NASA Contractor Report 166110

ICASE

NASA-CR-166110
19830020668
N-PERSON DIFFERENTIAL GAMES
PART I: DUALITY-FINITE ELEMENT METHODS
\section*{Goong Chen}

and
Quan Zheng 083

Contract No. NAS1-15810
Aprıl 1983

INSTITUTE FOR COMPUTER APPLICATIONS IN SCIENCE AND ENGINEERING NASA Langley Research Center, Hampton, Virginia 23665

Operated by the Universities Space Research Association

N/SA

National Aeronautics and Space Administration

Langley Research Center Hampton. Virginia 23665

N-PERSON DIFFERENTIAL GAMES

PART I: DUALITY-FINITE ELEMENT METHODS

Goong Chen * and Quan Zheng**
Pennsylvania State University

ABSTRACT

Standard theory of differential games focuses the study on two-person zero-sum games, and treat N-person games separately and differently. In this paper we present a new equivalent formulation of the Nash equilibrium strategy for N-person differential games. Our contributions are the following:

1) Our min-max formulation unifies the study of two-person zero-sum with that of the general N -person non zero-sum games. Indeed, it opens a new avenue of systematic research for differential games.
2) We are successful in applying the finite element method to compute solutions of linear-quadratic N-person games. We have also established numerical error estimates. Our calculations, which are based upon the dual formulation, are very efficient.
3) We are able to establish global existence and uniqueness of solutions of the Riccati equation in our form, which is important in synthesis. This, to our knowledge, has not been done elsewhere by any other researchers.

This paper's particular emphasis is on the duality approach, which is motivated by computational needs and is done by introducing $N+1$ Language multipliers: one for each player and one "joint multiplier" for all players. For N-person linear quadratic games, we show that under suitable conditions the primal min-max problem is equivalent to its dual min-max problem, which is actually a saddle point and is then computed by finite elements. Numerical examples are presented in the last section.

[^0]

Consider an N-person differential game with linear dynamics
(0.1) $\left\{\begin{array}{l}\frac{d}{d t} x(t)=A(t) x(t)+B_{1}(t) u_{1}(t)+\ldots+B_{N}(t) u_{N}(t)+f(t), 0 \leq t \leq T, \\ x(0)=x_{0} \in \mathbf{R}^{n},\end{array}\right.$
where $u_{i} \in U_{i} \equiv L_{m_{i}}^{2} \equiv L^{2}\left(0, T ; \mathbb{R}^{m}\right)$ is the control variable under the command of the $i-t h$ player $P_{i} ; A, B_{i}$ are proper $n \times n, n \times m_{i}$ matrix valued functions, $f \in L_{n}^{2} \equiv L^{2}\left(0, T ; \mathbb{R}^{n}\right)$ is the inhomogeneous term and x is the state variable.

An N-tuple of controls $u=\left(u_{1}, \ldots, u_{N}\right) \in U \equiv \prod_{i=1}^{N} U_{i} \quad$ is called an openloop strategy. Associated with each player P_{i} is a cost functional $J_{i}(x, u)$ ($1 \leq i \leq N$) incurred in a game due to a strategy u and the outcome x of (0.1) that is generated by u. The case when J_{i} is quadratic of the form (3.1) in §3 will be of particular interest to us.

Each player P_{i} wishes to minimize his cost J_{i}. We say that $\hat{u}=\left(\hat{u}_{1}, \hat{u}_{2}, \ldots\right.$, \hat{u}_{N}) forms an (optimal) equilibrium strategy if

$$
\begin{equation*}
J_{i}\left(x, \hat{u}_{1}, \ldots, \hat{u}_{N}\right) \leq J_{i}\left(x, \hat{u}_{1}, \ldots, \hat{u}_{i-1}, v_{i}, \hat{u}_{i+1}, \ldots, \hat{u}_{N}\right), \quad 1 \leq i \leq N \tag{0.2}
\end{equation*}
$$

for all $v_{i} \in U_{i}$. Such a strategy allows all players to play individual optimal strategies simultaneously. Therefore the questions of its existence, uniqueness, solutions and computations constitute the most important study in the theory of N-person differential games.

Standard theory of differential games (e.g. [6],[3]) focus the study on two-person zero-Sum games, and treat N-person games separately and differently. For two person zero-sum games, the concept of an equilibrium strategy coincides with that of a saddle point. One then proceeds to use either the Pontryagin (Friedman, Issacs) minimaximum principle or the Bellman dynamic programming to derive necessary conditions for equilibrium. To compute optimal strategies, one must either solve (usually) a two-point boundary value problem of ODEs or a PDE (the Bellman-Hamilton-Jacobi equation).

For N-person games, the pioneering work was done by Lukes and Russell [9]. Their basic point of view, which was inherited in most of the subsequent papers on this subject, actually was to regard N-person differential games as a more complex N-simultaneous optimization problem. From (0.2), they regard $\hat{\mathrm{u}}_{i}$ as the optimal control for the i-th player when other players are using respective strategies $\hat{u}_{1}, \ldots, \hat{\mathrm{u}}_{\mathrm{i}-1}, \hat{\mathrm{u}}_{\mathrm{i}+1}, \ldots \hat{\mathrm{u}}_{\mathrm{N}}$. So they proceeded to use the primal, dual, or feedback synthesis methods to solve

$$
\left\{\begin{array}{l}
\operatorname{Min}_{v_{i}} J_{i}\left(x, \hat{u}_{1}, \ldots, \hat{u}_{i-1}, v_{i}, \hat{u}_{i+1}, \ldots, \hat{u}_{N}\right) \\
\text { subject to } \\
\dot{x}=A x+\sum_{j \neq i} B_{j} \hat{u}_{j}+B_{i} v_{i}+f \\
x(0)=x_{0}
\end{array}\right.
$$

for players $i=1,2, \ldots, N$. So \hat{u}_{i} can be obtained by differentiating J_{i} with respect to v_{i}, while holding other players' individual optimal strategies fixed. This yields N simultaneous equations for $\hat{u}_{1}, \ldots, \hat{\mathrm{u}}_{\mathrm{N}}$. The solvability of these equations gives N necessary conditions in general. Even if these N equations
can be solved simultaneously, it is not certain (except perhaps in the linearquadratic case, wherein the invertibility of certain operators is a sufficient condition) that the derived controls $\hat{u}_{1}, \ldots, \hat{u}_{N}$ indeed form an equilibrium strategy, since $\hat{u}_{1}, \ldots, \hat{u}_{N}$ mutually interfere through the system dynamics. As a matter of fact, the game-theoretic nature of the problem seems to be lost in this approach.

In this paper, we present a new approach to N-person games - we show that an N-person game can also be formulated into a min-max point problem (§1). This formulation gives a necessary and sufficient condition for the existence of equilibrium strategies. This min-max problem is primal. Later on, we will see that under certain conditions this min-max problem is actually a saddle point problem. In this sense, we see that our work has unified the theory of two-person zero-sum games with the theory of N-person non zero-sum games.

In ©2, we formulate the dual of the primal problem, which becomes a max-min problem. In the dual formulation, system dynamical equations like (0.1) are eliminated, thus the new max-min problems is unconstrained. The dual problem is formulated in terms of $N+1$ Lagrange multipliers $p_{i}(0 \leq 1 \leq N)$: one multiplier p_{i} for each player $P_{i}(1 \leq i \leq N)$ and one "joint multiplier" p_{0} for all players.

Beginning from §3, we specialize to the quadratic cost case. We formally synthesize the closed-loop equilibrium strategy and derive the (new) Riccati equation (3.13) which is different from those in other formulations (see e.g. [6], [9]).
§4 deals with the variational formulation of the dual problem. Here we make several assumptions which ensure the tractability of the dual problem. Then the "primal-dual equivalance theorem" is established. The important existence and uniqueness of equilibrium strategy is proved in Theorem 4.7.

In 85 , we establish the global existence and uniqueness of the solution of the Riccati equation.
§6 studies finite element approximations. Our work here is motivated by similar work on the Ritz-Trefftz and the finite element methods for optimal controls (see, e.g. [2],[10]). To our knowledge, this is the first time the finite element method is applied to differential games.

Numerical results are given in the last $\$ 7$.
In our sequel, Part II [3], we will again use the basic formulation in $\S 1$, but combine it with the penalty and the finite element methods, and compare our numerical results from these different approaches.

§1. Equilibrium Strategy as Min-Max Point

We first formulate a sufficient condition which states that an equilibrium strategy can be found as a min-max point. In a two-person zero-sum game, such a saddle point formulation is given a priori. However, for an N-person game our formulation seems to be completely new; it forms the basis for all of our future discussions.

For each $u \in U$, one can solve x from (0.1) and determine $J_{i}(x, u)(1 \leq i \leq N)$. Thus each $J_{1}(x, u)$ is a functional on $\left(u_{1}, \ldots, u_{N}\right)$, so we define

$$
\begin{equation*}
\ell_{i}\left(u_{1}, \ldots, u_{n}\right) \equiv J_{i}\left(x, u_{1}, \ldots, u_{N}\right) \tag{1.1}
\end{equation*}
$$

For $u, v \in U, u=\left(u_{1}, \ldots, u_{N}\right), v=\left(v_{1}, \ldots, v_{N}\right)$, let

$$
\begin{equation*}
F(u, v) \equiv \sum_{i=1}^{N}\left[\ell_{i}(u)-\ell_{i}\left(v^{i}\right)\right], v^{i} \equiv\left(u_{1}, \ldots, u_{i-1}, v_{i}, u_{i+1}, \ldots, u_{N}\right) \tag{1.2}
\end{equation*}
$$

Lemma 1.1 If $u^{*}=\left(u_{1}^{*}, \ldots, u_{N}^{*}\right)$ satisfies
(1.3) $\sup _{v \in U} F\left(u^{*}, v\right) \leq 0$,
then u^{*} is an equilibrium strategy. Conversely, if u^{*} is an equilibrium strategy, then (1.3) holds.

Proof: Assume that (1.3) holds. Choose $v^{i}=\left(u_{1}^{*}, \ldots, u_{i-1}^{*}, v_{i}, u_{i+1}^{*}, \ldots, u_{N}^{*}\right)$, where $v_{i} \in U_{i}$ is arbitrary. Then
(1.4) $\quad F\left(u^{*}, v^{i}\right) \leq \sup _{v \in U} F\left(u^{*}, v\right) \leq 0$.

But

$$
F\left(u^{*}, v^{i}\right)=\ell_{i}\left(u_{1}^{*}, \ldots, u_{N}^{*}\right)-\ell_{i}\left(u_{1}^{*}, \ldots, u_{i-1}^{*}, v_{i}, u_{i+1}^{*}, \ldots, u_{N}^{*}\right)
$$

which is less than or equal to 0 by (1.4). So (0.2) is satisfied; $u{ }^{*}$ is an equilibrium strategy.

Conversely, if u^{*} is an equilibrium strategy, then

$$
\begin{equation*}
\ell_{i}\left(u_{1}^{*}, \ldots, u_{N}^{*}\right)-\ell_{i}\left(u_{1}^{*}, \ldots, u_{i-1}^{*}, v_{i}, u_{i+1}^{*}, \ldots, u_{N}^{*}\right) \leq 0, \forall v_{i} \in U_{i} . \tag{1.5}
\end{equation*}
$$

Summing (1.5) from 1 through N, we get $F\left(u^{*}, v\right) \leq 0, \forall v \in U$. Hence (1.3) holds.

Theorem 1.2 If
(1.6) $\inf _{u \in U} \sup _{v \in U} F(u, v)<0$
or
(1.6') $\min _{u \in U} \sup _{v \in U} F(u, v) \leq 0$
is satisfied, then the differential game has at least one equilibrium strategy.

Proof: Under (1.6), we have at least one $\bar{u} \in U$ such that $\sup F(\bar{u}, v) \leq 0$ $\forall v \in U$. By Lema 1.1, \bar{u} is an equilibrium strategy. Same conclusion holds for (1.6').

Remark 1.3 In the above proof, we see that if we choose $v=\bar{u}$, then

$$
0=F(\bar{u}, \bar{v}) \leq \sup _{\mathbf{v}} F(\bar{u}, v) \leq 0,
$$

therefore $\sup _{\mathrm{v}} \mathrm{F}(\bar{u}, v)=0$. We see that it is impossible to have $\sup _{\mathrm{v}} \mathrm{F}(\mathrm{u}, \mathrm{v})<0$.
Thus (1.6) is ruled out. An equilibrium strategy exists if and only if
(1.6") $\quad \min _{u \in U} \sup _{v \in U} F(u, v)=0$.

A simple corollary is that if (\bar{u}, \bar{v}) solves

$$
\begin{equation*}
F(\bar{u}, \bar{v})=\min _{u \in U} \max _{v \in U} F(u, v)=0, \tag{1.7}
\end{equation*}
$$

........ .-. -
then \bar{u} is an equilibrium strategy.

Remark 1.4 In the discussion above, nowhere have we used the linear dynamics of (0.1). Therefore Theroem 1.2 and Remark 1.3 are valid under the general setting of [6].

Therefore, the question of finding an equilibrium strategy is reduced to solving the min-max problem (1.7) or (1.6").

From now on, we signify the Sobolev space

$$
H_{n}^{k} \equiv H_{n}^{k}(0, T) \equiv\left\{y:[0, T] \rightarrow \mathbb{R}^{n} \left\lvert\,\|y\|_{H_{n}^{k}} \equiv \sum_{j=0}^{k}\left\|\left(\frac{d}{d t}\right)^{j} y\right\|_{L_{n}^{2}}<\infty\right.\right\}
$$

We define

$$
\begin{aligned}
J(x, u ; x, v) & \equiv J\left(x, u_{1}, \ldots, u_{N} ; x^{1}, \ldots, x^{N}, v_{1}, \ldots, v_{N}\right) \\
& \equiv \sum_{i=1}^{N}\left[J_{i}\left(x, u_{1}, \ldots, u_{N}\right)-J_{i}\left(x^{i}, u_{1}, \ldots, u_{i-1}, v_{i}, u_{i+1}, \ldots, u_{N}\right)\right]
\end{aligned}
$$

where $x=\left(x^{1}, \ldots, x^{N}\right) \in\left[H_{n}^{1}\right]^{N}$ and each x^{i} is the solution of
(1.8) $\left\{\begin{array}{l}\dot{x}^{i}=A x^{i}+B_{1} u_{1}+\ldots+B_{i-1} u_{i-1}+B_{i} v_{i}+B_{i+1} u_{i+1}+\ldots+B_{N} u_{N}+f \\ x^{i}(0)=x_{0} .\end{array}\right.$

If the given differential game has at least one equilibrium strategy, then we can consider solving
(1.9) $\left.\min _{\substack{x, u \\(D E)=0}} \quad \max _{X, v} \quad J(x]=,0 . u ; X, v\right)$,
where
(1.10) (DE) $=\dot{x}-A x-\sum_{j=1}^{N} B_{j} u_{j}-f, \quad x \in H_{n}^{1}$, subject to $x(0)=x_{0}$,

$$
\begin{equation*}
[D E]=\sum_{i=1}^{N}\left|(D E)_{i}\right|^{2}, \quad X(0)=\left(x^{1}(0), \ldots, x^{N}(0)\right)=\left(x_{0}, \ldots, x_{0}\right) \equiv x_{0} \tag{1.11}
\end{equation*}
$$

and
(1.12) (DE) ${ }_{i} \equiv \dot{x}^{i}-A x^{i}-\sum_{\substack{j=1 \\ j \neq 1}}^{N} B_{j} u_{j}-B_{i} v_{i}-f, x^{i} \in H_{n}^{1}$, subject to $x^{i}(0)=x_{0}$.

Suppose that the cost functional is given as

$$
J_{i}(x, u)=\int_{0}^{T} h_{i}\left(t, x(t), u_{i}(t), \ldots, u_{N}(t)\right) d t+g_{i}(x(T)) .
$$

In our framework, we can define the Hamiltonian as

$$
\begin{align*}
H\left(t, x, u, x, v, q_{0}, q\right) \equiv & \sum_{i=1}^{N}\left[h_{i}\left(t, x(t), u_{i}(t), \ldots, u_{N}(t)\right)-h_{i}\left(t, x^{i}(t),\right.\right. \tag{1.13}\\
& \left.\left.u_{1}(t), \ldots, u_{i-1}(t), v_{i}(t), u_{i+1}(t), \ldots, u_{N}(t)\right)\right] \\
+ & <q_{0}(t), A(t) x(t)+\sum_{i=1}^{N} B_{i}(t) u_{i}(t)+f(t)> \\
& +\sum_{i=1}^{N}\left\langle q_{i}(t), A(t) x^{i}(t)+\sum_{\substack{j=1 \\
j \neq i}}^{N} B_{j}(t) u_{j}(t)+B_{i}(t) v_{i}(t)+f(t)>,\right.
\end{align*}
$$

where $q=\left(q_{1}, q_{2}, \ldots, q_{N}\right)$. The Pontryagin minimaximum principle can be stated as follows: Assume that (\hat{u}, \hat{v}) is a min-max point for $\min \max F(u, v)$ subject to $(D E)=0,[D E]=0 ;$ let $\hat{x}, \hat{X}, \hat{q}_{0}, \hat{q}$ satisfy the canonical equations

$$
\begin{equation*}
\frac{d \hat{x}(t)}{d t}=\left.\frac{\partial}{\partial q_{0}} H\left(t, \hat{x}, \hat{u}, \hat{x}, \hat{v}, q_{0}, \hat{q}\right)\right|_{q_{0}=\hat{q}_{0}} ; \quad \hat{x}(0)=x_{0}, \tag{1.14}
\end{equation*}
$$

$$
\begin{equation*}
\frac{d \hat{x}^{i}(t)}{d t}=\left.\frac{\partial}{\partial q_{i}} H\left(t, \hat{x}, \hat{u}, \hat{x}, \hat{q}_{0}, q\right)\right|_{q=\hat{q}} ; \quad \hat{x}^{i}(0)=x_{0}, \quad 1 \leq i \leq N, \tag{1.15}
\end{equation*}
$$

$$
\begin{equation*}
\frac{d \hat{q}_{0}(t)}{d t}=-\left.\frac{\partial}{\partial x} H\left(t, x, \hat{u}, \hat{x}, \hat{v}, \hat{q}_{0}, \hat{q}\right)\right|_{x=\hat{x}} ; \quad \hat{q}_{0}(T)=\left.\sum_{i=1}^{N} \frac{\partial}{\partial x} g_{i}(x)\right|_{x=\hat{x}(T)} \text {. } \tag{1.16}
\end{equation*}
$$

(1.17)

$$
\frac{d \hat{q}_{i}(t)}{d t}=-\left.\frac{\partial}{\partial x^{i}} H\left(t, \hat{x}, \hat{u}, x, \hat{v}, \hat{q}_{0}, \hat{q}\right)\right|_{X=\hat{X}} ; \hat{q}_{i}(T)=-\left.\frac{\partial}{\partial x^{i}} g_{i}\left(x^{i}\right)\right|_{x^{i}=\hat{x}^{i}(T)} .
$$

Then, we have, necessarily, the Hamiltonian at a min-max point for all time $t \in(0, T):$
(1.18)

$$
H\left(t, \hat{x}, \hat{u}, \hat{X}, \hat{v}, \hat{q}_{0}, \hat{q}\right)=\min _{(x, u)} \max _{(x, v)} H\left(t, x, u, x, v, \hat{q}_{0}, \hat{q}\right)
$$

Alternatively, we can also use the dynamic programming approach. Define "the value of the game" $\mathrm{V}(\tau, \xi, \Xi)$ by
(1.19) $\quad V(\tau, \xi, \Xi) \equiv \underset{u}{\min } \max _{v} \sum_{i=1}^{N}\left\{\int_{\tau}^{T}\left[h_{i}\left(t, x(t), u_{1}(t), \ldots, u_{N}(t)\right)-h_{i}\left(t, x^{i}(t), u_{1}(t)\right.\right.\right.$,

$$
\begin{aligned}
&\left.\left.\ldots, u_{1-1}(t), v_{i}(t), u_{i+1}(t), \ldots, u_{N}(t)\right)\right] d t \\
&\left.+g_{i}(x(T))-g_{i}\left(x^{i}(T)\right)\right\}
\end{aligned}
$$

subject to

$$
\begin{aligned}
& \dot{x}(t)=A(t) x(t)+\sum_{i=1}^{N} B_{i}(t) u_{i}(t)+f(t), \quad x(\tau)=\xi \in \mathbb{R}^{n}, \\
& \qquad \dot{x}^{i}(t)=A(t) x^{i}(t)+\sum_{\substack{j=1 \\
j \neq i}}^{N} B_{j}(t) u_{j}(t)+B_{i}(t) v_{i}(t)+f(t), x^{i}(\tau)=\xi^{i} \in \mathbb{R}^{n}, \\
& \qquad 1 \leq i \leq N, \\
& \text { on }[\tau, T] \rightrightarrows t, \text { with } \Xi \equiv\left(\xi^{1}, \ldots, \xi^{N}\right) \in\left[\mathbb{R}^{n}\right]^{N} .
\end{aligned}
$$

If (1.19) is well-defined, under suitable assumptions (cf. [6], §4), we have the Issacs equation

$$
\begin{aligned}
& +\sum_{i=1}^{N}<\nabla_{\xi^{i}} V(\tau, \xi, \Xi), A(\tau) \xi^{i}+\sum_{\substack{j=1 \\
j \neq i}}^{N} B_{j}(\tau) u_{j}+B_{i}(\tau) v_{i}+f(\tau)>\mathbb{R}^{n} \\
& +\sum_{i=1}^{N}\left[h_{i}(\tau, \xi, u)-h_{i}\left(\tau, \xi^{i}, v^{i}\right)\right]=0, \quad\left(v^{i}=\left(u_{1}, \ldots, u_{i-1}, v_{i}, u_{i+1}, \ldots, u_{: i}\right)\right)
\end{aligned}
$$

with the terminal condition
(1.21) $\quad V(T, \xi, \Xi)=\sum_{i=1}^{N}\left[g_{i}(\xi)-g_{i}\left(\xi^{i}\right)\right]$.

