@ https://ntrs.nasa.gov/search.jsp?R=19830022233 2020-03-21T03:19:09+00:00Z

General Disclaimer

One or more of the Following Statements may affect this Document

e This document has been reproduced from the best copy furnished by the
organizational source. It is being released in the interest of making available as
much information as possible.

e This document may contain data, which exceeds the sheet parameters. It was
furnished in this condition by the organizational source and is the best copy
available.

e This document may contain tone-on-tone or color graphs, charts and/or pictures,
which have been reproduced in black and white.

e This document is paginated as submitted by the original source.

e Portions of this document are not fully legible due to the historical nature of some
of the material. However, it is the best reproduction available from the original
submission.

Produced by the NASA Center for Aerospace Information (CASI)



A 3 ORIGINAL PAGE 1%
OF POOR QUALITY

NASA TECHNICAL MEMORANDUM NASA TM-T77215

PERIODIC MOTIONS (CLOSE TO STATIONARY) OF AN AXISYMMETRIC
SATELLITE WITH MAGNETIC DAMPING

M.Yu. Ovchinnikov

Translation of "Blizkiye K Statsionarnym Periodicheskiye
Dvizheniya Osesimmetrichnogo Sputnika s Magnitnym Dempferom,"
Academy of Sciences USSR, Institute of Applied Mathematics
.imeni M.V. Keldysh, Moscow Preprint 178, 1982, pp. 1-28.

(FASA-TH-77215) PERIODIC MOTIONS (CLOSE 10 N83-30504
STATIONARY) OF AN AXISYMMETRIC SATEBLLII=

WITH MAGNETIC DAMPING (National Aeronautics

and Space Administration) 32 p Onclas
HC AO3/HF AO1 CSCL <42A G3/15 28404

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
WASHINGTON, D.C. 20546 APRIL 1983



ORIGINAL PAGF rs
OF, Pnon QUALITY

‘ .o C STANDARD TITLE PAGE
S Roport No. 2 Mhuukﬂb. R Reciplont’s Cotaleg Mo,

4. Tisle ond SbitePERTIODIC MOTIONS. (CLOSE ‘

STATIONARY) OF AN AKISYMTR&LgA'rELLITE ‘Ap'?ﬂ’T%B

WITH MAGNETIC DAMPING 6. Poriosning Orgenizotion Code

% Awhedd) M.Yu. Ovchinnikov : S, Porlosmiag Ovgenization Ropert No.

) W, Work Unit No.

9. Porloming Organizenen Neme and Address 1), Coniveet o2 Gront No.

‘Leo. Kanner Associates . | NASw=35%1

Redwood City, Californis 94063 o |1 Vrooof Repent and Pocied Coverod

Translation

12. Spensering Agency Neme and Address’ .

National Aeronautics and Space AAminis— [y ssencertng Agency Code
tration, Washington, D.C. 205&6

15. Supplementery Netes

Translation of "Blizkiye K Statsionarnym Periodicheskiye
Dvizheniya Osesimmetirichnogo Sputnika s Magnitnym Dempferom,"
Academy of Sciences USSR, Institute:.of Applied Mathematics
imeni M V.. Keldysh, Moscow. Preprint 178, 1982, pp. 1-28.

IC. Absteect )

Close. to stationary periodic motions of an axisymmetric satel-
lite in a circular orbit are considered. The satellite was
equipped with a spherical magnetic damper. The investigation
was conducdted on the assumption that a strong magnet was in-

i1stalled on the damper float. Stationary rotations of the

satellite around the -axis of symmetry ‘are selected as ‘the
generating solutions. The solutions are constructed in the
form of power series of the small parameter. and they are ex-
tended numerically to the region of random values of the damp-
ing coefficient. The stabllity of the resulting solutions was
investigated. : : ) )
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ANNOTATION

Close to stationary periodic motions of an axisymmetric satel-
lite in a circular orbit are considered. The satellite was equipped
with a spherical magnetic damper. The investigation was conducted

on the assumption that a strong magnet was installed on the damper
float. Stationary rotations of the satellite around the axis of sym-

metry are selected as the generating solutions. The solutions are
constructed in the form of power series of the small parameter, and
they are extended numerically to the region of random values of the
damping coefficient. The stability of the resulting solutions was

investigated.
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PERIODIC MOTIONS (CLOSE TO STATIONARY) OF AN AXISYMMETRIC
SATELLITE WITH MAGNETIC DAMPING

