Applications of the Contravariant Form of the Navier-Stokes Equations

Theodore Katsanis
Lewis Research Center
Cleveland, Ohio

Prepared for the
Sixth Computational Fluid Dynamics Conference
sponsored by the American Institute of Aeronautics and Astronautics
Danvers, Massachusetts, July 13-15, 1983

APPLICATIONS OF THE CONTRAVARIANT FORM OF THE NAVIER-STOKES EQUATIONS
 Theodore Katsanis
 National Aeronautics and Space Administration
 Lewis Research Center
 Cleveland, Ohio 44135

Abstract

SUMMARY The contravariant Navier-Stokes equations in weak conservation form are well suited to certain fluid flow analysis problems. Three-dimensional contravariant momentum equations may be used to obtain Navier-Stokes equations in weak conservation form on a nonplanar two-dimensional surface with varying streamsheet thickness. Thus a three-dimensional flow can be simulated with two-dimensional equations to obtain a quasi-three-dimensional solution for viscous flow. When the Navier-Stokes equations on the two-dimensional nonplanar surface are transformed to a generalized body-fitted mesh coordinate system, the resulting equations are similar to the equations for a body-fitted mesh coordinate system on the Euclidean plane.

Contravariant momentum components are also useful for analyzing compressible, three-dimensional viscous flow through an internal duct by parabolic marching. This type of flow can be efficiently analyzed by parabolic marching methods, where the streamwise momentum equation is uncoupled from the two crossflow momentum equations. This can be done, even for ducts with a large amount of turning, if the Navier-Stokes equations are written with contravarint components.

INTRODUCTION

The Navier-Stokes equations are often transformed to special coordinate systems for computational purposes. However, if it is desired to have the equations in conservation form, it is generally necessary to use Cartesian moomentum components. On the other hand, there are cases where it is useful to use the contravariant momentum components in weak conservation form. Two example are considered here: one example is a nonplanar flow surface embedded in a three-dimensional flow field; the other example is three-dimensional flow in a turning duct. Both examples have applications in turbomachinery.

There are many instances of two-dimensional flow where the flow is not planar; i.e., either the two -dimensional surface is curved or the streamsheet thickness is not constant (egg., axisymmetric flow). In such cases the threedimensional Navier-Stokes equations may be reduced to two dimensions. A genaral method for doing this is to transform the three-dimensional equation to a new coordinate system such that two coordinate lines lie on the surface of interest, with the third coordinate normal to the surface. The momentum aqualions are then combined so as to obtain contravariant momentum components. Thus two components of momentum lie on the surface and the third component is omitted; the equation will involve only the two contravariant components. As an illustration, equations are presented here for viscous flow on a rotating surface of revolution. A flow solution on such a surface would be useful for analyzing flow through a turbomachine.

Ducts of complex geometry may be analyzed efficiently if the flow is of a "boundary layer" type; i.e., flow with a predominant direction (no revense flow), and negligible streamwise diffusion. This kind of flow can be analyzed by parabolic marching methods. Patankar and Spalding (ref. 4), Briley (ref. 8), Roberts and Forester (ref. 7), Moore and Moore (ref. 6), and others have calculated three-dimensional viscous flow in ducts by means of parabolic space marching. For this purpose the momentum equations are uncoupled. The streamwise momentum equation is used to advance streamwise velocity components, and cross-stream momentum equations are used to advance the cross-stream velocity components. If a body-fitted coordinate system is used, the contravariant components of the momentum equation (with contravariant velocity components as dependent variables) provide a natural method of uncoupling the streamwise momentum equation from the cross-stream momentum equation. As an example, equations are presented for flow through a rotating passage, e.g., a blade passage through a turbomachine blade row.

