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1.0 INTRODUCTION

An important goal of atmosphe744 research is to describe as

completely as possible the structure of the atmosphere. The

development of a variety of atmospheric measurement systems has

contributed to progress toward this goal.

The first attempts to measure atmospheric temperature above

the earth's surface occurred in the mid 1700's. Kites served as the

platforms for these early temperature sensors (Middleton, 1969);

routine flights of meteorological kites began about 1894. For the

next thirty-five years, kites, along with captive and free balloons

were used as platforms for the meteorgraph, an instrument designed

to record readings from several meteorological instruments at once.

Finally, the invention of the radiosonde by Molchanov in 1927 enabled

temperature, pressure, humidity, and winds to be measured routinely

in the troposphere. The book by Middleton (1969) gives a more

detailed account of the evolution of instruments used to gather data

above the earth's surface in the troposphere.

The gradual development of the radiosonde system, and particularly

the development of higher quality carrier balloons, allowed the

radiosonde to reach the lower stratosphere (ti 30 km maximum) during

its ascent. The desire 5o study atmospheric structure above this

level, however, provided the impetus for the use of rockets to propel

sensors to great heights. The first attempt was made in 1946 with

captured, German-built V-2 rockets. Further development of rockets

followed a trend touTard smaller, special-purpose devices. The A.erobee

and Nike Cajun are examples of these types of systems. Today, the
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meteorological rocketsonde (rocket and sensors) used in the United

States is the Super Loki Datasonde. It provides temperature, pressure,

and wind data at altitudes of 20 to 70 km for use in important areas

of upper atmospheric research such as stratospheric warmings and the

effects of stratospheric and mesospheric dynamics on the ozone

distribution of the earth. For a detailed look at the development of

rocketsonde systems, see Bollermann (1970).

It is important to note that sho teomings are present in the

current radiosonde and rocketsonde networks. Too few soundings are

made too far apart over limited areas to resolve adequately the great'

spatial and temporal variability of the atmosphere. For example,

radiosondes are normally launched in the United States only every

twelve hours at stations roughly 400 km apart. In addition, few

launchings take place at sea. Lack of a sufficient number of measure-

ments is:an even greater problem at rocketsonde heights. Only about

fourteen stations worldwide presently launch rocketsondes,approximately

once a week. It should be noted that there is even a possibility of
t

a total cessation of rocket launchings (Schmidlin, personal communica-

tion). Unfortunately, factors such as economic considerations will

probably allow the above shortcomings to continue.

A second problem with the in situ instruments is the disagreement

among measurements taken by different instruments which are used by

different countries. For example, Phillips et al. (1981) presented

differences between the measurement capabilities of the NOAA,
j

Vaisala, and Swiss radiosondes, while Finger et al. (1975) showed

some incompatibility between rocketsondes' used by the U.S., U.S.S.R.,

Japan, United Kingdom, and France.
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A third difffewlty with ,the in situ devices is random and

systematic errors. This point will be discussed later in this

thesis.

The lack of a sufficient number of observations made globally

in the troposphere end particularly in the stratosphere can be over-

come with the increased use of operational satellite sounding systems.

Satellite remote sounding has been an active area of research since

the work of King (1956), who showed that the atmosphere's temperature

profile could be determined from satellite measurements as a function

of observation angle, and of K pplan (1959), who showed that the

temperature profile could be deduced from the spectral distribution

of atmospheric emission. The first satellite measurement of atmos-

pheric temperature was made from TIROS- 7, which sensed emissions from

the lower stratosphere (Kennedy and Nordberg, 1967). Later ,, NIMBUS-3

and NIMBUS-4 were used to determine temperature in seven layers of

the troposphere and lower stratosphere (Wark and Hilleary, 1969).

It was not until the early 1970's that a satellite (NOAA-2) was

used to des termine temperature for operational use Oastrow and Halem,

1973). The development of the Pressure Modulator Radiometer (PMR)

first flown on NIMBUS-6 allowed temperature observations to extend,

into the mesosphere (Curt{" et al., 1974). Today, measurements from

TIROS-N and its sister satellite NOAA-6 are used to determine mean

temperatures in layers from the lower troposphere to the lower

mesosphere. These temperatures are used operationally in stratospheric

and mesospheric analyses of height fields, and in synoptic analyses

of tropospheric height fields over oceans (Smith et al., 1979)

The ability of a satellite to provide a global network of more

closely spaced soundings from tha surface to the mesosphere is the
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most important advantage it has over the in situ inst'

addition, since a single satellite makes the measurement, variaoxxicy

introduced with the use of different instrument types is eliminated.

Unfortunately, disadvantages Are also present. For example, a

temperature measurement which is smoothed greatly in the horizontal

and in the vertical can be a problem if finely-detailed atmospheric

structure is desired. This and other difficulties and their implica-

tions is a major point to be discussed in this thesis.

Much remains to be done in the evaluation of operational satellite

products used in conventional meteorological analyses. The identifica-

tion and quantification of differences between satellite and in situ

systems can help to determine the optimal usage of satellite data

A .gerational work or in research. The only way to address the

above topic is to compare the measurements of the satellite to

in situ measurements assumed to be the "ground truth." Unfortunately,

problems exist which can limit the usefulness of such comparisons.

Usually, the two types of measurements are made at neither the same

place nor at the same time. Each measurement also has different

space and time scales; the satellite produces an instantaneous

volume-averaged measurement while the in situ instruments produce a

series of point measurements which takes tens of minutes to complete.

jFinally, in situ instrument errors can result in uncertainty about 	 1

I	 the "true" atmospheric structure.

The purpose of this study is to evaluate the comparability

between large scale atmospheric structure (mean layer temperature,

geopotential heights, and winds) determined from NOAH-6 and from

radiosondes and rocketsondes. A major thrust is made to examine`

the impact of in situ errors on satellite in situ comparability,
1



Chapter 2 describes he characteristics of each instrument (its

method of measurement and sources of error). The in situ instrument

precision is detailed in Chapter 3. Chapter 4 discusses the

satellite in situ statistical comparisons, while a summary of

^A	 results and recommendations for future work are given in Chapter 5.

;i

t
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I
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2.0 DESCRIPTION OF INSTRUMENTS

Before comparing in situ meaourements and remote measurements,

it is important to understand how each instrument senses large

(synoptic) scale atmospheric structure and the accompanying errors

involved. It should be noted at this point that the in situ error

sources described in this chapter contribute mainly in a systematic

fashion.

2.1 Radiosonde

` 2.141	 Measurement Technique

This section briefly describes the function of a radiosonde.

For a much more detailed description of this instrument, consult

Wang (1975).

The standard NOAA radiosonde is a balloon-borne, battery-powered a

device used to determine a single vertical profile of pressure,

temperature, geopotential height, mixing ratio, and wind in the

troposphere and lower stratosphere (ti 30 km maximum). _During its

flight, the radiosonde is tracked with a Ground Meteorological

Direction-finder (GMD-2) tracking system which consists of a small

dish antenna telemetry receiver and a recorder. 	 The, radiosonde's

position is found by tracking its 1680 14Hz-frequency-modulated

signal with the antenna.	 The signals are also telecommunicated to

the ground station where the recorder registers ahem in the form

of traces on a paper strip chart. 	 The traces must then be evaluated

to obtain the meteorological data.

Ll



Temperature is determined electrically by a thin, white-coated

rod thermistor. The thermistor is mounted unshielded from the sun

on an outrigger outside the radiosonde and is connected to the

radiosonde battery by lead wires. An electric current passed through

the thermistor encounters increasing resistance as the thermistor

temperature increases.

Humidity is measured electrically with a carbon-covered plastic

strip known as a hygristor. This sensor is placed inside an air

duct on the top of the radiosonde where it is shielded from-,precipita-

tion and solar radiation. As the humidity increases, the strip

expands which creates a change in its electrical resistance. Since

the resistance of the strip is also temperature dependent, the

thermistor temperature is also taken into consideration during the

evaluation of the humidity data.

Pressure is determined with a temperature-compensated aneroid

capsule. The capsule is connected by a contact arm to series of

silver contact strips and insulating segments called a commutator.

As the atmospheric pressure decreases, the aneroid capsule expands

C9&&d moves the-arm and a po nter across the commutator. This causes

a change in the frequency of the transmitted signal, the temperature

signal is transmitted when the pointer touches an insulating segment
`i

and; the humidity signal is transmitted when the pointer touches a

silver strip. A specific value of pressure is defined each time the

signal frequency changes denoting a new contact. Each contact is

numbered and a calibration chart is used to relate the contact number

to the atmospheric pressure.

The geopotential height is a quantity calculated via the	 ,.

hypsometric equation
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Ah - R Tv kn pO/go 	(2.1)

1
3

where Ah is the thickness of a layer bounded at the bottom by

pressure PO and at the top by pressure Pl , R is the dry ga ys constant

(2817 3 kg 
l 

K 1 ), go is 9.E ms-2 , and Tv is the mean virtual

temperature in that layer. The thicknesses are summed to give

the geopotential height of the radiosonde at pressure Pl.

The radiosonde is usually tracked either automatically with a

GMD or-manually with a theodolite. Either instrument rinds the

azimuth and elevation angles of the radiosonde during its ascent.

These angles are used along with the calculated heights to determine

the displacement of the radiosonde in a certain time, thus allowing

for the calculation of horizontal winds.

2.1.2 Sources of Error
;a

A variety of sources can cause the temperature measurement to 	 I

be in error. :Incorrect calibration before the flight (baseline

check) gives a systematic error throughout the entire flight. Lag

errors, due to the inability of the rod thermistor to detect rapidly

varying temperatures, were found by Badgely (1975) to reach 0.3°C.