M.Yu. Ovohinnikov
1. Introduction

Periodic motions of an axisymmetric satellite equipped with a /3*
spherical magnetic damper, in ordits of random declination, were in-
vestigated in [1]. With A>4/7 (A is the ratio of the axial moment of
inertia of the satellite to its equatorial moment of inertia), in-
stability of motion of the satellite in the plane of the polar orbit
was found with respect to spatial perturbations. An example of a
transition process was presented there which resulted in stable mo-
tion, which was characterized by deviation of: the axis of symmetry of
the satellite from the plane of the polar orbit by "small tremors"
about this position and rotation of the satellite around the axis,
with a period close to the pericd of rotation of its center of mass
around the orbit. It is shown in the present study that, with a mag-
netic damper aboard the satellite, its stationary rotations change to
forced periodic motions. In the (sinzi, A) plane (i1 is the declina-
tion of the orbit of the center of mass of the satellite to the plane
of the equator), regions of existence of stationary rotations of the
satellite are constructed, which are selected as generating motions.
Motions of the satellite which are close to stationary rotations were
constructed in the form of a power series of the small parameter. The
ratio of the characteristic values of the damping and gravitational
moments acting on the satellite was used as the small parameter. The
orbit of the center of mass of the satellite is considered circular.
The geomagnetic field is approximated by the field of a dipole which
coincides with the axis of rotation of the earth. The resulting mo-
tions can be used as nominal (operating) motions of an axisymmetric

¥Numbers in the margin indicate pagination in the Toreign text.
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satellite with xgl.

The stationary rotational motions of an axisymmetric satellite
with model damping were constructed and studied in [2].

V.A. Sarychev and Yu.A. Sadov are thanked for attention to the
work.

2. Equations of Motion and Formulation of the Problem

We consider that the satellite is a solid body, the moments of
inertia of the damper float are negligibly small cormpared with the
moments of inertia of the satellite, and the center of mass of the
float is fixed relative to the satellite. The motion of the float
about its center of mass then does not affect the inertial character-
istics of the satellite, and the float is replaced by an equivalent
point mass in their determination.

To write the equations of motion of the satellite and float
relative to the center of mass, we introduce the following clock=-
wise rectangular coordinate systems:

Oxlxzx3 bound to the satellite coordinate system; its
axes are the principal central axes of inertia of the satellite;
point 0 is the center of mass of the satellite;

ox1x2x3 is the orbital coordinate system; the Ox3 axis is
directed along the radius vector of point 0 relative to the center of
mass of the earth; the Ox1 axis coincides with the transversal, and
the oxz axis coincides with the normal to the plane of the orbit; Ea
is the unit vector of the ox2 axis;

0212223 is the magnetic coordinate system; the oz1 axis is
directed along vector R of the geomagnetic field strength at point 0;
unit vectors
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determine the corresponding axes of the magnetic coordinate systenm.

We assign the position of the Oxlxzx3 coordinate system relative
to the orbital coordinate system by means of angles a, 8, v (Fig. 1).
The transition matrix and its elements have the form

-amy' pfa%'sﬂnnuu

-&ay/&Mn(;ﬁzpb
a - S/ﬂ, m‘
Oy 2CosK 00S Qg = Siny 5175 ~CO0) 8ind. 085 3,
ﬂa;'-ﬁamlswzp, Qg =)y COSf8 + 0OB) /WK SIN 9,
Qs 2 5/Pet, sy = COS) coSal.

We assign the position of vector ? of the magnetic moment of the
magnet installed in the float relative to the magnetic coordinate s 's-
tem by means of angles ay and Bl. The corresponding directing cosines
have the form

C‘, =md'w:ﬂ' ’ Ca= Slhﬁ; ’ CJ = ‘5{?",”‘,’ .

Let arbitrary vector 3 be assigned by projections ql’q2’q3 on
the axes of any of the coordinate systems introduced, 0x132x3 for
example. We will then write q-(ql.qz.q3)x, etc. As needed, we will /5
empley summation aver the recurrent indices and free indices. The
indices run through the values 1, 2 and 3.

We approximate the geomagnetic field by the field of a magnetic
dipole placed at the center of the earth, the axis of which is directed
along its axis of rotation. The projections of vector f at point 0 on
the orbital coordinate system axes, referred to the quantity Hv-um/p3,
have the form

Hym8inicosu, Hpzcasc , Hjy P YV IA
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where um=8.06°10°7 Oe*cm” is the magnetic moment of the dipole, o is

the radius of the satellite orbit, 1 is its declination to the plane
of the equator, and u is the argument of the latitude. We assign the
position of the magnetic coordinate system relative Lo the orbital
coordinate system by means of the transition matrix

2, 2,2, oy SO, f DR, éﬂ'/"
X\ b bu Py : -
X | 72y s b Y 4""%:pdb’ tre 2,

X | hyy bss s én-‘aﬁﬁ“"*wﬁ:‘ifﬁf"éuréﬁﬁg»
where Hay/te 38uPs 6Pl Ho Vs 38inPW.

