View metadata, citation and similar papers at core.ac.uk

-
brought to you by .{ CORE

provided by NASA Technical Reports Server

NASK CA=1118 151

%

NASA Contractor Report 172151 . ———
O ‘ _ (

| NASA-CR-172151

19830021177

KI.f--r-—”'f’*”’—“'d"f

CAD OF CONTROL SYSTEMS: APPLICATION OF NONLINEAR -
PROGRAMMING TO A LINEAR-QUADRATIC F_OR‘MULA"]_.‘ION‘

Peter Fleming -

Contract No. NAS1-17070
June 1983 ‘

INSTITUTE FOR COMPUTER APPLICATIONS IN SCIENCE AND ENGINEERING
NASA Langley Research Center, Hanipton, V1rg1n1a 23665

Operated by_the Universities Space Research’Association o

-V”,zm 101983

" National Aeronautics and
Space Administration :
: - ' " LANGLEY RESFAR® * CENTER
Langley Research Center ' LIBRARY, NASA

Hampton, Virginia 23665 : HAMPTON, VIRGINIA


https://core.ac.uk/display/42851926?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

CAD OF CONTROL SYSTFMS:
QUADRATIC FORMULATION

Peter Fleming

APPLICATION OF NONLINEAR FROGRAMMING TO A LINEAR-

University College of North Wales, Bangor, Gwynedd, United Kingdom

ABSTRACT.

The familiar suboptimal regulator design approach is recsst as a

constrained optimization problem and incorporated in a CAD package where
both design objective and constraints are quadratic cost funstiona. This
formulation permits the separate consideration of, for example, model=-
following errors, sensitivity measures and control energy as objectives to

- be minimized or limits .to be observed.

the 1interrelated cost functions

conjunction with a nonlinear programming algorithm.

Effictent techniques for computing
their gradients are utilized 1in
The effectivencss of

the approach and the degree of imsight into the problem which it affords is
{1lustrated in a helicopter regulation design example.

Keywords. Computer—aided

designs

control engineering computer

applications; multivariable control systems; nonlinear programming; optimal

control; optimization.

INTRODUCTION
Since the intereat in control system
optimization generated by the linear
quadratic regulator (LQR) approach there
have been a number of quite separate

developments. Some workers followed the
pattern sct by levine and Athans (1970) who
imposed constraints on controller structure
but retained the scalar quadratic cost
function adopted in LQR design. Various
features can be incorporated within this
context such as sensitivity reduction and
model-following and an efficient solution
technique typically employs an unconstrained
gradient minimizaiion algorithm (see Fleming
1979). Computationally this {8  an
attractive approach but from the design
point of view {1t is dogged by the
difficulty of wusing a scalar quadratic
meusure to describe all the desired facets
of system performance.

Another 1line of attack was prompted by
2akian’s Method of Inequalities (Zakian,
1973) 1in which system constraints and
specifications are represented by a set of
simultancous algebraic inequalities.
‘Control  engineers found this approach
attractive becavse the problem description
could include such basic control design
parameters as overshoot, damping, settling
time, etc. Polak and Mayne advanced this
idea by posing semi-infinite programming
problems in which design objectives are
realized by minimizing a function subject to
a sot of {ncqualities where these objectives
can be expressed as infinite dimensional
constraints (Mayne and co-vorkers, 1982).

Such problems require special mathematical
programming algorithms to thandle the’
infinite dimensional constraints and,
sometimes, nondifferentiable functions.

The method descrihed there strikes a
compromisa betwoen these two approaches {a
that the quadratic messures of the
suboptimal linear vregulator approach are
retained but the problem is recast as a
constrained minimization problem iu which
the constraints may represent bounds on
control energy, model-fpllowing errorsa,
gensitivity, etc. The minimizing controller
gain matrix is obtained efficiently using
rcadily available software tools and a CAD
package has been mounted on a 32-bit
minicomputer. VWhat appears at fi-st sight
to be a relatively straightforward extension
of suboptimal regulator design yields a
numerical solution technique which, from the
designer’s viewpoint, is much more efficient
than the original design approach and
provides results -which reveal useful
insights d1into the design problem. The
method 18 exercised within the CAD context
by means of a design example on helicopter
repulation in which the identification of
active constraints at the minimum plays a
leading role 1in understanding the nature of
the problem.