This leads further to the Bellman-Hamilton-Jacobi equation

$$
\begin{align*}
& \left.\frac{\partial}{\partial t} V(t, x, X)+<\nabla_{X} V(t, x, X), A(t) x+\sum_{i=1}^{N} B_{i}(t) \hat{u}_{i}\left(t, x, x, \nabla_{x} V, \nabla_{X} V\right)+f(t)\right\rangle \tag{1.22}\\
& +\sum_{i=1}^{N}<\nabla_{x^{i}} V(t, x, X), A(t) x^{i}+\sum_{\substack{j=1 \\
j \neq i}}^{N} B_{j}(t) \hat{u}_{j}\left(t, x, x, \nabla_{x} V, \nabla_{X} V\right)+ \\
& +B_{i}(t) \hat{v}_{i}\left(t, x, X,{\underset{\sim}{x}} V, \nabla_{X} V\right)+f(t)= \\
& +\sum_{i=1}^{N}\left[h_{i}\left(t, x, \hat{u}\left(t, x, x, \nabla \nabla_{x} v, \nabla_{X} V\right)\right)-h_{i}\left(t, x^{i}, \hat{v}^{i}\left(t, x, x, \nabla_{x} v, \nabla_{X} V\right)\right]=0,\right.
\end{align*}
$$

where $\hat{u}\left(t, x, X, q_{0}, q\right)$ and $\hat{v}\left(t, x, X, q_{0}, q\right)$ are "feedback controls" for u and v satisfying

$$
\begin{aligned}
& \min _{m_{m_{i}}} \max _{m_{i}} H\left(t, x, u, X, v, q_{0}, q\right)=\min _{m_{i}} \max _{m_{i}} H\left(t, x, u, x, v, q_{0}, q\right) \\
& =H\left(t, x, \hat{u}\left(t, x, X, q_{0}, q\right), \quad X, \hat{v}\left(t, x, X, q_{0}, q\right), q_{0}, q\right) \\
& \text { for } t \in[0, T], x \in \mathbb{R}^{n}, \quad X \in\left[R^{n}\right]^{N}, \quad q=\left(q_{1}, \ldots, q_{N}\right) \in\left[R^{n}\right]^{N}, \quad q_{0} \in \mathbf{R}^{n} \text {. } \\
& \text { Comparing (1.21), (1.22) with [6] p. 293, (8.2.5), (8.2.6), for example, we } \\
& \text { see that our } B-H-J \text { equation is a single equation (in contrast with a system of } N \\
& \text { equations), but of } 1+n(N+1) \text { independent variables (in contrast with } 1+n \\
& \text { variables). }
\end{aligned}
$$

Throughout the above paragraphs, that the min-max point ($\hat{x}, \hat{u} ; \hat{X}, \hat{v}$) corresponds to an equilibrium strategy depends on whether the value of (1.9) is or not. This important issue will be addressed in our future papers. For linear quadratic games, a good answer can be found in (4.27) of Theorem 4.7.
§2. Duality Theory

We consider the following inf-sup problem
(P) $\left.\quad \begin{array}{l}\inf \sup \\ x, u X, v\end{array} J(x, u ; X, v) \right\rvert\, J$ as in $(1.8),(x, u) \in H_{n}^{1} \times U$ subject to ($\left.D E\right)=0$,

$$
\begin{gathered}
(X, v) \in\left[\mathrm{H}_{\mathrm{n}}^{1}\right]^{\mathrm{N}} \times \mathrm{U} \text { subject to }[\mathrm{DE}]=0 \text { as in } \\
(1.10),(1.11)\} .
\end{gathered}
$$

This constitutes the primal problem. Associated with (P) is the dual problem
(D) $\quad \sup _{p_{0} \in L_{n}^{2}} \quad \inf \in\left[L_{n}^{2}\right]^{N} L\left(p_{0}, p\right)$,
where $p=\left(p_{1}, \ldots, p_{N}\right)$ and

$$
L\left(p_{0}, p\right)=L\left(p_{0}, p_{1}, \ldots, p_{N}\right) \equiv \inf _{x, u x, v} L\left(p_{0}, p ; x, u ; x, v\right)
$$

with the Lagrangian $L: L_{n}^{2} \times\left[L_{n}^{2}\right]^{N} \times H_{n}^{1} \times U \times\left[H_{n}^{1}\right]^{N} \times U$ defined by
(2.1) $L\left(p_{0}, p ; x, u ; x, v\right) \equiv J(x, u ; x, v)+\left\langle p_{0}, \dot{x}-A x-\sum_{j=1}^{N} B_{j} u_{j}-f\right\rangle_{L_{n}}^{2}$

$$
+\sum_{i=1}^{N}<p_{i}, \dot{x}^{i}-A x^{i}-\sum_{\substack{j=1 \\ j \neq i}}^{N} B_{j} u_{j}-B_{i} v_{i}-f>L_{n}^{2}
$$

for x, X satisfying $x(0)=x_{0}, X(0)=x_{0}=\left(x_{0}, \ldots, x_{0}\right)$.
From now on we say that (x, u) or (X, v) is feasible if $(x, u) \in H_{n}^{1} \times U$ satisfies (1.10) and (X, v) $\in\left[H_{n}^{l}\right]^{N} \times U$ satisfies (1.12). Similarly, (p_{0}, p) is feasible if $\left(p_{0}, p\right) \in L_{n}^{2} \times\left[L_{n}^{2}\right]^{N}$.

We are now in a position to state the fundamental theorem in this paper.

Theorem 2.1 (Duality Theorem) Assume that $J(x, u ; X, v)$ is convex in (x, u) and concave in (X, v), for all (x, u) and (X, v) satisfying differential constraints, continuous in $H_{n}^{1} \times U \times\left[H_{n}^{1}\right]^{N} \times U$ and

Then there exists $\left(\bar{p}_{0}, \bar{p}\right)$ which is a max -min point for (D) with $L\left(\bar{p}_{0}, \bar{p}\right)=\hat{c}$. Furthermore, if $(\bar{x}, \bar{u} ; \bar{x}, \bar{v})$ is a min -max point for (P), then
(2.2)

$$
L\left(\bar{p}_{0}, \bar{p}\right)=\max _{p_{0} \in L_{n}^{2}}^{\min \in\left[L_{n}^{2}\right]^{N}} L I\left(p_{0}, p\right)
$$

$$
\begin{aligned}
& =\begin{array}{cc}
\min & \max _{(x, u)}^{(X, v)} \\
\text { feasible } & J(x, u: X, v) \\
\text { feasible }
\end{array} \\
& =J(\bar{x}, \bar{u} ; \bar{x}, \bar{v}) .
\end{aligned}
$$

We proceed to prove the theorem.
For any given $(x, u) \in H_{n}^{1} \times U$, let

$$
\begin{equation*}
\psi(x, u) \equiv \sup _{\substack{(X, v) \\ \text { feasible }}} J(x, u ; X, v), \tag{2.3}
\end{equation*}
$$

and also define
(2.4) $\phi(x, u, p)=\sup _{X, v}\left\{J(x, u ; X, v)+\sum_{i=1}^{N}\left\langle p_{i},(D E)_{i}>\right| X \in\left[H_{n}^{1}\right]^{N}, v \in U, X(0)=X_{0}\right.$,

$$
\left.p=\left(p_{1}, \ldots, p_{N}\right) \in\left[L_{n}^{2}\right]^{N}\right\}
$$

By (AO), we know that there exists at least one feasible (x, u) such that
(2.5) $\sup _{(\mathrm{X}, \mathrm{v})} J(\mathrm{x}, \mathrm{u} ; \mathrm{X}, \mathrm{v})=\psi(\mathrm{x}, \mathrm{u})<+\infty$. feasible

From now on we need only study $\psi(x, u)$ and $\phi(x, u, p)$ for those (x, u) satisfying (2.5).

Lemma 2.2 (Weak Duality) For any (x, u) satisfying (2.5), the functional $\phi(x, u, p)$ defined above is convex in p and
(2.6) $\inf _{p \in\left[L_{n}^{2}\right]^{N}} \phi(x, u, p) \geq \psi(x, u)$
holds.

Proof: Simple verification.

Lemma 2.4 (Strong Duality) Assume that $J(x, u ; X, v)$ is concave in (X, v) for all $(X, v) \in\left[H_{n}^{1}\right]^{N} \times U, \quad X(0)=X_{0}$. Then for any $(x, u) \in H_{n}^{1} \times U, \quad x(0)=x_{0}$, we have
(2.7) $\inf _{p \in\left[L_{n}^{2}\right]^{N}} \phi(x, u, p)=\psi(x, u)$.

Proof: If $\psi(x, u)=+\infty$, then (2.7) holds trivially by Lemma 2.2. So we assume that (2.5) holds. The arguments in [7, p. 846-847] immediately apply. We define two convex sets

$$
\begin{aligned}
& Y \equiv\left\{(a, 0) \in \mathbb{R} \times\left[L_{n}^{2}\right]^{N} \mid a \geq \psi(x, u)\right\} \\
& Z \equiv\left\{(a, b) \in \mathbb{R} \times\left[L_{n}^{2}\right]^{N} \mid a \leq J(x, u ; X, v), b=\left(b_{1}, \ldots, b_{N}\right),\right. \\
& \\
& b_{i}=\dot{x}^{i}-A x^{i}-B_{i} v_{i}-\underset{j \neq i}{ } B_{j} u_{j}-f, \\
& \\
& \\
& \left.x^{i}(0)=x_{0}, \quad i=1, \ldots, N .\right\}
\end{aligned}
$$

Then it is easily checked that $Y \cap$ (interior of Z) $=\phi$ since when $b=0 \in\left[L_{n}^{2}\right]^{N}$,

$$
a<J(x, u ; x, v) \leq \sup _{\substack{(X, v) \\ \text { feasible }}} J(x, u ; x, v)
$$

for any ($a, 0$) \in [interior of $z]$ which is obviously nonempty. So by the separation theorem (see, e.g. [11], p. 38, Theorem 3.3.3), Y and Z can be separated weakly in $R \times\left[L_{n}^{2}\right]^{N}$:
(2.8) $r \cdot a_{1}+\sum_{1}^{N}\left\langle\bar{q}_{i}, b_{i}\right\rangle \underset{\left[L_{n}^{2}\right]^{N}}{ } \leq r \cdot a_{2}, \forall\left(a_{1}, b\right) \in z,\left(a_{2}, 0\right) \in Y$,
for some $(r, \bar{q}) \in \mathbb{R} \times\left[L_{n}^{2}\right]^{N}$. Arguing as in [7], we see that $r>0$. So r can be normalized to 1 . Using $a_{1}=J(x, u ; x, v)$ and $a_{2}=y(x, u)$ in (2.8), we get

$$
J(x, u ; x, v)+\sum_{1}^{N}\left\langle\bar{q}_{i}, b_{i}\right\rangle \leqq \psi(x, u) .
$$

Therefore

$$
\phi(x, u, \bar{q}) \leq \psi(x, u) ;
$$

thus

$$
\inf _{p \in\left[L_{n}^{2}\right]^{N}} \phi(x, u, p) \leq \phi(x, u, \bar{q}) \leq \psi(x, u) .
$$

Combining the above with (2.6), we conclude (2.7).

Remark 2.5 It is well understood in duality theory that the "hyperplane" separating Y and Z will define and attain the optimal dual multipliers [7 j (when $\psi(\bar{x}, u)<\infty)$.

The arguments for the following lemma are the same as those for Lemmas 2.3 and 2.4 , the proof is are therefore omitted.

Lemma 2.6 Assume that $J(x, u ; X, v)$ is concave with respect to (X, v) and convex with respect to (x, u) for $(X, v) \in\left[H_{n}^{1}\right]^{N} \times U,(x, u) \in H_{n}^{1} \times U$, $X(0)=X_{0}, \quad x(0)=x_{0}$. We have

$$
\begin{equation*}
\operatorname{pup}_{0} \sin _{\mathrm{n}}^{2} \inf _{\substack{(x, u) H_{n}^{1} \times U \\ x(0)=x_{0}}}\left[\psi(x, u)+<p_{0},(D E)>\right]=\inf _{\substack{(x, u) \\ \text { feasible }}}[\psi(x, u)] . \tag{2.9}
\end{equation*}
$$

Remark 2.7 In (2.4), we introduce N Lagrange multipliers p_{i}, one for each player. In (2.9), we introduce the joint multiplier p_{0} commonly shared by all players.

Proof of Theorem 2.1 From Lemmas 2.4 and 2.7, we conclude that

$$
\begin{aligned}
& (P)=\inf \sup \{J(x, u ; X, v) \mid(x, u) \text { and }(X, v) \text { are feasible }\} \\
& \mathrm{x}, \mathrm{u} \mathrm{X}, \mathrm{u} \\
& =\inf _{(x, u)}\left[\sup _{(X, v)} J(x, u ; X, v)\right] \\
& \text { feasible feasible } \\
& =\quad \inf \quad \psi(x, u) \\
& \text { (} \mathrm{x}, \mathrm{u} \text {) } \\
& \text { feasible } \\
& =\sup _{2} \inf \quad\left[\psi(x, u)+<p_{0}(D E)>\right] \quad \text { (by Lemma 2.6) } \\
& p_{0} \in L_{n}^{2} \quad(x, u) \in H_{n}^{1} \times U \\
& x(0)=x_{0}
\end{aligned}
$$

$$
\begin{aligned}
& =\begin{array}{lll}
=\sup & \operatorname{lnf} & \sup \\
p_{0} \in L_{n}^{2}(x, u) \in H_{n}^{1} \times U & p \in\left[L_{n}^{2}\right]^{N} & (X, v) \in\left[H_{n}^{1}\right]^{N} \times U
\end{array} \quad\left[J(x, u ; X, v)+\sum_{i=1}^{N}<p_{i},(D E)_{i}>+\right. \\
& x(0)=x_{0} \\
& x(0)=X_{0} \\
& +\left\langle\mathrm{p}_{0},(\mathrm{DE})>\right]
\end{aligned}
$$

$$
=\max _{p_{0} \in L_{n}^{2}} \min _{p \in\left[L_{n}^{2}\right]^{N}} L(p, q)=(D) \quad \quad \text { (by Remark 2.5) }
$$

Hence if $(\bar{x}, \bar{u} ; \bar{x}, \bar{v})$ is feasible and solves (P) and if (\bar{p}_{0}, \bar{p}) is feasible and solves (D), we have

$$
\begin{aligned}
& \hat{c}=J(\bar{x}, \bar{u} ; \bar{x}, \bar{v})=\min _{\substack{(x, u) \\
\text { feasible feasible }}}^{\max _{(X, v)}} J(x, u ; x, v) \\
& =\max _{\mathrm{p}_{0} \in \mathrm{~L}_{\mathrm{n}}^{2}} \min _{\mathrm{p} \in\left[\mathrm{~L}_{\mathrm{n}}^{2}\right]^{\mathrm{N}}} \mathrm{~L}\left(\mathrm{p}_{0}, \mathrm{p}\right) \\
& =L\left(\bar{p}_{0}, \overline{\mathrm{p}}\right) .
\end{aligned}
$$

So the proof is complete.

There are still improvements on Theorem 2.1 that could be made, but that would make Theorem 2.1 unduly too general and lengthy, so we choose not to do them here.

§3. Linear Quadratic Problems and Synthesis

From now on throughout the rest of the paper, we consider the linear quadratic problem whose cost functionals are given by

$$
\begin{gather*}
J_{i}(x, u)=\frac{1}{2} \int_{0}^{T}\left[\left|C_{i}(t) x(t)-z_{i}(t)\right|_{k_{i}}^{2}+\left\langle M_{i}(t) u_{i}(t), u_{i}(t)\right\rangle_{R_{i}}\right] d t, \tag{3.1}\\
i=1, \ldots, N, \quad(x, u) \text { feasible, }
\end{gather*}
$$

where we assume that $C_{i}(t)$ and $M_{i}(t)$ are matrix-valued functions of appropriate sizes and smoothness, $\mathbf{z}_{\mathbf{i}}(\mathrm{t})$ is a vector-valued function. Furthermore, $M_{i}(t)$ induces a linear operator $M_{i}: L_{m_{i}}^{2} \rightarrow L_{m_{i}}^{2}$ which is positive definite:

$$
\begin{equation*}
<M_{i} u_{i}, u_{i}>L_{m_{i}}^{2} \geq v_{0}\left\|u_{i}\right\|_{L_{m_{i}}^{2}}^{2} \tag{3.2}
\end{equation*}
$$

for some $v_{0}>0$.

