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CAD OF CONTROL SYSTF.MS l APPLICATION OF NONLINEAR FROGRAMHING TO A LINEAR­
QUADRATIC FORMULATION 

Peter Fleming 

University College of North Wales, Bangor, Gwynedd. United Kingdom 

ABSTRAC'l'. The familiar suboptimal regulator desi~ approach is recsst as a 
constrained optimization problem and incorporated in a CAD package where 
both design objeetive and constraints are quadratic cost functions. This 
formulation permits the sepsrate consideration of. for example, model­
following errors. sensitivity measures and control energy as objectives to 
be minimized or limits ·to be observed. Rfficient techniques for computing 
the interrelated cost functions and their gradients are utilized in 
conjunction with a nonlinear programming algorithm. Tho effectiveness of 
the approach and the degree of insight into the problem which it affords is 
illustrated in a helicopter regulation design exampl~. 

~ywords. Computer-aided design; control engineering computer 
applications; multivariable control systems; nonlinear programming; optimsl 
control; optimization. 

INTRODUCTION 

Sincfl the interes t in control system 
~ptimization g~nerated by the linesr 
quadratic regulator (LQR) approach there 
have been a number of quite separate 
developments. Some workers followed the 
pattern s('t hy ·l.evine and Athans (1970) who 
impoBrd conotrnints on controller atrllcture 
but retained the scalar qnadratic cost 
function adopted in LQR desi~n. Various 
fOdtureo can be incorporated within this 
context such a& sensitivity reduction and 
mOdel-following and an efficient solution 
technique typically employs an unconstrained 
gradient minimization algorithm (see Fleming 
1979). Computationally this is an 
attractive apprOAch but from the design 
point of view it is dogged by the 
difficulty of using a scslar quadratic 
measure to describe all the desired facets 
of system performance. 

Another line of attsck was prompted by 
Zakisn's Method of Inequalities (Zakian. 
1973) in which system constraints and 
specifications are represented by a set of 
s:l.nultaneous algebraic inequalities. 
Control engineers found this approach 
attractive because the problem description 
could include ouch basic control design 
parameters as overshoot. damping. settling 
time, etc. Polak and "'ayne advanced this 
idea by posin~ scml-infinite prop,ramming 
problems in which design ob.1ectives are 
realized by mlntm1z1ng a function sub.l('ct to 
a act of inequaltt.ics where these objecti'/cs 
can be expressed 8S infinite dimensional 
constraints (!-!ayne and co-worlters, 1982). 

Such problems require apecial mathematical: 
programming algorithms to handle the· 
infinite dimensional constraints and, 
sometimes, nondifferentiable functions. 

The method described here strikes a 
compromise between these two approachell 10 
that the quadratic ml':: II II r('aS of the 
8uboptimlll linear regulator appronch aro 
retained but the problem is recast all Il 
constrained minilll!zation problem in which 
ths coastraints may represent bour.ds on 
control energy, model-following errors, 
sensitivity, etc. The minimi~ing controller 
gain matrix 1s obtained efficiently uuiog 
r('ad11y avnilahle softwllre tools and II CAD 
package has he en mounted on a 32-b:l.t 
minicomputer. What appears at fi "":st sight 
to be B relatively stra1r.htforwnrd extension 
of suboptimal n'gula!:or design yields a 
nuft,erical solution technique whieh. Crom the 
designer's viewpoint. 1s llUch more efficient 
than tbe original design approach and 
provides results which reveal useful 
insights into the design problem. The 
method is exercised wi thin the CAD context 
by means of a design example on helicopter 
rer.ulation in which the identification of 
active constraints at the minimum plays a 
leading role in understanding the nature of 
the problem. 

PRODLEM STATEMF.NT 

For clarity a simplified statement ot the 
problem follows: 
Given the· linear time-invariant plant 
description 
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and feedback control law 
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(1) 

(2) 

(3) 

find the control. 11n(t). which minimizes the 
quadratic cost funcfion 

(4) 

" TT where ~O· QO + CpK ROKC p • 

subject to the inequality constraints 

1 • 1.2.···.q. 

where J 1 is a quadratic cost function of 
the form .. 

