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ELASTOHYDRODYNAMICS OF ELLIPTICAL CONTACTS FOR MATERIALS
OF LOW ELASTIC MODULUS™

The work presented in the previous chépters related to ma-
terials of high elastic modulus, 1ike metals. In this chapter
the analysis is extended to materials of low elastic modulus,
like rubber. For these materials the elastic distortions are
large, even with light loads. Another feature of the elastohy-
drodynamics of low-elastic-modulus materials is the negligible
effect of the relatively low pressures on the viscosity of the
lubricating fluid. Engineering applications in which elastohy-
drodynamic lubrication is important for low-elastic-modulus ma-
terials include seals, human joints, tires, and a Aumber of lu-—
bricated elastomeric-machine elements.

The problem of line contacts, where side leakage of the
fluid can be ignored, has been sblved theoretically for Tow-
elastic-modulus materials by Herrebrugh (1968), Dowson énd
Swales (1969), and Baglin .and Archard (1972). The solutions
presented in the first two references were obtained humerica]]y
and are based on simultaneous solutions of the hydrodynamic and
elasticity equations. The approximate analytical solution of
Baglin and Archard (1972) relied on the assumption of avsimpli-
fied form for the film shape in the central region to solve the

point-contact (ball on plane) situation. The work presented in

*Published as Chapter 11 in Ball Bearing Lubrication by Bernard

J. Hamrock and Duncan Dowson, John Wiley & Sons, Inc. Sept. 1981.



this chapter makes extensive use of the approach adopted by
Hamrock and Dowson (1978) (1979a) and represents, to the best of
the authors' knowledge, the first attempt at a complete
numerical solution of the problem of isothermal elastohydro-
dynamic lubrication of elliptical contacts for low-elastic-
modu]us materials. No initial assumptions are made as to the
pressure or film thickness within the contact, and lubricant
compressibility and pressure-viscosity effects are considered.

The basic elastohydrodynamic theory presented in Chapter 7
has been used in which the conjunction was divided into a large
number of equal rectangular areas and the elastic deformation at
any point in the field was determined on the assumption that the
pressure over each of the rectangles was constant. It was
assumed that the solids could be considered to be semi-infinite
bodies and hence that the normal rest?ictions imposed on a
Hertzian analysis applied. The elastic deformation in the
conjunction was represented by a double summation series of the
pressure multiplied by an influence coefficient.

The elastohydrodynamic analysis of low-elastic-modulus con-
tacts presented in this chapter is intended to extend the stud-
ies outlined in the previous chapters, but the normal safeguard
of restricting the application to situations in which the con-
Junction dimensions are small compared with the brincipa] radii
of the solids should normally be observed. In addition, an
alternative approach to the elasticity calculation would be
necessary for situations in which thin layers of low-elastic-

modulus material were supported on a rigid backing of
2




considerable extent, as represented by compliant surface

bearings.
11.1 Theoretical Formulation

The basic theory developed in Chapter 7 is used here with
some minor modifications. It was discovered that numerical con-
vergence was considerably better if the dimensionless pressure
was written as

P =Py, +Pp : (11.1)
where

PHz = dimensionless Hertzian pressure

PD - dimensionless pressure difference, representing the dif-
ference between the hydrodynamic and Hertzian pressures
at a given location

By making use of equations (7.2) and (11.1) the Reynolds

equation can be written as

_ _ .3
3 (> %D L1003 su> Pp N aPHz)
X \m ex/ 2\ oY X\ 7 X

3 3P :
T - w @)
k n Rx (11.2)

Since the Hertzian pressure is known and can be obtained from

equations (7.9) and (7.13), the solution of the Reynolds
equation is concerned with the pressure difference PD' In
equation (11.2) compressibility and viscous terms are retained

as variables even though it was mentioned earlier that the
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effect of the relatively Tow pressures on viscosity and density
is normally negligible.
The equation for the dimensionless film thickness can be

written as

D (11.3)

where

HO = constant (initially guessed)

S = geometric separation of rigid elliptical solids

=-elastic deformation due to Hertzian pressure distribution

=]
= o
N

|

elastic deformation due to pressure difference

(=]
0
]

The elastic deformation is evaluated in éxact]y the same way as
outlined in Section 5.7.

