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ELASTOHYDRODYNAMICSOF ELLIPTICAL CONTACTSFORMATERIALS

OF LOWELASTICMODULUS*

The work presented in the previous chapters related to ma-

terials of high elastic modulus, like metals. In this chapter

the analysis is extended to materials of low elastic modulus,

like rubber. For these materials the elastic distortions are

large, even with light loads. Another feature of the elastohy-

drodynamics of low-elastic-modulus materials is the negligible

effect of the relatively Iowpressures on the viscosity of the

lubricating fluid. Engineering applications in which elastohy-

drodynamic lubrication is important for low-elastic-modulus ma-

terials include seals, human joints, tires, and a number of lu-

bricated elastomeric-machine elements.

The problem of line contacts, where side leakage of the

fluid can be ignored, has been solved theoretically for low-

elastic-modulus materials byHerrebrugh (1968), Dowson and

Swales (1969), and Baglin and Archard (1972). The solutions

presented in the first two references were obtained numerically

and are based on simultaneous solutions of the hydrodynamic and

elasticity equations. The approximate analytical solution of

Baglin and Archard (1972) relied on the assumption of a simpli-

fied form for the film shape in the central region to solve the

point-contact (ball on plane) situation. The work presented in

*Published as Chapter 11 in Ball Bearing Lubrication by Bernard
J. Hamrock and Duncan Dowson, John Wiley & Sons, Inc. Sept. 1981.



this chapter makes extensive use of the approach adopted by

Hamrock and Dowson (1978) (1979a) and represents, to the best of

the authors' knowledge, the first attempt at a complete

numerical solution of the problem of isothermal elastohydro-

dynamic lubrication of elliptical contacts for low-elastic_

modulus materials. No initial assumptions are made as to the

pressure or film thickness within the contact, and lubricant

compressibility and pressure-viscosity effects are considered.

The basic elastohydrodynamic theory presented in Chapter 7

has been used in which the conjunction was divided into a large

number of equal rectangular areas and the elastic deformation at

anypoint in the field was determined on the assumption that the

pressure over each of the rectangles was constant. It was

assumed that the solids could be considered to be semi-infinite

bodies and hence that the normal restrictions imposed on a

Hertzian analysis applied. The elastic deformation in the

conjunction was represented by a double summation series of the

pressure multiplied by an influence coefficient.

The elastohydrodynamic analysis of low-elastic-modulus con-

tacts presented in t_is chapter is intended to extend the stud-

ies outlined in the previous chapters, but the normal safeguard

of restricting the application to situations in which the con-

junction dimensions are small compared with the principal radii

of the solids should normally be observed. In addition, an

alternative approach to the elasticity calculation would be

necessary for situations in which thin layers of low-elastic-

modulus material were supported on a rigid backing of
2



considerableextent,as representedby compliantsurface

bearings.

11.1 TheoreticalFormulation

The basic theory developedin Chapter 7 is used here with

some minor modifications. It was discoveredthat numericalcon-

vergencewas considerablybetter if the dimensionlesspressure

was written as

P : PHz + PD (11.1)
where

PHz = dimensionlessHertzianpressure

PD = dimensionlesspressuredifference,representingthe dif-

ferencebetween the hydrodynamicand Hertzianpressures

at a given location

By making use of equations(7.2) and (11.1)the Reynolds

equationcan be written as

+ k--2B--Y _7 : 12U BX (11.2)

Since the Hertzianpressureis known and can be obtainedfrom

equations(7.9) and (7.13),the solutionof the Reynolds

equation is concernedwith the pressuredifference PD" In

equation (11.2)compressibilityand viscousterms are retained

as variableseven though it was mentionedearlierthat the
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effect of the relativelylow pressureson viscosityand density

is normallynegligible.

The equationfor the dimensionlessfilm thicknesscan be

writtenas

S + 6Hz + 6pD

H = H0 + Rx (11.3)

where

H0 = constant(initiallyguessed)

S = geometricseparationof rigid ellipticalsolids

aHz =.elasticdeformationdue to Hertzianpressuredistribution

aPD = elasticdeformationdue to pressuredifference

The elasticdeformationis evaluatedin exactlythe same way as

outlined in Section5.7.

