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INTRODUCTION

The prospect of extensive space operations in the era of the Space Transporta-
tion System and possibly a permanent manned space laboratory accentuates the need for
understanding the interaction of energetic heavy ions with extended matter (ref. 1).
In addition to the space program, high-altitude aircraft operations (ref. 2) and
radiotherapy (ref. 3) are areas requiring better understanding of heavy ion beam
transport. In the present report, previous calculations (refs. 4 and 5) are extended
to arrive at a more complete model for heavy ion beam transport,

The solution of the heavy ion transport equations is considered in the straight
ahead approximation. The equations are solved by methods of characteristics using a
perturbation expansion. After the transport coefficients are reviewed, results for
neon beams in water are presented along with conclusions based on these results.

HEAVY ION TRANSPORT

In moving through extended matter, heavy ions lose energy through interaction
with atomic electrons along their trajectories. On occasion, they interact violently
with nuclei of the matter producing ion fragments moving in the forward direction and
low energy fragments of the struck target nucleus. The transport equations for the
short range target fragments can be solved in closed form in terms of collision den-
sity (ref. 4). Hence, the projectile fragment transport is the interesting unsolved
problem. In previous work, the projectile ion fragments were treated as if all went
straight forward (ref. 5).

With the straight ahead approximation and the target secondary fragments
neglected (refs. 4 and 5), the transport equation may be written as

d_ g =
[%; - & s + aj(E)] ®; (x,E) = Ej myy (E) oy (B) & (x,E) (1)

where &.(x,E) is the flux of ions of type j with atomic mass A, at x moving
along thé x-axis at energy E in units of MevV/amu, os(E) 1is the CTorresponding
macroscopic nuclear absorption cross section, §j(E) 1s the change in E per unit
distance, and m.k(E) is the multiplicity of ion j produced in collision by

ion k. (A list of symbols appears after the references in this report.) The range
of the ion is given as

E '
R4 (E) =f JEL (2)
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The solution to equation (1) is to be found subject to boundary specification at
x = 0 and arbitrary E as

Usually Fj(E) is called the incident beam spectrum.

It follows from Bethe's theory (ref. 6) that

~ Apzj2 ~
Sj(E) = - 5 SP(E) (4)
j P
for which
Zj2 Zp2
? Rj(E) =7\_;—RP(E) (5a)

The subscript p refers to proton. Equation (5a) is quite accurate at high energy
and only approximately true at low energy because of electron capture by the ion
which effectively reduces its charge (ref. 7), higher order Born corrections to
Bethe's theory (ref. 8), and nuclear stopping at the lowest energies (ref. 9).
Herein, the parameter Vj is defined as

vj Rj(E) = v, Rk(E) (5b)

k

so that
v. = 2,2/a (6)
3 j j

Equations (5) and (6) are used in the subsequent development and the energy variation
in vj is neglected. The inverse function of Rj(E) is defined as

_ o1
E = R [Rj(E)] (7)




‘ and plays a fundamental role subsequently. For the purpose of solving equation (1),
‘ define the coordinate transformation (refs. 4 and 10),

., = - R.(E
T5 X J( )

(8)
gj =X + Rj(E)

and new functions

(9)
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Vi (10)
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for which equation (1) becomes
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where the . are assumed to be energy independent. Solving equation (11) by using
line integration with an integrating factor,

' = 1
uj(nj,gj) exp[2 dj(ij + nj)] (12)

results in
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where
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and the boundary condition (eq. (3)) is written as

% (-85:85) = [R50 ] [R5 g ]

Consider a Neumann series for equation (13) for which the first term is

xjgo)(nj,gj) = exp[- £ oj(n; + £)] §j[R31(gj)] Py (8585 ] (15)

and the second term is

n
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An expression for (2)( is derived once equation (16) is reduced and higher

order terms can be found y contlnued iteration of equation (13). These expressions
(egs. (15) and (16)) are now simplified for a monoenergetic beam of type M ions.

The boundary condition is now taken as

F5(E) = 85y 8(E - Eg) (17)

where 6-M is the Kronecker delta, &( ) 1is the Dirac delta, and Eq is the inci-
dent beam energy. Thus,

X (-&085) = § [R -1(gj)] 8im 6[R51(§j)—EO] = 85y 5[§j—Rj(Eo)] (18)
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for which xj becomes

(

becomes

1
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The contribution to the integral (eqg. (20)) occurs at
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The simplified form in equation (22) may now be used to calculate the next iteration

of equation (13):
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applied to obtain from equation (19)

< % < N e The inverse of the transformation is now
1
3% (x,8) ==
J Sj(E)

exp(-go, x) 5jM 6[x+Rj(E)—RM(EO)]

(26)
and from equation (22)

so long as

—-% om[x + Ry(E) + n'i}

(27)
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Otherwise @‘1)(x,E) is zero.
a similar result may be obtained from equation (23) for

After a complicated but straightforward manipulation,
@3§2)(x,E).




