
NASA Contractor Report 172122

NASA-CR-172122
19830021781

Development of Software
Fault-Tolerance Techniques

Peter Michael Melliar-Smith

SRI International
Menlo Park, California 94025

Contract NASI-15480

March 1983

NI\SI\

lIBRf\RV COpy
,: U I ? 1 1983

LANGLEY RESEARCH CENTER
LIBRARY, NASA

HA~~?TONL VIRGIW8

National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23665

1111111111111 1111 11111/1111/11111111111111111
NF01851 ------------

https://ntrs.nasa.gov/search.jsp?R=19830021781 2020-03-21T02:06:44+00:00Z

NASA Contractor Report 172122

Development of Software
Fault-Tolerance Techniques

Peter Michael Melliar-Smith

SRI International
Menlo Park, California 94025

Contract NAS1-15480

March 1983

NI\S/\
National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virqinia 23665

1

Table of Contents

1 INTRODUCTION 1
2 THE RELATIONSIllP BETWEEN SOFTWARE FAULT TOLERANCE. 2

AND OTHER APPROACHES TO SOFTWARE RELIABILITY
2.1 Fault Tolerance and Fault Intolerance 2
2.2 Systems and their Failures 3
2.3 Error and Faults 3
2.4 Approaches to Software Reliability 5
2.5 The Use of Recovery Blocks to Allow Evolution without Loss of 7

Reliability I

3 A BRIEF DESCRIPTION OF THE RECOVERY BLOCK TECHNIQUE 7
3.1 Acceptance Tests 10
3.2 Alternates 11
3.3 Restoring the System State 11

4 A PROBABILISTIC ANALYSIS OF THE RELIABILITY OF RECOVERY 12
BLOCKS

4.1 The Effect of Correlated Faults 16
5 ACCEPTANCE TEST DESIGN 17
6 ON CACIDNG MECHANISMS FOR ASYNCHRONOUS MULTILEVEL 18

SYSTEMS
6.1 Fully Typed Systems Without Resource Mapping 18
6.2 Fully Typed Systems with Recursively Nested Resource Mapping 19

7 RECOVERY IN THE PRESENCE OF ASYNCHRONOUS INTERACTION 21
8 PROVISION of RECOVERY BLOCKS on the BENDIX BDX930 22

PROCESSOR
8.1 Modification of the Bendix BDX930 23
8.2 Performance and Resource Implications of Recovery Blocks 24

9 A PROPOSAL FOR RECOVERY BLOCKS FOR FLIGHT CONTROL 26
PROGR.AM:S ON THE BENDIX BDX930 PROCESSOR

9.1 Cache Stack Entries 27
9.2 Special Recovery Block Instructions 28
9.3 Use of Recovery Block Instructions 35

10 A STORAGE MANAGER FOR A SIMPLE OPERATING SYSTEM 37
11 CONCLUSIONS 59

Figure 1:
Figure 2:
Figure 3:
Figure 4:

Figure 5:
Figure 6:
Figure 7:
Figure 8:
Figure g:
Figure 10:
Figure 11:
Figure 12:
Figure 13:
Figure 14:

Figure 15:
Figure 16:

11

List of Figures

A simple recovery block
A more complex recovery block
A fault-tolerant sort program
A recovery block with alternates which achieve different, but still
acceptable, though less desirable results.
The Probabilistic Analysis of a Recovery Block
The Arrangement of the Main Stack and Cache Stack
The Effect of a Store Assignment on the Cache
The Effect of the Prior Value Instruction
The Effect of a Recovery Block Entry Instruction

The Effect of an Acceptance _ Test _ Passed Instruction
An Acceptance-Procedure Entry Operation
An Acceptance Procedure Exit
The Effect of a Block-entry Marker during a Recovery Scan
The Effect of a Recovery Procedure Entry during a Recovery
Scan
The Code Generated for a Recovery Block
Cache Structures for a Resource-Management Procedure

8
9

11
11

13
27
29
30
31
32
32
33
34
34

35
36

1

1 INTRODUCTION

As computers become more widely used, and in particular as they become used in more
safety critical applications, the reliability of the computer system becomes more
important. NASA and FAA have established stringent reliability requirements for
computer systems performing critical functions in aircraft control applications, and
similar reliability requirements exist in nuclear power plant control, medical intensive
care units, air traffic control, and certain military applications. We should also note a
need for high levels of reliability in applications involving the distribution of very large
numbers of relatively inexpensive units, where repair or replacement of defective systems
could become expensive. The most immediate example of such an application is the use
of small computers to control automobile engines.

Reliable operation depends on both correct design and on fault free manufacture and
operation of that design. Traditionally, because designs were simple and hardware
components were of only modest reliability, the term -reliability- has been associated
with hardware reliability and the absence of failed hardware components. The Flight
Electronics Division of NASA Langley Research Center has sponsored the development
of two highly reliable computer systems, SIFT [51 and FTMP [3], designed to achieve a
very high degree of immunity to hardware component failures. From these designs, it is
clear that the -hardware- reliability problem is soluble. But as systems become more
complex, and as hardware components become more reliable, it is clear that residual
defects are becoming a significant, even a limiting, factor ill the reliability of systems.
Here design encompasses the design of the hardware, the design and programming of the
software, and the overall system design, requirements analysis, and specification.
Because the most complex portions of our systems are implemented in software, it is in
the area of the software that most attention has been given to design defects and to
techniques of fault tolerance that can reduce the effect of design errors on system
reliability. However, as the hardware of our systems becomes increasingly complex,
design fault tolerance techniques currently proposed for software may become applicable
within the hardware design as well.

In this report, we first consider the nature of faults, errors and failures, fault tolerance
and intolerance, and the assumptions made by different possible approaches to correct
operation. In Section 3 we describe the recovery block techniques upon which our
research has been based. Section 4 contains a probabilistic analysis of the reliability of
systems containing recovery blocks, and a discussion of the effects of correlated design
errors on that reliability. In Section 4 the importance of very accurate acceptance tests
is demonstrated. Section 5 discusses the derivation of acceptance tests from software
specifications, showing that appropriate specification styles permit the construction oC
rigorous acceptance tests without undue costs. Section 6 describes possible recovery
block cache mechanisms Cor complex type and process structures such as are found in
many modern systems. We show that recovery blocks are quite consistent with these
modern program structuring techniques. Section 7 investigates the recovery of systems
of asynchronous interacting processes, still a major problem area for the recovery block
approach.

Sections 8 and 9 discuss and describe a design for the implementation of recovery blocks,
using microprogram, on the Bendix BDX930 processor. Sections 8 and 9 show how to
take advantage can be taken of the characteristics of flight control programs to simplify
the recovery block mechanisms and thus obtain an efficient implementation with only
limited hardware cost. Section 10 contains an example of the use of recovery blocks in a

2

simple operating system, and illustrates the use of many of the techniques discussed in
sections 4 through 7. Finally, Section 11 contains our conclusions.

2 THE RELATIONSIDP BETWEEN SOFTWARE FAULT
TOLERANCE AND OTHER APPROACHES TO SOFTWARE
RELIABILITY

2.1 Fault Tolerance and Fault Intolerance

Avizienis [1] has distinguished two classes of approaches to reliability, those based on
fault tolerance, and those based on fault intolerance. Approaches based on fault
tolerance are invoked after the occurrence of the fault and are intended to ensure the
continued successful operation of the system despite the occurrence of the fault.
Approaches based on fault intolerance depend on action taken in advance to ensure that
the fault does not occur. The nature of the fault hazard being considered will determine
which approach is most likely to be effective. The two approaches are not, of course,
mutually exclusive and any real highly reliable system will contain elements of both
approaches.

Traditionally hardware designers have used fault-tolerance techniques to protect their
systems, because hardware component faults have been the primary cause of unreliability
and cannot be entirely precluded. Software designers, in contrast, have used fault
intolerance techniques to eliminate, or at least reduce, the impact of software design
faults on their systems. Software does not suffer from the kind of component
degradation in service that makes a fault-tolerance approach essential, and the level of
reliability obtained from fault-intolerance methods has sufficed. However, as hardware
has become more complex, increasing problems of hardware design faults have occurred,
and methods of fault intolerance are being borrowed from software development.
Conversely as software is being required to achieve higher levels of reliability than can
be obtained from current methods of fault intolerance, so methods of fault tolerance are
being considered for software.

It is inevitable that a complex system will contain, at all times, a number of potential
faults. There may be faults in the hardware and in the operating system, in the logic
design and in the hardware components, in the application system design and
specification and in the application programming, in the actions of the operations staff
and of the maintenance engineers, and in the system's environment.

It is particularly important to note that the information content of the system may not
be correct. Incorrect information in a system is particularly serious, because that
information may disrupt subsequent processing, resulting in further incorrect information
and yet more disrupted processing. Fault-tolerance techniques may be able to protect a
system against incorrect information.

It is also appropriate to recognize that design faults may have significantly more serious
consequences than component failures. A component failure is usually confined to that
component and possibly a few other closely associated components. It may even be
possible to enumerate the consequences of component failures. A design error, however,
demonstrates that the design is not understood, and, of course, specific design errors
cannot be anticipated. The possible failure modes are much wider for design errors and

3

cannot be enumerated. In particular a design error in one part of a system might
damage the processing of some other part of the system apparently quite unconnected
with it. The safe assumption is that the behavior of a subsystem affected by a design
error can be quite arbitrary, including the generation of plausible but subtly misleading
results.

2.2 Systems and their Failures

Before proceeding further, it is appropriate to consider more carefully what we mean by
faults, errors, and failures.

We define a system as a set of components together with their interrelationships, which
system has been designed to provide a specified service. The components of the system
are themselves systems, and we term their interrelationships the algorithm of the system.
There is no requirement that a component provide service to a single system; it may be a
component of several distinct systems. The algorithm of the system is, however, specific
to each system individually.

This definition of 'system', with its insistence that the service provided must be specified
(but not necessarily prespecified), is intended to exclude systems which are -intelligent
in the sense of being capable of determining their own goals and algorithms. At present,
intelligent systems are not understood sufficiently to permit consideration of their
reliability.

The internal state of a system is the aggregation of the external states of all its
components. The external state of a system is the result of a conceptual abstraction
function applied to its internal state. During a transition from one external state to
another external state, the system may pass through a number of internal states for
which the abstraction function, and hence the external state, is not defined. The
specification defines only the external states of the system, the results of these
operations, and the transitions between external states caused by these operations, the
internal states being inaccessible from outside the system.

The service provided by a system is regarded as being provided to one or more
environments. Within a particular system, the environment of a given component
consists of those other components with which it is directly interrelated.

A failure of a system occurs when that system does not perform its service in the manner
specified, whether because it is unable to perform the service at all, or because the
results and the external state are not in accordance with the specifications. A failure is
thus an event. There is, however, no implication that the event is actually recognized as
having occurred. For example, if an environment does not make full use of that
particular result of the system then the failure to provide it will have no effect.

2.3 Error and Faults

In contrast to the simple, albeit very broad, definition of 'failure' given above, the
definitions we now present of 'error' and 'fault' are not so straightforward. This is
because they aim to capture the element of subjective judgment which we believe is a
necessary aspect of these concepts, particularly when they relate to problems which
could have been caused by design inadequacies in the algorithm of a system.

4

We term an internal state of a system as an erroneous state when that state is such that
there exist circumstances, within the specification of the use of the system, in which
further processing, by the normal algorithms of the system, will lead to a failure which
we do not attribute to a subsequent fault. The subjective judgment that we wish to
associate with the classification of a state as being an erroneous one derives from the use
of the phrases ·normal algorithms· and ·which we do not attribute· in this definition
- however further definitions are required before these matters can be discussed properly.

The term error is used to designate that part of the state which is ·incorrect.· An error
is thus an item of information, and the terms ~, ~ detection, and ~ recovery
are used as casual equivalents for erroneous state, erroneous state detection, and
erroneous state recovery.

A fault is the mechanical or algorithmic cause of an error, while a potential fault is a
mechanical or algorithmic construction within a system such that, under some
circumstances within the specification of the use of the system, that construction will
cause the system to assume an erroneous state. It is evident that the failure of a
component of a system is (or rather, may be) a mechanical fault from the point of view
of the system as a whole.

A system can be designed to be fault-tolerant by incorporating into it abnormal
algorithms which attempt to ensure that occurrences of erroneous states do not result in
later system failures. The degree of fault-tolerance will depend on the success with
which erroneous states corresponding to likely faults are identified and detected, and the
success with which such states are repaired.

