General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)

N83-30500

(NASA-TM-84989) INTERNATIONAL ULTRAVIOLET EXPLORER SOLAR ARRAY POWER DEGRADATION (NASA) 77 p HC A05/MF A01 CSCL 22B

Unclas G3/15 13184

NASA Technical Memorandum 84989

INTERNATIONAL ULTRAVIOLET EXPLORER SOLAR ARRAY POWER DEGRADATION

John H. Day, Jr.

JANUARY 1983

National Aeronautics and Space Administration

Goddard Space Flight Center Greenbelt, Maryland 20771

TM 84989

INTERNATIONAL ULTRAVIOLET EXPLORER SOLAR ARRAY POWER DEGRADATION

John H. Day, Jr.

January 1983

GODDARD SPACE FLIGHT CENTER Greenbelt, Maryland

CONTENTS

	Page
INTRODUCTION	. 1
ARRAY DESIGN	1
SOLAR ILLUMINATION AND ARRAY TEMPERATURE	1
IRRADIATION DOSAGE	3
CEL I-V CHARACTERISTICS	13
ARRAY POWER OUTPUT	31
CONCLUSION	41
REFERENCES	44
APPENDICES	46

PRECEDING PAGE BLANK NOT FILMED

ORIGINAL PAGE IS OF POOR QUALITY

INTRODUCTION

The International Ultraviolet Explorer (IUE) has been in geosynchronous orbit since January 26, 1978. Its mission has been to perform ultraviolet (UV) spectroscopy with stars using a 45 cm UV telescope with an echelle spectrograph.^{1,2} IUE experiments have made many contributions to state-of-the-art UV astronomy.^{3,4} Therefore, it is desirable to extend operation of the spacecraft beyond its life design goal (3-5 years). This is made possible because the array continues to produce much more power than is required at most observatory positions.⁵ Preflight calculations⁶ which predicted the IUE solar array output for up to three years of flight are now obsolete. The available IUE array power is calculated in this work for the initial life requirement of three years. The calculation is normalized to flight data at three years. Then the normalized power calculation is performed for life goals up to ten years of flight.

ARRAY DESIGN

The IUE solar array has two paddles, as illustrated in Figure 1. Each paddle has three panels (one central panel, 70.5 cm \times 54.8 cm, and two lateral panels, 70.5 cm \times 67.8 cm). The lateral panels are attached to opposite sides of the central panel with each lateral panel plane making a 45° angle with the central panel plane. The plane of each array panel is perpendicular to the XZ plane of the spacecraft. Thus, as the orientation of the spacecraft is controlled such that the sun is always in the XZ plane, the position of the sun with respect to all six array panels is defined by only one coordinate (angle β). Values of β are confined to the range 0° to 135° because the telescope, coaxial to the +X axis of the spacecraft, can not be pointed to within 45° of the sunline.

Each array panel has honeycomb-type construction. There are 4980 2 cm \times 2 cm, n/p silicon solar cells bonded to the array structure with silicon adhesive. The cells are .02 cm thick with a 1 Ω -cm resistivity. Cerium doped covers, .01 cm thick, provided protection to the cells against immediate catastrophic radiation damage. The cells are wired with welded stress-relief, silver-on-molybdenum interconnects such that each central panel has 69 series cells per string by 20 parallel strings; and each lateral panel has 75 series cells per string by 24 parallel strings. The operating voltage of the average cell on each central and lateral panel is 423 mV and 389 mV, respectively. This leads to 28 volts across each parallel string at the spacecraft bus line after substracting interface losse. The power supplied by each central and lateral panel is 28 volts \cdot 201_C and 28 volts \cdot 241_L; where, I_C and I_L are the currents generated by the average cell on the central and lateral panels, respectively. Hence, to determine the available power output for the IUE solar array, the average current-voltage (I-V) characteristics of typical IUE solar cells are evaluated in the following sections as a function of several prevailing variables (namely, illumination, temperature and radiation damage).

SOLAR ILLUMINATION AND ARRAY TEMPERATURE

The position of the sun with respect to the array is described by the angle β . The sunline normal to the surface of the central panels occurs at β =67.5°. Thus, the view factor for the central panel is cos (β -67.5°). Consequently, the view factors for the lower lateral panels and the upper

ORIGINAL PAGE IS OF POOR QUALITY

é

ORIGINAL MARL IS OF POOR QUALITY

lateral panels are $\cos (\beta - 112.5^{\circ})$ and $\cos (\beta - 22.5^{\circ})$, respectively, as a $\pm 45^{\circ}$ rotation is required to displace a lateral panel to the plane of the central panels. The cosine law does not describe the complete dependence of the solar illumination, because of the variation of the earth's distance from the sun between summer and winter solstices. The best and worst case correction factors are 1.035 (winter) and .965 (summer). A re-examination of Figure 1 reveals an additional correction to the cosine view factor. No array panel has its normal passing through the spacecraft center of coordinates from which the angle β is measured. However, this error is negligible because of the comparably large distance to the sun.

At normal incidence to a given IUE array panel, the solar illumination is 1 solar constant which has been shown⁷ to be approximately 135.3 mW/m². That solar energy which is not, converted to electrical energy is dissipated as heat. As the sun is the primary source of heat and the cell illumination depends on β , so does the array temperature depend on β . Preflight calculations⁸ were performed to determine how the IUE array temperature varies with β . The predicted temperature profiles at the three year life requirement are displayed in Figure 2. This thermal study was based on a combination of two models. A radiative model considered reflections and emissions from all viewing surfaces (panels, paddle support arms and satellite body) in addition to direct solar illumination. A conductive model considered heat transfer across the honeycomb panels, the silicon cells and the cell interconnects. The calculations also predicted a minimum array temperature of -155° C to -165° C during IUE eclipses, 57 min to 71 min, respectively.

Two platinum resistors were mounted on each IUE array panel to monitor solar cell temperature. The array with its platinum thermometers were subjected to preflight thermal cycling between -150° C and $+60^{\circ}$ C. The performance of the resistors was unreliable with two failing only during cold phases and three failing during hot and cold phases before the completion of forty cycles. As the array temperature sensors are not flight essential, no defective platinum thermometer was replaced. Six of the twelve sensors were connected to IUE telemetry. As previously reported,⁹ two of the six platinum resistors failed during the first year of flight. As of three years flight time, the remaining four temperature sensors (one lower panel, one upper panel and both central panels) operated reliably except for a few erroneous readings during cold phases. A temperature reading from each sensor as well as a β angle reading is acquired each hour. These data acquired at 3 years ±30 days are shown in Figures 3, 4 and 5 for the central, lower and upper array panels, respectively. In each case a least-squares routine¹⁰ was applied to the data (panel temperature versus β angle) to determine the best second order fit. As shown in a preflight study,¹¹ the uncertainty in the temperature measurement is ±3.7°C. Thus, the best case temperatures and worst case temperatures are obtained by shifting the above curves by +3.7°C and -3.7°C, respectively.

IRRADIATION DOSAGE

A study has been performed to determine the IUE radiation environment.¹² The IUE orbit (period, 24 hrs; perigee, 25235 Km; apogee, 46350 Km; and inclination, 29°) was integrated over the then most current space radiation models to estimate the charge particle fluences for a mission duration of three years. In the case of trapped electrons, fluences were calculated using the AEI7-HI model¹³ for outer zone electrons; IUE never enters the inner zone. This model is an upper limit

OFFICIANAL PART IS

ł

Figure 3. Central Panel Temperature versus Beta Angle.

ORIGINAL PAGE IS OF POOR QUALITY

ŧ

Figure 4. Lower Panel Temperature versus Beta Angle.

ORIGINAL PACE IS OF POOR QUALITY

ORIGINAL PROCESS

(worst case) estimate. The results are given in Table 1. These data are reduced by one half to obtain a lower limit (best case) estimate. Fluences for trapped protons were calculated using the solar maximum version of the AP8 model.¹⁴ The results are given in Table 2 for numbers of anomalously large solar events predicted with a confidence level above 80 percent. The best and worst cases correspond to two and five events, respectively.

Much is known about the degradation of solar cells due to irradiation with monoenergetic unidirectional charged particles. However, the space radiation environment of IUE, as well as other spacecrafts, consists of a spectrum of omnidirectional charged particles. Hence, multienergetic omnidirectional space radiation fluences were converted to an equivalent 1 Mev normal incidence electron fluence using the procedure, as interpreted from the literature,¹⁵ given below.

Step 1 Calculate the 1 Mev electron fluence $\psi_{1\text{Mev e}}^{(t)}$ at normal incidence upon a cell of shield thickness t that produces radiation damage equivalent to that produced by the multienergetic space electron fluence $\phi_e(E=0) \cdot \cdot \phi_e(E=\infty)$.

For all I-V parameters

$$\psi_{1\text{Meve}}^{(t)} = \sum_{E=0}^{\infty} [\phi_e(>E-dE/2) - \phi_e(>E+dE/2)] \cdot D_e(E,t)$$

where $D_e(o,t) \cdot \cdot \cdot D_e(\infty,t)$ are damage coefficients interpolated from Table 3.

ENERGY (> Mev)	AVERAGE INTEGRAL FLUX (ELECTRONS/cm ² · DAY)*
.5	2.076E 11
1.0	2.185E 10
1.5	2.109E 10
2.0	7.303E 09
· 2.5	3.147E 09
3.0	1.376E 09
a la de la companya d	8.472E 08
4.0	5.217E 08
4.5	2.217E 08
5.0	1.215E.08
5.5	3 825E 07
6.0	1.204E 07
65	1 488 66
7.0	1.000E 00

Table 1Electrons Incident Upon IUE12

MULTIPLY TIMES 1096 DAYS

ORIGINAL PASS IS OF POOR QUALITY

	тота	L NO. OF PARTICL DURATION OI	ES/CM ² FOR A MI F v = 3 YEARS	SSION			
		CONFIDENCE	LEVEL Q(%)*				
	80-91	92-96	97-98	99			
(= MCV)	NO. OF A	NO. OF ANOMALOUSLY LARGE EVENTS PREDICTED FOR GIVEN $\tau \& Q$					
	(2)	(3)	(4)	(5)			
10.0	3.360E 10	5.040E 10	6.720E 10	8.400E 10			
20.0	2.304E 10	3,456E 10	4,608E 10	5.760E 10			
30.0	1.580E 10	2.370E 10	3.160E 10	3,950E 10			
40,0	1.083E 10	1.675E 10	2.167E 10	2.708E 10			
50.0	7.428E 09	1.114E 10	1.486E 10	1.857E 10			
60.0	5.094E 09	7.641E 09	1.019E 10	1.274E 10			
70.0	3.492E 09	5.238E 09	6,984E 09	8.730E 09			
80.0	2.394E 09	3,591E 09	4.788E 09	5,985E 09			
90.0	1.642E 09	2.463E 09	3.284E 09	4.105E 09			
100.0	1.126E 09	1.689E 09	2.252E 09	2.814E 09			

Table 2Protons Incident Upon IUE12

*Q DENOTES THE DEGREE OF CONFIDENCE ONE WISHES TO ASSIGN TO THE RESULTS, NAMELY THAT FOR THE SPECIFIED MISSION DURATION THE CALCULATED FLUENCES ARE THE SMALLEST VALUES WHICH WILL NOT BE EXCEEDED BY ACTUALLY EN-COUNTERED INTENSITIES.

Step 2 Calculate the 10 Mev proton fluence $\psi_{10\text{Mev p}}^{(t)}$ at normal incidence upon a cell of shield thickness t that produces radiation damage equivalent to that produced by the multienegetic space proton fluence $\phi_p(E=0) \cdot \cdot \cdot \phi_p(E=\infty)$,

For I-V parameter I_{SC}

 $\psi_{10Mev p}^{(t)} = \sum_{E=0}^{\infty} [\phi_p(>E-dE/2)-\phi_p(>E+dE/2)] \cdot D_p^{SC}(E,t)$ where $D_p^{SC}(o,t) \cdot \cdots D_p^{SC} \infty, t$ are damage coefficients interpolated from Table 4. For I-V parameters $V_{OC} \& P_{MAX}$

$$\psi_{10\text{Mev p}}^{(t)} = \sum_{e=0}^{\infty} \left[\Phi_{p}(>E-dE/2) + \frac{1}{p}(>E+dE/2) \right] \cdot D_{p}^{OC}E, t)$$

where $D_{p}^{OC}(o,t) \cdot \cdot \cdot D_{p}^{OC}(\infty,t)$ are damage coefficients from Table 5.

ORIGINAL PAGE IS OF POOR QUALITY

÷.

	Table	3
Electron	Damage	Coefficients ¹⁵

ENERGY	SHIELD THICKNESS (GM/CM ²)							
(Mev)	Q	5.591 =3	1.681:-2	3.351-2	6.711-2	1.121-1	1.681-1	3.881-1
150	2.6901 = 04	3.6871=05	0.	0.	0.	0.	0.	0.
160	5.0001 - 04	7.9511-05	0.	0.	0.	0.	0.	0.
.170	8.9511-04	1.6201-04	0.	0.	0.	0.	Q.	0,
.180	1.5501-03	3.168E=04	2.2271-05	0.	0.	Q.	0.	0.
.190	2.4061-03	5.9381=04	5.228F-05	0.	0.	0,	0.	0.
.200	3.6501=03	1.0451-03	1.143E-04	0.	0.	Ö.	0.	0.
.220	6.750F-03	2.5331-03	4.3751-04	1.5511=05	0.	0.	0	0.
.240	1.0351-02	4.924E=03	1.2631=03	8.6671~05	0.	0.	Ö .	0.
.260	1.4501 -02	7.981E=03	2.814E+03	3.6091-04	0.	0.	0.	0.
.280	2.0101 -02	1.174E-02	5.0521-03	1.0731-03	0.	0.	0.	0.
.300	2.7251-02	1.6681-02	7.9411-03	2.4001:-03	2.828E=05	0.	0.	0.
.320	3.3851-02	2.249E-02	1.1561*02	4.2201-03	1.481E-04	0.	0.	0.
.360	5.0041 -02	3.581E=02	2.142E-02	9.858F-03	1.314E-03	0.	0.	0.
.400	7.000L=02	5.2550+02	3.4231-02	1.8551-02	4.311E-03	9.0751-05	0.	0.
.450	9.5061-02	7.5621-02	5.344E-02	3.2581-02	1.106E-02	1.295E-03	0.	0.
.500	1.2501-01	1.023E-01	7.5951:-02	5.0591-02	2.1461-02	4.824E-03	7,7591-05	0.
.600	2.000E-01	1.703E-01	1.343E-01	9.816E-02	5.3471-02	2.158E-02	4,3151-03	0.
.700	2.7001-01	2.4001-01	2.004E-01	1.574E-01	9.769E-02	4.9266-02	1.802E-02	0.
.800	3.500E-01	3.166F-01	2.718E-01	2.2251-01	1.527E-01	9.074E-02	4.262E-02	3.097E-04
.900	4.225E-01	3.898E-01	3.438E-01	2.910[-0]	2.1216-01	1.385E-01	7.726E-02	4.452E-03
1.000	5.000E-01	4.6571-01	4.169E-01	3.607E+01	2.759E-01	1.934E-01	1,199E-01	1.566E-02
1.200	6.700E=01	6.303E-01	5.733E-01	5.0721-01	4.068E-01	3.081E-91	2.1726-01	5.937E-02
1:400	8.6001-01	8.160F-01	7.515E-01	6.759E-01	5.593E+01	4.419E-01	3.312E-01	1.281E-01
1.600	1.060F+00	1.012E+00	9,405E-01	8.564E-01	7.256E-01	5.916E-01	4.614E-01	2.120E-01
1.800	1.260F+00	1.2101+00	1.136E+00	1.04517+00	9.022E-01	7.5216-01	6,040E-01	3.099E-01
2.000	1.47013400	1.418E+00	1.339E+00	1.2421:+00	1.088E+00	9.245E-01	7.611E-01	4.236E-01
2.250	1.7291+00	1.6761+00	1.5921+00	1,4891:+00	1 323E+00	1.145F+00	9.639E-01	5.793E-01
2.500	2.000E+00	1.943E+00	L854E+00	1,7441+00	1.566E+00	1.37412+00	1.178E+00	7,499E-01
2.750	2.2521:+00	2.1971:+00	2.108E+00	1.9971+00	1.813E+00	1.611E+00	1,3991:+00	9.314E-01
3.000	2.5101+00	2.454E+00	2.362E+00	2.2481:+00	2.057E+00	1.847E+00	1.627E+00	1.125E+00
3.250	2.7541-+00	2.698F+00	2.606E+00	2.4901:+00	2.295E+00	2.078E+00	1.849E+00	1.320E+00
3.500	3.0001+00	2.943E+00	2.850E+00	2.731E+00	2.531E+00	2.309E+00	2.07212+00	1.520E+00
3.750	3.2491+00	3.1918+00	3.096F400	2.974E+00	2.770E+00	2,5411:+00	2.296E+00	1.723E+00
4.000	3.500E+00	3,4421+00	3,344E+00	3.220E+00	3.011E+00	2.7751:+00	2.523E+00	1.928E+00
4.500	3.9501:+00	3.8941+00	3.7981+00	3.675E+00	3,464E+00	3,223E+00	2.962F+00	2.33212+00
5.000	4.400E+00	4.3441+00	4.2471:+00	4,1211400	3.905E+00	3.659E+00	3.390E+00	2.7381:+00
5.500	4.8501:+00	4,7931:+00	4.695E+00	4.566F+06	4.346E+00	4.0931:+00	3.8171:+00	3.1416+00
6.000	5.3001:+00	5.243E+00	5.143E+00	5.012E+00	4.7871:+00	4,528E+00	4,244E+00	3.545E+00
7.000	6.150F+00	6.093E+00	5.992E+00	5.859E+00	5.627E+00	5,358E+00	5.0625+00	4.326E+00
8.000	6.900F+00	6.8481+00	6.753E+00	0.626E+00	6.401F+00	6.138E+00	5.844E+00	5,097E+00
9.000	7.6071-+00	7,555E+00	7.462E+00	7.335E+00	7.112E+00	6,848E+00	6.553E+00	5.801E+00
10.000	8.3001:+00	8.24912+00	8.156E+00	8.029E+00	7.804E+00	7.539E+00	7.2416+00	6.479E+00
15.000	1.060E+01	1.056E+01	1.049E+01	1.039E+01	1.020E+01	9.981E+00	9.725E+00	9.047E+00
20.000	1.230F+01	1.2276+01	1.2218+01	1,21,31:401	1.1976+01	1.1776+01	1.155E+01	1.095E+01
25.000	1,360E+01	1.357E+01	1.352E+01	1.344E+01	1.329E+01	1.311E+01	1.290E+01	1,233E+01
30.000	1.470E+01	1.4676401	1.462E+01	1.455E+01	1.442E+01	1.425E+01	1.405E+01	1.3526+01
40.000	1.650E+01	1.6481+01	1.643E+01	1.637E+01	1.62512+01	1.610E+01	1.593E+01	1.544E+01