J 1 • ~ .!~i~c!t (5) 

a nd -Q • Q + CTKTR KC • 
1 i P 1 P 

Tho inequlllity bounds. zit are designer­
specified and the weighting ~~trices. Qi,Ri • 
1 • 0,1 •••• ,q. which are usually diagonal. 
are aloo aclucted by the designer. 

lo'or the full problem formulation,as 
incorporated 1n the CAD package. the plant 
Btate vector, Zp. may be augmented by a 
state compensat~r vector, xc' a trajectory 
aensitivity v~ctor, ZB' and a model state 
vector, ~m to accommodato a dynamic 
eompentlOltor option for the cont rol1er and 
tho inclil/don of flenB1tivity r<,duction and 
lIlode1-followtng torms in the cos t· functions 
(s~e Fleming, 1979). 

One application, for example, might seek a 
eontroUer Rllin matrix, K, to achieve a 
certain degree of model-following within 
ao~~ control energy constraints, i.e •• 

minimize 
v.r.t. K 

subject to 

tu2 
dt 

o Pi 
1-1,2,··· .m, 

where 1m repreaents the desired Diodel 
output tt'!Ipons(\. Thls example is typical of 
one which wOlll<1 be solved using the 
straightforward flllbopUmll1 linear regulator 
approach by ·successiveminimizatlon of ... 

J .. ~ {(~-.InlQ/;)-Ym)~!RHldt. 
'l:here the deSigner strives to find the 
appropriate choice of Qp and Rp to 
satisfy the cont rol energy constraints. 
Thus what was previously solved 1n an 
approxi'mnte woy tn a number of uncons·troined 
minimizations is now solved in a single 
'c:onst·rained miniml:.:ation. 
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FORMULATION OF THE NON .. INEAll 
PROGRAMMING PROBLEM 

If we let k represent the minimizing 
varinbles, i.e. the varillble elements of 
gain matrix. K. then we have the nonlinear 
programming problem: 

minimize J 
w.r.t. ~ O' 

subject to the inequality constraints 

i-1, 2 ••• 'q .• 

The cost functions. Ji~ i·O.1.···.q. Eqa. 
(4) and (5). can be computed from 

where X • x x and 
o -PO-PO 

Ltapunov matrix equation 

PiA + trPi • - Qi' 

.(6) 

Pi satisfies the 

i.0.1.···.q. (7) 

where A· A + B KC • (see &qs. (1) - (3». 
p 11 P 

Gradient information may be obtaiMd trom 
the gradient matrices 

3J1 /3K. 2(B;Pi+RiKCp)AC!. i·O.l.···.q (8) 

where A satisfies the Llapunov matrix 
equation 

-:T -
AA + AA • -XO' (9) 

For the caae whera initial condi tiona ar .. 
not kr.own matrix Xo maybe modified 110 

that either tho expectd vll1uos. the averllge 
values or the worst-cas. valuea t! x in 

-PO 
J i • i .. 0.1.···.q 
Fleming. 1979). 

ara measured (see 

There are a vnr1ety of constrained 
optimization algorithms employing grlldiC!nt 
information which will solve this problem. 
In the lmplemt'ntation (Vandcrplaats. 1973) 
of Zoutcndljk's Me';hod of Feasible 
Directions (Zoutcndljk. 1960) which was 
used, the algorithm inltiallY finds a 
feasible point and the proceed~ by 
iteratively searching along fellsible 
directions. cmploying the conju~ate 

direction method of Fletcher and Reeves 
(1964) if no constrlli.lts are violated. At 
each iteration gradient informatioa is 
required onlyt-or the active 0.1' violated 
.cons t ralnt s • 

IMPLEMENTATION OF THE METHOD 

To compute the obJective function. F.q. (4) 
and the constralnt functions, Eq. (5). 
together wtththc1r 4ssoc1&ted gradients, 
Eq. (8). matrices Pi' 1.0.1 ... ·• ,q 'and A 
must be obt.ained from the set of Liapunov 

{ 
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matrb: equations (7) and (9) at each 
ite1:ation of the minimization algor! thm; 
also the sct of equationa (7) must be solved 
several times within each iterstion to 
compute the ob.1ective and constraint 
functions st each step of the linear 
search. The method of Bartels and Stewart 
(1972). generally accepted as the most 
efficient Linpunov mat rix equation solver. 
is a transformation method which reduces 
I, F.q. (7), to itll relll Schur form and then 
obtains the solution by solving a set of low 

'order ('4) linear equations. It is well 
suited for this application where only one 
Schur reduction of X per estimate of K 
is ne.:essary for the solution of the 
(q+Z) equations (7) and (9). The solution 
of these equations is further speeded up by 
exploitinjl: certain structural and sparseneas 
Froperties of Qi and XO' 