The nodal structure used in the numerical analysis that
yielded the results presented in this chapter is shown in Figure
11.1. This structure is different from that adopted for materi-
als of high elastic modulus shown in Figure 7.3. Because of the
dimensionless representation of the coordinates in Figure 11.1,
the actual Hertzian contact ellipse becomes a circle regardless
of the value of the ellipticity parameter k. The nodal struc-
ture shown in Figure 11.1 was arrived at after much exploration
in which the number of nodes in the semimajor and semiminor
axes, as well as the distance from the center of the contact to
the edges of the computing zone, was varied until the optimum
arrangement was achieved.

Apart from these points the theoretical formulation of the
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elastohydrodynamic lubrication problem for materials of low
elastic modulus is the same as that presented in Chapter 7, pro-

vided that the appropriate modulus of elasticity is selected.

11.2 Minimum- and Central-Film-Thickness Formulas

The dimensionless grouping found to be useful in defining
the elastohydrodynamic problem for high-elastic-modulus mater-
ials is also valid for materials of low elastic modulus. The
dimensionless film thickness can therefore be written as

H= f(k,U,W,G) |
By varying each of these parameters separately and keeping the
remaining parameters constant, as outlined in Chapter 8, the
numerical results shown in Table 11.1 were obtained.

The minimum film thickness shown in this table has been
determined for 17 sets of input data from coupled solutions of
the Reynolds and elasticity equations. From the information
presented in Table 11.1 a least-squares-fit, minimum-film-
thickness formula fof a fully flooded, isothermal, elastohydro-
dynamic elliptical contact for Tow-elastic-modulus materials can

be written as

Hp;o = 7.43(1 - 0.85 e0-31k)y0.65y-0.21 (11.4)

Table 11.1 gives the values for minimum film thickness ob-
tained from the least-squares fit as defined by equation
(11.4). The percentage difference between the minimum film

thickness obtained from the elastohydrodynamic elliptical-




contact theory H_. =~ and the minimum film thickness obtained

-~

from the least-squares fit equation H is expressed as

min
'El in equation (8.13). 1In Table 11.1 the values of Eq
are within the range -8 to +3 percent.

It is interesting to compare the dimensionless minimum-
film-thickness equation for materials of low elastic modulus
equation (11.4) with the corresponding equation generated in

Chapter 8 for materials of high elastic modulus

i o = 3-63(1 - e0-68k)y0.68,-0.073c0. 49 (8.23)
min

The powers of U in equations (11.4) and (8.23) are quite
similar, but the power of W is much more significant for
lTow-elastic-modulus materials. The expression showing theb
effect of the ellipticity parameter is of exponential form in
both equations, but with quite different constants.

A major difference between equations (11.4) and (8.23) is
the absence of a materials parameter G in the expression for
lTow-elastic-modulus materials. There are two reasons for this.
One is the negligible effect of the relatively low pressures on
the viscosity of the lubricating fluid, and the other is the way
in which the role of elasticity is simply and automatically
incorporated into the prediction of conjunction behavior through
an increase in the size of the Hertzian contact zone
corresponding to changes in load. As a check on the validity of
this, case 9 of Table 11.1 was repeated with the material
properties changed from those of nitride.to those of silicone
rubber. The results of this change are recorded as case 17 in

Table 11.1.




The dimensionless minimum film thickness calculated from
the full numerical solution to the elastohydrodynamic contact
theory was 181.8x10'6, and the dimensiqn]ess minimum film thick-
ness predicted from equation (11.4) turned out to be 182.5x10'6.
This clearly indiéates a lack of dependence of the minimum film
thickness for low-elastic-modulus materials on the materials
parameter.

