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ABSTRACT 

Fatigue data are subject to considerable scatter and cycles to 

failure, N, can have coefficients of variation typically ranging 

from 25% to 75%. Presented herein are techniques for providing 

statistical sumnaries of such data suitable for design purposes. 

Special consideration is given to statistical difficulties presented 

by the small sample sizes characteristic of fatigue data. 

Two methods are discussed for constructing a design curve on the 

safe side of the data. Both the tolerance interval and equivalent 

prediction interval (EPI) concepts provide such a curve while account- 

ing for both the distribution of the estimators in small samples and 

the data scatter. Moreover the EPI is useful as a mechanism for pro- 

viding necessary statistics on S-N data for a full reliability anal- 

ysis which includes uncertainty in all fatigue design factors. 

Presented are examples of statistical analyses of the general 

strain life relationship. The tolerance limit and EPI techniques 

for defining a design curve are demonstrated. Moreover in two ex- 

amples using Waspaloy B and RQC-100 data it was demonstrated that a 

reliability model could be constructed by considering the fatigue 

strength and fatigue ductility coefficients as two independent ran- 

dom variables. 

A technique for establishing the fatigue strength for high cycle 

lives was presented. This method relies on an extrapolation technique 

and also accounts for "runners." Again, a reliability model or design 

value can be specified. 
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INTRODUCTION 

In general fatigue is perhaps the most important failure mode to 

be considered in mechanical and structural design. For some products, 

fatigue accounts for more than 80% of all observed service failures. 

Moreover, fatigue and fracture failures are sometimes catastrophic, 

occurring without warning and causing significant property damage 

and loss of life. Design for fatigue avoidance is difficult, because 

(a) the fatigue stresses are complicated random processes, (b) the 

fatigue process is influenced by many factors, and (c) many of the 

factors are subject to considerable uncertainty. 

A major source of uncertainty is introduced by the enormous scatter 

in fatigue test data, with cycles to failure data having coefficients of 

variation typically ranging from 30 to 40% and sometimes higher than 

100%. Figure 1 shows the data base for the AWS-X curve for welded tubu- 

lar connections and illustrates that the scatter spans more 

than two orders of magnitude. The designer's decision reflecting a proper 

balance between risk and cost should be based on suitable consideration 

of such uncertainties in fatigue strength. 

Presented herein is a commentary on fatigue data analysis, including 

a review of the literature, statistical summaries of fatigue test data, 

and techniques used to produce such summaries. The focus is on design 

application. The discussion will be restricted to the S-N approach to 

characterize fatigue data. This description is primarily used for small 

specimen data for crack initiation life estimates, but it can also apply 

to total life for larger structural sections. 
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Fig. 1 

An Example of Scatter in S-N Data: 
This Data is Used to Define AWS-X Curve 

[See Ref. 391 
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It is not the intent of this paper to make specific recommendations 

on how designers should model fatigue strength. Rather the purpose is 

to provide general information on statistical methods which will pro- 

vide rational characterizations of fatigue data for design purposes. 

Moreover some new understanding regarding the general nature of fatigue 

data are presented. 
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Modern structural reliability theory has its origins in a landmark 

paper by A. M. Freudenthal which appeared in the 1947 Transactions of 

the American Society of Civil Engineers (10). Later he and E. J. Gumbel 

collaborated in the development of methods of fatigue reliability focusing 

on statistical modeling of S-N data (ll), (12), (15). 

The ASTM has played an active role in development of statistical 

methods of fatigue data analysis dating back to 1951 (33,34). Currently, 

subcommittee E09.06 on Statistical Aspects of Fatigue is engaged in a 

variety of activities relating to data analysis. In 1963 Committee E-9 

on Fatigue published a guide for statistical analysis of fatigue data 

( 1). Recently, ASTM published a work by Little dealing with statistical 

planning and analysis (23). 

In 1973, J.T.P. Yao was instrumental in forming an ASCE Committee 

on Fatigue and Fracture Reliability devoted to design methods. A part 

of the activity of this committee deals with statistical data analysis, and 

it recently published a state of the art sumary (8). 

Numerous references are available in addition to those cited. A 

sample of some which provide general information on fatigue data analysis 

and reliability methods include the works of Lipson and Sheth (21), Little 

and Jebe (22), Collins (5), Yao (43), Yang (42), Kececioglu (18), 

Haugen (16), and Wirsching (40). 

Data and information were provided by Kelly Donaldson of Ml-S Systems 

Corporation, Dennis Wolski of the Garrett Turbine Engine Company, and 

Bill Stamper of the Cummins Engine Company. 



ENGINEERING MODELS USED TO DESCRIBE FATIGUE BEHAVIOR 

The classical approach to fatigue has focused on the S-N diagram 

(e.g. Fig. 1) which relates fatigue life (cycles to failure, N) to 

cyclic stress amplitude Sa (or cyclic stress range SR). Since "failure" 

is usually defined specifically for a particular application, this constant- 

amplitude S-N diagram can be used to relate stress to either crack initiation 

period or total fatigue life. Most of the probabilistic analysis as presented 

herein is equally applicable if N is either initiation period or total life 

to failure. However, the physical distinction should be noted. 

Baseline fatigue data are usually obtained by cycling test spec- 

imens at constant-amplitude stress S (or strain) until visible crack- 

ing or failure occurs. Such tests are repeated several times at different 

stress levels to establish the familiar S-N curve correlating stress S 

(or strain) to cycles required to initiate a fatigue crack, N. This pro- 

cess is illustrated in Fig. 2. 

Fatigue data typically have significant scatter which can be de- 

scribed by the probability density functions (pdf) as shown in Fig. 2, 

i.e., f 
NIS 

is the pdf of N given S and f 
SIN 

is the pdf of S given N. 

The goal of statistical analysis is to provide summary descriptions of 

the data for designers. Most commonly a design curve, as shown in Fig. 2, 

on the safe side of the data is required. But for a reliability format, 

the designer needs simple statistical representations of the distribution. 
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Fig. 2 
Typical Fatigue Test 
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Models which characterize the S-N relationship for design purposes 

are described as follows. 

Classical Model A commonly used S-N relationship first proposed by 

Basquin (3) has the form 

where S is stress amplitude Sa, or stress range SR, and m and A are 

empirical constants. Equation 1 is generally valid for the high cycle 

range (N > 104). In the case where a mean stress So is present, the 

term A is replaced byA(1 - So/Su)m where now A corresponds to the 

value for zero mean tests and Su is the ultimate strength of the 

material. Equation 1 plots as a straight line on log-log paper as 

shown in Fig. 3a. 

General Strain-Life Model 

The general strain-life model is now being widely used to describe 

strain controlled small specimen fatigue behavior over a wide range of 

strains (13, 19, 20). This model, summarized in Fig. 3b, considers 

elastic strain and plastic strain life separately. The two are added 

to obtain the total strain-life curve. 

Ea 
= $ (2N)b + E; (2N)' 

where ~~ = strain amplitude (specimens are strain cycled) 

E = modulus of elasticity 

ai- = fatigue strength coefficient 

b = fatigue strength exponent 

+ = fatigue ductility coefficient 

C = fatigue ductility exponent 

(2) 
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Fig. 3 
Fatigue Strength Models 

(a) Typical High Cycle S-N Curve 

(b) General Strain-Life CUrVe 
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In the case where mean stress So is present, the term ai can be replaced 

by b; - So)- A list of parameters for several materials is given in 

the SAE Handbook (29) and by Boardman (4). 