The main objective of this section is to give a formal derivation of the adjoint equations and the Riccati equation from the dual formulation. Later on in $\$ 4$ we will see that under certain sufficient conditions these procedures can be justified by Theorems 2.1 and 4.6 .

We use the definition of $J(x, u ; x, v)$ as in (1.8). For any feasible (p_{0}, p), the Lagrangian L is

$$
\begin{equation*}
\left.L\left(p_{0}, p ; x, u ; x, v\right)=J(x, u ; x, v)+<p_{0},(D E)>L_{L_{n}^{2}}+\sum_{i=1}^{N}<p_{i},(D E)_{i}\right\rangle_{L_{n}^{2}}^{2} \tag{3.3}
\end{equation*}
$$

$$
\begin{aligned}
& =\sum_{i=1}^{N}\left[J_{i}\left(x, u_{1}, \ldots, u_{N}\right)-J_{i}\left(x^{i}, u_{1}, \ldots, u_{i-1}, v_{i}, u_{i+1}, \ldots, u_{N}\right)\right] \\
& \\
& +\quad+<p_{0}, \dot{x}-A x-\sum_{i=1}^{N} B_{i} u_{i}-f>_{L_{n}}^{2} \\
& +\sum_{i=1}^{N}<p_{i}, \dot{x}^{i}-A x^{i}-\sum_{j \neq 1} B_{j} u_{j}-B_{i} v_{i}-f>L_{n}^{2}
\end{aligned}
$$

We first study $\begin{gathered}\max \\ (X, v) \\ X(0)=X_{0}\end{gathered} \quad L\left(p_{0}, p ; x, u ; X, v\right)$. Assume that for given p_{0}, p, x, u,
the maximum is attained at (\hat{X}, \hat{v}). By a simple variational analysis on x^{i}, we have, necessarily,

$$
\begin{equation*}
\left.-<C_{i}^{*}\left(C_{i} \hat{x}^{i}-z_{i}\right), y^{i}\right\rangle_{n}^{2}+\left\langle p_{i}, \dot{y}^{i}-A y^{i}\right\rangle_{n}^{2}=0, \quad\left(C^{*}=\text { adjoint of } C\right), \tag{3.4}
\end{equation*}
$$

for all $y^{i} \in H_{n}^{1}, \quad y^{i}(0)=0, \quad 1 \leq 1 \leq N$.

From variational analysis, we also have
(3.5) $\quad p_{i} \in H_{n}^{1}, \quad p_{i}(T)=0$,
and

$$
-\left\langle C_{i}^{*}\left(C_{i} \hat{x}^{i}-z_{i}\right)+\dot{p}_{i}+A^{*} p_{i}, y^{i}\right\rangle_{L_{n}^{2}}=0 ; \quad 1 \leq i \leq N .
$$

$$
\begin{equation*}
\dot{p}_{i}=-A^{*} p_{i}-C_{i}^{*}\left(C_{i} \hat{X}^{i}-z_{i}\right) \tag{3.6}
\end{equation*}
$$

Similar variational analysis on v_{i} gives

$$
\left.\left.-<M_{i} \hat{v}_{i}, w_{i}\right\rangle_{L_{i}^{2}}^{2}-<p_{i}, B_{i} w_{i}\right\rangle_{L_{n}^{2}}^{2}=0, \quad \forall w_{i} \in L_{m_{i}}^{2}
$$

or,

$$
\begin{equation*}
\hat{v}_{i}=-M_{i}^{-1} B_{i}^{*} p_{i}, \quad 1 \leq i \leq N . \tag{3.7}
\end{equation*}
$$

We now consider $\begin{gathered}\min _{\substack{(x, u) \\ x(0)=x_{0}}} L\left(p_{0}, p ; x, u ; \hat{x}, \hat{v}\right) \text {. Assume that the minimum is }\end{gathered}$
attained at $(\hat{\mathrm{x}}, \hat{\mathrm{u}})$. By the same reasoning as above, we get

$$
\begin{equation*}
P_{0} \in H_{n}^{1}, \quad p_{0}(T)=0 \tag{3.8}
\end{equation*}
$$

$$
\begin{equation*}
\dot{p}_{0}=-A{ }^{*} p_{0}+\sum_{i=1}^{N} C_{i}^{*}\left(C_{i} \hat{x}-z_{i}\right) \tag{3.9}
\end{equation*}
$$

(3.10) $\quad \hat{u}_{i}=M_{i}^{-1} B_{i}^{*}\left(p_{0}+\underset{\substack{j=1 \\ j \neq i}}{N} p_{j}\right)=M_{i}^{-1} B_{i}^{*}\left(p_{0}+p_{s}-p_{i}\right), \quad p_{s} \equiv \sum_{j=1}^{N} p_{j}$.

Let $L\left(p_{0}, p\right)$ be as defined in $\S 2$. If the problem $\max _{\min } L\left(p_{0}, p\right)$ attains its max-min at ($\hat{\mathrm{p}}_{0}, \hat{\mathrm{p}}$), then $\hat{\mathrm{p}}_{0}$ and $\hat{\mathrm{p}}$ satisfy (3.8), (3.9) and (3.5), (3.6). Therefore we obtain $\hat{x}, \hat{v}, \hat{x}, \hat{u}, \hat{p}_{0}, \hat{p}$ as the solution to the following two point boundary value problem:

Theorem 3.1 Let $\hat{X}, \hat{\mathrm{v}}, \hat{\mathrm{x}}, \hat{\mathrm{u}}, \hat{\mathrm{p}}_{0}$ and $\hat{\mathrm{p}}$ satisfy

$$
\begin{aligned}
& L\left(\hat{p}_{0}, \hat{p}\right)=\max _{p_{0} \in L_{n}^{2}} \min _{p \in\left[L_{n}^{2}\right]^{2}} L\left(p_{0}, p\right) \\
& =\max _{P_{0}} \min _{p} L\left(p_{0}, p ; \hat{x}, \hat{u} ; \hat{x}, \hat{v}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =J(\hat{x}, \hat{u} ; \hat{x}, \hat{v}) \\
& \begin{array}{l}
\min _{\substack{x, u}} \max _{x, v} J(x, u ; X, v) . \\
x(0)=x_{0} \\
X(0)=x_{0}
\end{array}
\end{aligned}
$$

Then $\hat{x}, \hat{x}=\left(\hat{x}^{1}, \ldots, \hat{x}^{N}\right), \quad \hat{p}_{0}, \hat{p}=\left(\hat{p}_{1}, \ldots, \hat{p}_{N}\right)$ are coupled through:
and $\hat{u}, \hat{\mathrm{v}}$ satisfy

$$
\begin{aligned}
& \hat{u}_{i}=M_{i}^{-1} B_{i}^{*}\left(\hat{p}_{0}+\hat{p}_{s}-\hat{p}_{i}\right), \\
& \hat{v}_{i}=-M_{i}^{-1} B_{i}^{*} \hat{p}_{i}
\end{aligned}
$$

where in (3.11),
(3.12) $\quad S \equiv \sum_{j=1}^{N} B_{j} M_{j}^{-1} B_{j}^{*}$,

$$
S_{i} \equiv \sum_{j \neq i} B_{j} M_{j}^{-1} B_{j}^{*},
$$

$$
S_{i k} \equiv S-\left(1-\delta_{i k}\right) B_{i} M_{i}^{-1} B_{i}^{*}-B_{k} M_{k}^{-1} B_{k}^{*}, \quad\left(\delta_{i k}=\right.\text { Kronecker's de1ta) }
$$

$$
\begin{aligned}
& \hat{x}(0)=\hat{x}^{1}(0)=\ldots=\hat{x}^{N}(0)=x_{0}, \\
& \hat{p}_{0}(T)=\hat{p}_{1}(T)=\ldots=\hat{p}_{N}(T)=0,
\end{aligned}
$$

Decoupling can be achieved by assuming the feedback affine relation
(3.13) $\left[\begin{array}{l}\hat{p}_{0} \\ \hat{p}\end{array}\right]=\mathbf{P}\left[\begin{array}{l}\hat{\hat{x}} \\ \hat{\mathrm{x}}\end{array}\right]+\pi$.

Let us write

$$
s \equiv\left[\begin{array}{cccc}
s & s_{1} & \ldots & s_{\mathrm{N}} \\
s_{1} & s_{11} & s_{1 N} \\
\vdots & \vdots & \vdots \\
s_{\mathrm{N}} & \mathrm{~s}_{\mathrm{N} 1} & \mathrm{~s}_{\mathrm{NN}}
\end{array}\right]
$$

$$
A \equiv\left[\begin{array}{llll}
A & 0 & & 0 \\
0 & & \ddots & \ddots \\
& \ddots & \ddots & 0 \\
0 & \ddots & \ddots & A
\end{array}\right]_{[n \times(N+1)] \times[n \times(N+1)]}
$$

$$
\mathbb{C} \equiv\left[\begin{array}{ccccc}
\sum_{i=1}^{N} C_{i}^{*} C_{i} & 0 \cdot & & 0 \\
0 \cdot & -C_{1}^{*} C_{1} & \ddots & 0 \\
0 & \cdot & 0 & \ddots & -C_{N}^{*} C_{N}
\end{array}\right]
$$

$$
-A^{*}=\left[\begin{array}{ccccc}
-A^{*} \cdot & & & 0 & \\
0 \cdot & \cdot & 0 \\
0 \cdot & \cdot A^{*} \cdot & \cdot & \cdot & 0 \\
0 & \cdot & \cdot .0 & \cdot & -A^{*}
\end{array}\right]
$$

which denote, respectively, the first, second, third and fourth quadrant of blocks of matrices in the big matrix in (3.11). From (3.11) and (3.13), using the above notations, we get the Riccati equation
(3.14) $\left\{\begin{array}{l}\dot{\mathbb{P}}+\mathbf{P} \mathbb{A}+\mathbb{A}^{*} \mathbf{P}+\mathbf{P} \mathbb{E} P-\mathbb{C}=0, \\ \mathbb{P}(T)=0,\end{array}\right.$
for P. We also have
(3.15) $\left\{\begin{array}{l}\dot{\mathbf{r}}+\left(\mathbb{P} \mathcal{S}+\mathbb{A}^{*}\right) \mathrm{rr}+\mathbb{P} f-\zeta=0, \\ \boldsymbol{r}(\mathbb{T})=0,\end{array}\right.$
where

$$
\zeta \equiv\left[\begin{array}{ll}
N & \\
-\sum_{i=1}^{*} & C_{i}^{*} z_{i} \\
C_{1}^{*} z_{1} \\
\vdots \\
C_{N}^{*} z_{N}
\end{array}\right]
$$

The reader may compare the Riccati equation (3.14) from our dual approach with that in $[9,(4.30)]$ obtained form the primal approach or that in $[6, p, 312$, (8.5.23)].
34. The Dual Max-Min Problem

We study the dual problem in this section. This will become the basis of the finite element computations in $\$ 5$.

Henceforth, for simplicity, we denote the operators $C_{i}^{*} C_{i}$ and $\sum_{i=1}^{N} C_{i}^{*} C_{i}$ (induced by the matrices $C_{i}^{*}(t) C_{i}(t)$ and $\sum_{i=1}^{N} C_{i}^{*}(t) C_{i}(t)$) in L_{n}^{2} as $\mathbb{C}_{i}(1 \leq i \leq N)$ and \mathbb{X}_{0}, \quad respectively.

We will need several assumptions as we proceed. First, we assume (Al) each operator $\mathbb{d}_{i}(1 \leq i \leq N)$ is strictly positive definite in L_{n}^{2}.

From (3.6), we get

$$
\begin{equation*}
\hat{x}^{1}=-\mathbb{C}_{i}^{-1}\left(\dot{p}_{i}+A^{*} p_{i}-C_{i}^{*} z_{i}\right) . \tag{4.1}
\end{equation*}
$$

By (Al), \mathbb{C}_{0} is also strictly positive definite. By (3.9), we get

$$
\begin{equation*}
\hat{x}=\mathbb{C}_{0}^{-1}\left(\dot{p}_{0}+A^{*} p_{0}+\sum_{i=1}^{N} C_{i}^{*} z_{i}\right) \tag{4.2}
\end{equation*}
$$

We now substitute (4.1), (4.2), (3.7) and (3.10) into (3.3). Integrating by parts with respect to P_{0} and $P_{i}(1 \leq i \leq N)$ once, using the end conditions (3.5) and (3.8) and simplifying, one obtains

$$
\begin{align*}
L\left(p_{0}, p\right) & =L\left(p_{0}, p ; \hat{x}, \hat{u} ; \hat{x}, \hat{v}\right) \tag{4.3}\\
& \left.=-\frac{1}{2}<\dot{p}_{0}+A^{*} p_{0}, x_{0}^{-1}\left(\dot{p}_{0}+A^{*} p_{0}\right)>+\frac{1}{2} \sum_{i=1}^{N}<\dot{p}_{i}+A^{*} p_{i}, L_{i}^{-1}\left(\dot{p}_{i}+A^{*} p_{i}\right)\right\rangle
\end{align*}
$$

$$
\begin{aligned}
& -\frac{1}{2}<p_{0}+p_{S}, S\left(p_{0}+p_{s}\right)>+<p_{0}+p_{S}, \sum_{i=1}^{N} \quad B_{i} M_{i}^{-1} B_{i}^{*} p_{i}>-<\dot{p}_{0}+A^{*} p_{0}, i_{0}^{-1} \sum_{i=1}^{N} C_{i}^{*} z_{i}> \\
& -\sum_{i=1}^{N}<\dot{p}_{i}+A^{*} p_{i}, \bar{c}_{i}^{-1} C_{i}^{*} z_{i}>-<p_{0}+p_{s}, f>-<p_{0}(0)+p_{s}(0), x_{0}> \\
& -\frac{1}{2}<\mathbb{D}_{0}^{-1}\left(\sum_{j=1}^{N} C_{j}^{*} z_{j}\right), \sum_{j=1}^{N} C_{j}^{*} z_{j}>+\frac{1_{i}}{2}\|z\|^{2} \\
& =\sum_{i=1}^{10} \mathbb{T}_{i},
\end{aligned}
$$

where $\|z\|^{2} \equiv \sum_{i=1}^{N}\left\|z_{i}\right\|_{L_{2}}^{2}$, and p_{s}, S are defined as in $\} 3$.

We are now faced with the problem of max min $\overline{\mathrm{L}}\left(\mathrm{p}_{0}, \overline{\mathrm{p}}\right)$. It

$$
p_{0} \quad p
$$

is easy to see that $L\left(p_{0}, p\right)$ is strictly concave in p_{0} for any given p. However, for any given $p_{0}, L\left(p_{0}, p\right)$ is not necessarily convex in p because of the negative sign in front of \mathbb{T}_{3}. To circumvent this, we will need the following import assumptiarr:

The positive definite operators $\mathbb{C}_{i}^{-1}(1 \leq i \leq N)$ in L_{n}^{2} are large enough so that

$$
\begin{align*}
& \frac{1}{2} \sum_{i=1}^{N}\left\langle\dot{p}_{i}+A^{*} p_{i}, D_{i}^{-1}\left(\dot{p}_{i}+A^{*} p_{i}\right)>-\frac{1}{2}<p_{s}, S p_{s}>+\left\langle p_{s}, \sum_{i=1}^{N} B_{i} M_{i}^{-1} B_{i}^{*} p_{i}\right\rangle\right. \tag{4.4}\\
& \geq v_{1} \sum_{i=1}^{N}\left\|\dot{p}_{i}\right\|^{2},
\end{align*}
$$

for all $p_{i} \in H_{0 n}^{1} \equiv\left\{q \mid q, \dot{q} \in L_{n}^{2}, q(T)=0\right\}$, for some $\nu_{1}>0$.
We remark that even if $\mathbf{c}_{i}^{-1}, 1 \leq i \leq N$, are not large enough, the above assumption can still be valid provided that T is chosen sufficiently small, because in this case, the first positive definite quadratic form in (4.4) will
have a larger coercivity coefficient to bound the L^{2}-norm, when the interval $[0, T]$ is small. This agrees with the assumption that $t_{1}-t_{0}$ be sufficiently small in [9, p. 114, line 15].

Another special case wherein (A2) holds without requiring \mathbb{C}_{i}^{-1} $1 \leq i \leq N$ to be large is when

$$
\begin{aligned}
& N=2, \quad U_{1}=U_{2} \\
& B_{1} M_{1}^{-1} B_{1}^{*}=B_{2} M_{2}^{-1} B_{2}^{*} \equiv B, \text { for some } B \geq 0 .
\end{aligned}
$$

It is easily seen that now

$$
\begin{aligned}
(4.4) & =\frac{1}{2} \sum_{i=1}^{2}\left\langle\dot{p}_{i}+A^{*} p_{i}, \mathbb{C}_{i}^{-1}\left(\dot{p}_{i}+a^{*} p_{i}\right)>-\frac{1}{2} \cdot 2\left\langle p_{s}, B p_{s}\right\rangle+\left\langle p_{s}, B p_{s}\right\rangle\right. \\
& =\frac{1}{2} \sum_{i=1}^{2}\left\langle\dot{p}_{i}+A^{*} p_{i}, \mathbb{C}_{i}^{-1}\left(p_{i}+A^{*} p_{i}\right)\right\rangle,
\end{aligned}
$$

so (A2) holds.

Remark 4.1 We believe that if (4.4) is not a positive semi-definite quadratic form, then $J(x, u ; X, v)$ is not convex in (x, u) (J is always concave in (X, v) for any given u), thus hindering the existence or uniqueness of the equilibrium strategy. This is still being investigated.

Because the quadratic form (4.4) is symmetric, using the end condition $p_{i}(T)=0 \quad(1 \leq i \leq N)$ and the Poincare inequality, we see that for $p^{1}=\left(p_{1}^{1}, \ldots, p_{N}^{1}\right), p^{2}=\left(p_{1}^{2}, \ldots, p_{N}^{2}\right) \in\left[H_{0 n}^{1}\right]^{N}$, the bilinear form

$$
\begin{align*}
\beta\left(p^{1}, p^{2}\right) & \equiv \frac{1}{2} \sum_{i=1}^{N}\left\langle\dot{p}_{i}^{1}+A^{*} p_{i}^{1}, \mathbb{d}_{i}^{-1}\left(\dot{p}_{i}^{2}+A^{*} p_{i}^{2}\right)>-\frac{1}{2}<p_{s}^{1}, S p_{s}^{2}>\right. \tag{4.5}\\
& +\frac{1}{2}<p_{s}^{1}, \sum_{1}^{N} B_{i} M_{i}^{-1} B_{i}^{*} p_{i}^{2}>+\frac{1}{2}<p_{s}^{2}, \sum_{1}^{N} B_{i} M_{i}^{-1} B_{i}^{*} p_{i}^{1}>
\end{align*}
$$

defines an equivalent inner product in $\left[\mathrm{H}_{0 \mathrm{n}}^{1}\right]^{\mathrm{N}}$.

Lemma 4. 2 Under (A1) and (A2), for each given $P_{0}, L\left(p_{0}, p\right)$ is strictly convex in p and for each given $p, L\left(p_{0}, p\right)$ is strictly concave in p_{0}.