There is interest in knowing the central film thickness, in
addition to the minimum film thickness, in elastohydrodynamic con-
tacts. The procedure used to obtain an expression for the central
film thickness was the same as that used to obtain the minimum-
film-thickness exbression. The centra]-fi]m—thickness formula for
low-elastic-modulus materials as obtained from Hamfock and Dowson
(1978) is | |

H, = 7.3(1 - 0.72 ¢ 0-28kyy0.64y-0.22 (11.5)

A comparison of the central- and minimum-film-thickness
equations, equations (11.5) and (11.4), reveals only slight
differences. The ratio of minimum to central film thickness
evident in the computed values given in Hamrock and Dowson
(1978) ranged from 70 to 83 percent, the average being 77

percent.

11.3 Comparison of Different Investigators' Results

To evaluate the dimensionless minimum-film-thickness equa-

tion (11.4) developed by Hamrock and Dowson (1978), a comparison



was made between its predictions, those of the numerical
solution obtained by Biswas and Snidle (1976), and the recent
experimental findings of Jamison, et al. (1978). The Biswas and
Snidle (1976) and the Jamison, et al. (1978) results are
applicable only for k = 1.

The Biswas and Snidie (1976) solution for the dimensionless

film thickness can be written as

(H,;). = 1.96 M 0-11 (11.6)

where Fmin B P
Hygn = HpggU 03 (11.7)
I‘ip = WU"O-75 (11.8)

The dimensionless groups given in equations (11.7) and (11.8)
were first used by Moes and Bosma (1972).
The central-film-thickness equation obtained from the

experimental results of Jamison, et al. (1978) can be written as

(H.). = 2.4 M 0-075 (11.9)
C

where

He = HU (11.10)
Modifying equation (11.9) to provide a minimum-film-thickness
equation by using the assumption that (Hm.n)J =0.78 (HC)J
yields

(Hpin) ; = 1.87 My (11.11)



Recall again that equations (11.6) and (11.11) are for k =1
only.
From equations (11.7) and (11.8) and Table 11.1, we can

write equation (11.4) as
(Bnin) = 8.53(1 - 0.85 e_0'3lk)M;O'21 (11.12)

Therefore, for k = 1, equation (11.12) reduces to

. -0.21 |
(Hmin!k=1)ﬂ - 3.21 14 (11.13)

Note that the negative exponent in equation (11.13) is
numerically larger than the exponents in equations (11.6) and
(11.11).

A comparison of the different investigators' results from
equations (11.6), (11.11), and (11.13) is shown in Figure 11.2.
The three equations seem to agree quite well with each other
numerically over the range considered, but there is quite a
discrepancy in the slopes of the lines. The Hamrock and Dowson
(1978) prediction of film thickness is equivalent to the Biswas
and Snidle (1976) theoretical value at Mp = 100 and to the
Jamison, et al. (1978) experimental results at 'Mp = 45,
Therefore, even though the exponent on Mp for the Hamrock
and Dowson (1978) results is larger than those obtained by
Biswas and Snidle (1976) and by Jamison, et al. (1978), the
agreement is quite good for k = 1.

Also shown in Figure 11.2 is the rigid isoviscous solution

obtained from Kapitza (1955). The enormous difference in slopes



between the Kapitza (rigid) line and the three sets of results
presented by equations ( 11.6), (11.11), and (11.13)
demonstrates the tremendous potential of elastohydrodynamic
action for the generation and preservation of satisfactory
lubricating films under severe operating conditions. The
discrepancies between the predictions of the three relationships
represented by equations (11.6), (11.11), and (11.13) are seen
in better perspective if they are compared with the predictions
of the Kapitza (rigid) theory at values of Mp of 100 and
1000.

