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PARAMETER IDENTIFICATION IN CONTINUUM MODELS

H.T. Banks
Lefschetz Center for Dynamical systems

Division of Applied Mathematics
Brown University

and
Department of Mathematics

Southern Methodist University
Dallas, Texas 75275

ABSTRACT

We discuss approximation techniques for use in
numerical schemes for estimating spatially varying
coefficients in continuum models such as those for
Euler-Bernoulli beams. The techniques are based on
quintic spline state approximations and cubic spline
parameter approximations. Both theoretical and
numerical results are presented.

Introduction

We discuss here our efforts on the development of
numerical algorithms for the estimation of parameters
in variable structure elastic models. The class of
problems we investigate is of fundamental importance
in the use of continuum models (such as those for
beams, plates. thin shells, etc.) to represent large
flexible space structures [1-4]. Our own research has
been motivated by the need to detect and/or estimate
structural/ material property changes in such struc-
tures while they are on orbit. In this regard the
usefulness of parameter estimation techniques (i.e.,
inverse algorithms) for spatially varying parameters
in models such as

P( X ) 1 

z 
t D

2	 z
(EI(x)	 )	 f( B,t.x)	 (1)

at	 ax	 ax

from the Euler-Bernoulli theory or in more sophisti-
cated models arising in the Timoshenko theories should
be rather obvious. In this presentation we describe
spline-based methods that use and extend in a non-
trivial way the ideas developed in [5-7] for constant
parameter systems. These extensions allow one to treat
variable parameters (such as mass density p, elastic
modulus EI, load parameters S) in models such as (1)
and were first developed in the context of variable
coefficient first order parabolic systems in [8].

Although our ideas have much wider applicability
in elastic structures, to illustrate the basic princi-
ples we, for simplicity, restrict our considerations
here to a simply supported beam with constant mass
density and variable stiffness, which is under a known
load f. We assume that we have normalized our model

and thus consider (with D - ax)

utt + 02 (a(x)D2u) = f(t.x)	 0<x<1. 1:10,	 (2)

with boundary conditions

u(t,O) - u(t,l) - u xx (t,0) - uxx (t.l) - 0	 (3)

and initial conditions

u(O,x) - O(x)
(4)

u t (O.x) - OX) -

The methods presented here readily extend to more
general cases (e.g., unknown parameters in more general

J.M. Crowley
Department of Mathematical Sciences

U.S. Air Force Academy
Academy, Colorado 80840

boundary conditions, in initial conditions or load,
variable mass and damping, etc.) as will be discussed
in a forthcoming paper.

The problem we consider is that of estimating
functions a in (2) from observations of the state u.
To be more specific. we consider a least squares fit-
to-data for (2). That is, given observations y ij for

for u(t i ,xpa), where u is the solution to (2)-(4)

corresponding to the parameter a from the set Q of
admissible parameters, we seek a parameter a ; that
minimizes

J(a) _ £ lu(t i ,xj ;a) - yijl2
	

(5)
i, j

over Q.

We outline briefly the ideas of our approach to
this problem. We first rewrite (2)-(4) as an abstract
system in an appropriately chosen Hilbert space Z =
Z(a), our state space. The resulting abstract iden-
tification problem is then approximated on finite

dimensional state subspaces Z N (a) which in our case
here are generated by quintic spline elements. We

then obtain estimates aN from minimizing a fit-to-data
criterion using the approximate states.

The problem of obtaining aN is, however, not
computationally feasible since it requires that a min-
imization procedure be carried out over an infinite
dimensional function space or set Q. We therefore
introduce a further approximation by emp l oying sets QN
(in the results reported below these involved cubic
spline interpolations to the elements in Q) in the
minimization problems. This results in a double
approximation procedure: a state approximalt on (spaces

Z  to approximate Z) and a parameter approximation

(sets O
N
 to approximate Q); thus computationally we

obtain least squares parameters aN,M and any conver-
gence discussions must involve a double limit process
for N +-, M - -. As we shall note below. the Trotter-
Kato approximation theorem for linear semigroups, which
we have successfully used in a i,rmber of other problems
[5.6.7.9], can be used in the present case to establish
a convergence theory. (For the convenience of the
reader, we note that we are using the notation a for
the unknown parameter function here whereas in the
general formulations of [5-9] the symbol q is used to
denote a vector of unknown parameters.) We proceed to
outline the schemes we have used, discuss briefly con-
vergence results. and present some of our numerical
findings.

uintic/Cubic _Spline Approximation Schemes

Given (2)-(4), we rewrite this system in abstract
form in the parameter dependent state space

Z(at) _ (Ha i1 H0) x H0 . Here H2 is the space of

elements in H2 (0,1) with inner product
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<z,w>a 
n 

CQD2zl9D2w1>0 + <z
2
,1

2> 0 where < . > 0 is the

usual inner product in H D(0,1) n L 2 (0.1). Define the

operator A(m) by

0	 1
A(a)

\ -D2 (a02 )	 0

on dom(A) n (z E H4 x H4Iz1(n) - z2(n) - D2z l (n) •

D2z2 (rJ n 0. n n 0.1). Then putting z- (u,ut)T,

z0 = (a.t) T , and F - (f,0) T , we can rewrite the system

(2)-(4) as

i(t) - A(a)z(t) + F(t)	 t > 0,
(6)

z(0) - z0.