Original: Page 13 OF POOR QUALITY

FSFRGY	SHIFLD THICKNESS (GM/CM ²)							
(Mev)	0	5.5/11-3	1.681-2	3.351-2	6.71E-2	1.126-1	1.68E-1	3.35E-1
.100	2.4351=04	0.	0.	0.	0.	0.	0.	0.
.200	3.0471 - 03	0.	D	0.	0.	0.	0. 0	0.
.300	1.4741:*02	0.	0.	0.	0.	0.	0. 0.	<u>0.</u>
.600	1.5021-01	0.	0.	0. 0.	0.	<u>0</u> .	Ő.	Ö.
.800	3.2431-01	0.	0.	Ů.	0.	0.	0.	0.
1.000	5.216E=01	0.	0.	0.	0.	0.	0.	0.
1.200	7.108E≊01 7.800E∞01	0.	0.	0.	0.	0.	0.	0. 0.
1.400	8.5491-01	3.7501-03	0. 0.	0.	0.	0,	0.	ō,
1.600	9.532E-01	8.1241-02	0.	0.	0.	0.	0.	0,
1.800	1.01019400	2.5251-01	0.	0.	0.	0.	0.	0.
2.000	1.0391:+00	4.3381:=01	0.	0.	0.	0.	0.	0.
2.400	1.0411-00	7.4261-01	0.	0.	0.	0.	ŏ.	<u>0</u> ,
2.600	1.0231:+00	8.207F-01	1.860E-05	0.	0.	0.	0.	0.
2.800	9.9621=01	8.680E=01	3.9251-02	0.	0.	0.	0.	0.
3.000	9.6391.*01	8.9121-01	1.7940*01	0. 0	0.	0.	0. 0	0.
3.400	8.9371-01	8.8711-01	4.8071-01	0.	0. 0.	Ő.	Ő.	0 .
3.600	8.5981-01	8.6971-01	5.7871-01	0.	0.	0.	0.	0.
3.800	8.273E-01	8.4811-01	6.4591-01	0.	0.	0.	0.	0.
4.000	7.963E=01	8.2431:*01	6.8791-01	1.2881-03	0.	0. D	0.	0. Ö
4.200	7.4861-01	7.7341-01	7.1895-01	2.0771-01	0. 0.	0.	0 .	<u>0</u> .
4.600	7.2541-01	7.499E-01	7.184E-01	3.274E-01	0.	0.	0.	0.
4.800	7.0291-01	7.280F-01	7.120E-01	4.191E-01	0.	0.	0.	0.
5.200	6.6051-01	6.866E~01	6.8901-01	5.2866-01	0.	0.	0.	0. 0
5.600	0.2100**01 5.867E*01	6.479E=01 6.119E=01	- 6,61,30,=01 - 7,319E∞01	5.8391-01	2.142E+03	0.	0.	0.
6,400	5.585E-01	5.7921-01	6.019E-01	5.793E-01	1.742E-01	0,	Õ.	0.
6.800	5.339F-01	5.520E-01	5.731E-01	5.0641:-01	3.196E-01	0.	0.	0.
7.200	5.128E-01	5.285E-01	5.4771-01	5.4911:-01	3.945E-01	0.	0.	0.
*.690 8.600	4.9471.401	4 9091-01	\$ 058E+01	5.118E+01	4.484E=01	0.	0.	0.
9,000	4.4761-01	4.565E-01	4.669E-01	4.724E-01	4.478E-01	2.735E-01	0.	0.
10.000	4.337E-01	4.369E-01	4.401E-01	4.425E-01	4.292E-01	3.5371-01	0.	0.
11.000	4,232E=01	4.245E-01	4.2586-01	4.2261:-01	4.1011:-01	3.6751-01	2.0616-01	0.
13,000	4.1906=01	4.1671-01	4.1208+01	4.0401-01	3.872E-01	3.588E-01	3.062E-01	Ö,
14.000	4.181E-01	4.159E-01	4.105E-01	4.0201:-01	3.828E-01	3.553E-01	3.131E-01	0.
15.000	4.1941-01	4.173E-01	4.1041-01	4.010E-01	3.814E-01	3.538E-01	3.159E-01	0.
16.000	4.2146-01	4.1821/**01	4.1206-01	4.0251-01	3.8192-01	3.5471:-01	3.1876-01	2.1758-01
20,000	4.172E-01	4.159E-01	4.125E-01	4.055E~01	3.9001-01	3,679E-01	3.3791-01	2.441E-01
22 000	4.144E-01	4.117F-01	4.0931:-01	4.0471-01	3.9151-01	3.731E-01	3.4731-01	2.6481:-01
24.000	4.094E-01	4.083E-01	4.059E-01	4.0108-01	3.919E-01	3.757E-01	3.457E-01	2.8346-01
26.000	4,0491:*01	4.039101	3.0786-01	3.98515-01	3.875E-01	3.7645-01	3.613E-01	3.101E-01
30.000	3.935E-01	3.9301-01	3.918E-01	3.896E-01	3.834E-01	3.7531-01	3.625E-01	3.186E-01
34.000	3.784E-01	3.7821-01	3.777E-01	3.767E-01	3.739E-01	3.67715-01	3.600E-01	3.291E-01
38.000	3.664F-01	3.662F-01	3.657E-01	3.650E-01	3.6171-01	3.582E-01	3.5291-01	3.312E-01
42,000	3.5328=01	3.5321-01	3.5320-01	3.5306-01	3,5196-01	3 3778-01	3.349E-01	3.245E-01
50.000	3.272E-01	3.2721-01	3.272E-01	3.273E-01	3.2718-01	3.264E-01	3.250E-01	3.177E-01
55.000	3.125F-01	3.126E-01	3.1281-01	3.130E-01	3.133E-01	3.132E-01	3.126E-01	3.082E-01
60.000	2.988E-01	2.9896-01	2.990E-01	2.992E-01	2.995E-01	2.997E-01	2.993E-01	2.969E-01
65.000	2.8441-01	2.8466-01	2.8505-01	2.8331-01	1 2.8035-01	2.8/15-01	2.8736-01	2.8091-01
80.000	2.474E-01	2.476E-01	2.480E-01	2.485E-01	2,494E-01	2,504E-01	2.514E-01	2.531E-01
90.000	2.245E-01	2.2471:-01	2.2511-01	2.256E-01	2.266E-01	2.2771-01	2.289E-01	2,315E-01
100.000	1.997E-01	1.9991-01	2.004E-01	2.010E-01	2.022E-01	2.0371-01	2.052E-01	2.089E-01
130.000	1.4928-01	1 1.493E-01	1.4966-01	1.500E-01	1.509E-01	1.5196-01	1.5306-01	1.3001:-01
200.000	9.215E-02	9.22012-02	9,2296-02	9.242E-02	9.268E-02	9,302E-02	9.344E-02	9.46212-02

Table 4Proton Damage Coefficients for ISC

		Table 5		
Proton	Damage	Coefficients	for Voc	and PMAX 15

INERGA	1 · · · · · · · · · · · · · ·	en en ante en ante ante ante ante ante A			ANI SS IGM C	N ¹²)		
(Mev)	, đ	5.591 3	1 081	1.351 1	0 11 1	1121 1	1 081 1	3.351-1
100	े फाम मा	U.	N	Q.	0	U.	9	- U-
200	1 1501 01	\mathbf{n}	n n	0	0	n A	0	n l
300	1 3334 01	i ti	1 12	n N	1) 1)	0	U.	n l
600	1 111 +00	ů i	n .	ŭ .	ιΰ	n	ö	Ŭ.
	15461 (00	U.	a	n'	u .	t)	ø	-ti
1 000	1 .1 .1 .1 .100	U.	0 .	u u	0	Û.	n N	0
1 1.111		1 1 1 1 1 1 1	n n	() ()	0	n n	n n	0
1.400	1 1 1 1 1 1 1 1	19381 01	0	n n	0	n .	0	ŭ -
1 600	1001 1001	5851 al	n.	n	ů l	a.	n -	Ŭ E
1 800	2.4121+00	10 1 18.0	u	U .	0	n	0	ų.
100	5021 +00	1 3 3 5 1 (1)	0	μ	ti	10. 	U N	0
1,100	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 0 41 400		u u	U D	0	n	10. 10
1.000	16451 100	1011100	ion av	0	l ü	0	u.	l ü
2 800	'nsol ind	1911-00	19 414 m	Ø.	n,	-0	U.	0
3 000	1 16101 100	1, 1981, 100	0.091 01	n i	ti .	0	0	0
1 200	1 2 201 100	1 3 3 3 1 1R	1 2 2 2 4 40	n n	10 - D	11	0 n	Ŭ, ·
1 000	24161 100	34201400	1.4681 100	lo l	u u	ő	l ŭ	lä l
3 800	1301 100	3 3881 400	1.6641.00	n	p.	ù	n	ů l
4 000	2.1891.00	13201400	18181-00	4 08 1 01	0	. U .	0	a.
4.200	1 2 0 241 200	1 1 191 100	19321-00	2 Shal 01	10	10	U A	0
4 4(8)	1 1 2011 446	1 200 1 200	1 1 1 1 1 100	S 1'S 01	U U	11	0	u l
4 800	16501 000	18191 100	1 1 100 100	10.41.400	ů	n i	t) i i i	u u
N 200	144 1 100	1 utot (00	18331400	1.4311.400	£Ì.	0	u i	Ŭ.
NAR	1.2781 400	1 4 81 100	1.6421.400	1 6031 100	0	. 0	0	0
	1.1.361 400	1.1081.400	1.1.1.1.1.1.00	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3.541 U.S. (3.810) 01	Q	0	n l
n 800	1 1 1 1 1 01	10181400	11*81+00	1 1 191 100	84641 01	a .	n n	l i
* 1(4)	8 4401 01	9 521 01	1061100	1.2181400	1 1011 100	ù -	- u	ů – –
* 6th)	1.1.51 -01	84.01 01	967.0-01	1 1091 400	1.1661-100	0	0	0
8.000		1 7 8 3 1 - 01 -	8 80 1 01	10131400	1.1.25F 400 -	1.6961 03	10 10	
10100	1 0 1300 01 1 5541 01	1 5 5 5 0 01 01	n 1011 01	8 9651 01	24981 01	\$331-01	1) · ·	u l
11 000	5 1691 01	\$ 3511 01	5 6411 01	6 lust of	0.8511 01	1.4631 .01	8.461-01-	a
11000	4.0361 01	50511-01	a Pull (11	5 5581 01	0.0351_01	6.5521.01	n.5551-01	n
13 000	4.181.01	4859 01	1 1 1 1 1 1 1 1	54820 01	5.4931 01	5.8301 01	6.0441 (UL) * 4064 (ML)	0
15 100		4 1 11	1.4.6151 01	. d. 2581 01	3 (210 01)	10 1140	\$ 0471-01	ů i
16 000	4.5481 01	45221 (91	4.6061.01	46421-01	4.0851 01	1-1-21,31 - 01	4 19 01	3. ***\$1. 01
18 000	44331-01	4 4581 01	4 4801 01	4 4931 01	4.4*81-01	ननाण ण	4.3271 01	3.9561-01
10.000	4.3521-01	-1.36 1 - 14	1.3821 01	4.1.20 01	4.3431 .01	4 2691 01	4 1421.º 01 4 AAR AR	3 6981 01
12.2 (00)	1.4.1801.01	14.2 61 121	ા ગુરૂષ્ણ છે.	1 4 24 41 41	1 4 2304 UL	3.09.31.01	1.9811 01	3.5301 01
20 000	4 14n1 (1)	4 1441 01	41411 01	1121 01	alon of	1.0181 14		3.5241-01
18 000	4.0811 01	4.0811 01	1.0.201 - 01	4.0631-01	4,0401-01	3.9381:01	3.8841 01	3.52*1:01
30,000	1 10041 01	4.0051-01	4.0081 01	10 1800 1	1 1 1001 11	1.4.2 nl 01	3 8431 01	3.5301 01
1000.457	38361 04	1.3.8381 01	1 3 8401 - 01	1 3 8391 01 - 1 3 3011 - m	3.8311 911	10 1000	3 3361 01	3.3200 00
43 000	3.5041-01	3.5051-01	3 5045 (1)	13.8721-01	3.5211 01	3.8491-01	3.5261 -01	10 1004.6
46 000	14 101 -01	14261 01	3.4.201 . 01	3.4331 01	3-1361 01	3.4211 01	3 4091 01	3 3 3 4 1 - 01
50.000	11 100 1	10 1045	3.2981 01	1.1011 01	3.3041 01	3.3031-01	1.3.564 01	1.2451 01
1 33 000	1 3.1451 01	1.3 1481 01 2 met or	3.147 (1)	13.1511 01 13.0101 00	3.1581 01 : 1.10441 00	3.1611.91 1.xaan oo	1.2.1011-01	1.1.1.21 01
1 5 100	1 3 0031 44	3 Solt 01	Sast ut	18:01 01	2.8801-01	2.8901-01	2.89%1 01	2.8991 01
*0.000	2 241 01	2 261 01	19-101-01-	5.2331-01	2.2431-61	2 *5.11 01	2.7611-01	2 2231 01
80.000	2.4811-01	24831-01	2.48 1 01	2.4921 01	2 8011 01	2.8121-01	2.8231-01	2.5431-01
1 vo 000	2.2491-01	123811-01	2.2551 01	15.5001-01	5.5501-01	2.2811-01	2.2941:01	2.3201 01
100.000	1.0001.01	120011-01-	1 2 0001 -01	2.01.31 -01	2.0251-01	1.8108.01	2.0550/01	2.0421 01
100 000	1 1831-411	1 1831 (01	1 1851 01	1 1881-01	1.19.1 -01	1 1001 01	1:2061-01	1.2261-01
200.000	9.2151 02	2 201 -02	10 10th 01	4.5421-02	9 2681 02	9 3021 02	0.3441-02	9 4021 02

ORIGINAL PAGE IN OF POOR QUALITY

Step 3 Calculate the 1 Mev electron fluence $\phi_{1Mev}^{(1)}$ at normal incidence upon a cell of shield thickness t that produces radiation damage equivilent to that produced by the spectrum of all space charged particles

For I-V parameter I_{SC}

 $\phi(t) \stackrel{\text{SC}}{\text{IMev}_{\theta}} = \psi(t) \stackrel{\text{IMev}_{\theta}}{\text{IMev}_{\theta}} + 3000 + \psi(t) \stackrel{\text{IDMev}_{\theta}}{\text{IDMev}_{\theta}}$

For I-V parameters VOC & PMAX

 $\psi(t) \stackrel{OC}{\underset{1 \text{ Mey e}}{}^{\text{OC}} = \psi(t) \stackrel{\text{Mey e}}{\underset{1 \text{ Mey e}}{}^{\text{H}}} + 3000 \cdot \psi(t) \stackrel{OC}{\underset{10 \text{ Mey e}}{}^{\text{OC}}$

The damage coefficients given in Tables 3, 4 and 5 are for cells with infinite back shielding. In the case of the IUF solar array, as well as other spacecraft arrays, exposure to radiation from the rear must also be considered. This leads to an effective damage coefficient that is the sum of the damage coefficients for the front and rear shield thicknesses. The cell shielding for the IUF array is illustrated in Figure 6. The front and rear shield thicknesses for which damage coefficients were interpolated are .023 g/cm² and .171 g/cm², respectively. The resulting damage coefficients are given in Tables 6, 7 and 8.

A computer program (Appendix A) has been written to calculate the net equivalent 1 Mev electron fluence following the procedure outlined above. The resulting dosages to which the IUE solar array was exposed after three years are 1.32F+14 1 Mev e/cm² for I_{SC} (best case), 2.97F+14 1 Mev e/cm² for I_{SC} (best case), 1.41F+14 1 Mev e/cm² for V_{OC} & P_{MAX} (best case) and 3.21E+14 1 Mev e/cm² for V_{OC} & P_{MAX} (worst case).

CELL I-V CHARACTERISTICS

Preflight experiments¹⁶ were performed with typical IUE solar cells to determine the I-V parameters of the average cell. The I-V curves of 500 cells were measured at several cell temperatures. In each case, the illumination was fixed at 1 solar constant as simulated by a standard laboratory source. These cells had not been subjected to any radiation damage. The average curve for several cell temperatures is displayed in Figure 7. The I-V parameters at 25°C are $I_{SC} = 140$ mA, $V_{OC} = 590$ mV, $P_{MAX} = 65$ mW, $V_{MP} = 500$ mV and $I_{MP} = 130$ mA. These are taken as the best case values. The worst case I-V parameters at 25°C are $I_{SC} = 137$ mA, $V_{OC} = 596$ mV, $P_{MAX} = 63.5$ mW, $V_{MP} = 500$ mV and $I_{MP} = 127$ mA. The 3 mA loss in I_{SC} and I_{MP} was estimated by considering production line variations among the 500 cells,

The degradation of an I-V parameter Y due to an irradiation dosage ϕ is generally approximated by an equation of the following form.¹⁸

$$Y(\phi) \approx Y(\phi) - C + Log(1 + \phi/\phi_C)$$

where ϕ_C is an arbitrary critical fluence and C is the corresponding coefficient. As used in this work,

ORIGINAL PAGE F3 OF POOR QUALITY

\$ · · *

· *

Figure 7. Average I-V characteristics of typical IUE cells at BOL.¹⁶

ORIGINAL PAGE IS OF POOR QUALITY

ENERGY (Mev)	FRONT DAMAGE COEFFICIENTS	REAR DAMAGE COEFFICIENTS	NET DAMAGE COEFFICIENTS
.75	.219	.0298	,249
1.25	.592	.243	,835
1.75	1.05	.563	1,61
2.25	1,55	,957	2,51
2,75	2,07	1.39	3.46
3.25	2.56	1,84	4,40
3.75	3.05	2.29	5,34
4.25	3,53	2.73	6.26
4.75	3.98	3.16	7,14
5.25	4.42	3.59	8.01
5.75	4.87	4,02	8.89
6.25	5.31	4,44	9,75
6.75	5.73	4.84	10.57

Table 6 Electron Damage Coefficients for the Average IUE Solar Cell.