The variation of the ratio Hmin/Hmin,r is éhown in Figure

11.3, where H is the minimum film thickness for rectangular

min,r
contacts, with the ellipticity parameter k for both high- and low-
elastic-modulus materials. If it is assumed that the minimium film
thickness obtained from the elastohydrodynamic analysis of
elliptical cbntacts can only be obtained to an accuracy of
3 percent, we find that the ratio H

H approaches the

min/ min,r
limiting value of unity at k = 5 for high-elastic-modulus ma-
terials. For low-elastic-modulus materials the ratio approaches
the Timiting value of unity more slowly, but .it is reasonab]g to
state that the rectangular-contact solution will give a very
good prediction of the minimum film thickness for conjunctions

in which k exceeds about 11.
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11.4 Contour Plots of Results

Contour plots of the dimensionless pressure are shown in
Figure 11.4 for two extreme values of the dimensionless speed
parameter U of 0.05139x10’7 and 0.5139x10'7. As mentioned
in Chapters 8 and 9, the + symbol indicates the center of the
Hertzian contact in each case. Because of the dimensionless
representation of the X and Y coordinates the actual
Hertzian contact ellipse becomes a circle regardless of the val-
ue of k. The Hertzian contact circle is shown in each figure
by asterisks. On each figure the contour labels and each
corresponding value of the dimension]ess pressure are given.

The inlet region is to the left and the exit region to the right
in each figure.

The pressure contours shown in Figure 11.4 are nearly cir-
cular or Hertzian. In Figure 11.4(b), the high-speed case, the
pressure at any point in the inlet is higher than in the Tow-
speed case shown in Figure 11.4(a). Inside the Hertzian contact
region the contour values of the dimensionless pressure for the
low-speed case are higher than those for the high-speed case.
The pressure spikes found when dealing with materials of high
elastic modulus (Chapter 8) are not evident in these solutions
for low-elastic-modulus materials. The absence of a pressure
spike for low-elastic-modulus materials has been noted before
for nominal line contacts and is due to the pressures generated

for a given load in a contact between low-elastic-modulus
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materials being considerably lower than those genefated in a
contact between high-elastic-modulus materials.

Contour diagrams of the dimensionless film thickness are
shown in Figure 11.5 for these same values of U = 0.05139x10~/
and 0.5139x10"7. Figure 11.5(a)‘§hows three regions of minimum
film thickness: one close to the rear edge of the Hertzian
ellipse, and two off to the side. At the higher speed
(U = 0.5139x10'7) the minimum-film-thickness region lies on
the midplane of the contact in the direction of ro]fing, between
the center of the contact and the trailing edge of the Hertzian
ellipse.

The variation of pressure and film thickness in the direc-
tion of rolling along a line near the midplane of the conjunc-
tion is shown in Figure 11.6 for the same two values of U con-
sidered in Figures 11.4 and 11.5. For all the solutions ob-
tained at various speeds, the values of the dimensionless load,
materials, and ellipticity parameters were held fixed. Figure
11.6 shows that the pressure at any point in the inlet region
increases as the speed increases. The dominant effect of the
dimensionless speed parameter on the minimum film thickness in
elastohydrodynamic contacts for ]ow-é]astic-modu]us materials
evident in equation (11.4) is reflected in Figure 11.6. Similar
results were found for high-elastic-modulus materials, as noted
in Chapter 8.

Contour plots of dimensionless pressure for the two extreme

values of the dimensionless load parameter W that were inves—
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tigated, 0.2202x10'3 and 2.202x10’3, are shown in Figure

11.7. Again the pressure contours are nearly circular, or
Hertzian.

Contour plots of dimensionless film thickness for the same
two values of W are shown in Figure 11.8. In Figure 11.8(a),
for the Tow-load case (W = 0.2203x1073), the minimum film thick-
ness occurs directly behind the center of the contact. Likewise
in Figure 11.8(b), for the high-load case (W = 2.202x1073), the
minimum film thickness also occurs directly behind the center of
the contact but closer to the Hertzian circle. The two contours
marked C in Figure 11.8(b) indicate a slight increase in film
thickness before the minimum-film-thickness region is reached.