It should now be clear that the generality of our definitions of failure and fault has the
intended effect that the notion of fault encompasses such design inadequacies as a
mistaken choice of component, a misunderstood or inadequate specification (of either the
component, or the service required from the system) or an incorrect interrelationship
amongst components (such as a wrong or missing interconnection, in the use of hardware
systems, or a program bug in software systems), as well as, say, hardware component
failure due to aging.

Note that the definition of an erroneous state depends on the subdivision of the
algorithm of the system into normal algorithms and abnormal algorithms. These
abnormal algorithms will typically be the error-recovery algorithms. There are many
systems in which that subdivision, and hence the designation of states as erroneous, is a
matter of judgment.

For example, in a storage system utilizing a Hamming Code, one may regard the
correction circuits as error recovery mechanisms and a single incorrect bit as an error.
Alternatively the correction circuits may be regarded as a normal mechanism, and thus a
single incorrect bit would not be regarded as an error, though two incorrect bits would
be.

Note also that a demonstration that further processing can lead to a failure of the system
indicates the presence of an error, but does not suffice to locate, a specific item of
information as the error. Consider a system affected by an algorithmic fault. The
sequence of internal states adopted by this system will diverge from that of the ·correct·
system at some point, the algorithmic fault being the cause of this transition into an
erroneous state. But there can be no unique correct algorithm. It may be that anyone
of several changes to the algorithms of the system could have precluded the failure. A

5

subjective judgment as to which of these algorithms is the intended algorithm determines
the fault, the items of information in error, and the moment at which the state becomes
erroneous. Some such judgements may, of course, be more useful than others.

The signiCicance of the distinction between faults and errors may be seen by considering
the repair of a data-base system. Repair of a fault may consist of the replacement of a
failing program (or hardware) component by a correctly functioning one. Repair of an
error requires that the inCormation in the data base be changed from its currently
erroneous state to a state which will permit the correct operation of the system. In most
systems, recovery from errors is required, but repair of the faults which cause these
errors, although very desirable, is not necessarily essential for continued operation.

2.4 Approaches to Software Reliability

It is appropriate to compare three approaches that can be used to obtain improved
software reliability. Program testing and program proof are examples of fault
intolerance while Cault-tolerant software using recovery blocks is, oC course, an example
of fault tolerance. Each of these approaches is effective but each of them has its
limitations. Each of these approaches depends on certain assumptions. Were these
assumptions justified, then each approach would be able to assure any desired level of
reliability. However, the assumptions are seldom, perhaps never, entirely justified, and
flaws in those assumptions leave opportunities for system unreliability. When one seeks
to meet an exceptional reliability requirement, one must consider carefully the validity of
the assumptions one is making.

When we seek to validate a program by testing, we assume:

• A correct speciCication of the system to be implemented

• The environment, simulated or real, is correct

• The set oC test cases is sufficient, and

• Errors will be recognized.

Clearly the weakest of these assumptions is that the set of test cases is suCCicient. A very
large number oC tests, far beyond any feasible test program, would be required. Work
has been done on the generation of comparatively small test sets, by analysis oC the
program. These methods involve techniques, and assumptions, very similar to those
required Cor program proof. The assumption that errors will be recognized is also weak,
Cor, in many cases of system failure, it is found that test cases had also triggered the
program fault but that the resulting error had not been recognized.

When we seek to validate a program by proof, by the closely related techniques of
Cormal program development from its speciCication, we assume:

• A correct speciCication oC the system to be implemented

• A correct specification of the environment and the controlled equipment

6

• A correct specification and implementation of the programming language and
of the computer

• An implementation of the proof is possible, and

• The proof is sound.

Here, a very great amount of work on the specifications and the proof may significantly
increase our confidence that the assumptions are justified. However these assumptions
are much further removed from the actual system, and that distance must itself
introduce some uncertainty.

\Vhen we seek to enhance the reliability of a program by use of software fault tolerance,
such as recovery blocks, we assume:

• A correct specification of the system to be implemented

• Recognition of errors (by the acceptance tests)

• Some aspects of the specification of the computer concerning the recovery
mechanism, and

• Independence between alternate blocks, and independence of the alternate
blocks from the acceptance tests.

Here the primary concern must be that the assumption of independence is unjustified.

Comparison of the assumptions, for each of these three approaches to improving
program reliability, shows that each pair of the approaches has assumptions in common
and thus has common vulnerabilities. But only one assumption is common to all three
approaches, that of the correct specification of the system to be implemented. Any
errors in that specification will be faithfully implemented in the programs, enforced by
our validation methods, and foiled by failure of the actual system in service. Our
concern over the assumption that the specification is correct is increased because the
specifications are long, complex, and highly detailed, and are written in a language quite
unfamiliar to those best able to determine what the behavior of the system should be.

lt is possible to write much more abstract and general statements about the behavior of
the system, i. e., the formal requirement definitions. These requirement definitions can
be expressed in a form that much more closely matches the user's perception of his needs
from the system, but it is difficult to ensure that all of his needs have been expressed as
formal requirements. Further, the very abstract nature of these requirements causes
technical difficulties in expressing them and in validating them. In principle the three
approaches still apply though testing is less likely to be effective. The proof approach
now involves a proof that the system specifications satisfy the requirement definitions, a
quite lengthy and difficult proof for which mechanical assistance is at present
unavailable. The software fault-tolerance approach is directly applicable, using the user
requirements as a source of acceptance tests, but may involve difficulties because many
requirement definitions encompass the entire system, and recovery will be expensive.

Once we are satisfied with the specifications of the system, it is clear that the highest

7

reliability is obtained through the use of all three approaches, testing, proof, and
software fault tolerance. Only by the use of all three approaches can we avoid common
assumptions whose invalidity might be a source of unreliability.

2.5 The Use of Recovery Blocks to Allow Evolution without Loss of
Reliability

Let us envisage that the flight-control system is initially developed and validated using
very stringent methods at great expense, for instance using formal-proof techniques.
Both a primary alternate and an acceptance test would be so validated. These initial
versions of the flight-control programs are likely to be relatively simple, having been
constrained by the limitations of the development and validation methods. Thus, while
they are certain to be safe, they are liable to be deficient in other properties of
importance to the aircraft manufacturer and the airlines, properties such as ride and fuel
economy. It is therefore inevitable that modifications and elaborations to these programs
will be required, and there is a risk that the modified versions of the programs may not
be as reliable as the original, simpler and more highly validated, programs.

However, as suggested by NASA personnel, the use of Recovery Blocks, as described in
the following section, could allow highly validated acceptance tests and alternates to be
retained at all times, and any improved version permitted only as an alternate, say the
primary one. Such a use of Recovery Blocks would insure that the relia.bility of the
system is always protected by a fully validated acceptance test and alternate, while
allowing some opportunity to develop improved versions of the flight control programs.

3 A BRIEF DESCRIPTION OF THE RECOVERY BLOCK
TECHNIQUE

A recovery block [4] consists of a conventional block which is provided with error
detection (an acceptance test) and zero or more stand-by spares (the additional
alternates). A possible syntax for recovery blocks is as follows:

<recovery block>::=ensure<acceptance test> hI
<primary alternate>
<other alternates> else ~

<primaryalternate>::=<alternate>

<other alternates>::=<empty>l<other alternates>
else hI <alternate>

<alternate>::=<statement list>

<acceptance test>::=<logical expression>

The primary alternate corresponds exactly to the block of the equivalent conventional
program, and is entered to perform the desired operation. The acceptance test, which is
a logical expression without side-effects, is evaluated on exit from any alternate to
determine whether the alternate has performed acceptably. A Curther alternate, if one

8

exists, is entered if the preceding alternate fails to complete (e.g., because it attempts to
divide by zero, or exceeds a time limit), or fails the acceptance test. However, before !!!!.
alternate is §Q entered the state of the process is restored to that current just before
entry to the primary alternate. If the acceptance test is passed, any further alternates
are ignored and the statement following the recovery block is the next to be executed.
However, if the last alternate fails to pass the acceptance test then the entire recovery
block is regarded as having failed, so that the block in which it is embedded fails to
complete, and recovery is then attempted at that level.

A: ensure AT

b AP : begin

< program text>

end

r~
AQ : begin

<program text>

end

else error ---

Figure 1: A simple recovery block

In the illustration of a recovery block structure in Figure 1, double vertical lines define
the extents of recovery blocks, while single vertical lines define the extents of alternate
blocks, primary or otherwise. Figure 2 show that the alternate blocks can contain,
nested within themselves, further recovery blocks.

Consider the recovery block structure shown in Figure 2. The acceptance test BT will
be invoked on completion of primary alternate BP. If the test succeeds, the recovery
block B is left and the program text immediately following is reached. Otherwise, the
state of the system is reset and alternate BQ is entered. If BQ, and then BR, do not
succeed in passing the acceptance test, the recovery block B as a whole, and therefore
primary alternate AP, are regarded as having failed. Therefore, the state of the system
is reset to that current just before entry. to AP and alternate AQ is attempted.

Deferring for the moment questions as to how the state of the system is reset when
necessary, the recovery block structure can be seen as providing a very general
framework for the use of stand-by sparing. There is no need for, indeed no possibility of,
attempts at automated error diagnosis because the system state is reset after an error,
deleting all effects of the faulty alternate. Once the system state is reset, switching to
the use of an alternate is merely a matter of a simple transfer of control.

g

A:ensure AT
Qy AP:begin declare Y

< program text>
B:ensure BT

end

r BP:begin declare U
<program text>

end
else Qy BQ: begin declare V
I <program text>
else Qy BR:begin declare W
I <program text>
I end
else ~
<program text>

else Qy AQ:begin declare Z
<program text>

else error ---

C:ensure CT

r CP:begin
<program text>

end
else Qy CQ:begin
I <program text>
I end
else~

D:ensure DT

~r DP:b~~:ogram text>

end
else error ---

end

Figure 2: A more complex recovery block

The concept of a recovery block in fact has much in common with that of a sphere of
control, as described by Davies [2). However, we have limited ourselves to preplanned
error recovery facilities and base all error recovery on automatic reversal to a previously
reached recovery point. Once a process has • committed • itself by accepting the results
of a recovery block, the only available form of recovery from an error within that block
involves a more global process reversal, to the beginning of an enclosing recovery block
whose results have not yet been accepted. In contrast, Davies is prepared to allow for
the possibility of recovery following commitment, by means of programmer-supplied
• error compensation algorithms·.

The utility of the recovery block scheme for stand-by sparing in software rests on the

10

practicability of producing useful acceptance tests and alternates, and on the cost of
resetting the system state. We will discuss each of these points in turn.

3.1 Acceptance Tests

The function of the acceptance test is to ensure that the operation performed by the
recovery block is satisfactory to the program which invoked the block. The acceptance
test is therefore performed by reference to the variables accessible to that program,
rather than variables local to the recovery block since these can have no effect or
significance after exit from the block. Indeed the different alternates will probably have
different sets of local variables. There are no separate acceptance tests for the different
alternates. The surrounding program may be capable of continuing with any of a
number of possible results of the operation, and the acceptance test must establish that
the results are within this range of acceptability, without regard for which alternate can
generate them.

There is no requirement that the test be, in any formal sense, a check on the absolute
'correctness' of the operation performed by the recovery block. Rather it is for the
designer to decide upon the appropriate level of rigour of the test. Ideally, the test
ensures that the recovery block meets all aspects of its specification that are depended on
by the program text that calls it.

When an acceptance test fails, all the evidence is hidden from the alternate that is then
called, but a detailed log can be kept of such incidents for off-line analysis. Some
failures to pass the acceptance test may be spurious, because a design inadequacy in the
acceptance test itself has caused an unnecessary rejection of the operation of an
alternate. The execution of the program of the acceptance test itself might suffer an
error and fail to complete. Such occurrences, will be rare, since the aim is to have
acceptance tests which are much simpler than the alternates they check, and are treated
as failures in the enclosing block. Like all other failures they can also be recorded in the
error log. Thus, the log provides a means of finding these two forms of inadequacy in
the design of the acceptance test. The remaining form of inadequacy, that which causes
the acceptance of an incorrect set of results, is, of course, more difficult to locate.