NAVIER-STOKES EQUATIONS

The two-dimensional, planar, nonsteady Navier-Stokes equations in conservation form are

$$
\begin{equation*}
\partial_{t} q+\partial_{x} E+\partial_{y} F=\partial_{x} R+\partial_{y} S \tag{1}
\end{equation*}
$$

where

$$
\begin{aligned}
& q=\left[\begin{array}{l}
\rho \\
\rho V_{x} \\
\rho V_{y} \\
e
\end{array}\right] \quad E=\left[\begin{array}{l}
\rho V_{x} \\
\rho V_{x}^{2}+\rho \\
\rho V_{x} V_{y} \\
V_{x}(e+p)
\end{array}\right] \quad F=\left[\begin{array}{l}
\rho V_{y} \\
\rho V_{x} V_{y} \\
\rho V_{y}^{2}+p \\
V_{y}(e+p)
\end{array}\right] \\
& R=\left[\begin{array}{l}
0 \\
{ }^{\top} x x \\
{ }^{\top} x y \\
V_{x^{\top} x x}+V_{y^{\top} x y}+k \partial_{x}{ }^{\top}
\end{array}\right] \quad S=\left[\begin{array}{l}
0 \\
{ }^{\tau} x y \\
\tau^{\tau} y y \\
V_{x^{\top} x y}+V_{y^{\tau} y y}+k \partial_{y}{ }^{\top}
\end{array}\right]
\end{aligned}
$$

Here ρ is density, V is velocity, p is pressure, e is total internal energy per unit volume, T is temperature, and τ is shear stress tensor. The x and y subscripts refer to the x and y coordinates. For numerical solutions, the equation may be transformed to an arbitrary $5-n$ coordinate system (ref. 1). These are usually body-fitted coordinates, such that constant values of ξ or n correspond to the body surface. The transformed equations in conservation form are

$$
\begin{equation*}
\partial_{t} \hat{q}+\partial_{\xi} \hat{E}+\partial_{\eta} \hat{F}=\partial_{\eta} \hat{S} \tag{2}
\end{equation*}
$$

where

$$
\begin{aligned}
& \hat{q}=\frac{q}{J} \quad \hat{E}=\frac{1}{J}\left[\begin{array}{l}
\rho V^{\xi} \\
\rho V_{x} V^{\xi}+\xi_{x} p \\
\rho V_{y} V^{\xi}+\xi_{y} p \\
(e+p) V^{\xi}
\end{array}\right] \quad \hat{F}=\frac{1}{J}\left[\begin{array}{l}
\rho V^{\eta} \\
\rho V_{x} V^{\eta}+{ }_{n_{x}} p \\
\rho V_{y} V^{\eta}+{ }_{\eta_{y}} p \\
(e+p) V^{\eta}
\end{array}\right] \\
& \hat{S}=\frac{1}{J}\left[\begin{array}{l}
0 \\
\eta^{\top} x^{\tau} x+{ }^{n} y^{\tau} x y \\
\eta_{x^{\tau} x y}+{ }^{\eta} y^{\tau} y y \\
n^{\beta} x^{\beta}-{ }^{\eta} y^{\beta} y
\end{array}\right] \\
& B_{x}=V_{x_{x x}}+V_{y^{\top} x y}+k \partial_{x}{ }^{\top} \\
& B_{y}=V_{x}{ }_{x y}+V_{y^{\top} y y}+k \partial_{y}{ }^{\top}
\end{aligned}
$$

The superscripts ξ and η refer to contravariant velocity components, and J is the Jacobian of the transformation. The thin-layer approximation is used here (viscous derivatives in the streamwise direction are neglected). Note that the momentum components (the second and third equations) are still and y components. If ξ and η (either contravariant or covariant) momentum components are used the equation cannot be written in conservation form if there is any curvature of the ξ or η coordinate lines.

It is desired to obtain two-dimensional Navier-Stokes equations for nonplanar surfaces (i.e., quasi-three-dimensional). The desired equations can be obtained from the three-dimensional version of Eq. (2), written with contravariant momentum components in a ξ, η, ζ coordinate system. The ξ and η coordinates lie in the desired nonplanar surface, and ζ is chosen in a special way to be orthogonal to the surface. It is assumed that the chosen nonplanar surface is a stream surface, i.e., the contravariant velocity component $V_{5}=0$. When this is done the third momentum equation can be eliminated and the two-dimensional Navier-Stokes equation for flow on a two-dimensional surface is obtained. Rather than give the general equation, an example will be given which is of interest for turbomachinery flow analysis.