Proof: For each given $\overline{\mathrm{p}}_{0} \in \mathrm{H}_{0 \mathrm{n}}^{1}$, we can write $\mathrm{L}\left(\overline{\mathrm{p}}_{0}, \mathrm{p}\right)$ as

$$
\begin{aligned}
\mathrm{L}\left(\overline{\mathrm{p}}_{0}, \mathrm{p}\right)= & \beta(\mathrm{p}, \mathrm{p})+\text { linear terms in } \mathrm{p}+\text { constant terms (depending } \\
& \text { on } \left.\overline{\mathrm{p}}_{0} \text { and } z_{i}\right) .
\end{aligned}
$$

Since β forms an equivalent inner product in $\left[\mathrm{H}_{0 \mathrm{n}}^{1}\right]^{\mathrm{N}}$, we conclude that $L\left(\bar{p}_{0}, p\right)$ is strictly convex in p.

The second assertion is already clear.
For each given $p_{0}, L\left(p_{0}, p\right)$ is strictly convex, continuous and coercive in p (i.e., $\mathrm{L}\left(\mathrm{p}_{0}, \mathrm{p}\right) \rightarrow+\infty$ as $\|\mathrm{p}\|_{\left[\mathrm{H}_{0 \mathrm{n}}^{1}\right]^{\mathrm{N}}} \rightarrow+\infty$. Therefore
(4.6) $\min _{p \in\left[H_{0 n}^{1}\right]^{N}}^{L\left(p_{0}, p\right)=L\left(p_{0}, \hat{p}\left(p_{0}\right)\right)}$
is uniquely attained at $\hat{p}\left(p_{0}\right)$, depending on p_{0}.
From a straightforward variational analysis (or the Euler-Lagrange equations), we see that $\hat{p}\left(p_{0}\right)$ satisfies
$(4.7)\left\{\begin{array}{l}\frac{d}{d t} \mathbb{d}_{i}^{-1}\left(\dot{\hat{p}}_{i}+A^{*} \hat{p}_{i}\right)-A \mathbb{C}_{i}^{-1}\left(\dot{\hat{p}}_{i}+A^{*} \hat{p}_{i}\right)+S\left(P_{0}+\hat{p}_{s}\right)-\sum_{1}^{N} B_{j} M_{j}^{-1} B_{j}^{*} \hat{p}_{j} \\ -B_{i} M_{i}^{-1} B_{i}^{*}\left(p_{0}+\hat{p}_{s}\right)+A \mathbb{C}_{i}^{-1} C_{i}^{*} z_{i}-\frac{d}{d t}\left(\mathbb{C}_{i}^{-1} C_{i}^{*} z_{i}\right)+f=0, \\ \hat{p}_{i}(T)=0, \\ \mathbb{C}_{i}^{-1}(0)\left[\dot{\hat{p}}_{i}(0)+A^{*}(0) \hat{p}_{i}(0)\right]=-x_{0}+\mathbb{C}_{i}^{-1}(0) C_{i}^{*}(0) z_{i}(0) ; 1 \leq i \leq N,\end{array}\right.$
where it is assumed that $\mathbb{C}_{i}^{-1} C_{i}^{*} z_{i}(1 \leq i \leq N)$ are sufficiently smooth so that $\left\{\mathbb{C}_{i}^{-1}(0) C_{i}^{*}(0) z_{i}(0)\right\}_{1}^{N}$ exist.

Now, consider $\overline{\mathrm{L}}\left(\mathrm{p}_{0}\right) \equiv \mathrm{L}\left(\mathrm{p}_{0}, \hat{\mathrm{P}}\left(\mathrm{p}_{0}\right)\right)$ as a functional of p_{0}. It is easy to verify that $\overline{\mathrm{L}}\left(\mathrm{p}_{0}\right)$ is concave with respect to p_{0}. In fact, we have

Lemma 4.3 $\overline{\mathrm{L}}\left(\mathrm{p}_{0}\right)$ is strictly concave with respect to p_{0}.

Proof: For any $\theta \in[0,1]$ and any $p_{0}^{1}, p_{0}^{2} \in H_{0 n}^{1}$, we have

$$
\begin{align*}
& \bar{L}\left(\theta p_{0}^{1}+(1-\theta) p_{0}^{2}\right)=\min _{p \in\left[H_{0 n}^{1}\right]^{N}} L\left(\theta p_{0}^{1}+(1-\theta) p_{0}^{2}, p\right) \tag{4.8}\\
& =\min _{p \in\left[H_{0 n}^{1}\right]^{N}}\left\{-\varepsilon\left\|\left[\theta \dot{p}_{0}^{1}+(1-\theta) \dot{p}_{0}^{2}\right]+A^{*}\left[\theta p_{0}^{1}+(1-\theta) p_{0}^{2}\right]\right\|^{2}\right. \\
& \left.\quad+\left[L\left(\theta p_{0}^{1}+(1-\theta) p_{0}^{2}, p\right)+\varepsilon\left\|\left[\theta \dot{p}_{0}^{1}+(1-\theta) \dot{p}_{0}^{2}\right]+A^{*}\left[\theta p_{0}^{1}+(1-\theta) p_{0}^{2}\right]\right\|_{L_{n}^{2}}^{2}\right]\right\}
\end{align*}
$$

where in the above, ε is chosen sufficiently small so that $-\frac{1}{2} \mathbb{C}_{0}^{1}+\varepsilon I$ is still strictly negative definite. Continuing from (4.8), we get

$$
\begin{aligned}
& \text { (4.8) }=-\varepsilon\left\|\left(\frac{d}{d t}+A^{*}\right)\left[\theta p_{0}^{1}+(1-\theta) p_{0}^{2}\right]\right\|_{2}^{2}+\min ^{2}\left\{L\left(\theta p_{0}^{1}+(1-\theta) p_{0}^{2}, p\right)+\varepsilon \|\left(\frac{d}{d t}+A^{*}\right) .\right. \\
& \mathrm{L}_{\mathrm{n}}^{2} \quad \mathrm{p} \in\left[\mathrm{H}_{\theta \mathrm{n}}^{1}\right]^{\mathrm{N}} \\
& \left.\left[\theta p_{0}^{1}+(1-\theta) p_{0}^{2}\right] \|_{L_{n}^{2}}^{2}\right\} \\
& \geq-\varepsilon\left\|\left(\frac{d}{d t}+A^{*}\right)\left[\theta p_{0}^{1}+(1-\theta) p_{0}^{2}\right]\right\|_{L_{n}^{2}}^{2} \\
& +\min _{p \in\left[H_{0 n}^{1}\right]^{N}}\left\{\theta\left[L\left(p_{0}^{1}, p\right)+\varepsilon\left\|\dot{p}_{0}^{1}+A^{*}{ }_{0}^{1}\right\|_{0}^{2}\right]+(1-\theta)\left[L\left(p_{0}^{2}, p\right)+\varepsilon\left\|\dot{p}_{0}^{2}+A^{*}{ }_{p_{0}^{2}}^{2}\right\|^{2}\right]\right\},
\end{aligned}
$$

because the parenthesized term is concave and because $-\frac{1}{2} \mathbf{C}_{0}^{-1}+\varepsilon I$ is negative definite.
(continuing from the above)
(4.9)

$$
\begin{aligned}
& \geq-\varepsilon\left\|\left(\frac{d}{d t}+A^{*}\right)\left[\theta p_{0}^{1}+(1-\theta) p_{0}^{2}\right]\right\|_{L_{n}^{2}}^{2}+\theta \min _{p \in\left[H_{0 n}^{1}\right]^{N}}\left\{L\left(p_{0}^{1}, p\right)+\varepsilon\left\|\dot{p}_{0}^{1}+A^{*} p_{0}^{1}\right\|^{2}\right\} \\
& +(1-\theta) \min _{p \in\left[H_{0 n}^{1}\right]^{N}}\left\{L\left(p_{0}^{2}, p\right)+\varepsilon\left\|\dot{p}_{0}^{2}+A^{*} p_{0}^{2}\right\|^{2}\right\} .
\end{aligned}
$$

If $\mathrm{P}_{0}^{1} \neq \mathrm{p}_{0}^{2}$ and $\theta \neq 0,1$, then

$$
-\varepsilon\left\|\left(\frac{d}{d t}+A^{*}\right)\left[\theta p_{0}^{1}+(1-\theta) p_{0}^{2}\right]\right\|^{2}+\theta \varepsilon\left\|\dot{p}_{0}^{1}+A^{*} p_{0}^{1}\right\|^{2}+(1-\theta) \varepsilon\left\|\dot{p}_{0}^{2}+A^{*} p_{0}^{2}\right\|^{2}>0
$$

so
(4.8) and (4.9) give
proving strict concavity.
We proceed to study $\max _{\mathrm{p}_{0} \in \mathrm{H}_{0 \mathrm{n}}^{\mathrm{I}}}^{\mathrm{L}\left(\mathrm{p}_{0}\right) .}$

Lemma 4.4 Under (A1) and (A2), $\overline{\mathrm{L}}\left(\mathrm{p}_{0}\right)$ is (negatively) coercive with respect to p_{0}, ie.,

$$
\overline{\mathrm{L}}\left(\mathrm{p}_{0}\right) \rightarrow-\infty \text { as }\left\|\mathrm{p}_{0}\right\|_{\mathrm{H}^{1}} \rightarrow+\infty .
$$

$$
\mathrm{H}_{0 \mathrm{n}}^{1}
$$

$$
\begin{aligned}
& \bar{L}\left(\theta p_{0}^{1}+(1-\theta) p_{0}^{2}\right)>\min _{p \in\left[H_{0 n}^{1}\right]^{N}}^{L\left(p_{0}^{1}, p\right)+(1-\theta)} \min _{p \in\left[H_{0 n}^{1}\right]^{N}}^{L\left(p_{0}^{2}, p\right)} \\
& =\theta \overline{\mathrm{L}}\left(\mathrm{p}_{0}^{1}\right)+(1-\theta) \overline{\mathrm{L}}\left(\mathrm{p}_{0}^{2}\right),
\end{aligned}
$$

Proof: Because $0 \in\left[\mathrm{H}_{0 n}^{1}\right]^{N}$, we have
(4.10)

$$
\begin{aligned}
& \overline{\mathrm{L}}\left(\mathrm{p}_{0}\right)=\min _{\mathrm{p} \in\left[\mathrm{H}_{0 \mathrm{n}}^{1}\right]^{N}}^{\mathrm{L}\left(\mathrm{p}_{0}, \mathrm{p}\right) \leq \mathrm{L}\left(\mathrm{p}_{0}, 0\right)}
\end{aligned}
$$

$$
\begin{aligned}
& -\frac{1}{2}<\mathbb{E}_{0}^{-1}\left(\underset{1}{N} C_{j}^{*} z_{j}\right), \sum_{1}^{N} C_{j}^{*} z_{j}>+\frac{1}{2}\|z\|^{2}-<\dot{p}_{0}+A^{*} p_{0}, \mathbb{C}_{0}^{-1} \sum_{i=1}^{N} C_{i}^{*} z_{i}>
\end{aligned}
$$

We use

$$
\begin{aligned}
& \left|<\dot{p}_{0}+A^{*} p_{0}, \mathbb{C}_{0}^{-1} \sum_{i=1}^{N} C_{i}^{*} z_{i}>\right| \leq \frac{\varepsilon}{2}<\dot{p}_{0}+A^{*} p_{0}, \mathbb{C}_{0}^{-1}\left(\dot{p}_{0}+A^{*} p_{0}\right)>+\frac{1}{2 \varepsilon}<\sum_{i=1}^{N} C_{i}^{*} z_{i}, \mathbb{C}_{0}^{-1} \sum_{i=1}^{N} C_{i}^{*} z_{i}
\end{aligned}
$$

$$
\begin{aligned}
& +\frac{1}{2 \varepsilon}\left\|x_{0}\right\|^{2}
\end{aligned}
$$

in (4.10); in the above the constant $K>0$ depends on \mathbb{a}_{0}^{-1} only. Choose ε sufficiently small. One sees that

$$
\begin{aligned}
& \overline{\mathrm{L}}\left(\mathrm{p}_{0}\right) \leq \mathrm{L}\left(\mathrm{p}_{0}, 0\right) \leq\left(-\frac{1}{2}+\mathrm{EK}+\frac{\varepsilon}{2}\right)<\dot{\mathrm{p}}_{0}+\mathrm{A}^{*} \mathrm{P}_{0}, \mathrm{~m}_{0}^{-1}\left(\dot{\mathrm{p}}_{0}+\mathrm{A}^{*} \mathrm{p}_{0}\right)>-\frac{1}{2}<\mathrm{p}_{0}, S \mathrm{p}_{0}>
\end{aligned}
$$

the right hand side tends to $-\infty$ as $\left\|\mathrm{P}_{0}\right\|_{\mathrm{H}_{0 \mathrm{n}}^{1}} \rightarrow+\infty$.

Theorem 4.5 (Dual Saddle Point Theorem) Under (A1), (A2), the max-min problem $\max \min L\left(p_{0}, p\right)$ has a unique solution $\left(\hat{p}_{0}, \hat{p}\right)$. Furthermore, $p_{0} \quad \mathrm{p}$
(4.11) $\max _{\mathrm{p}_{0} \in \mathrm{H}_{0 \mathrm{n}}^{1}}^{\min }{\mathrm{p} \in\left[\mathrm{H}_{0 \mathrm{n}}^{1}\right]^{\mathrm{N}}}_{\mathrm{L}\left(\mathrm{p}_{0}, \mathrm{p}\right)=}^{\min } \underset{\mathrm{p} \in\left[\mathrm{H}_{0 \mathrm{n}}^{1}\right]^{\mathrm{N}}}{\mathrm{p}_{0} \in \mathrm{H}_{0 \mathrm{n}}^{1}} \underset{\max }{\mathrm{~L}\left(\mathrm{p}_{0}, \mathrm{p}\right) .}$

Proof: We use the standard saddle point argument [5], except that we replace the compactness condition by coercivity.

For each p_{0}, there exists a unique $\hat{p}\left(p_{0}\right)$ minimizing $L\left(p_{0}, p\right)$ with respect to p as in (4.6).

By Lemmas 4.3 and 4.4, $\max _{\mathrm{p}_{0} \in \mathrm{H}_{0 \mathrm{n}}^{1}} \overrightarrow{\mathrm{~L}}\left(\mathrm{p}_{0}\right)=\mathrm{L}\left(\mathrm{p}_{0}, \hat{\mathrm{p}}\left(\mathrm{p}_{0}\right)\right)$ also has a unique minimizer $\hat{\mathrm{p}}_{0}$. Hence $\max ^{\min } \mathrm{p}\left(\mathrm{p}_{0}, \mathrm{p}\right)$ has a unique solution $\left(\hat{p}_{0}, \hat{\mathrm{p}}\right)$ (with $\left.\hat{p}=\hat{p}\left(\hat{p}_{0}\right)\right):$

For any $p_{0} \in H_{0 n}^{1}, p \in\left[H_{0 n}^{1}\right]^{N}$ and $\theta \in(0,1)$, we have

$$
\begin{aligned}
L\left((1-\theta) \hat{p}_{0}+\theta p_{0}, p\right) & \geq(1-\theta) L\left(\hat{p}_{0}, p\right)+\theta L\left(p_{0}, p\right) \\
& \geq(1-\theta) \bar{L}\left(\hat{p}_{0}\right)+\theta L\left(p_{0}, p\right) .
\end{aligned}
$$

In particular, we choose $p=\hat{p}\left((1-\theta) \hat{p}_{0}+\theta p_{0}\right)$. From the above we get

$$
\overline{\mathrm{L}}\left(\hat{\mathrm{p}}_{0}\right) \geq \overline{\mathrm{L}}\left((1-\theta) \hat{\mathrm{p}}_{0}+\theta \mathrm{p}_{0}\right) \geq(1-\theta) \overline{\mathrm{L}}\left(\hat{\mathrm{p}}_{0}\right)+\theta \mathrm{L}\left(\mathrm{p}_{0}, \hat{\mathrm{p}}\left((1-\theta) \hat{\mathrm{p}}_{0}+\theta \mathrm{p}_{0}\right)\right)
$$

Hence

$$
\bar{L}\left(\hat{p}_{0}\right) \geq L\left(p_{0}, \hat{p}\left((1-\theta) \hat{p}_{0}+\theta p_{0}\right)\right) .
$$

Noting that $\hat{p}\left((1-\theta) \hat{p}_{0}+\theta p_{0}\right)$ is continuous with respect to θ, one lets θ tend to $0+$ and gets

$$
\overline{\mathrm{L}}\left(\hat{\mathrm{p}}_{0}\right) \geq \mathrm{L}\left(\mathrm{p}_{0}, \hat{\mathrm{p}}\left(\hat{\mathrm{p}}_{0}\right)\right), \quad \forall \mathrm{p}_{0} \in \mathrm{H}_{0 \mathrm{n}}^{1} .
$$

On the other hand, from (4.12),

$$
\overline{\mathrm{L}}\left(\hat{\mathrm{p}}_{0}\right) \leq \mathrm{L}\left(\hat{\mathrm{p}}_{0}, \mathrm{q}\right), \quad \forall q \in\left[\mathrm{H}_{0 \mathrm{n}}^{1}\right]^{\mathrm{N}} .
$$

Therefore we conclude

$$
L\left(p_{0}, \hat{p}\left(\hat{p}_{0}\right)\right)=L\left(p_{0}, \hat{p}\right) \leq \bar{L}\left(\hat{p}_{0}\right)=L\left(\hat{p}_{0}, \hat{p}\right) \leq L\left(\hat{p}_{0}, p\right), \forall p, p_{0}
$$

Hence (4.11) is proved.
\square

So far, our derivation of the dual problem is only formal because we have not yet verified the assumptions in Theorem 2.1 that $J(x, u, x, v)$ is convex in (x, u) and concave in (X, v) and that $\inf \sup J(x, u, x, v)$ is attainable. These questions are answered in the following theorem.

Theorem 4.6 (Primal-Dual Equivalence Theorem)
Assume that $C_{i}(t), z_{i}(t), 1 \leq 1 \leq N, f(t)$ and $\mathbb{d}_{0}^{-1}, L_{i}^{-1}, 1 \leq i \leq N$, are sufficiently smooth (as functions and operators, respectively). Under assumptions (A1) and (A2), for the linear quadratic differential game (0.1) and (3.1), let $J(x, u ; X, v)$ be defined as in (1.8). Then
i) $J(x, u ; X, v)$ is convex in (x, u) and strictly concave in (X, v);
ii) there exist unique (\hat{x}, \hat{u}) and (\hat{X}, \hat{v}) such that

$$
=J(\hat{x}, \hat{u} ; \hat{x}, \hat{v})<\infty ;
$$

iii)
(4.14) $\min _{(x, u)}^{\max }(x, v) J(x, u ; x, v)=\max _{(x, v)} \min _{(x, u)} J(x, u ; x, v)$
iv)
(4.15) $L\left(\hat{\mathrm{P}}_{0}, \hat{\mathrm{p}}\right)=\max _{\mathrm{p}_{0} \in \mathrm{~L}_{\mathrm{n}}^{2}}^{\min \in\left[\mathrm{L}_{\mathrm{n}}^{2}\right]^{N}} \mathrm{~L}\left(\mathrm{p}_{0}, \mathrm{P}\right)$

$$
\begin{aligned}
& =\min _{\substack{(x, u) \\
\text { feasible }}}^{\substack{\text { (} x, v) \\
\text { feasible }}} J(x, u ; x, v) .
\end{aligned}
$$

v) The (second) dual of the (first) dual problem (namely, (D)), obtained by regarding $\dot{p}_{i}-\frac{d}{d f} p_{i}=0(1 \leq I \leq N)$ as constraints in L, recovers to the primal problem (P).