When an acceptance test is being evaluated, any non-local variables that have been
modified must be available in their original as well as their modified form because of the
possible need to reset the system state. For convenience and increased rigour, the
acceptance test is allowed to access variables in either their modified value or their
original (prior) value. A further facility available inside an acceptance test could be a
means of checking whether any of the variables that have been modified have not yet
been accessed within the acceptance test, to assist in detecting sins of commission, as
well as omission, on the part of the alternate.

Figure 3 shows a recovery block whose intent is to sort the elements of the vector S. The
acceptance test incorporates a check that the set of items in S after operation of an
alternate are indeed in order. However, rather than incur the cost of checking that these
elements are a permutation of the original items, it merely requires the sum of the
elements to remain the same.

11

ensure sorted (S) /\ (sum(S) = sum(prior S))
Qr quickersort (S)
else Qr quicksort (S)
else Qr buddlesort (S)
else lliQ!:

Figure 3: A Cault-tolerant sort program

3.2 Alternates

The primary alternate is intended to be used normally to perform the desired operation.
Other alternates perform the desired operation in some diCCerent manner, presumably
less economically, and preferably more simply . .As long as one of these alternates
succeeds, the desired operation will have been completed and only the error log will
reveal any troubles that occurred.

In many cases one might have an alternate which perCorms a less desirable operation but
one which is still acceptable to the enclosing block, in that it will allow the block to
continue properly. (One plentiful source of both these kinds oC alternates might be
earlier releases oC the primary alternate! See Section 2.5.)

Figure 4 shows a recovery block consisting oC a variety oC alternates. The aim oC the
recovery block is to extend the sequence §. oC items by a Curther item i, but the enclosing
program will be able to continue even if afterwards §. is merely • consistent· . The first
two alternates try, by different methods, to join the item i onto the sequence §.. The
other alternates make increasingly disparate attempts to produce at least some sort oC
consistent sequence, providing appropriate warnings as they do so.

ensure consistent sequence (S)
Qr extend S with (i)
else Qr concatenate to S (construct sequence (i))
else Qr warning (" lost item·)
else Qr S:= construct sequence (i); warning (. correction, lost sequence·)
else Qr S:= empty sequence; warning (·lost sequence and item·)
else error ---

Figure 4: A recovery block with alternates which achieve
different, but still acceptable, though less desirable results.

3.3 Restoring the. System State

By making the resetting oC the system state completely automatic, the programmers
responsible for designing acceptance tests and alternates are shielded from the problems
of this aspect of error recovery. No special restrictions are placed on the operations
which are performed within the alternates, on the calling of procedures or the

12

modification of global variables, and no special programming conventions have to be
adhered to. In particular the error-prone task oC explicit preservation oC restart
information is avoided. It is thus that the recovery block structure provides a
framework which enables additional program text to be added to a conventional
program, for purposes oC specifying error detection and recovery actions, with good
reason to believe that despite the increase in the total size oC the program its overall
reliability will be increased.

All this depends on automating the resetting of the system state whose overheads are
tolerable. Clearly, taking a copy of the entire system state on entry to each recovery
block, though in theory satisfactory, would in normal practice be far too inefficient. Any
method involving the saving of sufficient inCormation during program execution for the
program to be executable in reverse, instruction by instruction, would be similarly
impractical.

'Vhenever a process has to be backed up, it is to the state it had reached just before
entry to the primary alternate. Therefore the only values that have to be reset are those
of non-local variables that have been modified. Since no explicit restart inCormation is
given, it is not known beforehand which non-local variables should be saved. Thus,
recovery blocks require a mechanism to save non-local variables in a 'cache' when
necessary, i.e., just before they are modified. This mechanism detects, at run time,
assignments to non-local variables, recognizing that an assignment to a non-local variable
is the first assignment to that variable within the current alternate. Thus, precisely
sufficient information can be preserved.

The cache is divided into regions, one for each nested recovery level, i.e., Cor each
recovery block that has been entered and not yet left. The entries in the current cache
region will contain the prior values oC any variables that have been modified within the
current recovery block. In case oC Cailure, these cache entries can be used to back up the
process to its most recent recovery point. The region can be discarded in its entirety
after it has been used for backing up a process. However, if the recovery block is
completed successfully, some cache entries can be discarded, but those that relate to
variables which are non-local to the enclosing environment must be consolidated with
those in the underlying region oC the cache.

4 A PROBABILISTIC ANALYSIS OF THE RELIABILITY OF
RECOVERY BLOCKS

We need to be able to evaluate the effectiveness of a recovery block structure for
improving the reliability of a program, so as to be able to deploy our efforts and costs in
the manner that gives the greatest increase in reliability. However, even if we can
construct a model that is useful in comparing alternative strategies for their effect in
increasing reliability, we must not believe that the model can predict the actual
reliability oC a program; the model makes assumptions that are at least open to doubt,
and the input data are purely conjectural.

In this analysis, we assume complete independence between the alternates and the
acceptance tests and between the various alternates. It would be very desirable to be
able to include the correlations between those programs in the model, but at present we
do not know how to measure, to express, or to analyze the correlations between
programs. We will consider the problem Curther, but a conceptual breakthrough is
required and there can be no expectation of success.

13

The analysis below is for a single sequential program. We would like to extend the
analysis to interacting asynchronous programs. The principal problem in any such
extension is the much wider range of possible structures for the interacting asynchronous
programs. However we do intend to extend this analysis to at least a few of the more
obvious structures.

The program structure we consider here is of a set of nested recovery blocks in a
sequential program. Each recovery block contains an acceptance test and N alternate
blocks, while each alternate contains a section of code and M embedded recovery blocks
(except at the deepest level at which the alternate contains only its section of code). The
recovery blocks are nested L levels deep. The analysis considers that each execution of a
section of code has a probability (f) of creating an error (f being very small), and that
each execution of an acceptance test has a probability (f) of not detecting any error that
has been submitted to it (g being small but not necessarily very small). Let us denote by
Ej and Fj, respectively, the probabilities of obtaining an erroneous result, or an error
return, from the recovery block at the j·th level, the objective of the analysis being to
calculate E1 and Fl. The general structure of the analysis is shown in Figure 5.

ALTERNATE
BLOCK

INNER
RECOVERY

BLOCK

UNDETECTED ERROR

N PRIMARY OR
ALTERNATE BLOCKS

M ENCLOSED RECOVERY BLOCKS

Figure 5: The Probabilistic Analysis of a Recovery Block

14

The probability of error on exit from an alternate block at level i (ei) contains
components from the probability of generating an error during the execution of the code
of the block (f) and also components from the probability for an undetected error in one
of the M enclosed recovery blocks, (Ei+1).

The probability of a detected error in an alternate block (di) includes components from
the probability of defecting one of the errors above, and also components from the
probability of an error return from one of the M enclosed recovery blocks (Fi+1).

d. = 1 - (1 - g) (1 - f) (1 - E. - F.) M - g (1 - F.) M
1 1i'1 1i'1 1i'1

The probability of an error return (Fi) from a Recovery Block, through exhaustion of its
list of alternates, is the probability of detecting an error for each of the N alternate
blocks.

The probability of an undetected error on exit from the recovery block (Ej) contains
components for the probability of undetected error from each of the alternates, weighted
by the probability that the alternate will be invoked because all preceding alternates
have been detected to be in error.

= ge. (1 - (d.) N)
1 1

One can now obtain a recurrence relation for Ei and Fi, but that relation is far too
complex to be solved readily. Thus approximations must be made, based on f (and thus
ei· di, Fi and Ei) being very small.

15

Thus

e i - f + M E i+l

and

di
- (1 - g) ei + MFi +1

giving

Fi = (d.)N - 0 (for n ~ 2)
1.

and

with solution

or

(i-gM)

This should be compared with the probability of error in a similar system containing no
redundancy and no acceptance test

(i-M)

Examining these results we note that, to this approximation, the number of alternates N
does not appear in the probability of error and is not significant provided that it is two
or more.

Further, the importance of ensuring that gM is smaller than 1 is evident. In the
interesting case of an already quite reliable system, with ei and fi already small,
reliability is improved at each level only if the acceptance test detects more errors than
are passed up undetected from the embedded recovery blocks. If gM is small enough,
the importance of a deeply nested structure for improved reliability is evident.

Lastly, if we need very high reliability and very low values of E, then g must be kept
small. Prior work has emphasized • acceptability· rather than • correctness· as the
criterion for acceptance tests. One might doubt that a criterion of • acceptability· would
reduce the value of g to the required level.

16

4.1 The Effect of Correlated Faults

Were all faults in the various alternates and acceptance tests entirely independent (and
were the values f and g accurately known), this analysis would provide a reasonable
estimate for the reliability of a program structure containing recovery blocks.
Unfortunately the assumption of independence is unrealistic for some faults. Here we
investigate the consequences of correlation, assuming the existence of faults of two
different types:

• Random program coding errors, assumed to be completely uncorrelated and
also uncorrelated with the various tests and other validation procedures .

• Systematic design errors, assumed to be completely correlated, thus affecting
all alternates, acceptance tests, and validation procedures.

Designating the rate of errors due to random coding errors by f and the rate due to
systematic design errors by F, the rate of undetected errors in a non-redundant system
IS:

(1-M)

and for a system with recovery blocks would be:

------------ + --------
(1-gM) (1-M)

Clearly, since recovery blocks are ineffective against correlated faults, the hoped for
substantial reliability increase is obtained only if F is very much smaller than f. Vve
must therefore consider the probable magnitudes of f and F for the types of programs of
interest and, in particUlar, for safety critical flight-control programs.

When a program is first written, it contains numerous faults, many of them random
coding faults and some systematic design faults. For this newly constructed and little
tested system (and many systems never get beyond this stage), recovery blocks should
substantially increase reliability.

Safety critical flight-control programs, however, are subjected to very rigorous validation
procedures that aim to detect and eliminate almost all of the faults from the programs.
The random coding faults, by the assumption of independence, will be susceptible to
location by validation tests, and to further continuing detection during normal operation.
Some of the design faults will also be found during validation, but others will
systematically evade detection during validation and early operation. The rate at which
these residual faults cause errors will undoubtedly be low, but may still be much too high
to be acceptable for potentially catastrophic failures. Thus we must expect that, in an
operational flight-control program, a high proportion of the residual faults will be of the
highly correlated, systematic design fault type.

Let us now consider faults intermediate between the random coding faults and the

17

systematic design faults, faults that are partially but not completely correlated with
other alternates, acceptance tests, or validation procedures. U validation procedures are
very thorough, many uncorrelated or only partially correlated faults should be located
and removed; only faults that are quite highly correlated with the validation procedures
should escape the validation procedure. Further, rigorous validation procedures are
likely to include most, if not all, of the tests contained in the acceptance tests, and will
be quite highly correlated to the acceptance tests.

Once in service, however, a fault that is undetected or has no effective alternate is
potentially catastrophic. Since a typical program result will pass through several
acceptance tests, and since several alternates may be available at various levels, a fault
partially correlated to its acceptance tests or alternates may nevertheless be detected and
recovered from. If recovery blocks are to substantially improve reliability, it must be
because almost all of the residual faults left in the operational program are faults that
are highly correlated to the validation procedures but uncorrelated or only partially
correlated to the acceptance tests and alternates. Since the validation procedures and
the acceptance tests are already highly correlated, it will be hard to argue that such
faults predominate.

At the very high reliability levels required for safety critical flight-control functions, the
existence of any faults in an operational program must be cause for the gravest concern.
Moreover, it is almost impossible to estimate the failure rate from such faults. The
recovery-block approach provides a possibility of recovery should such a fault generate
an error, threatening system failure. However, this analysis shows that recovery blocks
do not, by themselves, provide a reliability improvement sufficient to meet the stringent
reliability requirements of flight-control applications. However, once an initial version of
the programs (of adequate reliability) has been obtained, as suggested in Section
2.5 Recovery Blocks can be used to allow some modification and enhancement of
programs without loss of reliability.

5 ACCEPTANCE TEST DESIGN

A problem that has been raised about recovery blocks is the cost of rigorous acceptance
tests. Concern about the cost of acceptance tests has encouraged the view that
acceptance tests should test for less than complete correctness, that • acceptability·
might suffice. Since there is reason to believe that the quality of the acceptance tests is
a primary determinant of system reliability, this inclination toward less rigorous
acceptance tests is regrettable. But there must be a limit 'to the cost of the acceptance
tests. That tests should cost only 10 percent of the main calculation, as has been
suggested, is probably optimistic; it would be more realistic to expect that the test might,
in general, be comparable in cost to the calculation it is to test.