Of the external moments which act on the satellite, we will take
only the gravitational moment into account. Of the external moments
which act on the damper float, we will take into account only the mag-
netic moment. 7he interaction of the satellite and the float is due
to eddy currents induced in the outer shell of the damper by the mag-
netic field of the float. The hypothesis was introduced above that
the moments of inertia of the float are significantly less than the
moments of inertia of the satellite. Therefore, with the exception of
the small time interval after freeing the float, its motion is de-
termined by the dynamic equilidbrium of the magnetic moment and the
moment of the induced eddy currents [3]. The motion of the axisym-
metric satellite and the damper float are described by the system of
equations [1]

Wi AR-W,2gk B Wi~ 3(1-2) sinprnyrosa (g €, -
~hofaJondrlina=hfn)rysind-toastyPouia) oty st

W20~ Wt 0 W)= - peody SmtcomiopHimaSy~ (1)
~hasCa) oty +(Pasls = Fonba)Siny ]

£« §-Hayy (hps = isCa),

= i -siny e, dWi-coap, fe2-Wiiga - E%

oy = - (T - WSOy} 1 , fly = T Glrnetyr ) 00
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Here ’ ‘ @
15'e Wyl clod o fg; Sing'ina-fy 008, ine)o W s, S0yl Sige
b Qo SR-w-hyem; | . 14
Mc": mye sy, me-ahy; 25 "ﬁ.’ ‘.’t“

e T s e - g e cenic

A, C are the equatorial and axial moments of inertia of the satellite,
LT is the angular velocity of orbital motion of the satellite center
of mass, k, is the dampips coefficient, wl.wa,a are the projections,
related to wg» of the absolute angular velocity of the satellite on
the Rezal' axes, which coincide with the axes of coordinate system
Oxlxzx3 at g=0. The 0x3 axis is the axis of symmetry of the satel-
lite. The point is designated by differentiation over u. The deriva-
tion of system of Eq. (1) is described in [1l], where another sequence
of flight angles a, 8, y is introduced.

Let I/e<<I. The motion of the satellite is then [1l] described to
within 0(I/e) by the following equations:

Ay =20 Wages L)W~ 3(r- Rpsingtosycastshy Gihyoosas
« s, 8 iy PO S o g LIS Ry MY S g Sy oo o
il a1 COS K ¢ higy SIMY I ~ApgCOS Simn) =W ], (2)
e 2L Witde g‘;gf)w,—a(ﬁmjsmm»g[?ﬁmo i
r b, S il UhaaCOSyia I 45 Py COSohy SoetSY- V],
2= 7 [2s(@%;, + W Py vy B;s) 48 -2],
V- g -sing G, & = Wp-cosy’

Here, . L3
Q5 =Frg, ¢ Wy (o 0088k # g Sn)f Sivel = Frpy B8 ) Si0sl) ¢

+ Wallay0OS [0 by S )4 L2 b, Oky 5 hyu ¥ -

We will next investigate system (2). Angle 8, which describes the
rotation of the satellite around its axis of symmetry, is determined
by the equation
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System of Eq. (2) with 2w periodic clockwise sesmenti with respect
to u contains three parameters i, ), kg. The latter two satisfy the
inequalities 0<A¢2, kg»0. Equation- (2) do' not change their form in
the following substitutions of the phase variables and parameter 1:

b =om—g 2P

]

Lwe=l

WI""W" .a--.a r'-,’ {‘:_—x.‘. . (3)
W, —-W,, W-—-%,’-—-f-’,d" d,{

In accordance with this, it is sufficient to investigate the solu-
tions of Eq. (2) in the interval 0¢i¢w/2.

With kg=0, system (2) permits solutions which correspond to
stationary rotations of the satellite. With kg>0, we obtained and
investigate the 2w periodic with respect to u solutions of system
(2) generated from them.