The variation of pfessure and film thickness in the rolling
direction along a line close to the midplane of the conjunction is
shown in Figure 11.9 for the same two values of the dimension-
less load parameter. Once again the essential features of the
minimum—f i Im-thickness equation are reflected in this figure since
a change in the dimensionless load parameter of one order of mag-
nitude produces a considerable change in the pressure profile but
not such a significant change in the film thickness. The small
effect of load on minimum film thickness is a reasonable and most

important feature of elastohydrodynamic lubrication.
11.5 Effect of Lubricant Starvation

By usjng the theory and numerical procedures outlined earlier

in this chapter, we can investigate the influence of lubricant
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starvation on minimum film thickness in elliptical elastohydrody-
namic conjunctions formed by low-elastic-modulus materials. Lu-
bricant starvation is studied by simply moving the inlet boundary
closer to the center of the conjunction, as described in Chapter 9.

Table 11.2 shows how the dimensionless inlet distance affects
the dimensionless film thickness for three groups of dimensionless
1oad'and speed parameters. For all the results presented in this
seétion the dimensionless materials parameter G was fixed at
0.4276, and the ellipticity parameter k was fixed at 6. The
results shown in Table 11.2 clearly indicate the adverse effect
of lubricant starvation in the sense that, as the dimensionless
inlet distance m decreases, the dimensionless minimum film.
thickness Hmin also decreases.

Table 11.3 shows how the three groups of dimensionless speed
and load parameters affect the limiting location of the dimension-
less critical inlet boundary distance m* at which starvation
starts to influence film thickness. Also given in this table are
corresponding values of the dimensionless minimum film thickness
for the fully flooded condition, as obtained by interpolating the
numerical values. By making Qse of Table 11.2 and following the
procedure outlined in Chapter 9, we can write the critical dimen-

sionless inlet boundary distance at which starvation becomes im-

portant for low-elastic-modulus materials as

) 0.16
_ Ry\“ = (11.14)
n* = 1.4+ 1.07 [(—B—) umin]
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where ‘ﬁmin is obtained from equation (11.4).

Table 11.4 shows how m* affects the ratip of minimum film
thickness in the starved and fully flooded conditions Hmin,s/Hmin'
The dimensionless minimum film thickness for a starved condition for

low-elastic-modulus materials can thus be written as

- ~ 0.22
Hpin,s = Hpin (%*;_—Li) (11.15)

Therefore, whenever m < m*, where m* is defined by
equation (11.14), a lubricant starvation condition exists. When
this is true, the dimensionless minimum filh thickness is
expressed by equation (11.15). If 'ﬁ_z m*, a fui]y flooded
condition exists and equation (11.4) can be used to predict the
minimum film thickness.

In Figure 11.10 contour plots of the dimensioniess preﬁsure
(P = p/E') are shown for the group 3 conditions recorded in
Table 11.2 and for dimensiosniess iﬁ]et distances of 1.967,
1.333, and 1.033. Note that the contour levels and intervals
are identical in all parts of Figure 11.10. In Figure 11.lO(a),
with T = 1.967, an essentially fully flooded condition exists.
The contours are almost circular and extend further into the
inlet region than into the exit region. In Figure 11.10(b),
with m = 1.333, starvation is influencing the distribution of
pressure and the inlet tontours are slightly less circular than
those shown in Figure 11.10(a). By the time m falls to 1.033
(Figure 11.10(c)) the conjunction is quite severely starved and

the inlet contours are even less circular.
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In Figure 11.11 contour plots of the dimensionless film
thickness (H = h/Rx) are shown, also for the group 3 condi-
tions recorded in Table 11.2 and for dimensionless inlet dis—
tances of 1.967, 1.333, and 1.033. These film thickness con-
tours correspond to the pressure results shown in Figure 11.10.
The central portion of the film thickness contours becomes more
parallel as starvation increases and the minimum—film-thickness
area moves to the exit region. The values of the film thickness
contours for the most starved condition (Figure 11.11(c)) are
much lower than those for the fully flooded condition (Figure
11.11(a)).