The adoption of the Bartels-Stewart method 
has the added advantage that system 
",igenvalues may be determined for each new 
estimate. of K from the diagonal and 
principal subdiagonal elemente of the real 
Schur form of X at little extra 
computational cost. Monitoring of. 
eigenvalues is necessary since Eq. (7) is 
only valid for stable values of I. 
Although the probll'm ia such that. in 
general, the minimf.zation ro.utine will tend 
to generate stsbf.l1zing values of K. 
computational traps have been set to inhibit 
unstable excursions of K. Should such an 
excursion take place the line search step is 
repelltedly hlllvc·d untU a stllblo valuo of 
K is reached. Clearly the minimi.zation 
routine also requir('fl that the initial 
estimate of K st<lbiliz8 .A. and. when the 
open-loop plant is unstahle, should it be 
necessary. the program will scarch for a 
stabilizing value of K using a steepest 
descent • technique similar to that of 
Koenigsberg and Frederick (1970). 

The CAD prop,ram operates in conversational 
1IIOde permitting easy modification of design 
parameters Qi' Ri • and zi as well ss 
specification of the gain parameters in 
matrix K to be optimized. Solution times 
are dependent on the number of constraints 
but typically the numerical minimization 
takes 2 - 4 times lonp.er to compute than the 
corresponding suboptimal regulator 
approach. However this method is much more 
efficient in achieving the design goAl 
th2roby reducing design time as well as 
affording the deSigner incroased 
understanding of the problem. 

DESIGN EXAMPLE 
REGULATION 

HELICOPTER 

The plant deRcribing helicopter longitudinal 
dynamics (Michael and Farrar. 1973) has four 
states and two controllers I 

3 

xT • [~ ,~ .e.~]T. u - [u 1.u2]T. -p xz -p . 

Prior to this design a standard LQR design 
had been carried out and a satisfactory 
result obtained which gave good regulation 
for ~x and ~z (forward and vertical 
velocities) observing control magnitude 
constraints on uland u2 (longitudinal 
cyclic pitch anti main retor collective 
pitch). These controllers utilize feedbsck 
from all four plant states, i.e. 
11 - Kopt x. and the resulting re9ponaes are 

characterized by 

~ • (A +B K )x Il A x 1> P P opt -p - \IMII' 

where "-m 1s doH ned to be the "model" 
matrix. Since feedback from ~x and 
~z requires airspeed sensors which are 
undesirable. the objective here is to 
examine whether similar regulation responses 
can bo achieved without eensing ~x and 
~z and without violating control magnitude 
eons traints. 

We therefore wish to minimize an objective 
function ~hich measures the error between 
the new plant response and the model 
responsel 

J O ~ Jm(x -x )TQo(x -x )dt. o -p-m -p-m 

where QO. diag (1,1,0.0). 
subject to the constraints 

J i < zi' 

where 

1-1,2. 

m 

J 1 • J U~dt, 
0 

1I!1-4 •06 • 

.. 2 
J 2 • J u2dt. 1I!2 .. 6•57 

o· 
1] T. and 11: [1 1 1 

-PO 
The 
the 
11-

values of 
values of 
KoptX 

z 1 and z2 correspond to 
J l and 3 2 obtained for 

with the above initial 

conditions. The constraint8 therefore place 
'limits on control energy and indirectly 
limit control man~itudea. 

Various controllers 8tructu~e8 were 
consideredl 

Controller 11 ["~J _[ltll 
u2 k21 :~~GJ 

Controller 21 [:~ -GJ e 

r] [kll klj Controller 31 u 2 - k21 k22 [:cJ 
• It 1 Xc 1 

1 3 
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TARLR 1 DesiRn Rp~ults for Various Contr~}ler Configurations 

'~ller Gain Matrix K 

1 

2 

3 

4 

5 

[

-2.56 .0.29 .0.5.0 .0.24 
0.38 1.98 ~.o.26 -0 • .06 

[
0.16 0.141 

-.0.25 0.22J 

r 0.18J 
l,:-0.25 

[ 

0.32 -O'2~ 
-0.06 -0.3.0 

1 -1.37 

[0.25 0.3~ 

no fessible 
solution 

Jo 

0 

0.072 

0.35 

0.10 

1.50 

60.2 

Controller 4: 
U 1 • Qcl kiJ [:] 

Controller s: u2 • (kl k2J [:] 

Active 

Design results are tabulated above. Note 
that for the dynamic compensator, Controller 
3. in order to obtain a minimal parameter 
form element k31 is nonvarying and set to 
unity. 