The dose as a function of depth is given as

D(x) = ) jc; 5;(8) 8, (x,5) d&

3

which is evaluated from equations (26) and (27) as follows:

p'® ) = B, exp(-o,x) J‘; 8[R, (E)4x-Ry (B ) ] dE
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where E, and E span the energy limits associated with equation (28).
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values of the integrand of equation (31) at the limits of integration are
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With a linear approximation of the exponent, equation (31) becomes
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Note that assuming the stopping power to be negligible results in an energy-
independent solution for the secondary flux:

exp(~g.x) - expl -ch)

@;1)(x) = Z m, o J (34)

: JM™M O'M-O'j

which provides some confidence in the above approximations (see also ref. 5).

In similar fashion, the inverse transformation can be applied to equation (23)
and Dz(x) can be evaluated as

A.v.[{E' - E'
@0 -3 L (% 7 ")
jkokmkM M (VM - vk)(c - o.)x
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exp(-cjx) - exp(—ch) exp(—cjx) - exp(-ckx)

x S5 - - (35)
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where
M
Rj(Eu.> =5 RM(EO) - x (36)
J J
and
R, (' ) = M[R,(E)) - x] (37)

The results of equations (36) and (37) are understood to be zero whenever the right-
hand sides are negative., The above expressions can be applied to various shield
materials of uniform composition. Each specific application requires knowledge of
the appropriate transport coefficients S:(E), o, and ik The next section pre-
sents the transport coefficients for water. Water is partlcularly important since it
resembles organic materials, is under extensive study at heavy ion facilities, and is
related to an astronaut's self-shielding factors,



TRANSPORT COEFFICIENTS OF WATER
Stopping Power

In passing through a material, an ion loses the larger fraction of its energy to
electronic excitation of the material. Although a satisfactory theory of high-energy
ion-electron interaction is available in the form of Bethe's theory utilizing the
Born approximation, an equally satisfactory theory for low energies is not available.
Bethe's high-energy approximation to the energy loss per unit path is given as

s = in - g - (38)

where Z, is the projectile charge, N 1is the number of targets per unit volume,
Z, is the number of electrons per target, m is the electron mass, v is the pro-
jectile velocity, B = v/c, ¢ 1is the velocity of light, C is the velocity-
dependent shell correction term (ref. 11), and I, is the mean excitation energy
given by

Z, 1n I, = %:fn In E, (39)

where the £, are the electric dipole oscillator strengths of the target and the

E, the corresponding excitation energies. Note that the sum in equation (39)
includes discrete and continuum levels. FEmpirically it has been observed that molec-
ular stopping power is reasonably approximated by the sum of the corresponding empir-
ically derived "atomic" stopping powers for which equations (38) and (39) imply

Z1ln I = Zn.z. In I, (40)
3 J 3 J

where 2 and I pertain to the molecule, Z. and I. are the corresponding
atomic values, and n. are the stoichiometric coefficients, This additivity rule
(egq. (40)) is usually called Bragg's rule (ref, 12).

Sources of deviations from Bragg's additivity rule for molecules and for the
condensed phase are discussed by Platzman (ref. 13). BAside from shifts in excitation
energies and adjustments in line strengths as a result of molecular bonding, new
terms in the stopping power appear due to coupling between vibrational and rotational
modes. Additionally, in condensed phase, some discrete transitions are moved into
the continuum, and collective modes among valence electrons in adjacent atoms produce
new terms in the absorption spectrum to be dealt with, Platzman proposed that the
experimentally observed additivity rule may not show that molecular stopping power is
the sum of atomic processes but rather demonstrate that molecular bond shifts for
covalent bonded molecules are relatively independent of the molecular combination.

On the basis of such arguments, Platzman suggested that ionic bonded substances




should be studied as a rigid test of the additivity rule because of the radical 4if-
ference in bonding type. He further estimated that ioni¢ bond shifts could change
the stopping power by as much as 50 percent. Recent results on molecular bond shifts
on mean excitation energies are discussed in references 14 to 16. Effects of the
physical state have likewise been studied (ref. 17).