3. Stationary Rotations of a Satellite with kge0

If kg=0, system (2) has the generalized energy integral

T o f W A Wsinising- Weony A onisig o Yolicadly  (4)

and stationary solutions y=y,, a®a, (yo, qo-conat). which are de-
termined by the system of equations

¢05 1, (2.2, +/4-32)sin); cas,]= 0, (5)
sincy $40,301, +[1-/4- AR)eos T, Jeoss } = 2,

where ﬂo-é-rsinvocosao-const is an integral which corresponds to
cyclic coordinate B. We consider that \¥l. System (5) permits the
following solutions:
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Sineys 0, 20,41 23)sinys crest, = 0; : (6)
o8 1,20, AL shfe[1li-32)s0s’y]ossdyn0;  (T)
COS Yor O, Singy s 0 (8)

Angle v between the Ox; axis of the natural rotation of the satel- /8
lite and the current radius vector of the satellite center of mass
relative to the center of mass ¢f the earth is determined by the re-
lationship

cos V- scasy, oase, ,

the angular velocity of the natural rotation is determined by the
equation

.,’.l-a.*&'ﬂﬁ cassly .
By using integral (4) and the motions of the satellite linearized in
the vicinity of the stationary solutions of the equations, both suf-

ficient and necessary conditions of stability of these solutions can
be obtained [4].

Solution (6)

The sufficient condition of stadbility is satisfied if

1-1‘0 .

The recessary conditions of stability are satisfied in the following
two regions:

A-78 .

1-§20, HARAQL R L2 2140

The condition of existence of solution (6) has the form
Ixggl<|8-32]
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The sufficient and necessary conditions of stability of the
solutions coincide and have the form

A=1>0, sina,¥0.

1 e s

To these conditions must be added the condition of existence of so-
lution (7)

[Aqyl$1.

Solution (8)

Let 70-1/2. The sufficient conditions of its stability have
the form
A,-1>0, xn°+3x-h>o.

and the necessary conditions of stablility are 79

(20,-((1R,83-4)9 O,
22,13+ 52-2)% 4(202,- 2R, +34-4) » 2

4, Satellite Motion Close to Stationary Rotation (62

We will investigate the forced 2% periodic solution of system
(2) which satisfies the dboundary conditions

WETj Wik, W = i e, (9)

by solving boundary value problem (2), (9). Ve investigate bdoundary
value prodblem (2), (9) by the Poincare small parameter method [5].

We use solution (6) as the generating solution. For the other gen-
erating solutions examined in this work, such an investigation is
carried out similarly. We use vector notation to shorten the writing
[{9). Ve introduce vector z-(wl,vz.n.y.c)T. and we define function




Fludi.gler 80 that system (2) and boundary conditions (9)
could be written in the form

2o Fli8,i, ky) (2")
and
- ' ¥/4
a(a%)-3(9) (5%)

respectively. Let lw.c.:.gw-n?;w.o.z.g). \'&({/,Qg”),-ﬂ(d.ﬂ,tﬁ),

Flu,0,i4y),Z(140,6,4))T  Dbe the solution or system (2') with the initial
conditions !'(o.a.i.kg)-n(nl. ¢ o ey ls) Boundary value problem
(2'), (9') can then be written

F(0i, by)a 8254 i, ky)-8(29,6,ky )2 0. (20)

We will consider relationship (10) as an equation rchtive toa. If
kg=0, this equation permits the solution l!(ll. .« o e ls) where

020, Gymcoayl, &= 5gMsinps, K ops, 800, (1))

Because of the analytical nature of the right side of system
(2') with respect to Z and kg, with sufficiently small kg and |2Z-3|,
function g(a,i,kg) analytically depends on kg, a in the vicinity of
point kg=0 and a=a. If {10

Jeart 19542 |40, (12)

according to the theorem of the implicit function, with sufficiently
s3all kg, Eq. (10) has the unique solution a=&(kg,i), which depends
analytically on kg and satisfies the condition £(0,1)=3. In this
case, boundary value problem (2'), (9') has the unique solution

gs 5(43(4.57. ‘4), | (13)

which depends analytically on kg in the vicinity of point kg=0 and
coincides at this point with stationary rotation (6) with a,=0.
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We will investigate solution (13) in the fcrm of an integral
power series of parameter kg

W20 2y We br..., Wty W)«. (14)
128t lyfplih-., oellysdydptio)s...

with 2% periodic coefficients with respect to u. The equations in
the variations for stationary solution a have the form

Aw,-a(/-ﬁmmm 20087, 4R ¢ [¥1-3)-(7-6)oesy, Jay,  (15)
aw, s-a{ﬁMn/,-a%M al,
-Qtﬂ l)’rdw;-.ﬁnfgld, Al =AWy r Shy; &Y.