Proof: The proof is based upon the "reflexivity" argument that "the dual of the dual is primal".

By Theorem 4.5, $\mathrm{L}\left(\mathrm{p}_{0}, \mathrm{p}\right.$) attain its unique saddle_point at ($\hat{\mathrm{p}}_{0}, \hat{\mathrm{p}}$).
In finding the saddle point of $L\left(p_{0}, p\right)$, we regard $\dot{p}_{i}-\frac{d}{d t} p_{i}=0$,
$0 \leq i \leq \mathbb{N}$, as constraints and introduce Lagrange multipliers $\lambda_{0}, \lambda=\left(\lambda_{1}, \cdots, \lambda_{N}\right)$ and consider

$$
\begin{array}{cclll}
\inf & \sup _{N} & \sup & \inf & I\left(p_{0}, \dot{P}_{0}, p, \dot{p} ; \lambda_{0}, \lambda\right) \\
\lambda_{0} L_{n}^{2} & \lambda L_{n}^{2 N} & p_{0}, \dot{P}_{0} & p, \dot{p} & \\
& & P_{0}(T)=0 & p(T)=0 &
\end{array}
$$

where

$$
\begin{equation*}
I\left(p_{0}, \dot{p}_{0}, p, \dot{p} ; \lambda_{0}, \lambda\right) \equiv\left[L\left(p_{0}, \dot{p}_{0}, p, \dot{p}\right)+\left\langle\lambda_{0}, \dot{p}_{0}-\frac{d}{d t} p_{0}\right\rangle+\sum_{i=1}^{N}\left\langle\lambda_{i}, p_{i}-\frac{d}{d t} p_{i}\right\rangle\right], \tag{4.16}
\end{equation*}
$$

and $L\left(p_{0}, \dot{P}_{0}, p, \dot{p}\right)$ is the same as that in (4.3) except that we now regard P_{0} and $\dot{\mathrm{P}}_{0}$ as unrelated.

Define
(4.17)

$$
\begin{aligned}
I\left(\lambda_{0}, \lambda\right) \equiv & \sup \begin{array}{ll}
\text { inf } & I\left(p_{0}, \dot{p}_{0}, p, \dot{p} ; \lambda_{0}, \lambda\right) \\
& \mathrm{P}_{0}, \dot{p}_{0} \\
& p, \dot{p} \\
p_{0}(T)=0 & p(T)=0
\end{array} &
\end{aligned}
$$

We now apply (the proof of) Theorem 2.1 to $L\left(p_{0}, p\right)$, subject to constraints $\dot{p}_{i}-\frac{d}{d t} p_{i}=0, p_{i}(T)=0,0 \leq i \leq N$. It is easy to see that all the assumptions of Theorem 2.1 are satisfied by $L\left(p_{0}, P\right)$, since by (A1) and (A2), $L\left(p_{0}, P\right)$ is strictly convex in p and strictly concave in P_{0}. So we have a unique $\left(\hat{\lambda}_{0}, \hat{\lambda}\right) \in L_{n}^{2} \times\left[L_{n}^{2}\right]^{N}$ such that

$$
\begin{aligned}
& I\left(\hat{\lambda}_{0}, \hat{\lambda}\right)=\min _{\lambda_{0} \in L_{n}^{2}} \max _{\lambda \in\left[I_{n}^{2}\right]^{N}} I\left(\lambda_{0}, \lambda\right) \\
& \begin{array}{llll}
=\min & \max & \max ^{\max } & \min \\
\lambda_{0} & \lambda & \mathrm{P}_{0}, \dot{\mathrm{P}}_{0} & \mathrm{P}, \dot{\mathrm{P}} \\
& \mathrm{P}_{0}(\mathrm{~T})=0 & \mathrm{p}(\mathrm{~T})=0
\end{array} \\
& =\max _{P_{0}} \quad \min _{p} L\left(p_{0}, p\right)=L\left(\hat{p}_{0}, \hat{p}\right) \text {. } \\
& \mathrm{P}_{0}(\mathrm{~T})=0 \quad \mathrm{p}(\mathrm{~T})=0
\end{aligned}
$$

On the other hand, from (4.16) and (4.17), by variational analysis on the $P_{0}, \dot{p}_{0}, p, \dot{p}$ variables, we have, necessarily, that $\lambda_{0} \in H_{n}^{1}, \lambda \in\left[H_{n}^{1}\right]^{N}$ and

$$
\begin{equation*}
\lambda_{0}-\mathbb{c}_{0}^{-1}\left(\dot{p}_{0}+A^{*} p_{0}+\sum_{i=1}^{N} C_{j}^{*} z_{j}\right)=0 \tag{4.18}
\end{equation*}
$$

$$
\begin{equation*}
\dot{\lambda}_{0}-\left[A E_{0}^{-1}\left(\dot{p}_{0}+A p_{0}^{*}+\sum_{j=1}^{N} C_{j}^{*} z_{j}\right)-S\left(p_{0}+p_{s}\right)+\sum_{j=1}^{N} B_{j} M_{j}^{-1} B_{j}^{*} p_{j}+f\right]=0 \tag{4.19}
\end{equation*}
$$

(4.20)

$$
\lambda_{i}+\mathbb{q}_{i}^{-1}\left(\dot{p}_{i}+A^{*} p_{i}-c_{i}^{*} z_{i}\right)=0
$$

$$
\begin{align*}
& \dot{\lambda}_{i}+\left[A E_{i}^{-1}\left(\dot{p}_{i}+A^{*} p_{i}-\sum_{j=1}^{N} C_{j}^{*} z_{j}\right)+S\left(p_{0}+p_{s}\right)-\sum_{j=1}^{N} B_{j} M_{j}^{-1} B_{j}^{*} P_{j}-\right. \tag{4.21}\\
& \left.\quad B_{i} M_{i}^{-1} B_{i}^{*} p_{i}-f\right]=0, \\
& I \leq i \leq N .
\end{align*}
$$

In the above, $p_{0}, \dot{p}_{0}, p, \dot{p}$ depend on λ_{0}, λ. Now define $\eta=\left(\eta_{1}, \ldots, \eta_{N}\right)$ and $\zeta=\left(\zeta_{1}, \ldots, \zeta_{N}\right)$ by

$$
\begin{array}{ll}
\eta_{i} \equiv M_{i}^{-1} B_{i}^{*}\left(p_{0}+p_{s}-p_{i}\right) & 1 \leq i \leq N, \tag{4.22}\\
\zeta_{i} \equiv-M_{i}^{-1} B_{i}^{*} p_{i} & , 1 \leq 1 \leq N .
\end{array}
$$

From (3.12),(4.18), (4.19) and (4.22), we see that λ_{0} satisfies

$$
\begin{align*}
\dot{\lambda}_{0} & =A \lambda_{0}+S\left(p_{0}+p_{s}\right)-\sum_{j=1}^{N} B_{j} M_{j}^{-1} B_{j}^{*} P_{j}+f \tag{4.24}\\
& =A \lambda_{0}+\sum_{j=1}^{N} B_{j}\left[M_{j}^{-1} B_{j}^{*}\left(p_{0}+p_{s}-p_{j}\right)\right]+f \\
& =A \lambda_{0}+\sum_{j=1}^{N} B_{j} \eta_{j}+f .
\end{align*}
$$

Similarly, from (3.12), (4.20) - (4.23), we get

$$
\begin{equation*}
\dot{\lambda}_{i}=A \lambda_{i}+\sum_{j \neq i} B_{j} \eta_{j}+B_{i} \zeta_{i}+f . \tag{4.25}
\end{equation*}
$$

The initial conditions satisfied by $\lambda_{0}, \lambda_{i}(1 \leq i \leq N)$ are just

$$
\begin{equation*}
\lambda_{0}(0)=x_{0}, \quad \lambda_{i}(0)=x_{0} \quad, 1 \leq 1 \leq N \tag{4.26}
\end{equation*}
$$

This can be easily verified (e.g., by comparing (4.18) with (4.7.4)).
Substituting (4.18), (4.20), (4.22) and (4.23) into $L\left(p_{0}, p\right)$, we get $I\left(\lambda_{0}, \lambda\right) \equiv \tilde{I}\left(\lambda_{0}, \eta ; \lambda, \zeta\right)$, which is convex in $\left(\lambda_{0}, \eta\right)$ and concave in ($\left.\lambda, \zeta\right)$. But this $\tilde{I}\left(\lambda_{0}, \eta ; \lambda, \zeta\right)$ is just $J(x, u ; x, v)$ through identifying $\left(\lambda_{0}, \eta, \lambda, \zeta\right)$ with ($x, u ; x, v$), subject to (4.24) - (4.26), i.e., subject to (1.10)=0 and $\ldots \quad(1.11)=0 \quad(0 \leq i \leq N)$
$J(x, u ; X, v)$ is convex in (x, u) and concave in (x, v) because $J(x, u ; X, v)=\tilde{I}\left(\lambda_{0}, \eta ; \lambda, \zeta\right)$, which is the dual of $L\left(p_{0}, p\right)$ which is convex in P_{0} and concave in p. The fact that $J(x, u ; X, v)$ is strictly concave in (X, v) for any given (x, u) can be verified directly from J itself.

The min-max and max-min in (4.14) are exchangeable because of (4.11) in Theorem 4.5.

Theorem 4.7 (Existence and Uniqueness of Equilibrium Strategy for N-person Linear-Quadratic Differential Games)

Assume that (A1) and (A2) hold. Then the unique saddle point $(\hat{x}, \hat{u} ; \hat{x}, \hat{v})$ of (4.14) satisfies the property that $\hat{u}=\hat{v}$ and $\hat{x}^{i}=\hat{x}$ on $[0, T]$, where \hat{x}^{i} is the $i-t h$ component of \hat{X}.

Thus
(4.27) $J(\hat{x}, \hat{u} ; \hat{X}, \hat{v})=\min _{(x, u)} \max _{(x, v)} J(x, u ; X, v)=\max _{(X, v)} \min _{(x, u)} J(x, u ; X, v)=0$,
so \hat{u} is the unique equilibrium strategy for the N-person differential game. Proof: By (4.14), the saddle point property for J is uniquely satisfied by $(\hat{x}, \hat{u} ; \hat{x}, \hat{v})$, so we have

$$
\min _{\min _{\text {(x,u) }}}^{\max _{\text {feasible }}^{(X, v)}} \underset{\text { feasible }}{ } J(x, u ; x, v)=\max _{(x, v)} J(\hat{x}, \hat{u} ; x, v) .
$$

Since the RHS above is uniquely attained by (\hat{X}, \hat{v}) (\hat{X} depends on both \hat{u} and \hat{v}), we see that v is uniquely characterized by

$$
\begin{equation*}
\left.\partial_{v_{i}} J(\hat{x}, \hat{u} ; x, v)\right|_{v=\hat{v}}=-\left.\partial_{v_{i}} J_{i}\left(x^{i}, \hat{u}_{1}, \ldots, \hat{u}_{i-1}, v_{i}, \hat{u}_{i+1}, \ldots \hat{u}_{N}\right)\right|_{v_{i}=\hat{v}_{i}}=0 \tag{4.28}
\end{equation*}
$$

where $\partial_{v_{i}}$ denotes the Fréchet derivative with respect to v_{i}.
Similarly, we have

$$
\min _{(x, u)} \max _{(X, v)} J(x, u ; X, v)=\min _{(x, u)} J(x, u ; \tilde{x}(u, \hat{v}), \hat{v})
$$

where in the RHS above $\tilde{X}(u, \hat{v})=\left(\tilde{x}^{1}(u, \hat{v}), \ldots, \tilde{x}^{N}(u, \hat{v})\right)$ depends on u and \hat{v} as follows:

$$
\left\{\begin{array}{l}
\dot{\tilde{x}}^{i}=A \tilde{x}^{i}+\sum_{j \neq i} B_{j} u_{j}+B_{i} \hat{v}_{i}+f \\
\tilde{x}^{i}(0)=x_{0} .
\end{array}\right.
$$

Thus \hat{u} is uniquely characterized by

$$
\begin{align*}
\partial_{u_{i}} J(x, u ; \tilde{x}(u, \hat{v}), \hat{v})= & \sum_{j=1}^{N} \partial_{u_{i}}\left[J_{j}\left(x, u, \ldots, u_{N}\right)-J_{j}\left(\tilde{x}^{j}(u, \hat{v}), u_{1}, \ldots, u_{j-1},\right.\right. \tag{4.29}\\
& \left.\left.\hat{v}_{j}, u_{j+1}, \ldots u_{N}\right)\right] \\
= & 0 \text { at } u=\hat{u}, \text { for } i=1, \ldots, N .
\end{align*}
$$

Therefore (4.29) gives
(4.30)

$$
\left.a_{u_{i}} J\left(x, \hat{u}^{i} ; \tilde{x}\left(\hat{u}^{i}, \hat{v}\right), \hat{v}\right)\right|_{u_{i}=\hat{u}_{i}}=0
$$

where

$$
\hat{u}^{i}=\left(\hat{u}_{1}, \ldots, \hat{u}_{i-1}, u_{i}, \hat{u}_{i+1}, \ldots, \hat{u}_{N}\right), \quad \text { for } \quad i=1, \ldots, N
$$

But, evaluating the RHS of (4.29) with $u=\hat{u}^{i}$, at $u_{i}=\hat{u}_{i}$, we find that

$$
\begin{gathered}
\partial_{u_{i}}\left[J_{j}\left(x, \hat{u}_{1}, \ldots \hat{u}_{i-1}, u_{i}, \hat{u}_{i+1}, \ldots, \hat{u}_{N}\right)-J_{j}\left(\tilde{x}^{j}\left(\hat{u}^{i}, \hat{v}\right), \hat{u}_{1}, \ldots \hat{u}_{i-1}, u_{i}, \hat{u}_{i+1}, \ldots, \hat{u}_{j-1}, \hat{v}_{j}\right.\right. \\
\left.\left.\hat{u}_{j+1}, \ldots, \hat{u}_{N}\right)\right]\left.\right|_{u_{i}=\hat{u}_{i}}=0
\end{gathered}
$$

if $j \neq \mathrm{i}$.
So (4.30) is reduced to

$$
\begin{aligned}
& \left.(4.31) \partial_{u_{i}}\left[J_{j}\left(x, \hat{u}_{1}, \ldots \hat{u}_{i-1}, u_{i}, \hat{u}_{i+1}, \ldots, \hat{u}_{N}\right)-J_{i}\left(\tilde{x}^{j}\left(\hat{u}^{i}, \hat{v}\right), \hat{u}_{1}, \ldots, \hat{u}_{i-1}, \hat{v}_{i}, \hat{u}_{i+1}, \ldots, \hat{u}_{N}\right)\right]\right|_{u_{i}} \\
& =\left.\partial_{u_{i}} J_{i}\left(x, \hat{u}_{i}, \ldots, \hat{u}_{i-1}, u_{i}, \hat{u}_{i+1}, \ldots \hat{u}_{N}\right)\right|_{u_{i}=\hat{u}_{i}}=0,
\end{aligned}
$$

because the second term in the above bracket is just a constant.
Comparing (4.28) with (4.31), we see that \hat{u}_{i} and $\hat{v}_{i}, i=1, \ldots, N$, satisfy the very same equations, whose solutions are unique. Hence $\hat{u}=\hat{v}$ is proved.

Because $\hat{\mathrm{u}}=\hat{\mathrm{v}}$, we conclude immediately that $\hat{\mathbf{x}}^{i}=\hat{\mathbf{x}}, \forall \cdot i=1, \ldots, N$ and that the saddle point value (4.27) is 0 . So \hat{u} is an equilibrium strategy.

Remark 4.8- The above theorem says that, under (A1) and (A2), any N-person non zero-sum linear quadratic differential game is, indeed, a 2 N -person zerosum game, with N authentic players represented by $u_{i}, \quad 1 \leq i \leq N$, and N fictitious players represented by $v_{i}, 1 \leq 1 \leq N$.

Remark 4.9 If, at the outset, we consider
(4.32)

$$
\begin{aligned}
& \min _{(x, u)} \max _{(x, v)}\left\{J (x , u ; x , v) \equiv \sum _ { i = 1 } ^ { N } \left[J_{i}\left(x, u_{1}, \ldots, u_{N}\right)-J_{i}\left(x^{i}, u_{1} \ldots ., u_{i-1},\right.\right.\right. \\
& \left.\left.\quad v_{i}, u_{i+1}, \ldots u_{N}\right)\right] \mid(x, u) \text { and }(x, v)=\left(x^{1}, \ldots, x^{N}, v\right) \text { satisfy } \\
& \quad(4.33),(4.34) \text { below\}. }
\end{aligned}
$$

(4.33)

$$
\left\{\begin{array}{l}
\dot{x}=A x+\sum_{i} B_{i} u_{i}+f \quad \text { on }[0,1] \\
x(0)=x_{0}
\end{array}\right.
$$

$$
\begin{cases}\dot{x}^{i}=A x^{i}+\sum_{j \neq i} B_{j} u_{j}+B_{i} v_{i}+f & \text { on }[0, T], \tag{4.34}\\ x^{i}(0)=x_{0}^{i}, & 1 \leqq i \leqq N\end{cases}
$$

Note that in (4.34.2), $x_{0}^{i}(1 \leqq i \leqq N)$ need not be equal to x_{0} in (4.33.2).
Then using duality, we will arrive at the same $L\left(p_{0}, p\right)$ as given in (4.3), except that \mathbb{T}_{8} is now replaced by

$$
\mathbb{T}_{8}^{\prime} \equiv-\left\langle p_{0}(0), x_{0}\right\rangle-\sum_{i=1}^{N}\left\langle p_{i}(0), x_{0}^{i}\right\rangle .
$$

Since the validity of assumptions (A1) and (A2) is not affected by \mathbb{T}_{8}^{\prime}, we see that all the theorems in this section, except Corollary 4.7, remain valid for problem (4.32). The result $\hat{\mathbf{u}}=\hat{\mathbf{v}}$ still holds for problem (4.32). But, now $\hat{\mathbf{x}}^{\mathbf{i}} \neq \hat{\mathbf{x}}$ in general, so the saddle point value of (4.32) is not equal to 0 in general.

Remark 4.10 For linear-quadratic N-person games, under (A1) and (A2), the Hamiltonian (1.18) and the Bellman-Hamilton-Jacobi equation must be at a saddle point (instead of just min-max) for all t or $\tau \leqslant[0, T]$.
§5 Global Existence and Uniqueness of Solutions for the Riccati Equation The system of Riccati equations [8,(4.30)] in Lukes and Russell's approach has been known to have only local existence and uniqueness of solutions. However, under our approach, we can prove that our Riccati equation has global existence and uniqueness of solutions. The proof is an extension of the control theory case, cf. e.g. [12, pp.197-205], to our equation.

