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ABSTRACT

In this paper, we study the excitation of the Earth's polar motion in connection wit]

M; ^P-

are associated with the diversity of reference frames involved in observations and theoretical compu-

tations. Thus, following the dynamics of the Earth's polar motion, the kinematics that relates

observations from different reference frames is developed. The conventional procedures of studying

the seismic excitation of polar motion are then re-examined accordingly—subject constantly to the

question: relative to what reference frame? It is concluded that an inconsistency in reference

frames has prevailed in the literature. While this inconsistency is indeed far from trivial, the

resultant discrepancy, however, is small for all practical purposes.
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ON EXCITATION OF EARTH'S FREE WOBBLE AND REFERENCE FRAMES

B. Fong Chao
Geodynamics Bra ich, Code 921

Goddard Space Hight Center
Greenbelt, Maryland

1. INTRODUCTION

As any geodetic observations made on the surface of the Earth, the polar motion is a relative

quantity, and the specification of reference frames is a common requirement for all investigations

of the subject. As a matter of fact, now that the precision of measurement is being greatly

improved, the incorporation of various astronomical/geodetic reference frames has become a subject

of great interest and significance, as exemplified by two IAU colloquia (No. 26, 1975 and No. 56,

1980). However, in the study of seismic excitation of the Earth's polar motion, there has been a

lack of consistency in the reference frames used (not as much among different investigators as in

each individual study, see Section 5). For example, theoretical computations are made with respect

to reference frames that are defined lynamically while having no real-world counterpart from the

standpoint of observations. The present paper is an effort to resolve this inconsistency and to assess

its implications.

2. DYNAMICS OF THE EARTH'S FREE WOBBLE

We should point out at the outset that in this paper the term 'polar motion' is used synonymously

with the free (Chandler) wobble, with no regard to any forced annual wobble which is outside the

scope of this study. The basic physical principle governing the Earth's free rotation, in the absence

of any external torques, is the conservation of the angular momentum vector H. In a reference

frame which is under a rotation at angular velocity w, it can be expressed as

d H+wXH=O
dt

where H can be resolved into two parts:

(la)

H = (Moment of inertia tensor) • w + (Relative angular momentum). 	 ( I b)
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Equation (1) is known as the Liouville equation. In reality, the departure of the Earth's rotational

motion from the state of a constant rotation (the latter corresponds to zero polar motion and zero

length-of-day variation) is < 0(1(r 6 ) (where 0 reads `on the order of). As a result, a set of two dis-

joint, linearized equations of motion for the Earth's free rotation can be derived based on the Lion-

ville equation by means of a first-order perturbation scheme (Munk & MacDonald 1960). They can

be written in the following form:

(in - iqm) + (c + ifEc) + (li + ifth) = 0	 (2)

a
\1+	 1113+C33+h3 =0,

where

E2 = 21r/(1 day)

a = S2(C-A)/A

A,A,C = three principal moments of inertia of the unperturbed (axial-symmetric) Earth, C>A

< In 1 , 1112, 1+m 3 > = w/SZ

C = C13 + 1C23	 (4)

1+C 11 	 C12	 C13

C 12	 I +C22	 C23	 = (moment of inertia)/A

C 13	 C23	
1+ E2

11=11 1 +ih2,

< h l ,  h 2 , h 3 > _ (relative angular momentum)/AS2,

overdot denotes time derivative, and < > denotes Cartesian vector. Equation (2) governs the polar

motion in, and equation (3) the length-of-day variation m 3 . Note that m, m 3 (the 'm-terms'), c, c33

(the `C-terms'), and h, h 3 (the `h-terms') are all dimensionless functions of time with infinitesimal

magnitudes, < 0(10-6). As usual, we consider the c- and h-terms as the geophysical `sources' that

excite the m-terms which can be observed astronomically. We shall not take into account the

feedback part' in the c- and h-tenns from the m-terms due to the elastic yielding effect. The latter

(3)
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effect is responsible for lengthening the Chandler period from 10 months to 14 months, but has no

bearing on our forthcoming studies.

3. KINEM ATICS OF TH E EARTH'S FREE WOBBLE

Equations (2) and (3), as pointed out by Munk & MacDonald (1960), are valid in any (non-inertial)

reference frame with respect to which the m-, c-, and h-terms remain infinitesimal. We shall,

loosely, call such a reference fame a `terrestrial frame' (and use the term in a stricter sense later,

see Section 4), and we shall always let the origin of our terrestrial frame be coincident with the

center of mass of the Earth so that translational motions will not enter into our discussion.