The nodal structureused in the numericalanalysisthat

yielded the resultspresentedin this chapter is shown in Figure

11.1. This structureis differentfrom that adoptedfor materi-

als of high elasticmodulus shown in Figure 7.3. Because of the

dimensionlessrepresentationof the coordinatesin Figure 11.1,

the actualHertziancontact ellipsebecomes a circle regardless

of the value of the ellipticityparameter k. The nodal struc-

ture shown in Figure 11.1 was arrivedat after much exploration

in which the number of nodes in the semimajor and semiminor

axes, as well as the distance from the center of the contact to

the edges of the computing zone, was varied until the optimum

arrangement was achieved.

Apart from these points the theoretical formulation of the
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elastohydrodynamiclubricationproblemfor materialsof low

elasticmodulus is the same as that presentedin Chapter7, pro-

vided that the appropriatemodulusof elasticityis selected.

11.2 Minimum-and Central-Film-ThicknessFormulas

The dimensionlessgroupingfound to be useful in defining

the elastohydrodynamicproblemfor high-elastic-modulusmater-

ials is also valid for materialsof low elasticmodulus. The

dimensionlessfilm thicknesscan thereforebe written as

H = f(k,U,W,G)

By varyingeach of these parametersseparatelyand keepingthe

remainingparametersconstant,as outlined in Chapter8, the

numericalresultsshown in Table 11.1 were obtained.

The minimumfilm thicknessshown in this table has been

determinedfor 17 sets of input data from coupled solutionsof

the Reynoldsand elasticityequations. From the information

presentedin Table 11.1 a least-squares-fit,minimum-film-

thicknessformulafor a fully flooded, isothermal,elastohydro-

dynamicellipticalcontactfor low-elastic-modulusmaterialscan

be written as

Hmin 7.43(1 - 0.85 e-0 31k)u0"65W-0.21 (11.4)

Table ii.I gives the valuesfor minimumfilm thicknessob-

tained from the least-squaresfit as definedby equation

(11.4). The percentagedifferencebetweenthe minimumfilm

thicknessobtained from the elastohydrodynamicelliptical-
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contacttheory Hmin and the minimumfilm thicknessobtained

from the least-squaresfit equation Hmin is expressedas

•E1 in equation (8.13). In Table 11.1 the values of E1

are within the range -8 to +3 percent.

It is interestingto comparethe dimensionlessminimum-

film-thicknessequationfor materialsof low elasticmodulus

equation(11.4) with the correspondingequationgeneratedin

Chapter8 for materialsof high elasticmodulus

Hmin : 3.63(1- e-0"68k)u0.68W-0.073G0.49 (8.23)

The powers of U in equations(11.4)and (8.23)are quite

similar,but the power of W is much more significantfor

low-elastic-modulusmaterials. The expressionshowingthe

effect of the ellipticityparameteris of exponentialform in

both equations,but with quite differentconstants.

A major differencebetweenequations(11.4) and (8.23) is

the absence of a materials parameter G in the expressionfor

low-elastic-modulusmaterials. There are two reasonsfor this.

One is the negligibleeffect of the relativelylow pressureson

the viscosityof the lubricatingfluid, and the other is the way

in which the role of elasticityis simply and automatically

incorporatedinto the predictionof conjunctionbehaviorthrough

an increasein the size of the Hertziancontactzone

correspondingto Changes in load. As a check on the validityof

this, case 9 of Table 1i.1 was repeatedwith the material

propertieschangedfrom those of nitrideto those of silicone

rubber. The resultsof this change are recordedas case 17 in

Table 11.1.
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The dimensionlessminimumfilm thicknesscalculatedfrom

the full numericalsolutionto the elastohydrodynamiccontact

theorywas 181.8xi0-6, and the dimensionlessminimum film thick-

ness predictedfrom equation (11.4)turned out to be 182.5x10-6.

This clearly indicatesa lack of dependenceof the minimum film

thicknessfor low-elastic-modulusmaterialson the materials

parameter.