The electronic stopping power for protons is adequately described by equa-
tion (38) for energies above 500 keV for which the shell or "tight binding" correc-
tion C makes an important contribution below 10 Mev (ref. 18). For proton energies
below 500 kev, it is well-known that charge exchange (electron transfer) reactions
alter the proton charge over much of its path, so that equation (38) is to be under-
stood in terms of an average over the proton charge states. It is normal to intro-
duce into equation (38) an effective charge that is found by averaging equation (38)
over the charge states so that the effective charge is the root-mean-square ion
charge and not the average ion charge. At any ion energy, charge equilibrium is
established very quickly in all materials. Utilizing the effective charge in equa-
tion (38) appears to make only modest improvement below 500 keV, an indication pre-
sumably of the failure of this theory based on the Born approximation (ref. 7).
Customarily data below 500 keV are treated on an empirical basis (refs. 7 and 18).
The resultant stopping power for protons in water are shown in comparison to the
evaluated data of Bichsel (ref., 19) in figure 1.
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Figure 1.- Calculated and experimental stopping powers in water for typical
cosmic ray ions as a function of kinetic energy.

The electronic stopping power for alpha particles requires terms in equa-
tion (38) of higher order in the projectile charge Z, resulting from corrections to
the Born approximation., The alpha stopping power cannot be related to the proton
stopping power through their effective charges. Parametric fits to experimental data
are given by Ziegler in reference 20 for all elements in both the gaseous and con-
densed phase,
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The electronic stopping powers for heavier ions are related to the alpha stop-
ping power through their corresponding effective charges. The effective charge sug-
gested by Barkas (ref. 21) is used:

*

2" = z[1 - exp(-125p/2%/3)] (41)

where Z in equation (41) is atomic number of the ion.

At sufficiently low energies, the energy lost by an ion in nuclear collision
becomes important., The nuclear stopping theory used in this paper is a modification
of the theory of Lindhard, Scharff, and Schiott (ref. 39). The reduced energy is
given as

32.533,A,F
€= 2/3 2734172 (42)
z,2,(a, + 8,)(27"7 + 2)'7)

where E 1is in uni‘s of kev/amu and A, and A, are the atomic masses of the pro-
jectile and target, The nuclear stopping power in reduced units (ref., 20) is

F
1.593¢1/2 (e < 0.01)

1.7(-:1/2 In(e + exp 1)

(0.01 < & < 10)

(43)
1 + 6.8¢ + 3.4r—:3/2
1n(0.47€) (10 < 8)
L 2¢
and the conversion factor to units of eV/(1O15 atoms/cmz) is
8.426Z .2 A
£= 2/; : 12/3 1/2 (44)
(a, +a,)(z)"" + z"”)

The total stopping power S. 1is obtained by summing the electronic and nuclear con-

tributions. Other processes of enerqgy transfer such as Bremsstrahlung and pair pro-
duction are unimportant.

1




For energies above a few MeV per nucleon, Bethe's equation is adequate provided
that appropriate corrections to Bragg's rule (refs. 14 to 16), shell corrections
(refs. 7, 11, and 18), and effective charge are included. Electronic stopping power
for protons is calculated from the parametric formulas of Andersen and Ziegler (ref.
18). The calculated stopping power for protons in water is shown in fiqure 1 in
comparison with data given by Bichsel (ref, 19).

Because alpha stopping power is not derivable from the proton stopping power
formula using the effective charge at low energy, the parametric fits to empirical
alpha stopping powers given by Ziegler (ref. 20) are used. BApplying his results for
condensed phase water poorly represented the data of references 22 and 23. Consider-
ing that physical state and molecular binding effects are most important for hydrogen
(ref. 14), the water stopping power was approximated by using the condensed phase
parameters for hydrogen and the gas phase parameters for oxygen (which are known
experimentally). These results are compared with experimental data for condensed
phase water (refs. 22 and 23) in figure 1. It appears that Ziegler overestimated the
condensed phase effects for oxygen.

Electronic stopping powers for ions of charge greater than 2 are related to the
alpha stopping power through the effective charge given by equation (41). For water,
the condensed phase formula of Ziegler for alpha particles gives probably the best
stopping powers for heavier ions. Calculated results for 1 0 and 56Fe ions in
water are shown in figure 1 in comparison with the Northcliffe and Schilling data
(ref. 24). Good agreement with Northcliffe and Schilling for 56Fe ions is especially
important since their data seem to agree with the range experiments of J, H. Chan in
Lexan' (ref. 25). The stopping powers in Lexan and tissue equivalent material can be
calculated in a way similar to the procedure given above for calculating stopping
powers in water,

Nuclear Absorption Cross Section

The nuclear absorption cross section Oy is calculated from a guantum mechan-
ical model of the heavy ion reaction. Approximate solution of the coupled-channel
equations for high-energy composite particle scattering is used to calculate the
elastic scattered amplitude from which total and absorption cross sections are
derived (ref. 26). Nucleon-nucleus cross sections are better than 5 percent accurate
with respect to absorption mean free paths. More accurate nuclear density functions
are now being incorporated into the model (refs. 27 to 29) and improved calculational
methods will result in more accurate cross sections at all energies from 20 MeV/amu
to 30 Gev/amu. The present results derived from reference 26 are shown in figure 2.