There are, however, examples where it has been suggested that the tests would be
unreasonably expensive relative to the calculation, thus justifying a compromise. For
example, to test the insertion of an item into a sorted heap using the heap-sort algorithm
costs on the order of the logarithm of the number of elements in the heap, and yet to
check that the heap is still sorted, let alone that it still contains the appropriate
elements, is much more expensive. This example is, we believe, representative of the
cases in which the cost of the test is greater than the calculation, and exemplifies the
characteristic common to such cases, that the test in question involves an invariant
across an entire data structure, and thus requires the values of many more elements than

18

just those directly accessed in the calculation. We do not deny that invariant properties
of data structures provide a powerful method of expressing the intent of the program
and of checking for errors. However, repeated checking of the invariant is expensive,
and we must seek some alternative that does not compromise the rigor of the acceptance
test.

In the attached report, • An Approach to Specification Analysis,· Flon describes a
method of establishing that invariant properties of data structures are maintained. Flon
uses a formal algebraic style of specification for the individual operations of the program,
a style that would yield simple low-cost acceptance tests derived directly from the
specifications. Algebraic specifications, however, do not readily lend themselves to the
expression of the invariant properties that are so useful to human intuition. Flon
demonstrates that these invariants can still be derived from the specifications, and that,
if every operation on the data structure satisfies the specifications for that operation,
then the sequence of operations must maintain the invariant. Specifications written in
other formal specification languages, such as Special, have the same general properties as
the algebraic specifications used by Flon, and are just as appropriate for this type of
analysis.

Consequently, we believe that there should be little reason for acceptance tests to be
significantly more expensive than the calculations they check. Rigorous acceptance tests
ensuring correct behavior of each individual operation should suffice to guarantee the
properties that would have been checked in the unacceptably expensive tests. But this
depends critically on a requirement that each operation not only does what we require of
it, but also does nothing else. The acceptance tests must check both that elements of the
structure that should be changed have been changed to the correct values, and also that
no other element has been changed. Current implementations of the cache mechanism
could, but do not, provide this facility. It involves noting in the cache every changed
element as its value is checked during the acceptance test and confirming at the end of
the test that there are no further entries in the cache whose values have not been
checked.

6 ON CACHING MECHANISMS FOR ASYNCHRONOUS
MULTILEVEL SYSTEMS

This section discusses two possible mechanisms, in outline, for implementing a recovery
cache in an asynchronous environment based on two alternative kinds of multilevel
system:

• Fully typed systems without resource mapping .

• Fully typed systems with resource mapping.

Systems with resource mapping but without typing, or with inadequate typing, appear to
present severe problems and the possible mechanisms for such systems are less attractive.

6.1 Fully Typed Systems Without Resource Mapping

The simplest is applicable to fully typed systems without resource mapping between
nested environments, for instance a Campbell-Wyeth system. The typing is assumed to
be sufficiently rigorous to ensure protection. Within any environment there will exist a

19

repertoire of types of type, objects and associated operations. One of these operations
will be the accept operation, for that type. In the representation of the type, an
additional field may be provided to contain a recovery-level number, as in our existing
mechanisms.

During an operation on an object of the type, the interpretation procedure may decide
that it is necessary to change the value of the object. It would then check the level
number held in the additional field of the representation, and, if necessary, make a cache
entry, containing at least a reference to the type (and hence to the accept and reverse
procedures) and a reference to the object. It may also place there any additional
information that may be needed by the accept or reverse procedures. The cache entry
can be made into the cache of the process which requested the operation on the object.
The cache is itself a typed object and thus assignments to the cache are made by
appropriate cache operations which can ensure correct manipulation of the stack
pointers, etc.

It should be noted that, if the interpretation procedure is itself a recovery block, then
any manipulations it may perform on the object, including changing the level number
and caching its value, are, of course, subject to an acceptance test, and are encached in
the cache corresponding to the interpretation procedure while the operation is in
progress. However, if the scope of the working space used for all subsequent nested
environments is the same as the scope of the interpretation procedure, on exiting the
recovery block of the interpretation procedure, all these manipulations will be
manipulations of objects now local, and the corresponding cache entries can be
discarded.

Because protection is assumed to be perfect, the interpretation procedure can place any
information in the space of the user, and any information in the cache of the user,
confident that it cannot be lost or corrupted. It is not obliged to, however, and could
keep any information, including recovery information, in its own space. An important
feature of this scheme concerns recovery following failure of an intermediate
environment. When this intermediate environment launched a subsidiary environment,
it did so by constricting an object of type -level-, or -process-, and performing upon it
an operation -interpret-. The -interpret- operation, being an operation which changes
the value of the object on which it operates, will of course need to cache a reference to
the level or process in the cache of that intermediate environment. Such references
automatically ensure that, should the intermediate environment fail, then all subordinate
environments are reversed out, and any privileged operations they may have invoked are
undone.

This mechanism is elegant in that it uses exactly the same mechanism for all operations
simple or complex, in a single environment or in many nested environments. The
problem is that the initial precondition may not be satisfied. The typing mechanism
may not be fully secure, and, if resource mapping between nested environments is
provided, there is as yet no known method of making it secure.

6.2 Fully Typed Systems with Recursively Nested Resource Mapping

The second caching strategy is applicable to a fully typed system with resource mapping.
Because of the resource mapping we must assume that all resources in environment i+l,
including the cache, are exposed to its immediate ancestor, environment i, and must be
discarded if environment i should fail. Consequently a highly privileged interpretive

20

procedure may keep no sensitive information in the space of a user or in the cache of a
user. Indeed essentially the only information which can be allowed in a cache is the
values of objects held in the working space of that environment, or any nested
environment, and the names of types and objects namable by the user of that
environment (although such objects might be represented only in a more privileged
environment).

An essential feature of any scheme of this kind is the mapping table provided for each
environment. This mapping table which is inaccessible from within the environment,
maps the names of types and objects known within the environment into the
corresponding names of these types and objects by which they are known to its
immediate ancestor environment. If the environments are nested several levels deep,
then the resolution of a name will require its translation through each of the intervening
environments' mapping tables.

The caching mechanism appropriate under these conditions is similar to that above, but
the interpretation procedures do not place sensitive information in the user's cache but
must hide it in workspace of their own. Such sensitive information relates necessarily to
some object for which a name has to be passed down to the user through the mapping
tables. If the user requests an operation on such an object, provided to him by a more
privileged environment, the recovery level number field, which is examined to determine
whether caching is required, is located not in the representation of the object but in the
descriptor for the object in the mapping table for his environment. Thus, if the object is
changed by a request from within a particular environment, the mapping table for that
environment will record the fact that the object has been cached, and the name of the
object will be recorded in the cache.

If there are intermediate environments between the user's environment and the
environment where the object is implemented, then any change to the object requested
by the user is also implicitly a change requested by each of the intermediate
environments. The appropriate caching and recovery-level recording must be performed
for each of these intermediate environments. Thus recovery after failure of an
intermediate environment is provided for. This feature is valuable; when a reverse
operation is invoked, it is possible to confirm that the object is recorded as having been
changed in the mapping tables of every intermediate environment.

Each interpretation procedure must have access to workspace within which to cache
sensitive information, workspace unfortunately organized as a heap. Within this
workspace the procedure maintains a stack, for each object, of the cached information
about that object.

A complication arises about the caches of intermediate environments. If a user program
satisfies its outermost acceptance test and terminates successfully, its own space and
cache can be recovered. However the next enclosing environment is still left holding, in
its cache, the changes to objects made by that user program (for instance, changes to
files). This enclosing environment itself may not be able to terminate, for it may also be
serving other users, but it would wish to remove from its cache, after appropriate
checking and acceptance procedures, cache entries relating to objects required only for
processes now terminated. Indeed it may be appropriate to remove many such objects
from the mapping tables as well, and thus the operation for removing the object from
the mapping table could also be required to remove it from the cache. Unfortunately
this implies that the cache for environments must also necessarily become a heap.

21

This scheme is less elegant in that it imposes much greater burdens on the programmers
of t.he interpretive procedures. But the scheme should be capable of being made rugged
and is therefore probably more valuable than the first scheme.

7 RECOVERY IN THE PRESENCE OF ASYNCHRONOUS
INTERACTION

The problem of error recovery in a context involving interacting asynchronous processes
is one of the more striking problems of recovery blocks, or of any other error-recovery
mechanism. The classic domino effect, whereby the failure of one process causes an
endless chain of rollbacks, has been extensively investigated, and a number of possible
approaches to it.s solution proposed. Without structure being imposed on the program,
clearly the domino effect cannot be entirely precluded. The question becomes one of
selecting a structure for the interaction between asynchronous processes that is not too
onerous to the programmer, and that provides recovery without excessive costs for
storage of recovery information or unreasonable amounts of rollbacks during recovery.

The alternative structures proposed include the conversation mechanism and various
forms of recoverable monitors. Of these, the conversation technique has the great
advantages of elegance and simplicity, but its severe effect on the structure of the
program casts doubt on its use. It is certainly true that the structure would be radically
changed by the constraints imposed by conversations and that the user would be
required to think about the structure of his program quite differently; it is possible,
however, that the resulting program would be just as well structured as before, and that
its construction would be just as feasible.

The conversation concept is closely related to the atomic action concept much favored as
a structure for the coordination of asynchronous processes. A conversation is an atomic
action in which two or more processes concurrently participate, and in which a recovery
block structure provides fault tolerance for its operations; similarly, a standard recovery
block must itself be regarded as an atomic action of a single process. Its atomic nature is
necessary to ensure that the results cannot be used before they have been checked by the
acceptance test, and to ensure that the state restoration mechanism is not disrupted by,
and does not disrupt, the action of some other task. The requirement that the
conversation be an atomic action does not require simultaneity (though that is certainly
the simplest implementation) nor does it require that all required data be locked
immediately for the exclusive use of the action. Lomet describes some interesting
possible variations; however, such variations are merely implementational optimizations
and add nothing to the power of the approach.

A particular advantage of conversations over other structures is that conversations allow
a greater degree of recovery from errors. This is because the various alternatives of
conversations imply only that two or more processes should interact, and anticipate
nothing about the form of that interaction. In contrast, a system based on buffered
messages not only requires that the buffered message be correct so that it can be
resubmitted to the process after recovery, but also that the format and intent of the
message are implicitly appropriate. In many cases where some of the alternatives
represent previous versions of the system, this will be a constraining limitation.

The feasibility of the atomic conversation, as a means of structuring recovery for
interacting asynchronous processes, requires a demonstration of the technique applied to
a realistic system. Weare currently investigating the feasibility of such a demonstration.

22

Many designs Cor recovery in asynchronous systems require that the entire system stop
Cor a period to establish the extent oC the required recovery. In a fully distributed
system, such a pause would be impossible, but, even in a single-processor system, it is not
possible to stop all the high-priority real-time processes just because some background
task requires recovery. However, it cannot be assumed that these high-priority tasks
have not interacted with the task under recovery.

We have investigated two mechanisms Cor establishing what recovery is required in an
asynchronous distributed system, keeping our assumptions about the constraints on the
structure to a minimum. Each process must record the extent of its dependency on the
results oC other processes, noting the time (or some recovery-block number) oC its
interactions with each oC the other processes, so that it can require the correct degree of
rollback from other tasks and can calculate what rollbacks to perform should some other
task fail. The resolution to which this information is recorded might be at the level oC
the process, or possibly it might be much finer, being associated with individual data
structures.

The complications of rollback in asynchronous systems arise because oC the propagation
of rollbacks. This propagation can be regarded as being determined by the transitive
closure of these dependencies; the two methods correspond either to maintaining that
transitive closure continuously during the execution oC the program, or to calculating it
during recovery. Maintaining the transitive closure continuously involves, at each
interaction with another process, taking note oC not just the time of the interaction but
rather all oC the dependencies of the other process so they can be combined with the
existing dependencies of the process. This could imply a rather substantial addition to
each message between processes, but it allows a relatively rapid recovery Crom error.

The alternative approach involves three types oC message between processes during
recovery: Rollback, Ready, and Resume. The Rollback message is issued by the failing
process, and by any process receiving a Rollback message with Curther dependencies that
must be recovered. A process that has completed its rollback, and has not issued any
Rollback messages of its own, can issue a Ready message back to each process that sent
it a Rollback message, as can a process that has completed its rollback and has received
a Ready message for every Rollback that it issued. When the process originating the
recovery has received the requisite number oC Ready messages, it can issue a Resume
message to each process to which it sent a Rollback message, and those processes
Corward that Resume message to every process to which they sent a Rollback. On
receipt oC a Resume message, a process can resume processing. Clearly the price oC not
maintaining the Cull transitive closure oC dependencies during normal operation is a much
slower recovery when an error is detected.