Table 7Proton Damage Coefficients for ISC of the Average IUE Solar Cell.

ENERGY (Mev)	FRONT DAMAGE COEFFICIENTS	REAR DAMAGE COEFFICIENTS	NET DAMAGE COEFFICIENTS
15	.407	.310	.717
25	.402	.356	.758
35	,374	.358	.732
45	.343	.337	.680
55	,313	.313	.626
65	.285	.287	.572
75	.260	.263	,523
85	.237	.240	.477
95	,213	.217	.430

ORIGINAL FACE IS OF POOR QUALITY

FRONT DAMAGE COEFFICIENTS	REAR DAMAGE COEFFICIENTS	NET DAMAGE COEFFICIENTS	
.471	,496	,967	
.417	,395	.812	
.381	,372	,753	
.347	,344	,691	
.315	.316	.631	
.287	.290	,577	
.261	.264	.525	
.237	,241	,478	
.213	.218	.431	
	FRONT DAMAGE COEFFICIENTS .471 .417 .381 .347 .315 .287 .261 .237 .213	FRONT DAMAGE COEFFICIENTS REAR DAMAGE COEFFICIENTS .471 .496 .417 .395 .381 .372 .347 .344 .315 .316 .287 .290 .261 .264 .237 .241 .213 .218	FRONT DAMAGE COEFFICIENTSREAR DAMAGE COEFFICIENTSNET DAMAGE COEFFICIENTS.471.496.967.417.395.812.381.372.753.347.344.691.315.316.631.287.290.577.261.264.525.237.241.478.213.218.431

Table 8Proton Damage Coefficients for V_{OC} and P_{MAX} of the Average IUE Solar Cell.

the critical fluence is that equivalent 1 Mev electron fluence at normal incidence upon the cell which degrades the I-V parameter to 90 % of its value before irradiation. Data have been previously assembled¹⁵ as a function of cell thickness, that characterizes I-V degradation due to 1 Mev electron irradiation of 2 Ω -cm and 10 Ω -cm. From these data, shown in Figures 8-15, the value of ϕ_C was found for each I-V parameter of the typical IUE cell (1 Ω -cm resistivity and .02 cm thick) by interpolation. At a reference temperature of 30°C, the results for the best case are:

 $I_{SC}(\phi) = 140.34 \text{ mA}-46.62 \text{ mA} \cdot \text{Log} (1 + \phi/7.75\text{E}+13 \text{ 1 Mev e/cm}^2)$ $V_{OC}(\phi) = 586.10 \text{ mV}-194.70 \text{ mV} \cdot \text{Log} (1 + \phi/7.50\text{E}+14 \text{ 1 Mev e/cm}^2)$ $P_{MAX}(\phi) = 64.04 \text{ mW}-21.27 \text{ mW} \cdot \text{Log} (1 + \phi/4.70\text{E}+13 \text{ 1 Mev e/cm}^2)$ $V_{MP}(\phi) = 490.32 \text{ mV}-162.88 \text{ mV} \cdot \text{Log} (1 + \phi/9.00\text{E}+14 \text{ 1 Mev e/cm}^2)$ $I_{MP}(\phi) = P_{MAX}(\phi/V_{MP}(\phi)$

The worst case degradation equations are:

 $I_{SC}(\phi) = 137.34 \text{ mA-}45.62 \text{ mA} \cdot \text{Log} (1 + \phi/7.75\text{E}+13 \text{ 1 Mev e/cm}^2)$ $V_{OC}(\phi) = 586.10 \text{ mV-}194.70 \text{ mV} \cdot \text{Log} (1 + \phi/7.50\text{E}+14 \text{ 1 Mev e/cm}^2)$ $P_{MAX}(\phi) = 62.54 \text{ mW-}20.78 \text{ mW} \cdot \text{Log} (1 + \phi/4.70\text{E}+13 \text{ 1 Mev e/cm}^2)$ $V_{MP}(\phi) = 490.32 \text{ mV-}162.88 \text{ mV} \cdot \text{Log} (1 + \phi/9.00\text{E}+14 \text{ 1 Mev e/cm}^2)$ $I_{MP}(\phi) = P_{MAX}(\phi)/V_{MP}(\phi)$

Substitution of the previously calculated IUE irradiation dosages into these degradation equations yields the I-V parameters for the average IUE solar cell after 3 years in flight. The respective best and worst case results are 120.24 mA and 106 12 mA for I_{SC} , 571.52 mV and 555.97 mV for V_{OC} , 51.22 mW and 43.97 mW for P_{MAX} and 480.01 mV and 468.74 mV for V_{MP} . These values, however, are valid only when the cell temperature is 30°C.

The variation of each I-V parameter Y with cell temperature T is generally given by an ex-

original page is of poor quality

Figure 8. Normalized Short Circuit Current vs 1 MeV Electron Fluence for 2 Ohm-cm n/p Conventional Silicon Cells.¹⁵

ORIGINAL PAGE IS OF POOR QUALITY

Figure 9. Normalized Open Circuit Current vs 1 MeV Electron Fluence for 2 Ohm-cm n/p Conventional Silicon Cells.¹⁵

Figure 10. Normalized Maximum Power vs 1 MeV Electron Fluence for 2 Ohm-cm n/p Conventional Silicon Cells.¹⁵

ORIGINAL PACE IS OF POOR QUALITY

21

* ... •

OF POOR QUALITY

- **X**

Figure 13. Normalized Open Circuit Voltage vs 1 MeV Electron Fluence for 10 Ohm-cm n/p Conventional Silicon Cells.¹⁵

あったのかったいなるのであるとうろうというないます。

ORIGINAL PACE IS OF POOR QUALITY

Figure 14. Normalized Maximum Power vs 1 MeV Electron Fluence for 10 Ohm-cm n/p Conventional Silicon Cells.¹⁵

pression of the following form.

$Y(T) = Y(T_0) + b(T_0) (T - T_0),$

where $b(T_0)$ is the temperature coefficient at an arbitrary reference temperature T_0 . In this work, the reference temperature is 30°C. The temperature coefficient for each I-V parameter is dependent on radiation damage. This dependence has been characterized in the literature¹⁵ for 2 Ω -cm and 10 Ω -cm cells at 30°C. These data are shown in Figures 16-19. The value of the temperature coefficient for each I-V parameter of the typical (1 Ω -cm) IUE cell was determined by interpolation. The best case results for the temperature dependence of the IUE cell parameters after 3 years are:

 $I_{SC} = 120.24 \text{ mA} + .0954 \text{ mA/°C} \cdot (T - 30°C)$ $V_{OC} = 571.52 \text{ mV} - 2.10 \text{ mV/°C} \cdot (T - 30°C)$ $P_{MAX} = 51.22 \text{ mW} - .162 \text{ mV/°C} \cdot (T - 30°C)$ $V_{MP} = 480.01 \text{ mV} - 1.86 \text{ mV/°C} \cdot (T - 30°C)$ $I_{MP} = P_{MAX}/V_{MP}$

The resulting worst case I-V parameters are given by:

 $I_{SC} = 106.12 \text{ mA} + .113 \text{ mA/}^{\circ}\text{C} \cdot (\text{T} - 30^{\circ}\text{C})$ $V_{OC} = 555.97 \text{ mV} - 2.19 \text{ mV/}^{\circ}\text{C} \cdot (\text{T} - 30^{\circ})$ $P_{MAX} = 43.97 \text{ mW} - .149 \text{ mW/}^{\circ}\text{C} \cdot (\text{T} - 30^{\circ})$ $V_{MP} = 468.74 \text{ mV} - 1.88 \text{ mV/}^{\circ}\text{C} \cdot (\text{T} - 30^{\circ})$ $I_{MP} = P_{MAX}/V_{MP}$

These equations are valid only in the temperature region where the temperature coefficients do not vary substantially from their value at 30°C. This is the case with the temperature coefficients for I_{SC} over the range (-150°C to 60°) to which the IUE solar array is subjected. However, the temperature coefficients for P_{MAX} changes almost linearly at a rate of $-1.65 \times 10^{-5} P_{MAX}/°C/°C$. In the case of V_{OC} and V_{MP} , the temperature coefficients remain constant at temperatures above -20°C and change almost linearly at a rate of -.005 mV/°C/°C at temperatures below -20°C.¹⁷

Once the I–V parameters have been determined for a given cell temperature; illumination and radiation damage, the cell current I for a specified operating voltage V must be determined. There are several analytical models¹⁷ that are generally used to approximate the shape of the solar cell I-V curve. One such model that has displayed excellent accuracy below illumination levels of two solar constants is given below.¹⁸

 $I = I_{SC}(1 + C_1 \{1 - \exp[V/(C_2 V_{OC})]\})$

where $C_1 = [1 - (l_{MP}/l_{SC})] \exp [-V_{MP}/(C_2 V_{OC})]$

and $C_2 = [(V_{MP}/V_{OC}) - 1]/ln[1 - (I_{MP}/I_{SC})]$

ORIGINAL PAGE IS OF POOR QUALITY 60 1016 ٥ 10¹⁵ 0 **CELL THICKNESS** .305mm Ð 1 MeV ELECTRON FLUENCE, e/cm² .203mm ٩ 10¹⁴ **d** 0 0 ٩ 0 D ۵ IRRADIATION ELECTRON ELECTRON ELECTRON ELECTRON ELECTRON PROTON PROTON 10¹³ ٩ 0 ∢ 10 OHM-CM 2 OHM-CM ILLUMINATION (mW/cm²) 135.3 108.2 135.3 140 140 140 140 10¹² 4 0 0 4 RESISTIVITY Ö Ο (MD-MHO) 1~2| 10 ٩ 4 ◀ 0 0 ⊲ 0 -2.6 ס°\vm v_{OC}, mv/°C לי שלי שלי שלי שלי -2.5 -2.4 -1.9 -2.0 -2.1

Figure 17. Voc Temperature Coefficient vs 1 MeV Electron Fluence.¹⁵

attraction of the second

ORIGINAL PAGE 13 OF POOR QUALITY

Figure 18. P_{MAX} Temperature Coefficients vs 1 MeV Electron Fluence.¹⁵

OF POOR QUALITY

This model has been used in this work to approximate the shape of the I-V curve for the average IUE solar cell. A computer program (Appendix B) has been used to calculate the I-V parameters of the average IUE solar cell (under 1 solar constant illumination) as a function of cell temperature and radiation damage as well as plot the I-V curve using the above model. A family of I-V curves for the best and worst cases IUE cell after three years in flight are shown in Figures 20 and 21.

ARRAY POWER OUTPUT

The prevailing variables (namely, temperature, radiation damage and illumination) upon which the average IUE solar cell I-V parameters are dependent have been quantified in the previous sections. Thus, the IUE solar array power may now be determined in terms of the average IUE solar cell operating current for a specified β angle. The procedure for performing the calculation is outlined below.

Sun position	$\beta = 0^\circ$ to 1.35°	
Cell Temperature	$T = 37.4 \pm 1.10\beta0185\beta^2 \pm 3.7^{\circ}C$ $T = -12.2 \pm 2.13\beta = .0150\beta^2 \pm 3.7^{\circ}C$ $T = -126 \pm 3.51\beta0165\beta^2 \pm 3.7^{\circ}C$	lower panel central panel upper panel
I-V Parameters for 1 SC Illumination	$\begin{split} l_{SC}(T,\phi,1) &= l_{SC}(30^{\circ}C,\phi,1) + b_{SC}(\phi)(T-30^{\circ}) \\ V_{OC}(T,\phi,1) &= V_{OC}(30^{\circ}C,\phi,1) + b_{OC}(\phi)(T-30^{\circ}) \\ P_{MAX}(T,\phi,1) &= P_{MAX}(30^{\circ}C,\phi,1) + b_{MAX}(\phi)(T-30^{\circ}) \\ V_{MP}(T,\phi,1) &= V_{MP}(30^{\circ}C,\phi,1) + b_{MP}(\phi)(T-30^{\circ}C) \\ l_{MP}(T,\phi,1) &= P_{MAX}(T,\phi,1)/V_{MP}(T,\phi,1) \end{split}$	
Cell operating voltage	$V_{OP} = 389 \text{ mV}$ $V_{OP} = 423 \text{ mV}$ $V_{OP} = 389 \text{ mV}$	lower panel central panel upper panel
Cell	$C_2 = [(V_{MP}/V_{OC}) - 1]/\ln[1 - (I_{MP}/I_{SC})]$	
operating current for 1 SC Illumination	$C_{1} = [1 - (I_{MP}/I_{SC})] \cdot \exp[-V_{MP}/(C_{2} \cdot V_{OC})]$ $I_{OP}(T,\phi,1) = I_{SC} \cdot \{1 + C_{1}(1 - \exp[V_{OP}/(C_{2} \cdot V_{OC})]\}$	
panel view angle	$\theta = \beta - 22.5^{\circ}$ $\theta = \beta - 67.5^{\circ}$ $\theta = \beta - 112.5^{\circ}$	lower panel central panel upper panel
Illumination Factor	$S = \cos \theta$	

Figure 21. I-V curves for the typical IUE cell: Worst Case.

Short Circuit Current	$I_{SC}(T,\phi,S) = S \cdot I_{SC}(T,\phi,1)$
Short circuit current net loss factor	f _{SC} (See Table 9)
corrected short circuit current	$I_{\text{SC}}(T,\phi,\text{S}) \rightarrow f_{\text{SC}} \cdot I_{\text{SC}}(T,\phi,\text{S})$
cell operating current	$I_{\rm OP}(T,\phi,S) = I_{\rm OP}(T,\phi,1) - [I_{\rm SC}(T,\phi,1) - I_{\rm SC}(T,\phi,S)]$
operating current net loss factor	f _{OP} (See Table 10)
corrected operating current	$I_{OP}(T,\phi,S) \rightarrow f_{OP} \cdot I_{OP}(T,\phi,S)$
panel power output	$P_1 = 28 \text{ volts} \cdot 24 \cdot I_{OP}(T_1, \phi, S_1)$ lower panel $P_c = 28 \text{ volts} \cdot 20 \cdot I_{OP}(T_c, \phi, S_c)$ central panel $P_u = 28 \text{ volts} \cdot 24 \cdot I_{OP}(T_u, \phi, S_u)$ upper panel
Net Available Array Power	$P = 2 \cdot P_1 + 2 \cdot P_c + 2 \cdot P_u$

The calculations outlined above were performed to obtain the IUE solar array power after three years. The best and worst case power are plotted in Figure 22 as a function of beta angle along with flight data for the available array power ¹⁹ after three years. The same is plotted in Figure 23 for the beginning of life power.²⁰ In both examples the flight data are between the best and worst case curves, as expected. In order that these calculations may yield the exact array power, a normalization parameter K is defined such that:

Array Power = $K \cdot (Best Case Power) + (1-K) \cdot (Worst Case Power)$

where $O \leq K \leq 1$.

Also observed in Figure 22, the array power at the lower beta angles is closer to the worst case calculation; where at the higher beta angles the array power is closer to the best case calculation. Thus, the normalization parameter K changes with the beta angle. This may be attributed to a difference in cell characteristics and engineering loss factors from the lower to upper panel and/or an angular dependence of the space radiation incident upon IUE.

fsc	Best Case	Worst Case
Solar Intensity & Orientation Error	1.035	.964
Ultraviolent & Micrometeor Degradation	1.0	.99
Net	1.035	,954

Table 9Correction Factors for ISC

Table 10Correction Factors for IOP

fop	Best Case	Worst Case		
Diode and Harness Losses	.958	.958		
Cell Mismatching	1.0	.98		
Random Failure	1.0	.98		
Design Margin	1.0	.98		
Net	.958	.902		

The normalization parameters for flight data acquired after three years were statistically fitted to a second-order function in beta using a least-squares routine.¹⁰ The result is displayed in Figure 24. This normalization parameter may be applied to the best and worst case power calculation for three years in flight. The normalized power is plotted in Figure 25 along with the corresponding flight data. The same is shown in Figure 26 for the beginning of life. As there is excellent agreement between the normalized calculation and flight data acquired at different times, the same calculations are performed to predict the IUE solar array power available in the future.

「「「「「「「」」」」」

However, to use the normalized power calculation presented above to predict the array output, the irradiation dosage and solar cell characteristics must be known as a function of time. The increase in equivalent fluence with time is assumed to be constant at the previously calculated best and worst case values per three years. The best and worst case I-V parameters for the average IUE cell are determined for an arbitrary point in time as they were determined for three years. A computer program (Appendix C) was used to perform the normalized power calculation for each year from beginning of life to ten years. The results are plotted in Figure 27 and also given in digital form (Appendix D).

CONCLUSION

The minimum power which must be provided to IUE to maintain mission essential operations is 175 watts continuously during day light.²¹ The design requirement was 186 watts.¹ As the power generating capacity of the solar array degrades with time, the beta angle region where more than 175 watts can be supplied grows smaller. Therefore, the number of stars to which IUE can be pointed are fewer. This is the critical criterion by which the future utility of IUE will be judged. The upper and lower cut off beta angles, outside which less than 175 watts will be supplied to IUE, are plotted in Figure 28. This defines the restricted region for beta as a function of time. It is shown that the IUE solar array can continue to produce more power than is required at most observatory positions for at least five more years.

Figure 27. Available IUE Solar Array Power After Each Year From BOL to 10 years,

Figure 28. Restricted Beta Region versus Time.