He considered this value to be unimportant, however. Ballard and

Rubio (1968) applied the heat transfer equation to study the effects

on the thermistor temperature of aero. 4•namic heating, conduction of

heat through the lead wires, and solar radiation. They found heating

from lead wire conduction to be small. Aerodynamic heating was

considered negligible because of the slow rise rate of the radiosonde

0— 5 ms-1 ). The most significant influence was from solar radiation.

h'Temperature corrections necessary to compensate for this influence

Ls^

l^^	 ^.
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ranged from Q.5°C at lQ kin to 2.0% at 30 km Dater, McInturff at al.

(1979) examined day-night temperature differences From a large

sample of radiosondes and concluded that the NCAA radiosonde

temperatures should be corrected for :solar radiation. Their

corrections, based on altitude, solar elevation angle, and

obser; Lion time agree with the results of Ballard and Rubio. it

tihust be noted here, however, that no corrections are applied to

current operationally-used radiosonde temperature data nor were they

used in the observations to be reported in this study.

Solar radiation also tends to affect the humidity measurements.

Even though the hygristor is mounted in a way which shieldsshields it from

the suit, Finger and Melnturff (1978) have noted some error at high

solar elevation angles.

Pressure is also subject to a number of errors. Improper base-

line calibration introduces systematic errors. There is the

possibility of air leaking into the aneroid cell. This would cause

faulty cell expansion and an incorrect pressure measurement. A

third .factor is wear on the contacts themselves, which could cause

the pointer to movee irregularly over the contacts.

All the above error sources influence the computed geopotential

height. Errors in pressure and temperature propagate through the

hypsomdtric equation to affect directly the geopotential height

calculation. These effects will be examined in Chapter 3. Since

mean virtual temperature is used in the hypsometric equation,

humidity errors can also contribute somewhat to geopotential height

errors. This contribution is relatively 'small in comparison with

height errors associated with errors in the kinetic temperature

measured by the rod thermistor.	 ,"
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Errors in the tracking of the radiosonde by the GMD (i,.ei errors

in the azimuth and elevation angle) along with erors in the calculated

height of the radiosonde lead to erroneous wind data. It is beyond

the scope of this thesis to examine errors in the GMD and their

effect on wind calculations; please consult Danielsen and Duquet (1967)

for a discussion of these topics.

2.2 Meteorological Rocketsonde

2.2.1 Measurement Technique

The meteorological rocketsonde used in this study is the Super

Loki. Darason_de. This instrument provides direct determination of

temperature and wind as a funcCion of geometric altitude to

approximately 70 km. It is comprised of four principal components:

the Super Loki booster rocket, the datasonde dart, the datasonde

(which contains the temperature sensor), and the Starute (Stabiliza-

tion and Retardation Parachute), which is a reflective decelerator.

The rest of this section describes the rocketsonde system and how it

makes measurements; for a comprehensive discussion of rocketsonde

systems, see Bollermann (1970).

A rocketsotide flight is summarized in Figure 2.1, taken from

Krumins (1976). The Super Loki rocket delivers the dart containing

the datasonde and Starute to the burnout altitude. There, the dart

separates from the rocket and continues upward until apogee (ti 70-80 {

km) is reached. At apogee, the datasonde and Starute are deployed

and begin to descend (Figure 2.2) During descent, the datasonde

transmits its temperature data to a around-based GMD. At the same
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time, a precision radar tracks the Starute to obtain a time-position

plot of the datasonde.

Temperature is determined with a 10-mil diameter bead thermistor.

The small bead has a much faster response time than a rod thermistor!

this is necessary at high altitudes because of the high fall velocity of

the datasonde, the diminished molecular collision frequency, and

lowered heat transfer rates. figure 2.3, again from Krumins, shows

the location of the bead thermistor and its mount at the base of the

datasonde. The thermistor is mounted on a flexible loop of thin

mylar film. The loop protects the thermistor from the shock of launch

and is resilient to endure the strains of the datasonde separation

from the dart. The inside of the loop is covered with a

reflective aluminum coating to shield the thermistor from infrared

radiation from the datasonde itself. Two silver strips run along

the outside of the loop and serve as a path for an electric current

from the thermistor to the lead wires. This current originates

from the datasonde battery and is used, as with the rod thermistor,

to measure changes in thermistor resistance as the temperature changes.

The radar tracking of the Starute enables horizontal winds to

be obtained. The position of the descending dat4sonde as a function

of time is calculated using the slant range, elevation angle, and

azimuth angle determined by the radar. The time dependence of the

positional differences is used to calculate winds.

Unlike the radiosonde, the datasonde does not measure pressure.

Instead, pressure is calculated assuming hydrostatic equilibrium

with the excellent approximation
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where Az is the layer thickness (usually 1 km), PO is a "tie-on"

pressure, and the other variables are as before. The tie-on

15

(2.2)

pressure is particularly important. It is obtained from a support

radiosonde launched near the time of rocket launch. A tie-on point

(usually 20-25 km) is determined where the temperature-height

profiles of the radiosonde and rocketsonde show the best overlap.

The radiosonde pressure at that point is used for the tie-on pressure

and Equation 2.2 is applied to calculate the pressure profile.

2.2.2 Sources of Error

The measure of temperature at very high altitudes is much more

difficult than at lower altitudes. At very low densities, the fewer

molecular collisions that take place result in - less conduction of

heat between the air and the bead thermistor. The decreased

conduction increases the relative influence on the 'bead thermistor

of heat sources other than accommodation with tb-- :,,ter. These

sources, most of which were relatively unimportant in the denser
k

lower atmosphere, now contribute a large part of the total heat

^.	 transferred into the bead thermistor. The actual air temperature is

therefore masked. Aerodynamic heating is a major concern since the

fall velocity of the datasonde can reach 200 ms -1 at 70 km before

the 'Starute can effectively decelerate the payload. Direct or

reflected solar radiation can influencethe thermistor temperature 	 $

since it is difficult to shade the bead totally. Exchange of longwave

s,
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(infrared) radiation with the instrument, atmosphere, and the earth's

surface can affect the thermistor temperature. The electric current

used to measure thermistor resistance heats the lead wires which in

turn heat the thermistor via conduction. The current also heats the

thermistor directly by encountering the resistance offered by the

thermistor. The silver strips introduce yet another source of

;k	 extraneous heating since they provide conduction paths for heat

ff
	 flow from the datasonde body to the lead wires and the thermistor!

f	
In addition to extraneous heat sources, the bead thermistor

~

	

	 temperature can be affected by time lag errors (as described for

the radiosonde rod thermistor) and by initial tgfaperature offsets.

The latter effect results when the datasonde is ejected from the

dart. The thermistor temperature usually starts out much greater

than the atmospheric temperature until the thermistor comes substantially

into equilibrium with the ambient atmosphere.

The determination of the air temperature from the bead tempera-

ture involve€, the application of correction factors derived from a

mathematical model of the heat transfer into and out of the bead

thermistor. The standard correction method is that designed by

Krumins (1976), who analyzed the heat transfer equation to generate

correction coefficients. The corrections range from:approximately

2°C at 40 km to 8°C.at 60 km, and become very large and unreliable

at 70 km and above. Therefore, temperature measurements above 70 km

'	 are not attempted with the current rocketsonde system.
i.
n`	 Since the altitude of the rocketsonde is determined from radar

#	 tracking, height errors can be caused by such things as the incorrect

alignment of the datasonde with radar, electronic noise, and atmos

I

X
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pheric refractive index effects. The last item results in the

slight bending of the radio waves to and from the radar, and if not

corrected, causes the radar to "see" the Starute at an incorrect

altitude. High precision FPS-16 tracking radars nevertheless have

only small height errors of order 10 m (Engler et al., 1967).

Errors in rocketsonde winds result from errors in the slant

range, azimuth angle, and elevation angle as determined by radar.

Please see Luers and MacArthur (1971) for an analysis of wind errors

incurred through radar tracking of descending sensors.

The calculation of the pressure profile with Equation 2.2 can

be affected by errors in both the rocketsonde and its support radio-

sonde. Errors in radiosonde temperature and precoure lead to an

incorrect pressure-height relationship, which in the overlap region

results in an {ncorrect tie-on pressure. Errors in the rocketsonde

temperature and height, along with the radiosonde errors, produce

temperature-height profiles for each instrument that are very

dissimilar to one another. This creates a problem in the determination

of profile overlap and in the subsequent choice of the tie-on pressure.

Figure 2.4 shows temperature profiles from a rocketsonde and radio-

sonde launched about one hour apart. Note the discrepancies between

the two profiles in the overlap region. The tie-on problem is an

important question, but there has been no published work on this

subject. This problem is beyond the scope of thl.s study, but

certainly more investigation into the problem is needed.

f	

23 NOAH-6 Satellite

This section describes some of the more important characteristics

of the,NOAA-6 polar orbiting satellite. Specifically, the NOAA-6

I	 i
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radiometers and their channels, the channels' weighting functions$

and the techniques used to determine atmospheric temperature are

examined. For a more detailed discussion of these topics.,, as well

as a more extensive look at NOAA-6 in general, please see Schwalb

(1578) and Smith et al. , (1979).

2.3.1 Radiometers

There are three radiometer systems aboard NOAA-6: the second

version of the High Resolution. Infrared Sounder (HIRS-2), the

Microwave Sounding Unit (MSU), and the Stratospheric Sounding Unit

(SSU). These instruments are knom collectively as the TIROS-N

Operational Vertical Sounder (TOWS). This array of radiometers

measures radiation eju tted at many different wavelengths arising

from different parts of the atmosphere. This measured radiation

is used to determine the layer mean temperature for a number of

standard pressure intervals.

HIRS-2 has twenty channels sensitive to infrared radiation

emitted in the 3.7 um and 15 Jim regions by CO 2 , H2O, and N20.