Figure 11.12 more clearly describes these film thickness
results. It shows the variation of the dimensionless film
thickness in the rolling direction for four values of the di-
mensionless inlet distance. The value of Y was held fixed
neér the axial center of the contact, and the dimensionless pa-
rameters U and W were neld constant as shown in group 3 of
Table 11.2 for these calculations. This figure clearly shows
that the central region becomes flatter as starvation becomes
more severe. Also, in going from a fully flooded condition to a
starved condition the film thickness decreases substantially and
the Tocation of the minimum film thickness moves closer to the
exit region. |

The variation of the dimensionless film thickness perpen-
dicu]ar‘to the rolling direction is shown in Figure 11.13 for

four values of the dimensionless inlet distance. The value of

16



X was held constant near the axial center of the contact, and
the dimensionless parameters U and W were held constant at
the values recorded for the conditions corresponding to group 3
of Table 11.2. The results shown in this figure clearly indi-.
cate that the central region of the conjunction is quite flat in
the fully flooded situation but that the curvature of the pro-

file increases as the severity of starvation increases.

11.6 Closure

By modifying the procedures outliined in Chapter 7 we have
investigated the influence of the ellipticity parameter k and
the dimensionless speed U, 1oad W, and materials G parame-
ters on minimum film thickness for materials of low elastic mod-
ulus. The ellipticity parameter was varied from 1 (a ball-on-
plane configuration) to £2 (a configuration approaching a line
contact). The dimensionless speed and Toad parameters were each
varied by one order of magnitude. Seventeen cases were used to

generate the minimum- and central-film-thickness relations:

ﬁmin = 7.43(1 - 0-85 e—0-31k)U0-65w-0o21

;{c = 7'32(1 - 0.72 e—0.28k)an64w—0-22

The influence of lubricant starvation on minimum film
thickness in starved elliptical elastohydrodynamic conjunctions
has also been investigated for materials of low elastic modu-

lus. Lubricant starvation was studied simply by moving the
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inlet boundary closer to the center of the conjunction in the
numerical so]ﬁtions. The results show that the location of the
dimensionless critical inlet boundarj:distance m* denoting the
location between the fully flooded and starved conditions can be
expressed simply as

0.16

R\
o =1+ 1.07 (—bﬁ) Hpin

That is, for a dimensionless inlet distance m less than m*,
starvation occurs; and for E.Z m*, a fully flooded condition
exists. Furthermore it has been possible to express the minimum

film thickness for a starved condition as

~ 0.22
‘Bpin,s = Bpip (%*-TII)

Contour plots of pressure and film thickness in and around
the contact have been presented for both fully flooded and
starved lubrication conditions. It is evident from these fig-
ures that the inlet pressure contours become less circular and
closer to the edge of the Hertzian contact zone and that the
film thicknesé decreases substantially as the severity of star-
vation incréases.

The results presented in this‘chapter have revealed the
essential features of both fully flooded and starved, ellipti-
cal, elastohydrodynamic conjunctions for materials of low elas-

tic modulus.

18



SYMBOLS

A constant used in equation (3.113)
A%, 8% C*’}. relaxation coefficients
D*, L*, M*
Ay drag area of .ball, m°
a ‘ semimajor axis of contact ellipse, m
a a/2m
B total conformity of bearing
b semiminor axis of contact ellipse, m
b b/2m
dynamic load capacity, N
CV drag coefficient
Cl’i"’CB constants
c 19,609 N/cm? (28,440 1bf/in’)
c number of equal divisions of semimajor axis
D distance between race curvature centers, m
bl material factor
) defined by equation (5.63)
De Deborah number
d ball diameter, m
d number of divisions in semiminor axis
da overall diameter of bearing (Figure 2.13), m
db bore diameter, m
d pitch diameter, m
dé pitch diameter after dynamic effects have acted on ball, m
d; inner-race diameter, m
d, outer-race diameter, m