The characteristic equation of system (15) is separated into the
equations p=0 and

Plrap’ese0, (16)

where Q= 72-GA-93/£A)silyy, EertR)-Iiked;. For determination of

the forced solution of system (2), we substitute series (14) in sys-

tem (2), and we equate the terms with the same powers of kg. We

obtain a series of systems, the general form of which is the following

W= 3(1-2)Sing, Wy o~ Ao88f Ry fB(7-2) - 7-68)eiY e # S c
W 2-3(1-2)S7p; W, e 3(r-A)eos Yok + Sy, an

'ak'.';' %,r’f;‘ WSzt Sy g , K ge 7 S0 te* S5

Here, S 1,k (4=1, . . . 5; k=1,2, . . .) are some functions VI 0 * * o /11

wl k-l’ L) [ 4 .’ ao’ L] L ] .’ “k 1’ u’ 1 0

=0, and system (17), to within

the designation of the variables with k-o, coincides with system (15).
In the solution of system (17), we will use the results of [6]. Let
the solution of system (17) be found up to k-1 inclusive. This solu-

tion depends on integyxation constant nk-l' The equation for nk is
separated out, and it can be integrated. Then,

10
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ac(")‘]"ﬁ;,(ﬂdf%-n: .
The condition of 2% p .riodicity of the function

f 8, (F)dt= 0 (18)

permits determination of the value of “ok-l' In particular, to find

function nltu), we have the equation

8, = §§- 24 Dsing; [l -hoeost-huh, sidp-thia A1
=[5 Fog vl Vs )Singfs Wl hyy 468y hrs)ooS o }.

According to Eq. (18), function nl(u) is 27 periodic if siny,=0 or

o 3 212103570 - Pof2-38im% (19)
o5, =3 2(1-A4V7¢ 35ii - 7o 35in%)

To within O(kg), the first condition corresponds to the motion of the
satellite in the orbital plane. From the second condition, we find
the region of existence of generating solution (6) in the plane
(sinzi, A). The boundaries of this region are determined by curves
Al(i), Az(i), which are assigned by the expressions

)2 g/ws/n’; -cass - Y3 )
)z doasids * *22/4-{7'&/,353 Dhnidi

The equality coszvo-o (eoszyo-l) is satisfied along the curve

2;(1) (A,(1)). The region within which the inequality O<cos®y <1
is satisfied is crosshatched in Fig. 2. Curves 11(1) and A, (1)
intersect at point P with coordinates

11

T
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sine ETacsl, 2ot A T g wase.

Subsequently in this section, we consider that Yo and consequently /12
R, are determined by Eq. (19).

Expansion of the following functions in a Fourier series is
subsequently required:

;tz‘m/ '*22 ¥ cos2nu) ’

Ly

%“:V__';”.‘L_/_? f - 4 Sinf2rer)e o

*4 J&AW/-ZZ 2 cos2rer) 5

et 2, = cast2n s
ﬂﬁ(.m_l 12X
XY IR Isink 2’3 cos 2. .

Here is introduced the notation

. Yi2ISET.

S/né

The expression for nl can now be written. It has the form

QupofE, -g';' s»énu—agg zf:'m/zn«g)u*ﬂ: ,
a#zjfzgigrfk%&@hhﬁpasfﬁiﬁh?#%%?dkuQQl
q’ - 2[ f‘/"l%&'lgz R @M .

= 1+38//7¢

The value of nlo will be determined below. By substituting the ex-
pression found for n (u) in the equations of system (17) for wl 1°
wz 10 Yy» @3 we obtain a syster of linear heterogeneous equations
with periodic free terms. The corresponding uniform equations coin-
cide with the equations of system (15), in which the equation AQ=0
should be excluded, AQ=0 should be set, and the variables should be

where

12
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ignated. We assume that Eq. (16) does not have K root of the
=k/=1 with any whole k, i.e.,

&
e i v 60 k=0 1,2, .. (20)

eterogeneous system in question then has the unique 2y periodic
ion "1,1(“)’ Wz.l(i), yl(u), ql(u). This solution can be found
F form of trigonometric series of the form

émmmgx;,-m; (21)

Eo can be shown that, upon satisfaction of condition (20), such
s exist and are unique. From the condition of 2y periodicity of

gon 2y(u), we find !Eﬁzggz An example of construction of the

1on in the form of trigonometric series in explicit form will be
nted in Section 6. The solution for arbitrary k is constructed
3imilar manner, if all solutions to some k-1 inclusive are found.