Table 2.1 summarizes the characteristics of the HIRS-=2 channels.

Radiation is sensed in circular fields of view (FOV) at the sub-

satellite point and in elliptical FOVs as the radiometer scans away

from the sub-satellite point. A cross--track scan of 2240 km forms

fifty-six FOVs.

The four channels of the MSU are used to sense microwave

emissions 'by the earth's surface and by 0	 Clouds are rather2	 -

transparent to these emissions, a characteristic which, as will be

discussed later, is useful when temperature soundings are deduced

i	 during cloudy conditions. Table 2.2 describes the characteristics	 r:



ORIGINAL PAQE IS 	 20
OF POOR QUALITY

Table 2.1 Characteristics of HIRS-2 channels

HIRS Central Principal Level of Purpose of
Channel Wavelength Absorbing Peak Energy Radiance
Number

I
(gm) Constituents Contribution Observation

^

1 15.00 Co2 30 mb

2 14.70 Co2 60 mb

3 14.50 Co2 100 mb

4 14.20 Co2 400 mb Atmospheric
temperature

5 14.00 Co2 600 mb sounding

6 13.70 CO2/H20 800 mb

^7 13.40 Co2/H20 900 mb

8 11.10 Window Surface Surface t6mpera- i

lure and cloud
detection

I,
9 9.70 02 25 mb Total ozone

concentration

10 8.30 H2O 900 mb

11 7.30 H2O 700 mb Water vapor
sounding

12 6.70 H2O 500 mb a
a

13 4.57 N20 1000 mb

14 4.52 N'0
2

950 mb Atmospheric

15 4.46 Co2/N20 700 mb
temperature
sounding

r	 16 4.40 CO2/N20 400 mb

17 4.24 Co2 5 mb

18 4.00 Window Surface
Surface
temperature

19 3.70 Window Surface

20 0.70 Window Cloud Cloud detection
s

a
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of the MSU channels. A single scan of the MSU produces eleven FOVs

along the same cross-track extent as that of HIRS-2. 76e horizontal

resolution is therefore much less than that of HIRS-2.

The three SSU channels, sensitive to 15 um radiation emitted

by CO2 , enable temperature to be deduced at upper stratospheric and

lower mesospheric levels. Table 2.3 provides a Summary of the SSU'

channel characteristics. The SSU forms only eight FOVs along a scan

line of 1470 km. Smith et al t (1979) describe the data processing

used to interpolate the SSU FOVs, as well as the MSU FOVs, to each,

HIRS-2 FOV. The result is a radiance sounding that consists of a

HIRS-2 measurement plus interpolated radiances from the MSU and the

SSU.

2.3.2 Weighting Functions

To deduce a vertical temperature pr-°,;,ile from infrared and

microwave emission measurements, it must first be determined from

which areas of the atmosphere the measured radiation is being

emitted. The curves shown in Figure 2.5 are the weighting functions

for the TOMS channels. They show which layer of the atmosphere	
9

contributes most to the total radiation sensed by-a particular channel.

3

The total emission sensed by each channel can be used with each

weighting function to deduce a vertical temperature profile.

The weighting functions also illustrate a major shortcoming 	
5

of the satellite: the vertical smoothing of temperature _. Consider

the shape of the HIRS -2 channel 3 weighting function.- The function 	 s

peaks at 100 mb, but notice that it attains values of 0.2 or greater

in a layer from 500 ab to 10 mb. Therefore, infrared emission from

a large part of the atmosphere contributes to the total radiation
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sensed by channel 3. Similar argument

twenty-six channels. The final result is that the determination of

temperature at a particular level will be influenced by emission

(and thus temperature) at other levels as well. The temperature

profiles deduced from the satellite measurements are vertically

smoothed profiles because of the 'width of the TOVS weighting functions.

2.3.3 Retrieval Methods

Clouds are opaque at the infrared wavelengths sensed by HIRS-2.

The measured radiances will be less than what is actually emitted

from the atmosphere if corrections for the presence of clouds are not

applied. Sets of sixty -three FOVs are formed and tested for cloudiness.

If enough FOVs are judged to be clear, radiances from all HIRS-2 and

MSU channels are used to form a volume-averaged sounding of the

thermal emission of the atmosphere; each sounding is separated by

250 km. Temperature soundings are determined statistically with

regression methods that employ radiance soundings from the satellite

which are colocated with radiosonde or rocketsonde temperature

soundings (Phillips et al., 1979).

If the sets are determined to be partly cloudy, clear radiances

are deduced statistically from the partially cloud-covered FOVs by

the N* technique, based on the method of Smith and Woolf (1976).

Wr

I	 I

a	 All channels are used in this technique. Should the atmosphere be 	 -

cloudy enough so that neither the clear nor N* methods is applicable,

k

the radiance value for each FOV set is a spatial average of 'radiances

from the four MSU channels and HIRS -2 channels 1, 2, 3, and 17.

These channels are assu ;ned to be unaffected byclouds, although they

are affected by precipitation (Phillips, 1980). It should be noted,'^j
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c

that although the retrievals are adjusted for clouds, clouds still

pose a major obstacle to the accuracy of satellite data. For

example, the cloud tests can only roughly approximate the cloudiness.

Also, the cloudy retrieval is subject to large inaccuracies because

only four channels of the twenty-seven available are used. Chapter 4

will elaborate further on these points.

2.4 Summary of Characteristics of In Situ and Satellite Measurements

The following characteristics of in situ and satellite measure-

ments are noteworthy:

1. The current radiosonde network provides a limited number

of observations over oceans and the polar regions. Over

land, typical sounding separations average 400 km. The

rocketsonde network provides even less coverage with

about fourteen stations worldwide. The result is

inadequate spatial resolution of the atmosphere.

2. The satellite provides full global coverage of soundings

with a better spatial resolution (250 km)

3. The variety of in situ instruments used by different

countries introduces additional variability into in situ

measurements. This type of variability is not present in

satellite data since a single instrument makes every

measurement.

4. The radiosonde and rocketsonde provide point measurements,

i.e. data taken along a unique path. This measurement is

s	 capable of "seeing" great detail in the vertical. The

satellite measurement is a volume average smoothed

^i
h.i

I



vertically and horizontally. It is not capable of

K

capturing great vertical or horizontal detail, although

combining the radiances from different channels does yield

better resolution.

5. Major error sources for each instrument include:

a. satellite: cloud contamination of the infrared

channels.

b. radiosonde extraneous heat sources, faulty

r
aneroid cell.

c. rocketsonde: extraneous heat sources, determination

E_	 of tie-on pressure.

r
r
r

i

t

Z
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j

3.0 PRECISION OF IN SITU MEASUREMENTS

The reliability of the in situ measurements is

an important aspect of satellite-in situ comparisons. If the standard

to which satellite data are to be compared is not consistent in its

detail of atmospheric structure, it will be difficult to define the

"true" atmospheric conditions at the time of satellite overpass.

Moreover, it will then be difficult to evaluate how well the satellite

reproduces the "true" atmospheric structure. It must therefore be

determined how precisely the in situ measurements can characterize

the atmosphere.

""	 I
3.1 Experiment Design

This study does not attempt to address the absolute accuracy of

the in situ sensors. Rather, we seek here the precision of the

in situ measurements. How repeatable are those measurements?

Precision is defined as the amount of agreement between measure-

ments taken from identical instruments at the same place and at the

same time. It is calculated by finding the root-mean-square difference

(rmsd) between paired measurements,

N	 2	 1/2
Q

	

	 E (A1-A2)i IN) 	 (3.1)
i=1

where o is the rmsd and Al and A2 are parameters measured by the

first and second instruments, respectively. The summation is taken

over all N differences at a particular level. The statistic says 	 a

I

M
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nothing about the accuracy of an instrument; it does quantify the

performance of two instruments relative to each other.

To evaluate the precision of radiosonde data, a special series

of twenty-one dual radiosondes ( two radiosondes hung from a single
r

balloon) was flown from Wallops Island, Virginia from February 1980

to March 1981. The use of dual radiosondes eliminates space and

time Variability between measurements, and taking differences removes

the true value of the parameter from consideration. The instrument.

variability should then be isolated (Grubbs, 1948). Three flights
r

each lost one of the two radiosondes; the remaining eighteen pairs

were used for the study of precision. Each radiosonde was hung 30 m

c `	 below the balloon and separated from its partner by 2 m. With this

1

	

	 configuration, it can be assumed that the instruments were sampling

identical. atmospheric conditions. Raw data recorded on the strip
^t	 k
t

charts were carefully reduced by hand and processed by computer to
i`

give temperature, pressure, and geopotential height information at

one-minute intervals. It is thought that these soundings are subject
I

to less human error than a typical operational sounding. The

precision of thermodynamic parameters was of interest in this portion

k	 of the study, so winds were not computed from the dual radiosonde

'

	

	 data. Additionally, each flight was tracked by'a precision C-band

(FPS-16) radar to provide an independent means of altitude'determina-
1.

tion. The geometric altitude from the radar was converted to

geopotential height with the relation (Iribarne and Godson, 1973):

h	 9.8061 (1 _ 2.59x10'3 cos 20)z(1 - 1.57x10 Vi z)	 (3.2
9.8066	 )

r

P
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where h is the geopotential height, z is the geometric height, and

is the latitude, These radar geopotential heights will be compared

to geopotential heights calculated with the hypsometric equation.