Excellent model-following i& achieved with 
Controller I, pitcb angle and pitch rate 
feedback. althollgh there i8 some 
deterioration when Controller 2, pitch angle' 
feedback alone, is used. Thie situation is 
remedied by using a first-order dynamic 
compensator together with pitch angle 
feedback, Controller 3. Graphical results. 
Figs. 1 and 2, illustrate the model­
following capabilities of these three 
cont ro llers. Cont rollers 4 and 5 explore 
the pOGsibility of using ul or u2 
alone. Poor mode l-following is realized by 
Controller 4 and it was found to be 
impossible to stabilize the system using 
Controller 5 within the constraint bounds. 
The algorithm failed to find a feasible 
solution for. this case in ten iterations: 
the results at this point are presented. 

The last two columns of Table 1 and Fig. 3 
iudicllte that the control energy constrnints 
are effective in keeping the control 
mn~nltud~s within bounds. The LQR 
controller hns an initial value of 2.04 
(bracketed in the table) which swiftly falls 
from this level. It is lIsBumed. therefore, 
that the level u2(t) - -1.66 is the more 
important magnitude to be observ~d since 
cont,rol effort is around this level for a 
Significant period. Figure 3 illustrates 

4 

Constraints maxi ul et) I maxlu2(t)1 

J 1, J 2 1.60 1.66 
(2 • .oIt) 

J 2 1.07 1.60 

J 2 1.17 1.60 

1.13 1.47 

1.18 

8.43 

how well this bound i8 observed. It, 
however, u2 magnitudes up to 2 • .04 can be 

,accommodated then constraint 2 should be 
relaxed by increasing z2 by an 8ppropriate 
factor. 

From the resul tfl we learn that the mnAnitude 
of u2 is the limiting component which 
prevents further improvement in ~odel­
followinA capability - with Controller 
Structures land 2. With the dynamic 
compensator structure, Controller 3, its 
best performance is achieved within the 
constraints. Controller Structu~and 5 
have proved thl.'mflolves incnpable of 
producing good results. 

The implications, then, are clearl 

i) Both controls ara 
necessary, 
ii) It is desirable to ~eedback 

e and A however, if tl is unavailable, 
satisfactory results can be achieved with a 
first-order compensator, 
iii) A relaxation of the magnitude 
constraint on u2 will lead to improved 
results. 

It is in the nature of the problem 
formulation that designs for each controller 
structure were obtained in one opt1m1.~ation 

process enabling the designer to effectively 
experiment with different controllers 
structures. Further, using the gatn-fixing 
facility of the program, system integrity 
can be taken into account 1n the 'manner of 
Fleming (191\1). 

CONCLUDING REMARKS 

A new optimization approach baaed on the 
linear-quadratic formulation has been 
proposed for control system design. 

t 
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Exploiti~g the mathematical tractability of 
the formulation an efficient CAD program has 
evolved for, solving lineAr regulator 
problems. The use of constraint functions 
in the problem description frees the 
designer to a larRe extent from the chore of 
weiRhting matrix se:ection and presents 
additional information concerning the nature 
of the deSign problem. 

Adciitional features may be incorporated 
within the program. For example. the 
inr.lusion of side constraints on gain values 
wijl be particularly useful in dynamic 

- compensator dcsign and the handlinR of larRe 
paramet~r variations may he implemented in a 

. similar way to that of Vlnkler and co­
workers (1979). Also. since plant 
eigenvalues and eigenvectors are easily 
obtained from the Schur form of A arising 
from the approach these may also be 
incorporated in the design objective and 
constraints. 

1.0 
~ 

o 
.. 0.25 

o 

\ 
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l~ ~ 
LMODEL 

I 

10 

t, sec 
(a) 

1.0 
1\ 

o 
-0.25 

o 

\ 
}y v-3 , 
~ 

L MODEL 
I 

10 
t sec 

(c) 

20 

20 

Al though the package performs well current 
work is directed at further improving its 
effectivencss by idr.ntifyinR the bost 
optimization algorithm in terms of spe!ld of 
converj:\ence alld robustness for this 
particular nonlinear programming problem. 
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