We £ind the values of A=A(sin®1) at which condition (12) is
ted. It can be shown that J=0 when and only when system (15)
ts a nontrivial solution which satisfies the boundary conditions

OWH2T)= W{0) AW T WGl 0) AU5J A0}, Ayt = AHO) 82 7 AR (D).

by writing out the general solution of system (15), we find that
aen and only when solution (16) has the root p=k/=I with some

'k. Thus, condition (12) is equivalent to condition (20). Cal-
ions have shown that condition (20) is violated at k=0 on the
.curve (Fig. 2). At k=1, condition (20) is violated on the res-
2 curves designated by the dashed lines. 1If k»>l, the resonance

3 pass through point p, but they lie outside the region of exist-
of generating solution a.

lcal Study of Satellite Motion Generated from Solution 562

?or arbitrary values of parameter kg, we construct solution (13)
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numerically, by solving boundary value prodlem (2), (9), and we in-
vestigate its dependence on parameters kg, A. The solution .of this -.
boundary value problem is reduced to solution of system (10). Here
and subsequently, svstem (10) is considered a system of equations which
defines the curve in space Re(t. kg) with A=gonst [7]. System (10)

was solved numerically by the method:of Newton, in which dboth a and

kg were refined at each step. For calculation of functions

gl(a, kg), !IS%t_!Bl, which are used in the method of Newton, system

(2) and the ayaiem in variations corresponding to it were integrated
in the interval O¢u¢2v. The solutions of boundary value problem (2),
(9) presented in Fig. 5 were found by this method. Figure 5 also 18
presents the dependence of 815 ¢ o o 'S on kg with A=const, i=wx/2.
It is easy to obtain the other curves by means of substitution (3).
Here and subsequently, the number beside the curve in the figures
designates the value of fixed parameter A. With i=g/2, the right
sides of the equations in system (2) are » periodic functions of the
true anomaly, which permitted the substitution 2w+x to be performed
in boundary conditions (9) and permitted restriction to the integra-
tion interval Ogugw.

For convenience, we will call this method of construction of
curves in space Rs(a. kg) extension by parameter kg. Three types of
solution of stationary rotation (6), obtained by extension by kg,
can be distinguished. In the interval 4/7<i<2/3, solution (13) is
extended right up to merger with the plane solution which describdbes
the motion of the axis of symmetry of the satellite in the ordital
plane. Branching of the solution within the region of its existence
does not occur. In the interval 2/3<i<8/11, solution (13) also is
extended right up to merger with the plane solution, but branching of
this solution within the region of its existence occurs. In the in-
terval 8/11<i<i/5, merger of solution (13) with the plane solution
does not occur. This solution "escapes" to the region of larger
values of kg. Interval 4/7<i<i/5 of existence of v periodic solutions
is broken down into the intervals indicated by points A=2/3 and i=8/11,
from which the resonance curves for k=1 oricinaté.

14
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Amplitude curves of the solutions obtained are presented in
Fig. 5. We understand amplitude here to be the quantity

b ey axwas(;, D), (22)

where 35, T are unit vectors along the 0z axis and the axis of sta-
tionary rotation of the satellite respectively. The position of the
latter in space is determined by relationships (19) and 00-0.

The stability of the solutions obtained was investigated in the
following manner. The system in variations along solution (13) which
corresponds to system (2) was integrated. Roots Pys ¢ ¢ s Pg of the
characteristic equation for the system in variations were calculated.
Degree of stability xs of the resulting periodic solution, which de- /15
termines the response speed of the system, was calculated by the
equation

j;=~j§£a‘z:¥rbqj

The condition x8>0(18k0) corresponds to a stable (unstable) solution.
Sections of the xs curves which xs>o are presented in Fig. 6 with
various A. The nature of the roots which determine ls changes at the
break points of the curves. The curves marked with hachures in Fig.
5 [sic] correspond to stable solutions.

We extend the periodic motions of the satellite plotted with
i=%/2 by parameter i for kg=kg®>0. It can be proved by the Poincare
small parameter method that, because of analytical nature of the right
gside of system (2) with respect to Z and i, with sufficiently small

fé-Tfe<l,fe-8/<<f | tunction g(a,i,kg) depends analytically on i, a
in the vicinity of point i=w/2, 3'20' kg=kg®. Here, Zo is solution
(13) with i=%/2, u=0, If

J=aetl i%—?#z 140,

according to the implicit function theorem, with sufficiently small
|1-v/2|, Eq. (10) has the unique solution

15
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210 k14 0), <, ), (23)

which depends analytically on 1 in the vicinity of point i=w/2 and
coincides at this point with solution (13) with i=w%/2, which was
constructed adbove. This same solution can be obtained by extension
of solution (13) by parameter kg with i=i%, This method of extension
of periodic solutions in the (i, kg) plane was describdbed in detail in
[8l.