There is interestin knowingthe centralfilm thickness,in

additionto the minimum film thickness,in elastohydrodynamiccon-

tacts. The procedureused to obtain an expressionfor the central

film thicknesswas the same as that used to obtain the minimum-

film-thicknessexpression. The central-film-thicknessformulafor

low-elastic-modulusmaterialsas obtainedfrom Hamrockand Dowson

(1978) is

Hc = 7.3(1- 0.72 e-0"28k)u0"64W-0"22 (11.5)

A comparisonof the central-and minimum-film-thickness

equations,equations(11.5)and (11.4),revealsonly slight

differences. The ratio of minimum to centralfilm thickness

evident in the computedvalues given in Hamrock and Dowson

(1978)ranged from 70 to 83 percent,the averagebeing 77

percent.

11.3 Comparison of Different Investigators' Results

To evaluatethe dimensionlessminimum-film-thicknessequa-

tion (11.4) developedby Hamrockand Dowson (1978),a comparison



was made between its predictions,those of the numerical

solutionobtainedby Biswasand Snidle (1976),and the recent

experimentalfindings of Jamison,et al. (1978). The Biswas and

Snidle (1976)and the Jamison,et al. (1978)resultsare

applicableonly for k = 1.

The Biswas and Snidle (1976)solutionfor the dimensionless

film thicknesscan be written as

= - ii (11.6)(--Hmin)B 1.96 Mp0"where

Lin = HminU-0"5 (11.7)

Mp =WU -0"75 (11.8)

The dimensionlessgroups given in equations(11.7)and (11.8)

were first used by Moes and Bosma (1972).

The central-film-thicknessequationobtained from the

experimentalresultsof Jamison,et al. (1978)can be written as

(Hc)j= 2.4 M-0"075 (11.9)p

where

Ha : HaU-0.5 (11.10)

Modifyingequation (11.9)to providea minimum-film-thickness

(Hmin) Jequation by using the assumption that = 0.78 (Hc) J
yields

(TImin)J : 1.87 _0.075 (11.11)
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Recall again that equations(11.6)and (11.11)are for k : 1

only.

From equations(11.7) and (11.8) and Table 11.1, we can

write equation (11.4)as

(Hmin)H 8.53(1- 0.85 e-0"31k)M-0.21P (11.12)

Therefore,for k = i, equation (11.12)reducesto

(_ inlk=i) = 3"21_0"21H (11.13)

Note that the negativeexponent in equation (11.13)is

numericallylargerthan the exponentsin equations(11.6) and

(11.11).

A comparisonof the differentinvestigators'resultsfrom

equations(11.6),(11.11),and (11.13)is shown in Figure 11.2.

The three equationsseem to agree quite well with each other

numericallyover the range considered,but there is quite a

discrepancyin the slopesof the lines. The Hamrock and Dowson

(1978) predictionof film thicknessis equivalentto the Biswas

and Snidle (1976)theoreticalvalue at Mp = 100 and to the

Jamison,et al. (1978)experimentalresultsat Mp = 45.

Therefore,even though the exponenton M for the Hamrock
P

and Dowson (1978)results is largerthan those obtained by

Biswas and Snidle (1976) and by Jamison,et al. (1978),the

agreementis quite good for k = 1.

Also shown in Figure 11.2 is the rigid isoviscoussolution

obtained from Kapitza (1955). The enormousdifferencein slopes



betweenthe Kapitza (rigid)line and the three sets of results

presentedby equations(11.6), (11.11),and (11.13)

demonstratesthe tremendouspotentialof elastohydrodynamic

actionfor the generationand preservationof satisfactory

lubricatingfilms under severe operatingconditions. The

discrepanciesbetweenthe predictionsof the three relationships

representedby equations(11.6),(11.11),and (11.13)are seen

in better perspectiveif they are comparedwith the predictions

of the Kapitza (rigid)theory at valuesof M of 100 and
P

1000.