STATISTICAL MODELS USED TO ANALYZE CYCLES TO FAILURE DATA 

To make design decisions on the basis of a set of observations of 

a design factor, it is necessary to describe the,distribution of that 

factor. In that regard, statistical models are usually employed. The 

random variable N denoting cycles to failure is usually described with 

a two parameter Weibull or lognormal model, but sometimes the three- 

parameter Weibull is used. A summary of these models as well as the 

normal and the three-parameter Weibull is provided in Ref. (40). 

Use of the lognormal distribution has been based primarily on 

arguments of mathematical expediency. However, it has been pointed out 

by Gumbel (15) that the hazard function for the lognormal model decreases 

for large values of N. This does not agree with our physical understanding 

of progressive deterioration resulting from the fatigue process. Never- 

theless the lognormal often seems to provide a "good fit" of cycles to 

failure data (see below). 

Physical arguments favor the Weibull for most material strength 

variables, because it is an asymptotic distribution of minima of a sample 

(14). If failure of a structural element is precipitated by failure of 

the first of a large number of subelements, then the Weibull is likely 

a "good" model. Moreover, the Weibull has an increasing hazard function. 

However, the Weibull shape simply doesn't match the data for the large 

scatter data ofter observed in fatigue; the mode approaches zero as the 

coefficient of variation of N, CN, approaches one. 
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A statistical test which compares various competing models on the 

basis of goodness of fit to a random sample has been developed by 

Wirsching and Carlson (36). The test, based on a modified form of the 

Cramer-von Mises statistic, was used to examine welded joint fatigue 

data to compare Weibull and lognorma 1 distribut ion for consistent 

fitting of fatigue data. 

Basically the test involves computing a "W-statistic" which is 

the sum of the deviation between the empirical and hypothesized cdf's 

(36). The sumnary presented in Table 1 compares the W-statistic for 

four distributions. The smaller the value of W, the better fit. The 

smallest value (circled) suggests the best fit distribution. The log- 

normal (LN) is clearly the winner, and in general this author has found 

that comparison tests on cycles to failure data favor the lognormal 

over the Weibull. 

Comparisons of distributions should be made on the basis of fit 

in the tail regions, suggesting a large sample size requirement. 

Wirsching and Carlson (36) indicated that a sample size of at least 

100 was required for good distributional resolution. Because of the 

expense of fatigue testing, seldom are such data sets available. In 

this regard it is interesting. to note from Table I that the larger 

sample size data sets also favor the choice of the lognormal. 



Table I 

STATISTICAL TEST TO DETERMINE WHICH MODEL BEST FITS CYCLES TO FAILURE DATA 
ON WELDED TUBULAR JOINTS 

Investigator ** 
Sample W Statistic (Best fit is circled) 
Size n NOR* LN WE1 EVD * 

Dijkstra & DeBack 
(168 mm chord) 

10 .171 0 .084 .124 .131 

Dijkstra & DeBack 
(457 mm chord) 

19 .089 0 .050 .057 ,068 

Dijkstra & DeBack 
(914 mn chord) 

AWS-X 
(Elastic Range) 

11 .060 .066 .059 0 .059 

60 .123 0 .027 .052 .083 

Marshall 
Corrosion Fatigue 

Hartt 
(Corrosion Fatigue) 

34 .144 .042 .084 0 .026 

7 ,088 .079 .090 0 -068 

Bouwkamp et al. 14 .067 .068 .053 
- 

Toprac & Louis 9 .069 .044 .073 

Kurobane & Konomi 20 .174 .092 .115 

Maeda et al. 27 .115 .042 .084 

/\ 
Kurobane et al. 13 .063 .048 i.045 1 .048 

Toprac & Louis 

- 
29 .066 .039 .036 

Gibstein 6 .114 .093 .090 

Wylde 5 .124 .115 .106 

* 
The normal (NOR) and extreme value distribution (EVD) are not serious con- 
tenders. They are included only for reference purposes. 

** The data, analysis of that data, and the reference for each of the data 
sets are given in Ref. 37 and 39. 
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In practice, the lognormal is more commonly used by designers. 

Some of the reasons include: (1) the lognormal model generally has 

been shown to provide a reasonable description for the distribution 

of a wide variety of design variables, (2) statistical properties of 

the lognormal distribution are well defined, (3) the lognormal is easy 

to use in probabilistic design, (4) reliability formats using the log- 

normal can easily accommodate design variables having relatively large 

coefficients of variation, (5) the lognormal is already widely used in 

the design profession. For example , commonly used methods of linear 

model analysis for characterizing S-N fatigue data implicitly assume 

that cycles to failure has a lognormal distribution. 

The three-parameter Weibull (TPW) is often proposed in the fatigue 

literature as an appropriate model for N. The cumulative distribution 

function (cdf) has the form 

FN(x) = P(N 2 x) = 1 - exp -(y)' [ 1 for x > 5 (3) 

where P(e) is "probability of." The TPW appears to be attractive be- 

cause the location parameter F defines a non-zero lower bound on the 

sample space. In theory, such a model seems more realistic than the 

two-parameter models which permit values (albeit with small probabil- 

ity) down to zero. 

Undesirable features of the TPW which may make its use impractical 

in certain cases are described in some detail in Ref. (40). 
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In sumnary the TPW is difficult to use. Parameter estimation requires 

non-trivial numerical analysis as does a full reliability analysis which 

includes the TPW. Moreover, credibi;lity in the TPW wanes when the 

estimated location parameter i falls only slightly below the smallest 

sample point. 

in 

Probability plotting is a tool which is widely used for data 

analysis to (a) provide a subjective test of the hypothesis that 

a set of data was sampled from a given distribution family, (b) obta 

estimates of the parameters, and (c) make probability calculations. 

The empirical distribution function, Fi,an estimate of the distribut 

function FN(n), can be established as described in Ref. (40). An 

example of a probability plot is the data of Sinclair and Dolan (32) 

ion 

plotted on lognormal paper as shown in Fig. 4. The empirical distribution 

functions illustrate the statistical scatter which is typical in fatigue 

data. CN is the coefficient of variation of N (standard deviation divided 

by the mean). These data published in 1953 were intended to show at 

that time that observed scatter in cycles to fatigue is indeed an inherent 

characteristic of the material and not due to poor testing techniques. 

These plots illustrate (a) the enormous scatter typical of cycles to failure 

data, (b) the heteroscedastic nature of the data, i.e., scatter is a function 

of the stress level, and (c) the lognormal distribution seems to provide 

a reasonable fit. 

HOW STRESS (OR STRAIN)-LIFE DATA IS ANALYZED: THE BASIC LINEAR MODEL 

Fatigue data typical of the general strain life relationship, strain 

range partitioning, traditional S-N model, etc. are illustrated in Fig. 5. 

It is necessary to analyze such data for design purposes. The following 

two basic methods are employed: (1) define a design curve on the safe 

(lower) side of the data, or (2) present a statistical sumnary for a 
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EXAMPLE OF STATISTICAL VARIABILITY IN 
LABORATORY FATIGUE DATA [after Sinclair 
and Dolan (32)] 

13 



Fig. 5 Use of the Tolerance Interval to 
Establish Design Curve [AISI 316 
data; Saltsman and Halford (38)] 
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reliability analysis or probabilistic design approach. Methods for analyzing 

stress-life, S-N (or strain-life, AC-N) data are discussed as follows. 