For the study of rocketsonde precision, three rocketsondes were
k

launched at :five-minute intervals from Wallops Island on ten NOAA-6

satellite overpass dates from February 1980 to May 1080. Temperature,	 *

pressure, and wind data at 1 km intervals were evaluated for fifteen

successful measurement pairs. Rocketsondes launched five minutes

apart constituted a pair. Thus, for three launches on a given date,

flights one and two and flights two and three were considered to be

pairs. The rocket data, therefore, contain atmospheric temporal

and spatial variability as well as measurement error. The spatial

: 	 variability is introduced because, as Schmidlin (1981) found, rocket-

sondes launched on the same flight path could still be separated by

a constant distance of up to 10-12 km. Schmidlin also noted that

the ideal method for examining rocketsonde precision would be to

launch two or more datasondes on a single rocket (analogous to dual

radiosonde flights) but engineering problems, aerodynamic effects,

safety concerns, and cost make this technique difficult.

3.2 Radiosonde Precision

The usual purpose of the radiosonde is to assign temperature

and a calculated geopotential height to ;a measured constant pressure

surface. The "absolute" height, or the actual height of the radio-

sonde above the surface is not considered. This synoptic use of

the data results in the constant pressure charts familiar to all

meteorologists. It must be realized, however,, that the radiosonde
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is also used as an absolute reference for pressure or altitude.

For example, in the determination of vertical profiles of ozone,

the only way to locate the point where the ozone is being measured

is to use the instantaneous pressure and height as determined from a
N

single, attached radiosonde (Godson, 1963). It will be shown in

this section that radiosonde data used For synoptic purposes has high

precision, but the precision is reduced when the data are evaluated

as a function of the absolute height of the radiosonde.

The precision of temperature and geopotential height as a function

of pressure was evaluated from data reported at mandatory pressure

levels (850 mb, 700 mb, 500 mb, etc.) by calculating the rmsd at each

level. Past studies of the precision of constant pressure _level data

have been performed by Rapp (1952), Lenhard (1970,1973) and Hoehne

(1980). Rapp evaluatted data to 300 mb from a small number (six) of

dual radiosondes. He estimated standard errors in temperature which

ranged from 0.4-0.8°C; standard errors in geopotential height ranged

from 4-14 m. Lenhard analyzed the data taken from radiosondes

launched at the same time but separated by 16-19 km. He arrived at

an rms temperature difference of 0.2-0.3% by fitting the observed

rms height difference with a calculated theoretical value. After

assuming a certain pressure error, he determined what temperature

error would be needed to arrive at that best fit. Hoehne used
t

differences between paired radiosondes to calculate a temperature.

rmsd of 0.61% and a geopotential height rmsd of 24 m.

Figure 3.1 shows the rms temperature differences calculated from

A It
	 di	 d	 f hi	 d	 fi	 f	 ThtthC ua ra oson es o t s su y as a unct on o pressure# 	 ey

are on the order of 0.35 K-0.4 K throughout the troposphere and increase
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to near 1.0 K as the upper stratosphere is reached. By summing

squared temperature differences over all levels, an rms temperature

difference of 0646 K is obtained. The vertical profile of the rms

geopotential Height differences is shown in Figure 3.2. The rmsd

continually increases with decreasing pressure and reaches 45 m at

the 10 mb level.. At each level, the rms difference is small relative

to the height of the pressure level in question. Averaged over all

levels, the rms difference is 20 m, in agreement with Hoehne. The

rmsd computed at tropospheric pressures also agrees well with the

results of Rapp. The radiosonde, therefore, shows 'good precision in

e

the determination of the height of a constant pressure surface. It

provides useful data for synoptic-type purposes.

Radiosonde precision can be investigated further by obtaining

rms differences for temperature and pressure at common calculated

e e e calculatedheights. In the same study mentioned before, Hoehn (1980) c 1cu ated.

rms pressure and temperature differences according to height. He

obtained values of 0.7 mb and 0.8°C, respectively, averaged over all

levels. In this study, temperature and pressure values for each
3

sounding were interpolated to every 500 m height increment. Rms

temperature and pressure differences between paired radiosondes are

presented in Figures 33 and 3.4, respectively. Temperature

differences are on the order of 0.4 K up to 95 km, but increase

quickly and reach over 1 K at 32 km. Averaged over all levels, the

;-	 temperature rmsd is 0.5 K. The pressure rmsd taken over all levels

is 0.3 mb with the largest value of 0.5 mb occurring at about 10 km.

Figure 3.4 again shows the pret , ure-height determination to be highly

precise; the radiosonde provides precise data for synoptic purposes.

9
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tf

It should be recognized that the above statistics are not

necessarily indicative of the true radiosonde precision;, regardless

of the dual radiosonde configuration, the radiosondes may not be at

the same location in the atmosphere when differences are taken at

constant pressure or height. Because of errors in the pressureand

temperature, the height calculated for each radiosonde is different

from that of its partner; it also differs from the actual height of

the radiosonde atlthat ;point in time.

The true precision can be evaluated by taking differences as a

fOnction of height as independently determined from the radar. This

height is measured independent of temperature and pressure. The

resultant temperature-height and pressure-height profiles are
1.

representative of the conditions at the dual radiosondes' actual

location in the atmosphere. Since the same height is assigned to

each radiosonde at the same time, any differences between the dual

radiosondes are instantaneous differences calculated at the same

point in the atmosphere; the actual precision can be determined.

Rms differences were calculated at every 500 m radar-height

intervals. Iigure 3.5 shows the precision of temperature as a function

of radar height to vary little with altitude. Squared differences

summed over all levels give a rmsd of 0.46 K. This small rmsd is

similar to the results of Hodge and Harmantas (1965), who calculated 	
I

i
nstantaneous differences from paired radiosondes and obtained a

temperature precision of 0.51°C. Hoehne (1980) used the same

technique to arrive at a precision of 0.67°C. The improved precision

found in this study could result from the very careful data reduction

employed. Notice also in Figure 3.5 that there is no large increase

x

`]
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in the rmsd as the end of the flight approaches, a pattern contrary
r

to the previous precision calculations (Figures 3.1 and 3.3). It

can be concluded that much of those increases were probably due to

the radiosondes sensing different levels of the atmosphere rather

than the same level.

The rms pressure differences as a function of radar height are

shown in Figure 3.6. The rmsd reaches 2.0 mb near--30 km and never

falls below 1.0 mb at any level. Evaluated over all levels, the

pressure rmsd is 1.45 mb. This result is quite different than the

rmsd as a function of calculated height (Figure 3.4). As with the

temperature precision, the pressure precision decreases if one

examines instantaneous differences for which both radiosondes are

at the same point in the atmosphere at the same time. The results

of Hoehne (1980) agree with this conclusion. Hoehne's findings

and those of this study are presented in Table 3.1, which shows that

the precision of radiosonde data differs depending upon the means by 	 1

which the data is evaluated.

While the true precision of the temperature measurement is rather

good, the large rms pressure differences can introduce large errors-

in the instantaneous or actual, height of the radiosonde. This point

can be investigated through comparisons between calculated radiosonde

heights and radar-measured radiosonde heights. Figure 3.7 shows the

rmsdl between the two methods of height determination plotted versus

radar-measured height (assumed to be theactual height of the radio-

Since identical instruments are no longer being compared, the rmsd
1€	 is no longer a measure of precision; rather, it is now a measure of
i€	 the spread of the differences between measurements.
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}
sonde at any time). Extremely large rms differences are prevalent

with values of near 1500 m at 32 km. Closer inspection of the data

revealed that two radiosondes had suffered aneroid cell malfunctions

which caused large pressure differences ('U 4 mb) late in their flights.
f

This resulted in calculated heights which differed from the radar

heights by up to 3000 m and contributed greatly to the large rmsd.

While the discrepancies in pressure and height would probably be

.d	 noticed on a synoptic analysis and ultimately smoothed out, they would

not be apparent to a user examining a single, stand-alone profile

f
^	 such as in a comparison of a radiosonde sounding to a satellite
I

6

	

	 sounding. Extraordinary measures (dual radiosondes and radar) were

needed to identify and isolate a radiosonde with a malfunctioning

aneroid. For these reasons, the malfunctioning radiosondes were not

removed from the sample. Figure 3.7 shows that there is a large

discrepancy between the actual location of the radiosonde in the

atmosphere and where it is calculated to be. The imprecision of:the

radiosonde measurements, particularly of pressure, is to blame. It

must be emphasized again that this does not detract from the radio-

sonde's usefulness in assigning a precise height to a constant

pressure surface.	
1

The pressure measurement may be investigated further by using

the radar heights and radiosonde temperatures to calculate the

`	 pressure at any time in a manner similar to that used for the rocket-

sonde. The excellent approximation

N g
o Oz

Pcalc	 P exp	 (3.3)oN	 =1 RTvi

'



ORIGINAL PAGE IS	 44
OF POOR QUALITY

is used where 
.Peale 

is the calculated pressure at the top of a Layer

Az (taken from radar), Po is the pressure at the layer bottom, go is

9.8 ms-2 , R is the dry gas constant, and T
v
 is the mean virtual

temperature in the layer.	 Since we are using precise temperatures

and a single radar measurement, these calculated pressures are very

precise.	 Table 3.2 shows that the precision of the calculated pressure 	 a

is no worse than 0.45 mb.	 The differences were taken as a function

of time so they are indeed instantaneous. 	 Comparison of the actual

measured pressures with the calculated pressures is shown in Figure 3.8.

Average differences reach 1.0 mb with the rmsd about 1.5-2.0 mb.	 Keep
i

in mind that the comparison of this calculated pressure with. the

measured pressure says nothing of the accuracy of 
Peale because, as1.

we have seen, the measured pressure is by no means the actual pressure,
a

The advantage of 
Pca1c is that it is more precise than the measured

pressure when time or instantaneous height is the independent variable.