The variationof the ratio Hmin/Hmin,r is shown in Figure

11.3, where Hmin,r is the minimumfilm thicknessfor rectangular

contacts,with the ellipticityparameter k for both high- and low-

elastic-modulusmaterials. If it is assumedthat the minimiumfilm

thicknessobtained from the elastohydrodynamicanalysisof

ellipticalcontacts can only be obtainedto an accuracyof

3 percent,we find that the ratio Hmin/Hmin,r approachesthe

limitingvalue of unity at k = 5 for high-elastic-modulusma-

terials. For low-elastic-modulusmaterialsthe ratio approaches

the limitingvalue of unity more slowly,but it is reasonableto

statethat the rectangular-contactsolutionwill give a very

good predictionof the minimumfilm thicknessfor conjunctions

in which k exceedsabout 11.
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11.4 ContoUrPlots of Results

Contourplots of the dimensionlesspressureare shown in

Figure 11.4 for two extremevaluesof the dimensionlessspeed

parameter U of 0.05139x10-7 and 0.5139x10-7. As mentioned

in Chapters8 and 9, the + symbol indicatesthe center of the

Hertziancontact in each case. Becauseof the dimensionless

representationof the X and Y coordinatesthe actual

Hertziancontactellipsebecomesa circle regardlessof the val-

ue of k. The Hertziancontactcircle isshown in each figure

by asterisks. On each figure the contour labels and each

correspondingvalue of the dimensionlesspressureare given.

The inlet region is to the left and the exit regionto the right

in each figure.

The pressurecontours shown in Figure 11.4 are nearly cir-

cular or Hertzian. In Figure 11.4(b),the high-speedcase, the

pressureat any point in the inlet is higherthan in the low-

speed case shown in Figure 11.4(a). Inside the Hertziancontact

regionthe contourvalues of the dimensionlesspressurefor the

low-speedcase are higherthan those for the high-speedcase.

The pressurespikesfound when dealingwith materialsof high

elasticmodulus (Chapter8) are not evident in these solutions

for low-elastic-modulusmaterials. The absenceof a pressure

spike for low-elastic-modulusmaterialshas beennoted before

for nominalline contacts and is due to the pressuresgenerated

for a given load in a contactbetween low-elastic-modulus
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materialsbeing considerablylower than those generatedin a

contactbetweenhigh-elastic-modulusmaterials.

Contourdiagrams of the dimensionlessfilm thicknessare

shown in Figure 11.5 for these same valuesof U = 0.05139xi0-7

and 0.5139x10-7. Figure 11.5(a)shows three regionsof minimum

film thickness: one close to the rear edge of the Hertzian

ellipse,and two off to the side. At the higher speed

(U = 0.5139x10-7) the minimum-film-thicknessregion lies on

the midplane of the contact in the directionof rolling,between

the center of the contact and the trailingedge of the Hertzian

ellipse.

The variationof pressureand film thicknessin the direc-

tion of rollingalong a line near the midplane of the conjunc-

tion is shown in Figure 11.6 for the same two values of U con-

sideredin Figures 11.4 and 11.5. For all the solutionsob-

tainedat variousspeeds,the values of the dimensionlessload,

materials,and ellipticityparameterswere held fixed. Figure

11.6 shows that the pressure at any point in the inlet region

increasesas the speed increases. The dominanteffect of the

dimensionlessspeed parameteron the minimumfilm thicknessin

elastohydrodynamiccontactsfor low-elastic-modulusmaterials

evident in equation (11.4) is reflectedin Figure 11.6. Similar

resultswere found for high-elastic-modulusmaterials, as noted

in Chapter8.

Contourplots of dimensionlesspressurefor the two extreme

values of the dimensionlessload parameter W that were inves-
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tigated,0.2202x10-3 and 2.202x10-3, are shown in Figure

11.7. Again the pressurecontoursare nearlycircular,or

Hertzian.

Contourplots of dimensionlessfilm thicknessfor the same

two values of W are shown in Figure 11.8. In Figure 11.8(a),

for the low-loadcase (W = 0.2203x10-3),the minimumfilm thick-

ness occurs directlybehind the center of the contact. Likewise

in Figure 11.8(b),for the high-loadcase (W = 2.202x10-3),the

minimum film thicknessalso occurs directlybehind the center of

the contactbut closer to the Hertziancircle. The two contours

marked C in Figure 11.8(b)indicatea slight increasein film

thicknessbefore the minimum-film-thicknessregion is reached.