Consider a constant-amplitude strain-controlled fatigue test in 

which data pairs (AE, Ni) i = l,... n are collected where Ni denotes cycles 

to failure associated with strain range A&~, n is the sample size, 

AE is the independent (or controlled variable, and N is the dependent 

variable. Data from the tests are plotted on log-log paper as shown in 

Fig. 5. 

Because that data show a linear trend, it is reasonable to suggest 

that material behavior might be suitably represented by a straight line 

through the center of the data. Such a line would have the form 

AE = CNS 

where C and 5 are empirical constants. 

Methods of basic linear model analysis are typically used to 

analyze such fatigue data. Consider a log transformation of variables 

and let 

Y = log N, x = 1Of-J (AC). 

(4) 

(5) 

Thus X is the independent variable, Y is the dependent variable. 

Clearly there is no functional relationship between Y and X, but 

there does seem to exist some kind of relation. 1 t will be assumed that 

the set of data is a random sample from the following model 

Y(x) = Ye(x) + 6 (6) 

in which 6 is a normally distributed random variable with mean equal 

15 

-. _. --.-I_.- --- ---- _--_-.-__ 



.^- -_. _- ~--_ _--- _-. - -- - ;- .__.. -.._ -..-.-. __-._. - -.\ __ -_ -. ._ 

to zero and standard deviation equal to CI, and 

yoCx) =a+bx (7) 

where a and b are constants. Thus for speci fied values of X, Y is a 

normally distributed random variable having mean and standard deviation 

E(YIX) = Y. = a + 

o(YIX) = (5 

bx (8) 

(9) 

Note the assumption that (T is a constant, not a function of X. The 

"scatter band" of the data on log-log paper would be constant. Such 

data is said to be "homoscedastic." 

The line Y. = a + bx, being the mean of Y, will pass through the 

"center" of the data. Moreover (J is a measure of the dispersion of 

Y for a given X. Therefore, in the linear model, a, b, and u provide 

a description of the trend and dispersion of the data. 

Because Y is normally distributed, N (given AE) will be log- 

normal. Thus the median of N, denoted as N, is given by Y. = log N. 

In terms of the original coordinates, the Y, line can be written as 

in which it follows from the above definitions that 

a = +log C, b = l/c (11) 

The parameters a and b (and thus C and 5) and o are not known 

in advance and must be estimated from the data (hei, Ni), i = 1 ,... n. 

Equation 5 is used to translate the data into (Xi, Yi) i = 1 ,... n. 
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Using the method of least squares, a, b, and u are estimated by 

i, b^ and s^ respectively (25), 

b^ 
n 

= X(Xi - X)(Y 
i - iQ/ F/x. 

i=l ' 
- x,2 

i=l 
(12) 

A- 

a"=Y-bX (13) 

S2 =,A2 ; [Yi 
i=l 

- (a + bXi)12 (14) 

where X and Y are the sample means of X and Y respectively. Because 

each Yi is a random variable, the estimates i, b and s are also ran- 

dom variables. The "best fit" line 

v^ h =a^+bX (15) 

is called the least squares line. is the estimate of yo, the mean 

of Y given X. 

As an example, the low cycle fatigue data for AISI 316 as presented 

by Saltsman and Halford (30), and shown Fig. 5 are analyzed herein. 

This set of data is given in Table II along with associated statistics. 

Equations 12, 13, and 14 can be used to calculate a, 6, and s, 

the estimates of a, b and 0, respectively. 

a = -0.6530 b = -1.7108 s = 0.1427 (16) 

Least squares estimators ; and i are obtained from Eq. 11 

; = l/b = -0.5845 

17 



Strain Range 
(AEli 

.00424 

. 00105 

.03508 

.03496 68 

.00466 2333 

.02066 116 

.02360 146 

Table II 

Statistical Analysis of AISI 316 PP Data 

[after Saltsman and Halford (30)] 

Sample Size n=7 

Cycles to Failure 
Ni 

1700 

35600 

120 

Sample Mean of X Sample Mean of Y 

x = -1.986 v = 2.746 

Estimate of a 
* 
a= -.6530 

Other Statistics 

S = 0.1427 

1 xi = 29.663 

s;c = + 1x; - (Zj2 = .2934 

Xi=‘Og( AE)i Yi=log Ni 

-2.373 3.230 

-2.979 4.551 

-1.455 2.079 

-1.564 1.832 

-2.332 3.368 

-1 .685 2.064 

-1.627 2.164 

Estimate of b 

^b = -1.711 

sX = 0.5416 
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A 

A.-. .+ 
The least squares line, AE = CN5 is plotted on Fig. 5 where N denotes 

the estimate of the median N. 

Note that (a) the conditional random variable Y given X is normal 

and (b) the least squares line is the estimate of the mean YIX. 

Therefore, it follows that (a) N/AE is lognormal and (b) the least 

squares line, N, is the estimate of the median of N~AE. 

An Alternate Form. The form of the AE-N relationship as given 

above is commonly used. However, for probabilistic design purposes, 

it may be more convenient to express the "Y. line" (Eq. 10) as 

N = A(A.E)~ (18) 

Comparing Eqs. 12 and 20 the constants A and m in terms of C and 5 

are given by 

A = c-l/r; m = l/5 (19) 

For the above example, the least squares estimators are K = .2223 

and m = -1.711. 

ESTABLISHING A DESIGN CURVE 

A number of schemes have been used to establish a design curve for a 

given set of data as illustrated in Fig. 2. It is reasonable to define a 

design curve as a curve below which one expects the occurrence of a failure 

with probability a. However, the oldest (and easiest) method is just to 

draw the design curve to the left of all points with a "little space" 

between the points and the curve, e.g. see Fig. 1. (In the 1969 version 

of the ASME Boiler and Pressure Vessel Code, a mediam "Langer curve" is 

established using a least squares fit (17). Curves removed from this median, 

a factor of 2 on strain and 20 on l<fe are drawn. 
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The design curve is a lower-bound envelope. In the linear case, it 

is common practice to define a design curve by drawing a line, 2 or 3 

standard deviations to the left of the least squares line, and parallel to 

it. Such an approach does not produce an unreasonable design curve, but it 

does not consistently define a given reliability level, because the 

approach fails to recognize that a, b, and s, being estimators, are all 

random variables. In other words, it is incorrect (and non-conservative) 

to say that in general 0.135% of the failure points would be expected to 

lie below the median minus 2 standard deviations (on a log basis). When 

the distribution of the estimators are considered, that percentage is 

higher. 

Two schemes for constructing a design curve, giving consideration 

to the distribution of the estimates of the least squares parameters are 

(1) the tolerance interval, and (2) the equivalent prediction interval. 

The tolerance limit method (26) for defining the design curve relies 

implicitly upon the assumption of "linear failure trajectories." The 

concept of a failure trajectory is very useful in analyzing fatigue data 

for design purposes. In Fig. 6, the star represents a specimen which 

has failed. The dashed lines (failure trajectories) are drawn through 

the point according to some predefined rule. Typically the failure 

trajectories are parallel to the predetermined median curve. 