Table 3.2	 Precision of Pcalc

Peale 
(mb)	 Rmsd (mb)

10	 .08

30	 .14

50	 .19

e
70	 .23

100	 .28'

200	 .37

300	 .42

400	 .44

500	 .43

700	 .34
t

850	 .20isk

?+ 1000	 .02 p^

FAN

r; 	 P
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As a final comparison, pressure-height profiles were generated

using the radar heights and calculated pressures. These profiles

were compared with the pressure-height profiles taken directly from

the radiosonde data. The statistics are given in Figure 3.9. It
M

is seen that the two types of profiles are remarkably similar; small
a

biases and small rms differences occur throughout the entire profile.

These results again show that while the radiosonde cannot be located

at the correct (instantaneous) pressure-height point * it can estimate

the correct profile, a characteristic which again illustrates the

usefulness of the radiosonde for synoptic -type purposes. For single

station, non-synoptic purposes where the radiosonde data is considered

absolute, I variability in the pressure measurement results in large

displacements from the actual altitude of the radiosonde. This

problem can be overcome, however, through the use of °adar-tracking

to provide precise pressures and true. _heights.

Because the dual radiosonde wind data were not processed, the

precision of radiosonde wind measurements will not be examined here.

Since satellite-derived winds will be compared to radiosonde winds,

however, it is still necessary to have an idea of the repeatability

of the radiosonde winds. Bauer (1976) investigated the variation

between radiosonde wind data at one point in the atmosphere and wind

i
data in the surrounding atmosphere. A wind report at a particular

station was chosen to be the "base" wind. Components of winds

reported within 660 km of the base wind report were then extrapolated

^)V	 to the base wind location. Differences between the extrapolated wind

components and the base wind components were calculated; standard

deviations of approximately 6 ms-1 and 8 ms-1 were found for the

a

I

u and v components, respectively.
a
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3.3 Rookatsondo Precision

Investigators of rocketsondo precision usually examine the

precision of 
the 

temperature measurement as a function of height.

Hiller and Schmidlin (1971) used temperature measurements winda five

minutes apart up to 55 km to calculate an average temperature rmad

of 1.08"C. In as recent study, SthmidUn evaluated the rmad for forty-

five pairs of rackatoondes with time differences of five minutes to

one hour. From the lowest altitude reported up to 53-55 km, the rmad

changed little, but increased exponentially above 55 km. Schnidlin

speculated that this increase could have bean caused by atmospheric

variability at vary small time scales, instrument^.,kl problems, or the

sensitivity of the temperature cor-reactions to flight-related parameters

such as anomalous fall velocities. After forming regression relations

(time structure functions) between mean squared temperature differences

and 
the 

time separation between rocketsonde launches, Schmidlio

extrapolated the relation to zero time difference (simulating simultat-

neous measurements) and arrived at an rms difference of 0.8°C at

35 km which increased to IXC at 50 km. Values of precision were

not calculated above 55 km.

Similar estimates of the rocketsondo tomparaturo precision were

obtained from this study by etalculating rms differences between

rockatsondas launched five minutes apart. The lack of as large sample

size prohibited us from adopting Schiddlin's technique. It has

already boon noted earlier in this ohapter tliat due to experimental

designo differavices between paired rocketsondes consist of not only

instrumental variability . but also of atmoaDharic snatial and tamnoral
I

variability. flowevor, if the statistics calculated from the present

 A_
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An additional comparison dealt with the precision of the rocket-

sonde geopotential heights of the 10 mb, 5 mb, 2 mb, I mb, and 0.4 mb

pressure surfaces. The geoutetric rocket altitudes were converted to

geopotential heights with Equation 3.2 and were used with the calculated

rocketsonde pressures to logorithmically interpolate the heights to

the desired pressure. Values of the rms differences between geopotential

heights of paired rocketsondes are given in Table 3.4.

The multiple rocketso,n. -de flights also enabled us to estimate the

precision of the wind data. A cubic spline was fitted to the reported

wind data and evaluated at the previously mentioned pressures. The

rms differences for the u and v components are listed in Table 3.5.

These values tend to reflect the precision of the tracking radar used

(in this case, the FPS-16). The use of less precise radars (e.g.

SPANDAR) would result in a larger rmsd. Additionally, differences

tend to be larger at the topmost levels of the rocketsonde flight

(Miller and Schmidlin, 1971).
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E	 Table 3.4 Rms geopotential height differences between
rocketsondes launched five minutes apart.

Pressure (mb) Rmsd	 m N (pairs of rocketsondes)

0.4 199 15
i
j	 1 195 15

2 187 15

5
i

173 15

10 177 13

Table 3.5 Rms differences between wind components of
rocketsondes launched five minutes apart.

Rmsd (ms-1

Pressure (mb)	 u	 v	 N (pairs of rocketsondes)

0.6	 1.9	 2.4	 15

1	 1.2	 1.2	 15

2	 1.5	 1.3	 15

5	 1.2	 1.0	 15

10	 1.1	 _0.7	 13

T'

r

i
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4.0 SATELLITE - IN SITU MEASUREMENT COMPARISONS

4.1 Experiment Design

Overpasses of the NOAA-E satellite on ten dates (within the period

of February 1980 to May 1980) provided soundings of mean layer

temperature (TOVS points) in a 10° latitude by 10° longitude area

around Wallops Island. These layers are bounded in the vertical by

pressure surfaces of 1000, 850, 700, 500, 400, 300, 200, 100, 70, 50,

30, 10, 5, 2, 1, and 0.4 mb. Figure 4.1 Illustratea a typical

distribution of the TOVS points around Wallops Island. As noted

earlier, atmospheric temporal and spatial variability are a concern

in satellite - in situ intercomparisons since soundings from the two

instruments are usually made neither at: the same place nor at the

same time. The dual radiosondes previously described were launched

approximately two and one-half hours before the satellite overpass.

The rocketsondes were launched, on average, fifteen minutes before

overpass. A typical duration of the in situ flights in terms of

their time proximity to the NOAA-6 overpass is shown in Figure 4.2.

We assumed that the large scale atmospheric structure did not vary

between the times of the in situ launches and the NOAA-6 overpass.

j	 While it would have been preferable to have had smaller radiosonde- 	 I

satellite time differences, the lack of a sufficient number of Gam's

at Wallops Island necessitated that a radiosonde flight be ended

before a rocketsonde could be flown. The only way to accomplish this

was to launch the radiosondes two and one-half hours before the

satellite overpass.

To minimize spatial variability, a Cressman interpolation scheme
s

(Cressman, 1959) was applied to the TOVS point data. Four scans

tl
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Figure 4.1 Typical distribution of TOVS points around Wallops Island,
Virginia.
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with a radius of maximum influence of 4° latitude were used to

interpolate the TOYS points in the surrounding area to the Wallops

Island location. This provided a weighted-average temperature

sounding up to 0.4 mb to be compared to in situ soundings.

Another difficulty with satellite - in situ comparisons is that

the measurements themselves have characteristically different spatial

sensitivities. In Chapter 2, it was noted that the satellite

produces a volume-averaged measurement while in situ instruments

produce point measurements. Differences will arise not only because

of errors in the satellite and/or in situ sensors, but also because

two essentially different measurements are being compared. Bruce

et al. (1977) have investigated the disagreement between satellite

and radiosonde temperature profiles that results from radiosonde

error and the difference in the area of each measurement, They

calculated differences of up to 1,4 K between a hypothetical area-

averaged satellite sounding and a radiosonde sounding located at

the center of the radiometrically viewed area.

4.1.1 Statistical Technique

It can be assumed that the observed differences between satellite

and in situ instruments come from errors in the satellite measurements

themselves, errors in the in situ measurements, and effects from

atmospheric variability. Thus,

9

2 _ 2	 2	 2
'T LSAT + a  + oATM	

(4.1)

y	
a

G	 where Q2 is the total calculated variability (the mean square difference
it	 T

or rmsd2 ) between satellite and in situ measurements, 
aSAT 

is the
ti

}
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variability due to satellite errors, 0  is the variability due to a

single in situ instrument error, and 02is atmospheric variability.
ATH

-Since temporal variability between soundings was ignored and spatial

variability between soundings was minimized with the Creasman scheme,

a2
ATMis assumed to be zero. Equation 4.1 may be solved for 

aSAT' i''e'

2	 2.1/2

oSAT = (oT - oI)	 (4'2)

where Cr SAT will be considered to be the root-mean-square error (rmse)
	

t;

due to the satellite alone. The quantity a2 will be obtained by

using the results of Chapter 3. Those results gave the rmsd between

paired instruments; the variability attributed to a single instrument

can be calculated by assuming that the total mean square difference

is composed of independent and equal errors in each of the instruments.

Then,

a2,	
20	 (4.3)

where aTI is the total mean square difference between paired in situ

instruments. Furthermore,

a2 Q2 /2	 4.4I	 TI

and

QI	
oTI/	 (4.5)

z



~hire of is the root-mean- square error of single in situ measurement.

Equation 4.4 will be used with (4.2) to assign rr errors to the

satellite measurements.

4.2 Satellite-Radiosonde Comparisons

f	 4.2.1 Mean Layer Temperature

There are few published studies Which have dealt with the

r

	

	 comparability of temperature soundings from the newer satellites

(TIROS-N and NOM-6) to "ground truth" data. Those that have been

published, however, provide background on the relative error character-

istics of the satellite and on the effect of retrieval methods on

those error characteristics.

Smith et al. (1979) presented a statistical comparison between
o

interactive computer-processed TIROS-N-soundings and operational radio-

sonde soundings over North America for a one-month period. Figure 4.3

shows rms temperature differences between radiosonde soundings and

satellite soundings derived from clear and partially cloudy retrievals

(labeled HIRS in Figure 4.3); rms differences between radiosondes

and satellite soundings taken from cloudy retrievals are labeled as

NSU. Largest rms differences occur at the surface and at the tropo-

pause region for reasons which will be discussed later. Note also

that the cloudy retrievals produce soundings which are less accurate

(higher rmsd) than soundings from clear and partially cloudy retrievals.