8 PROVISION of RECOVERY BLOCKS on the BENDIX BDX930
PROCESSOR

Consideration has been given to the modiCication oC the Bendix BDX930 processor
microprogram to provide recovery blocks as an integral part oC the instruction set. The
objectives of this modification would be:

• To investigate the problems oC recovery-block implementation in a realistic
environment

23

• To investigate the magnitude oC the recovery-block overhead attainable by
relatively simple modification oC existing hardware

• To demonstrate recovery blocks operating on an avionic computer with
relatively little overhead

• To provide a vehicle Cor subsequent studies oC the application oC recovery
blocks to aircraft flight control.

Alternative approaches to the experimental provision oC recovery blocks would involve
either software simulation, with very high run-time overhead, or special purpose
hardware, with low overhead but high construction costs.

8.1 Modification of the Bendix BDXOaO

The processor proposed Cor this microprogram modification is the spare BDX930
processor for the SIFT configuration, a processor intended Cor error insertion testing and
thus equipped with sockets Cor each oC its integrated circuits. The BDX930 processor is a
16 bit computer intended Cor military and avionic use. It is constructed on a single, 6
inch-square multilayer card, with Curther cards being required Cor memory, input/output,
real time clock, etc. The processor is built around 2901 4-bit arithmetic units, and is
controlled by a 56-bit-wide microprogram. The microprogram is held in 7 PROM chips
(54s472), giving 512 words of 56 bits, of which some 400 words are required Cor the
standard instruction set, leaving about 100 words Cor modifications. The 54s472 is a
Cusible link device Cor which no EPROM is available. However the cost oC a Cull set or 7
PROMs, programmed, is only about $100, and thus the cost or new PROM sets is not
impossible. The 100 words oC microprogram still available will allow some microprogram
support for recovery blocks, but will constrain the exuberance oC that support. Precisely
how much additional support can be provided cannot be determined without perCorming
the actual microprogram modiCications.

The instruction set of the BDX930 provides primarily a range oC 16 bit arithmetic and
logical operations. There are 16 general-purpose registers or which only a few can be
involved directly in indexing or store access. Some register-to-register instructions can
be completed in a fraction of a microsecond but typical store reCerence instructions
require 1.5 to 2 microseconds.

Floating-point instructions have been added with some difficulty to the BDX930 by
microprogram, because the processor does not provide sufficient hardware to support
them. However, the SWT processors do not have floating-point microprogram, and the
microprogram modifications envisaged for the provision of recovery blocks would
probably interact with the floating-point Cacility. Thus floating-point and recovery
blocks would be mutually exclusive.

Within the constraint oC the available microprogram space, we envisage the Collowing
modifications oC the BDX930 microprogram:

• Addition or a new instruction to indicate recovery block entry

• Addition oC a new instruction to obtain the 'prior' cached value oC a word oC
store

24

• Addition of new instructions to indicate success or failure of an acceptance
test, with corresponding cache processing and state restoration

• Modification of the instructions (very few on the BDXg30) that modify
storage to cause the encaching of the prior values of storage

• Provision for the encaching of procedure calls to recovery procedures, for the
calling of such procedures, and for returning from such procedures.

It is not considered that microprogram support for conversations between interacting
asynchronous processes is appropriate on the g30. Should there be sufficient
microprogram space available when the proposed modifications have been made, the
most desirable further extension would be a facility to allow the acceptance test to
determine that no additional modifications to storage have been made beyond those that
it has already checked.

Software support will be required in the Pascal compiler to recognize the recovery-block
and conversation components and to generate the appropriate special instructions and
flow of control, and also to allocate storage for the cache. If the modified microprogram
reserves general-purpose registers for its own use, the compiler must be modified to
reduce the general-purpose registers available to its register allocation and optimization
functions. This is a simple modification, but could seriously impact the efficiency of the
compiled code. Careful design should ensure that existing linkage mechanisms suffice.

8.2 Performance and Resource Implications of Recovery Blocks

The aspects of recovery blocks that have the most impact on resource requirements and
performance are:

• The space occupied by the cache,

• The space occupied by the flags attached to each word or group of words to
indicate that they are already cached,

• The processor registers required by the modified microprogram to administer
the cache and perform the encacheing operations,

• The time required to test whether a word to be modified has been already
cached and, if not, to cache it,

• The time required to consolidate the cache on recovery block exit.

Even though recovery is presumably quite rare, the time required to restore the prior
state for recovery may also be an important factor in the presence of real-time
performance constraints.

One of the most important design decisions affecting these space and time overhead
concerns the implementation of the already-cached flags. Several alternative approaches
are available, each making a different compromise between the various costs. The

25

simplest algorithm involves typically four flag bits per word, a high space overhead.
This can be reduced in several ways. First, by restricting the nesting of recovery blocks
to three deep, which might suffice for limited applications, the overhead becomes only
two bits per word. Secondly, if the unit of information encached is increased from single
words to, say, groups of four words, flags are needed only for every fourth word rather
than every word. The price, of course, is that the encacheing operations must encache
all four words, which takes extra time and cache space. A third approach is to eliminate
the flags entirely. The mechanisms are then unable to determine that data items had
been already encached and are required to write the prior value of memory into the
cache for every store operation. Provided that the programs execute only relatively few
operations before returning to the global level outside all recovery blocks, the increase in
cache size might be acceptable. For programs with a long-lived recovery block, the
cache could become very large. Further, where the flags are available, they are used to
prevent local data from being cached, thus avoiding unnecessary cache activity. Since
assignments to local variables and temporaries are probably a majority of all
assignments, in the absence of the flags, some other mechanism must be provided to
recognize locals and inhibit their caching.

The essential processor registers for administration of the cache are:

• The current cache pointer,

• The cache limit,

• The current recovery-block depth.

If already-cached flags are not used, the recovery-block depth need not be held in a
register, but a register may still be needed to permit the recognition of local variables
and temporaries.

These registers can be obtained only by reservation of some of the programmer's general
purpose registers for the exclusive use of the recovery-block mechanisms. It appears that
the Pascal compiler could be modified to refrain from using a pair of registers, at the
cost of some loss of optimization. The 930, however, has rather limited facilities for
accessing the memory and for address computation, but good interregister arithmetic
operations. It thus depends quite heavily on the availability of registers and optimization
to obtain reasonably efficient code. Since many of the registers are already assigned
specific functions, the reservation of a further three registers for recovery blocks could
have a significant effect on the efficiency of programs. The Pascal compiler uses
relatively complex optimization algorithms, and thus it is hard to estimate how much
performance would be lost without actually modifying the compiler and recompiling and
running some sample programs.

The Bendix BDX930 has very few registers available to the microprogram aside from the
16 general-purpose registers provided to the programmer. It is notable that the floating
point microprogram must store and restore general-purpose registers in order to obtain
registers in which to hold intermediate values during the arithmetic operations. Further,
the 290l-arithmetic-unit integrated circuit has only simple shifting facilities, from which
relatively complex addressing and masking operations must be constructed to access the
already-cached flags. It appears that this is possible within the available registers, but at
the price of repeatedly recomputing storage addresses because there is nowhere to save
them while flags are examined. Moreover, using the shifting facilities of the 2901 to

26

access and manipulate already-cached flags is tedious and adds several microseconds to
the time required to cache a word or group of words. A caching mechanism without
flags appears to be relatively straightforward to microprogram.

D A PROPOSAL FOR RECOVERY BLOCKS FOR FLIGHT
CONTROL PROGRAMS ON THE BENDIX BDXDaO PROCESSOR

The characteristics of flight-control programs allow a simplified recovery-block structure,
which should be able to provide the required recovery capability with reasonable
implementation and runtime costs. These characteristics are:

• The programs are structured as a number of relatively short and independent
programs,

• The programs are executed relatively frequently and run to completion
within a short period of time even when preempted by higher priority tasks,

• The programs use few local variables, and make few assignments to global
variables other than the assignments to each of their results,

• A deep and complex recovery-block structure in a flight-control program
would be unexpected.

The recovery-block structure proposed here has been designed to be readily
implemented, by modiCication to the microprogram and the Pascal compiler, on the
Bendix BDX930 processor. It provides reasonably eCficient encaching and recovery
mechanisms Cor flight-control programs, but the omission of already-cached flags would
make the proposed mechanism unsuitable Cor many other applications. The design
includes recovery procedures to restore the abstract state of a process rather than its
concrete state. It could readily be extended to include conversations to allow recovery of
interacting asynchronous processes, except that the Pascal compiler does not support
asynchronous processes or their interaction at present. Thus full implementation of
asynchrony and recovery in its presence would represent a substantial elaboration of the
project.

In this design, a cache stack is provided for each process, where a process may
correspond to a priority level of the scheduling tables, or to some operating system
process. It is envisaged that the program main stack and the cache stack will be
allocated in the same area oC the store and will move toward each other from opposite
ends of that area of store, thus obviating the need for registers to hold the stack or cache
limits while still allowing recognition of stack overflow. The cache stack is managed by
a register containing the address of the top of the cache stack.

Since the Pascal compiler allocates all local variables and temporaries on the stack, it is
possible to recognize locals (to prevent their being cached) by retaining the value of the
stack pointer on block-entry. Then all addresses between this block-entry pointer and
the cache pointer must correspond to local variables. The block-entry pointer will be
referred to frequently and must be allocated a register. The main stack word pointed to
by the block-entry pointer is used to hold the recovery-block depth count. The proposed
register allocations are:

27

• 10 -- block-entry pointer (removed from general-purpose use),

• 11 -- cache-top pointer (removed from general-purpose use),

• 12 & 13 -- function result value (not affected by cache proposal),

• 14 -- heap pointer (not affected by cache proposal),

• 15 -- main-stack pointer.

MAIN
STACK

• TOP OF STACK

f

• • TOP OF CACHE

RECOVERY
CACHE STACK

Figure 6: The Arrangement of the Main Stack and Cache Stack

g.l Cache Stack Entries

Entries in the cache stack can be of three kinds:

• Assignment entries,

• Procedure-call entries,

• Block-marker entries.

There are two kinds of procedure-call entries:

• Recovery-procedure entries,

• Acceptance-procedure entries.

There are three kinds of block-marker entries:

28

• block-entry markers,

• null markers,

• a bottom-of-stack marker.

An assignment entry is two words: the address of the word and the prior value for that
word. Since the BDX930 addresses only 32k of storage, the most significant bit of the
address word must be zero; this is used to distinguish assignment entries from all other
kinds of cache entries.

Recovery-procedure entries and acceptance-procedure entries have the same format,
containing an arbitrary number of words. The first word has its most-significant-bit set
and contains a flag field and a count field. The most-significant-bit set distinguishes
these entries from assignment entries. The flag field distinguishes recovery- and
acceptance-procedure entries from each other and from block-marker entries. The count
field contains the number of parameters for the procedure and is two less than the
number of words in the cache entry. Then follow the parameters to the procedure and,
finally, the address of the procedure entry.

Block-entry markers, null markers, and the bottom-of-stack marker, also have very
similar formats, each 18 words long. The first word has its most significant bit set and
contains a flag field and a count field. The flag field distinguishes the entry from other
kinds of cache entry, while the count field is always set to 16. The next 16 words are a
set of 16 register values (by preserving all 16 registers we minimize the problems of
interaction with the optimization algorithms of the compiler), while the last word is an
instruction address. Only the first word of a null entry is significant, but all 18 words
must be present.

The microprogram for each instruction that changes the value of a storage location must
be modified to check the address of the word with the block-entry pointer (RIO) and the
cache pointer (RIl). If the address does not lie between these two pointers, the word is
not a local variable, and an assignment entry must be created in the cache. The
assignment entry contains the address of the word and prior value of the word, and it is
also necessary to increment the top-of-cache pointer checking for stack overflow.

0.2 Special Recovery Block Instructions

Five new instructions must be provided:

• Prior value,

• Recovery block entry,

• Acceptance _ test _ passed,

• Acceptance _ test _ failed,

• Acceptance _procedure _ return.