ORIGINAL PAGE DE

REFERENCES

- 1. D. A. Krueger (Acting project manager), "System Design Report for International Ultraviolet Explorer (IUE), Volume II, Spacecraft Design", NASA-GSFC, August 1972.
- 2. H. R. Freeman and G.W. Longanecker, "The International Ultraviolet Explorer", AIAA Professional Study Series, August 1979.
- 3. R. D. Chapman (Editor), "The Universe at Ultraviolent Wavelengths: The First Two Years of International Ultraviolent Explorer", NASA Conference Publication 217, May 1980.
- 4. European Space Agency (ESA) and Astronomical Institute Tübingen, "Second European IUE Conference", ESA Special Publication 157, April 1980.
- 5. J. L. Fragola and H. P. Espejo, "Solar Array Report February 1982 Update", Bendix Field Engineering Corp., March 1982.
- 6. G. Brusch, "Power Calculation for the IUE Solar Array", AEG Technical Report 04/75, April 1975.
- 7. M. P. Thekaekara, A. J. Drummond, D. G. Murcray, P. R. Gast, E. G. Laue and R. C. Wilson, "Solar Electromagnetic Radiation", NASA SP 8005, Revised, May 1971.
- 8. Societe Nationale Industrielle Aerospatiale, "Thermal Studies", SNIAS Document 293 CA 66, Appendix 4.1, November 1973.

「「「「「「「」」」「「」」「「」」」」「「」」」」」」

- 9. M. S. Claps and E. M. Gaddy, "First Year Performance of the International Ultraviolent Explorer Solar Array", NASA-GSFC X-710-79-17, May 1979.
- 10. Hewlett-Packard System 45 Software, Regression Analysis, Polynomial Regression.
- 11. Societe Nationale Industrielle Aerospatiale, "Study for Adapter Bridge for Temperature Measurements Using Platinum Probe", SNIAS Document 537 CA 70, Appendix 6.1, November 1973.
- 12. E. G. Stassinopoulous and J. I. Vette, "Evaluation of the IUE Radiation Environment", NASA-GSFC X-601-78-6, January 1978.
- 13. M. J. Teague and J. I. Vette, unpublished.
- 14. D. M. Sawyer and J. I. Vette, "A8 Trapped Proton Environment for Solar Maximum and Solar Minimum", NASA-GSFC Data User's Note NSSDC 76-06, December 1976.
- 15. H. Y. Tada, J. R. Carter Jr., B. E. Anspaugh and R. G. Downing, "Solar Cell Radiation Hand-

book", NASA-JPL Publication 82-69, November 1982.

- 16. H. Gorgens, "Power Calculation on the Basis of WASO Solar Cells", AEG Technical Report 04/73, April 1973.
- 17. H. S. Rauschenbach, "Solar Cell Array Design Handbook", Van Nostrand Reinhold Co., 1980.
- 18. W. Luft, J. R. Barton and A. A. Conn, "Multifacted Solar Array Performance Determination", TRW Systems Group, February 1967.
- 19. W. L. Cooke, J. L. Fragola and G. L. Williamson, "IUE Solar Array Report February 1981 Update", Bendix Field Engineering Corp., March 1981.
- 20. W. L. Cooke, T. Q. Thai and R. Evans, "IUE Solar Array Performance (Feb. 78 to Aug. 79)", Bendix Field Engineering Corp., September 1979.
- 21. M. Myslinski, Bendix Field Engineering Corp., January 1983.

Appendix A ~ EQUFLU

5 10 REM THIS PROGRAM CALCULATES THE EQUIVALENT IMEV ELECTRONS AT NORMAL INCIDENCE REM UPON THE SURFACE OF A SILICON SOLAR CELL DUE TO AN OMNIDIRECTIONAL 1.5 20 **REM ELECTRON AND PROTON RADIATION ENVIRONMENT.** 25 DIM E1(100),R1(100),E2(100),R2(100),T(100,11),D1(200),D2(200),D3(200) 30 **GOSUB** Electad 35 **GOSUB** Protrad 40 **GOSUB** Shield 45 **GOSUB** Ede 50 **GOSUB** Isepde 55 **GOSUB** Vocade **GOSUB** Flucal 60 STOP 65 70 Electad: 1 *** 75 **REM THIS SUBROUTINE COLLECTS THE ELECTRON SPACE RADIATION DATA FROM THE** 80 **REM OPERATOR.** 85 PRINT (LIN(2), "OMNIDIRECTIONAL ELECTION FLUENCE (ELECTRONS/CM^2)" 90 PRINT " VERSUS" PRINT " 95 ELECTRON ENERGY (>MEV)" 100 PRINT (LIN(1), "TOTAL NUMBER OF OBSERVATIONS =". 105 INPUT NI 110 PRINT N1, LIN(1) 115 PRINT "THE OBSERVATION CORRESPONDING TO THE LOWEST ELECTRON ENERGY MUST BE" 120 PRINT "ENTERED FIRST. THEN ENTER THE REMAINING OBSERVATIONS IN ORDER OF" 125 PRINT "INCREASING ELECTRON ENERGY." 130 FOR I=1 TO N1 PRINT LIN(1),"OBSERVATION#",1 135 140 PRINT "ELECTRON ENERGY (>MEV) =", 145 INPUTEI(I) 150 PRINT E1(I) PRINT "ELECTRON FLUENCE (ELECTRONS/CM^2) =", 155 160 INPUT R1(I) 165 PRINT R1(I) 170 NEXT I 175 PRINT LIN(1),"CHECK THE ABOVE DATA AGAIN." PRINT "IF CORRECTIONS ARE REQUIRED ENTER O" 180 1.85 PRINT "IF DATA IS CORRECT ENTER ANY OTHER NUMBER" 190 INPUT X 195 IF X=0 THEN 85 200 PRINTER IS 0 205 PRINT LIN(1), "ELECTRON", "FLUENCE", "FLUENCE", "DIFFERENTIAL" 210 PRINT "ENERGY", "ELECTRONS/CM*2)", "(ELECTRONS/CM*2)", "FLUENCE" 215 PRINT "(MEV)","> E-(dE/2)","> E+(dE/2)","(ELECTRONS/CM^2)" 220 FOR I=1 TO N1-1 225 $E_1(1)=(E_1(1)+E_1(1+1))/2$ 230 PRINT E1(1), R1(1), R1(1+1), R1(1)-R1(1+1) 235 NEXT L 240 NI=NI-1 245 PRINTER IS 16

250 RETURN ****** Protrad: 1 ******************************** 255 REM THIS SUBROUTINE COLLECTS THE PROTON SPACE RADIATION DATA FROM THE 260 265 REM OPERATOR. PRINT LIN(2)."OMNIDIRECTIONAL PROTON FLUENCE (PROTONS/CM*2)" 270 VERSUS¹¹ 275 PRINT " PRINT " **PROTON ENERGY (>MEV)"** 280 PRINT LIN(1),"TOTAL NUMBER OF OBSERVATIONS =", 285 290 **INPUT N2** 295 PRINT N2.LIN(1) PRINT "THE OBSERVATION CORRESPONDING TO THE LOWEST PROTON ENERGY MUST BE" 300 PRINT "ENTERED FIRST. THEN ENTER THE REMAINING OBSERVATIONS IN ORDER OF" 305 PRINT "INCREASING PROTON ENERGY." 310 315 FOR I=1 TO N2 PRINT LIN(1),"OBSERVATION #",1 320 PRINT "PROTON ENERGY (>MEV) =", 325 330 INPUT E2(I) 335 PRINT E2(I) PRINT "PROTON FLUENCE (PROTONS/CM^2) =". 340 345 INPUT R2(I) 350 PRINT R2(1) 355 NEXT I PRINT LIN(1), "CHECK THE ABOVE DATA AGAIN." 360 PRINT "IF CORRECTIONS ARE REQUIRED ENTER 0" 365 PRINT "IF DATA IS CORRECT ENTER ANY OTHER NUMBER" 370 375 INPUT X IF X=0 THEN 270 380 385 PRINTER IS 0 PRINT LIN(1), "PROTON", "FLUENCE", "FLUENCE", "DIFFERENTIAL" 390 PRINT "ENERGY","(PROTONS/CM^2)","(PROTONS/CM^2","FLUENCE" 395 PRINT "(MEV)","> E-(dE/2)","> E+(dE/2)","(PROTONS/CM^2)" 400 405 FOR I=1 TO N2-1 410 $E_2(1)=(E_2(1)+E_2(1+1))/2$ 415 PRINT E2(1),R2(1).R2(1+1),R2(1)-R2(1+1) 420 NEXTL 425 N2=N2-1 430 PRINTER IS 16 435 RETURN 440 REM THIS SUBROUTINE COLLECTS THE SOLAR CELL SHIELDING DATA FORM THE OPRATOR 445 PRINT LIN(1), "FRONT SHIELD THICKNESS (GM/CM²) = ". 450 IF T1<0 THEN 459 460 PRINT T1,LIN(1),"REAR SHIELD THICKNESS (GM/CM²) =", 465 470 **INPUT T2** 475 IF T2<0 THEN 465 480 PRINT T2 485 PRINTER IS 0 490 PRINT LIN(1), "FRONT SHIELD THICKNESS (GM/CM²) = ",T) 495 PRINT "REAR SHIELD THICKNESS (GM/CM⁻²) =",T2 500 **PRINTER IS** 16 RETURN 505

F10	12.3
515	EQUIT FOR SUBDOLITING DETERMINES THE ELECTRON DAMAGE COFFEIGIENTS
520	FOR 1=0 TO 47
525	FOR 1=0 TO 2
530	PON J-0 10 8
525	
535	NEXT J
545	
550	T(0, 0) = T(1, 1, 0)
555	I = 2
560	u=o 1≖l_1
565	J=J=J IF T(0.9) <t(0.1) 560<="" th="" thfn=""></t(0.1)>
570	FOR 1=1 TO 47
575	$T(1, 9+1) = T(1, 1+1) \cdot T(1, 1+1) \cdot T(1, 1) * (T(0, 1+1) \cdot T(0, 9)) / (T(0, 1+1) \cdot T(0, 1))$
580	[FT(1.9+1.) > 0.THFN 590
585	T/1 9+1)=0
500	NEXT
505	NEXTI
600	PRINTER IS O
605	PRINT LINGLY "FUELTRON DAMAGE COFFERIENTS FOR ISC. VOC AND PMAX"
610	PRINT "FLECTRON" "DAMAGE" "DAMAGE" "NET"
615	PRINT "ENERGY" "COFFEICIENT" "COFFEICIENT" "DAMAGE"
620	PRINT "(MRV)" "(FRONT)" "(REAR)" "COEFFICIENT"
625	FOR $I=1$ TO NI
630	$FF_{1}(1) \ll T(1,0)$ THEN K=1
635	FOR $I=1$ TO 46
640	IFF(T) T(T0) THFN K=1
645	NFXT I
650	D(I) = T(K 0) + (T(K+1 0) + (F(K 0)) + (F(I))
655	$D_1(1+N_1)=T(K_1(0)+(T(K+1,10)-T(K,10))*(F_1(1)-T(K,0))/(T(K+1,0)-T(K,0))$
660	PRINT F1(1) D1(1) D1(1+N1) D1(1+D1(1+N1))
665	NEXT I
670	PRINTER IS 16
675	GOTO 920
680	DATA 0.0.00559016803350671112168335
685	DATA .15.2.69E-4.3.687E-5.0.0.0.0.0
690	DATA .16.5E-4.7.951E-5.0.0.0.0.0
695	DATA .17.8.951E-4.1.62E-4.0.0.0.0.0
700	DATA .18.1.55E-3.3.168E-4.2.227E-5.0.0.0.0
705	DATA .19.2.406E-3.5.938E-4.5.228E-5.0.0.0.0.0
710	DATA .2.3.65E-3.1.045E-3.1.143E-4.0.0.0.0.0
715	DATA .22.6.75E-3.2.533E-3.4.375E-4.1.551E-5.0.0.0.0
720	DATA .24,1,035E-2,4,924E-3,1,263E-3,8,667E-5,0,0,0,0
725	DATA .26,1.45E-2,7.981E-3,2.814E-3,3.609E-4,0,0.0.0
730	DATA .28,2.01E-2,1.174E-2,5.0552E-3,1.073E-3,0,0.0.0
735	DATA .3,2.725E-2,1.668E-2,7.941E-3,2,4E-3,2.828E-5,0,0,0
740	DATA .32,3.385E-2,2.249E-2,1.156E-2,4.22E-3,1.481E-4,0,0,0
745	DATA .36,5,004E-2,3,581E-2,2,142E-2,9.858E-3,1.314E-3,0,0,0
750	DATA .4,7E-2,5.255E-2,3.423E-2,1.855E-2,4.311E-3,9.075E-5,0,0
755	DATA .45,9,506E-2,7.562E-2,5.344E-2,3.258E-2,1.106E-2,1.295E-3,0.0
760	DATA 51 25F-1 1 023F-1 7 595F-2 5 059F-2 2 146F-2 4 824F-3 7 759F-5 0

765 DATA .6,2E-1,1.703E-1,1.343E-1,9.816E-2,5.347E-2,2,158E-2,4.315E-3,0 770 DATA .7,2.7E-1,2.4E-1,.2004,.1574,.09769,.04962,.01802,0 775 DATA .8.35,3166,2718,2225,1527,09074,04262,0003097 780 DATA .9, 4225, 3898, 3438, 291, 2121, 1385, 07726, 004452 785 DATA 1.0..5.,4657.,4169.,3607.,2759.,1934.,1199.,01566 790 DATA 1.2,.67,.6303,.5733,.5072,.4068,.3081,.2172,.05937 795 DATA 1.4,.86,.816,.7515,.6759,.5593,.4419,.3312,.1281 800 DATA 1.6,1,06,1.012,.9405,.8564..7256,.5916,.4614,.212 805 DATA 1.8,1.26,1,21,1.136,1,045,.9022,.7521,.604,.3099 810 DATA 2.0,1.47,1.418,1.339,1.242,1.088,.9245,.7611,.4236 815 DATA 2.25,1,729,1.676,1,592,1.489,1.323,1.145,,9639,5793 820 DATA 2.5.2.0,1.943,1.854,1.744,1.566,1.374,1.178,7499 825 DATA 2.75,2.252,2.197,2.108,1.997,1.813,1.611,1.399,9314 830 DATA 3.0,2,51,2,454,2,362,2,248,2,057,1.847,1.627,1.125 835 DATA 3.25, 2.754, 2.698, 2.606, 2,49, 2.295, 2,078, 1.849, 1,32 840 DATA 3.5,3.0,2.943,2.85,2.731,2.531,2.309,2.072,1.52 845 DATA 3.75,3,249,3.191,3,096,2.974,2,77,2.541,2.296,1.723 850 DATA 4.0.3.5.3.422.3.344.3.22.3.011.2.775.2.523.1.928 855 DATA 4.5,3,95,3.894,3,798,3.675,3,464,3,223,2.962,2.332 860 DATA 5.0.4.4.4.344.4.247.4.121.3.905.3.659.3.39.2.738 865 DATA 5.5.4.85.4.793.4.695.4.566.4.346.4.093.3.817.3.141 870 DATA 6.0.5.3.5.243.5.143.5.012.4.787.4.528.4.244.3.545 875 DATA 7.0.6.15.6.093.5.992.5.859.5.627.5.358.5.062,4.326 880 DATA 8,0,6.9.6.848,6.753,6.626,6.401,6.138,5.844,5.097 885 DATA 9.0,7,607,7,555,7,462,7,335,7,112,6.848.6,553,5.801 890 DATA 10.0.8.3.8,249.8.156.8.029.7.804.7.539.7.241.6.479 895 DATA 15.0.10.6.10.56.10.49.10.39,10.2,9.981.9.725,9.047 900 DATA 20.0,12,3,12,27,12,21,12,13,11,97,11,77,11,55,10,95 905 DATA 25.0,13.6,13,57,13.52,13,44,13,29,13,11,12.9,12,33 910 DATA 30.0.14.7.14.67.14.62.14.55.14.42.14.25.14.05.13.52 915 DATA 40.0.16.5.16.48.16.43.16.37.16.25.16.1.15.93.15.44 920 RETURN 925 Isepde: ! *** 930 **REM THIS SUBROUTINE DETERMINES THE PROTON DAMAGE COEFFICIENTS FOR ISC** 935 FOR 1=0 TO 65 940 FOR J=0 TO 8 945 READ T(I,J) 950 NEXT J 955 NEXT I 960 FOR L=0 TO 1 965 T(0,9)=T1+L*(T2-T1)970 J=8 975 J=J-1 980 IF T(0,9)<T(0,J) THEN 975 985 FOR I=1 TO 65 990 T(I,9+L)=T(I,J+1)-(T(I,J+1)-T(I,J))*(T(0,J+1)-T(0,9))/(T(0,J+1)-T(0,J))995 IF T(1,9+L)>0 THEN 1005 1000 T(1,9+L)=0 1005 NEXTI 1010 NEXT L 1015 PRINTER IS 0