This is because the fewest channels (all microwave channels and HIRS-2

channels 1, 2, 3, and 17) are used f pr cloudy retrievals than for any

other retrieval.

F	 I

e

i
k
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50 -(48) •

70-(74)

100 (287)

150 (287)

200-(287) HIRS
250-(287) M 5 U
300-(286)

400-(287)

500-(287)

700 (287)
850 (265)

1.0 1.5 2.0	 2.5	 &0	 3.5
RMS	 DIFFERENCE (•K)

Figure 4.3 Rms temperature difference

between interactively derived
TIROS-N soundings and radio-
sonde soundings from 22 March
19 April 1979 (from Smith et al.,
1979).
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Phillipsi iit al. (1979) also examined the effect of retrieval

techniques by calculating mean and rms differences between clear,

partly cloudy, and cloudy soundings and radiosondes. Table 4.1

summarizes their results of comparisons for a nine-month period

over North America. The largest rms differences again occur for

the cloudy retrieval. Rms differences calculated for clear retrievals

tend to be smallest in the lower troposphere. One would expect that

corrections for clouds would reduce the accuracy of the satellite

sounding, so clear retrievals should have the lowest rms differences

of the three retrieval methods throughout the troposphere. However,

rms differences for the partly cloudy (N*) retrievals tend to be less

than those of the clear retrievals in the mid to upper troposphere.

Phillips et al. (1979) attributed this contradiction to possible

cloud contamination of some of the clear soundings and also to the

mixing together of clear and N* retrievals to generate the regression

coefficients used to convert radiances to temperatures.

Finally, Schlatter (1981) compared-TIROS-N mean layer virtual

temperatures to National Meteorological Center (NMC) objective	 1

analyses over much of the continental United States and parts of

southern Canada. His results are given in Figure 4.4. Average

t	 differences show the satellite temperatures to be higher than the

analyzed temperatures near the surface and near the tropopause, and

lower through the middle troposphere. Largest rms differences are

near the surface. Schlatter also found no large rms differences at

tropopause levels. Rms temperature differences stratified by retrieval 	
I

	 5

method agree with the results from Phillips et al. (1979). Cloudy

soundings generally have largest rms differences, while partly cloudy
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Table 4.1 Results of satellite--radiosonde intercomparisons
of mean layer temperature over North America

(from Phillips, et !l., 1979).

Mean Difference (*K)
(Sat-Radiosonde) rmsd

hayer (mb) 'Clear	 N*	 Cloudy Clear N* Cloudy

1000-850 -0.7	 1.0	 1.1 2.8 3.3 2.4

850-700 0.1	 0.9	 -0.6 1.8 2.4 2.5

700-500 -0.4	 0.5	 -1.7 1.9 1.1 2.5

500-400 -0.5	 0.5	 -1.5 1.9 1.5 2.6

400-300 -0.2	 -0.4	 -0.8 1.9 1.5 2.6

300-250 0.0	 -0.8	 0.0 2.1 1.9 2.6

250-200 0.7	 0.0	 1.3 2.3 1.6 2.4

200-150 9,5	 .1.8	 2.0 2.5 3.4 3.2

150-100 -0.3	 0.5	 0.5 1.6 1.6 1.6

ii
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soundings tend to have smaller rms differences than cl°ar soundings in

the mid.to upper troposphere.

While the above studies note that errors are present in the

in situ measurements, they do not consider quantitatively the influence

of these errors on the rms differences. The special flights from

Wallops Island enabled us to isolate in situ measurement errors and

to examine their impact on satellite - in situ measurement comparisons.

As mentioned earlier, it is felt that the verifying radiosonde data

used in this study are subject to less error than typical operational

soundings. Thus, the "ground truth" data base used here is probably

of higher quality than that of the above studies. Finally, the above

studies examined a large number of soundings (e.g. Schlatter used 1514

soundings) which permitted the stratification of soundings by retrieval

method while still maintaining a rather large sample for each method.

The present study did not have the luxury of such large samples, so

the intercomparisons were performed with no consideration given to

the retrieval teehnigV,,c employed. The weighted satellite soundings

at Wallops Island were produced by the Cressman interpolation of clear

soundings, N* soundings, and cloudy soundings mixed together as they

were reported.

Figure 4.5a and Figure 4.5b show typical comparisons of tempera-

tune profiles between NOAA-6 and the radiosondes of this study. The

satellite mean layer temperatures are plotted at the centers of each

layer, while the radiosonde temperatures are discrete temperatures 	 i

reported at a_given pressure. Although this could be considered a

comparison of two different quantities, it nevertheless illustrates

differences that would occur if a satellite sounding were directly

r

i I



ORIGINAL PAGE GS	
64

OF PGOR QUALITY

b
i

N v Iw° o w0
t1N m aJ b v

r'I	 1!1	 '1"#
s

aro a .

cad H 000 $4 000
I Orn O ON
b u H " '-I

%
CY

>1	 >1

to

too 3snss3aa
N $4

^ 1
LJ

ro

/ aH	 00

N
"  oyur-1

2 ro r-4 0

CV
rob0 H AN

co cd	 14

^ Gl ro ^ 4J

CY

\\ 1
ooaow
H 6 00 0

y

..^

/

1	 / N co g

la

00

_

`'•I

m ^ ^ ^ ^
mm
L9

m mm
!9 tf7^

N

v •t

(w 3ensSBSd .



65

c	 substituted for a radiosonde sounding.	 In both figures, note that

while the general shape of the radiosonde profile is captured by

the satellite, the detailed structure is not captured.	 This is

w	
evident in the tropopause region where the complex structure is

smoothed out.	 In addition, the satellite tends to "see" a warmer

tropopause region than does the radiosonde.	 Both figures also show

that the satellite tends to smooth out common features near the

surface such as temperature inversions.	 The above characteristics

of the satellite soundings are caused in part by the broad weighting

functions of the radiometers,.	 Any small-scale structure in the

temperature profile is not captured by the satellite. 	 Temperature

extremes like that at the tropopause are underestimated. 	 In regions -,

of little structure such as the mid-troposphere, the satellite

reproduces the temperature structure rather well. 	 Notice the agree-
1

ment between profiles at 400-600 mb in Figures 4.5a and 4.5b.
4

Statistical comparisons between satellite mean layer temperatures

i
TSAT and mean layer temperatures calculated for each radiosonde are

presented in Figure 4,6. 	 Temperature differences AT are defined as
A

AT = TSAT - TI	(4.6)

Here Tx is the radiosonde mean layer temperature. 	 The rms error

attributed to the satellite is calculated using Equation 4.2.	 As

noted, the largest rms errors occur in the lowest layer (1000-850 mb)

and in the tropopause region.	 Values of 1.8 K to 2.2 K rmse are

seen in the mid troposphere, while the smallest rmse of about 1.3 K -

1.5 K occurs above 100 mb.	 These patterns are consistent with the
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results of Broderick et a1. (1981) and of Smith et al. ,(1.981). The

mean difference curve in Figure 4o6 shows that the satellite-retrieved

temperatures are higher than the temperatures from the dual radiosondes

in the low troposphere and near the tropopause; lower temperatures are

found in the middle troposphere. The warm bias at low levels has also

been seen by Schlatter (1981) (Figure 4.4),'but the warm bias found

in this study extends to higher levels. Finally, the satellite mean

layer temperature tends to be lower than that of the radiosonde above

100 mb.

The effect of imprecision in the radiosonde data has little

influence on the rms error assigned to the satellite. Table 4.2

gives the rmsd between satellite and radiosonde mean layer tempera-

tures, the rmse in layer mean temperature for a single radiosonde,

and the satellite rms error. The rmse for a single radiosonde is

small compared to the total rms difference.
	 i

The effect of using the Cressman interpolation to minimize

spatial variability between the locations of the TOYS points and the

radiosondes can be examined by comparing rms differences calculated

using interpolated satellite mean layer temperatures to rms differences

calculated using the TOVS point closest to Wallops Island. These

points were, on average, 125 km from Wallops Island. Table 4.3 shows

that a minor reduction in the mean layer temperature rmse of the

satellite is achieved when a weighted-average (or interpolated)

satellite sounding, rather than an actual sounding located relatively

close to the verifying radiosonde, is compared to that radiosonde
i

sounding

i
2'
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Table 4.2 Comparison between the root-mean-square difference
(rmsd) between satellite and radiosonde mean layer
temperatures to the root-mean-square error (rmse)
in mean _Z-ver temperature for a single radiosonde
and for the satellite.