ADDRESS
VALUE -

I----TOP OF CACHE

Figure 7: The Effect of a Store Assignment on the Cache

The prior value instruction is intended for use by acceptance tests and allows the test
to dependon the 'prior' value of a variable on entry to the recovery block as well as the
current value at· acceptance test time. The current value of the word is loaded into
register 0 and a scan of the cache is started at the cache pointer (RIl) . .As each cache
entry is examined, if it is an assignment entry for the desired word, the prior value
recorded in the entry is placed in RO. The scan stops when a block-entry marker is
encountered and the instruction terminates. No register or storage location other than
RO is modified. The place at which the address of the desired word will be left for this
instruction has still to be finally resolved, on the basis of possible compiler modifications,
but it appears that the top-but-one word of the main stack is the most probable location.

The recovery block entry instruction places a block-entry marker on the cache. The
contents of the 16 regIsters are copied into the cache entry and the address in the word
immediately following the instruction is copied into the last word of the entry (this will
be the address of the next alternate or, for the last alternate, of an
acceptance test failed instruction). The recovery-block depth, pointed to by the
block-entrypointer in RIO, is incremented and stored on the top of the main stack, the
new value of the main stack pointer being copied into the RIO as the new block-entry
pointer. It is also necessary to increment the top-of-cache register and to check for stack
overflow. Execution resumes at the location following the address of the alternate. This
instruction is relatively simple, and it may be adequate for the Pascal compiler to
provide this function by a sequence of ordinary instructions.

The acceptance test passed instruction scans down the cache stack looking for the
first block-entry-marker or for the bottom-oC-stack marker. If it finds an acceptance
procedure entry, it invokes that procedure as described below. If it finds a block-entry
marker, it sets that marker to a null, copies into the main-stack pointer and the block
entry pointer the corresponding values from the entry, but leaves the top of cache
unchanged. If it finds the bottom-of-stack marker (which should not occur), the action is
similar but the marker is left unchanged and the cache pointer is set to point to that
marker. Other kinds of cache entry are ignored but the scan must, of course, allow for
the various entries in the cache being of different lengths. Execution of the program
resumes at the location following the instruction.

30

BEFORE

R15: STACK TOP

Rll: CACHE TOP

Rl0: BLOCK ENTRY

RO: ACCUMULATOR

Figure 8: The Effect of the Prior Value Instruction

If the acceptance-test-passed scan encounters an acceptance-procedure entry, the
parameters in the entry are pushed into the main stack, as is the address of the cache
entry beyond the procedure entry (the compiler will be allowing for a return link here,
but acceptance procedures never exit normally) incrementing the main-stack pointer.
The procedure addressed by the last word of the cache entry is executed.

The acceptance procedure returns by an acceptance procedure return instruction,
which is identical to an acceptance test passed instruction except that the scan of the
cache commences at the address heTa in tne top of the main stack. Note that the
parameters of the acceptance procedure are not properly removed from the main stack
before the scan is resumed; this is not significant since they will remain there only until a
block-entry marker is found and the main-stack pointer is reset.

The acceptance test failed instruction causes a recovery scan down the cache. If the
scan encounters an assignment entry, the prior value recorded in the entry is assigned to
the word addressed by the entry. If the scan encounters a null, it is ignored. In either
case, the scan continues.

If the scan encounters a block-entry marker, the processor-stack control registers are

BEFORE

INSTRUCTION

ADDRESS

NEXT INSTRUCTION

TOP OF STACK

TOP OF CACHE

AFTER

-1

ADDR OF ALTERNATE

TOP OF STACK

Figure g: The Effect of a Recovery_ Block Entry Instruction

~

32

BEFORE AFTER

INSTRUCTION

NEXT INSTRUCTION

-1

ALTERNATE

TOP OF STACK TOP OF STACK

TOP OF CACHE TOP OF CACHE

Figure 10: The Effect of an Acceptance _ Test _ Passed Instruction

BEFORE AFTER

~///////~~
MAIN STACK m /" / /////////-

MAIN STACK /'.h

PARAMETERS
SCAN POINTER

SCAN ADDRESS

.- R15: STACK TOP -

- R11: CACHE TOP I-

PARAMETERS R10: BLOCK ENTRY

Figure 11: An Acceptance-Procedure Entry Operation

PARAMETERS

SCAN ADDRESS

ACCEPTANCE
PROCEDURE

ENTRY

33

SCAN POINTER

- R15: STACK TOP

- R11: CACHE TOP

R10: BLOCK ENTRY

-,
TEMPORARIL Y

WASTED
SPACE

I
I'--~
I I 1---------1

I I
I I
I I
I I

-
I I

.I I
I
I

t I --1--' t-'

I
I
I
I ,
'--.

ACCEPTANCE
PROCEDURE

ENTRY

Figure 12: An Acceptance Procedure Exit

reset from the entry, and execution of the program resumes at the instruction addressed
by the entry. If the scan encounters a bottom-of-stack marker (which would occur only
if the outermost recovery block exhausts its set of alternates), the effect is equivalent to
that for a block-entry marker except that the top of cache is set to that marker. The
instruction address contained in the bottom-of-stack marker would presumably lead back
to the executive with a failure indication.

If the scan encounters a recovery-procedure entry, the parameters in the entry are copied
into the program's main stack (with one additional word as a dummy link), the top of
cache is adjusted to below the entry, and a procedure call is made to the procedure
address cited in the entry (with the most significant bit removed). The recovery
procedure will return by using an acceptance test failed instruction to resume the
recovery scan. Again, the procedure parameters will be left on the main stack until a
block-entry marker is encountered.

34

BEFORE AFTER

-1 PROGRAM COUNTER

ALTERNATE

TOP OF STACK

TOP OF STACK

TOP OF CACHE

Figure 13: The Effect of a Block-entry Marker during a Recovery Scan

PROGRAM COUNTER

PRECEDURE ADDR

COUNT

PARAMETERS

TOP OF STACK

'--- TOP OF CACHE

AFTER

PARAMETERS

ON STACK

(-.~------------~
I
I
I
I
I
I

~_J

Figure 14: The Effect of a Recovery Procedure Entry during a Recovery Scan

35

g.3 Use of Recovery Block Instructions

Each alternate of a recovery block must start with a recovery block entry instruction,
designating its next alternate. This is because the recovery scan following the
acceptance test failed instruction eliminates the block-entry marker on the stack, thus
allowing a rurther acceptance test failed instruction to initiate recovery of the
enclosing recovery block. BloCk-entry markers are also specific to each alternate since
they carry in them the address of their successor alternate. The last alternate of a
recovery block cannot designate a successor alternate, but instead designates an
acceptance _ test _ failed instruction.

ensure T by S1
else by S2
else fail;

generates goto s1
t: T;

if true then acc_test-passed;
goto e

else s3: acc test failed;
s1: rec block entry(addr-of s2);

S1;- - -
goto t;

s2: rec-block entry(addr of s3);
S2; - -
goto t;

e:

Figure 15: The Code Generated for a Recovery Block

Thus far we have discussed procedures completely characterized by their assignments to
variables. In the presence of interacting asynchronous processes, such a characterization
does not suffice. In general it is impossible to restore the concrete state. Rather,
recovery must be in terms of the restoration of the abstract state and special recovery
procedures must be provided by the programmer to perform the abstract-state
restoration. A typical example, requiring recovery procedures, involves the managing of
some abstract resources. The procedures managing the resource must themselves
generate and insert into the cache a recovery-procedure entry to invoke the recovery of
the abstract state. It is then essential that the assignments they make to storage are not
automatically undone during recovery. Thus these assignments cannot be left in the
cache.

Two schemes are possible. One approach requires that the procedures of the resource
manager temporarily substitute another cache stack for that of the user, restoring, on
exit, the users cache complete with a recovery-procedure entry appended to it.
Alternatively, and more probably, the procedures must, on entry, advance the top-of
cache pointer sufficiently to provide space for the recovery-procedure entry and also for
an acceptance-procedure entry if required. On exit, it must adjust the top of cache to
point to the recovery- or acceptance-procedure entry it has constructed in that space.
Either approach allows the procedures of the resource manager to use recovery blocks
internally, and have the cache entries for its assignments vanish on exit. Special code
will be required to perform these manipulations of the cache pointer, to make
assignments to the cache entries, and also to provide the i·ecovery and acceptance

36

procedure addresses to be placed in those entries, but it would not appear that a special
microprogram is justified. Special code will also be required to cause exit of the recovery
and acceptance procedures by the appropriate special instructions, and also to allow the
program to obtain the current value of the recovery-block depth or the prior value of a
variable. In each case, it is envisaged that the required operations can be provided by an
assembler procedure invoked by the Pascal source code, without imposing too much of a
burden on the programmer.

BEFORE

TOP OF STACK

TOP OF CACHE

,-~

I
I
I
I
I
I
1,--.
I
I
I
I
I
I
I
I
I
I

--~

AFTER

FURTHER
CACHE

ENTRIES

SPACE FOR
RECOVERY

PROCEDURE
ENTRY

Figure 16: Cache Structures for a Resource-Management Procedure

Conversations provide recovery for interacting asynchronous processes by synchronizing
entry to the conversation and also coordinating the results of the acceptance tests.
Providing such synchronization and coordination should not be difficult, but the details
depend on how asynchronous processes can be generated at all by the Pascal compiler.
At present, the compiler makes no such provision.

More interesting is the problem of ensuring that the recovery operations of the several
processes within the conversation avoid damaging interactions. Conceptually, the
various processes within a conversation should share a single cache, but in practice this is
not feasible. Consequently, if the various processes in a conversation have each made
assignments to the same shared word, there will be assignment entries in each of their
caches. Thus the recovery actions will restore prior values in some arbitrary order, and
the value left in that word may be a value other than that on entry into the
conversation.

The simplest solution to this problem appears to be to design the cooperating processes

37

so as to avoid assignments to the same word by different processes within the
conversation. Failure of one process of a conversation should cause recovery of all
processes. This can be arranged by inserting a specific recovery-procedure entry into the
cache of each process of the conversation. The function of this recovery procedure is to
force immediate recovery for all recovery blocks of the conversation.

10 A STORAGE MANAGER FOR A SIMPLE OPERATING
SYSTEM

In this section we give an example of the use of recovery blocks in a multilevel
asynchronous system with conversations. We choose as our example a fragment of an
operating system, not because the techniques are especially suited to operating systems
but rather because operating systems are widely understood and relatively easy to
structure. The example is written in a dialect of Modula, augmented by a subrange type
constructor and recovery block primitives. Ellipses and English text enclosed in { } are
used where detail can be suppressed. This code has not been checked by a Modula
compiler.

type Fileld = ... ,
type File = record name: Fileld;

contents: UserBlockld end;

type Processld = (Pl. P2. P3. PPS);
(* each process that makes requests to the storage manager (the three

user tasks and the print spooler) has a unique process identifier.
process identifiers allow the storage manager and its attendant
processes to ensure proper storage access. *)

const maxValue = {the largest representable value};
type Unsignedlnt = 0 : maxValue;

procedure sendNastyMessage ... end sendNastyMessage;
(* used by recovery procedures to send the operator a message when

it is too late to do more corrective recovery (for example.
when an attempt to undo a print operation occurs after the file
has been printed) *)

38

process UserTaskl;
use Pl. spool. allocate •...• UserTask2. UserTask3;

(* DECLARATIONS FOR EACH PROCESS TO SUPPORT RECOVERY BLOCKS

there is an instance of this set of declarations in each process.
since each process conceptually has its own cache.

all but ·RBTypeOfProcessing· require support from the language
interpreter. the procedures are probably assembly language
routines with access to implementation data structures. *)

procedure RBDepth
: UnsignedInt;
begin
{return the current recovery block depth for this process}
end RBDepth;

type RBTypeOfProcessing = (Forward. Reverse. Accept);

procedure RBDirection
: RBTypeOfProcessing;
begin
{return the current direction of processing for this process}
end RBDirection;

type RBCacheEntry = {a variant record with a variant for each
procedure that has effect other than by making aSSignments
(and that can be undone)};