The variationof pressureand film thicknessin the rolling

directionalong a line close to the midplane of the conjunctionis

shown in Figure 11.9 for the same two values of the dimension-

less load parameter. Once again the essentialfeaturesof the

minimum-film-thicknessequationare reflectedin this figure since

a change in the dimensionlessload parameterof one order of mag-

nitude produces a considerablechange in the pressureprofilebut

not such a significantchange in the film thickness. The small

effect of load on minimum film thicknessis a reasonableand most

importantfeature of elastohydrodynamiclubrication.

11.5 Effect of LubricantStarvation

By using the theory and numericalproceduresoutlinedearlier

in this chapter,we can investigatethe influenceof lubricant
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starvationon minimum film thicknessin ellipticalelastohydrody-

namic conjunctionsformed by low-elastic-modulusmaterials. Lu-

bricantstarvationis studiedby simplymoving the inlet boundary

closer to the center of the conjunction,as describeGin Chapter 9.

Table 11.2 shows how the dimensionlessinlet distance affects

the dimensionlessfilm thicknessfor three groups of dimensionless

load and speed parameters. For all the resultspresentedin this

sectionthe dimensionlessmaterialsparameter G was fixed at

0.4276,and the ellipticityparameter k was fixed at 6. The

resultsshown in Table 11.2 clearly indicatethe adverseeffect

of lubricantstarvationin the sense that, as the dimensionless

inlet distance _ decreases,the dimensionlessminimum film

thickness Hmin also decreases.

Table 11.3 shows how the three groups of dimensionlessspeed

and load parametersaffect the limitinglocationof the dimension-

less critical inlet boundarydistance m* at which starvation

starts to influencefilm thickness. Also given in this table are

correspondingvalues of the dimensionlessminimumfilm thickness

for the fully floodedcondition,as obtained by interpolatingthe

numericalvalues. By making use of Table 11.2 and followingthe

procedureoutlined in Chapter9, we can write the criticaldimen-

sionlessinlet boundarydistance at which starvationbecomes im-

portantfor low-elastic-modulusmaterialsas

[(____x)2 _]0.16 (11.14)m* = l.+ 1.07 Hm
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where Hmin is obtained from equation (11.4).

Table 11.4 shows how m* affects the ratio of minimum film

thickness in the starved and fully flooded conditions Hmin,s/Hmi n.

The dimensionless minimum film thickness for a starved condition for

low-elastic-modulus materials can thus be written as

Hmin,s : Hmin _ - 1) (11.15)

Therefore, whenever _< m*, where m* is defined by

equation (11.14), a lubricant starvation condition exists. When

this is true, the dimensionless minimum film thickness is

expressed by equation (11.15). If _zm*, a fully flooded

condition exists and equation (11.4) can be used to predict the

minimum film thickness.

In Figure 11.10 contour plots of the dimensionless pressure

(P = p/E') are shown for the group 3 conditions recorded in

Table 11.2 and for dimensiosnless inlet distances of 1.967,

1.333, and 1.033. Note that the contour levels and intervals

are identical in all parts of Figure 11.10. In Figure 11.10(a),

with _= 1.967, an essentially fully flooded condition exists.

The contours are almost circular and extend further into the

inlet region than into the exit region. In Figure ll.lO(b),

with _= 1.333, starvation is influencing the distribution of

pressure and the inlet contours are slightly less circular than

those shown in Figure ll.lQ(a). By the time _ falls to 1.033

(Figure ll.lO(c)) the conjunction is quite severely starved and

the inlet contours are even less circular.

15



In Figure 11.11 contourplots of the dimensionlessfilm

thickness(H = h/Rx) are shown,also for the group 3 condi-

tions recorded in Table 11.2 and for dimensionlessinlet dis-

tances of 1.967, 1.333, and 1.033. These film thicknesscon-

tours correspondto the pressureresultsshown in Figure 11.10.

The central portionof the film thicknesscontoursbecomesmore

parallelas starvationincreasesand the minimum-film-thickness

area moves to the exit region. The valuesof the film thickness

contoursfor the most starvedcondition(Figure11.11(c))are

much lower than those for the fully floodedcondition(Figure

11.11(a)).