It is assumed that the failure trajectory defines the cycles 

to failure of that specimen if it had been tested at a different stress 

level. For example, a specimen which is "weak" at a high stress level 

20 



STRAIN, AE 
(or STRESS) 

Failure 

MEDIAN of N IAe 
(also MEDIAN of AC/N) 

cal Fai 

DESIGrl DESIGrl CURVE 

I / / / 
F 11 FAILURE TRAJECTORIES 

/ 

(The star represents the failure 
point, but hid the specimen been ' 
tested at another level, it would 
have failed on the dashed line) 

CYCLES TO FAILURE, N 

Fig. 6 

Trajectories and the Assumed Rela,tionship Between Distribution of 

N IAE and AEIN 
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would also be weak at a low stress level. Experimentalists generally recognize 

that a strong, low ductility specimen will have a relatively "long life" in 

high cycle fatigue and "short life" in low cycle fatigue. Therefore caution 

should be exercised in applying the failure trajectory model. 

The assumption that failure trajectories describe material behavior 

leads to useful statistical descriptions that otherwise would not be possible. 

For example, we can construct the distribution of AE given N as from N given 

AE as implied in Figure 6. The design curve thus defines the lower CI% of 

failures in both the horizontal and vertical directions. This model, not 

valid without the failure trajectory assumption, is convenient for 

reliability analyses. 

The tolerance limit at any stress level will lie to the left of the 

least squares line Y, a distance of ka ys. Where Ku y is a tolerance 

factor (tabulated, e.g. in Ref. 26) i's the populatjon fraction, and y 

is the confidence level. Thus, the design curve is 

log ND = i - Ka ys 
, 

The low cycle fatigue data of Saltsman and Halford (30) are used 

to provide an example of a design curve based on the tolerance interval, 

The data are shown in Fig. 5. Assume that the decision has been made 

to define the design curve as the line above which no more than Q = 1% 

of the population is expected to fall with confidence y = 95%; n = 7. 

From tables (26), Kcr y = 4.64. The design curve is 
, 

log ND = \i - Kol, 

This line is drawn in 

y = .95 of this examp 

s=v - 4.64(0.1427) = ; - 0.662 

Fig. 5. Note that the values of Q = .Ol and 

e are those levels used to define the A-values 

(20) 

(21) 
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in MIL-HDBK-5 (24). 

The equivalent prediction interval (EPI) concept is described by 

Wirsching and Hseih (38) and summarized in the following discussions. 

Define an equivalent constant standard deviation of Y as 

where 

and 

aO = s s(nd4 

s(n,a) = exp[A(a)Iln nl -B(a)] 

A(a) = l.56[$-ln(e)]1'12 (24) 

(22) 

(23) 

B(a) = 3.32 - 1.7a 

6 (n -C 50; - 0.01 (a 2 0.15 

g(n,a) 2 1 is in essence, an adjustment factor to s to account for the 

fact that there is uncertainty in the estimates of a and b and s. 

Basically the idea is to use the linear model, but with an expanded 

value of s (the value of u. defined below) so that the ND curve is 

shifted to the left to match the Na curve. 

The model, suggested by the above discussion, is as follows: 
,. 

1. Let m = b be a constant 

2. Assume that all of the uncertainty due to scatter in the data 
A 

is accounted for in a (and therefore K) by considering the y 

intercept as a random variable. 

3. Therefore, let the empirical relationship be 

Y = a0 + bx (25) 

where a0 has a normal distribution with mean a and standard 

deviation ao. 
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The consequences of such a model are 

1. YIX has a normal distribution. (Thus N given be has a lognormal 

distribution.) 

2. The mean value of YIX is a + ix. (Thus the estimate of the me- 

dian of N is i = ii(A~)~.) 

3. The standard deviation of Y/X is a0 (and is not a function of X). 

4. ao= log A is normal , and A is lognormal. The median A and 

coefficient of variation CA of A can be obtained from the log- 

normal (base 10) forms 
,. 

i = 1oa (26) 

CA = J &Jo1/‘4W- 1 (27) 

EXAMPLE Given the fatigue data (n = 7) as illustrated in Fig. 7, it is 

required to define a design S-N line which is estimated to be on the 

safe side of 99% of the data. This line is to be the a = .Ol EPI. 

The basic data is summarized in Table II. 

Using Eq. 25 with n = 7, a = 0.01 

A(a) = 4.64 B(a) = 3.30 g(n,a) = 1.67 

Thus, the equivalent standard deviation is, 

uO =g*s 

= (1.67)(0.143) = 0.239 

Design Curve The 1% EPI is given as N*, where 

log N* = i - 'aa0 

(28) 
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Fig. 7 Comparison of the Lower 1% Prediction 
Interval with the Equivalent 
Prediction Interval [AISI 316 data, 
Saltsman and Halford (38)] 

__-... --.-._ --.__.__-..- ^_._ -.. __- .-- ..-. -e--e-.- 

. 
‘? ND 

Cycles to Failure, N 



This EPI could be used as the design curve in the conventional 

approach. The EPI is shown in Fig. 7 along with the prediction in- 

terval Na which the EPI approximates. 

Figure 7 suggests that the EPI is a reasonable approximation to 

Na the prediction interval. As the sample size becomes larger, N 
a 

becomes flatter and the EPI becomes an even better approximation (38). 

Probabilistic Format The data will be analyzed in a format which is 

convenient for probabilistic design procedures. 

The fatigue equation will contain m and A. Using the method de- 

scribed above, m is a constant and equal to 

m = b = -1.711 

A will be lognormal with a median value of (Eq. 26) 

A = l(y.6530 = 332 

A will have a coefficient of variation of (Eq. 27 and 28) based on a = 0.01 

CA = JlO (.23912/.434 _ 1 = o 5g5 
. 

At a given strain (or stress) level, the coefficient of variation 

of cycle life N is equal to CA 

cN = CA (29) 

As a subjective comment, for sample sizes, n 5 7, this author has 

found that fatigue design curves seem to be dominated by the uncertain- 

ties in a^, b, and s. When included in the analysis, they produce what 

seem to be "unreasonably" conservative results. On the other hand, as 
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the sample size n becomes large, a + a, b + b and i. -+ Yo, and s ap- 

proaches U, and for all practical purposes a, n b and s could be treated 

as constants for large n (typically the assumption would be reasonable 

for n > 50). However, because-of the expense associated with fatigue 

testing, sample sizes will generally be small. In summary it is neces- 

sary to give full consideration to statistical distributions of these 

estimators when n 5 50. 

The issue of sample size requirements is addressed in ASTM Speci- 

fication E-739 recommendations ( 4) 

Number of Test Points Required for S-N Relationship 

Type of Test Number of Specimens 

Exploratory R and D 6 to 12 

Design Allowables 12 to 24 

Reliability Data 12 to 24 

This author agrees that these values are quite reasonable, but notes 

that reliability information can be provided for sample sizes, n 2 6, 

using the EPI as described above. 

SCATTER IN FATIGUE DATA: SOME RESULTS 

Relatively large scatter is observed in cycles to failure data. At 

low cycle lives, values of CN in the range from 0.20 to 0.40 is common 

for most metallic alloys. At higher lives (lower stress levels) CN 

has been observed to exceed 1.00. By contrast, coefficients of variation 

of yield and ultimate strengths are usually less than 10%. 
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In an exhaustive study of fatigue data of steel and titanium alloys 
for aircraft applications, Whittaker has provided the summary statistics 

as presented in Tables III through VII (35). He used the two parameter 

Weibull (Eq. 3 with 5 = 0) to describe N. The shape parameter in these 

tables is , which is a function of the coefficient of variations; 

cN 
= ,,-0.926 . 

