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ABSTRACT 

Using a simple symmetrizability criterion, we show that symmetric systems 

of conservation laws are equipped with a one-parameter family of entropy 

functions. 
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1 • Introduction 

An entropy function associated with a system of N conservation laws 

(1.1 ) ~~ + ~x(f(U» = 0, 

is a convex function, U, augmented by an entropy flux function, F, both taking 

values from smoothly into R, such that for any smooth u = u(x, t) 

satisfying (1.1) we have 

(1.2) a a 
-at(U(u» + ax(F(u» = o. 

Carrying out the differentation in (1.2) we find, on account of (1.1), that 

the above requirement amounts to the following integrability condition 

(1.3 ) T U (u)f (u) 
u u 

T 
F (u). 

u 

Entropy functions play a Significant role in the theory of systems of 

conservation laws. As observed by Friedrichs and Lax [1], if U is an 

entropy function for system (1.1), then its Hessian, Uuu ' symmetrize that 

system, i.e., symmetrize fu. It is fairly easy to see that the converse is 

also true; for future reference we can therefore state 

Theorem 1. A convex U serves as an entropy function for system (1.1), 

if and only if, its Hessian, Uuu ' symmetrize fu' 

(1.4) U f = (U f )T. 
uu u uu u 
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For the sake of completeness we include the proof. If U is an entropy in 

the sense that (1.3) holds, further differentation gives 

U f + UTf = F 
uu u u uu uu 

The Hessian on the right is symmetric and so is the second matrix on the left, 

being the product of a vector and a 3-tensor; hence, their difference, Uuufu' 

is symmetric. Conversely, if Uuufu is symmetric, so is 

Hence Uufu has a primitive 

(1.5) F(u) 
u T 

J U (w)f (w)·dw w w 

such that (1.3) holds; in other words, the symmetry of 

amounts to the same thing, of is required as a compatibility 

conditon for F(u) to the well-defined, i.e., for the integral on the RHS of 

(1.5) to be path independent. 

We remark that the convexity of U did not enter into the proof, and was 

assumed just for the sake of complying with the definition of an entropy 

function being convex. Apart from it, the "if" part of the above theorem, 

(1.4), provides us -- unlike the integrability condition (1.3) -- with a self-

contained criterion for U being an entropy function. The "only if" part of 

the theorem on the other hand, reveals the hyperbolic nature of systems 

equipped with entropy functions; indeed, multiplication of (1.1) by Uuu on 

the left, puts the system in symmetric hyperbolic form (in the sense of 

Friedrichs) , for which the local well-posedness theory of smooth solutions, 

prevail, see [1]. 
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It is well known that solutions for (1.1) may fail to be smooth at a 

finite time, after which one must admit these solutions in the weak sense. 

For the latter, the following entropy inequality is imposed as an 

admissibility criterion [3,4] 

(1.6) 
a a 
at(U(u» + ax(F(u» ( 0 (weakly) ; 

the inequality (1.6) follows from considerations of the regularized problem 

au + .L(f (u» 
at ax 

lettng e: goes to zero, e:-l-O. Thus, the nonpositive LHS of (1.6) indicates 

the existence of vanishing viscosity in an admissible weak solution. In [4], 

Lax postulated a uniqueness criterion to single out the so called "physically 

relevant" solution of (1.1), requiring the entropy inequality (1. 6) to hold 

for all entropy functions associated with (1.1). This brings us to the 

question of how rich is the family of such entropies. 

In the scalar case, N = 1, this family consist of all smooth convex 

functions; in his penetrating paper [3], Kruzkov has shown, that having the 

entropy inequality (1.6) for the one parameter family of convex functions 

U(u;A) = IU-AI, Ae:R which is in the convex hull of the former -- indeed 

single out the unique, physically relevant, stable solution in The 

situation with the general nonscalar case, is however less favorable: the 

integrability condit on is overdetermined unless N = 2, e.g., [4]. 
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2. Sy.metric System of Conservation Laws 

In this section we restrict our attention to symmetric systems of 

conservation laws, systems of the form (1.1) with symmetric 

Jacobians, f 
u 

T = f • 
u 

We will show that such systems are equipped with ~ 

parameter family of entropy functions. 

To this end we are making use of the symmetrizability criterion of 

Theorem 1, looking for Hessians which symmetrize fu' 

(2.1 ) U f uu u f U 
u uu 

An obvious first choice for such an Hessian will be the identity matrix, Uuu = 

IN. This coins ides with Godunov's observation, [2], (see also [1]), that for 

symmetric systems, 

entropy flux, see 

U (u) = 112 uT·u serves as entropy function, augmented by an 

T T· u 
(1.5), F(u) = Jw f (w)·dw = u feu) - J f(w)·dw. Our next 

w 

choice for symmetrizing Hessian will be the assumed symmetry of fu 

implies, as argued before, that it is indeed an Hessian, fu = Uuu with 
u 

U(u) = J f(w)·dw, augmented by an entropy flux, see (1.5), F(u) = F(f(u» 

=lf2fT (u).f(u); furthermore, (2.1) is trivially satisfied with this choice (we 

note the identity UT (u) = FT (f) 
u f 

in this case, from which (1.3) follows upon 

multiplication by fu on the right). The function U(u) so constructed is, 

however, not convex since its Hessian, fu' is not necessarily positive 

definite. This can be easily overcome by considering a sufficiently small 

neighborhood of the first convex choice of an entropy function. thus we have 

shown 
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Theorem 2. Any symmetric system of cnservatin laws, (1.1), is equipped 

with the following one-parameter family of entropy functions 

(2.2a) 
u 

U(u; A) = liz uT·u - AJ f (w) ·dw, {Ae:It; Af < I} 
u 

with corresponding entropy fluxes 

(2.2b) F(U;A) 
T u A T = u ·f(u) - J f(w)·dw - 2f (u)·f(u). 