Figure 11.12 more clearlydescribesthese film thickness

results. It shows the variationof the dimensionlessfilm

thicknessin the rollingdirectionfor four values of the di-

mensionlessinlet distance. The value of Y was held fixed

near the axial center of the contact,and the dimensionlesspa-

rameters U and W were held constantas shown in group 3 of

Table 11.2 for these calculations. This figure clearly shows

that the central regionbecomesflatteras starvationbecomes

more severe. Also, in going from a fully floodedconditionto a

starvedconditionthe film thicknessdecreasessubstantiallyand

the locationof the minimum film thicknessmoves closer to the

exit region.

The variationof the dimensionlessfilm thicknessperpen-

dicular to the rollingdirectionis shown in Figure 11.13 for

four values of the dimensionlessinlet distance. The value of

16



X was held constantnear the axial center of the contact, and

the dimensionlessparameters U and W were held constant at

the values recordedfor the conditionscorrespondingto group 3

of Table 11.2. The resultsshown in this figure clearly indi-

cate that the central regionof the conjunctionis quite flat in

the fully flooded situationbut that the curvatureof the pro-

file increasesas the severityof starvationincreases.

11.6 Closure

By modifyingthe proceduresoutlined in Chapter7 we have

investigatedthe influenceof the ellipticityparameter k and

the dimensionlessspeed U, load W, and materials G parame-

ters on minimum film thicknessfor materialsof low elasticmod-

ulus. The ellipticityparameterwas variedfrom 1 (a ball-on-

plane configuration)to 12 (a configurationapproachinga line

contact). The dimensionlessspeed and load parameterswere each

varied by one order of magnitude. Seventeencases were used to

generatethe minimum- and central-film-thicknessrelations:

_in = 7.43(1- 0.85 e-0"31k)u0"65W-0''21

Hc = 7.32(1- 0.72 e-0"28k)U0"64W-0"22

The influence of lubricant starvation on minimum film

thickness in starved elliptical elastohydrodynamic conjunctions

has also been investigated for materials of low elastic modu-

lus. Lubricant starvation was studied simply by moving the

17



385

inlet bounda_ closer to the center of the conjunctionin the

numericalsolutions. The resultsshow that the locationof the

dimensionlesscritical inlet bounda_ distance _ denoting the

locationbetweenthe fully floodedand starvedconditionscan be

expressedsimply as

m* = 1 + 1.07 Hm

That is, for a dimensionlessinlet distance _ less than m*,

starvationoccurs; and for _ > _, a fully floodedcondition

exists. Furthermoreit has been possibleto express the minimum

film thicknessfor a starvedconditionas

Contourplots of pressureand film thicknessin and around

the contacthave been presentedfor both fully floodedand

starvedlubricationconditions. It is evidentfrom these fig-

ures that the inlet pressurecontoursbecome less circular and

closer to the edge of the Hertziancontact zone and that the

film thicknessdecreasessubstantiallyas the severity of star-

vation increases.

The resultspresentedin this chapterhave revealedthe

essentialfeatures of both fully floodedand starved,ellipti-

cal, elastohydrodynamicconjunctionsfor materialsof low elas-

tic modulus.
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SYMBOLS

A constantused in equation(3.113)

C*,_ relaxationcoefficients
A*, B*,

|

D*, L*, M* ]

Av drag area of ball, m2

a semimajoraxis of contactellipse,m

al2m

B total conformityof bearing

b semiminoraxis of contactellipse,m

b/2_

C dynamic load capacity, N

Cv drag coefficient

CI,...,C 8 constants

c 19,609 N/cm2 (28,440 lbf/in 2)

number of equal divisionsof semimajoraxis

D distancebetweenrace curvaturecenters,m

D material factor

definedby equation (5.63)

De Deborahnumber

d ball diameter,m

d number of divisions in semiminoraxis

d overalldiameterof bearing (Figure2.13),ma

db bore diameter,m

de pitch diameter,m

d' pitch diameter after dynamiceffectshave acted on ball, me

d. inner-racediameter,m

d outer-racediameter,m
0
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E modulusof elasticity,Nlm2