NAVIER-STOKES EQUATIONS ON A ROTATING SURFACE OF REVOLUTION

For analysis of flow through turbomachinery blade rows it is useful to consider flow on a blade-to-blade surface as shown in figure 1. The coordinates are m (physical distance) and θ (radians). In addition the streamsheet thickness h must be specified, as shown in figure 2. The thickness h and the radius r are both functions of m only. The three-dimensional
contravariant momentum equations are obtained in m, θ, n coordinates, where n is normal to the blade-to-blade surface. The n coordinate is defined such that the metric coefficient is $1 / \mathrm{h}$, so that not only is the normal velocity zero, but also the derivative in the n direction is zero. The surface of revolution is rotating at a constant rotational velocity ω. The relative velocity is W; m and θ subscripts will denote physical (not covariant) velocities.

The Navier-Stokes equation obtained is

$$
\begin{equation*}
\partial_{t} q^{\prime}+\partial_{m} E^{\prime}+\partial_{r} F^{\prime}=\partial_{m} R^{\prime}+\partial_{r} S^{\prime}+K^{\prime} \tag{3}
\end{equation*}
$$

where

$$
\begin{aligned}
& q^{\prime}=\frac{1}{J_{1}}\left[\begin{array}{l}
\rho \\
\rho W_{m} \\
\rho W_{\theta} \\
e
\end{array}\right] \\
& E^{\prime}=\frac{1}{J_{1}}\left[\begin{array}{l}
\rho W_{m} \\
\rho W_{m}^{2}+\rho \\
\rho W_{m} W_{\theta} \\
W_{m}(e+p)
\end{array}\right] \\
& F^{\prime}=\frac{1}{r J_{1}}\left[\begin{array}{l}
\rho W_{\theta} \\
\rho W_{m} W_{\theta} \\
\rho W_{\theta}^{2}+p \\
W_{\theta}(e+p)+\omega r p
\end{array}\right] \\
& R^{\prime}=\frac{1}{J_{1}}\left[\begin{array}{l}
0 \\
\tau m m \\
\tau \\
\tau_{m \theta} \\
W_{m}{ }^{\tau} m m \\
\\
\tau_{m} W_{\theta} \tau_{m \theta}+k \partial_{m} T
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& K^{\prime}=\frac{1}{r J_{1}}\left[\begin{array}{l}
0 \\
\sin \alpha\left(\rho W_{\theta}^{2}+p-\tau_{\theta \theta}\right) \\
\sin \alpha\left(\tau_{m \theta}-\rho \partial_{\theta} h p W_{m}\right) \\
0
\end{array}\right]
\end{aligned}
$$

$J_{1}=1 / r h$ is the Jacobian and m and θ momentum components are used. Except for the source term, K', Eq. (3) is similar to Eq. (1). Eq. (3) can now be transformed to body-fitted coordinates, similar to Eq. (2). The transformed equation is

$$
\begin{equation*}
\partial_{t} \hat{q}^{\prime}+\partial_{u} \hat{E}^{\prime}+\partial_{n} \hat{F}^{\prime}=\partial_{\eta} \hat{S}^{\prime}+\hat{K}^{\prime} \tag{4}
\end{equation*}
$$

where

$$
\begin{aligned}
& \hat{q}^{\prime}=\frac{q^{\prime}}{J_{2}} \quad \hat{E}^{\prime}=\frac{1}{J}\left[\begin{array}{l}
\rho W^{F} \\
\rho W_{m} W^{F}+\xi_{m} p \\
\rho W_{\theta} W^{F}+\xi_{\theta} p / r \\
(e+p) W^{F}
\end{array}\right] \\
& \hat{S}^{1}=\frac{1}{J}\left[\begin{array}{l}
0 \\
n_{m}{ }^{\top} m m+\eta_{\theta}{ }^{\tau}{ }_{m \theta} / r \\
n_{m}{ }^{\top} m \theta+\eta_{\theta}{ }^{\tau} \theta_{\theta \theta} / r \\
n_{m}{ }^{B} m+\eta_{\theta} \beta_{\theta} / r
\end{array}\right] \\
& \beta_{m}=W_{m}{ }^{\tau} m m+W_{\theta}{ }^{\tau} m \theta+k \partial_{m} \top \\
& \beta_{\theta}=W_{m}{ }^{\tau} m \theta+W_{\theta} \tau_{\theta \theta}+k / r \partial_{\theta} \top \\
& W^{F}=\xi_{m} W_{m}+\xi_{\theta} W_{\theta} / r \\
& \text { Contravariant relative } \\
& \left.\mathcal{W}^{\mathcal{F}}=n_{m} W_{m}+\eta_{\theta} W_{\theta} / r\right\} \text { velocity components }
\end{aligned}
$$