It is o4ious that the quantities m-, c-, and h-terms are all frame-dependent, that is, they will be

given different quantitative descriptions by observers from different terrestrial frames. Let us now

study the kinematic relations between these quantities as viewed from one terrestrial frame (Frame

(1)) and that from another terrestrial frame (Frame (2)). Let Frame (2) be related to Frame (1) by

the set of three Eulerian angles (0. 0, ^), as depicted in Figure 1. In general, these Eulerian angles

are functions of time, and 0(t) stays infinitesimal throughout the motion. Now the transformation

law (see e.g., Goldstein 1958) for the angular momentum vector H is, to first order in 0,

	

cos A	 sin A	 0 sin

	

sin A	 cos A	 0 cos	 Hit)	 (5)

	

^0 sin 0	 -0 cos 0	 1

where the superscript (1) or (2) indicates reference frame, and

	

A =0 +> .	 (6)

Substituting equations ( lb) and (4) into (5) and retaining only the first-order terms, we obtain the

following basic kinematic relations that relates observations from two different terrestrial frames:

m(z) + c(z) + h ( - ) = exp(-i0) (111 0) + CM + 110)) + i Cl + 	 ex p(-i^) 0	 (7)

I + S2/ n1
3 (z) + c 33 (2 ) + h; (z) _ (1 +) 1113(1) + c 33 (1) + h ^(1)	 (8)

3
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We see that the quantity in equation (8) is frame-independent, or, an invariant. This is not surpris-

ing because the actual frame-dependency is of second order. That the quantity is in fact also time-

independent can be seen readily from equation (3). We shall leave equations (3) and (8), and hence

the length-of-day problem, as such without further discussions. Equation (7), on the other hand,

is of central importance to forthcoming discussions. Note that, to first order in B, A is simply the

rotation angle between the two x-y planes belonging to Frames (1) and (2) (see Figure 1). Hence

the first term on the right side of equation (7) represents nothing but the rotation transformation

about the z-axis through an angle A. It is the second term that has non-trivial implications, as we

shall see.

Figure 1. The Eulerian angles (0, 6, >) between two reference frames,
Frame (1) and Frame (2).

4. EXCITATION OF EARTH'S FREE WOBBLE AND REFERE NCE F!'%AMES

The solutions to the polar motion equation (2) is

m(t) _ -exp (iot) f m [ 62 (c + h) + ( c + }i)I exp (-ior) dr.	 (9)

4
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For simplicity, let us assume that prior to time t - 0 all the m-, c-, h-terms as well as the ir time

derivatives are identically zero, and the Earth simply rotates in space at the constant angular

velocity SZ = SZz about its figure axis.

Suppose that at time t = 0 the (formerly unperturbed) Earth undergoes a sudden internal redistri-

bution of mass that can be described by an infinitesimal displacement field and that after the

moment t = 0 the Farth 'freezes' into its perturbed configuration. This event inevitably induces a

free wobble, known as the Chandler wobble. Now let us restrict ourselves to a particular subset of

terrestrial frames, namely those 'evolve' at t = 0 and end up as a body frame of the Earth, so that

the event can be described by

C(t) - caH(t),	 h(t) = haS(t)	 (10)

where H(t) is the Heaviside step function and b(t) the Dirac delta function. We shall call such an

event an 11/6 event. Note that the Fulerian angles (0, 0, ^) between any two terrestrial frames are

now time-independent and that the dimension of ha is I time I .

Substitute equation (10) into (9), we obtain the polar motion excited by an 11/6 event:

	

m(t)=- ^1+52) (ca+ioha) exp 000+ 
S2 C

() ,	 t>0.	 (11)
o	 a

Thus, in any given terrestrial frame, after the 11/5 event that occurred at t = 0, the pole undergoes

SZ
a prograde, circular motion at the angular rate o and amplitude (1 +a) (ca + ioh ( ► l about the

0

S2
'mean pole position' (SZ/o)C ► ► , starting from the point -co - ( I + o) ioha.

Now, combining equations (7) and (1 1), we obtain the following conditions that relate observa-

tions from two given terrestrial frames with respect to the H/b event, true to first order:

r () ► - ► = exp (-ia) ca ul ► + i	 exp (- i0 0	 (12a)

110 12) = exp (-ia) haul ► -	 exp (-ii^) 0.	 (12b)

5	 t
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It is an easy exercise to see that the two (complex) equations ( I 2a, b) are equivalent to the follow-

ing four ( real) expressions:

0 = St I C0(2)h00) - Co") ho(2) I / I COM + iah0(t) I	 (13a)

^ = Arg(co(t ' +Who" ) )- Arg(c0(2)h (t) - co(t)ho(2))	 (13b)

0 = Arg(co (2) + iaho ( 2) ) + Arg(co (2) 1100) _ COM ho(2) )	 (130;