Theorem 5.1 Under assumptions (A1) and (A2), the Riccati equation
(5.1) $\quad\left\{\begin{array}{l}\dot{\mathbb{P}}+\mathbb{P} \mathrm{A}+\mathrm{A}^{*} \mathbb{P}+\mathbb{P S} \mathbb{P}-\mathbb{C}=0 \quad \text { on }[0, \mathrm{~T}], \\ \mathbb{P}(\mathrm{T})=0\end{array}\right.$
as given in (3.14) has a unique solution \mathbb{P} on $[0, T]$.
Proof: Define

$$
J_{i}\left(x, u ; \xi_{0} ; t_{0}, t_{1}\right) \equiv{\underset{t}{t_{1}}}_{t_{0}}\left[\left|c_{i}(t) x(t)\right|^{2}+\left\langle M_{i}(t) u_{i}(t), u_{i}(t)\right\rangle\right] d t, \quad 1 \leqq i \leqq N
$$

subject to

$$
\left\{\begin{array}{ll}
\frac{d}{d t} x(t)=A(t) x(t)+\sum_{i=1}^{N} B_{i}(t) u_{i}(t) \tag{5.2}\\
x\left(t_{0}\right)=\xi_{0}
\end{array}, t \in\left[t_{0}, t_{1}\right]\right.
$$

and

$$
\begin{aligned}
\bar{J}_{i}\left(x^{i}, u_{1}, \ldots, u_{i-1}, v_{i}, u_{i+1}, \ldots, u_{N} ; \xi_{i} ; t_{0}, t_{1}\right) & \equiv \int_{t_{0}}^{t_{1}}\left[\left|c_{i}(t) x^{i}(t)\right|^{2}\right. \\
+ & \left.<M_{i}(t) v_{i}(t), v_{i}(t)>\right] d t, \quad 1 \leqq i \leqq N
\end{aligned}
$$

subject to
(5.3) $\begin{cases}\frac{d}{d t} x^{i}(t)=A(t) x^{i}(t)+\sum_{j \neq i} B_{j}(t) u_{j}(t)+B_{i}(t) v_{i}(t) & t \in\left[t_{0}, t\right] \\ x^{i}\left(t_{0}\right)=\xi_{i}, & 1 \leqq i \leqq N .\end{cases}$

Further, let
(5.4) J $\left(x, u ; x, v ; \xi_{0}, \xi_{1}, \ldots, \xi_{N} ; t_{0}, t_{1}\right) \equiv \sum_{i=1}^{N}\left[J_{i}\left(x, u ; \xi_{0} ; t_{0}, t_{1}\right)-\bar{J}_{i}\left(x^{i}, u_{1}, \ldots, u_{i-1}\right.\right.$,

$$
\left.\left.v_{i}, u_{i+1}, \ldots, u_{N} ; \xi_{i} ; t_{0}, t_{1}\right)\right]
$$

subject to (5.2) and (5.3).

Lemma 5.2 Assume (A1), (A2). Let ($\hat{x}, \hat{u}: \hat{X}, \hat{v}$) satisfy (5.2) and (5.3) with $t_{0}=0$, $t_{1}=T, \xi_{0}=\xi_{1}=\ldots=\xi_{N}=x_{0}$. Let $q_{0}, q_{1}, \ldots, q_{N}$ be the solution on $[0, T]$ of

$$
\begin{equation*}
\dot{q}_{0}=-A^{*} q_{0}+\sum_{i=1}^{N} \mathbb{c}_{i} \hat{x}, \quad q_{0}(T)=0 \tag{5.5}
\end{equation*}
$$

$$
\begin{equation*}
\dot{q}_{i}=-A^{*} q_{i}-\mathbb{a}_{i} \hat{x}^{i}, \quad q_{i}(T)=0, \quad 1 \leqq i \leqq N \tag{5.6}
\end{equation*}
$$

Then $(\hat{x}, \hat{u} ; \hat{x}, \hat{v})$ is the unique saddle point for $\min _{(x, u)} \max _{(X, v)} J\left(x, u ; x, v, x_{0}, X_{0} ; 0, T\right)$
if and only if

$$
\begin{array}{ll}
\hat{u}_{i}=M_{i}^{-1} B_{i}^{*}\left(q_{0}+\underset{j \neq i}{ } q_{j}\right) & 1 \leqq i \leqq N \\
\hat{v}_{i}=-M_{i}^{-1} B_{i}^{*} q_{i} &
\end{array}
$$

Proof of Lemma 5.2 By Theorem 4.7, $\min _{(x, u)}^{(x, v)} \operatorname{Jax}\left(x, u ; x, v ; x_{0}, X_{0} ; 0, T\right)$ has a unique saddle point. If ($\hat{\mathbf{x}}, \hat{u} ; \hat{\mathrm{x}}, \hat{\mathrm{v}})$ is this saddle point, it is characterized by

$$
\begin{equation*}
J\left(\hat{x}, \hat{u} ; \hat{\mathrm{x}}, \hat{\mathrm{v}} ; \mathrm{x}_{0}, \mathrm{x}_{0} ; 0, T\right) \leqq J\left(\hat{\mathrm{x}}+\varepsilon \tilde{\mathrm{x}} ; \hat{\mathrm{u}}+\varepsilon \tilde{u} ; \hat{\mathrm{x}}+\varepsilon \overline{\mathrm{x}}, \hat{\mathrm{v}}, \mathrm{x}_{0} \mathrm{x}_{0} ; 0, T\right), \quad \forall \varepsilon \in \mathbb{R} \tag{5.9}
\end{equation*}
$$

$$
\begin{equation*}
J\left(\hat{x}, \hat{u} ; \hat{x}, \hat{v} ; x_{0}, X_{0} ; 0, T\right) \geqq J\left(\hat{x}, \hat{u} ; \hat{X}+\varepsilon \tilde{X}, \hat{v}+\varepsilon \tilde{v} ; x_{0}, X_{0} ; 0, T\right), \quad \forall \varepsilon \in \mathbb{R} \tag{5.10}
\end{equation*}
$$

where (\tilde{x}, \tilde{u}) and (\tilde{x}, \tilde{v}) and $\bar{X} \in\left(\bar{x}^{1}, \bar{x}^{2}, \ldots, \bar{x}^{N}\right)$ satisfy
(5.11) $\left\{\begin{array}{l}\dot{\tilde{x}}=A \tilde{x}+\sum_{i} B_{i} \tilde{u}_{i} \quad \text { on }[0, T], ~ \\ \tilde{x}(0)=0,\end{array}\right.$
(5.12) $\begin{cases}\dot{\tilde{x}}^{i}=A \tilde{x}^{i}+\underset{j \neq i}{B_{j}} \hat{u}_{j}+B_{i} \tilde{v}_{i} & \text { on }[0, T] \\ \tilde{x}^{i}(0)=0, & 1 \leqq i \leqq N .\end{cases}$
(5.13) $\begin{cases}\bar{x}^{i}=A \bar{x}^{-i}+\sum_{j \neq i}{ }^{B}{ }_{j} \tilde{u}_{j} & \text { on }[0, T], \\ \bar{x}^{-i}(0)=0, & 1 \leqq i \leqq N .\end{cases}$

Note that in the RHS of (5.9) $\hat{X}+\varepsilon \bar{X}$ appears because it is also dependent on $\hat{\mathbf{u}}+\varepsilon \tilde{u}$.

From (5.9), we get

$$
\left.\frac{d}{d \varepsilon} J\left(\hat{x}+\varepsilon \tilde{x}, \hat{u}+\varepsilon \tilde{u} ; \hat{\mathrm{x}}+\varepsilon \overline{\mathrm{X}}, \hat{\mathrm{v}} ; \mathrm{x}_{0}, \mathrm{X}_{0} ; 0, \mathrm{~T}\right)\right|_{\varepsilon=0}=0,
$$

which is

$$
\begin{gather*}
2 \sum_{i=1}^{N} \sum_{0}^{T}\left[\left\langle c_{i}(t) \hat{x}(t), c_{i}(t) \tilde{x}(t)\right\rangle+\left\langle M_{i}(t) \hat{u}_{i}(t), \tilde{u}_{i}(t)\right\rangle\right. \tag{5.14}\\
\\
\\
\left.\left.-<C_{i}(t) \hat{x}(t), c_{i}(t) \bar{x}^{i}(t)\right\rangle\right] d t=0
\end{gather*}
$$

From (5.5), (5.6), (5.11), (5.12) and (5.13), we have

$$
\begin{aligned}
0= & \left\langle\tilde{x}(T), q_{0}(T)\right\rangle+\sum_{i}\left\langle\bar{x}^{i}(T), q_{i}(T)\right\rangle \\
= & \left\langle\tilde{x}(0), q_{0}(0)\right\rangle+\sum_{i}\left\langle\bar{x}^{-i}(0), q_{i}(0)\right\rangle+\int_{0}^{T} \frac{d}{d t}\left[\left\langle\tilde{x}(t), q_{0}(t)\right\rangle+\sum_{i}\left\langle\bar{x}^{i}(t), q_{i}(t)\right\rangle\right] d t \\
= & \int_{0}^{T}\left[\left\langle\dot{\tilde{x}}(t), q_{0}(t)\right\rangle+\left\langle\tilde{x}(t), \dot{q}_{0}(t)\right\rangle+\sum_{i}\left\langle\dot{\bar{x}}^{i}(t), q_{i}(t)\right\rangle+\sum_{i}\left\langle\bar{x}^{i}(t), \dot{q}_{i}(t)\right\rangle\right] d t \\
= & \int_{0}^{T}\left[\left\langle A(t) \tilde{x}(t)+\sum_{i} B_{i}(t) \tilde{u}_{i}(t), q_{0}(t)\right\rangle+\left\langle\tilde{x}(t),-A^{*}(t) q_{0}(t)+\sum_{i} \mathbb{c}_{i}(t) \hat{x}(t)\right\rangle\right. \\
& \left.+\sum_{i}\left\langle A(t) \bar{x}^{i}(t)+\sum_{j \neq i} B_{j}(t) \tilde{u}_{j}(t), q_{i}(t)\right\rangle+\sum_{i}\left\langle\bar{x}^{i}(t),-A^{*}(t) q_{i}(t)-\mathbb{q}_{i}(t) \hat{x}^{i}(t)\right\rangle\right] d i
\end{aligned}
$$

$$
\begin{aligned}
(5.15)= & \sum_{i} \int_{0}^{T}\left[\left\langle c_{i}(t) \hat{x}(t), c_{i}(t) \tilde{x}(t)\right\rangle+\left\langle M_{i}(t) \hat{u}_{i}(t), \tilde{u}_{i}(t)\right\rangle-\left\langle c_{i}(t) \hat{x}^{i}(t), c_{i}(t) \bar{x}^{i}(t)\right\rangle\right] d t \\
& +\sum_{i} \int_{0}^{T}\left[-\left\langle M_{i}(t) \hat{u}_{i}(t), \tilde{u}_{i}(t)\right\rangle+\left\langle B_{i}^{*}(t) q_{0}(t), \tilde{u}_{i}(t)\right\rangle+\sum_{j \neq i}\left\langle B_{i}^{*}(t) q_{j}(t), \tilde{u}_{i}(t)\right\rangle\right] d t .
\end{aligned}
$$

Comparing (5.15) with (5.14), we see that (5.9) holds if and only if

$$
\int_{0}^{T}\left[-\left\langle M_{i}(t) \hat{u}_{i}(t), \tilde{u}_{i}(t)\right\rangle+\left\langle B_{i}^{*}(t) q_{0}(t), \tilde{u}_{i}(t)\right\rangle+\sum_{j \neq i}\left\langle B_{i}^{*}(t) q_{j}(t), \tilde{u}_{i}(t)\right\rangle\right] d t=0
$$

for all $\tilde{u}_{i} \in U_{i}, i=1,2, \ldots, N$. This gives

$$
-M_{i} \hat{u}_{i}+B_{i}^{*} q_{0}+\sum_{j \neq i} B_{i} q_{j}=0, \quad 1 \leqq i \leqq N
$$

which are just (5.7).
We can obtain (5.8) in a similar manner. The proof of Lemma 5.2 is complete.
The proof of Lemma 5.2 indicates that with appropriate simple adaptation, the arguments given in [12,pp.197-205] are immediately applicable to our proof. As in [12,p.i99,(2.16)], analogously, we now claim that we have

$$
\begin{equation*}
q_{0}(\tau) \hat{x}(\tau)+\sum_{i=1}^{N} q_{i}(\tau) \hat{x}^{i}(\tau)=\min _{(x, u)} \max _{(x, v)} J(x, u ; x, v ; \hat{x}(\tau), \hat{x}(\tau) ; \tau, \tau), \quad \tau \in[0, \tag{5.16}
\end{equation*}
$$

where ($\hat{x}, \hat{u} ; \hat{X}, \hat{v}$) solves the min-max problem, on the RHS above with (arbitrary) nitial condition $(\hat{x}(\tau), \hat{X}(\tau))$ for (x, x) at the beginning time τ.

Because f and ζ in (3.14) are 0 , the solution γ of (3.14) is also 0 on [$0, T \mathrm{I}]$. Thus, by (3.12),

$$
\left[\begin{array}{l}
q_{0}(t) \tag{5.17}\\
q(t)
\end{array}\right]=\mathbb{P}(t)\left[\begin{array}{l}
\hat{x}(t) \\
\hat{x}(t)
\end{array}\right], \quad t \in[0, T], \quad \text { if } \mathbb{P} \text { exists. }
$$

From (5.16) and (5.17), we get

$$
<\mathbb{P}(\tau)\left[\begin{array}{l}
\hat{x}(\tau) \tag{5.18}\\
\hat{x}(\tau)
\end{array}\right],\left[\begin{array}{l}
\hat{x}(\tau) \\
\hat{x}(\tau)
\end{array}\right]>=\underset{(x, u)}{\min } \underset{(x, v)}{\max } J(x, u ; x, v ; \hat{x}(\tau), \hat{x}(\tau) ; \tau, T),
$$

whenever \mathbb{P} exists on $[\tau, T]$.

The nonlinearity in the Riccati equation (3.13) satisfies the local Lipschitz condition. So, by the Picard local existence and uniqueness theorem, the solution $\mathbb{P}(t)$ of (3.14) exists at least on a half open interval ($\left.\tau^{\prime}, T\right]$, for some $\tau^{\prime}<T$. Assume the contrary that \mathbb{P} does not exist globally on $[0, T]$. Then there is at least one $\tau^{\prime} \in[0, T)$ such that

$$
\lim _{t \downarrow \tau^{,}}\|P(t)\|=\infty .
$$

This means that there exists at least one $\left(x_{0}, x_{0}^{1}, x_{0}^{2}, \ldots, x_{0}^{N}\right) \in\left[\mathbb{R}^{n}\right]^{N+1}$ such that
(5.19) $\quad \lim _{t \downarrow \tau^{\prime}} \left\lvert\,<\mathbb{P}(t)\left[\begin{array}{c}0 \\ \cdot \\ \cdot \\ \vdots \\ x_{0}^{N}\end{array}\right]\right.,\left[\begin{array}{c}x_{0} \\ \cdot \\ \cdot \\ \cdot \\ x_{0}^{N}\end{array}\right]>1=\infty$.

But, if we choose $t_{0}=\tau^{\prime}, \xi_{0}=x_{0}, \xi_{i}=x_{0}^{i}(1 \leqq i \leqq N)$ in (5.2), (5.3) and apply (5.18) and Remark 4.8, we see that

$$
\begin{aligned}
\lim _{t \downarrow \tau^{\prime}}<\mathbb{P}(t)\left[\begin{array}{c}
x_{0} \\
x_{0}^{1} \\
\vdots \\
x_{0}^{N}
\end{array}\right],\left[\begin{array}{c}
x_{0} \\
x_{0}^{1} \\
\vdots \\
x_{0}^{N}
\end{array}\right]> & =\min _{(x, u)(x, u)}^{\max } J\left(x, u ; x, v ; x_{0},\left(x_{0}^{1}, \ldots, x_{0}^{N}\right) ; \tau^{\prime}, T\right) \\
& =\text { a finite number, }
\end{aligned}
$$

contradicting (5.19).
Therefore \mathbb{P} exists uniquely on $[0, T]$.
§6. The Dual Variational Problem and Finite Element Approximations
Let $\mathrm{F}: \mathrm{H}_{1} \times \mathrm{H}_{2} \rightarrow \mathbb{R}$ be a real-valued Fréchet differentiable mapping from a product Hilbert space $H_{1} \times H_{2}$ into \mathbb{R}. Assume that $F(x, y)$ is strictly convex in x (for each y) and strictly concave in y (for each x), and that (\hat{x}, \hat{y}) is the unique saddle point of F satisfying

$$
\min _{x \in H_{1}} \max _{y \in H_{2}} F(x, y)=\max _{y \in H_{2}} \min _{x \in H_{1}} F(x, y) .
$$

Then it can be easily shown that (\hat{x}, \hat{y}) is uniquely characterized by

$$
\begin{equation*}
\left.\partial_{x} F(x, \hat{y})\right|_{x=\hat{x}}=0 \tag{6.1}
\end{equation*}
$$

$$
\begin{equation*}
\left.\partial_{y} F(\hat{x}, y)\right|_{y=\hat{y}}=0 . \tag{6.2}
\end{equation*}
$$

We now apply the above property to $L\left(p_{0}, p\right)$. It is easy to see from the theory in $\$ 4$ that all of the assumptions above are satisfied. Therefore $\left(\hat{p}_{0}, \hat{p}\right)$, the unique solution of $\max _{p_{0}} \min _{p} L\left(p_{0}, p\right)$ in $H_{O n}^{1} \times\left[H_{0 n}^{1}\right]^{N}$, is characterized by $\quad \partial_{p_{0}} L\left(\hat{p}_{0}, \hat{p}\right)=0, \quad \partial_{p} L\left(\hat{p}_{0}, \hat{p}\right)=0$.