$J=J_{1} J_{2}$ is the Jacobian $(x, y, z) \rightarrow(\xi, n, n), J_{2}$ is the Jacobian $(m, \theta)+(\xi, n)$, and m and θ momentum components are used. Equation (4) uses m and θ momentum components, and is similar to Eq. (2), except for the source term K^{\prime} which is required because of the curvature of the m and θ coordinates. The techniques and computer codes for solving Eq. (2) (ref. 1) should be able to be extended to Eq. (4).

THREE-DIMENSIONAL NAVIER-STOKES EQUATIONS FOR A ROTATING COORDINATE SYSTEM
An example of a viscous, three-dimensional internal flow that can be analyzed by parabolic space marching is flow through a turbomachinery blade row. The desired equations are obtained by transforming the Navier-Stokes equations in cylindrical (r, θ, z) coordinates to a body-fitted (ξ, n, ζ) coordinate system. Then the contravariant components of the momentum equations are obtained. These equations involve only the contravariant velocity components. (The covariant components of momentum have a simpler form, but involve both covariant and contravariant velocity components (ref. 5).) This permits the streamwise momentum calculation to be uncoupled from the cross-stream momentum calculation. Continuity is satisfied indirectly by modifying an inviscid pressure
field to correct for viscous effects. Modifying the streamwise pressure gradient will affect streamwise velocity components so that global continuity is satisfied. Modifying the pressure over a cross section will affect the crossstream velocities so that local continuity can be satisfied. The steady-state three-dimensional Navier-Stokes equations for a rotating coordinate system (transformed to a body-fitted (ξ, η, ζ) coordinate system, and with contravariant momentum components) are:

$$
\begin{equation*}
\partial_{\xi} \hat{\hat{E}}+\partial_{\eta} \hat{\hat{F}}+\partial_{\zeta} \hat{\hat{G}}=\partial_{\eta} \hat{\hat{S}}+\partial_{\zeta} \hat{\hat{T}}+\hat{\hat{K}} \tag{5}
\end{equation*}
$$

where

$$
\begin{aligned}
& \hat{\hat{E}}=\frac{1}{3}\left[\begin{array}{l}
\rho W^{F} \\
\rho W^{\xi} W^{\xi} \\
\rho W^{\xi} W^{n} \\
o W^{\xi} W^{k} \\
\sigma W^{F} I
\end{array}\right] \\
& \hat{\hat{F}}=\frac{1}{J}\left[\begin{array}{l}
\rho W^{n} \\
\rho W^{n} W^{\xi} \\
\rho W^{n} W^{n} \\
\rho W^{n} W^{F} \\
\rho W^{n} I
\end{array}\right] \\
& \hat{\hat{G}}=\frac{1}{J}\left[\begin{array}{l}
\rho W^{5} \\
\rho W^{5} W^{5} \\
\rho W^{5} W^{n} \\
\rho W^{5} W^{5} \\
\rho W^{5} I
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \hat{\hat{K}}=\frac{1}{J}\left[\begin{array}{l}
0 \\
\rho G_{\xi \rho}-g^{\xi \xi} p_{\xi}-g^{\xi} n_{n}-g^{\xi \zeta} p_{\zeta}-\xi_{r} \tau_{\theta \theta} / r+\xi_{\theta} \tau_{r \theta} / r^{2} \\
\rho G_{n \rho}-g^{n \xi} p_{\xi}-g^{n n_{n}} p_{\eta}-g^{n \zeta} p_{\zeta}-\eta_{r} \tau_{\theta \theta} / r+n_{\theta} \tau_{r \theta} / r^{2} \\
\rho G_{\zeta \rho}-g^{\zeta \xi} p_{\xi}-g^{\zeta} n^{n} p_{\eta}-g^{\zeta \zeta} p_{\zeta}-\zeta_{r} \tau_{\theta \theta} / r+\zeta_{\theta}{ }^{\tau} r \theta \\
0
\end{array}\right] \\
& W^{\xi}=\xi_{r} W_{r}+\xi_{\theta} W_{\theta} / r+\xi_{z} W_{z} \\
& w^{n} \\
& \text { Contravariant relative } \\
& \text { velocity componets }
\end{aligned}
$$