19



E modulus of elasticity, N/m2

1- v2 1 - v2 :
E! effective elastic modulus, 2 a 4 b R N/m2
E, Ep

Ea internal energy, m2/s2
3 processing factor
£y [(ﬁﬁin = Hyin) /Hpind x 100
¥ elliptic integral of second kind with modulus (1 - l/kz)
£ approximate elliptic integral of second kind

e dispersion exponent
F normal applied load, N
F* normal applied load per unit length, N/m
F lubrication factor
F integrated normal applied load, N
FC centrifugal force, N

max max imum normal applied load (at ¢ = 0), N

v applied radial load, N
Ft applied thrust load, N
Fw normal applied load at angle ¥, N
Ca elliptic integral of first kind with modulus (1 - 1/k?)
F approximate elliptic integral of first kind
f race conformity ratio
fb rms surface finish of ball, m
fr rms surface finish of race, m
G dimensionless materials parameter, aF
G* fluid shear modulus, N/m2
G haraness factor
g gravitational constant, m/s2

20



min,r

min,s

==

x

min

dimensionless elasticity parameter,

w8/3/U2

dimensionless viscosity parameter, Gw3/U2

dimensionless film thickness, h/RX

dimensionless film thickness, H(W/U)?

= F2n/u?ndR3

dimensionless central film thickness, hC/RX

dimensionless central fiim thickness
lubrication condition

frictional heat, N m/s

dimensionless minimum film thickness
elliptical-contact theory

dimensionless minimum fiim thickness
contact

dimensionless minimum film thickness

lubrication condition

Vdimension1ess central film thickness

Jeast-squares fit of data
dimensionless minimum film thickness

Jeast-squares fit of data
dimensionless central-film-thickness

HcU-0.5 |
dimensionless minimum-film-thickness

-0.5

H . U

min

for starved

obtained from EHL

for a rectangular

for starved

obtained from

obtained from

- speed parameter,

- speed parameter,

new estimate of constant in film thickness equation

film thickness, m
central film thickness, m

inlet film thickness, m

21



x R

~t x|

film thickness at point of maximum pressure, where
dp/dx = 0, m

minimum film thickness, m

constant, m

diametral interference, m

ball mass moment of inertia, m N 52

integral defined by equation (3.76)

integral defined by equation (3.75)

function of k defined by equation (3.8)

mechanical equivalent of heat

polar moment of inertia, m N s2

load-deflection constant

ellipticity parameter, a/b

approximate ellipticity parameter

thermal conductivity, N/s °C

lubricant thermal conductivity, N/s °C

fatigue life

adjusted fatigue life

reduced hydrodynamic 1ift, from equation (6.21)

lengths defined in Figure 3.11, m

fatigue life where 90 percent of bearing population will

endure

fatigue 1ife where 50 percent of bearing population will

endure

bearing length, m

constant used to determine width of side-leakage region

moment, Nm
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m*

31 [

3

gyroscopic moment, Nm

dimensionless load-speed parameter, NU'0‘75

torque required to produce spin, N-m

mass of ball, N 52/m

dimensionless inlet distance at boundary between fully
flooded and starved conditions

dimensionless inlet distance (Figures 7.1 and 9.1)

number of divisions of semimajor or semiminor axis

dimensionless inlet distance boundary as obtained from
Wedeven, et al. (1971)

rotational speed, rpm

number of balls

refractive index

constant used to determine length of outlet region

dimensionless pressure

dimensionless pressure difference

dijametral clearance, m

free endplay, m

dimensionless Hertzian pressure,'N/m2

pressure, N/m2

maximum pressure within contact, 3F/2wab, N/m2

isoviscous asymptotic pressure, N/m2

solution to homogeneous Reynolds equation

thermal loading parameter

dimensionless mass flow rate per unit width, qno/QOE'R2

reduced pressure parameter

volume flow rate per unit width in x direction, mzls
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volume flow rate per unit width in y direction, m2/s