Solution (23) was constructed numerically. The results of the
calculations, which were performed for kg=0.2 and several values of
A, are presented in Fig. 7. Curves of the initial values of phase
variables em and xs are represented here by the solid lines. The
curves of the tabulated values for the solutions which are not char-
acterized by rotation, but by oscillations of the satellite around
its axis of symmetry, are represented by the dashed lines. Such
solutions were constructed in [1]. Solution (23) exists right uwp to
the point of merger with the solution, the curves of which are desig-
nated by the dashed lines.

The explicit form of periodic motion at A=0.63, kg=0.2, 1=1,.37
is presented in Fig. 8. Curves of the phase variables, angle 6 and the
trace of the Oz axis on a unit sphere which surrounds point 0 are
presented here for 0¢ng2, n is the number of orbits. Angle 0 is de-
termined by the expression (see Eq. (22))

a_gaw’{ E;, -27

Where possible, the curves of the corresponding stationary solution 4;§
a are designated by dashed lines and the symbol (®)., The arrow on

the curve in the (a,y) plane indicates the direction of motion of the
trace of the Oz axis with increase in u. The points on the curve are

0.1 orbit apart. The values of Yo and 00 were determined from Eq.

(19) ana (6).

16
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5. Satellite Motion Close to Stationary Rotation gzz

By using the algorithm and notation of Section 4, we will seek
a solution of system (2) in the form of integer power series (1l4) of
parameter kg. As solution a of system (10) with kge=0, we select sta- ;
tionary rotation (7):

Gosinng, §o0, Gyu-0or, (R, 5ok, Gy ncs.  (20)

The equations in variations for the stationary solution selected have
the form

aw,sa/ﬁ.gmq'aw,--%%*am;zw.an, (25)
20220, 4= A2 -ad, S=2W; t4).

The characteristic equation of system of equations (25) is broken down
into the equation p=0 and

PI(3R-2) -3(1-2)8/r%, = 0. (26)

For determination of the forced solution of system (2), we substitute
series (14), where the first terms are determined by Eq. (24), in Eq.
(2), and we equate the terms for identical powers of kg. We obtain a
series of systems, the general form of vh;ch is the following

Wi e 23(1-Rosk, e + T
“:g""cgg-}‘ Wy v28cn, - Q,o?l,,
2, J{a,,,;.-‘!u—-.(,n;‘,, = Woethe# Tgn -

Here, Ti " (=1, . . ., 5) are some functions "1 02 ¢ ¢ *» wl K-1°

o o o Ggs o = o3 Bp g0 Uy Ti o 0. Similarly to the way it wal done
in Section 4, for determination of the constant value of o and con-
sequently, the value of cosa,, we write the equation for nl(u)

B,tu)= 4 [- G2 cossofh? sinfiy-2hy by, Siriont, thienl-po
Sty (10 gt g 08y (1) g )y )] (21)

17
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The conditicn of 2w periodicity of function @, (u)

ﬁ‘( d" ’ -ﬂ

is reduced to the equalities cos¢°-0 or

&, O leR B e e Sarr - 4) » 6R S (28)
(f-z)mnr' e 3577 £)-Jeas’.

The equality cosuo-o is satisfied with any permissidble A and 1. It
corresponds to orientation of the axis of symmetry of the satellite
along the velocity vector of its center of mass. Investigation of
this generating solution can be carried out within the framework of
another sequence of rotationsa, 8, Y, that presented in [1] for
example. With A>l, such a solution is stable. From the condition
Oscosaz<1, we find the region of existence of generating solution

a (24) determined by equality (28) 4in the (sinai, A) plane. The
boundaries of the region are fixed by the Xl(i) Xé(i) curves, which
are determired by the expressions

e dsi [ 2T 3SinES I -
Al if.cssr;’: %ﬁs:@_;-fr/ » -l Vs 35im% 13801

The equality coazaoﬂo (cos ao-l) is fulfilled along the X (1) (Y (1))
curve. The region bounded by the f‘(i), X,(1) curves 1is crosshatched
in Fig. 3. The X (1) and X (1) curves 1ntersect at point p, wich co-
ordinates i’ s /y, »ey x ﬂ 675,

By using the expansion of the functions included in the right
side of Eq. (27) in a Fourier series, we write the solution of Eq.