$$
\begin{gathered}
\tau_{r}^{\eta}=\eta_{r}^{\tau} r r+\eta_{\theta}^{\tau} r_{\theta}+\eta_{z}^{\tau} r z \text {, etc. } \\
B_{r}=W_{r}^{\tau} r r+W_{\theta}^{\tau} r \theta+W_{z} \tau_{r z}+k \partial_{r} T, \text { etc. } \\
I=\frac{e+p}{\rho}-\omega r V_{\theta}=c_{p} T^{\prime}-\omega r V_{\theta}, \text { Rothalpy } \\
G_{\xi \rho}, G_{\eta \rho}, G_{\zeta \rho} \text { are functions of velocity and geometry }
\end{gathered}
$$

The flow is in the ξ direction, and η, ζ are the cross-stream directions. The thin layer approximation is used.

CONCLUDING REMARKS

Two examples of applications of the contravariant Navier-Stokes equations have been presented.

The first example shows that the contravariant Navier-Stokes equations can be used to obtain two-dimensional equations for a rotating surface of revolution with varying streamsheet thickness. The equations are similar in form to the conservation-law form of the Cartesian two-dimensional NavierStokes equations. The methods already developed for solving the Cartesian two-dimensional equations can thus be used for analyzing flow on a blade-toblade surface of a turbomachine. Other applications for nonplanar surfaces seem possible.

The second example is for three-dimensional viscous flow through a rotating duct. The contravariant form of the Navier-Stokes equations provides a method for uncoupling the streamwise momentum from the cross-stream momentum. This makes it easier to use parabolic marching methods for turbomachinery blade passages with a large amount of turning. A similar technique could be used with other types of internal passages.

REFERENCES

1. Steger, J. L., "Implicit Finite Difference Simulation of Flow about Arbitrary Two-Dimensional Geometries," AIAA Journal, Vol. 16, No. 7, July 1978, pp. 679-686.
2. Pulliam, T. H. and Steger, J. L., "Implicit Finite Difference Simulations of Three-Dimensional Compressible Flow," AIAA Journal, Vol. 18, No. 2, Feb. 1980, pp. 159-167.
3. Katsanis, T., "FORTRAN Program for Calculating Transonic Velocities on a Blade-to-Blade Stream Surface of a Turbomachine," NASA TN D-5427, 1969.
4. Patankar, S. V. and Spalding, D. B., "A Calculation Procedure for Heat, Mass and Momentum Transfer in Three-Dimensional Parabolic Flows," International Journal of Heat and Mass Transfer, Vol. 15, Oct. 1972, pp. 1787-1806.
5. Walkden, F., "The Equations of Motion of a Viscous, Compressible Gas Referred to an Arbitrarily Moving Coordinating System," Royal Aircraft Establishment, RAE-TR-66140, ARC R/M-3609, 1969.
6. Moore, J. and Moore, J. G., "Calculation of Three-Dimensional, Viscous Flow and Wake Development in a Centrifugal Impeller," Performance Prediction of Centrifugal Pumps and Compressors, edited by P. Cooper, S. Gopalakrishnan, C. Grennan, and J. Switzer, ASME, 1979, pp. 61-67.
7. Roberts, D. W. and Forester, C. K., "Parabolic Procedure for Flows in Ducts with Arbitrary Cross Section," AIAA Journal, Vol. 17, No. 1, 1979, pp. 33-40.
8. Briley, W. R., "Numerical Method for Predicting Three-Dimensional Steady Viscous Flow in Ducts," Journal of Computational Physics, Vol. 14, No. 1, 1974, pp. 8-28.

Figure 1. - Blade-to-blade surface of revolution showing m- θ coordinates.

[^0]National Aeronautics and Space Administration

Washington, D.C.
20546
Official Business
Penaley for Private Use, $\$ 300$

USMALL

Postage and Fees Paid National Aeronautics and Space Administration NASA-451

[^0]: *For sale by the National Technical Information Service. Springfield, Virginia 22161