Because of the large sample size studies, the significance of the 
Whittaker data is that some confidence can be placed in his values of 

COV's for different materials and conditions. Whittaker's own recommendations 

for representative values of coefficients of variations are 

Steel, TS 240 ksi 

Steel, TS 240 ksi 

Aluminum Alloys 

Titanium Alloys 

cov (%) 

36 

48 

22 

36 

Summary fatigue data on welded joints of various structural detail 

collected by Ang and Munse (2) is presented in Table VIII. The average 

value of CN of this data is 52%. Data summaries of welded tubular joint 
fatigue are provided in Table IX (41); here it is noted that the 

CN is significantly higher. 

Results of the RQC-100 round robin fatigue tests coordinated by 

ASTM are presented in Table X. The general strain-life model was used. 

COV's of both strain given life and life given strain are recorded. The 

parameters of the strain life relationship were computed by a least 

squares analysis using vertical deviations. The COV's of strain given 

life were computed (Eq. 29) using actual estimators, s; no expansion of 

s was made using the EPI. The COV's of life given strain were computed 

using Eq. 29 with sN = s/(abs. value of slope), the sN being the estimated 

log standard deviation of life given strain. 

These values are very typical of those observed for other materials. 

What is of particular interest here is that these data summaries provide 

some indication of lab-to-lab variability although it is impossible to 

isolate this effect due to the small sample sizes. 
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Table I I I . -Results of Analyses Determining the Typical Shape Parameters 
for Fatigue Performance of Titanium Alloys 

Data description 

Titanium 6Al-4V 

Titanium 8AI-lMo-1V 

Monolithic notched 

Structures 

Structural simulators 

Room temperature 

Elevated temperature 

Low temperature 

Constant amplitude 

Variable amplitude 

All data 

102-lo3 cycles 

1 03- 1 O4 cycles 

104-6*(10)~ cycles 

6*f10)4-4*f10)5cycles 

> 4*(10j5 cycles 

Number 
of groups 

data 

38 
35 
37 

2.81 

3.07 

2.93 

541 

586 

637 

Negligible 

488 37 
825 35 
279 42 

Negligible 

1056 38 
71 16 

1127 37 
Negligible 

110 34 
396 28 

429 41 
111 1 70 / 1.47 

2.94 

3.06 

2.53 

- 

2.83 

7.19 

2.93 

3.25 

4.02 

2.62 

C,(X) * 01 

Data below 4.( lOI cycles 

Number 
of groups 

487 

529 

581 

Negligible 

433 

744 

249 

Negligible 

945 

71 

1016 

Negligible 

110 

396 

429 

- 

I :p* rl 
35 
32 
33 

34 
32 

37 

34 
16 
33 

34 
28 

41 

3.15 

3.44 

3.33 

- 

3.25 

3.40 

2.91 
- 

3.17 

7.19 

3.30 
- 

3.25 

4.02 

2.62 

- 

l 

Ref. Whittaker (35) 
* 

CN = n 
-0.926 



Table IV .-Results of Analyses Determining the Typical Shape Parameters 
for Fatigue Performance of High-Strength Steels 

Ail data 

Data description 

Alloy steels 

Intermediate alloys 

18% Ni maraging steels 

Stainless steels 

Austenitic stainless steel 

Air melted 

Vacuum melted 

O-100 ksi 

101-160 ksi 

161-200 ksi 

201-240 ksi 

241-280 ‘ksi 

281-320 ksi 

321-360 ksi 

Monolithic notched 

Structures 

Structure simulators 

Room temperature 

Elevated temperature 

Low temperature 

Constant amplitude 

Variable amplitude 

All data 

102- 103 cycles 

103-104 cycles 

1 04-6 l ( 1 014 cycles 

6mt10)4-4*(10,5 cycles 

>4 *(lOI cycles 

Number 
of groups 

c,(z)* rl 

168 37 2.95 

111 46 2.31 

113 51 2.06 

314 33 3.29 

48 23 4.83 

44 33 3.27 

94 42 2.52 

43 32 3.38 

43 22 5.18 

131 27 : 4.17 

285 34 3.16 

132 48 2.20 

83 49 2.14 

488 40 2.72 

282 35 3.11 

613 38 2.82 

115 42 2.55 
Negligible _ 

770 38 2.84 
Negligible _ 

770 38 2.84 

143 18 6.37 

127 29 3.75 

265 42 2.58 

189 48 2.21 

46 61 1.71 

Ref. Whittaker (35) 

*s = o-o*g26 
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Table V. -Typical Shape Parameters for Fatigue Performance of High-Strength 
Steels Varying with Strength Ranges (i), (ii), and (iii) 

Data description 

(i) 161-200 ksi 

Alloy steels 

Intermediate alloys 

18% Ni maraging steels 

Stainless steels 

Austenitic stainless steel 

(ii] 201-240 ksi 

Alloy steels 

Intermediate alloys 

18% Ni maraging steels 

Stainless steels 

Austenitic stainless steel 

(iii) 241-280 ksi 

Alloy steels 

Intermediate alloys 

18% Ni maraging steels 

Stainless steels 

Austenitic stainless steel 

Ref. Whittaker (35) 

W 
c, 

* 
CN = rl 

-0.926 



Table VI .-Typical Shape Parameters for Fatigue Performance of Stainless 
Steels Varying with Strength (i) and Life (ii) 

Data description Number 
of groups 

314 
Negligible 

CN(%)* 

33 

rl 

All data 
(i) O-100 ksi 

101-160 ksi 
161-200 ksi 
201-240 ksi 
241-280 ksi 
281-320 ksi 
321-360 ksi 

3.29 

91 
204 

22 
37 

5.03 
2.90 

Negligible 

(ii) 102-lo3 cycles 66 18 6.49 
103-104 cycles 49 28 3.94 

104-6*(1014 cycles 109 39 2.77 
6*(10)4-4*(10)5cycles 66 32 3.38 
> 4*(1015 cycles 24 58 1.81 

T 

Table VI 1. -Typical Shape Parameters for Fatigue Performance of High-Strength 
Steels with Strengths Equal to or Less Than 240 ksi (il 

and Greater Than 240 ksi (ii) 

I I All data 
Data description 

/ 

(i) Strength < 240 ksi 502 31 3.51 
1 02-1 03 cycles 98 18 6.29 
103.104 cycles 72 26 4.24 
lO4-6-(1O)4 cycles 157 34 3.21 
6 *(lo)'-4.( lO)5 cycles 135 32 3.37 
>4*(10)5 cycles 40 54 1.94 

(ii) Strength >24O ksi 215 
102.103 cycles 45 
103.104 cycles 43 
104-60(lOI cycles 82 
6*(10)4-4*(10)5 cycles 39 
>4*(10)5 cycles Negligible 

q%)* rl 

49 2.17 

18 6.49 

34 3.24 
55 1.91 
78 1.31 

7 

Stainless steels 

Ref. Whittaker (35) 
* 
CN =n 

-0.926 
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Table VIII 

FATIGUE DATA FOR VARIOUS DETAIL SPECIFIED IN AISC CODE 

Data Provided by A.H.-S. Ang & S.H. Munse 
U. of Illinois (2) 