'Lexan: Trade name of the General Electric Co., Polymers Product Dept.
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Figure 2.- Calculated (ref. 26) macroscopic absorption cross section
for typical cosmic ray ions in water.

Nuclear Fragmentation Parameters

Nuclear fragmentation by proton beams has been studied by many researchers, and
approximate formulas for the production cross sections of any fragment with 2 > 2
for proton beams and arbitrary target nuclei have been derived (ref., 30). Basic
fragmentation studies for carbon ion beams allow extension of the production cross
sections for 2 > 2 and hydrogen beams to any arbitrary nucleus (ref. 30). Given
the production cross section o(zk,A ,A_,Z.,A.,E) for a fragment of type A.
and 2. produced by an ion of type B a d "2y colliding with a target Aqp, then
the fragmentation parameter, or multiplicity, required for the present method is

G(Zk,Ak,AT,Zj,Aj,E)

ck(AT,E)

mjk(E) = (45)

In the present calculation the production cross sections are averaged over the shield
material constituents. Fragmentation parameters for 50y at 1 GeV/amu in water are
shown in figure 3.

13
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Figure 3.- Calculated fragmentation parameters (multiplicity) of various charge
states for vanadium fragmentation in water. E = 1 GeV/amu.

RESULTS

The dose in MeV/g has been calculated as a function of depth in water for a 20ye
ion beam of 760 MeV/amu according to equations (30), (33), and (35). The calculated
dose indicates that of the incident 15.2 GeV associated with the kinetic energy of
each particle, only about half would be ultimately deposited. It is clear in compar-
ing D 1 (x) with D (x) in figure 4 that the series approximation to the dose is
rapidly converging, so that higher order terms are not the source of error. Testing
for charge and mass conservation of the fragmentation parameters indicates that the
average total charge of the first reaction products is 4.9e and the average mass is
9.2 amu. Clearly, considerable mass and charge as well as energy are lost in the
Silberberg-Tsao fragmentation cross sections. Although the calculational methods
developed here are converging at least in the case shown, considerable effort must be
made to improve the description of the fragmentation process.
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Figure 4.- First three terms of series approximation to dose as a function
of penetration depth in water for a neon ion beam of 670 MeV/amu.

CONCLUDING REMARKS

A suitable approximation of heavy ion transport appears to have been found on

the basis of the convergence of the series approximation of a 20Ne beam in water,
Inaccuracies in the transport coefficients, particularly the fragmentation parameter

(multiplicity), do not yet allow meaningful comparison with experiment. Improvement
in the accuracy of fragmentation parameters would allow eventual calculation of
important radiation protection quantities with good accuracy.

Langley Research Center

National Aeronautics and Space Administration
Hampton, VA 23665

May 12, 1983
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SYMBOLS

Aj atomic mass of type 3j ion, amu

c speed of light, cm/sec

C shell correction

D(x) energy absorbed per unit mass at x, MeV/g

e electronic charge, coulumbs

E ion kinetic enerqgy, MeV/amu

Eg incident beam energy, MeV/amu

E, dipole transition energy, ev

£, electric dipole oscillator strength

Fj(E) incident beam flux, (cm2—sec-MeV/amu)"1

I mean excitation energy for stopping, ev

m electron mass, eV/c2

mjk(E) multiplicity of type Jj ions produced by collisions of type k ions of
energy E

ny stoichiometric coefficient

N density of scattering centers, cm_3

Rj(E) continuous slowing-down range of type Jj ion of energy E, cm

R51[Rj(E)] inverse function of Rj(E)

Se electronic stopping power, MeV/cm

Sj(E) stopping power of linear energy transfer (LET) due to interaction of type
j ion with orbital electrons of transport medium, MeV/cm

gj(E) specific stopping power or linear energy transfer (LET) due to interaction
of type j 1ion with orbital electrons of transport medium, MeV/amu-cm

Sh nuclear stopping power, MeV/cm

v speed of passing ion, cm/sec

X one-dimensional position vector, g/cm2

Zj atomic number of type 3j ion

z* effective charge of a moving ion
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B ratio of projectile gpeed to speed of light

vj range scale parameter for type j ion
gj,nj characteristic coordinates of type Jj ion, cm
OS(E) macroscopic absorption cross section for type Jj ion of energy E, em™!

®.(x,E) differential flux of type j ions at x with energy E,
] (cmz—sec--MeV/amu)_1

xj(rg,gj) flux of type j ions in nj’gj characteristic space, cm3-sec”?
Zj(nk,gk) flux of type j ions in “k’gk characteristic space, cm3-sec™?
Subscript:

M. type of ions in monoenergetic beam

Superscripts:

(0),(1),(2) terms in series approximation to equation (13)

Primes indicate a variable of integration.
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