1020 PRINT LIN(1), "PROTON DAMAGE COEFFICIENTS FOR ISC ONLY" 1025 PRINT "PROTON", "DAMAGE", "DAMAGE", "NET" 1030 PRINT "ENERGY", "COEFFICIENT", "COEFFICIENT", "DAMAGE" 1035 PRINT "(MEV)","(FRONT)","(REAR)","COEFFICIENT" 1040 FOR I=1 TO N2 1045 IF E2(I)<T(1.0) THEN K=1 1050 FOR J=1 TO 64 1055 IF E2(1)>=T(J,0) THEN K=J 1060 NEXT J $1065 \quad D2(1)=T(K,9)+(T(K+1,9),T(K,9))*(E2(1),T(K,0))/(T(K+1,0),T(K,0))$ 1070 D2(1+N2)=T(K,10)+(T(K+1,10)-T(K,10))*(E2(1)-T(K,0))/(T(K+1,0)-T(K,0))1075 PRINT E2(I),D2(I),D2(I+N2),D2(I)+D2(I+N2) 1080 NEXT I 1085 PRINTER IS 16 1090 GOTO 1425 1095 DATA 0,0,,00559,,0168,,0335,,0671,,112,,168,,335 1100 DATA .1,2.435E-4,0,0,0,0,0,0,0 1105 DATA .2,3,047E-3,0,0,0,0,0,0,0 1110 DATA .3,1.374E-2,0,0,0,0,0,0,0 1115 DATA .4,3.987E-2,0,0,0,0,0,0,0 1120 DATA .6,1.502E-1,0.0,0,0,0.0.0 1125 DATA .8,3.243E-1,0,0,0,0,0,0,0 1130 DATA 1,5,216E-1,0,0,0,0,0,0,0 1135 DATA 1.2,7,108E-1,0.0,0,0,0,0 1140 DATA 1.3,7.89E-1,2.322E-5,0,0,0,0,0,0 1145 DATA 1.4,8,549E-1,3,75E-3,0,0,0,0,0,0 1150 DATA 1.6.9.532E-1,8.124E-2,0.0,0,0,0 1155 DATA 1.8,1.01,.2525,0,0,0,0,0.0 1160 DATA 2,1.03.,4558,0,0,0,0.0,0 1165 DATA 2.2,1,048,.6233,0.0,0,0,0,0 1170 DATA 2.4,1.041,.7426,0,0,0,0,0.0 1175 DATA 2.6,1.023,.8207,1.86E-5,0.0,0,0,0 1180 DATA 2.8, 9962..868, 03925, 0, 0, 0, 0 1185 DATA 3,.9639,.8912,.1794,0.0,0,0,0 1190 DATA 3.2,.9286,.8962,.3465,0.0,0,0,0 1195 DATA 3.4,.8937,.8871,.4807,0,0,0,0,0 1200 DATA 3.6,.8598,.8697,.5787,0,0,0,0 1205 DATA 3.8,.8273,.8481,.6459,0,0,0,0 1210 DATA 4,.7963,.8243,.6879,1.288E-3,0,0,0,0 1215 DATA 4.2.,7723,.7989,.7105,.07227,0,0,0,0 1220 DATA 4.4,.7486,.7734,.7189...2077,0,0,0,0 1225 DATA 4.6,,7254,,7499,,7184,,3274,0,0,0,0 1230 DATA 4.8, 7029, 728, 712, 4191,0,0,0,0 1235 DATA 5.2,.6605,.6866,.6890,.5286,0,0,0,0 1240 DATA 5.6,.6216,.6479,.6613,.5723,0,0,0,0 1245 DATA 6,,5867,,6119,,6319,,5839,2,132E-3,0,0,0 1250 DATA 6.4, 5585, 5792, 6019, 5793, 1742, 0, 0, 0 1255 DATA 6.8, 5339, 552, 5731, 5664, 3196, 0.0.0 1260 DATA 7.2.,5128,.5285,.5477..5491..3945.0.0.0 1265 DATA 7.6, 4947, 5086, 5255, 5299, 4317,0,0,0 1270 DATA 8,,4786,,4909,,5058,.5118,,4484,0,0,0

1275 DATA 9.,4476.,4565.,4669.,4724.,4478.,2735.0.0 1280 DATA 10.,4337,,4369,,4401,,4425,,4292,,3537,0,0 1285 DATA 11,4232,4245,4258,4226,4101,3675,2061,0 1290 DATA 12,,4196,,4187,,4155,,411,,3956,,3649,,2839,0 1295 DATA 13,4185,4167,412,404,3872,3588,3062,0 1300 DATA 14, 4181, 4159, 4015, 402, 3828, 3553, 3131,0 1305 DATA 15,4194,4173,4104,401,3814,3538,3159,0 1310 DATA 16.,4214.,4182.,412.,4025.,3819.,3547.,3187.,1439 1315 DATA 18.4192.4179.4133.4054.3873.3606.3269.2175 1320 DATA 20.,4172.,4159,,4125,,4055,,39,,3679,,3379,,2441 1325 DATA 22,4144,4117,4093,4047,3915,3731,3473,2648 1330 DATA 24,4094,4083,4059,401,3919,3757,3547,2834 1335 DATA 26.,4049,,4039.,4018,,3985,,3898,,3769,,3591,,2984 1340 DATA 28.4...3994...3978...3939...3875...3764...3613...3101 1345 DATA 30,.3935,.393,.3918,.3896,.3834,.3753,.3625,.3186 1350 DATA 34..3784..3782..3777..3767..3739..3677..36..3291 1355 DATA 38..3664..3662..3657..365..3617..3582..3529..3312 1360 DATA 42..3532..3532..3532..353..3519..3484..3446..3292 1365 DATA 46..3399..3399..34..34..3396..3372..3349..3245 1370 DATA 50,.3272,.3272,.3272,.3273,.3271,.3264,.325,.3177 DATA 55.,3125.,3126.,3128.,313.,3133.,3132,,3126.,3082 1375 1380 DATA 60,.2988,.2989..299..2992,.2995,.2997,.2995,.2969 1385 DATA 65,.2844,.2846..285,.2855,.2863,.2871,.2875,.2869 1390 DATA 70..271..2712..2715..272..2728..2736..2743..2748 1395 DATA 80..2474..2476..248..2485..2494..2504..2514..2531 1400 DATA 90..2245..2247..2251,.2256..2266..2277,.2289..2315 1405 DATA 100, 1997, 1999, 2004, 201, 2022, 2037, 2052, 2089 1410 DATA 130,1492,1493,1496,1500,1509,1519,153,156 1415 DATA 160..1183..1183..1185..1188..1192..1199..1206..1226 1420 DATA 200..09215..0922..09229..09242..09268..09302..09344..09462 1425 RETURN 1430 Vocpde: ! ***** 1435 **REM THIS SUBROUTINE DETERMINES PROTON DAMAGE COEFFICIENTS FOR VOC & PMAX** 1440 FOR I=0 TO 65 1445 FOR J=0 TO 8 1450 READ T(LJ) 1455 NEXT J 1460 NEXT I 1465 FOR L=0 TO 1 1470 T(0,9)=T1+L*(T2-T1) 1475 J=8 1480 J=J-1 1485 IF T(0,9)<T(0,J) THEN 1480 FOR I=1 TO 65 1490 1495 T(I,9+L)=T(I,J+1)-(T(I,J+1)-T(I,J))*(T(0,J+1)-T(0,9))/(T(0,J+1)-T(0,J))1500 IF T(I.9+L)>0 THEN 1510 1505 T(1,9+L)=01510 NEXT I 1515 NEXT L 1520 PRINTER IS 0 1525 PRINT LIN(1), "PROTON DAMAGE COEFFICIENTS FOR VOC & PMAX ONLY"

PRINT "PROTON", "DAMAGE", "DAMAGE", "NET" 1530 PRINT "ENERGY", "COEFFICIENT", "COEFFICIENT", "DAMAGE" 1535 1540 PRINT "(MEV)","(FRONT)","(REAR)","COEFFICIENT" 1545 FOR I=1 TO N2 1550 IF E2(I)<T(1,0) THEN K=1 1555 FOR J=1 TO 64 1560 IF E2(I)>=T(J,0) THEN K=J 1565 NEXT J $1570 \quad D3(1)=T(K,9)+(T(K+1,9),T(K,9))*(E2(1),T(K,0))/(T(K+1,0),T(K,0))$ $1575 \quad D3(1+N2)=T(K,10)+(T(K+1,10)-T(K,10))*(E2(1)-T(K,0))/(T(K+1,0)-T(K,0))$ 1580 PRINT E2(1),D3(1),D3(1+N2),D3(1)+D3(1+N2) 1585 NEXT I 1590 PRINTER IS 16 1595 GOTO 1930 1600 DATA 0.0.,00559,.0168,.0335,.0471,.112,.168,.335 1605 DATA .1,.5303,0.0,0.0,0,0.0 1610 DATA .2, 715,0,0,0,0.0.0 1615 DATA .3.,8623,0.0.0,0,0.0.0 1620 DATA .4.,9976.0.0.0.0.0.0.0 1625 DATA .6.1.271.0.0.0.0.0.0.0 1630 DATA .8.1.546,0.0.0.0.0.0.0 1635 DATA 1,1.792,0,0,0,0,0,0 1640 DATA 1.2,1,994,0,0,0,0,0,0,0 1645 DATA 1.3.2.082,.04303.0,0.0,0,0.0 1650 DATA 1.4,2.16.1.948,0,0,0,0,0,0 1655 DATA 1.6,2,299,.5853,0,0,0,0,0,0 1660 DATA 1.8,2.412,.9827,0,0,0,0,0,0 1665 DATA 2,2.502,1.335,0,0,0,0,0,0 1670 DATA 2.2,2.569,1.624,0,0,0,0,0,0 1675 DATA 2.4.2.615,1.86,0,0,0,0,0,0 1680 DATA 2.6,2.645,2.047,.01912,0,0,0,0,0 1685 DATA 2,8,2,656,2,191,.2733,0,0,0,0,0 1690 DATA 3,2.64,2.298,.6092,0,0,0,0,0 1695 DATA 3.2.2.597,2.375,.9375,0,0,0,0,0 1700 DATA 3.4,2.526,2.416,1.226,0.0,0,0 1705 DATA 3.6,2,426,2,42,1,468,0,0,0,0 1710 DATA 3.8,2,302,2,388,1.664,0,0,0,0,0 1715 DATA 4.2.159.2.32.1.818..04687.0.0.0.0 1720 DATA 4.2.2.024,2.219,1.932..2866,0.0.0.0 1725 DATA 4.4,1.891,2.093,1.998..5697,0,0,0,0 1730 DATA 4.6.1.766.1.962.2.017..8378.0.0.0.0 1735 DATA 4.8,1,65,1,839,1,99,1,074,0,0,0,0 1740 DATA 5.2.1.447.1.616.1.833.1.431,0,0.0,0 1745 DATA 5.6,1.278,1.428,1.642,1.603,0,0,0 1750 DATA 6,1.136,1.268,1.467,1.584,.03741,0,0,0 1755 DATA 6.4,1.02,1.131,1.312,1.468,451,0.0,0 1760 DATA 6.8.,9237,1.018,1.178,1.339,.8464,0,0,0 1765 DATA 7.2.,844,.9252,1.063,1.218,1.101,0,0,0 1770 DATA 7.6, 7775, 8479, 9673, 1.109, 1.166, 0, 0, 0 DATA 8.,7204,.7827,.8867,1.013,1.125,.03696.0,0 1775 1780 DATA 8,.6134,.658,.7324,.8256..9523,.7614,0,0

1785 DATA 10,5554,5834,6303,6965,7998,8423,0.0 1790 DATA 11.,5169,,5351,,5691,,6105,,6851,,7463,,5746.0 DATA 12.4936..5051..5264..558..6035..6552..6555.0 1295 DATA 13,4778 4859,4997,5182,5493,583,60440 1800 DATA 14.4063.,4722.,4815.,4934.,5121.,532.,5490.0 1805 DATA 15,4594,4637,4688,4758,4867,4961,5047.0 1810 DATA 16.4548.4572.4606.4642.4685.4713.4327..3956 1815 DATA 18, 4433, 4458, 448, 4493, 4478, 4419, 4327, 3956 1820 DATA 20.4352.4367.4382.4379.4343.4269.4142..3698 1825 DATA 22.4286.4278.429.4293.425.4172.4041.3569 1830DATA 24..4211..4211..4213..4203..4176..4097..3981..353 1835 DATA 26.4146..4144..4141..4137..4102..4035..3931..3524 1840 DATA 28.4081.4081.4079.4063.4040.3978.3684.3527 1845 DATA 30,4004..4005,4003..3998..3969..3926..3843..353 1850 DATA 34,,3836,,3838,.3840,,3839,,3831,.,3797,,3749,,352 1855 DATA 38, 3703, 3704, 3704, 3703, 3686, 3669, 3636, 3473 1860 DATA 42,.3564,.3565,.3569,.3572,.3571,.3549,.3526,.3409 1865 DATA 46.3426..3426.3429..3433..3436..3421..3409..3334 1820 DATA 50, 3296...3296...3298...3301...3304...3303...3297...3245 1875 DATA \$5.,3145,,3145,3147,,3151,,3158,,3161,,3161,,3132 1880 DATA 60,.3005,.3006,3007,.3010,.3016,.3020.3022,.3007 1885 DATA 65.,2859.,2861.,2865.,287.,288,,289.,2897.,2899 1890 DATA 70..2714. 2726..2729..2733..2843..2753..2761..2773 1895 DATA 80.2481.2483.2487.2492.2501.2512.2523.2543 1900 DATA 90, 2249, 2251, 2255, 220, 227, 2281, 2294, 232 1905 DATA 100, 1999, 2001, 2006, 2013, 2025, 2039, 2055, 2092 1910 DATA 130, 1492, 1493, 1496, 15, 1509, 1519, 153, 156 1915 1920 DATA 160, 1183, 1183, 1185, 1188, 1192, 1199, 1206, 1226 DATA 200,09215.0922.09229.09242.09268.09302.09344.09462 1925 1930 RETURN 1935 Flucal: 1 **** REM THIS SUBROUTINE USES THE PREVIOUSLY DETERMINED CHARGED PARTICLE 1940 REM FLUENCES & DAMAGE COEFFICIENTS TO CALCULATE THE IMEV EQUIVALENT FLUENCE 1945 1950 FICO 1955 FOR 101 TO NE $1960 = F1 \approx (R1(1) \cdot R1(1+1))*(1) + (1) + (1+N1)) + F1$ 1965 NEXT1 1970 . 1:2=0. 1975 13=0 1980 FOR 1~1/TO N2 1985 F2=(R2(I)-R2(I+1))*(D2(I)+D2(I+N2))+F2 1990 F3=(R2(I)=R2(I+1))*(D3(I)+D3(I+N2))+F3 1995 NEXT1 PRINTER IS 0 2000 2005 PRINTLING), "SOLAR CELU", "ELECTRON RADIATION", "PROTON RADIATION", "NET RADI ATION" 2010 PRINT "DEGRADATION", "EQUIVALENT FLÜENCE", "EQUIVALENT FLÜENCE", "EQUIVALENT F LUENCE" 2015 PRINT "PARAMETER","IMEV ELECTRONS/CM*2","IOMEV PROTONS/CM*2","IMEV ELECTRON S/CM12" 2020 PRINT "ISC", FLF2, F1+3000*F2

2025 PRINT "VOC & PMAX",F1,F3,F1+3000*F3,LIN(3)

2030 PRINTER IS 16

2035 RETURN

Appendix B - IVDEG

5 10 REM THIS PROGRAM CALCULATES THE AMOUNT OF DEGRADATION IN THE I-V REM PARAMETERS OF A SILICON SOLAR CELL IRRADIATED WITH 1 MEV ELECTRONS 15 20 **REM AT NORMAL INCIDENT.** 25 **OPTION BASE 0** 30 DIM Y(10,14),X(6),Isc(2),Voc(2),Pmax(2),Vmp(2),Imp(2) 35 **GOSUB** Input 40 **GOSUB** Temco 45 **GOSUB** Unrad 50 **GOSUB** Degrad 55 **GOSUB** Irrad 60 **GOSUB** Plot 65 STOP Input: ! ****** 70 75 REM THIS SUBROUTINE COLLECTS INFORMATION ABOUT THE SOLAR CELL FROM THE 80 REM OPERATOR PRINT (LIN(2),"I-V PARAMETERS BEFORE IRRADIATION:",LIN(1),SPA(4),"Isc (mA) =" 85 90 INPUT Isc(0) PRINT Isc(0),LIN(1),SPA(4),"Voc (mV) ="; 95 100 INPUT Voc(0) 105 PRINT Voc(0),LIN(1),SPA(4),"Imp (mA) ="; INPUT Imp(0) 110 115 PRINT Imp(0),LIN(1),SPA(4),"Vmp (mV) ="; 120 INPUT Vmp(0) 125 PRINT Vmp(0),LIN(1),SPA(4),"CELL TEMPERATURE ('C) ="; 130 **INPUT** Tem 135 PRINT Tem,LIN(1),SPA(4), "CELL THICKNESS (CM) ="; 140 **INPUT T** 145 PRINT T,LIN(1),SPA(4),"ACTIVE CELL AREA (CM²) ="; 150 **INPUT A** 155 PRINT A,LIN(1),SPA(4),"CELL RESISTIVITY (OHM-CM) ="; 160 **INPUT** Res 165 PRINT Res,LIN(3),"CELL TYPE:" 170 PRINT SPA(4),"ENTER 'i' FOR CONVENTIONAL AND SHALLOW JUNCTION CELL" 175 PRINT SPA(4),"ENTER '2' FOR CELL WITH BACK SURFACE REFLECTOR (BSR)" 180 PRINT SPA(4), "ENTER '3' FOR CELL WITH BSR AND BACK SURFACE FIELD (BSF)" 185 **INPUT Dum** 190 Dum=INT(Dum) 195 IF Dum<1 THEN 165 200 IF Dum>3 THEN 165 205 PRINT "CELL TYPE"; Dum, LIN(3), "IRRADIATION DOSE:" PRINT "EQUIVALENT FLUENCE FOR Isc DEGRADATION (1MEV ELECTRONS/CM²) ="; 210 **INPUT Fsc** 215 220 **PRINT Fsc** 225 PRINT "EQUIVALENT FLUENCE FOR Voc DEGRADATION (IMEV ELECTRONS/CM² = ": 230 INPUT Foc 235 PRINT Foc,LIN(2) 240 RETURN