Detail m a 
No. cN 

I -9.770o 
2 -9.7780 

3 -2.7500 

4 -2.7500 

5 -2.7500 

6 -2.7500 

7 -2.7400 

8 -7.6180 

3 -7.4270 

10 -2.8800 

II -3.8430 

I2 -2.8950 

13 -3.2720 

14 -2.7700 

I5 -3.0300 

16 -3.7210 

17 -2.6700 

18 -2.6700 

19 -5.3070 

20 -2.7700 

21 -6.6810 

22 -2.7140 

23 -3.2460 

24 mj.2460 

25 -2.7400 

26 -3.7420 

27 -4.6520 

II .5l 0.56 

21.51 0.56 

3.86 0.35 
9.86 0.35 
8.60 0.21 

9.86 0.35 

9.38 0.49 

18.32 0.86 

16.$ 0.85 

9.57 0.49 

11.25 0.42 

9.71 0.55 
10.70 0.41 

3.33 0.46 

9.37 0.40 

10.83 0.67 

8.91 0.47 
8.91 0.47 

13.43 0.83 

9.33 0.46 

15.86 0.80 

9.49 0.30 

10.04 0.13 
10.04 0.13 

9.38 0.49 

10.38 0.33 
11.27 0.58 

Fatigue Curve 

NSm = A 
where, A = 1Oa 

cN = coefficient of vari- 
ation of cycles to 
failure 



Table IX 

A Statistical Summary of Some Tubular Joint Fatigue Data 

(For detail on these data sets, see Ref 39 and 41) 

Investigator 
Slope of S-N Medjan of cov of 

Cormaent Curve (m) K (K) K (C,) 

Marshall; 
AWS-X Data 

3.41 4.75ElO 1.82 

Marshall; AWS-X 0 ta 
(elastic range)(af 

amalgamated 
data 

4.42 1.55El2 1.36 

Marshall: corrosion 
data 

4.15 1.41E12 1.97 

Toprac and Louis K-joints 3.64 9.78ElO 0.65 

Kurobane and Konani K-joint 3.78 1.26El2 1.48 

Maeda et al. k-joint 2.94 3.09ElO 2.14 

Kurobane et al. T-joint 3.20 1.92E12 1.70 

Martin and McGregor T-joint 4.40 1.03E15 1.03 

Toprac and Louis T-joint 3.64 7.32Ell 0.82 

Oijkstra and de Back T-joint 
168 Inn 
dia chord 

4.12 2.36El2 1.32 

Oijkstra and de Back T and K. 457 ara 2.79 
dia chord 

l.llElO 0.98 

Oijkstra and de Back T and K. 914 inn 2.98 
dia chord 

8.51E9 0.81 

L;'Jf,u 
? 

iished T-joint Sample size 
n=24 

3.82 4.21ElO 0.50 

Unpu‘lished K-joint 
data b) s 

Sample size 
n=33 

2.89 2.77ElO 0.80 

Unpublished T a d 
joint data (a.b 7 

K Sample size 3.00 5.25ElO 0.73 
n=57 

An "improved" 3.22 1.29Ell 1.25 
version of 
previous set 

API RPLA (C mwntary 
P a) on Fatigue) 

Large scale 
K-joint 

4.38 4.60E12 0.73 

UK-DOE 
Guidance Notes 

"T curve” 
for tubular 
joints 

3.00 1.46ElO 0.67 

Notes: (aj Considered to be a reasonable data set for a fatigue reliability analysis 
(b) This collection of data represents a screened amalgamation of points 

from various investigators. The collection was provided by a member 
of the API Technical Advisory Conxnittee on this project. This amal- 
gamation has not been published and has not received approval for 
release by the sponsoring c-any. The results have been made 
available for research purposes only. 
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TABLE X 

THE GENERAL STRAIN-LIFE RELATIONSHIP FOR RQC-100 STEEL: 
STATISTICAL SUMMARIES FROM VARIOUS LABORATORIES 

(ASTM Round Robin Exercise) 

LAB N E ak(ksi) b Elf C 
cov kP) COVk,l COV (Np) COV We 1 

($1 ( !L (%I (0) - 
1 17 29500 159.85 -0.083 2.322 -.778 39.2 4.4 51.5 56.6 
2 8 30325 153.0 -0.077 1.398 -.704 19.8 2.1 20.4 27.4 
3 4 29964 257.09 -.134 . 563 -.578 9.9 20.7 17.3 306.4 
4 8 31995 118.75 -.053 . 392 -.604 12.3 2.5 20.4 50.7 
5 5 30560 131.04 -0.058 .643 -.649 21.7 5.3 33.9 114.2 
6 8 29500 175.9 -.081 3.002 -.707 24.1 2.8 30.8 35.1 
7 9 26167 158.39 -.081 1.006 -.679 16.7 3.7 24.0 48.0 
8 6 29500 125.44 -.052 .633 -.620 12.3 1.6 19.9 31.8 
9 8 29500 164.82 -.080 .990 -.707 8.5 2.3 12.1 29.4 

10 B 30000 132.06 -.061 1.345 -.704 13.0 4.1 18.5 76.6 
11 8 29350 147.66 -.066 1.533 -.693 9.9 4.4 14.4 74.3 
12 7 29500 134.63 -.066 .788 -.684 16.9 4.4 25.0 74.3 
13 a 31270 141.46 -.062 .796 -.659 12.3 2.1 18.7 34.4 
14 6 29500 153.46 -.084 .660 -.677 4.4 2.8 6.5 33.8 
15 10 29300 171.54 -.083 .964 -.651 12.3 9.2 18.9 155.8 
16 8 30450 227.70 -.lll . 491 -.610 23.6 11.3 39.6 134.6 

17 10 30770 142.81 -.071 .517 -.639 13.9 4.8 21.9 76.9 

18 10 29000 141.75 -.068 2.171 -.762 26.2 2.1 34.0 31.2 

All(a) 170 . 29680 148.65 -.071 1.23 -.718 53.3(c) 9.2(c) 79.0(c) 209.4(c) 
All (b) 148 29680 148.64 -.071 .861 -.667 29.6(c) 8.8(c) 45.7(c) 189.0(c) 

(a) Amalgamation of all data (additional data not included in data sets 1 through 18) 
(b) Screened amalgamation of data (data sets 1 through 18) 
(c) These values may be inappropriate for design purposes; they are unreasonably high because 

they reflect both uncertainties in material behavior and lab to lab variations. 



EXAMPLE High temperature fatigue data (sample size, n = 44) for 

Waspaloy B (a nickel base superalloy) is analyzed using the strain- 

life relationship. The plastic, elastic, and total strain-life 

least squares lines are given in Figs. 8, 9, and 10 respectively. 

The least squares lines were fitted using vertical deviations (X and Y 

reversed in Eqns. 14, 15, and 16). This was for statistical convenience 

as described below. The fit could be performed either way, but there 

are significant differences as described by Boardman ( 4). 

Also shown are the 1% EPI and the CL = 0.99, y = 0.95 lower toler- 

ance intervals. Either of these curves could be used as a design curve. 

These data points are very typical of strain-life data for a wide 

variety of metallic materials. The plastic and elastic data has a 

linear trend, and the data is homoscedastic (constant scatter band). 

Note that accurate measurements of small plastic strains are difficult and 

therefore some points below roughly ~~~ = 0.00025 which seem to violate 

the trend are questionable. 

In a reliability format, all of the parameters of the strain life 

relationship should, in general, be treated as random variables. This 

complicated format can be simplified by assuming that E, b, and c are 

constants; E is known to have little variability. Basic uncertainty in 

material behavior is described by treating a; and E; as random variables, 

the median and coefficient of variation of which can be computed as de- 

scribed above in the EPI discussion. 