(* note that this requires that all such procedures be known at
the process level; otherwise. a more severe type breach is
needed. *)

procedure RBMakeCacheEntry(ce: RBCacheEntry);
begin
{put an entry on the cache for this process}
end RBMakeCacheEntry;

begin

spoole ...);

end UserTaskl;

ag

process UserTask2;
use P2. spool. allocate• UserTask1. UserTask3;

procedure RBDepth ... end RBDepth;
type RBTypeOfProcessing = (Forward. Reverse. Accept);
procedure RBDirection ... end RBDirection;
type RBCacheEntry = ... ;
procedure RBMakeCacheEntry ... end RBMakeCacheEntry;

begin ... end UserTask2;

process UserTask3
use P3. spool. allocate • ...• UserTask1. UserTask2;

procedure RBDepth ... end RBDepth;
type RBTypeOfProcessing = (Forward. Reverse. Accept);
procedure RBDirection ... end RBDirection;
type RBCacheEntry = ... ;
procedure RBMakeCacheEntry ... end RBMakeCacheEntry;

begin ... end UserTask3;

interface module PrinterSpooler;
define spool, despool;

40

use File, ProcessId, UserBlockId, allocate, copyBlock,
sendNastyMessage;

(* Ispooll and Idespooll maintain a FIFO queue implemented as a
circular buffer.

successful undoing both Ispooll and Idespooll operation depends
critically on IPrinterSpooler l being a monitor so that the
operations properly maintain the monitor's data structures.

the same array is also used to store despooled files where the
Idespooll has not yet been accepted. there is no order on the
files in this list. *)

const sBSize = 123; (* to pick a size *)
type BufferIndex = 0 : sBSize - 1;
type BufferCount = 0 : sBSize;
type FileEntry = record sf: File;

allocatedRBD: UnsignedInt end;

var spoolBuffer: array BufferIndex of FileEntry;
in, out: BufferIndex;
spooledCount, despoolNotYetAcceptedCount: BufferCount;
nonempty, nonfull: signal;

(* implements a circular buffer of files with invariant:
(spooledCount = (in - out) mod sBSize

I spooledCount = sBSize)
& (ALL i: 1 <= i <= spooledCount)

INITIALIZED(spoolBuffer[(out+i-1) mod sBSize])
& spooledCount + despoolNotYetAcceptedCount <= sBSize

where INITIALIZED(x) is the condition that variable x has been
assigned a legal value.

the queue of spooled files occupies the Is~ooledCountl entries
of IspoolBufferl in the interval:

[out, (in - 1) mod sBSize]

the list of despooled files have that not yet been accepted
occupies the IdespoolNotYetAcceptedCountl entries of IspoolBufferl
in the interval:

[in, (in + despoolNotYetAcceptedCount - 1) mod sBSize]

whenever IspoolCount l is incremented, Inonemptyl is sent out;
whenever spoolCount + despoolNotYetAcceptedCount is decremented,
Inonfull l is sent out.

it is purely for convenience that the queue of spooled files and

41

the list of despooled files are next to each other. .)

42

procedure swapBufferEntries(entry1, entry2: Bufferlndex);
begin
{spoolBuffer[entry1], spoolBuffer[entry2]

:= spoolBuffer[entry2], spoolBuffer[entry1]}
end swapBufferEntries;

procedure shiftBufferEntriesOver1(from, to: Bufferlndex);
begin
{shift all entries in -spoolBuffer- from -from- to -to- one
position to the right}

end shiftBufferEntriesOver1;

procedure searchSpoolBuffer(f: File; start: Bufferlndex;
count: BufferCount)

: BufferCount;
(* search the spool buffer for file -f- in the -count- entries

starting at -start-. return the index of the entry if
found and return -sBSize- otherwise. .)

var delta: BufferCount;
begin (* do linear search since the spool buffer is unordered *)
delta .- 0;
loop

when delta = count do (* file not there -- search fails *)
searchSpoolBuffer := sBSize
exit;

when f = spoolBuffer[(start + delta) mod sBSize] do
(* file found *)

searchSpoolBuffer (start + delta) mod sBSize
exit;

inc (delta)
end

end searchSpoolBuffer;

43

procedure spool (f: File);
var ub: UserBlockld;
var be: BufferCount;

begin
case RBDireetion of

Forward:
(. allocate storage for the file, copy the contents so the

user process can continue, and put the file onto the
circular buffer when there is room .)

begin
ub.Pld := PPS;
ub.blockSize := f.contents.blockSize;
allocate(ub);

copyBlock(ub, f.contents); (. make a copy for spooling .)
(. the recovery for this ·copyblock· illustrates the

difference between recovery actions at different
levels. the user block just allocated has no
meaningful prior value. thus, the reverse spool
operation below need not worry about restoring its
abstract value. its current concrete value will,
however, be dutifully restored should this block be
undone because the recovery scan can't distinguish
which writes are needed. note, in contrast, that it
is important that the lower level recovery do a
reverse allocate. .)

(. wait until there is room in the buffer .)
if spooledCount + despoolNotYetAcceptedCount = sBSize

(. since spooledCount + despoolNotYetAcceptedCount is
only increased in this routine, and then only
incremented by 1, it is sufficient to test for
equality here .)

then
wait (nonfull)
end;

(* make room for the new file to be spooled by moving
the first despooled file to the end of the list .)

spoolBuffer[(in + despoolNotYetAcceptedCount) mod sBSize]
:= spoolBuffer[in];

spoolBuffer[in] .sf.name := f.name;
spooIBuffer[in].sf.contents := ub;
spoolBuffer[in].allocatedRBD := RBDepth;

RBMakeCacheEntry('spool', f);

44

in .- (in + 1) mod sBSize;
inc(spooledCount);
send (nonempty)
end; (* Forward *)

Reverse:
(* undo a -spool- operation: if the file is still there.

remove it from the spool buffer; if not. notify the
operator. *)

begin
bc := searchSpooIBuffer(f. out. spooledCount);
if bc = sBSize then (* file wasn't there *)

sendNastyMessage(-too late to unspool file-. f.name)
else (* file found. so remove from buffer *)

shiftBufferEntries(out. (bc - 1) mod sBSize);
out := (out + 1) mod sBSize;
dec(spooledCount);
send (nonfull)
end

(* the reverse allocation will be done underneath us *)
end; (* Reverse *)

Accept:
begin
bc := searchSpooIBuffer(f. out.

spooledCount + despooINotYetAcceptedCount);
if bc < sBSize then (* not too late *)

if RBDepth < spooIBuffer[bc].allocatedRBD then
spooIBuffer[bc].allocatedRBD := RBDepth

(* if RBDepth = allocatedRBD. no action required *)
end

end
end (* Accept *)

end (* case *)
end Spool;

45

procedure despool(var f: File);
(* -despool- is a procedure with a write-only parametor

instead of a function so that the file will be part of the
cache entry *)

var bc: BufferCount;
begin
case RBDirection of

Forward:
(* -despool- gives the next file to its calling process and

moves it to the despooled list.

-despool- assumes that the consumer process deallocates
the storage associated with the file despooled.
-despool- does not itself deallocate the storage since
the consumer process presumably needs the use of the
storage. *)

begin
(* wait until there's a file to give out *)

if spooledCount = 0 then wait(nonempty) end;

f := spoolBuffer[out];
RBmakeCacheEntry('despool'. f);

spoolBuffer[(in + despoolNotYetAcceptedCount) mod sBSize]
:= spoolBuffer[out];

out := out + 1) mod sBSize;
dec(spooledCount);
inc (despoolNotYetAcceptedCount)

(* since no room is made in the spool buffer. -despool
does not send out -nonfull- *)

end; (* Forward *)

Reverse:
(* undo a -despool-: put the file back on the spool

buffer *)
begin
bc := searchSpoolBuffer(f. in. despoolNotYetAcceptedCount);
swapBufferEntries(in, bc);

(* this is where having the spool queue and the despooled
list next to each other pays off *)

in := (in + 1) mod sBSize;
dec(despoolHotYetAcceptedCount);
inc(spooledCount);

(* like -spool-, reverse despool sends out ·nonempty- *)
send (nonempty)
end; (* Reverse *)

Accept:
begin

46

be := searchSpoolBuffer(f, in, despoolNotYetAcceptedCount);
if RBDepth = spoolBuffer[bc].allocatedRBD then

swapBufferEntries(bi,
(in + despoolNotYetAcceptedCount -1) mod sBSize);

dec(despoolNotYetAcceptedCount);
send (nonfull)
end

end (* Accept *)
end (* case *)

end despool;

begin (* initialization *)
spooledCount := 0;
despoolNotYetAcceptedCount := 0;
in := 0;
out := 0

end PrinterSpooler;

47

(* IPrinterl l and IPrinter2 1 are print demons: they are continually
running processes that keep despooling and printing files,
deallocating the associated storage when they're done .)

process Printerl;
use File, UserBlockld, PPS. read. UserAddress. despool. deallocate;
var f: File;

procedure print(f: File)

begin
loop (* forever *)

despool (!) ;
print(f);
deallocate(f.contents)
end

end Printerl;

process Printer2;

end print;

use File, UserBlockld, PPS, read, UserAddress, despool, deallocate;
var f: File;

procedure print(f: File) ... end print;

begin
loop (* forever *)

despool(f);
print(!) ;
deallocate (f. contents)
end

end Printer2;

48

module StorageManager;

define allocate, free, read, write, copyBlock,
Address, UserAddress, StorageUnit, UserBlockld;

use Processld, store1Read, store2Read, store3Read,
store1Write, store2Write, store3Write,
lastStore1Address, lastStore2Address, lastStore3Address;

(* the storage manager maintains a user address space, which
conceptually is a linearly addressable array of type:

array 0 : maxAddress of StorageUnit
operations provided tO,manipulate this array are lallocate l ,
Ifree l , Iread l , Iwrite l , and IcopyBlockl.

the user can allocate variable-sized blocks. a user block
identifier consists of

(1) the process identifier for the owning process
(2) a user address where the block starts
(3) the block size

IblockSize l is the amount of storage requested by the user.
if lallocate l cannot allocate that amount of storage, it will
reset IblockSize l to 0; if it can allocate the storage, it
assigns a Istartl address.
(the block size could instead have been made part of the
identifier for each store block. making it part of the user
block identifier collects all the information the user cares about
in one place.)

this user address space is implemented using many stores (Imanyl
in this case is 3). a store is also a linearly addressable array:

array 0 : lastStoreiAddress of StorageUnit
where 11astStoreiAddress· is a constant exported by store i.

each user block is implemented as contiguous storage on one store.
corresponding to each user address is a store address
consisting of

(1) the store on which the block is allocated
(2) the store address where the block starts

the mapping between user and store addresses is maintained in
the storage map. a storage map entry consists of

(1) a user block identifier
(2) a store address
(3) the recovery block depth at which the user block was

allocated
(4) a pointer to the next storage map entry in the storage list

(see below)

all storage is either:

49

(1) available.
(2) allocated. or
(3) freed and not yet accepted (referred to below simply as

-freed-)

the allocation status (available. allocated. or freed) of a
storage entry is defined by which storage list the storage entry
is on.

all storage lists are contained in the same storage map. which is
an array of linkable storage map entries. storage lists are
maintained as ordered linked lists. largely to make them
straightforward to implement. (greater realism only improves
efficiency; our real concern is how data is shared and used.)

since user blocks can be of variable length. -allocate- and -free
maintain these lists with something like a buddy system
reservation scheme.

during allocation. an available block may be split into two
blocks: one of the requested size and the other for the remaining
storage still available. similarly. blocks may be merged when
a block is freed (to be precise. when it is accepted and becomes
available). since the number of blocks in use changes. a list is
kept of unused storage map entries.
(we will ignore the possibility that -allocate- may exhaust the
supply of unused storage map entries.)

the organization of the available storage list depends on the
storage allocation scheme used.

care must be used in assigning user addresses so that a user
address is not reused until it is not only free. but has also been
accepted (i.e .• returned to the available storage list). *)

const maxAddress = maxValue;

(* types exported by the storage manager *)
type Address = 0 : maxAddress;
type UserAddress = Address;
type StorageUnit = {blank storage};
type UserBlockId = record pId: ProcessId;

const #ofStores = 3;
type Store = (51. 52. 53);

start: UserAddress;
blockSize: UnsignedInt end;

type StoreAddress = record sId: Store;

50

addr: Address end;
C* this assumes

CALL i: 1 <= i <= #ofStores)
(lastStoreiAddress <= maxAddress) .)