/I 1, - va i - v_E effective elastic modulus, - + , N/m2

Ea Eb

Ea internal energy, m2/s2

E processing factor

EI [(Hmi n - Hmin)/Hmi n] x i00
1/2

elliptic integral of second kind with modulus (i - i/k 2)

approximate elliptic integral of second kind

e dispersion exponent

F normal applied load, N

F* normal applied loadper unit length,N/m

F lubricationfactor

F integratednormal applied ]oad, N

Fc centrifugal force, N

Fmax maximumnormal applied load (at ¢ = 0), N

Fr applied radial load, N

Ft appliedthrust load,N

F¢ normal applied load at angle €, N

_@" elliptic integralof first kind with modulus (1 - 1/k2)1/2

approximateelliptic integralof first kind

f race conformity ratio

fb ms surface finish of bat1, m

fr rms surface finish of race, m

G dimensionless materials parameter, :E

G* fluid shear modulus, N/m2

G haraness factor

g gravitationalconstant,m/s2
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gE dimensionlesselasticityparameter,W813/U2

gv dimenslonlessviscosityparameter,GW31U2

H dimensionlessfilm thickness,hlRx

= .2 2n3
dimenslonless film thickness, H(WIU)2 F2hl u no_x

Hc dimenslonless central film thickness, hc/Rx

H dimenslonless central film thicknes's for starved
C,S

lubrication condition

Hf frictional heat, N m/s

Hmin dimensionless minimum film thickness obtained from EHL

elliptical-contact theory

H dimensionless minimum film thickness for a rectangular
min,r

contact

H dimensionless minimum film thickness for starved
min,s

lubrication condition

dimensionless central film thickness obtained fromc

least-squares fit of data

H'_min dimensionless minimum film thickness obtained from

least-squares fit of data

Hc dimensionless central-film-thickness - speed parameter,

HcU-O-5

H-min dimensionless minimum-film-thickness - speed parameter,

HminU-O'5

HO new estimate of constant in film thickness equation

h film thickness, m

hc central film thickness, m

h. inlet film thickness, m
1
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h film thicknessat point of maximum pressure,wherem

dp/dx = O, m

hmin minimum film thickness,m

h0 constant,m

Id diametralinterference,m

I ball mass moment of inertia,m N s2
P

Ir integraldefinedby equation (3.76)

It integraldefinedby equation (3.75)

J function of k defined by equation (3.8)

J* mechanicalequivalentof heat

polar moment of inertia,m N s2

K load-deflectionconstant

k ellipticityparameter,a/b

k approximateellipticityparameter

thermalconductivity,N/s °C

kf lubricantthermalconductivity,N/s °C

L fatigue life

La adjustedfatigue life

Lt reducedhydroaynamiclift, from equation (6.21)

LI,...,L4 lengthsdefined in Figure 3.11, m

LIO fatigue life where 90 percentof bearingpopulationwill

endure

L50 fatigue lifewhere 50 percentof bearingpopulationwill

endure

bearing length,m

constantused to determinewidth of side-leakageregion

M moment, Nm
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M gyroscopic moment, Nm
g

Mp dimensionless load-speed parameter, WU-0"75

M torque required to produce spin, N ms

m mass of Dall, N s2/m

m* dimensionless inlet distance at boundary between fully

flooded and starved conditions

dimensionless inlet distance (Figures 7.1 and 9.1)

number of divisions of semimajor or semiminor axis

mW dimensionless inlet distance boundary as obtained from

Wedeven, et al. (1971)

N rotational speed, rpm

n number of balls

n* refractive index

Constant used to determine length of outlet region

p dimensionless pressure

PD dimensionless pressure difference

Pd diametral clearance, m

p free endplay, me

PHz dimensionless Hertzian pressure, N/m2

p pressure, N/m2

Pmax maximumpressure within contact, 3F/2_ab, N/m2

isoviscous asymptotic pressure, N/m2
Piv,as

Q solution to homogeneous Reynolds equation

Qm thermal loading parameter

dimensionless mass flow rate per unit width, qno/PoE'R 2

qf reduced pressure parameter

qx volume flow rate per unit width in x direction, m2/s
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qy volume flow rate per unit width in y direction,m2/s