Let uR. (u
r

) denote the state on the left (respectively, right) of a 

discontinuity moving with speed s and governed by system (1.1). The entropy 

inequality (1.2) across such discontinuity amounts to 

(2.3) 

Invoking the Rankine-Hugoniot . (R-H) relation, s(uR.-ur) = f(u t ) - f(u r ), the 

inequality (2.3) reads, after little rearrangement, 

uR. 
(I-As)[ liz (f(uR.)+f(ur ) )(ur -uR.)+ J f(w)'dw] .. O. 

u 
r 

Since A was chosen so that Af < I, the R-H relation implies that the first 
u 

term on the left is positive; hence, the entropy inequality (2.3) for each of 

the A-parameter members U(U;A) in (2.2), is consistent with that of 

U(u;O). Thus, unfortunately (and, unsuprisingly), the one-parameter 

entropies' family provides us with no additional stability criteria than we 

have already gained from Godunov's original choice, U(u) =I/zuT. u • 
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3. A Note on the Regularized Problem 

We have mentioned before the parabolic regularized problem (1.7 e:)' in 

connection with the entropy inequality (1.6). The key of studying system 

(1.7 1 ) in the large, via standard energy methods, depends on obtaining 

a'priori information in the maximum norm lu(·,t)IL~. Here we note that such 

information can be easily obtained when the symmetric system (1.1) is 

regularized via disspersive term 

(3.1) 
"" '\3 U 
~~ + ~x(f(u» = p . 

The proof is intimately related to the conserved entropies constructed in 

Section 2 above. Let (·'·)0 denote the spatial L2- inner product of 

2 compactly supported functions, 1.1 0 = (·'·)0. Multiplying (3.1) by on 

the left and integrating we find, as before, that lu I ~ is conserved in 

time. Next, differentiate (3.1), multiply by and integrate to arrive at 

mUltiplying (3.1) by fT on the left, integrating and adding to the above we 

2 u 
find that 1klux(·,t)lo +J J f(w)·dw is also conserved. We remark that the 

x 
last two conserved functionals are in exact agreement with the corresponding 

first two associated with KdV equation. Under appropriate growth assumption 

on the flux, f, they yield the required maximum norm bound. 



-7-

lIEFERENCES 

1. K. O. Friedrichs and P. D. Lax, Systems of Conservation equations with 

a convex extension, Proc. Nat. Acad. Sci. U.S.A. 68 (1971), 1636-1688. 

2. S. K. Godunov, The problem of a generalized solution in the theory of 

quasi-linear equations and in gas dynamics, Russian Math. Surveys 17 (1962), 

145-156. 

3. S. N. " Kruzkov, First order quasi-linear equations in several 

independent variables, Math. U.S.S.R. Sbornik 10 (1970), 127-243. 

4. P. D. Lax, Shock waves and entropy, "Contributions to Nonlinear 

Functional Analysis," ed. E. A. Zarantonello, pp. 603-634, New York, Academic 

Press, 1971. 



1. Report No. 
NASA CR-172139 

I 2. Government Accession No .. 

4. Title and Subtitle 

Entropy Functions for Symmetric Systems of Conservation 
Laws 

7. Author(s) 

Eitan Tadmor 

9. Performing Organization Name and Address 

Institute for Computer Applications in Science and 
Engineering 

Mail Stop 132-C, NASA Langley Research Center 
Hampton, VA 23665 
12. Sponsoring Agency Name and Address 

National Aeronautics and Space Adminstration 
Washington, D.C. 20546 

15. Supplementary Notes 

Lange1y Technical Monitor: Robert H. Tolson 
Final Report 

16. Abstract 

3. Recipient's Catalog No. 

5. Report Date 

June 1983 
6. Performing Organization Code 

8. Performing Organization Report No. 

83-16 
10. Work Unit No. 

11. Contract or Grant No. 

NASl-17070 

13. Type of Report and Period Covered 

Contractor Report 
14. Sponsoring Agency Code 

Using a simple symmetrizabi1ity criterion, we show that symmetric systems of conservatio 
laws are equipped with a one-parameter family of entropy functions. 

17. Key Words (Suggested by Authorlsll 

conservation laws 
entropy functions 
symmetrizibi1ity 

19. Security Oassif. (of this report) 

Unclassified 

18. Distribution Statement 

20. Security Classif. (of this page) 

Unclassified 

Unclassified-Unlimited 
Subject Category 59 

21. No. of Pages 22. Price 

9 A02 

N-305 For sale by the National Technical Information Service, Springfield. Virginia 22161 



End of Document 