Iy
R curvature sum, m
Ra arithmetical mean deviation defined in equation (4.1), m
Rc operational hardness of bearing material
Rx effective radius in x direction, m
Ry effective radius in y direction, m
r race curvature radius, m
rax’ r‘bx’} : .
radii of curvature, m
ray’ "by
res ¢c, z cylindrical polar coordinates
res 8 ﬁs spherical polar coordinates
r defined in Figure 5.4
S geometric separation, m
S* | geometric separation for line contact, m
S0 empirical constant
S shoulder height, m
T 70/ Pmax
T tangential (traction) force, N
T temperature, °C
T ball surface temperature, °C
T; average lubricant temperature, °C
AT* ball surface temperature rise, C
Tl (TO/pmax)k=1
Tv viscous drag force, N
t time, s
ta auxiliary parameter
g velocity of ball-race contact, m/s
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u velocity of ball center, m/s

o
U dimensioniess speed parameter, nOu/E‘Rx
u surface velocity in direction of motion, (ua + ub)/z, m/s
u number of stress cycles per revolution
au ' sliding velocity, u, - uy, m/s
v surface velocity in transverse direction, m/s
W dimensioniess load parameter, F/E'R2
W surface velocity in direction of film, m/s
X _ dimensionless coordinate, x/Rx
Y dimensionless coordinate, y/RX
Xt’ Yi dimensionless grouping from equation (6.14)
a® Ya’ Za external forces, N |
- constant defined by equation (3.48)
Zl viscosity pressure index, a dimensionless constant
X, Xs X, ?i
¥ ¥, Y. ¥ coordinate system
z, 7, z, 2,
a pressure-viscosity coefficient of lubrication, m2/N
@y _ radius ratio, Ry/Rx
8 contact angle, rad
Bs free or initial contact angle, rad
B' iterated value of contact angle, rad
T ,4 . curvature difference
Y viscous dfssipation, N/m2 S
Y total strain rate, -1
;e ~ elastic strain rate, s—1
v, viscous strain rate, 51

25



f]ow‘ang]e, deg
total elastic deformation, m

lubricant viscosity temperature coefficient, Oc

elastic deformation due to pressure difference, m

radial displacement, m

- axial displacement, m

displacement at some location x, m

approximate elastic deformation, m

elastic deformation of rectangular area, m

coefficient of determination

strain in axial direction

strain in transverse direction’

angle between ball rotational axis and bearing
centerline (Figure 3.10)

probability of survival

absolute viscosity at gauge pressure, N s/m2

dimensionless viscosity, n/no

viscosity at atmospheric pressure, N s/m2

6.31x10™2 N s/m2(0.0631 cP)

- angle used to define shoulder height

film parameter (ratio of film thickness to composite

surface roughness)

equals 1 for outer-race control ana 0 for inner-race

control

second coefficient of viscosity

Archard-Cowking side-leakage factor, (1 + 2/3 aa)'l

relaxation factor
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coefficient of sliding friction
o

Poisson's ratio

divergence of velocity vector, (au/ax) + (av/ay) +'(aw/az), S

Jubricant density, N 52/m4

dimensionless density, p/po

density at atmospheric pressure, N 52/m4
normal stress, N/m2

stress in axial directﬁon, N/m2

shear stress, N/m2

maximum subsurface shear stress, N/m2

shear stress, N/m2

equivalent stress, N/m2

limiting shear stress, N/m2

ratio of depth of maximum shear stress to semiminor axis of
contact ellipse

pr3/2

(o)1

auxiliary angle

tnermal reduction factor

angular location

limiting value of V¥

absolute angular velocity of inner race, rad/s

absolute angular velocity of outer race, rad/s

angular velocity, rad/s

angular velocity of ball-race contact, rad/s

angular velocity of ball about its own center, rad/s
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W, anguiar velocity of ball around shaft center, rad/s

we ball spin rotational velocity, rad/s
Subscripts:

a solid a

b solid b

o central

bc ball center

IE isoviscous-elastic regime
IR isoviscous~rigid regime

i inner race

K Kapitza

min minimum

n iteration

0 outer race

PVE piezoviscous-elastic regime
PVR piezoviscous-rigid regime

r for rectangular area

s for starved conditions
X,Y,2 coordinate system
Superscript:

(7)) approximate
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