The estimation problem is then one of minimizing

J(s) _ I	 lz l (t i ;aa)(x j ) - " J1 2
	

(7)

i,J

over Q, where we assume Q is a given subset of H2(0,1)
such that 0 <a < a(x) < b for each a E Q. (Here a
and b are given bounds for elements in Q.)

Turning to approximations for (6), we let SS(aN)

denote the set of quintic splines (C 4 functions that
are piecewise polynomials of degree 5 -- see [6,10]
for notation) corresponding to the partition

aN = {x.}
N
	, x. = j/N, of [0,1]. We then define

J j.0	 J

ZN (a) as the subspace of Z(a) given by

Z  = S5(aN ) . S5(AN ) where S 5 (AN ) _ (s E S5(aN)1s(n)

02 s(n) - 0, n - 0.1). Let PN (a): Z ; Z  be the

orthogonal projection of Z(a) onto Z N (a) and define

approximations to A by AN (a) = PN ( a)A(a)PN (a). The

approximations to (6) in ZN (a) are then taken to be

zN (t) = AN (a)zN (t) + P NF(t)	 t > 0,

z N (0)	 P 
N 
z 0 .	

(8)

The approximate estimation problem is that of mini-
mizing

JN (a) • £ I z 1( t i ;a )( xj) - yijl2
	

(9)i, j
over Q.

In order to establish a convergence theory for
such Galerkin-type estimation schemes, it is not dif-
ficult (see [5,8.9]) to argue that it suffices to show

that zN (t;ak ) _ z(t;a *). N +	 k +	 for any

sequence (a k } in Q converging to a * in Q. The topology
for this convergence depends on the problem at hand
and in the present case, it is desirable to use the H2
topology on Q. Using fundamental estimates from spline
approximation theory (in particular, minor modifica-
tions of estimates given in Lemmas 1.18 and 1.19 of
[11] iuffice) and fundamental properties of dissipative
operators, one can readily employ the Trotter-Kato
theorem (see [5]) to establish the desired convergence

zN (t;ak ) --- z(t;a ) whenever a + a
*
 in Q. Further-

more, letting oN be a solution of niMmiting (9) over

Q, if we have nN (or a subsequence a j ) converging to

some a in Q (this requires a compactness property for
Q), it can be argued that a is a solution to the
original parameter estimation problem involving (6) and

(7). Hence assuming that Q is compact in H2 , we have

a sequence of problems which approximate in a desired
sense our original problem.

As we have already observed, the problem of
minimizing (9) over Q subject to (8) involves mini-
mization over an infinite dimensional parameter space
and a further approximation is necessary to obtain an
implementable computational procedure. For this we
use cubic interpolatory spline approximations to the

elements of Q. For a given partition a  n 
Iyj1M,iso

yj n j/M, of [0,1]. let IM be the cubic spline inter-

polation map (see [12, p.48]) corresponding to 
a  

and

define QM = IN(Q). Then for a given function a E Q,

IM (a) involves the values a(y ), j n O.1,....M, and

Da(0), Da(1), so that I M :Q ^ QM is continuous in the

C l topology on Q and the C O topology on QN. If Q is

compact in the H2 topology, then it is therefore easily

seen that QM is compact in C(0.1) --id furthermore has
a representation

(	 M+3

M^
QM n {a: [0,11-R'J a n 

j^l 
yisi Yj E r 

where IBM} are the cardinal cubic basis elements and

the r  are compact subsets of R l . It follows that QN

is compact in the H 2 topology and hence the problem of

minimizing J N over Q can be readily replaced by the
finite dimensional state space - finite dimensional

parameter space problem of minimizing J N over QN.
Under additional smoothness assumptions on the elements
of Q, one can employ standard estimates for inter-

polatory splines to argue that Q M approximates Q in an

appropriate sense and that solutions of the problem for

JN over QM approximate those of the problem of mini-
mizing J over Q. More precisely one can establish the
following convergence results.

Theorem.	 Suppose Q C H4 (0,1) with JID4010Ea4EQ bounded

and suppose further that Q is compact in the H2(0,1)

topology. Let QM . IM(Q) be the cubic spline inter-

polatory approximations to Q and let, for each N and M,
;N 
IM note a solution of the finite state-finite

parameter Apace problem of minimizing J N of (9) over QM.

Let In k, j } be any convergent (in the H 2 topology)
subsequence with limit a* ; then a* is a solution to the
problem of minimizing J of (7) over Q.

Numerical Results

We have developed and tested software packages
based on the quintic/cubic spline scheme discussed
above. The packages were modifications of those
(described in some detail in [6]) we have used for con-
stant parameter estimation problems (e.g., the IMSL

i►
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