245 Temeo: ! **** 250 **REM THIS SUBROUTINE DETERMINES THE TEMPERATURE COEFFICIENTS FOR EACH** 255 **REM I-V PARAMETER OF THE IRRADIATED AND UNIRRADIATED CELLS** 260 FOR I=1 TO 8 265 READ Y(1,0), Y(1,1), Y(1,2), Y(1,4), Y(1,5), Y(1,7), Y(1,8), Y(1,10), Y(1,11) 270 FOR J=1 TO 10 STEP 3 275 Y(1,J+2)=Y(1,J)+(Res-2)*(Y(1,J+1)-Y(1,J))/8 280 NEXT J NEXT I 285 290 FOR I=1 TO 7 295 IF Fsc<Y(1,0) THEN 305 300 Y(0.3)=Y(1.3)+(Fsc-Y(1.0))*(Y(1+1.3)-Y(1.3))/(Y(1+1.0)-Y(1.0))305 NEXTI 310 FOR J=6 TO 12 STEP 3 315 FOR I=1 TO 7 320 IF Foc<Y(1,0) THEN 335 325 Y(0,J)=Y(1,J)+(Foc-Y(1,0))*(Y(1+1,J)-Y(1,J))/(Y(1+1,0)-Y(1,0))330 NEXT I 335 NEXT J 340 **GOTO 385** 345 DATA 0,0182,0182,-2.01,-2.256,-.054,-.0723,-1.976,-2.296 350 DATA 1E+12,0166,0185,-1,979,-2.248,-0535,-072,-1.921,-2.235 355 DATA 1E+13,,019,,0222,-1.97,-2,255,-.052,-.0692,-1.9,-2,21 360 DATA 3E+13,.021,.0286,-2.009,-2.25,-.0498,-.0651,-1.875,-2.208 365 DATA 1E+14,.0265,.0395,-2,099,-2.254.-.0461,-.058,-1.898,-2.21 370 DATA 3E+14,.0325,.0482,-2.192,-2.259,-.0416,-.052,-1.918,-2.216 375 DATA 1E+15..035..0515.-2.259.-2.275.-.0376.-.0417.-1.98.-2.24 380 DATA 1E+16,.0415,.06,-2.302,-2.309,-.0279,-.0361,-2.049,-2.326 385 RETURN 390 395 **REM THIS SUBROUTINE DETERMINES THE CHARACTERISTICS OF THE UNRADIATED CELL** 400 Isc(0)=Isc(0)+A*Y(1,3)*(30-Tem)405 Voc(0)=Voc(0)+Y(1,6)*(30-Tem)410 Pmax(0)=Imp(0)*Vmp(0)+1E-3+A*Y(1.9)*(30-Tem)415 Bmax=(1,5+(1/3-1.5)*(Res-2)/8)*1E-5 420 Pmax(0)=Pmax(0)/(1+Bmax*(30-Tem)*(30-Tem)/2)425 Vmp(0)=Vmp(0)+Y(1,12)*(30-Tem)430 IF Tem>-20 THEN GOTO 445 Voc(0)=Voc(0)-Y(1,6)*(30-Tem)+50*Y(1,6)-(Y(1,5)-.005*(Tem+20)/2)*(Tem+20) 435 440 Vmp(0)=Vmp(0)-Y(1,12)*(30-Tem)+50*Y(1,12)-(Y(1,12)-,005*(Tem+20)/2)*(Tem+20) 445 Imp(0)=1E3*Pmax(0)/Vmp(0)450 **PRINTER IS 0** 445 PRINT LIN(2), "CELL TYPE" 460 IF Dum=1 THEN PRINT "A CONVENTIONAL AND SHALLOW JUNCTION N/P SILICON SOLAR C ELL" 465 IF Dum=2 THEN PRINT "A N/P SILICON SOLAR CELL WITH BSR" 470 IF Dum=3 THEN PRINT "A N/P SILICON SOLAR CELL WITH BSR AND BSF" 475 PRINT "CELL RESISTIVITY =":Res:"OHM-CM" PRINT "CELL THICKNESS ="';T;"CM",LIN(1),"ACTIVE CELL AREA ="';A:"CM^2" 480 485 PRINT LIN(2),"I-V CHARACTERISTICS OF THE UNIRRADIATED CELL" 490 PRINT "Isc ="; Isc(0);"mA +"; A*Y(1,3);"mA/'C * (T-30'C)"

495 PRINT "Voe ="';Voe(0);"mV";Y(1,6);"mV/'C * (T-30'C)" 500 PRINT "Pmax = ";Pmax(0);"mW";A*Y(1.9);"mW/'C * (T-30'C)" 505 PRINT "Vmp = ":Vmp(0);"mV":Y(1,12);"mV/'C * (T-30'C)" 510 PRINT "Imp = Pmax/Vmp" 515 PRINTER IS 16 520 RETURN Degrad: ! ******************************** 5.25 530 **REM THIS SUBROUTINE DETERMINES THE DEGRADATION IN THE I-V CURVE AT 28'C** 535 FOR 1=1 TO 3 540 READ TLT2 545 FOR J=1 TO 4 550 READ B1.B2.B3.B4 555 B5=B1+(B2-B1)*(T-T1)/(T2-T1) 560 B6=B3+(B4-B3)*(T-T1)/(T2-T1) 565 Fe(1,J)=B5+(B6+B5)*(Res+2)/(10+2) 570 NEXT J 575 NEXT1 580 $C(1) \approx -1 * Ise(0) / LGT(2)$ 585 C(2) = -.1 * Voc(0) / LGT(2)590 C(3) = -.1 * Pmax(0) / LGT(2)595 C(4) = -.1*Vmp(0)/LGT(2)600 PRINTER IS 0 605 PRINT LIN(2), "DEGRADATION EQUATION FOR EACH I-V PARAMETER" PRINT "Ise(F)=":Ise(0):"mA":C(1):"*LOG(1+F/":Fe(Dum.1):"1MEV e-/CM*2)" 610 615 PRINT "Voe(F)=";Voe(0);"mV":C(2);"*LOG(1+F/":Fe(Dum,2);"1MEV e-/CM*2)" PRINT "Pmax(F)=";Pmax(0);"mW";C(3);"*LOG(1+F/";Fc(Dum,3):"1MEV e-/CM*2)" 620 625 PRINT "Vmp(F)=":Vmp(0);"mV":C(4);"*LOG(1+F/":Fe(Dum,4):"1MEV e-/CM"2)" 630 PRINT "Imp(F) = Pmax(F)/Vmp(F)" 635 PRINTER IS 16 640 GOTO 690 645 DATA .02,.03,1.6E+14,1.6E+14,8.2E+14,4.5E+14 DATA 1E+15,1E+15,3E+15,2E+15,7,4E+13,7,4E+13 650 655 DATA 2.9E+14.1.5E+14.1E+15.1E+15.1.8E+15.1E+15 660 DATA .01. 02.4.5E+14.2.3E+14.1.3E+15.4.5E+14 665 DATA 3E+15,1.3E+15,6.2E+15,2.1E+15,2.3E+14,1.15E+14 670 DATA 5.8E+14,2E+14,2.4E+15,1.1E+15,3.2E+15,1.3E+15 675 DATA .01..02.1.15E+14.7E+13.3.5E+14.1.5E+14 680 DATA 3.8E+14,4.5E+14,1.9E+14,1.3E+14,4.8E+13,3.4E+13 685 DATA 8E+13,3.6E+13,3.3E+14,2.6E+14,2E+14,1.2E+14 690 RETURN 695 Irrad: ! ******* 700 **REM THIS SUBROUTINE DETERMINES THE CHARACTERISTICS OF THE IRRADIATED CELL** 705 Isc(1)=Isc(0)+C(1)*LGT(1+Fsc/Fc(Dum,1))710 Voe(1)=Voe(0)+C(2)*LGT(1+Foe/Fe(Dum,2)) 715 Pmax(1)=Pmax(0)+C(3)*LGT(1+Foc/Fc(Dum,3)) 720 Vmp(1)=Vmp(0)+C(4)*LGT(1+Foc/Fc(Dum,4))725 Imp(1)=1E3*Pmax(1)/Vmp(1)730 PRINTER IS 0 735 PRINT LIN(2), "RADIATION DOSAGE" PRINT "EQUIVALENT FLUENCE FOR Isc =";Fsc;"IMEV ELECTRON" "M*2" 740

745 PRINT "EQUIVALENT FLUENCE FOR Voe, Pmax & Vmp =":Foe;"IME + ELECTRONS/CM*2"

PRINT LIN(2),"I-V CHARACTERISTICS OF THE IRRADIATED CELL" 750 PRINT "Ise =": Ise(1);"mA +":A*Y(0,3);"mA/'C * (T-30'C)" 755 760 PRINT "Voc =";Voc(1);"mV";Y(0,6);"mV/'C * (T-30'C)" 765 PRINT "Pmax =":Pmax(1);"mW";A*Y(0.9);"mW/'C * (T-30'C)" 770 PRINT "Vmp =";Vmp(1);"mV";Y(0,12);"mV/'C * (T-30'C)" **PRINT** "Imp = Pmax/Vmp" 775 780 **PRINTER IS 16** 785 RETURN 790 Plot: ! ******* 795 **REM THIS SUBROUTINE PLOTS A FAMILY OF I-V CURVES FOR THE IRRADIATED** 800 **REM AND UNIRRADIATED CELLS** 805 **PLOTTER IS 13, "GRAPHICS"** 810 GRAPHICS LOCATE 1,120,1,90 815 820 Xmax=100*(1+INT((Voc(0)+Y(1,6)*-60)/100))825 Ymax=25*(1+INT((Isc(0)+A*Y(1,3)*60)/25))830 SCALE -Xmax/10,Xmax,-Ymax/10,Ymax 835 AXES 10,5.0,0,10,5 840 FOR K=0 TO 1 845 FOR Te=90 TO -30 STEP -60 850 CSIZE 3 855 LDIR 0 860 LORG 5 865 X(1)=Isc(K)+A*Y(1-K.3)*(Tc-30)870 X(2)=Voc(K)+Y(1-K,6)*(Tc-30)875 Bmax=1.5+(1/3-1.5)*(Res-2)/8)*1E-5 880 X(3) = (Pmax(K) + A*Y(1-K,9)*(Tc-30))/(1+Bmax*(Tc-30)*(Tc-30)/2)885 X(4)=Vmp(K)+Y(1-K,12)*(Tc-30)890 IF Te>-20 THEN GOTO 905 895 X(2)=Voc(K)-50*Y(1-K,6)*(Y(1-K,6)-.005*(Tc+20)/2)*(Tc+20)900 X(4)=Vmp(K)-50*Y(1-K,12)*(Y(1-K,12)-.005*(Tc+20)/2)*(Tc+20)X(5)=1E3*X(3)/X(4)905 910 MOVE 0, X(1)915 FOR Vol=0 TO INT(X(2)) 920 C2=(X(4)/X(2)-1)/LOG(1-X(5)/X(1))925 C1=(1-X(5)/X(1))*EXP(-X(4)/(C2*X(2)))930 $Cur = X(1)^{*}(1+C1^{*}(1-EXP(Vol/(C2^{*}X(2)))))$ 935 PLOT Vol,Cur 940 NEXT Vol 945 MOVE X(4),X(5) 950 CSIZE 3 955 LABEL "*" 960 LORG 3 965 CSIZE 2 970 MOVE Xmax/100.X(1)-Ymax/195 975 LABEL "T =":Tc:"C" 980 NEXT Te 985 NEXT K 990 **REM LABEL VOLTAGE AXES** 995 CSIZE 3 1000 LORG 5

1005 FOR I=0 TO Xmax STEP 100 1010 MOVE L-Ymax/30 1015 LABELI 1020 NEXT I 1025 MOVE Xmax/2.-Ymt x/15 1030 LABEL "VOLTAGE (mV)" 1035 REM LABEL CURRENT AXES 1040 LORG 8 1045 FOR I=0 TO Ymax STEP 25 1050 MOVE -Xmas/50.1 1055 LABELT 1060 NEXT I 1065 DEG 1070 LDIR 90 1075 LORG 6 1080 MOVE -Xmas/10,Ymas/2 1085 LABEL "CURRENT (mA)" 1090 DUMP GRAPHICS 1095 EXIT GRAPHICS 1100 PRINTER IS 0 1105 PRINT LIN(4) 1110 PRINTER IS 16 1115 RETURN

Appendix C – IUEPOW

5	REM ************************************
10	REM THIS PROGRAM CALCULATES THE IUE SOLAR ARRAY POWER VERSUS BETA ANGLE
15	REM FOR FACH YEAR FROM THE BEGINNING OF LIFE TO 10 YEARS.
20	DIM $P(136 15) P(136 3) Pc(136 3) Pu(136 3)$
25	DFG
30	RFAD Tmin Tmax
35	FOR Time=Thin TO Thay
40	FOR C=1 TO ?
45	RFAD Yse Rsc. Yoc Boc. Ymax, Bmax, Ymp, Bmp, Esc. Fop, TO
50	FOR B=0 TO 135
55	REM CALCULATE LOWER PANEL POWER
60	IF $B > 112$ THEN 90
65	Vop=389
70	S=COS(B-22.5)
75	T=37,41513+1,10256*B-01848*B*B+TO
80	GOSLIB Ion
85	P(BC)=48*78*10p/1000
90	REM CALCULATE CENTRAL PANEL POWER
95	Von=423
100	S=COS(B-67.5)
105	T = -12 18705 + 2 13056 * R - 01563 * R * R + TO
110	GOSUB Ion
115	Pc(BC)=40*28*10p/1000
120	REM CALCULATE UPPER PANEL POWER
125	IF B<23 THEN 155
130	Von=389
135	S=COS(B-112 5)
140	$T = -126 3935 + 3 51306 + B \cdot 01652 + B + B + TO$
145	GOSUB Ion
150	Pu(BC)=48*28*10n/1000
155	NFXT R
160	NEXT C
165	FOR B=0 TO 135
170	K = 0.6661 + 0.1202 * B - 0.0007 * B * B
175	$P(B \text{ Time}) = K * (P1(B_1)) + Pc(B_1)) + (1 - K) * (P1(B_2)) + Pc(B_2) + Pu(B_2))$
180	NEXT B
185	NEXT Time
190	GOSUB Graph
195	GOSUB Print
200	STOP
205	lop: ! ***********************************
210	REM THIS SUBROUTINE CALCULATES THE CELL OPERATING CURRENT.
215	$lse=Yse+Bse^*(T-30)$
220	Voc=Yoc+Boc*(T-30)
225	Pmax=(Ymax+Bmax*(T-30))/(1+1.64583E-5*(T-30)*(T-30)/2)
230	Vmp=Ymp+Bmp*(T-30)
235	IF T>-20 THEN GOTO 250
240	Voc=Yoc-50*Boc+(Boc-005*(T+20)/2)*(T+20)
745	Vmn=Vmn-50*Bmn+(Bmn-005*(T+20)/2)*(T+20)

250	Imp=1000*Pmax/Vmp
255	C2=(Vmp/Voc-1)/LOG(1-Imp/Isc)
260	C1 = (1 - Imp/Isc) * EXP(-Vmp/(C2*Voc))
265	lop=lsc*(1+C1*(1-EXP(Vop/(C2*Voc))))
270	lop=Fop*(lop-(lsc-Fsc*S*lsc))
275	IF lop<0 THEN lop=0
280	RFTURN
785	Cranb + 1 **********************************
200	DEM THIS SUBDOUTINE DLOTS DOWED Ve BETA FOD FACH VEAD
290	$V_{min} = 50*(1+1)(T/D(70 T_{min})/50))$
200	$V_{min} = SO(1) T(1/(1/0,1)) SO(1/0,1)$
205	
210	
210	GRAPHUS
315	
320	SCALE -15,135,Y min-(Y max-Y min)/10,Y max
325	AXES 5,10,0,Ymin,9,5
330	REM LABEL BETA AXES
335	LDIR 0
340	CSIZE 3
345	LORG 5
350	FOR 1=0 TO 135 STEP 15
355	MOVE I, Ymin-(Ymax-YMin)/30
360	LABELI
365	NEXT I
3.70	MOVE 67,Ymin-(Ymax-Ymin)/15
375	LABEL "BETA ANGLE (DEGREES)"
380	REM LABEL POWER AXES
385	LORG 8
390	FOR I=Ymin TO Ymax STEP 50
395	MOVE01
400	
400	NFYTI
410	
415	
420	LONG 0 MOVE 15 Vmint/Vmay Vmin)/2
420	y = 0, $f = 10$, $f = 100$, f
425	LADEL FUNCK (WATTS)
430	
435	
440	CSIZE 2
445	FOR Time=Tmin 10 Tmax
450	MOVE 0,P(0,Time)
455	FOR B=0 TO 135
460	PLOTB,P(B,Time)
465	NEXT B
470	NEXT Time
475	DUMP GRAPHICS
480	EXIT GRAPHICS
485	RETURN
490	Print: ! ***********************************
495	REM THIS SUBROUTINE PRINTS A HARD COPY OF THE AVAILABLE POWER AT EACH BETA
500	REM ANGLE FOR EACH YEAR.