Radiosonde Satellite
Layer (mb) rmsd	 K	 rmse (K) rinse	 K

30-10 1.20	 0.37 1.14

50--30 1.50	 0.32 1.46

70-50 1.15	 0.27 1.12

100-70 1.16	 0.23 1.13

200-100 1,94	 0.24 1.92

300-200 2.77	 0.20 2.72

r̀ 400-300 2.10	 0.24 2.10

500-400 2.25	 0.28 2.25

700-500 1.68	 0.22 1.67

850-700 2.10	 0.28 2.09

1000-850 4.24	 0.34
a

4.23

4

t	 ti
3	 _a
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Table 4.3 Comparison of satellite mean layer temperature
root-mean-square error calculated by using a
weighted-average satellite sounding and by
using the TOVS point closest to Wallops Island.

rmse (K)	 rmse (K)
Layer (mb) (,Weighted Average Sounding) 	 (Closest TOVS Point)

30-10 1.20	 1.00

50-30 1.50	 1.57

70-50 1.15	 1.11

100-70 1.15	 1.44

200-100 1.94	 2.18

300-200 2.77	 2.88

400-300 2.10	 2.13

500-400 2".25	 2.71

700-500 1.68	 2.70

850-700 2.10	 3.31

1000-850 4.24	 5.21

>%	
1

f	

dip{

KK

E

i

t
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4.2.2 Geopotential Heim

I	 Geopotential heights of various pressure surfaces were calculated
l

E
at each TOVS point by using the reported mean 1,ayer temperatures in

the hypsometric equation. It should be noted that moisture data
k

`	 were not reported for most of the TOVS points used in this study,

thus kinetic temperature rather than virtual temperature was used to

calculate the satellite geopotential heights. Since the mean layer

temperatures are taken over such deep layers, it is believed that

only minor differences in the satellite geopotential heights resulted

from the exclusion of moisture (Moyer et al., 1978). Sample calcula-

tions show the errors due to the omission of moisture to be about 2 m

at 850 mb and to accumulate to 15 m at 300 mb.

The lowest layer in which data from NOAA-6 are reported is 1000

850 mb. To derive the heights of any pressure surface above 1000 mb,

the height of the 1000 mb surface must first be determined. Sea level

pressure and temperature were taken from hourly surface airways

observations and interpolated to the TOVS point locations. Assuming

a standard lapse rate of 6.5°C km-1 , the hydrostatic equation was

integrated from sea level pressure to 1000 mb (Carle and Scoggins,

1981) to yield
w

z	
To 1
	

^1000)RI'/go	
(4.7)

1000	 r	 Po
V	

i

where the variables are defined as follows:

21000' height of the 1000 mb surface

To: sea level temperature

r	 standard lapse rate (6.5°C km 1)
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Po : sea level pressure

R : dry gas constant (287 J Kg -1 K71)

go : 9.8 ma-2

The thicknesses derived from NOAA-6 mean layer temperatures were a

added to z to give the height of a pressure surface at each TOVS

point. Those heights were then interpolated to Wallops Island with

the Cressman scheme.

Figure 4.7 gives the bias (satellite-radiosonde) and the satellite

rmse for geopotential heights at pressures from 850 mb to 10 mb. At a

tropopause levels, the satellite-derived geopotential heights range

from 20 m to 30 m higher than those of the dual radiosondes. The i

mean layer temperature bias changes sign several times in the vertical;

this has a compensatory effect on the bias in the height calculations,

a feature also noted by Schlatter (1981). The generally negative

temperature bias at stratospheric levels compensates for the generally

positive bias at lower levels and results in height biases of less

than 15 m-at pressures above 30 mb. Note that the rmse continually

increases with height until it attains 100 m at the 10 mb level. 	 '!

The satellite-derived heights become less reliable with altitude.

The relative difference, however, between the rmse and the height at

which it is calculated at stratospheric levels is particularly small.

Although the rmse is al,,x relatively small at tropospheric levels,

these differences could be important, particularly at the lowest

levels.

Imprecision in the radiosonde geopotential heights has little

influence on the comparisons. Table 4.4 provides a comparison of the
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Table 4 . 4 Comparison of root -mean-square differences (rmsd)

}
between satellite-derived and radiosonde geopotential
heights to the root-mean-square error (rmse) in
geopotential height for a single radiosonde and for
the satellite.

Radiosonde Satellite
P	 mb rmsd (m)	 rmse (m) rmse

10 113	 30 109

30 72	 22 69^

50 74	 18 72

70 68	 16 66

i	 100
i

69	 14 68

f	 200 55	 10 54

300 43	 8 42

400 43	 6 43

500 44	 5 44

700 34	 3
1

34

850 26	 2 26

f

Y

F

^ t

.f

t
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rmsd between satellite and radiosonde geopotential heights to the

geopotential height rmse for a single radiosonde and for the satellite.

Little change in the rmsd occurs when the influence from the radio-

sonde is removed.

4.2.3 Winds
11

Geostrophic winds were computed from gradients of geopotential

height taken from 2, hand analysis of the geopotential heights at each

TOVS point. Since the dual radiosonde wind data were not processed,

verifying radiosonde wind data were taken from radiosonde star'ons

around Wallops Island, specifically, the OOZ soundings from Pittsburgh,

Washington, D.C., and New York City. Fortunately, the NOAA-6 overpass

times were no more than thirty"minutes after these soundings were made.

A statistical comparison of the wind speed difference (satellite-

radiosonde) is shown in Figure 4.8. Keep in mind that calculated

geostrophic winds are compared to observed winds which are geostrophic

only to a good approximation. Since this study has not formally

addressed the precision of radiosonde winds, the rmsd is presented

rather than the rinse attributed to the satellite alone. Figure 4.8

shows the rms wind speed difference to increase with height (decreasing

pressure) from a minimum of 4 ms -1 at 850 mb to maximum values of

15 ms
-1
 at 100 mb. The magnitudes of these rms differences are

u
comparable to those calculated by Carle and Scoggins (1981). It

is known that the horizontal temperature gradient obtained from

satellite mean layer temperatures tends to be smaller than the

temperature gradient calculated from radiosonde temperature soundings

(Phillips et al.,, 1979; Schlatter, 1981). The effect of this smaller

gradient on the satellite-derived wind speeds can be seen in the shape

r

I

M
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of the bias curve in Figure 4.8.	 The bias decreases with height up

to the approximate level of maximum winds (N 200 mb).	 The radiosonde

wind speeds are increasing with height faster than the satellite-

derived wind speeds. 	 Above the level of maximum winds, the bias

becomes more positive with height, meaning the radiosonde wind speeds

are decreasing more rapidly than the satellite-derived wind speeds.

In each case, the satellite-derived winds have less vertical shear

which implies a smaller horizontal temperature gradient.
a

A statistical comparison of the wind directions was also performed.

The angle between the imaginary arrowheads of the satellite and radio-

sonde wind vectors was defined as the directional difference: 	 Mean

directional differences (satellite-radiosonde) and the rmsd are

shown in Figure 4.9. 	 The most notable curve is the rmsd.	 Throughout

most of the troposphere and low stratosphere, values of 20 0 to 350

are seen.	 A rather distinct minimum of about 15° occurs at the 	 #

approximate level of maximum tropospheric wind speed, a feature also d

seen by Carle and Scoggins (1981). 	 Note also that the bias (mean

difference) is nearly 0 0 at this level. Apparently, the direction

of the geostrophic wind derived from satellite soundings better

duplicates the observed wind direction under high wind speed

conditions,

4.3	 Satellite-Rocketsonde Comparisons

4.3.1	 Mean Layer Temperature

Figures 4.10a and 4.10b show typical comparisons between

satellite-derived temperature profiles interpolated to Wallops

Island and single rocketsonde temperature profiles. 	 As before, the
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satellite temperature profile was produced by plotting mean layer

temperatures at the center of each layer and by assuming a linear

temperature variation with decreasing pressure. Both figures show

reasonable agreement at and below about 2 mb, but above that level,

the rocketsonde temperatures are higher than those of the satellite.

Lack of vertical resolution is -a major contributor to this character-

j	 istic; the weighting function of the highest sensing channel of

NOAA-6 peaks at 2 mb. The satellite-derived temperatures underestimate

extreme temperature conditions. In these cases, the maximum in the

atmospheric temperature structure at stratopause levels is under-

estimated.

Figure 4.11 presents the summary of the statistical 	 j

r
comparisons between satellite-derived mean layer temperatures and

rocketsonde mean layer temperatures. The mean difference or bias,

OT, defined according to Equation 4.5 where TI is now the rocketsonde

mean layer temperature, was calculated between the satellite and each

rocketsonde flown. Figure 4.11 shows the rocketsonde temperature to

be lower on average than the satellite by 1 K to 2 K, except in the
1

5-2 mb layer where the satellite mean layer temperature _is, on

average, 1.5 K warmer. The reason.,, for this anomaly is unknown.

Perhaps the appropriate NOAA-6 weighting functions needed adjustment
r

during the time of this study, or the anomaly could be a product of
A

the relatively small number (twenty-five successful rocketsonde flights)`

of comparisons. It should be noted that in twenty of the twenty --five

comparisons for the 5-2 mb layer, the differences were greater

than 0 K, so the positive bias in this layer was consistently observed

and is not due to a small number of extremely large positive differences.
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Figure 4.12 presents a histogram of the frequency of the 5-2 mb

mean layer temperature differences.

The rinse in the satellite mean layer temperature is shown as

the dashed line in Figure 4.11. The rmse increases with height to

3.5 K in the 1-0.4 mb layer, reflecting the loss of resolution

described above. Indeed, individual differences of up to -8 K were

observed in this layer. Six of the twenty-five comparisons had

differences between -4.5 K and -8 K. Six comparisons in the

2-1 mb layer had differences between -3.5 K and -6.5 K. Additional

work is required to produce satellite-derived mean layer temperatures

which are more comparable to rocketsonde temperatures at these high

levels.

Finally, it is again seen that the errors in the in situ measure-

ments contribute little to the total variation between satellite mean

layer temperatures and in situ mean layer temperatures. Table 4.5

shows the total rmsd between satellite and rocketsonde mean layer

temperatures and the mean layer temperature rmse for a single rocket-

sonde and for the satellite. Generally, most of the lack of agreement

between the two systems can be attributed to factors other than

imprecision in the rocketsonde temperatures.

a

4.3.2 Geopotential Heist

Comparisons of geopotential heights are given in Figure 4.13.