PROBLEM STATEMENT

For clarity a simplified estatement of the
problem follows:
Given the ~ 1linear
description

time-invariant plant
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gpd feedback control law
- K (3)
Yp = Mpe

find the control, (t), vhich minimizes the
quadratic cost function

- - d 4
f (x Qo_p 0_p)dt ! X Qo_p €, “)
Ty T,
where Qg = Qg + C K'RgKC,,
subject to the inequality constraints

Ji < 21: 1= 1,2,004,q,

where J; 18 a quadratic cost function of
the form

«©
T
3= x Qe ()
- T,T,
and Q1 - Qi + CPK Rikcp.

The 1inequality bounds, =z, are designer-
specified and the weighting matrices, Qi'

4 =~ 0,1,¢..,q, which are usually diagonai
are also 8clected by the designer.

For the full problem formulation, as
incorporated in the CAD package, the plant
state vector, » may be augmented by a
state compensator vector, xX., a trajectory
senaitivity vector, X,, and a model state
vector, X, to accommodnco a dynamie
compensntnr option for the controller and
the inclusion of menaitivity raduction and
model~following torms in the cost functiona
{see Fleming, 1979),

One application, for example, might seek a
controller gain matrix, X, to achieve a
certain degree of model-following within
some control energy constraints, il.e.,

minimize

ver.t. f (22,0 "0 (2, mx, et

subject to

<«
! “2 dt < zi' i=1,2,%°*,m,
o Py
where y répresents the desired model

output response. This example is typlcal of
one which would be solved wusing the
straightforward suboptimal linmear regulator
approach by successive minimization of
o
T T

J (f) (Crpmr,) 0, (pmy MugR u bt
vhera the designer strives to find the
appropriate choice of Qp and R to
satisfy the control energy constraints.
Thus what was previously solved in an
approximate woy 1n a number of unconstrained
minim{zations {8 now Bolved in a ‘single
_constrained minimization. )

PORMULATION op’ THE
PROGRAMMING PROBLEM

NONLINEAR

If we let k represent the minimizing
variablea, 1.e. the variable elements of
gain matrix, K, then we have the nonlinear
programming problem:

minimize 3
Weleote & [

subject to the inequality constraints

J, - z, < 0, fe],2,°°°q.

i

The cost functions, J4» 1=0,1,°¢°,q, Eqs.
(4) and (5), can be computed from

Ji - tr(Pixo)t i=0,1,%*,q, -(6)
vhere X, = Ep X, and P, satisfies the
Liapunov matri:? eq%ation.

_Ir .

Pi'i +4p - -'61. 1=0,1,%4*,q, €A
vhere A = Ap + BPKCP' (see Eqs. (1) = (3)).

Gradient information may be obtained f£rom
the gradient matrices

T
33, /3K = 2(BY P1+R1KCp)Acp' 1=0,1,°%¢,q (8)
wvhere A  satisfies the Lispunov matrix
equation

AT 4+ A = X (9)

For the case where {nitial conditions are
not known matrix X5 may be modified ao
that either tho expectd valuea, the averags
valuea or the worst—case values ¢! x in

' 1=0,1,¢v%,q are measured e (see
F}eming, 1979).,

There are a variety of constrained
optimization algorithms employing gradient
information which will solve this problem.
In the implementation (Vanderplaats, 1973)
of Zoutendiik’s Method of Feasible
Directions (Zoutendijk, 1960) which was
used, the algorithm 1initially f£finds a
feasible point and the proceeds by
iteratively searching along feasible
directions, employing the conjupate
direction method of Fletcher and Reeves
(1964) 1f no comstraiats are violated. At
each {teration gradient 1informatioa is
required only for the active or wviolated
constraints.