I c 0( u + i0h00) I = I c0(2) + Who 
(2) I. 	 (13d)

where Arg denotes the argument of a complex quantity. Equations (13a-c) give the Eulerian angles

between two terrestrial frames ( 1) and (2) induced by an H/b event in terms of theiE respective co

and ho . Note that it can be readily shown from equations (12a, b) that the quantity co +Who acts

as if it were a vector under the 2-dimensional rotation through the angle A. This leads directly to

equation (13d), which states that the (real) quantity Ico + ioh0 I associated with an H/d event is

St
an invariant and, hence, so is (1 +--) I co + ioho I, the amplitude of the polar motion induced by

a

an 11/6 event. Thus we see that while observers from two different terrestrial frames do not agree

on the direction and magnitude of the static shift of the mean pole, nor on the direction of the

instantaneous displacement of the pole that occurs at t = 0, they certainly agree on Cie amplitude

of the polar motion. It implies that, in any terrestrial frame, co and ho are not entirely independent

quantities. The reFtriction is imposed by our physical requirement that the Earth `freezes' after the

event.

Now let us study the implication of equations (13a-d) with respect to some specific terrestrial

frames. A trivial, but instructive, special case ensues when 0 = 0, i.e., when the two frames share

the same z-axis. Then equations (12a, b) reduce to the kinematic transformation law for co and ho,

respectively. under the two-dimensional rotation A in the x-y plane (see f = igure 1).

I'wu ether special cases of terrestrial frame are of interest, namely the principal axes and the

Tisserand's (mea:0 axes (Munk & MacDonald. 1900):

6
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(1) The principal axes (henceforth called the P-frame) correspond to the terrestria '_ frame in

which c = 0. The polar motion induced by the H /S event (equation 11) reduces to

m(P) (t) = - i(R + o) ho(p) exp (iot).	 (14)

The z-axis of the P-frame, about which the pole rotates, is the figure axis by definition.

(2) Tisserand's axes ( henceforth called the T-frame) are defined as the terrestrial frame in

which h = 11 3 = 0. The polar motion in this case becomes

MM ( t ) = o co(-r) - (1 + 0 1 co (T ) exp (iot).	 (15)

We point out here that for the P- and T-frames,, equations (13a) and (13d) reduce to

OPT = R/a 1 Co(T) I = R 1ho( P) 1,	 (16)

a relation that will be used in the next section. Figure 2 illustrate:, among other things, the polar

motion with respect to both reference frames.

G P (figure axis)

T	 OGP	 '4
1 (ang. mom. H)

0G t.
001

t	 ^	 ^

rn	 O

I

Figure 2. The z -axes of various reference frames and their relationship with the polar motion m.
P: principal fr;une.T: Tisserand ' s Frame. G: geographic frame. l: invariant frame.

7
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5. ARE COMPUTATIONS AND OBSERVATIONS COMPATIBLE?

The foregoing mathematical treatment is valid with respect to the Earth to an accuracy within

10' 6 ; and an H/6 event is a convenient representation of an earthquake whose duration is generally

much shorter than the Chandler period. In fact, in the study of seisr_.ic excitation of the polar

motion, the conventional procedure connecting changes in the polar motion with the occurrence of

major earthquakes has been as follows: (1) compute according to some theoretical formulae the

c-tern;, the change in the product of inertia of the Earth, accompanying a given earthquake faulting

with observed fault geometry; (2) neglect the h-term, use the computed c-term and the T-frame

equation (15) to obtain the polar motion m; and (3) compare the resultant m with the observed polar

motion. This procedure has been used by various investigators; among them, Mansinha & Smylie

(1967), Ben-Menahem & Israel (1970), Smylie & Mansinha (1971), Dahlen (1971, 1973), Rice &

Chinnery (1970, O'Connell & Dziewonski (1976), Mansinha et. al. (1979). However, no strong

conclusions have been drawn to date. While there are indeed aspects that remain uncertain (for

example, whether we know enough about the seismic source, or whether the available Earth models

are adequate), we shall here examine a fundamental problem associated with the above procedure,

namely the compatibility between the polar motion observed astronomically and that computed

accordin g to geophysical observations of the seismic source. This problem arises from the diversity

of reference frames involved. In particular, here we shoulu bring in the so-called 'geog,z!nhical

frame' (henceforth the G-frame) (Munk & MacDonald 1960). A G-frame is a tetres frial frame

defined with respect to a number of 'fixed' points on the surface of the Earth, from which observa-

tions are made. Thus, corresponding to the said procedure (with steps (1) and (2) in reverse order),

three levels of questions should be raised:

(i) When is the h-term negligible from equation (11)?

(ii) Given a fault geometry, what reference frame is used for tl a computation of the c-term

(and the h-term if it is to be taken into account)?

8
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(iii) Are the two G -frames defined respectively by the seismic network and the astronomical

stations compatible?

