1.52 .02015 .02191 8.73
4 - .1384 -Jee 2.35 .03613 03842 6.34
5 - .1361 - 10wl 1.49 .05309 05336 .51
6 - .1346 - .1346 0 .06316 06403 1.38
7 - ,1912 - .1912 0 .00081 — ——
8 - .1845 - .1730 - 9.48 .03479 .03210 -7.73
9 - .1360 - .1417 4.16 .03618 .03534 -2.32
10 - .1383 - .1417 2.46 .03592 .03842 6.96
11 - .1810 - .1810 0 .00202 —_— —
12 - .184] - .1753 -4.79 .04678 .04655 - .49
13 - .0971 - .0971 0 00087 | —m—me- ——
14 - .0973 - .0960 -1.34 .04744 04441 -6.39
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Figure L. - Lubricant model.
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Figure 2. - Velocity distributions in the different lubri-
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Figure 3, - Flow diagram.
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Figure 4 - Pressure distributions and flﬂl shapes for different sliding velocities U*, Dimensioniess load parameter W, 2 0478 x 10™ 5,
dimensionless speed parameter U, 107**; dimensionless materiais psrameter G, 5000; limiting-shear-strength proportionality
constant v, 0,07,
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Figure S, - Shesr stress distridutions and lubricating zonoh ¢ ditferent sliding velocities U®, Dimensionless load parameter
W, 20478x107°: dimensiontess speed pprameter U, 107'*: dimensionless materiais parameter G, 5000 limiting-shear-
strength proportionallty constant y, 0.07.
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Figure 7. - Coefficient of friction as a function of lcad and dimen-
sionless sliding veloclly, Dimensionless speed parameter U, 10
dimensionless materials parameter G, 5000 ; limiting-shear-
strength proportionality constant v, 0,07,
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