Mean differences are no greater than 70 m at 0.4 mb, with rocketsonde

heights generally higher. The general shape of the bias in geopotential

heights reflects the bias in the mean layer temperatures. The
i

satellite rmse in geopotential height continually increases with

decreasing pressure to a value of 225 m at 0.4 mb. While the rmse
h

6
a

i

w



ORIGINAL PAGE 'S
QF, PQOR QUALITY

a

^W

^ ^ b
H O

^

4J y

cad d

' 'u

'F+

1^

O	
4

0l

N ai

W4 ca+
dfn
0)

O
^^

W
w

NO (A	 4)

Cdd r. r^1
m b++

j 4J 4-4
w W N

`

Ln

^r

a t u	 `

m	 m	 L^	 a0	 !A	 it	 Rf	 N 	 to

AON3nv3ai

t



F
r

83

ORIGINAL' PAGE IS
:^ POOR QUALITY

f
.•r b o

~>^ a°̂40
O

ti ^ ♦^ ^	 dL	 ^	 s

F

♦
Q

♦ i r'1	 O	 G)
1
-H

♦, 	 ^•^ fn
U)	

Lam► 0

^^.•• cd G^b w

r1 0,4

®

H iJ	 n ,4j
O	 (L) M

^,

N O N 1

N
W td	 Sd0rl

b 0 0

. •	 , •	 .	 •	 .	 . .	 .	 .	 .	 •	 .	 .	 .	 .	 .	 . CD UZ O Hp	 a c
y p O w

,
W 00 4))

M
ri

G+

C	 3
^

s
M	 9

tn	 m
' j

F

S

^
r

N,

E

I



Rocketsonde
Layer (mb) rmsd (K) rmse (K)

1-0.4 3.65 1.10

2-1 3.03 1.00

5-2 2.56 0.84

10-5 2.05 0.50

i

ORIGINAL 
P ILI'i'Y
A
^OF POOR QUALITY

illustrates the decrease in the reliability of satellite-derive6

geopotential heights with altitude, the magnitude of the rmse relative

to the height at which it is calculated is small.

Table 4.5 Comparison of root-mean-square differences (rmsd)
between satellite and rocketsonde mean layer
temperatures to the root-mean-square error (rmse)
in mean layer temperature for a single rocketsonde
and for the satellite.

Satellite.
rinse K

3.48

2.86

2.42

1.99

Table 4.6 presents the rmsd between geopotential heights of the

satellite and rocketsondes, the rmse in geopotential height for a

single rocketsonde, and the rmse in geopotential height attributed

to the satellite. The rocketsonde rmse is rather high and is almost

comparable to the rmsd at some pressures. The large rmse is due to
y

the tie-on problem. Erroneous tie-on pressures lead to differences
s

i
in pressures calculated at any height between paired rocketsondes.

Because of these pressure differences, radar heights interpolated
'	 i

to any pressure level can differ greatly among- rocketsondes. When

the rinse is subtracted out, the reduction in the rmsd ranges from

41 m (a 16% reduction) at 0.4 mb to 53 m (a 32% reduction) at the

g	 5 mb level. Percent reductions in the rmsd calculated for other
s

comparisons were much lower. For example, when in situ errors
j
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were taken into consideration, the largest reduction in the satellite-

rocketsonde mean layer temperature rmsd was 5.6%, while the satellite-

'	 radiosonde rms geopotential height difference was reduced by at most

4%.	 Thus, due to the tie-on problem, errors in rocketsonde heights 4

had by far the largest impact on their respective comparison than

did any other in situ error.

Table 4.6	 Comparison of root-mean-square differences (rmsd)
between satellite-derived and rocketsonde geopotential

=r

heights to the root-mean-square error (rmse) in
geopotential height for a single rocketsonde and a
for the satellite.

Rocketsonde	 Satellite r

Pressure (mb)	 rmsd (m)	 -mse (m)	 rmse	 m

0.4	 263-	 141	 222
k

1	 237	 138	 193

2	 204	 132	 156

5	 168	 122	 115

10	 176	 125	 124

4.3.3	 Winds

Hand analyses of the heights at each TOVS point provided height

fields from which.geostrophic winds were calculated over Wallops

Island and compared to rocketsonde winds.	 Figure 4.14 presents they ^

bias (satellite-rocketsonde) and the rmsd of wind speed.	 The general

decrease of the bias with height again illustrates that the satellite-

derived geostrophic winds have less shear than the in situ winds.

The rmsd tends to increase with height to about 15 ms -1 at 0.4 mb.

Comparisons of the directional differences are given in Figure

4.15.	 The decrease with 'height of the rmsd from 65° at 10 mb to
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25° at 0.4 mb is of interest. Figure 4.16 is a scatterplot of the

absolute value of the directional differences versus the rocketsonde-

determined wind speed. Note that there is a strong tendency for

large directional differences to be associated with low rocket-

sonrle wind speeds. The majority of large differences are at the

s 10 mb level. Satellite-derived geostroph c wind directions tend to

agree better with the rocketsonde wind directions under high wind
i

speed conditions. Since winds are generally increasing with height
r^

in this part of the atmosphere, the rms direction differences decrease

with he:Lght.
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5.0 SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS FOR FUTURE WORK

Special flights of dual radiosondes and of meteoro loSi.cal roc'tiet-

sondes were made as close as possible in time to near overpasses of

NOAA-6 above Wallops Island, Virginia. From those flights, the

precision of in situ measurements of layer mean temperature,

geopotential height, and, for the rocketsondes only, winds, were

evaluated. The dual radiosondes were also tracked by precision

FPS-16 radar to evaluate geopotential height errors. Comparisons

of the above quantities with those derived from NOAA-6 measurements

were then performed with an emphasis on minimizing spatial and

temporal variability between the satellite and in situ measurements.

The impact of in situ measurement errors on the comparisons was also

investigated.

Comparisons between dual radiosondes showed that the radiosonde

provides precise pressure, temperature, and height information if

the data are used as a function of radiosonde-measured pressure or

of calculated height. Typical values of rms differences were 0.4-0.5 K,

0.3 mb, and 20 m for temperature, pressure, and geopotential height,

respectively. It was concluded that the radiosonde provides precise

data-for synoptic-type purposes.

Tracking of the dual radiosondes with radar enabled t;;ie true

measurement precision to be determined. Rms temperature differences

calculated as a function of radar-determined height remained near

0.4 K, but rms pressure differences of 1-1.6 mb at tropospheric

levels and up to 2 mb at stratospheric levels were found. This

pressure imprecision was seen to cause 'urge differences between

I ^
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the true height of the radiosonde (as determined from radar) and

the height calculated with the hypsometric equation. It was suggested

that a radiosonde used in special "stand alone" work be tracked by

radar and the pressure profile be calculated in order to assign

the correct height to the balloon and to generate precise pressures.

Comparisons between the pressure-height profiles taken directly from

the dual radiosonde data and profiles c()mputed, with radar heights and

calculated pressures again showed that the radiosonde data does

estimate the correct pressure-height proftle although the instrument

may never be located instantaneously at any point on that profile.

Studies of rocketsonde precision showed rms temperature differ-

ences to be 1-2 K up to about 55 km after which the rms differences

grew rapidly with height to almost 11 K. Elms geopotential height

differences ranged from 177 m at 10 mb to 199 m at 0.4 mb. Rms

differences computed for the wind components ranged from approximately

1 to 2 ms-1.

Comparisons of layer mean temperatures from weighted-average

satellite soundings at Wallops Island to soundings from the in situ

instruments revealed that the largest rms errors attributed to the

satellite, occur at the surface, in the tropopause region, and in the

uppermost layer (near the stratopause) sensed by the satellite. On

k
average, the satellite mean layer temperatures were higher than

those of the radiosondes near the surface and in the tropopause

region, and lower in the mid-troposphere. The satellite temperatures

were lower than Chose of the rocketsondes except in the 5^-2 mb layer.

The effect of in situ temperature errors on these comparisons was
i

negligible.
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Tito satellite rats error in goopotantLll height increased with

height to 225 to at 0.4 mb. Overall, both the av4raga differences

nod satellite ants error were small relative to the height at which

they were calculated. Errors in the radiosonde heights hod a

negligible affect 
on 

the satollita-radiosonde. height comparisons.

Errors in then rockatsoade, heights, however, had it rather large

impact on the comparisons 
or 

satellite and rocketsonde heights.

Comparisons of goostrophic winds derived Prow it hand analysis

of the satellita"derived heights to 
in 

situ wind ditto showed the

satellite-derived winds to hava loss vertical shear than winds

determined from the 
in 

situ instrumentc. There was also it tendency

for the di•ection of the satellite-derived winds to batter approximate

the actual wind diroat ion during times of high wind speed.

Based on- this thesis, the foltowin ,̂, recommendations for future

work are offered:

1. An 
explanation for the large variability in rocketsonda

temperature measurements above 55 kin is needed. Is this

variability due to inserwental effects or does it reflect

teal atmospheric va,riabi'lity?

2. Tito continued development of satellite systems mandates

that comparisons between these, systems akid in situ

systems be performed on a continual basis to evaluate the

satellite data. To avoluate that data at stratospheric

and masospheric levels requires the use of roCKOtSOXWOS,

so it is important that rockatsonde launches continue.

Work is needed to improve the comorability of satellite

temperatures to in situ temperatures near the surface,

IT7:_7=7
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in the tropopause region, and in the stratopause region.

The development of a satellite with more than the twenty-

seven channels used today would increase the vertical

resolution of its temperature measurement and would allow

achievement of higher quality temperature soundings in the

regions mentioned above.

4. There is a continuing need for higher quality satellite

temperature soundings made under cloudy conditions. Improved

retrieval, techniques and the development of an instrument

with added microwave channels would be welcomed.

5. A concentrated effort should be made to solve the "tie-on"

problem. What is the,,optimum way to choose an initial

pressure so that a pressure profile may be calculated

from rocketsonde data?
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