(27) in the form
7, [_mid 2,,‘,,4 ! ‘,',Yg”a v
82/()=c; &, Zr " 0 2n¢ /! ’

where

18
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&= 375}%0&4)’%&%%%}“

&= lm%gd.:ﬂg
For determination or.tigncuanswl.l. wa.l. Y1509, We obtain a sys-
tem of linear heterogeneous equations with periodic free terms. The
correspond}ng uniform equations coincide with Eq. (25), where the
equation AQ=0 should be excluded and AQ=0 should be placed in the

remaining equations. If Eq. (26) does not have the root p=kv/-1 at
any integer k, i.e.,

k¥-/32-2)k%-3(1-2) sin’ # O, (29)

the resulting system of heterogeneous equations then has the unique £;§
2x periodic solution "1,1‘“)' “2.1(“)' yl(u). °1(u)' It can be found

in the form of a trigonometric series of the type of Eq. (21). A

series for arbitrary k is constructed in a similar ranner, 1if all
solutions to some k-1 inclusive are found.

The calculations showed that condition (29) is violated at k=0
(k=1) on the fé(i) (fi(i)) curve. If lol, the rescnance curves pass
through point p and lie outside the region of existence of generating
solution a (24).

For arbitrary values of parameter kg, construction of 2v periodic
motions of the satellite is reduced to numerical solution of system
(10) and extension by kg of the solution constructed in form (1l4),
which is close to stationary rotation (24). In the case of a polar
orbit, the results of extension of solution (13) by kg, in the form
of curves of functions 835 ¢+ ¢ o ‘5 with A=const, are presented in
Fig. 9. The initial conditions of the solutions obtained from the
solutions found by transformation (3) can be plotted by symmetrical
representation of the curves (Fig. 9) relative to the corresponding
axes.

Investigation of the stability showed that all the solutions con-
19
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structed are unstable. The amplitude characteristics are presented
in Pig. 10. They were determined by Eq. (22), where the position ¥
is determined by relationships (28):and Yo"*/2.

6, Satellite Motion Close to Stationary Rotation (8)

By using the algorithm and notation of Section 4, we szek solu-
tion (13) of system (2), generated from stationary solution (8), in
the form of series (li). We select stationary rotation (8) as solu-
tion a of system (10) with kg=0:

522828 &40,, 5,74, & =2 (30)

The value of no is subject to determination. The equations in varis-
tions for the stationary solution selected have the form

AW, 3-[1+022,) aW; +8(1-3) ¢y,
AW (10 2,)8 Wy, 45250, (31)
A/’ =dW)-ad, Je -4%-,4/

The characteristic equation of system (31) is broken down into the
equations p=0 and

1010, r 30-E (A0, 4- Y100t 1) =0 (32)

For determination of the coefficients of series (14), we obtain a /19
series of systems, the general form of which is easily described from

Eq. (17), (31). The cor.dition of existence of a 2% periodic solution

of the equation ’

dr(v)--ﬂ"%,wn’{ﬂa)m‘: S| (33)

is reduced to the expression | _
~ZrS5n'e’

8, == s -1+ 3%

20
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Thesve solution of Eq. (33) can be written in the form

Lo el £ 4 i

If Eq. (32) does not have the root p-kJ:T at any integer k, i.e., \

K kAP A- BB 0200 keoggz, OV

- “==men the linear system relative tovariables wl.k' Wz.k. Yo Opo with
T=====piodic free terms, has a unique 2« periodic solution. Por k=1, we
‘<Tirite this solution in the following way '

W,/ -z [&-(2me 1)ah]sin(2n+ Ju,

Wat . Z (6 (2n09)-als Jeoa(2re )ity

’;-”é;agd?qaavvaka ¢4ﬂﬁé§“lwﬂihwﬁh"

o 4, o & [2neif 220 10, B0A 048],
ah &y [2l2ne1f+ (20102 2)12(28,11)] ,

¢ o &ne?
B & s oy oy v T T

From the condition of existence of 2n periodic function 92(“)'
"T=he equation for determination of which is not presented here be-
-—~zause of the cumbersome form, we obtain 910-0. The solution can be
—constructed in the same manner, in the form of series for arbitrary

<, i1f all solutions up to k-1 inclusive are known.

Thus, in the two preceding sections, investigation with ardbitrary
kg of solution (13) generated from Eq. (30) was reduced to numerical
“.solution of system (10) with Asconst. The calculation results are pre-
gented in Fig. 11, in the form of 8, curves for several values of A
"T4ex/2. Condition (34) is violated in the curves presented in Pig. 12,

21 §
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(A=0.63, kg=0.2, 1=1,37)
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