But a+ and E; may be dependent random variables. Three possibilities 

exist: (1) no, they are independent, (2) a specimen weak in high cycle 
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Fig. 8 

An Example of Plastic Strain Life Curve 

WASPALOY 
(T = 1000 F) 

n = 44 

Tolerance 
(P = .Ol, 

.Ol) 

Interval 
y = .95) 

I_ 
I_ 

7 

Squares Line 

‘\\ + 4 
A\ 

\ ‘,+ t \ 
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Fig. 9 

An Example of an Elastic Strain Life Curve 

WASPALOY 
(T = 1000 F) n = 44 

Least Squares Line 

------- EPI (o = .Ol) 

Tolerance Interval 
(P = .Ol, y = .95) 



Fig. 10 

An Example of the Total Strain Life Curve 

WASPALOY 
(T = 1000 F) 

Least Squares Line 

------ EPI (a = .Ol) 

Tolerance Interval 
- (P = .Ol, y = .95) 



fatigue may also be weak in low cycle fatigue because of an inherent 

flaw or weakness, (3) a specimen may have relatively high ductility 

and low tensile strength, weak in high cycle fatigue and strong in 

low cycle fatigue (or vice versa). Failure points for the latter two 

cases in which a+ and E; would be dependent are illustrated in Fig. lla. 

This figure suggests that vertical deviations could be used to examine 

dependency. 

Vertical deviations from the least squares line are defined in 

Fig. lib. The plastic and elastic deviation for each specimen in the 

Waspaloy B data set is plotted in Fig. 12. For Case 2 behavior, the 

data would be concentrated in the 1st and 3rd quadrant, Case 3 in the 

2nd and 4th quadrant. The relative uniform spread suggests that it is 

not unreasonable to assume that o+ and E+. are independent. In summary 

the fatigue strength (strain level given cycle life) is given by the 

general strain life relationship of Eq. 2 where E=207 GPa(30x103ksi), 

b= -0.0843, c= -0.9126, a; and EC are lognormally distributed random 

variables. Using a 5% EPI, a+. has a median = 1839 MPa (266.7 ksi) and 

cov = 0.049; E; has a median = 3.47 and COV = 0.425. 

The fortuitous result with the Waspaloy allows us to avoid having 

to deal with dependent variables in a reliability format. But is it 

general? Clearly, the deviations should be examined for each material 

and condition. In another study, a sample of n=148 points of anal- 

gamated data on RQC-100 (see Table X) also produced a reasonably uni- 

form scatter of deviations as shown in Fig. 13. 
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Fig. 11 
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(a) Dev ations from least squares line 
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Fig. 12 

WASPALOY 
(T=lOOOF, n=44) 

Vertical Deviations (log basis) 