For question (i), what we should really be concerned with is: In the presence of the c-term, is the

h-term negligible in the G-firame? Indeed, the neglect of the h -term is certainly valid in the T-frame

where aho is zero and the only contribution comes from co, while being evidently absurd in the

P-frame where the converse is true. (Note also that we have asserted in equation (16) that the

magnitudes of coM and aho(P) are equal.) Now, let OGT and OCP be, respectively, the departure

angle between (the z-axis of) the G-framr and the T-frame, and that between the G-frame and the

P-frame (see Figure 2). From equation (13a) we have

OGT = R Iho (c) I	 (17a)

0(; P = (12/0) Ico (G) 1.	 (17b)

Therefore OGT /0GP = a 1 h0 (( " ) 1 / I co(' ;) I, and we conclude that a I ho (G) I is negligible compared with

MW

Ico (, ' ) I only if

OGT '4 OGr
	

(18)

that is, only if the z-axis departure of the G-frame from the T-frame is much sma!ier than that from

the P-frame. In principle, there is no a priori reason why this is true because the P- and T-frames are

defined dynamically whereas the G-frame has a purely empirical definition. However, quantita-

tively, as long as the G-frame is not 'ill-defined', it may be argued that the P-frame appears to be

very sensitive to any mass redistribution in the Earth in the sense that O AP has been 'magnified' by

the factor R/o (equation 17b), which, in the case of the Earth because of its nearly spherical config-

uration, is ~0(300). Therefore, for all practical purposes, equation (18) indeed holds (see Figure 2);

and it is legitimate to use the T-frame formula (15). Notice that, for the instantaneous displace-

ment -co - (I + E \ iaho at t = 0, the neglect of the h-term evidently yields totally incorrect
aJ

results. Fortunately, (his quantity is itself —0(1 /300) compared with the polar motion amplitude

(see equation 11), and hence no serious error will be introduced in the polar motion.

9
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Question (ii) is one of strictly theoretical nature. Thus, given a fault geometry, earlier investiga-

tions, despite differences in the actual approaches, have all computed the c-term (as presumably

would for the h-tern -)n a hypothetical non-rotating earth model. The reference frame used is thus

the (non-rotating) inertial frame, constrained by the vanishing of the total angular momentum H,

which in the present case is identical to the relative angular momentum h-terms. (The latter fact

can be easily seen by letting w = 0 in equation 1.) In the case of rotating reference frames, the

above constraint corresponds to the T-frame, by definition.

It is interesting to point out here a totally different procedure for computing the polar motion m

due to a given earthquake, namely the normal-mode approach of Smith (1977) who used the

`invariant frame' (call it the I-frame), a frame that continues to rotate in space at the constant angu-

lar velocity 6 regardless of what happens to the Earth. The I-frame is, again, defined dynamically;

its z-axis coincides with the constant angular momentum vector H. But unlike the two previously

defined dynamical frames (the P- e nd T-frames), it is not a (body-fixed) terrestrial frame. Yet, con-

trary to what we might expect from Section 4, the computed mean pole shift by Smith (1977),

relative to the I-frame, are in good agreement with corresponding results by other investigators using

the T-frame (see above). This, of course, is not a coincidence. The reason is that, at t = 0, the

I-frame is in fact coincident with the T-frame. This can be shown easily by, for example, comparing

equation (15) with the Poinsot representation of a rigid body rotation (see e.g., Lambeck 1980).

After t = 0, as seen in a terrestrial frame, the I-frame rotates about the figure axis, always keeping

pace with the pole position m. Figure 2 summarizes the relation among various reference frames.

Thus, in conclusion, we see that all the computed c-terms, and hence the resultant polar motion m,

in the literature to date are in fact what would have been observed in the T-frame. Although they

do not in any w^.y correspond to actual observations (from a G-frame), we have asserted above that

the difference is small, —0(1 /300), compared with the polar motion m itself. Note further that, in

the T-frame under the constraint of vanishing h-terms, it is the relative displacement (rather than

the absolute displacement) at the fault, or the corresponding seismic moment, that enters the

10
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computation of the c-term. Therefore, in principle, even the small difference between the T- and

G-frames can be accounted for provided we can resolve the ambiguity in the absolute displacement

as seen from a G-frame. This presumably can be achieved by means of geodetic techniques such as

the San Andreas Fault Experiment (SAFE, see Smith et al. 1979) that uses satellite laser ranging to

tie fault movements to a network of observatories that defines a G-frame.

The philosophical question (iii) arises because even if we reduced all quantities to a geophysical

G-frame, the latter can still, in principle, be different from an astronomical G-frame. This, however,

is a much milder problem and can be answered simply by stating that, by increasing the geographi-

cal coverage and density of both seismic and astronomical networks, the two thus defined G-frames

will in general approach coincidence in a statistical sense.
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