505 PRINTER IS 0 510 FOR Time=Tmin TO Tmax 515 PRINT LIN(4), "AVAILABLE SOLAR ARRAY POWER AFTER ": Time;" YEARS" 520 FIXED 0 PRINT "BETA":TAB(7),"POWER":TAB(19),"BETA":TAB(26),"POWER":TAB(38),"BETA":T 525 AB(45), "POWER": TAB(57), "BETA": TAB(64), "POWER" PRINT "(DEG)";TAB(7),"(WATTS)";TAB(19),"(DEG)";TAB(26),"(WATTS)";TAB(38),"(530 DEG)":TAB(45)."(WATTS)":TAB(57)."(DEG)":TAB(64)."(WATTS)" 535 FOR B=0 TO 132 STEP 4 540 PRINT B;TAB(7).P(B,Time);TAB(19),B+1;TAB(26),P(B+1,Time);TAB(38),B+2;TAB(45).P(B+2.Time):TAB(57).B+3:TAB(64).P(B+3.Time) 545 NEXT B 550 **NEXT** Time PRINT LIN(4) 555 PRINTER IS 16 560. RETURN 565 DATA 0.10 570 575 DATA 140.34,06734,586,1,-1.979,64.04,-.191,490,32,-1.936,1.035,958,3.7 580 DATA 137.34..06734,586.1,-1,979,62.54,-.191,490.32,-1,936,,954,,902,-3.7 DATA 131.25.,0777.580.96,-2.57.63,-,174,486.71,-1.84,1.035.,958.3.7 585 DATA 121.02..0918.574.83.-2.08.51.83.-,165.482.37.-1.86.,954.,902.-3.7 590 DATA 125.00.0889.576.1.-2.071.53.88.-.166.483.28.-1.857.1.035..958.3.7 595 DATA 112.2, 1023, 564.88, -2.139, 47, 07, -, 156, 475, 23, -1.871, 954, 902, -3.7 600 DATA 120.24, 0954, 571, 52, -2, 101, 51, 22, -, 162, 480, 01, -1, 863, 1, 035, 958, 3, 7 605 DATA 106.12,,1127,555.97,-2.186,43.97,-.1488,468.74,-1.883,,954.,902,-3.7 610 DATA 116.38.09995.567.16.-2.126.49.16.-.158.476.88.-1.869.1.035.958.3.7 615 620 DATA 101.47, 1142.547.92, -2.197, 41.67, -.1469, 462.8, -1.893, 954, 902, -3, 7 DATA 113.14..1045.563.02.-2.15.47.48.-1543.473.89.-1.874.1.035..958.3.7 625 630 DATA 97.71, 1155, 540.57, -2.208, 39.84, -, 145, 457, 32, -1.903, 954, 902, -3.7 635 DATA 110.35, 1091, 559, 08, -2, 174, 46, 05, -, 1505, 471, 01, --1, 879, 1, 035, 958, 3, 7 640 DATA 94,55,1167,533.81,-2.219,38,31,-1433,452.23,-1,913,954,902,-3.7 645 DATA 107.9.,1131,555.31,-2.187,44.82,-1486,468,25,-1.884,1.035.,958.3.7 DATA 91.822.,11798.527.54,-2.231.37.0,-.14148.447.4816,-1.924.,954.,902,-3 650 .7 655 DATA 105,71,1136,551,7,-2,192,43,73,-1478,465,59,-1,888,1,035,958,3,7 660 DATA 89.43.,1192.521.71,-2.242.35.87,-1397.443.03,-1.934.,954.,902,-3.7 665 DATA 103.74..1142.548.24.-2.197.42.76.-.147.463.03.-1.893.1.035..958.3.7 670 DATA 87.29., 1205.516,26,-2,253,34,86,-.1378,438,85,-1,944,.954,.902,-3,7 675 DATA 101.94, 1148, 544, 91, -2.2, 41, 87, -. 1462, 460, 56, -1.897, 1.035, 958, 3.7 DATA 85.36, 1217, 511, 14, -2.257, 33.95, -, 1369, 434, 9, -1.948, 954, 902, -3.7 680

OF POOR GRALity

Appendix D - PREDICTED IUE SOLAR ARRAY CHARACTERISTICS

BEST CASE IRRADIATION DOSAGE AND I-V PARAMETERS AT BOL

EQUIVALENT FLUENCE FOR $I_{SC} = 0.1 \text{Mev e/cm}^2$ EQUIVALENT FLUENCE FOR V_{OC} AND $P_{MAX} = 0.1 \text{Mev e/cm}^2$ $I_{SC} = 140.34 \text{mA} + .0673 \text{mA}/^{\circ}\text{C}$ (T-30°C) $V_{OC} = 586.10 \text{mV} - 1.98 \text{mV}/^{\circ}\text{C}$ (T-30°C) $P_{MAX} = 64.04 \text{mW} - .191 \text{mW}/^{\circ}\text{C}$ (T-30°C) $V_{MP} = 490.32 \text{mV} - 1.94 \text{mV}/^{\circ}\text{C}$ (T-30°C)

WORST CASE IRRADIATION DOSAGE AND I-V PARAMETERS AT BOL

EQUIVALENT FLUENCE FOR $I_{SC} = 0.1 \text{Mev e/cm}^2$ EQUIVALENT FLUENCE FOR V_{OC} AND $P_{MAX} = 0.1 \text{Mev e/cm}^2$ $I_{SC} = 137.34 + .0673 \text{mA/}^{\circ}\text{C} (T-30^{\circ}\text{C})$ $V_{OC} = 586.10 \text{mV} - 1.98 \text{mV/}^{\circ}\text{C} (T-30^{\circ}\text{C})$ $P_{MAX} = 62.54 \text{mW} - .191 \text{mV/}^{\circ}\text{C} (T-30^{\circ}\text{C})$ $V_{MP} = 490.32 \text{mV} - 1.94 \text{mV/}^{\circ}\text{C} (T-30^{\circ}\text{C})$

AVAILABLE SOLAR ARRAY POWER AT BOL

BETA	POWER	BETA	POWER	BETA	POWER	BETA	POWER
(DEG)	(WATTS)	(DEG)	(WATTS)	(DEG)	(WATTS)	(DEG)	(WATTS)
0	198	1.	201	2	205	3	209
4	212	5	215	6	219	7	222
8 8	225	9	229	10	232	· · 11	235
12	238	13	241	14	243	15	246
16	249	17	251	18	254	19	256
20	259	21	261	22	263	23	267
24	271	25	276	26	281	27	285
28	290	29	294	30	299	31	303
32	307	33	311	34	315	35	319
36	323	37	327	38	330	39	334
40	337	41	340	42	344	43	347
44	350	45	352	46	355	47	358
48	360	49	363	50	365	51	367
52	369	53	371	54	373	55	375
56	376	57	378	58	379	59	380
60	381	61	382	62	383	63	384
64	385	65	385	66	386	67	386
68	386	69	386	70	386	71	386
72	385	73	385	74	384	75	383
76	383	77	382	78	381	79	379
80	378	81	377	82	375	83	373
84	372	85	370	86	368	87	366
88	363	89	361	90	358	91	356
92	353	93	350	94	347	95	344
96	341	97	338	98	334	99	331
100	327	101	324	102	320	103	316
104	312	105	308	106	303	107	299
108	295	109	290	110	286	111	281
112	276	113	273	114	271	115	269
116	267	117	265	118	262	119	260
120	257	121	255	122	252	123	249
124	246	125	244	126	240	127	237
128	234	129	231	130	228	131	224
132	221	133	217	134	214	135	210

WORST CASE IRRADIATION DOSAGE AND I-V PARAMETERS AFTER 1 YEAR EQUIVALENT FLUENCE FOR $I_{SC} = 9.90E+13 \ 1 \text{Mev} \ e/cm^2$ EQUIVALENT FLUENCE FOR V_{OC} AND $P_{MAX} = 1.07E+14 \ 1 \text{Mev} \ e/cm^2$ $I_{SC} = 121.02\text{mA} + .0918\text{mA}^{\circ}\text{C} (\text{T}-30^{\circ}\text{C})$ $V_{OC} = 574.83\text{mV} - 2.08\text{mV}^{\circ}\text{C} (\text{T}-30^{\circ}\text{C})$ $P_{MAX} = 51.83\text{mW} - .165\text{mW}^{\circ}\text{C} (\text{T}-30^{\circ}\text{C})$ $V_{MP} = 482.37\text{mV} - 1.86\text{mV}^{\circ}\text{C} (\text{T}-30^{\circ}\text{C})$

AVAILA	ABLE SOLAR ARRAY	POWER AFTE	R 1 YEAR				
BETA	POWER	BETA	POWER	BETA	POWER	BETA	POWER
(DEG)	(WATTS)	(DEG)	(WATTS)	(DEG)	(WATTS)	(DEG)	(WATTS)
0	173	1	176	2	180	3	183
4	186	5	189	6	192	7	195
8	198	9	201	10	204	11	207
12	210	13	212	14	215	15	217
16	220	17	212	18	225	19	227
20	229	21	231	22	233	23	236
24	240	25	245	26	249	27	253
28	257	29	261	30	265	31	269
32	273	33	276	34	280	35	284
36	287	37	290	38	294	39	297
40	300	41	303	42	306	43	309
44	311	45	314	46	317	47	319
48	321	49	324	50	326	51	328
52	330	53	331	54	333	55	335
56	336	57	337	58	339	59	340
60	341	61	342	62	343	63	343
64	344	65	344	66 '	345	67	345
68	345	69	345	70	345	71	345
72	345	73	344	74	344	75	343
76	343	77	342	78	341	79	340
80	339	81	337	82	336	83	334
84	333	85	331	86	329	87	327
88	325	89	323	90	321	91	319
92	316	93	314	94	311	95	308
96	306	97	303	98	300	99	296
100	293	101	290	102	286	103	283
104	279	105	276	106	272	107	268
108	264	109	260	110	256	111	252
112	248	113	245	114	243	. 115	241
116	239	117	237	118	235	119	233
120	231	121	228	122	226	123	223
124	221	125	218	126	216	127	213
128	210	129	207	130	204	131	201
132	198	133	195	134	191	135	188

BEST CASE IRRADIATION DOSAGE AND I-V PARAMETERS AFTER 2 YEARS = 8.78E+13 1 Mev e/cm² EQUIVALENT FLUENCE FOR ISC EQUIVALENT FLUENCE FOR V_{OC} AND $P_{MAX} = 9.41E+13$ 1Mev c/cm² $I_{SC} = 125.00 \text{mA} + .0889 \text{mA}/^{\circ}\text{C} (\text{T}-30^{\circ}\text{C})$ $V_{OC} = 576.10 \text{mV} - 2.07 \text{mV}/^{\circ}\text{C} (T-30^{\circ}\text{C})$ $P_{MAX} = 53.88 \text{mW} - .166 \text{mW/}^{\circ}\text{C} (T-30^{\circ}\text{C})$ V_{MP} = 483.28mV - 1.86mV/°C (T-30°C)

WORST CASE IRRADIATION DOSAGE AND I-V PARAMETERS AFTER 2 YEARS

EQUIVALENT FLUENCE FOR ISC = 1.98E+14 1Mev e/cm² EQUIVALENT FLUENCE FOR V_{OC} AND $P_{MAX} = 2.14E+14$ 1Mev e/cm²

 $I_{SC} = 112.20 \text{mA} + .102 \text{mA}/^{\circ} C (T-30^{\circ} \text{C})$

 $V_{OC} = 564.88 \text{mV} - 2.14 \text{mV/}^{\circ}\text{C} (\text{T}-30^{\circ}\text{C})$

 $P_{MAX} = 47.07 \text{mW} - .156 \text{mW/}^{\circ}\text{C} (\text{T}-30^{\circ}\text{C})$ $V_{MP} = 475.23 \text{mV} - 1.87 \text{mV}/^{\circ}\text{C} (\text{T}-30^{\circ}\text{C})$

BETA POWER DETA POWER DETA POWER DETA POWER DETA <thdeta< th=""> DETA DETA <th< th=""><th>POWER (WATTS) 169 181 192 202 211 220</th></th<></thdeta<>	POWER (WATTS) 169 181 192 202 211 220
(DEG) (WATTS) (DEG) (WATTS) (DEG) (WATTS) (DEG) 0 160 1 163 2 166 3 4 172 5 175 6 178 7 8 184 9 187 10 189 11 12 195 12 197 14 200 15	(WATTS) 169 181 192 202 211 220
0 160 1 163 2 166 3 4 172 5 175 6 178 7 8 184 9 187 10 189 11 12 195 12 197 14 200 15	169 181 192 202 211 220
4 172 5 175 6 178 7 8 184 9 187 10 189 11 12 195 12 197 14 200 15	181 192 202 211 220
8 184 9 187 10 189 11 10 105 12 107 14 200 15	192 202 211 220
10 106 12 107 14 000 16	202 211 220
12 175 15 177 14 200 15	211
16 204 17 207 18 209 19	220
20 213 21 215 22 217 23	4 4 V
24 224 25 228 26 232 27	235
28 239 29 243 30 247 31	250
32 254 33 257 34 261 35	264
36 267 37 270 38 274 39	276
40 279 41 282 42 285 43	288
44 290 45 293 46 295 47	297
48 299 49 301 50 303 51	305
52 307 53 309 54 310 55	312
56 313 57 314 58 316 59	317
60 318 61 318 62 319 63	320
64 320 65 321 66 321 67	322
68 322 69 322 70 322 71	322
72 321 73 321 74 321 75	320
76 319 77 319 78 318 79	317
80 316 81 315 82 313 83	312
84 310 85 309 86 307 87	305
88 304 89 302 90 300 91	297
92 295 93 293 94 290 95	288
96 285 97 282 98 280 99	277
100 274 101 271 102 267 103	264
104 261 105 258 106 254 107	250
108 247 109 243 110 239 111	236
112 232 113 229 114 227 115	226
<u>116 224 117 222 118 220 119</u>	218
120 216 121 214 122 211 123	209
124 207 125 204 126 201 127	199
128 196 129 193 130 191 131	188
132 185 133 182 134 179 135	176

BEST CASE IRRADIATION DOSAGE AND I-V PARAMETERS AFTER 3 YEARS EQUIVALENT FLUENCE FOR I_{SC} = 1.32E+14 1Mev e/cm² EQUIVALENT FLUENCE FOR V_{OC} AND P_{MAX} = 1.41E+14 1Mev e/cm² I_{SC} = 120.24mA + .0954mA/°C (T-30°C) V_{OC} = 571.52mV - 2.10mV/°C (T-30°C) P_{MAX} = 51.22mW - .162mW/°C (T-30°C) V_{MP} = 480.00mV - 1.86 mV/°C (T-30°C)

WORST CASE IRRADIATION DOSAGE AND I-V PARAMETERS AFTER 3 YEARS EQUIVALENT FLUENCE FOR I_{SC} = 2.97E+14 1Mev e/cm²

EQUIVALENT FLUENCE FOR V_{OC} AND P_{MAX} = 3.21E+14 1Mev e/cm² $I_{SC} = 106.12mA + .113mA/^{\circ}C (T-30^{\circ}C)$ $V_{OC} = 555.97mV - 2.19mV/^{\circ}C (T-30^{\circ}C)$ $P_{MAX} = 43.97mW - .149mW/^{\circ}C (T-30^{\circ}C)$ $V_{MP} = 468.74mV - 1.88mV/^{\circ}C (T-30^{\circ}C)$

AVAILAI	BLE SOLAR ARRA	AY POWER AFTE	R 3 YEARS					
BETA	POWER	BETA	POWER		BETA	POWER	BETA	POWER
(DEG)	(WATTS)	(DEG)	(WATTS)		(DEG)	(WATTS)	(DEG)	(WATTS)
0	151	$(\mathbf{s}_1, \mathbf{s}_2, \dots, \mathbf{s}_{n-1})$	154		2	157	3	160
4	163	5	166		6	169	7	171
8	174	9	177		10	179	11	182
12	184	13	187		14	189	15	191
16	194	17	196		18	198	19	200
20	202	21	204		22	206	23	208
24	212	25	216		26	220	27	223
28	227	29	230		30	234	31	237
32	241	33	244		34	247	35	250
36	253	37	256		38	259	39	257
40	265	41	267		42	270	43	
44	275	45	277		46	279	47	282
48	284	49	285		50	287	51	289
52	291	53	292		54	294	55	295
56	297	57	298		58	299	59	300
60	301	61	362		62	302	63	303
64	303	65	304		66	304	67	304
68	305	69	305		70	305	71	305
72	304	73	304		74	304	75	303
76	302	77	302		78	301	79	300
80	299	81	298		82	297	83	296
84	294	85	293		86	291	87	290
88	288	89	286		90	284		282
92	280	93	278		94	275	95	273
96	270	97	268		98	265	99	263
100	260	101	257		102	254	103	251
104	248	105	244		106	241	107	238
108	234	109	231		110	227	111	224
112	220	113	21,8		114	216	115	214
116	213	117	211		118	209	119	207
120	205	121	203	an a	122	201	123	199
124	196	125	194		126	192	127	189
128	186	129	184		130	181	131	178
132	176	133	173		134	170	135	167

BEST CASE IRRADIATION DOSAGE AND I-V PARAMETERS AFTER 4 YEARS EQUIVALENT FLUENCE FOR I_{SC} = 1.76E+14 1Mev e/cm² EQUIVALENT FLUENCE FOR V_{OC} AND P_{MAX} = 1.88E+14 1Mev e/cm² I_{SC} = 116.38mA + .100mA/°C (T-30°C) V_{OC} = 567.16mV - 2.13mV/°C (T-30°C) P_{MAX} = 49.16mW - .158mW/°C (T-30°C)

 $V_{MP} = 476.88 \text{mV} - 1.87 \text{mV}/^{\circ}\text{C} (T-30^{\circ}\text{C})$

WORST CASE IRRADIATION DOSAGE AND I-V PARAMETERS AFTER 4 YEARS

EQUIVALENT FLUENCE FOR I_{SC} = 3.96E+14 1Mev e/cm² EQUIVALENT FLUENCE FOR V_{OC} AND P_{MAX} = 4.28E+14 1Mev e/cm² I_{SC} = 101.47mA + .114mA/°C (T-30°C) V_{OC} = 547.92mV - 2.20mV/°C (T-30°C) P_{MAX} = 41.67mW - .147mW/°C (T-30°C) V_{MP} = 462.80mV - 1.89mV/°C (T-30°C)

AVAILA	BLE SOLAR ARRA	Y POWER AFTEI	C4 YEARS	ана. Спорта страна			· · · · · · · · · · · · · · · · · · ·
BETA	POWER	BETA	POWER	BETA	POWER	BETA	POWER
(DEG)	(WATTS)	(DEG)	(WATTS)	(DEG)	(WATTS)	(DEG)	(WATTS)
0	144	1	147	2	150	3	153
4.1	156	5	159	6	161	7	164
8	167	9	169	10	172	11	174
12	176	1.3	179	14	181	15	183
16	185	17	187	18	189	19	191
20	193	21	195	22	197	23	199
24	203	25	207	26	210	27	214
28	217	29	220	. 30	224	31	227
32	230	33	233	34	236	35	239
36	242	37	245	38	248	39	251
40	253	41	256	42	258	43	261
- 44	263	45	265	46	267	47	269
48	271	49	273	50	275	51	276
52	278	53	279	54	281	55	282
56	283	57	284	58	285	59	286
60	287	61	288	62	289	63	289
64	290	65	290	66	291	67	291
68	291	69	291	70	291	71	291
72	291	73	290	74	290	75	289
76	289	77	288	78	288	79	287
80	286	81	285	82	284	83	282
84	281	85	280	86	278	87	277
88	275	89	273	90	272	91	270
92	268	93	266	94	263	95	261
96	259	97	256	98	254	99	251
100	249	101	246	102	243	103	240
104	237	105	234	106	231	107	228
108	224	109	221	110	218	111	214
112	211	113	208	114	207	115	205
116	204	117	202	118	200	119	198
120	197	121	195	122	193	123	190
124	188	125	186	126	184	127	181
128	179	129	176	130	174	131	171
132	169	133	166	134	163	135	160