R curvaturesum, m

Ra arithmeticalmean deviationdefined in equation(4.1),m

Rc operationalhardnessof bearingmaterial

Rx effectiveradius in x direction,m

Ry effectiveradius in y direction,m

r race curvatureradius,m

rax' rbx'_ radii of curvature,m

ray, rby J
rc' _c' z cylindricalpolar coordinates

rs' es' _s sphericalpolar coordinates

defined in Figure 5.4

S geometricseparation,m

S* geometricseparationfor line contact,m

SO empiricalconstant

s shoulderheight,m

T TolPmax

tangential (traction)force, N

Tm temperature,°C

* ball surfacetemperature,°CTb

T_ averagelubricanttemperature,°C

AT* ball surfacetemperaturerise, °C

T1 (_O/PmaX)k=l

Tv viscousdrag force, N

t time, s

ta auxiliaryparameter

uB velocityof ball-racecontact,m/s
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u velocityof ball center,m/s
C

U dimensionlessspeed parameter,nou/E'Rx

u surfacevelocityin directionof motion, (ua + Ub)/2, m/s

number of stresscyclesper revolution

au slidingvelocity,ua- Ub, m/s

v surfacevelocityin transversedirection,m/s

W dimensionlessload parameter,F/E'R2

w surfacevelocity in directionof film, m/s

X dimensionlesscoordinate,x/Rx

y dimensionlesscoordinate,y/Rx

Xt, Yt dimensionlessgroupingfrom equation (6.14)

Xa' Ya' Za externalforces,N

Z constantdefineaby equation (3.48)

ZI viscositypressureindex,a dimensionlessconstant

X, _, X, X1

Y, _, 7,_ __i coordinate system
z, z, z, zI

pressure-viscositycoefficientof lubrication,m2/N

aa radius ratio,Ry/Rx

B contactangle,rad

Bf free or initialcontactangle, rad

B' iteratedvalue of contactangle, rad

r curvaturedifference

y viscousdissipation,N/m2 s

total strain rate, s-1

Ye elasticstrain rate, s-I

iv viscousstrain rate, s-1
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Ya flow angle, deg

a total elastic deformation, m

6* lubricant viscosity temperature coefficient, °C'l

aD elastic deformation due to pressure difference, m

ar radial displacement, m

6t axial displacement, m

ax displacement at some location x, m

approximate elastic deformation, m

elastic deformation of rectangular area, m

€ coefficient of determination

€I strain in axial direction

€2 strain in transverse direction

angle between ball rotational axis and bearing

centerline (Figure 3.10)

_a probability of survival

n absolute viscosity at gauge pressure, N s/m2

dimensionless viscosity, n/n 0

nO viscosity at atmospheric pressure, N s/m2

n= 6.31xi0 -5 N s/m2(O.0631 cP)

angle used to define shoulder height

A film parameter (ratio of film thickness to composite

surface roughness)

x equals i for outer-race control ana 0 for inner-race

control

Xa second coefficient of viscosity

xb Arcnard-Cowking side-leakage factor, (1 + 2/3 :a )-1

x relaxation factor
c
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coefficientof slidingfriction

.*

Poisson'sratio

divergenceof velocityvector, (_ulax)+ (av/ay)+ (awlaz),s-1

p lubricantdensity,N s2/m4

-_ dimensionlessdensity,P/P0

densityat atmosphericpressure,N s2]m4
P0

normal stress,N/m2

oI stress in axial direction,N/m2

T shear stress,Nlm2

maximumsubsurfaceshear stress,N/m2
TO

~ shear stress,N/m2T

_'e equivalentstress,N/m2

_'L limitingshear stress,N/m2

0 ratio of depth of maximum shear stressto semiminoraxis of

contactellipse

0" pH3!2

01 (0)k:1

auxiliary angle

_T tnermal reduction factor

angular location

_ limiting value of

Ri absolute angular velocity of inner race, rad/s

_o absoluteangularvelocityof outer race, rad/s

angularvelocity,rad/s

mB angularvelocityof ball-racecontact, rad/s

mb angularvelocityof ball about its own center,rad/s
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mc angularvelocityof ball around shaft center,rad/s

us ball spin rotational velocity, rad/s

Subscripts:

a solid a

b solid b

c central

bc ball center

IE isoviscous-elastic regime

IR isoviscous-rigid regime

i inner race

K Kapitza

min minimum

n iteration

o outer race

PVE piezoviscous-elastic regime

PVR piezoviscous-rigid regime

r for rectangular area

s for starved conditions

x,y,z coordinate system

Superscript:

(--) approximate
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