IMPLEMENTATION OF THE METHOD

To compute the objective function, Fqe (4)

and the constraint functions, Bq. (5},
together with their associcted gradients,
Eq. (8), matrices Py, 1=0,1,+*,q and A

must be obtained from the set of Liapunov

sl
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matrix equations (7) and (9) at each
{teration of the minimization algorithm;
also the set of equations (7) must be solved
several times within each {iteration to
compute the objective and constraint
functions st each step of the 1linecar
searche. The method of Bartels and Stewart
(1972), generally accepted as the most
efficient Liapunov matrix equation solver,
18 a transformation method which reduces
A, Bq. (7), to 1ts real Schur form and then
obtains the solution by solving a set of low
“order (<4) 1linear equations. It is well
suited for this application where only one
Schur reduction of A per estimate of K
48 necessary for the solution of the
(q+2) equations (7) and (9). The solution
of these equations is further speeded up hy
exploiting certain structural and sparsencas
properties of Q; and X4

The adoption of the Bartels-Stewart method
has the added advantage that syatem
eigenvalues may be determined for each new
estimate. of 1 4 from the diagonal and
principal subdiagonal elements of the real
Schur form of A at little extra
computational cost.
eigenvalucs 18 necessary since Eq. (7) 1is
only wvalid for setable values of A.
Atthough the problem 18 such that, in
general, the minimfzation routine will tend
to generate satabilizing values of K,
computationai traps have been set to inhibit
unstable excursions of K. Should such an
excursion take place the 1line search step is
repeatedly halved until a atabhle value of
K {8 reached. Clearly the minimization
routine also requires that the initial
estimate of K stabilize A, and, when the
open-loop plant 18 unstable, should it bde
neceassary, the program will scarch for a
stabilizing wvalue of K using a stecpest
descent  technique similar to that of
Koenigsberg and Frederick (1970).

The CAD program operates in conversational
mode permitting easy modification of design

paramcters 01, Ri' and zy as well as
specification of the gain parameters in
matrix K to be optimized. Solution times

are dependent on the number of constraints
but typically the numerical wminimization
takes 2 - 4 times longer to compute than the
corresponding suboptimal regulator
_approach. However this method 1is much more
effictent 4in achieving the design gpoal
thatreby reducing design time as well as

affording - the designer increased

understanding of the problem. .
DESIGN EXAMPLE - HELICOPTER
REGULATION

The plant describing helicopter longitudinal
dynamics (Michael and Farrar, 1973) has four
states and two controllers:

" had been

Monitoring of.

‘1imits on control

T T T
5« Do 017w, = L)

Prior to this design a standard LQR design
carried out and a satisfactory
result obtained which gave good regulation
for uw, and |y, (forward and vertical
velocities) observing control magnitude
constraints on u; and wu; (longitudinal
cyclic pitch and main rctor collzctive
pitch). These controllers utilize feedback
from all four plant states, i.e.

un - Kopt_; X, and the resulting responses are

characterized by

% - (K, )5, 8 Az,
where is defined to be the *model®
matrix. Since feedback from u, and

#, requires airspeed sensors which are
undesirable, the ohjective here 418 to
examine whether similar regulation responses
can he achieved without sensing u and

4, and without violating control magnitude
constraints.

We therefore wish to minimize an objective
function which measures the error between
the new plant response and the model
responsge!

o8 .
T
Jo = .(-’) (x,m2,) "0l x et

where Q5 = diag (1,1,0,0),
subject to the constraints

3, < 'zi. 1=1,2,
where
. -,

Jl - o uldt' ‘1-6106’

)
J2 - {,uZdt’ 22-6.57
end x =011 1%
“Po )
The values of z; and 25 correspond to
the values of J; and J, obtained for
ne= Koptx with the above inicial

conditiona. The constraints therefore place

energy and d4ndirectly
limit control mangitudes.