BEST CASE IRRADIATION DOSAGE AND I-V PARAMETERS AFTER 5 YEARS EQUIVALENT FLUENCE FOR I_{SC} = 2.19E+14 1Mev e/cm² EQUIVALENT FLUENCE FOR V_{OC} AND P_{MAX} = 2.35E+14 1Mev e/cm² I_{SC} = 113.14mA + .105mA/°C (T-30°C) V_{OC} = 563.02mV - 2.15mV/°C (T-30°C) P_{MAX} = 47.48mW - .154mW/°C (T-30°C) V_{MP} = 473.89mV - 1.87mV/°C (T-30°C)

WORST CASE IRRADIATION DOSAGE AND I-V PARAMETERS AFTER 5 YEARS EQUIVALENT FLUENCE FOR I_{SC} = 4.95E+14 1Mev e/cm² EQUIVALENT FLUENCE FOR V_{OC} AND P_{MAX} = 5.35E+14 1Mev e/cm² I_{SC} = 97.71mA + .115mA/°C (T-30°C) V_{OC} = 540.57mV - 2.21mV/°C (T-30°C)

 $P_{MAX} = 39.84 \text{mW} - .145 \text{mW}/^{\circ}\text{C} (\text{T}-30^{\circ}\text{C})$ $V_{MP} = 457.32 \text{mV} - 1.90 \text{mV}/^{\circ}\text{C} (\text{T}-30^{\circ}\text{C})$

AVAILAI	BLE SOLAR ARRA	Y POWER AFTER	5 YEARS				
BETA	POWER	BETA	POWER	BETA	POWER	BETA	POWER
(DEG)	(WATTS)	(DEG)	(WATTS)	(DEG)	(WATTS)	(DEG)	(WATTS)
0	139	1	142	2	145	3	147
4	150	5	153	6	155	7 .	158
8	160	9	763	10	165	11	168
12	170	13	172	14	174	15	176
16	179	17	180	18	182	19	184
20	186	21	188	22	189	23	192
24	195	25	199	26	202	27	206
28	209	29	212	30	215	31	219
32	222	33	225	34	228	35	230
36	233	37	236	38	239	39	241
40	244	41	246	42	248	43	251
44	253	45	255	46	257	47	259
48	261	49	262	50	264	51	266
52	267	53	268	54	270	55	271
56	272	. 57	273	58	274	59	275
60	276	61	277	62	277	63	278
64	278	65	279	66	279	67	279
68	279	69	279	70	279	71	279
72	279	73	279	74	278	75	278
76	278	77	277	78	276	79	275
80	275	81	274	82	273	83	271
84	270	85	269	86	268	87	266
88	265	89	263	90	261	91	259
92	257	93	255	94	253	95	251
96	249	97	247	98	244	99	242
100	239	101	237	102	234	103	231
104	228	105	225	106	222	107	219
108	216	109	213	110	210	111	207
112	203	113	201	114	200	115	198
116	197	117	195	118	193	119	191
120	190	121	188	122	186	123	184
124	182	125	179	126	177	127	175
128	173	129	170	130	168	131	165
132	163	133	160	134	157	125	166
ORIGINAL PAGE IS OF POOR QUALITY

BEST CASE IRRADIATION DOSAGE AND I-V PARAM	IETERS AF 2 移秋 - YEARS -
EQUIVALENT FLUENCE FOR ISC	$= 2.63E+14 1 Mev e/cm^2$
EQUIVALENT FLUENCE FOR VOC AND PMAX	= 2.82E+14 1Mev e/cm ²
$l_{SC} = 110.35 \text{mA} + .109 \text{mA/}^{\circ}\text{C} (\text{T}-30^{\circ}\text{C})$	
$V_{OC} = 559.08 \text{mV} - 2.17 \text{mV}/^{\circ} \text{C} (\text{T}-30^{\circ} \text{C})$	
$P_{MAX} = 46.05 \text{mW}151 \text{mW}/^{\circ} \text{C} (\text{T}-30^{\circ} \text{C})$	
$V_{MP} = 471.01 \text{mV} - 1.88 \text{mV}/^{\circ}\text{C} (\text{T}-30^{\circ}\text{C})$	

WORST CASE IRRADIATION DOSAGE AND I-V PARAMETERS AFTER 6 YEARS

EQUIVALENT FLUENCE FOR $I_{SC} = 5.94E+14 \ 1 \text{Mev e/cm}^2$ EQUIVALENT FLUENCE FOR V_{OC} AND $P_{MAX} = 6.42E+14 \ 1 \text{Mev e/cm}^2$ $I_{SC} = 94.55\text{mA} + .117\text{mA/°C} (T-30^{\circ}\text{C})$ $V_{OC} = 533.81\text{mV} - 2.22\text{mV/°C} (T-30^{\circ}\text{C})$ $P_{MAX} = 38.31\text{mW} - .143\text{mW/°C} (T-30^{\circ}\text{C})$ $V_{MP} = 452.23\text{mV} - 1.91\text{mV/°C} (T-30^{\circ}\text{C})$

AVAILABL	E SOLAR ARR	AY POWER AFTI	ER 6 YEARS				
BETA	POWER	BETA	POWER	BETA	POWER	BETA	POWER
(DEG)	(WATTS)	(DEG)	(WATTS)	(DEG)	(WATTS)	(DEG)	(WATTS)
0	135	1	137	2	140	3	143
- 4	145	5	148	6	150	7	153
8	155	9	158	10	160	11	162
12	164	13	167	14	169	15	171
16	173	17	175	18	177	19	178
20	180	21	182	22	183	23	186
24	189	25	192	26	196		199
28	202	29	205	30	208	31	211
32	214	33	217	34	220	35	223
36	225	37	228	38	230	39	233
40	235	41	238	42	240	43	242
44	244	45	246	46	248	47	250
48	251	49	253	50	255	51	256
52	258	53	259	54	260	55	261
56	262	57	263	58	264	59	265
60	266	61	267	62	267	63	268
64	268	65	268	66	269	67	269
68	269	69	269	70	269	71	269
72	269	73	269	74	268	75	268
76	267	77	267	78	266	79	266
80	265	81	264	82	263	83	262
84	261	85	259	86	258	87	257
88	255	89	254	90	252	91	250
92	249	93	247	94	245	95	243
96	241	97	238	98	236	99	234
100	231	101	229	102	226	103	223
104	221	105	218	106	215	107	212
108	209	109	206	110	203	111	200
112	197	113	194	114	193	115	192
116	190	117	189	118	187	119	185
120	184	121	182	122	180	123	178
124	176	125	174	126	172	127	170
128	167	129	165	130	163	131	160
132	158	133	155	134	153	135	150

69

ORIGINAL PAGE 19 OF POOR QUALITY

$\begin{array}{rcl} \text{BEST CASE IRRADIATION DOSAGE AND I-V PARAMETERS AFTER 7 YEARS} \\ \text{EQUIVALENT FLUENCE FOR I}_{SC} &= 3.07E+14 \ 1 \text{Mev e/cm}^2 \\ \text{EQUIVALENT FLUENCE FOR V}_{OC} \ \text{AND P}_{MAX} &= 3.30E+14 \ 1 \text{Mev e/cm}^2 \\ \text{I}_{SC} &= 107.90\text{mA} + .113\text{mA/}^{\circ}\text{C} \ (\text{T}-30^{\circ}\text{C}) \\ \text{V}_{OC} &= 555.31\text{mV} - 2.19\text{mV/}^{\circ}\text{C} \ (\text{T}-30^{\circ}\text{C}) \\ \text{P}_{MAX} &= 44.82\text{mW} - .149\text{mW/}^{\circ}\text{C} \ (\text{T}-30^{\circ}\text{C}) \\ \text{V}_{MP} &= 468.25\text{mV} - 1.88\text{mV/}^{\circ}\text{C} \ (\text{T}-30^{\circ}\text{C}) \end{array}$

WORST CASE IRRADIATION DOSAGE AND I-V PARAMETERS AFTER 7 YEARS EQUIVALENT FLUENCE FOR I_{SC} = 6.93E+14 1Mev e/cm² EQUIVALENT FLUENCE FOR V_{OC} AND P_{MAX} = 7.49E+14 1Mev e/cm² I_{SC} = 91.82mA + .118mA/°C (T-30°C) V_{OC} = 527.54mV - 2.23mV/°C (T-30°C) P_{MAX} = 37.01mW - .141mW/°C (T-30°C) V_{MP} = 447.48mV - 1.92mV/°C (T-30°C)

AVAILA	BLE SOLAR ARRA	Y POWER AFTE	R 7 YEARS			· · · · · · · · · · · · · · · · · · ·	·	
BETA	POWER	BETA	POWER	I	BETA	POWER	BETA	POWER
(DEG)	(WATTS)	(DEG)	(WATTS)	(DEG)	(WATTS)	(DEG)	(WATTS)
0	131	1	133		2	136	3	138
4	141	5	144		6	146	7	148
. 8	151	9	153		10	155	11	158
12	160	13	162		14	164	15	166
16	168	17	170		18	171	19	173
20	175	21	176		22	178	23	180
24	183	25	187		26	190	27	193
28	196	29	199		30	202	31	205
32	208	33	210		34	213	35	216
36	218	37	221		38	223	39	226
40	228	41	230		42	232	43	234
44	236	45	238		46	240	47	242
48	243	49	245		50	246	51	248
52	249	53	250		54	251	55	252
56	253	57	254		58	255	59	256
60	257	61	257		62	258	63	258
64	259	65	259		66	259	67	260
68	260	69	260		70	260	71	260
72	260	73	259		74	259	75	259
76	258	77	258		78	257	79	256
80	256	81	255		82	254	83	253
84	252	85	251		86	250	87	248
88	247	89	245	영상 가슴을	90	244	91	242
92	241	93	239		94	237	95	235
96	233	97	231		98	229	99	226
100	224	101	222		102	219	103	217
104	214	105	211		106	208	107	206
108	203	109	200		10	197	111	194
112	191	113	189		114	187	115	186
116	185	117	183	1	118	182	119	180
120	178	121	177	1	122	175	123	173
124	171	125	169	94 J. A. J. A.	126	167	127	165
128	163	129	160		130	158	131	156
132	153	133	151	la tha shi	134	148	135	146

70

ORIGINAL PAGE IS OF POOR QUALITY

WORST CASE IRRADIATION DOSAGE AND I-V PARAMETERS AFTER 8 YEARS

EQUIVALENT FLUENCE FOR I_{SC} = 7.92E+14 1Mev e/cm² EQUIVALENT FLUENCE FOR V_{OC} AND P_{MAX} = 8.56E+14 1Mev e/cm² I_{SC} = 89.43mA + .119mA/°C (T-30°C) V_{OC} = 521.71mV - 2.24mV/°C (T-30°C) P_{MAX} = 35.87mW - .140mW/°C (T-30°C) V_{MP} = 443.03mV - 1.93mV/°C (T-30°C)

AVAILA	BLE SOLAR ARR	AY POWER AFTER	8 YEARS				
BETA	POWER	BETA	POWER	BETA	POWER	BETA	POWER
(DEG)	(WATTS)	(DEG)	(WATTS)	(DEG)	(WATTS)	(DEG)	(WATTS)
0	127	i stratica	130	2	132	3	135
4	137	5	140	6	142	7	144
8	147	9	149	10	151	11	153
12	155	13	157	- 14 - 1 4	159	15	161
16	163	17	165	18	167	19	168
20	170	21	172	22	173	23	175
24	178	25	182	26	185	27	188
28	191	29	193	30	196	31	199
32	202	33	204	34	207	35	210
36	212	37	214	38	217	39	219
40	221	41	223	42	225	43	227
44	229	45	231	46	232		234
48	236	49	237	50	238	51	240
52	241	53	242	54	243	55	244
56	245	57	246	58	247	59	248
60	248	61	249	62	249	63	250
64	250	65	250	66	251	67	251
68	251	69	251	70	251	71	251
72	251	73	251	74	250	75	250
76	250	77	249	78	249	79	248
80	247	81	247	82	246	83	245
84	244	85	243	86	242	87	240
88	239	89	238	90	236	91	235
92	233	93	231	94	230	95	228
96	226	97	224	98	222	99	220
100	217	101	215	102	213	103	210
104	208	105	205	106	202	107	200
108	197	109	194	110	191	111	188
112	185	113	183	114	182	115	181
116	179	117	178	118	177	119	175
120	173	121	172	122	170	123	168
124	166	125	165	126	163	127	160
128	158	129	156	130	154	131	152
132	149	133	147	134	145	135	142

ORIGINAL PAGE IS OF POOR QUALITY

BEST CASE IRRADIATION DOSAGE AND I-V PARAMETERS AFTER 9 YEARS EQUIVALENT FLUENCE FOR I_{SC} = 3.95E+14 1Mev e/cm² EQUIVALENT FLUENCE FOR V_{OC} AND P_{MAX} = 4.24E+14 1Mev e/cm² I_{SC} = 103,74mA + .114mA/°C (T-30°C) V_{OC} = 548.24mV - 2.20mV/°C (T-30°C) P_{MAX} = 42.76mW - .147mW/°C (T-30°C) V_{MP} = 463,03mV - 1.89mV/°C (T-30°C)

WORST CASE IRRADIATION DOSAGE AND 1-V PARAMETERS AFTER 9 YEARS

EQUIVALENT FLUENCE FOR I_{SC} = 8.91E+14 1Mev e/cm² EQUIVALENT FLUENCE FOR V_{OC} AND P_{MAX} = 9.63E+14 1Mev e/cm² I_{SC} = 87.29mA + .120mA/°C (T-30°C) V_{OC} = 516.26mV - 2.25mV/°C (T-30°C) P_{MAX} = 34.86mW - .138mW/°C (T-30°C) V_{MP} = 438.85mV - 1.94mV/°C (T-30°C)

AVAILABLE SOLAR ARRAY POWER AFTER 9 YEARS

BETA	POWER	BETA	POWER	BETA	POWER	BETA	POWER
(DEG)	(WATTS)	(DEG)	(WATTS)	(DEG)	(WATTS)	(DEG)	(WATTS)
0	124	1	127	2	129	3	132
4	134	5	136	6	139	7	141
8	143	9	145	10	148	11	150
12	152	13	154	14	155	15	157
16	159	17	161	18	163	19	164
20	166	21	167	22	169	23	171
24	174	25	177	26	180	27	183
28	186	29	188	30	191	31	194
32	196	33	199	34	201	35	204
36	206	37	208	38	211	39	213
40	215	41	217	42	219	43	221
44	222	45	224	46	226	47	227
48	229	49	230	50	231	51	232
52	234	53	235	54	236	55	237
56	237	57	238	58	239	59	240
60	240	61	241	62	241	63	242
64	242	65	242	66	242	67	243
68	243	69	243	70	243	71	243
72	243	73	242	74	242	75	242
76	241	77	241	78	241	79	240
80	239	81	239	82	238	83	237
84	236	85	235	86	234	87	233
88	232	89	230	90	229	91	228
92	226	93	225	94	223	95	221
96	219	97	217	98	215	99	213
100	211	101	209	102	207	103	204
104	202	105	199	106	197	107	194
108	192	109	189	110	186	111	183
112	180	113	178	114	177	115	176
116	175	117	173	118	172	119	171
120	169	121	167	122	166	123	164
124	162	125	160	126	159	127	157
128	155	129	152	130	150	131	148
132	146	133	144	134	141	135	139

72

ORIGINAL PACE IS OF POOR QUALITY

BEST CASE IRRADIATION DOSAGE AND I-V PARAMETERS AFTER 10 YEARS

EQUIVALENT FLUENCE FOR I_{SC} = 4.39E+14 1Mev e/cm² EQUIVALENT FLUENCE FOR V_{OC} AND P_{MAX} = 4.71E+14 1Mev e/cm² I_{SC} = 101.94mA + .115mA/°C (T-30°C) V_{OC} = 544.91mV - 2.20mV/°C (T-30°C) P_{MAX} = 41.87mW - .146mW/°C (T-30°C) V_{MP} = 460.56mV - 1.90mV/°C (T-30°C)

WORST CASE IRRADIATION DOSAGE AND I-V PARAMETERS AFTER 10 YEARS

EQUIVALENT FLUENCE FOR I_{SC} = 9.90E+14 1Mev e/cm² EQUIVALENT FLUENCE FOR V_{OC} AND P_{MAX} = 1.07E+15 1Mev e/cm² I_{SC} = 85.36mA + .122mA/°C (T-30°C) V_{OC} = 511.14mV - 2.26mV/°C (T-30°C) P_{MAX} = 33.95mW - .137mW/°C (T-30°C) V_{MP} = 434.90mV - 1.95mV/°C (T-30°C)

AVAIL	ABLE SOLAR ARRA	Y POWER AFTE	R 10 YEARS				
BETA	POWER	BETA	POWER	BETA	POWER	BETA	POWER
(DEG)	(WATTS)	(DEG)	(WATTS)	(DEG)	(WATTS)	(DEG)	(WATTS)
0	121	1	124	2	126	3	129
4	131	5	133	6	136	7	138
8	140	9	142	10	144	11	146
12	148	13	150	14	152	15	154
16	155	17	157	18	159	19	160
20	162	21	163	22	164	23	167
24	170	25	172	26	175	27	178
28	181	29	184	30	186	31	189
32	191	33	194	34	196	35	198
36	201	37	203	38	205	39	207
40	209	41	211	42	213	43	214
44	216	45	218	46	219	47	220
48	222	49	223	50	224	51	225
52	226	53	227	54	228	55	229
56	230	57	231	58	231	59	232
60	232	61	233	62	233	63	234
64	234	65	234	66	234	67	234
68	235	69	235	70	235	71	235
72	235	73	234	74	234	75	234
76	234	77	233	78	233	79	232
80	232	81	231	82	230	83	230
84	229	85	228	86	227	87	226
88	225	89	224	90	222	91	221
92	219	93	218	94	216	95	215
96	213	97	211	98	209	99	207
100	205	101	203	102	201	103	199
104	196	105	194	106	191	107	189
108	186	109	184	110	181	111	178
112	176	113	174	114	173	115	172
116	170	117	169	118	168	119	166
120	165	121	163	122	162	123	160
124	158	125	157	126	155	127	153
128	151	129	149	130	147	131	145
132	143	133	140	134	138	135	136