(* the storage map .)
const #sMaps = 321; C* to pick a size .)
type SMlndex = 1 : #sMaps;
type SMPtr = 0: #sMaps;
const nullSMPtr = 0;
type SMap = record ubld: UserBlockld;

sa: StoreAddress;
allocatedRBD: Unsignedlnt;
next: SMPtr end;

var storageMap: array SMlndex of SMap;
availableBlocks, allocatedBlocks, freedBlocks: SMPtr;
nextUnusedSMap: SMPtr;

51

procedure associatedStorageEntry(ub: UserBlockld)
: SMPtr;
begin
{return the pointer to the storage entry for the block with the
given user block identifier; if no such user block identifier.
return ·nullSMPtr·}

end associatedStorageEntry;

procedure translateAddress(ua: UserAddress)
: StoreAddress;
begin
{return the store address for this user address}
end translateAddress;

procedure legaIAccess?Cp: Processld; ua: UserAddress)
: Boolean;
begin
legalAccess? := {does this user address belong to this process?}
end legaIAccess?;

procedure onList? Cub: UserBlockld; &torageList: SMPtr)
: Boolean;
begin
onList? := {is the user block on the specified storage list?}

C* in checking the allocated and freed lists. an exact match
must be found. in checking the available list. the user
block need only be contained in an available block. *)

end onList?;

procedure
begin
{move

C*

moveStorageMapCsMapToBeMoved. FromList. ToList: SMPtr);

the specified store entry
moving a storage entry to
merging entries. *)

end moveStorageMap;

from one storage list to another}
the available list may involve

procedure assignUserAddressCub: UserBlockld);
begin
{based on ub.blockSize. set ub.start to a user address for the
block just acquired}

end assignUserAddress;

52

procedure allocate (var ub: UserBlockld);
begin
var ami: SMlndex;
case RBDirection of

Forward:
begin
{search the available storage list for a big enough block};

C. how this search is done defines the storage
allocation scheme .)

if {no block big enough} then
ub.blockSize := 0 C. reset the user block to size 0 .)

dse
smi := {storage entry of block found};
if ub.blockSize < storageMap[smi] .ubld.blockSize then

{create new storage entry for unneeded storage};
storageMap[smi].ubld.blockSize := ub.blockSize
end;

C. tell the user where his storage starts .)
assignUserAddressCub);

C. set up storage map entry.)
with storageMap[smi] do

ubld := ub;
C. save recovery block depth at which block is

allocated .)
allocatedRBD := RBDepth;
moveStorageMapCsmi, availableBlocks, allocatedBlocks)
end;

RBMakeCacheEntryC'allocate', ub)
end

end; C. Forward .)

Reverse:
C* at the time of doing the reverse allocate, the block

can either be allocated or available: if it had been
freed, a previously executed reverse free will have
re-allocated the block .)

begin
if onList?(ub, allocatedBlocks) then

moveStorageMapCassociatedStorageEntryCub),
allocatedBlocks, availableBlocks)

else C. it's too late to do anything because the block has
been returned to available storage .)

error
end

end; C. Reverse .)

Accept:
begin

53

if onList?Cub, allocatedBlocks) then
smi := associatedStorageEntryCub);
if RBDepth < storageMap[smi].allocatedRBD then

storageMap[smi] .allocatedRBD:= RBDepth

end
else

C* if RBDepth = allocatedRBD, no action is
required .)

error C. this shouldn't occur .)
end

end C. Accept .)
end C. case .)

end allocate;

54

procedure free(ub: UserBlockld);
var ami: SMlndex;
begin
case RBDirection of

Forward:
begin
moveStorageEntry(aasociatedStorageEntry(ub),

allocatedBlocks, freedBlocka);
RBMakeCacheEntry('free', ub)
end; (* Forward *)

Reverse:
begin
if onList?(ub, freedBlocka) then

moveStorageEntry(aasociatedStorageEntry(ub),
freedBlocks, allocatedBlocks)

end
end; (* Reverse *)

Accept:
begin
ami := asaociatedStorageEntry(ub);
if RBDepth = storageMap[smi] .allocatedRBD then

moveStorageEntry(ami, freedBlocks, availableBlocks)
end

end (* Accept *)
end (* case *)

end free;

55

(* -read- and -write- deal with storage units, ignoring (i.e.,
coercing) the types of values read and written. .)

procedure read(ub: UserBlockId; ua: UserAddress)
: StorageUnit;
(* since -read- has no side-effects, no recovery operations are

needed. *)
var sa: StoreAddress;
begin
{check that this user can legally access this address};
sa := translateAddress(ua);

(. read the storage unit on the appropriate store .)
case sa. sId of

S1 :
begin
read := store1Read(sa.addr)
end; (. S1 .)

S2:
begin
read := store2Read(sa.addr);
end; (. S2 .)

S3:
begin
read := store3Read(sa.addr)
end (* S3 *)

end (* case .)
end read;

56

procedure write (ub: UserBlockId; ua: UserAddress;
su: 5torageUnit);

procedure sWrite(ua: UserAddress; su: 5torageUnit);
(* IsWrite l does the real work, writing the storage unit on

the appropriate store .)
var sa: 5toreAddress;
begin
sa := translateAddress(ua);
case sa. sId of

51:

S2:

S3:

begin
store1Write(sa.addr, su)
end; (* 51 *)

begin
store2Write (sa. addr, su)
end; (* 52 *)

begin
store3Write(sa.addr, su)
end (. S3 *)

end (* case *)
end sWrite;

begin
case RBDirection of

Forward:
begin
{check that this user can legally access this address};

if onList?(ub, freedBlocks) then
error (* scream if no longer allocated *)

else (* encache the previous value *)
RBMakeCacheEntry('write', ub, ua, read (ub, ua»;

sWrite(ua, su) (* do the write *)
end

end; (* Forward *)

Reverse:
begin
if onList?(ub, freedBlocks) then

error
else (. restore prior value *)

sWrite(ua, su)
end (. if .)

end; (. Reverse .)

Accept:
begin

57

(* no action required *)
end (* Accept *)

end (* case *)
end write;

58

procedure copyBlockCfrom, to: UserBlockId);
(* copy the contents of the -from- block to the -to-, using

-read- and -write-.

since the only effects of -copyBlock- on the outside world are
achieved using a procedure within this module with its own
recovery actions (-write-), no recovery actions for ·copyBlock·
itself are required. *)

var uaFrom, uaTo: UserAddress;
begin
uaFrom := from. start;
uaTo := to. start;
while uaFrom < from. start + from. blockSize do

write (to, uaTo, read (from, uaFrom»;
incCuaFrom);
inc (uaTo)
end

end copyBlock;

begin (* initialization *)
(* each store is initially all available .. ;

availableBlocks := 1;
storageMap[l] .sa.sId := S1;
storageMap[1] .sa.addr := 0;
storageMap[1].ubId.blockSize .- lastStorelAddress + 1;
storageMap[1] .next := 2;
storageMap[2] .sa.sId := S2;
storageMap[2] .sa.addr := 0;
storageMap[2] .ubId.blockSize lastStore2Address + 1;
storageMap[2].next := 3;
storageMap[3] .sa.sId := S3;
storageMap[3] .sa.addr := 0;
storageMap[3] .ubId.blockSize := lastStore3Address + 1;
storageMap[3] .next := nullSMPtr;

C* all the remaining storage entries are unused *)
nextUnusedSMap := 4; C* use this as a loop variable for now *)
while nextUnusedSMap < #sMaps do C* initialize linked list *)

storageMap[nextUnusedSMap].next := nextUnusedSMap + 1;
incCnextUnusedSMap)
end;

storageMap[#sMaps].next := nullSMap;
nextUnusedSMap := 4; (* now initialize it *)

(* initially no storage allocated Cor freed) *)
allocatedBlocks := nullSMap;
freedBlocks := nullSMap
end StorageManager;

interface module Store1;
define lastStore1Address. store1Read. store1Write. store1Status;
use StorageUnit. Address;

const lastStore1Address = 66432; (. to pick a number .)

procedure store1read(addr: Address)
: StorageUnit;
begin ... end store1read;

procedure storelWrite(addr: Address; contents: StorageUnit);
begin ... end store1Write;

procedure storelstatus ... end store1status;

begin (* initialization .)

end Store1;

(* this example could be made more interesting by putting two stores
on the same multiplexor .)

inter face module Store2;
define store2Read. store2Write. lastStore2Address;

begin .,. end Store2;

inter face module Store3;
define store3Read, store3Write, lastStore3Address;

begin .,. end Store3;

11 CONCLUSIONS

First, we have concluded that the effects of correlated design errors on reliability, and
the limited effectiveness of reliability blocks against correlated errors, preclude the
recovery block technique from achieving the degree of reliability required by NASA Cor
flight control systems. It appears to us that the techniques of formal mathematical
program verification will be needed to meet that reliability requirement. However, it
may be possible to employ recovery blocks in addition to Cormal verification, Cor
instance, by use of verified acceptance tests and second alternates to protect against
errors in unverified first alternates.

We have concluded that it is possible to Cormally speciCy software systems and employ

60

those specifications to construct vigorous acceptance tests of reasonable cost, and that it
is possible to provide recovery block mechanisms that match modern program
structuring techniques such as types and processes. We have not, however, been able to
find any completely satisfactory approach to the recovery of systems of interacting
asynchronous processes. The most suitable technique, that of ·conversations· imposes
severe structuring constraints on the design of the application.

Lastly, we have been able to demonstrate that the special characteristics of flight control
programs permit certain simplifications in the recovery block mechanisms, simplifications
that would permit the implementation of a reasonably efficient mechanism on an aircraft
flight control computer, such as the Bendix BDX 930, using only microprogram. This
would permit the provision of recovery blocks for flight control programs at a relatively
modest hardware cost.

61

References

[1]· Avizienis, A.
Fault-Tolerance: The Survival Attribute oC Digital Systems.
In Proceedings of the IEEE, 66(10), pages 1109-1125. IEEE, Oct, 1978.

[2] Davies, C.T.
Recovery Semantics Cor a DB/DC System.
In Proceedings of the 1973 ACM National Conference. ACM, 1973.

[3] Hopkins, A.L., Jr., Smith, T.B., ill, and Lala, J.H.
FTMP--A Highly Reliable Fault-Tolerant Multiprocessor Cor Aircraft.
In Proceedings of the IEEE, pages 1221:1239. IEEE, Oct, 1978.

[4] Horning, J.J., et al.
Lecture Notes in Computer Science #16 Operating Systems: A Program

Structure for Error Detection and Recovery.
Springer-Ver1ag, 1974.

[5] Wensley, J.H., et al.
SIFT: Design and Analysis oC a Fault-Tolerant Computer Cor AircraCt Control.
In Proceedings of the IEEE 66(10), pages 1240-1255. IEEE, Oct, 1978.
Also in: Siewiorek, D.P. and Swarz, R.S., The Theory and Practice oC Reliable

System Design, Digital Press, 1982.

1. Report No.
172122

4. Title and Subtitle

I 2. Government Accession No.

Development of Software Fault-Tolerance Techniques

7. Author(s)

Peter Michael Melliar-Smith

9. Performing Organization Name and Address

SRI International
333 Ravenswood Avenue
Menlo Park, CA 94025

3. Recipient's Catalog No.

5. Report Date
June 1983

6. Performing Organization Code

8. Performing Organization Report No.

SRI Project 7614

10. Work Unit No.

11. Contract or Grant No.

NASl-15480
t-______________________________ ----I13. Type of Report and Period Covered

Final Report 12. Sponsoring Agency Name and Address

National Aeronautics and Space Administration
Langley Research Center

14. Sponsoring Agency Code

Hampton VA 23665
15. Supplementary Notes

16. Abstract

As computers become more widely used, and in particular as they become used in
more safety critical applications, the reliability of the computer system and
its software becomes more important. There is also an increasing need for
high levels of reliability in applications involving very large numbers of
inexpensive units where recall of the units would be disproportionately
ex"pensive. This report considers the nature of faults and the assumptions
made by different approaches to correct operation. It then describes the
recovery block approach and provides a probabilistic analysis of its
effectiveness, with and without correlated design errors. Mechanisms for
generating acceptance tests from specifications, and for providing recovery in
the presence of asynchrony, are described. An analysis of, and design for,
the provision of recovery blocks in the microprogram of th~ Bendix BDX930
processor is provided. The report concludes with an example of the use of
recovery blocks in a simple operating system.

17. Key Words (Suggested by Author(s))
Reliability, software reliability,

fault-tolerance, recovery blocks,
error recovery

18. Distribution Statement

Unclassified--Unlimited

19. Security Oassif. (of this report)

Unclassified
20. Security Classif. (of this page)

Unclassified
21. No. of Pages

65
22. Price

N-305 For sale by the National Technical Information Service, Springfield. Virginia 22161

End of Document