Various controllerﬁ

considered:

u k k ()
Controller 1: [ul] _[kll klz] [6]
2 21 ™2
o [?i] [fl]
Controller 2t - 0
u k2
|

structures were

11 k12|,
Controller 3: |u, |= kyy kyp [xcl]
-
x 1 k
(N 3
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TABLE'I Design Results for Various Contraller Configurations

"Controller Gain Matrix K Jg Active Constraints maxfuy(t)] max|ug ()|
LQR [ -2.56 0.29 0.50 0.24 0 I, 9, 1.60 1.66
0.38 1.98 -0,26 ~0.06 (2.04)
1 0.16 0.14 0.072 I, .07 1.60
-0.25 0.22 .
2 0.18 0.35 Iy » 1.17 1.60
~0.25] .
{ 0.32 -0.24 0.10 - , 1.13 1.47
3 -0.06 ~0.30 ' '
1 -1.37
4 Lo.25 0.3§) 1.50 -— .18 -
5 no feasible 60.2 Jg = 426.3 ——— 8.43
solution

Controller 4: u, = D‘l x,) [Z]

Controller 5: u, = [?1 kzj [:]

Deéign results are tabulated above. Note
that for the dynamic compensator, Controller
3, iIn order to obtain a minimal parameter

form element k31 18 nonvarying and set to
unity.

Excellent wmodel-following 18 achieved with
Controller 1, pitch angle and pitch rate
fecdback, although . there is soma

deterforation when Controller 2, pitech angle

feedback alone, is used, This situation 1is
remedied by using a first-order dynamic
compensator together with pitch angle
feedback, Controller 3. Graphical results,
Figa. 1 and 2, 1llustrate the model-
following capabilities of these three
controllers. Controllers 4 and 5 explore
the possibility of using uy or u

alone. Poor model-following 1is realized by
Controller 4 and 1t was found to be
impossible to stabilize the system using
Controller 5 within the constraint bounds.
The algorithm falled to find a feasible
solution for. this case in ten iterations:
the results at this point are presented.

The last two columns of Table 1 and Fig. 3
indfcate that the control energy coastraints
are effective in keeping the control
magnitudes within  bounds. The LQR
controller has an initial value of 2.04
(bracketed in the table) which swiftly falls
from this level. It 1is assumed, therefore,
that the level wu,(t) = ~-1.66 1s the more
{mportant magnitude to be ohserved since
control effort is around this level for a
significant period. Figure 3 4llustrates

how well this bound 1s observed. if,
however, uy magnitudes up to 2.04 can be
.accommodated then constraint 2 should be

relaxed by increasing z; by an appropriate
factor.

From the results we learn that the magn{tude

of ug is the 1limiting component which
prevents further dimprovement 1in nodel=
following capability - with Controller

Structures 1 and 2. With the dynamic
compensator structure, Controller 3, ({ts
best performance is achieved within the
constraints. Controller Structures 4 and $

have proved themselves incapable of
producing good results.

The implications, then, are cleart

i) BRoth controls uy

necessary,

11) It _is desirable to feedback
8 and however, {if i8 unavailable,
satisfactory results can be achieved with a
first-order compensator,
111) A relaxation of the
constraint on uy
results.

and ujy are

magnitude
will lead to {improved

It 48 4n the nature of the problenm
formulation that designs for each controller
structure were obtained in one optimization
process enabling the designer to effectively
experiment with different controllers
structures. Further, using the gain-fixing
facility of the program, system {integrity
can be taken into account in the manner of
Fleming (1981).

CONCLUDING REMARKS

A new optimizatfon approach based on the
linear-quadratic formulation has been
proposed for control  system designe

lond




Application to a linear-Quadratic Formulation

Exploiting the mathematical tractability of
the formulation an efficient CAD program has
evolved -~ for, solving  linear . regulator
problems. The use of constraint functions
in the problem description frees the
designer to a large extent from the chore of
weighting matrix selection and presents
additional information concerning the nature
of the design problem.

Additional - featuves _may be {ncorporated
within the programe. For example, the
4nclusion of side constraints on gain values
wiil  be particularly wuseful in dynamie
compensator design and the handling of large
parameter variations may he implemented in a

"similar way to that of Vinkler and co-

workers (1979). Also, since plant
efgenvalues and eigenvectors are easily
obtained from the Schur form of A arising
from the approach these may also be
incorporated in the design objective and
constraints.

Although the. package performs wall current
work 1s directed at further improving {ita
effcctiveness by identifying the best
optimization algorithm in terms of spesd of
convergence and robustness for this
particular nonlinear programming problem.
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