From (4.3), by a simple calculation, we get

$$
\begin{align*}
& \partial_{p_{0}} L\left(\hat{p}_{0}, \hat{p}\right) \cdot r=-<\dot{\hat{p}}_{0}+A^{*} \hat{p}_{0}, \mathbb{C}_{0}^{-1}\left(\dot{r}+A^{*} r\right)>-<\hat{p}_{0}+\hat{p}_{S}, \operatorname{Sr}>+<r, \sum_{1}^{N} B_{i} M_{i}^{-1} B^{*} \hat{p}_{i}> \tag{6.3}\\
& -<\dot{r}+A^{*} r, \mathbb{C}_{0}^{-1} \sum_{1}^{N} C_{i}^{*} z_{i}>-<r, f>-<r(0), x_{0}>=0, \forall r \in H_{0 n}^{1}, \\
& \partial_{p} L\left(\hat{p}_{0}, \hat{p}\right) \cdot s=\sum_{1}^{N}\left\langle\dot{\hat{p}}_{i}+A^{*} \hat{p}_{i}, \mathbb{C}_{i}^{-1}\left(\dot{s}_{i}+A^{*} s_{i}\right)>-<\hat{p}_{0}+\hat{p}_{s}, S \sum_{i=1}^{N} s_{i}>\right. \tag{6.4}\\
& +\left\langle\hat{p}_{0}+\hat{p}_{s}, \sum_{l}^{N} B_{i} M_{i}^{-1} B_{i}^{*} s_{i}\right\rangle+\left\langle\sum_{1}^{N} s_{i}, \sum_{1}^{N} B_{i} M_{i}^{-1} B_{i}{ }_{i} \hat{p}_{i}>\right. \\
& -\sum_{1}^{N}<\dot{s}_{i}+A^{*} s_{i}, \mathbb{C}_{i}^{-1} C_{i}^{*} z_{i}>-<\sum_{1}^{N} s_{i}, f>-<\sum_{1}^{N} s_{i}(0), x_{0}>=0, \\
& \forall s=\left(s_{1}, \ldots, s_{N}\right) \in\left[H_{0 n}^{1}\right]^{N} .
\end{align*}
$$

The above two relations induce a bilinear form on $H_{0_{n}}^{1} \times\left[H_{0 n}^{1}\right]^{N}$: for r^{1}, $r^{2} \in H_{0 n}^{1}$ and $s^{1}=\left(s_{1}^{1}, \ldots, s_{N}^{1}\right), s^{2}=\left(s_{1}^{2}, \ldots, s_{N}^{2}\right) \in\left[H_{0 n}^{1}\right]^{N}$,
(6.5) $a\left(\left[\begin{array}{l}r^{1} \\ s^{1}\end{array}\right],\left[\begin{array}{l}r^{2} \\ s^{2}\end{array}\right]\right) \equiv-\left\langle\dot{r}^{1}+A^{*} r^{1}, \mathbb{C}_{0}^{-1}\left(\dot{r}^{2}+A^{*} r^{2}\right)>\right.$

$$
\begin{aligned}
& \left.-<r^{1}+\sum_{j=1}^{N} s_{j}^{1}, \mathrm{Sr}^{2}\right\rangle+\left\langle r^{2}, \sum_{1}^{N} B_{i} M_{i}^{-1} B_{i}^{*} s_{i}^{1}\right\rangle \\
& +\sum_{1}^{N}\left\langle\dot{s}_{i}^{1}+A^{*} s_{i}^{1}, \mathbb{M}_{i}^{-1}\left(\dot{s}_{i}^{2}+A^{*} s_{i}^{2}\right)>-\left\langle r^{1}+\sum_{j=1}^{N} s_{j}^{1}, s \sum_{j=1}^{N} s_{j}^{2}\right\rangle\right. \\
& +\left\langle r^{1}+\sum_{i=1}^{N} s_{i}^{1}, \sum_{i=1}^{N} B_{i} M_{i}^{-1} B_{i}^{*} s_{i}^{2}\right\rangle+\left\langle\sum_{i=1}^{N} s_{i}^{2}, \sum_{i=1}^{N} B_{i} M_{i}^{-1} B_{i}^{*} s_{i}^{1}\right\rangle,
\end{aligned}
$$

and a linear form θ : for $r \in H_{0 n}^{1}$ and $s=\left(s_{1}, \ldots, s_{N}\right) \in H_{0 n}^{1}$,
(6.6)

$$
\begin{aligned}
\theta\left(\left[\begin{array}{l}
r \\
s
\end{array}\right]\right) & \left.\equiv<\underset{1}{N}+\sum_{j}^{N}, f\right\rangle+\left\langle r(0)+\sum_{I}^{N} s_{j}(0), x_{0}\right\rangle+\left\langle\dot{r}+A^{*} r, \mathbb{C}_{0}^{-1} \sum_{1}^{N} C_{i}^{*} z_{i}\right\rangle \\
& +\sum_{1}^{N}\left\langle\dot{s}_{i}+A^{*} s_{i}, \mathbb{C}_{i}^{-1} C_{i}^{*} z_{i}>\right.
\end{aligned}
$$

Thus (6.3) and (6.4) are equivalent to
(6.7) $\quad a\left(\left[\begin{array}{l}\hat{p}_{0} \\ \hat{p}\end{array}\right],\left[\begin{array}{l}r \\ s\end{array}\right]\right)=\theta\left(\left[\begin{array}{l}r \\ s\end{array}\right]\right), \quad \forall(r, s) \in H_{0 n}^{1} \times\left[H_{0 n}^{1}\right]^{N}$.

We are now in a position to compute $\left(\hat{p}_{0}, \hat{p}\right)$ by the finite element method. As in [1], we say that $S_{h}^{2} \subset H_{\ell}^{t_{2}^{2}}(0, T)$ is a $\left(t_{1}, t_{2}\right)$-system $\left(t_{1}, t_{2}\right.$ are non- . negative integers) if for all $v \in H_{\ell}^{k}(0, T)$, there exists $v_{h} \in S_{h}$ such that
(6.8) $\quad\left\|\mathrm{v}-\mathrm{v}_{\mathrm{h}}^{\mathrm{H}_{\ell}^{\eta}}\right\|_{\mathrm{H}_{\ell}^{\mu+\eta}} \leq \mathrm{Kh}^{\mu}\|\mathrm{v}\|, \forall 0 \leq \eta \leq \min \left(\mathrm{k}, \mathrm{t}_{2}\right), \eta \in \mathrm{N}$,
where $\mu=\min \left(t_{1}-\eta, k-\eta\right)$ and $K>0$ is independent of h and v.
Let $S_{h} \subset H_{0 n}^{1}$ be a ($\tau, 1$)-system. We consider
(6.9) $\max ^{\mathrm{P}_{0} \in \mathrm{~S}_{\mathrm{h}}} \mathbf{p \in [\mathrm { S } _ { \mathbf { i } }] ^ { N }} \mathrm{m}\left(\mathrm{p}_{0}, \mathrm{p}\right)$.

It is easy to see that under (A1), (A2), there exists a unique saddle point $\left(\hat{p}_{0 h}, \hat{p}_{h}\right) \in S_{h} \times\left[S_{h}\right]^{N}$ such that

$$
L\left(\hat{p}_{0 h}, \hat{p}_{h}\right)=\max _{p_{0} \in S_{h}} \quad \min \in\left[S_{h}\right]^{N} \quad L\left(p_{0}, p\right) .
$$

This point ($\hat{\mathrm{P}}_{0 \mathrm{~h}}, \hat{\mathrm{p}}_{\mathrm{h}}$) is characterized as the solution to the variational equation
(6.10) $a\left(\left[\begin{array}{l}\hat{p}_{0 h} \\ \hat{p}_{h}\end{array}\right],\left[\begin{array}{l}r_{h} \\ s_{h}\end{array}\right]\right)=\theta\left(\left[\begin{array}{l}r_{h} \\ s_{h}\end{array}\right]\right), \quad \forall\left(r_{h}, s_{h}\right) \in s_{h} \times\left[s_{h}\right]^{N}$.

If $\left\{\varphi^{\ddagger}\right\}_{i=1}^{J}, \quad\left\{\psi^{i}\right\}_{i=1}^{N J}$ are basis for $S_{h}, \quad\left[S_{h}\right]^{N}$, respectively, then
(6. 10) is a matrix equation $\bar{M}_{h} \bar{\gamma}_{h}=\bar{\theta}_{h}$, where

$$
\begin{aligned}
& {\left[\bar{M}_{h}\right]_{i j}=a\left(\left[\begin{array}{l}
\psi^{i} \\
\varphi^{i}
\end{array}\right],\left[\begin{array}{c}
\psi^{j} \\
\varphi^{j}
\end{array}\right], \quad 1 \leq i, j \leq(N+1) J,\right.} \\
& \left(\bar{\theta}_{h}\right)_{j}=\theta\left(\left[\begin{array}{l}
\psi j \\
\varphi^{j}
\end{array}\right]\right) \quad, \quad 1 \leq j \leq(N+1) J .
\end{aligned}
$$

More specifically,

$$
\bar{\theta}_{h}=\left[\begin{array}{l}
\left\langle\psi^{j}, f\right\rangle+\left\langle\psi^{j}(0), x_{0}>\right. \\
+<\dot{\psi}^{j}+A^{*} \psi^{j}, \mathbb{C}_{0}^{-1} \sum_{k=1}^{N} C_{k}^{*} z_{k}> \\
<\sum_{k=1}^{N} \varphi_{k}^{j}, f>+<\sum_{k=1}^{N} \varphi_{k}^{j}(0), x_{0}> \\
+\sum_{k=1}^{N}<\dot{\varphi}_{k}^{j}+A^{*} \varphi_{k}^{j}, \mathbb{C}_{k}^{-1} C_{k}^{*} z_{k}>
\end{array}\right]
$$

Note that \bar{M}_{h} is symmetric but non-positive definite.

Numerical analysis for general quadratic saddle point problems seems to be difficult. To make the above computations amenable to standard finite element error analysis, sonce again, we need two more assumptions:
(A3) the bilinear form a satisfies

$$
\left\|\left[\begin{array}{c}
\text { inf } \\
r^{2} \\
s^{2}
\end{array}\right]\right\|=1 \quad \sup ^{n} \quad\left|a\left(\left[\begin{array}{c}
r^{1} \\
s^{1} \\
s^{1}
\end{array}\right] \|=1 \quad\left[\begin{array}{l}
r^{2} \\
s^{2}
\end{array}\right]\right)\right|>0 ;
$$

and
(A4) the spaces $\left\{S_{h}\right\}_{h}$ satisfy

$$
\begin{array}{r}
\left|a\left(\left[\begin{array}{l}
r_{h}^{1} \\
s_{h}^{1}
\end{array}\right],\left[\begin{array}{c}
r_{h}^{2} \\
s_{h}^{2}
\end{array}\right]\right)\right| \equiv r_{h}>\gamma>0 \\
\text { for some } \gamma>0, \psi_{h}>0 .
\end{array}
$$

The fact that the above two assumptions are realistic can be seen from the following

Proposition 6.1 If \mathbb{d}_{i}^{-1}, $i=0,1, \ldots, N$, as positive definite operators, are comparatively larger than S and $B_{i} M_{i}^{-1} B_{i}^{*}, i=1, \ldots, N$, then (A3) and (A4) are valid.
Proof For any given $\left(r^{2}, s^{2}\right) \in H_{0 n}^{1} \times\left[H_{0 n}^{1}\right]^{N}$ (or, $\left.\left(r_{h}^{2}, s_{h}^{2}\right) \in S_{h} \times\left[S_{h}\right]^{N}\right)$, we have

$$
\sup _{\|}\left[\begin{array}{l}
r^{1} \tag{6,11}\\
s^{1}
\end{array}\right] \|=1
$$

$$
\begin{aligned}
& \geq\left[<\dot{r}^{2}+A^{*} r^{2}, \mathbb{C}_{0}^{-1}\left(\dot{r}^{2}+A^{*} r^{2}\right)>+\sum_{1}^{N}\left\langle\dot{s}_{i}^{2}+A^{*} s_{i}^{2}, r_{i}^{-1}\left(\dot{s}_{i}^{2}+A^{*} s_{i}^{2}\right)\right\rangle+\left\langle r^{2}, S r^{2}\right\rangle\right] \\
& -\left[<\sum_{j=1}^{N} s_{j}^{2}, S r^{2}>-<r^{2}, \sum_{i=1}^{N} B_{i}^{M_{i}^{-1}} B_{i}^{*} s_{i}^{2}\right\rangle+\left\langle-r^{2}+\sum_{j=1}^{N} s_{j}^{2}, \sum_{j=1}^{N} s_{j}^{2}\right\rangle \\
& \left.+<r^{2}-\sum_{i=1}^{N} s_{i}^{2}, \sum_{i=1}^{N} B_{i} M_{i}^{-1} B_{i}^{*} s_{i}^{2}>-<\sum_{i=1}^{N} s_{i}^{2}, \sum_{i=1}^{N} B_{i} M_{i}^{-1} B_{i}^{*} s_{i}^{2}>\right] .
\end{aligned}
$$

If $\mathbb{X}_{i}^{-1} \quad(i=0, \ldots, N)$ are large enough, the second bracketed term above can be at most equal to a fraction of the first bracketed term, thus for some $\lambda: 0<\lambda<1$,

$$
\begin{aligned}
\sup _{\|}\left[\begin{array}{c}
r^{1} \\
s^{1}
\end{array}\right] \|=1
\end{aligned}\left|a\left(\left[\begin{array}{c}
r^{1} \\
1 \\
s^{1}
\end{array}\right],\left[\begin{array}{c}
r^{2} \\
s^{2}
\end{array}\right]\right)\right| \geq \lambda \cdot \text { the first bracketed term in (6.11) }, ~ \geq r>0, \text { for some } \gamma \text {. }
$$

Therefore

$$
\left.\left.\begin{array}{c|c}
\inf & \sup _{2}^{r^{2}} \\
2 \\
s^{1}
\end{array}\right]\|=1 \quad\|\left[\begin{array}{c}
r^{1} \\
s^{1}
\end{array}\right] \|=1 .\left[\begin{array}{l}
r^{1} \\
s^{1}
\end{array}\right],\left[\begin{array}{l}
r^{2} \\
s^{2}
\end{array}\right]\right) \mid \geq r>0 .
$$

Hence (A3) and (A4) are justifiable under the assumption. In fact, the above argument shows that assumptions (A3) and (A4) are related to the earlier assumption (A2).

Theorem 6.2 Let $\left(\hat{p}_{0 h}, \hat{p}_{h}\right)$ be the solution of (6.9) and let S_{h} be a ($\tau, 1$)-system. Assume that $C_{i}(t), z_{i}(t), i=1, \ldots, N$ are sufficiently smooth. Under (Al)-(A4), we have

$$
\begin{align*}
& \left\|\hat{p}_{0}-\hat{p}_{0 h}\right\|_{H_{0 n}^{1}}+\left\|\hat{p}-\hat{p}_{h}\right\|_{\left[H_{0 n}^{1}\right]^{N}} \leq \operatorname{Kh}^{\mu}\left[\left\|\hat{p}_{0}\right\|_{H_{n}^{\ell}}+\|\hat{p}\|\left[\mathrm{H}_{n}^{\ell}\right]^{N}\right] \tag{6.12}\\
& \left\|\hat{p}_{0}-\hat{p}_{0 h}\right\|_{L_{n}^{2}}+\left\|\hat{p}-\hat{p}_{h}\right\|_{\left[L_{n}^{2}\right]^{N}} \leq K h^{\mu+1}\left[\left\|\hat{p}_{0}\right\|_{H_{n}^{\ell}}+\|\hat{p}\|_{\left[H_{n}^{\ell}\right]^{N}}\right] \tag{6.13}
\end{align*}
$$

provided $\left(\hat{p}_{0}, \hat{\mathrm{p}}\right) \in\left[\mathrm{H}_{0 \mathrm{n}}^{1} \cap \mathrm{H}_{\mathrm{n}}^{\ell}\right] \times\left[\mathrm{H}_{0 \mathrm{n}}^{1} \cap \mathrm{H}_{\mathrm{n}}^{\ell}\right]^{N}$, where $\mu=\min (\tau-1, \ell-1)$ and $K_{1}>0$ is a constant independent of $\left(\hat{p}_{0}, \hat{p}\right)$. Consequently,

$$
\begin{equation*}
\left|L\left(\hat{p}_{0}, \hat{p}\right)-L\left(\hat{p}_{0 h}, \hat{p}_{h}\right)\right| \leq K_{2} h^{2 \mu}\left[\left\|\hat{p}_{0}\right\|^{2}+\|\hat{p}\|^{2} H_{n}^{\ell}\left[H_{n}^{\ell}\right]^{N}\right] \tag{6.14}
\end{equation*}
$$

holds for some $K_{2}>0$ independent of $\left(\hat{p}_{0}, \hat{p}\right)$.

Proof: Because ($\hat{p}_{0 h}, \hat{p}_{h}$) satisfies (6.10) and ($\left.\hat{p}_{0}, \hat{p}\right)$ satisfies (6.7), we get

$$
a\left(\left[\begin{array}{l}
\hat{p}_{0}-\hat{p}_{0 h} \\
\hat{p}-\hat{p}_{h}
\end{array}\right],\left[\begin{array}{l}
r_{h} \\
s_{h}
\end{array}\right]\right)=0, \quad \forall\left(r_{h}, s_{h}\right) \in s_{h} \times\left[s_{h}\right]^{N}
$$

Therefore ([1,p. 186]) by (A3) and (A4), one gets

$$
\begin{aligned}
&\left\|\left(\hat{p}_{0}-\hat{p}_{0 h}, \hat{p}-\hat{p}_{h}\right)\right\|_{H_{0 n}^{1}} \times\left[H_{0 n}^{1}\right]^{N} \leq\left(1+\frac{c}{r}\right) \inf _{\left(r_{h}, s_{h}\right) \in S_{h} \times\left[s_{h}\right]^{N}}{ }^{\left[\left\|\hat{p}_{0}-r_{h}\right\|_{H_{0 n}^{1}}\right.} \\
&\left.+\left\|\hat{p}-s_{h}\right\|{ }_{\left[H_{0 n}^{1}\right]^{N}}\right] .
\end{aligned}
$$

for some $C>0$ independent of h.
Using (6.8), we get (6.12).
To prove (6.13), we use Nitsche's trick ([4], [10]). By (A3) and [1], for any $g \in L_{n}^{2} \times\left[L_{n}^{2}\right]^{N}$, we have a unique $w(g) \in H_{0 n}^{1} \times\left[H_{0 n}^{1}\right]^{N}$ such that

$$
a(w(g), y)=\langle g, y\rangle L_{L_{n}}^{2} \times\left[L_{n}^{2}\right]^{N}, \quad \forall y \in H_{O n}^{1} \times\left[H_{O n}^{1}\right]^{N}
$$

Furthermore, we have $w(g) \in\left[H_{0 n}^{1} \cap H_{n}^{2}\right] \times\left[H_{0 n}^{1} \cap H_{n}^{2}\right]^{N}$, provided that $C_{i}(t)$ and $z_{i}(t), i=1,2, \ldots, N$, are sufficiently smooth. (This $w(g)$ can be obtained explicitly from integration by parts and it satisfies an equation similar to (4.7)). It is not difficult to verify that

$$
\|w(g)\|_{H_{n}^{2} \times\left[H_{n}^{2}\right]^{N}} \leq K^{\prime}\|g\|_{L_{n}^{2}} \times\left[L_{n}^{2}\right]^{N}
$$

where K^{\prime} is independent of g. By the very same proof of the Aubin-Nitsche lemma [4, p. 137], which remains valid under (A3) and (A4), we get

$$
\begin{align*}
& \left\|\hat{p}_{0}-\hat{p}_{0 h}\right\|_{L_{n}}^{2}+\left\|\hat{p}-\hat{p}_{h}\right\|_{\left[L_{n}^{2}\right]^{N}} \leq C^{\mu}\left[\left\|\hat{p}_{0}\right\|_{H_{n}^{\ell}}+\|\hat{p}\|_{\left.\left[H_{n}^{\ell}\right]^{N}\right]}\right. \tag{6.15}\\
& \sup _{g \in L_{n}^{2} \times\left[L_{n}^{2}\right]^{N}} \quad{ }_{\zeta_{h} \in S_{h} \times\left[S_{h}\right]^{N}}^{\left.\left\|w(g)-\zeta_{h}\right\|\right] .}
\end{align*}
$$

But, by (6.8),

$$
\begin{aligned}
& \frac{1}{\|g\|}\left\|_{L_{n}^{2} \times\left[L_{n}^{2}\right]^{N}} \quad \operatorname{rinf}_{h} \in S_{h} \times\left[S_{h}\right]^{N} \quad\right\| w(g)-\zeta_{h}\left\|\leq \frac{1}{\|g\|} \cdot K^{\prime \prime h}\right\|_{w(g)} \|_{H_{n}^{2}} \\
& \leq \frac{1}{\|g\|} \cdot K^{\wedge} \cdot h \cdot K^{\prime}\|g\|=K^{\prime} K^{\sim} h \text {, for some } K^{\wedge}>0 \text { independent of } g \text { and } w(g) \text {. }
\end{aligned}
$$