0 0 
a 

0 

0 0 

l 
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0 
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Fig 13 

~~~-100 (n=148) 

Vertical Deviations (log basis) 
I Plastic 

0 
n 

1 
0 
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A MODEL FOR THE DISTRIBUTION OF FATIGUE STRENGTHS AT HIGH CYCLE LIVES 

The number of load cycles experienced during the lifetime of a wide 

variety of structural and mechanical components may be in the range from 

lo7 to 10" cycles. Often it is necessary for the designer to know the 

distribution of fatigue strength (the stress endurance limit) for a 

given life N out in the high cycle region where the S-N curve is as- 

sumed to be flat. 

A number of statistical methods of estimating the fatigue strength 

at a given cycle life are available. Such techniques, summarized by 

Reemsnyder (28), Lipson and Sheth (21), Little (23), and Collins (5 ) 

include the survival method, and its more refined form, the Probit method, 

the staircase or up-and-down method, the step-test method, and the Prot 

method. These procedures typically require long cycle lives and rela- 

tively large sample sizes; testing tends to become expensive. 

Fatigue testing is expensive, partly because of the length of time 

that it takes to apply these long cycle lives. Described as follows is 

an accelerated test method which has been used successfully. Stress levels 

are chosen so that specimens fail at relatively short lives (typically lo5 

to 1OC cycles). The data are extrapolated to higher cycle lives. 

Consider a constant amplitude high cycle fatigue test in which 

pairs of data (S;,Ni), i = 1, n are collected. Data from a hypothetical 

test are shown in Fig. 14. An endurance limit is assumed as illustrated 

by the horizontal segment of this S-N curve. It is assumed that the en- 

durance limit occurs at lo7 cycles. Furthermore, it is assumed that the 

distribution of S at a given N at lo7 cycles will be the same for any 

higher life cycle as shown in Fig. 14. 
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Figure 14 

Stress Amplitude 

A MODEL FOR HIGH CYCLE FATIGUE 

(Typical Use; Machine Components) 

GOAL OF ANALYSIS: Determine the 
distribution of S (strength at 

THEN ASSUME THAT THE DISTRIBUTION 
OF S AT HIGHEB CYCLE LIVES IS THE 
SAME AS AT 10 CYCLES 

I I 

l/2 CYCLES TO FAILURE, N 109 

STRESS ENDURANCE LIMIT ;"' LDESIGN LIFE 
ASSUMED AT lo7 CYCLES 



A fatigue test plan specifies a termination of the loading on a 

component which does not fail before a given life. This specimen is 

called a "runner" and the data points are shown by the triangles of 

Fig. 14 in which the test was suspended at lo7 cycles. This data 

must be included in the analysis. 

To obtain a random sample of S, now defined as a random variable 

denoting the fatigue strength at lo7 cycles, the following procedure 

is used. It is assumed that the fatigue strength for a given spec- 

imen is defined by a straight line (failure trajectory) connecting the 

fatigue strength coefficient at 0; at l/2 cycle and (Ni,Si) as shown 

in Fig. 14. The data point (solid point in Fig. 14) is projected to 

the life cycle where the endurance limit occurs, which is assumed here 

to be lo7 cycles. The sample point (circle in Fig. 14) is denoted as 

si . By such a scheme one can obtain a random sample of S. 

Incomplete failure data consisting of levels on failed components 

and unfailed components are called "multiply censored." This suspended 

data can be analyzed utilizing the "median rank concept" and suspended 

items approach (21). The median ranks extracted from this approach will 

be used to establish the empirical distribution function of fatigue 

strengths. 

Lipson and Sheth have described a method for obtaining the empirical 

distribution function from a random sample which includes sus 
'i 

ended items 

(21). This method is a combination of a modified sudden death approach 

and Johnson's concept of median ranking . The method involves 
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an adjustment of the order number based upon the position of the sus- 

pended items. Step-by-step instructions are illustrated by the 

following: 

1. Suppose that the failure data on n specimens consist of the 

failure stresses (at 10' cycles for the failed units and the stress 

levels for the unfailed units (see Table XI and Fig. 15). Order the 

failed units in the sample from the smallest to largest failure stresses 

as shown in Column 3. 

2. Obtain the number of suspended items-which precede each 

failed unit (Column 2). 

3. Determining the "new increment" of each failed unit by using 

the formula 

(n + 1) - previous failure order number 
New Increment = 1 + number of items following present suspended set 

The new increment is recalculated each time a suspension is encountered 

in the ordered stress table (see Column 4). 

4. Calculate the order number for each failed unit. This calcu- 

lation is done by simple addition of the last order number and the new 

increment (Column 5). 

5. Obtain the median rank (empirical distribution function) of the 

order number for each failed unit by the formula (Column 6). 

The empirical distribution function F(S(j)) of Column 6 is used as 

a basis for selecting a suitable statistical model. 
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Table XI 
Analysis of Suspended Fatigue Data 

EXAMPLE: Given a sample of fatigue failure stress at lo7 cycles (in ksi); 
n = 13; the data are ordered. 

11.7 12.2 12,5 12.7 12.8 13.3 13.8 14.0* 14.0* 14.0" 14.4 14.7 15.0* 

*Specimen did not fail at lo7 cycles. 

Organize data as shown below: 

(11 (2) (3) (4) (5) (f-5) 
Failure Suspended Stress New Order Median Rank 
Number I terns 

Preceeding Failure '(j) 
Increment** Number** 

(j) F(S(.)) = 1 ; ;I; 

11.7 1.00 1.00 0.052 
12.2 1.00 2.00 0.127 
12.5 1.00 3.00 0.201 

12.7 1.00 4.00 0.276 

12.8 1.00 5.00 0.351 
13.3 1.00 6.00 0.425 

13.8 1.00 7.00 0.500 

14.4 1.75 8.75 0.631 
14.7 1.75 10.50 0.761 

**An example of how the new increment and order number are calculated: 

The eight failure is preceded by three suspended items. Therefore, to 

find the increment, as shown in Step 3 above, 

Thus, the new order number is j = 7.00 + 1.75 = 8.75 

The remaining order numbers are determined by using the same procedure and 

F = 8.75 - 0.3 = o 63, 
13 + .4 l 
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The empirical distribution function (Column 6) produces a linear plot 

on lognormal paper as shown in Fig. 16. Assume that fatigue strength S is 

lognormally distributed. Estimates of the lognormal parameters for S are 

computed as suggested in Fig. 16. 

Unfortunately, the distributions of the estimators are not known so 

that the tolerance interval and EPI concepts cannot be used to provide ac- 

curate statistical summaries for design purposes. However, as a first ap- 

proximation they can provide design values which do at least recognize 

uncertainties in estimators. The estimated lower tolerance limit for 

P = .99 and y = .95 and for x = 2.62, ux = 0.107 and n = 13 is XL = 2.228 

and SL = exp (XL) = 9.28 ksi (26). This value is plotted on Fig. 15. 

The equivalent prediction interval for a single variable is discussed 

in Ref. 40. Again the assumption is made that the distribution of the 

estimators is the same as for a complete sample. It follows CL = 0.01 and 

n = 13 that g (.Ol, 13) = 1.18, and the equivalent standard deviation is 

aO = 0.126. The lower 1% EPI is XL = 2.325, and SL = exp (XL) = 10.23 ksi 

(38,40). This value is also shown in Fig. 15. For a reliability analysis, 

S can be assumed to be lognormal with median ? = 13.7 ksi and Cs = 12.6% (40). 

Fatigue analysis using this extrapolation approach depends on where 

the endurance limit is chosen. For steels, it is generally considered 

that the knee of the S-N curve falls below 10' cycles so the choice of 

lo7 may tend to produce conservative statistics. 

SUMMARY 

Metallic materials exhibit very significant scatter in fatigue data. 

It is necessary to provide a statistical summary of such data from which 

designers can make decisions which balance risk and cost. This paper 

50 



Figure 16 

Lognormal Probability Plot for Fatigue Strength S 
beyond 10' Cycles from the Oata of Table XI 
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Statistics on X (computed from the least squares analysis of the probability plot) 

pX 
= 2.62 

uX 
= 0.107 

Statistics on S, 

Median (S) = s" = exp (P,) = 13.7 ksi 

COV of S = Cs = Jexp (~~2)'1 = 0.107 

Cs = 0.126 using uo, the EPI concept 
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summarized some methods of analysis of fatigue data and presented examples 

which illustrate the general character of fatigue data for materials. 

No specific recommendations are made regarding how data should be treated, 

but general information is presented which should provide guidance in 

constructing strategies for fatigue avoidance. 

General conclusions and observations are as follows. 

1. The method of analysis of fatigue data depends in part how 

the fatigue failure condition is defined as well as the con- 

sequences of failure and the cost of overdesign. 

2. The simple linear model (on a log basis) can be used with 

accuracy for the general strain-life relationships, strainrange 

partitioning data, high cycle welded joint data, and other 

applications. 

3. Two methods of analyzing S-N data are presented; (a) the 

design curve which is a lower bound on the safe side of the data, es- 

tablished from a tolerance interval or equivalent prediction interval 

(EPI), and (b) parameters of a characteristic equation presented as 

random variables so that fatigue strength can be treated as a random 

variable in a reliability format. 

4. The concept of failure trajectories was described as a model 

for defining the distribution of N given S for the whole range of S, 

and for converting to the distribution of S given N. This convenient 

model can be useful in other applications involving strength data. 

5. Typical values of the COV for fatigue data for a wide variety 

of metallic materials 

N, Cycles to failure (life given stress) 30 to 75% 
S, Fatigue Strength (stress given life) 5 to 15% 

52 



For many smooth specimen data, the COV of N is about 40%. The COV of S 

beyond the endurance limit is about 10%. 

6. The statistical distribution of the least squares estimators 

is an important consideration in constructing a design model from those 

small sample sizes which are common in fatigue. As a rule, if n 2 7, 

the influence of estimator variability is not excessive although it 

should be considered for n up to 50. 

7. Based on a fairly limited number of experiences, it appears that 

basic similarities exist in the general character of fatigue data. 

Aluminum and titanium alloys, steels, and nickel base superalloys (at 

high temperatures) seem to exhibit the same linear and homoscedastic 

trends in strain life data, and also have about the same amount of 

scatter. 
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NOTATION 

a 

,. 
a 

a 
0 

A 

Ata) 

b 

ii 

B 

B(a) 

C 

C 

cA 

cN 

cov 

cdf 

E 

y intercept of Y,(x) 

least squares estimate of a 

. 
normal variate with mean a and standard deviation a0 

coefficient in S-N curve; Eq 1 and 20 

Eq 26 

fatigue strength exponent; also slope of Ye(x) 

least squares estimate of b 

coefficient in S-N curve; Eq 3 

Eq 26 

fatigue ductility exponent 

coefficient in strain-life equation; Eq 6 

coefficient of variation of A 

coefficient of variation of N 

coefficient of variation 

cumulative distribution function 

modulus of elasticity 

E(YIX) expected value of Y given X 

EPI equivalent prediction interval 

fN/S pdf of N given S 

fs,N pdf of S given N 

FN(x) cdf of N 
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NOTATION (continued) 

s(n,a) reduction function 

K 
ayy 

m 

n 

N 

Ni 

N* 

ND 

pdf 

S 

S 

'i 

'e 

sO 

'n 

TPW 

X 

Y 

yO 

v 

tolerance factor 

exponent of S-N curve; Eq 1 and 20 

sample size 

cycles to failure 

ith observed value of N 

EPI S-N curve 

design S-N curve 

probability density function 

estimate of u 

amplitude (or range) of fatigue stresses 

ith observed value of S 

stress endurance limit 

mean stress 

ultimate strength 

three parameter Weibull 

log (A&) 

log N 

expected value of Y given X 

least squares estimate of Y, 
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NOTATION (continued) 

Z a standard normal variate 

a population fraction; 1OOa = % less than 

B scale parameter in Weibull cdf 

confidence level 

strain range 

normal random var 

strain amplitude 

fatigue ductility 

,iable with mean zero and standard dev 

coefficient 

exponent in strain-life equation; Eq 6 

shape parameter in Weibull cdf 

location parameter in Weibull cdf 

standard deviation of Y given X 

equivalent standard deviation 

fatigue strength coefficient 

iation of one 
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