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THE EFFECT OF EXTREME TEMPERATURES ON THE ELASTIC PROPERTIES 

AND FRACTURE BEHAVIOR OF GRAPHITE/POLY 1M IDE COMPOSITES 

D. H. Morris and R. A. Simonds 

Department of Engineering Science and Mechanics 
Virginia Polytechnic Institute and State University 

Blacksburg, Virginia 24061 U.S.A. 

ABSTRACT 

The influence of elevated, room and cryogenic temperatures on the elastic 

moduli and fracture strengths of two graphite/polyimide composites was stud-

ied. The fracture behavior of notched specimens was modeled using an average 

stress failure criterion. 

INTRODUCTION 

Graphite/polyimide is a composite material being developed to extend the 

useful temperature range of composite materials for such applications as jet 

engines, supersonic cruise aircraft, ann space shuttle structures. All struc-

tures, whether they are in an air or space environment, must be fastened to 

other structures. Since this fastening often results in holes being intro-

duced into the structure, the notch behavior Of the basic material must be un-

derstood. The primary objective of this work was to develop an understanding 

of the notch behavior of two graphite/polyimide composites over the tempera­

ture range that would be experienced by part of the space shuttle structure. 

In order to char~cterize the notch behavior of the graphite/polyimide 

materials studied in this program, both notched and unnotched tension tests 

were connucten. The data reported in this paper are the results of the second 

phase of a two-phase program. The first phase covered tests on notched speci-

mens that were 102 mm (4 in) wide or smaller, and has been previously reported 
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(Garber, Morris and Everett, 1982). The second phase of the program investi­

gated the fracture behavior of test specimens that were up to 305 mm (12 in) 

wide. In addition, the second phase considered graphite/po1yimide composites 

with two matrix materials. 

MATERIAL AND SPECIMENS 

The material used for this study consisted of Ce1ion 6000 graphite fibers 

in a matrix of PMR-15 or NR-150B2 po1yimide. Specimens were cut from panels 

of [±45]2s and [0/45/90/-45]s laminates. Ply thicknesses in the cured lami­

nates ranged between 0.127 mm (0.005 in) and 0.152 mm (0.006 in). Fiber volume 

fractions varied from 54 to 69 percent. 

Unnotched tension specimens were 25.4 mm (1 in) wide by 406 mm (16 in) 

long. Fracture specimens were 406 mm (16 in) long with widths ranging from 51 

mm (2 in) to 305 mm (12 in). Fracture specimens had center circular holes 

that ranged between 1.6 mm (1/16 in) and 76.2 mm (3 in) in diameter. 

TEST PROCEDURES 

Tension and fracture tests were performed at 316, 24, and -157°C (600, 

75, -250°F). An environmental chamber, which was small enough to permit the 

specimens to be gripped outside the chamber, was used to control the test 

temperature. The maximum variation in temperature was ±5°C (±9°F) at the ex­

treme temperatures. Heat was provided by electrical resistance elements, and 

cooling was provided by liquid nitrogen. 

All tests were performed at a constant cross-head speed. For tension 

tests the cross-head speed was 0.008 mm/s (0.002 in/min), and for fracture· 

tests it was 0.002 mm/s (0.005 in/min). For all experiments the test section 

within the environmental chamber was 203 mm (8 in). It took approximately 1 h 
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to reach 316°C (600°F), and 15 min to reach -157°C (-250°F). Specimens were 

allowed to soak at temperature for 10 to 15 min before being tested. It was 

assumed that mechanical properties were not affected by the total time in the 

environmental chamber (time to reach temperature plus soak time plus testing 

time). This assumption \'ias based on previous results (Shyprykevich and 

Wolter, 1982) where it was found that the failure stress of a [0/±45/90]s 

laminate of AS/3501-5A graphite/epoxy was independent of soak time for the 

times encountered in the work reported herein. Similar results were reported 

(Rummler and Clark, 1979) for [0]6 and [O/±45]s laminates of HTS/710 

graphite/polyimide. 

Tension modulus values were determined from strain gage measurements. 

The accuracy and repeatability of the gages for determining elastic modulus 

has been established (Chapman, 1979). It was generally not possible to mea­

sure ultimate strains due to gage failures. Strains were not measured for the 

fracture tests. 

RESULTS AND DISCUSSION 

Unnotched Tension Tests 

The results of the unnotched tension tests are shown in Figs. 1 and 2. 

Three replicate tests were performed at each temperature for each laminate. 

The results shown in the figures are average values of the replicate tests. It 

is seen from Figs. 1 and 2 that both axial tensile modulus and tensile 

strength are nearly independent of temperature for the fiber-dominated lami­

nate, except for the strength of the laminate with the NR-150B2 matrix. 