To show (6.14), we note that

$$
\begin{aligned}
L\left(\hat{p}_{0 h}, \hat{p}_{h}\right)-L\left(\hat{p}_{0}, \hat{p}\right) & =2\left[a\left(\left[\begin{array}{l}
\hat{p}_{0} \\
\hat{p}
\end{array}\right],\left[\begin{array}{l}
\hat{p}_{0 h}-\hat{p}_{0} \\
\hat{p}_{h}-\hat{p}
\end{array}\right]\right)-\theta\left(\left[\begin{array}{c}
\hat{p}_{0 h}-\hat{p}_{0} \\
\hat{p}_{h}-\hat{p}
\end{array}\right]\right)\right] \\
& +a\left(\left[\begin{array}{c}
\hat{p}_{0 h}-\hat{p}_{0} \\
\hat{p}_{h}-\hat{p}
\end{array}\right],\left[\begin{array}{c}
\hat{p}_{0 h}-\hat{p}_{0} \\
\hat{p}_{h}-\hat{p}
\end{array}\right]\right)
\end{aligned}
$$

The first term on the right above is zero because of (6.7). The second term on the right can be estimated by using (6.12). Hence we get (6.14). a

Corollary 6.3 Let

$$
\begin{equation*}
\hat{x}_{h}=\mathbb{C}_{0}^{-1}\left(\dot{\hat{r}}_{0 h}+A^{*} \hat{P}_{0 h}+\sum_{i=1}^{N} C_{i}^{*} z_{i}\right) \tag{6.16}
\end{equation*}
$$

$$
\begin{equation*}
\hat{u}_{h, i} \equiv M_{i}^{-1} B_{i}^{*}\left(\hat{p}_{0 h}+\sum_{j=1}^{N} \hat{p}_{h, j}-\hat{p}_{h, i}\right) ; \quad i=1,2, \ldots, N \tag{6.17}
\end{equation*}
$$

$$
\begin{equation*}
\hat{x}_{h}^{i} \equiv-\mathrm{C}_{i}^{-1}\left(\dot{\hat{p}}_{h, i}+A^{*} \hat{p}_{h, i}-C_{i}^{*} z_{i}\right) \quad ; \quad i=1,2, \ldots, N \tag{6.18}
\end{equation*}
$$

$$
\begin{equation*}
\hat{v}_{h, i} \equiv-M_{i}^{-1} B_{i}^{*} \hat{p}_{h, i} \quad ; \quad i=1,2, \ldots, N \tag{6.19}
\end{equation*}
$$

and

$$
\hat{x}_{h} \equiv\left(\hat{x}_{h}^{1}, \ldots, \hat{x}_{h}^{N}\right), \hat{v}_{h} \equiv\left(\hat{v}_{h, 1}, \ldots, \hat{v}_{h, N}\right), \hat{u}_{h} \equiv\left(\hat{u}_{h, 1}, \ldots, \hat{u}_{h, N}\right)
$$

Then
(6.20) $\left\|\hat{u}-\hat{u}_{h}\right\|_{L_{n}^{2}}+\left\|\hat{v}-\hat{v}_{h}\right\|_{\left[L_{n}^{2}\right]^{N}} \leq K_{3} h^{\mu+1}\left[\left\|\hat{p}_{0}\right\|_{H_{n}^{\ell}}+\|\hat{p}\|_{\left.\left[H_{n}^{\ell}\right]^{N}\right]}\right.$,
(6.21) $\quad\left\|\hat{x}-\hat{x}_{h}\right\|_{L_{n}^{2}}+\left\|\hat{x}-\hat{X}_{h}\right\|_{\left[L_{n}^{2}\right]^{N}} \leq K_{3} h^{\mu}\left[\left\|\hat{p}_{0}\right\|_{H_{n}^{\ell}}+\|\hat{p}\|_{\left[H_{n}^{\ell}\right]^{N}}\right]$.
for some $K_{3}>0$ independent of $\hat{x}, \hat{u}, \hat{X}, \hat{v}, \hat{p}_{0}$ and \hat{p}.

The convergence rate (6.20) is the sharpest possible [10]. The rate (6.21) is not optimal. To obtain a faster rate of convergence for x and X, one can use $-\hat{u}_{h}$ and \hat{v}_{h} in (DE) $=0$ and $(D E)_{i}=0(1 \leq i \leq N)$ to solve for more accurate x and x.

§7. Examples and Computational Results

In this section, we apply the finite element method to some examples and present our numerical results.

Example 1 We consider the following two person non zero-sum game

$$
\left\{\begin{array}{l}
\left\{\begin{array}{l}
\dot{x}(t)=x(t)+u_{1}(t)+2 u_{2}(t)+1 \quad, t \in[0, T], \\
x(0)=0
\end{array}\right. \\
J_{1}(x, u)=\pi / 4 \\
\int_{0}^{T}\left[\left|x(t)+\left(\cos t+\frac{1}{2}\right)\right|^{2}+\frac{1}{2}\left|u_{1}(t)\right|^{2}\right] d t \\
J_{2}(x, u)=\int_{0}^{T}\left[|x(t)-\sin t|^{2}+2\left|u_{2}(t)\right|^{2}\right] d t
\end{array}\right.
$$

The Lagrangian L in (4.3) corresponding to this problem is

$$
\begin{align*}
& \mathrm{L}\left(\mathrm{p}_{0}, \mathrm{p}_{1}, \mathrm{p}_{2}\right)=-\frac{1}{2}<\dot{\mathrm{p}}_{0}+\mathrm{p}_{0}, \frac{1}{2}\left(\dot{\mathrm{p}}_{0}+\mathrm{p}_{0}\right)>+\frac{1}{2}\left[<\dot{\mathrm{p}}_{1}+\mathrm{p}_{1}, \dot{\mathrm{p}}_{1}+\mathrm{p}_{1}>+<\dot{\mathrm{p}}_{2}+\mathrm{p}_{2}, \dot{\mathrm{p}}_{2}+\mathrm{p}_{2}>\right] \tag{7.1}\\
& -\frac{1}{2}<p_{0}+p_{1}+p_{2}, 4\left(p_{0}+p_{1}+p_{2}\right)>+<p_{0}+p_{1}+p_{2}, 2 \cdot p_{1}+2 \cdot p_{2}>\cdots \cdots \\
& -\left\langle\dot{p}_{0}+p_{0}, \frac{1}{2}\left[\left(\cos t+\frac{1}{2}\right)+\sin t\right]>-\left[\left\langle\dot{p}_{1}+p_{1}, \cos t+\frac{1}{2}>+\left\langle\dot{p}_{2}+p_{2}, \sin t>\right]\right.\right.\right.
\end{align*}
$$

$\left.-<p_{0}+p_{1}+p_{2}, 1>-\frac{1}{2}<\frac{1}{2}\left[\left(\cos t+\frac{1}{2}\right)+\sin t\right],\left(\cos t+\frac{1}{2}\right)+\overline{\sin t}\right\rangle$
$+\frac{1}{2}\left[<\cos t+\frac{1}{2}, \cos t+\frac{1}{2}>+<\sin t, \sin t>\right]$.

- Using $\mathbb{E}_{0}^{-1}=\frac{1}{2}, \mathbb{C}_{1}^{-1}=1, \mathbb{C}_{2}^{-1}=1, B_{1} M_{1}^{-1} B_{1}^{*}=2, B_{2} M_{2}^{-1} B_{2}^{*}=2, S=4$ - we easily verify that (Al) - (A4) are all satisfied for all $T>0$.

We choose a (4,1)-system of Hermite cubic splines as in [13, p.56]. The interval $[0, T]$ is divided into N equal subintervals, each with mesh length $h=\frac{T}{N}$. The matrix
M_{h} is a $(6 N+3) \times(6 N+3)$ matrix. We use the IMSL high accuracy subroutine LEQ2S to solve the matrix equation $\bar{M}_{h} \bar{\gamma}_{h}=\bar{\theta}_{h}$ on an IBM370/Model 3033 at the Pennsylvania State University.

Numerical results are plotted in Figures 1-4:
(i) Figure 1: Strategy u_{1} is plotted, using $h=\frac{\pi}{4} / 16, \frac{\pi}{4} / 32, \frac{\pi}{4} / 64$, respectively. Numerical results for v_{1} are found to be identical with u_{1}, as indicated in Theorem 4.7.
(ii) Figure 2: Strategy u_{2} is plotted, using $h=\frac{\pi}{4} / 16, \frac{\pi}{4} / 32, \frac{\pi}{4} / 64$, respectively. Numerical results for v_{2} are identical with u_{2}.
(iii) Figure 3: State x is plotted, using $h=\frac{\pi}{4} / 16, \frac{\pi}{4} / 32, \frac{\pi}{4} / 64$.
(iv) Figure 4: x, x^{1} and x^{2} are plotted, with $h=\frac{\pi}{4} / 16$. Except near $t=0$ and $t=T$ (where all three trajectories exhibit a great deal of roughness), the numerical data of x, x^{1} and x^{2} differ very little.

The values of $L\left(p_{0}, P_{1}, p_{2}\right)$ and $J(x, u ; X, v)$ are found to be

$$
\begin{array}{ll}
\mathrm{L}=\mathrm{J}=0.02394619, & \mathrm{~h}=\frac{\pi}{4} / 16 \\
\mathrm{~L}=\mathrm{J}=0.01211985, & \mathrm{~h}=\frac{\pi}{4} / 32 \\
\mathrm{~L}=\mathrm{J}=0.00609733, & \mathrm{~h}=\frac{\pi}{4} / 64 . \tag{7.2}
\end{array}
$$

A quick observation points out that L converges to 0 with rate $\mathcal{O}\left({ }^{1}{ }^{1}\right)$. This seems to contradict (6.14), which predicts that the rate should be $\mathcal{V}^{(}{ }^{6}$). Nevertheless, we believe that this is not really paradoxical because, first of all, $\mathcal{O}\left(h^{6}\right)$ is a quite high rate of convergence, which is hard to verify and, secondly, we believe that the values of L and J in (7.2) are probably composed of quadrature and round off errors, since our h is very small and the matrix solver has high accuracy. All of our calculations were carried out with double precision.

In Table 1 , we list some values of $u_{1}, u_{2}, x, x^{1}, x^{2}, p_{0}, p_{1}$ and p_{2} at'certain selected nodal points.
Example 2 We compute Example 1 again, but with $T=2 \pi$ and $h=2 \pi / 16$. The graphs for u_{1} and u_{2} are plotted in Figure 5. Here again we have $v_{1}=u_{1}, v_{2}=u_{2}$ in numerical values. The graphs for x, x^{1} and x^{2} are plotted in Figure 6. The reader may compare them with the pictures of Example 1.

Example 3 We consider the following 2-person non-zero sum game:

$$
\left\{\begin{array}{l}
\left\{\begin{array}{l}
\dot{x}(t)=x(t)+\cos t \cdot u_{1}(t)+\sin t \cdot u_{2}(t)+1,0 \leq t \leq T \\
x(0)=0, \\
J_{1}(x, u) \equiv \int_{0}^{T}\left[\left|x(t)-d_{1}\left(\cos t+\frac{1}{2}\right)\right|^{2}+\frac{1}{3} u_{1}^{2}(t)\right] d t, \\
J_{2}(x, u) \equiv \int_{0}^{T}\left[\left|x(t)-d_{2} \sin t\right|^{2}+\frac{1}{2} u_{2}^{2}(t)\right] d t
\end{array},\right.
\end{array}\right.
$$

It is not clear to us whether conditions (A2) - (A4) are satisfied when T is large.

$$
\text { For } \begin{aligned}
&\left(d_{1}, d_{2}\right)=(-1,1) \text { and } T=\frac{\pi}{4}, \text { we find that } \\
& L=0.02394619, h=\frac{\pi}{4} / 16 \\
& L=0.01211985, h=\frac{\pi}{4} / 32 \\
& L=0.00609733, h=\frac{\pi}{4} / 64 .
\end{aligned}
$$

Surprisingly, they agree identically with the values in (7.2) (except the last few digits which have been rounded off by us).

$$
\text { For } \begin{aligned}
\mathrm{T} & =2 \pi,\left(d_{1}, d_{2}\right)=(-1,0.9), \text { we find that } \\
\mathrm{L} & =-0.02630621, \quad \mathrm{~h}=2 \pi / 4 \\
\mathrm{~L} & =-0.03772221, \quad \mathrm{~h}=2 \pi / 8 \\
\mathrm{~L} & =-0.0412112 i, \quad \mathrm{~h}=2 \pi / 16 \\
\mathrm{~L} & =-0.04456356, \quad \mathrm{~h}=2 \pi / 32 \\
\mathrm{~L} & =-0.05005449, \\
& \mathrm{~h}=2 \pi / 64
\end{aligned}
$$

These values of L are all negative and seem to be divergent. See $[3, \S 4$, Example 3] for further discussions.

Due to the lack of any known closed form solutions to make comparisons, error estimates (6.20) and (6.21) can not be verified at this stage. However, in Part II [3] of our papers, numerical results for Example 1 will be compared with those obtained from another very different approach - the penalty method. They manifest remarkable agreement. This gives a good indication that our treatment and calculations are sound.

Note added in proof: We have recently improved the order of convergence of L to $\mathscr{O}\left(h^{5}\right)$, which is close to the predicted rate $\mathscr{O}\left(h^{6}\right)$ mentioned at the last paragraph of page 59. In addition, the roughness of the state x as well as x^{1} and x^{2} as shown in Figures 3, 4, and 6 , and those in certain figures in Part II of our papers, have all been eliminated. The improved numerical results will be published later on in a technical journal.

	$t=\frac{1}{4} \cdot \frac{\pi}{4}$			$t=\frac{1}{2} \cdot \frac{\pi}{4}$			$t=\frac{3}{4} \cdot \frac{\pi}{4}$			$t=\frac{\pi}{4}=T$		
	$h=\frac{\pi}{4} / 16$	$h=\frac{\pi}{4} / 32$	$\mathrm{h}=\frac{\pi}{4} / 64$	$h=\frac{\pi}{4} / 16$	$\mathrm{h}=\frac{\pi}{4} / 32$	$\mathrm{h}=\frac{\pi}{4} / 64$	$\mathrm{h}=\frac{\pi}{4} / 16$	$h=\frac{\pi}{4} / 32$	$h=\frac{\pi}{4} / 64$	$h=\frac{\pi}{4} / 16$	$h=\frac{\pi}{4} / 32$	$h=\frac{\pi}{4} / 60$
u_{1}	-2.022507	-2.050318	-2.064450	-1.199239	-1.219113	-1.229223	-0.536199	-0.549396	-0.556116	0.0	0.0	0.0
u_{2}	0.421594	0.431190	0.436094	0.271250	0.278159	0.281693	0.123312	0.127565	0.129746	0.0	0.0	0.0
x	-0.131033	-0.127947	-0.126924	-0.138533	-0.137644	-0.137191	-0.053930	-0.053681	-0.053709	-0.25000	-0.250000	-0.250000
x^{1}	-0.145114	-0.134294	-0.130115	-0.153802	-0.145366	-0.141075	-0.073320	-0.063079	-0.058435	-1. 207107	-1.207107	-1.207107
x^{2}	-0.116951	-0.121600	-0.123733	-0.123263	-0.129922	-0.133308	-0.034540	-0.044283	-0.048983	0.707107	0.707107	0.707107
${ }^{+}$	0.589659	-0.593969	-0.596131	-0.328370	-0.331397	-0.332918	-0.144788	-0.147134	-0.148312	0.0	0.0	0.0
P_{1}	1.011253	1.025159	1.032225	0.599620	0.609556	0.614612	0.268099	0.274698	0.278058	0.0	0.0	0.0
P_{2}	-0.421594	-0.431190	-0.436094	0.271250	-0.278159	-0.281694	-0.123312	-0.127565	-0.129746	0.0	0.0	0.0

Remark: The numerical values of v_{1}, v_{2} are identical, respectively, with u_{1}, u_{2}. All entries above are rounded off figures with six decimal place accuracy.

Table 1: Numerical Values of $u_{1}, u_{2}, x, x^{1}, x^{2}, p_{0}, p_{1}$ and p_{2} at $t=\frac{1}{4} \cdot \frac{\pi}{4}, \frac{1}{2} \cdot \frac{\pi}{4}, \frac{3}{4} \cdot \frac{\pi}{4}$, and $\frac{\pi}{4}$.

Figure 2: Duality Solution of u_{2}, Example 1

Figure 3: Duality Solution of x, Example 1

Throughout Figures 1, 2 and 3, curves 1, 2, and 3 represent the numerical solutions with $h=\frac{\pi}{4} / 16, \frac{\pi}{4} / 32$ and $\frac{\pi}{4} / 64$, respectively, for Example 1.

Figure 4: Duality Solutions of x, x^{1} and x^{2}, Example 1 , with $h=\frac{\pi}{4} / 16$.

Figure 5: The Case $T=2 \pi$, Strategies u_{1} and u_{2}, Example 2, with $h=2 \pi / 16$.

Figure 6: The Case $T=2 \pi$, State x, x^{1} and x^{2},
Example 2, with $h=2 \pi / 16$.
[1] I. Babuska and A.K. Aziz, The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations, A.K. Aziz, ed., Academic Press, New York, 1972.
[2] W.E. Bosarge and O.G. Johnson, Error bounds of high order accuracy for the state regulator problem via piecewise polynomial approximation, SIAM J. Control, 9, 15-28, 1971.
[3] G. Chen, W. H. Mills, Q. Zheng, W. Shaw, N-person differential games, Part II, the penalty method, NASA Contractor Report No. 166111, NASA Langley Research Center, Hampton, Va 23655., April 1983.
[4] P.G. Clarlet, The Finite Element Method for Elliptic Problems, North Holland, Amsterdam, 1978.
[5] K. Fan, Sur un theorème minimax, C.R. Acad. Sci., Paris, 259, 3925-3928, 1964.
[6] A. Friedman, Differential Games, Wiley-Interscience, New York, 1971.
[7] W.W. Hager and S.K. Mitter, Lagrange duality theory for convex control problems, SIAM J. Control Opt., 14, 843-856, 1976.
[8] R. Issacs, Differential Games, Wiley, New York, 1965.
[9] D.L. Lukes and D.L. Russell, A global theory for linear quadratic differential games, J. Math. Anal. Appl., 33, 96-123, 1971.
[10] F.H. Mathis and G.W. Reddien, Ritz-Trefftz approximation in optimal control, SIAM J. Control Opt., 17, 307-310, 1979.
[11] J. Ponstein, Approaches to the theory of optimization, Cambridge Univ. Press, London, 1980.
[12] D. L. Russell, Mathematics of Finite Dimensional Control Systems, Theory and Design, Marcel Dekker, New York, 1979.
[13] G. Strang and G. Fix, An Analysis of the Finite Element Method, PrenticeHall, Englewood Cliffs, New Jersey, 1973.

End of Document

[^0]: *Department of Mathematics, Pennsylvania State University, University Park, PA 16082. Supported in part by NSF Grant MCS $81-01892$ and NASA Contract No. NASI-15810, the latter while the first author was in residence at the Institute for Computer Applications in Science and Engineering, NASA Langley Research Center, Hampton, VA 23665.

 Department of Mathematics, Pennsylvania State University, University Park, PA 16802. Permanent address: Department of Mathematics, Shanghai University of Science and Technology, Shanghai, China.