The situation is quite different for the matrix-dominated laminate. Fig­

ures 1 and 2 reveal that both modulus and strength decrease with increasing 

temperature, except for the strength of the laminate with the NR-150B2 matrix. 
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These figures also show that the modulus (initial slope of a stress-strain 

curve) is practically independent of the matrix material, but the strength ap-

pea rs to be more dependent upon the type of mat ri x. 

Notched Tension Tests 

The effect of temperature on the notched strength of the [0/45/90/-45]s 

quasi-isotropic laminate is shown in Fig. 3. For the laminate with the PMR-15 

matrix, and for a given hole size, the effect of temperature is practically 

insignificant. A similar trend is noted for the unnotched laminate, Fig. 2. 

On the other hand, the notched strength of the quasi-isotropic laminate 

with the NR-150B2 matrix is practically constant between room and elevated 

temperature, but the strength increases at cryogenic temperature. A similar 

trend is noted "from Fig. 2 for the strength of the unnotched laminate. Regard-

less of the matrix material, Fig. 3 reveals that the effect of hole size is 

significant. 

Failure Model 

A failure model was selected that would explain the effect of hole size 

and also predict the notched strength. The model selected was the average 

stress failure criterion (Whitney and Nuismer, 1974; Nuismer and Whitney, 

1975). This model states that failure of a notched specimen will occur when 

the average stress over some distance ahead of the notch, ao' equals the un-

notched tensile strength. For a quasi-isotropic laminate this failure criter-

ion may be written 
CD 

( 1 ) 
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where ~ = R/(R + ao ) , ~ is the failure stress for a notched infinite width 

plate, cr is the unnotched tensile strength, and R is hole radius. The infi-
o 

nite width plate notched strength is found by multiplying the experimentally 

determined notched strength for a finite width plate by a finite width correc­

tion factor (Nuismer and Whitney, 1975). The distance ao is called a charac­

teristic length. 

Using Eqn. (I), the unnotched strength, the notched strength, and the fi­

nite width correction factor, a value of ao = 5.1 mm (0.20 in) was found to 

model the fracture behavior of the C6000/PMR-15 quasi-isotropic laminate. As 

can be seen from Fig. 4, one value of ao models the data at the three tempera­

tures. 

Using Eqn. (1) with ao = 5.1 mm (0.20 in) failure stresses were predicted 

for plates that had widths (W) of 102 mm (4 in), 203 mm (8 in) and 305 mm (12 

in). The plates were tested at temperatures (T) of 316°C (600°F) and 24°C 

(75°F). The results are shown in Table I, where the predicted values are com-

pared with experimental results. Good agreement was found. 

A comparison between notched strengths for the C6000/PMR-15 and C6000/NR-

150B2 quasi-isotropic laminates is shown in Fig. 5.- Some of the specimens 

with the NR-150B2 matrix failed at the grips of the testing machine, while 

others failed between the hole and grips. Thus, the data for this laminate 

should be viewed with caution. More data are needed to establish a definite 

trend, and to determine if the average stress failure criterion will model the 

notched behavior. 
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TABLE 1 Comparison of Failure Stresses 

316(600) 102 (4) 

24(75) 102 (4) 

203 (8) 

305(12) 

R 

mm{in) 

12.7(0.50) 
4.8{0.19) 
2.4{0.09) 

12.7(0.50) 
4.8{0.19) 
2.4{0.09) 

12.7{0.50) 
25.4{1.00) 
38.1{1.50) 

SUMMARY AND CONCLUSIONS 

ON (Eq n.1) 
MPa{Ksi) 

180(26.2) 
250{36.3) 
301 (43. 7) 
159{23.1) 
220{32.0) 
265{38.5) 
244{35.4) 
201(29.2) 
190{27.5) 

~(Exp.) 

MPa{Ksi) 

199{28.8) 
281 (40. 7) 
297{43.1} 
175{25.4) 
234{34.0) 
274{ 39.7) 
254{36.8) 
186{27.0) 
186(27.0) 

Difference 
% 

9.0 
10.8 
-1.4 
9.1 
5.9 
3.0 
3.8 

-8.1 
-1.9 

It has been shown that elastic modulus and unnotched tensile strength for 

the fiber-dominated laminate are not highly temperature dependent. On the 

other hand, the elastic moduli and tensile strengths of the matrix-dominated 

laminates are quite sensitive to changes in temperature. 

Notched tensile strength is dependent on hole size, but is practically 

independent of temperature for the C6000/PMR-15 laminate. The notched 

strength of the C6000/NR-150B2 laminate is also dependent on hole size, and 

appears to be temperature dependent. However, some of the specimens failed 

away from the hole, and the data should be viewed with caution. 

The average stress failure criterion gives reasonable predictions of notched 

strength for the C6000/PMR-15 quasi-isotropic laminate. Due to uncertainty in 

some of the data for the C6000/NR-150B2 laminate, no attempt was made to model 

the data. However, the data tend to indicate that the characteristic length, 

ao' may be temperature dependent. 
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