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equipped with a spherical magnetic damper . • 	The investigation
was condudted on the assumption that a strong magnet was in-

, stalled on the damper float. 	 Stationary rotations of the
satellite around the •axis of symmetry 'are selected as-the
generat,ing . solutions.	 The solutions . .are constructed in the
form of.power series of the small parameter, and they are ex-
tended numerically to the region of random values.cf the damp-
ing coefficient.	 The stability .of the resulting solutions *was
investigated,
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ANNOTATION

Close to stationary periodic motions of an axisymmetric satel-
lite in a circular orbit are considered. The satellite was equipped
with a spherical magnetic damper. The investigation was conducted
on the assumption that a strong magnet was installed on the damper
float. Stationary rotations of the satellite around the axis of sym-
metry are selected as the generating solutions. The solutions are
constructed in the form of power series of the small parameter, and
they are extended numerically to the region of random values of the
damping coefficient. The stability of the resulting solutions was
investigated.
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PERIODIC MOTIONS (CLOSE TO STATIONARY) OF AN AXISYMMETRIC
SATELLITE WITH MAGNETIC DARING

M.Yu. Ovohinnikov

1. Introduction

Periodic motions of an axisymmetric satellite equipped with a

spherical magnetic damper, in orbits of random declination, were in-

vestigated in [1]. With A>4/7 (A_is the ratio of the axial moment of

Inertia of the satellite to its equatorial moment of inertia), in-

stability of motion of-the satellite in the plane of the polar orbit

was found with respect to spatial perturbations. An example of a

transition process was presented there which resulted in stable mo-

tion, which was characterised by deviation of-,the axis of symmetry of

the satellite from the plane of the polar orbit by "small tremors"

about this position and rotation of the satellite around the axis,

with a period close to the period of rotation of its center of mass

around the orbit. It is shown in the present study that, with a mag-

netic damper aboard the satellite, its stationary rotations change to

forced periodic motions. In the (ain2i, A) plane (i is the declina-

tion of the orbit of the center of mass of the satellite to the plane

of the equator), regions of existence of stationary rotations of the

satellite are constructed, which are selected as generating motions.

Motions of the satellite which are close to stationary rotations were

constructed in the form of a power series of the small parameter. The

ratio of the characteristic values of the damping and gravitational

moments acting on the satellite was used as the small parameter. The

orbit of the center of mass of the satellite is considered circular.

The geomagnetic field is approximated by the field of a dipole which

coincides with the axis of rotation of-the earth. The resulting mo-

tions can be used as nominal (operating) motions of an axisymmetric

*Numbers in the margin indicate pagination In Me foreign text.
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satellite with A'41.

The stationary rotational motions of an axisymmstrie satellite

with model damping were constructed and studied in E23.

V.A. 3arychev and Yu.A. 3adov are thanked for attention to the
work.

2. Equations of Motion and Formulation of the Problem -

We-consider that the satellite is a solid body, the moments of

inertia of the damper float are negligibly small compared with the

moments of inertia of the satellite, and the center of mass of the

float is fixed relative to the satellite. The motion of the float

about its center of mass then does not affect the inertial character-

istics of the satellite, and the float is replaced by an equivalent /4

point mass in their determination.

To write the equations of motion of the satellite and float

relative to the center of mass, we introduce the following clock-

wise rectangular coordinate systems:

Oxix2x3 bound to the satellite coordinate system; its

axes are the principal central axes of inertia of the satellite;

point 0 is the center of mass of the satellite;

OX1X2X3 is the orbital coordinate system; the OX  axis is

directed along the radius vector of point 0 relative to the center of

mass of the earth; the OX1 axis coincides with the transversal, and

the 0X2 axis coincides with the normal to the plane of the orbit; fa

is the unit vector of the 0X2 axis;

OZIZ2Z 3 is the magnetic coordinate system; the OZ  axis is

directed along vector A of the geomagnetic field strength at point 0;

unit vectors

2



r	 ORIMNAL PANE 15

OF POOR QUALITY

if"J 

determine the corresponding axes of the magnetic coordinate system.

We assign the position of the Oxlx2x3 coordinate system relative

to the orbital coordinate system by means of angles a, S, Y (Fig. 1).

The transition matrix and its elements have the form

X. Xj X
X 4,. ifs 44
Xs 9J  PA 4A R

Xd OJ, OAR Cis
O',r =WSOCOP",
au = -casd OF
OX0 s 5104C,

q^y :c+vad'^fi^ ^sr l̂ss^la^jt,

=s'Mya^,..^a^^,^rsr,.,^.
ffis Will 4 set.

We assign the position of vector I of the magnetic moment of the

magnet installed in the float relative to the magnetic coordinate & ,s-

tem by means of angles a l and 01 . The corresponding directing cosines

have the form

c, .eosd,eos^8, ea= S(OA,.,	 eos,* .

Let arbitrary vector q be assigned by projections g l ,g2 ,q 3 on

the axes of any of the coordinate systems introduced, Ox1x2x3 for

example. We will then write q=(g l,g2 ,q 3 )x, etc. As needed, we will

9maley summation ever the recurrent indices and free indices. The
indices run through the values 1, 2 and 3.

LE

the field of a magnetic

s axis of which is directed

of vector A at point o on
to the quantity HV=um/p3,

We approximate the geomagnetic field by

dipole placed at the center of the earth, thi

along its axis of rotation. The projections

the orbital coordinate system axes, referred

have the form

,y, s ^riis'cosN, Nt:^^ ^ y^ _ -Z s3iss i/ ►̂^,

3



ORIGINAL PAGE 1S

where umn8.06 . 10^5 0e•om3

	

is the magnet moment 	 dipole, p is
the radius of the satellite orbit, S is its declination to the plane
of the equator, and u is the argument of the latitude. we assign the

position of the magnetic coordinate system relative to the orbital

coordinate system by means of the transition matrix

4.7 Z.1 Zj h0 :s' yam, /-, Iltor

X, kr he be
Xs -'ti, hss yip ytisr^t 

^ ^i• 	•
X; hi, has h" h„—aofw' 4-	 , i s 0

where	 H= ltas+0l^iLY ^^ N,r^ G- JAVA d.

Of the external moments which act on the satellite, we will take

only the gravitational moment into account. Of the external moments

which act on the damper float, we will take into account only the mag-

netic moment. Me interaction of the satellite and the float is due

to eddy currents induced in the outer shell of the damper by the mag-

netic field of the float. The hypothesis was introduced above that

the moments of inertia of the float are significantly less than the

moments of inertia of the satellite. Therefore, with the exception of

the small time interval after freeing the float, its motion is de-

termined by the dynamic equilibrium of the magnetic moment and the

moment of the induced eddy currents 131. The motion of the axisym-

metric satellite and the damper float are described by the system of

equations [1]

-A* co) 4W AAA -4s4r)Jlir1,

12 = +f/ajj (/fats - ^rc•J,
ts WA

4



As C are the equatorial and axial moments of inertia of the satellite,

460 is the angular velocity of orbital motion of the satellite center

of mass, k4 is the damping coefficient, Wl ,W2 ,A are the projections,
related to w., of the absolute angular velocity of the satellite on

the Rezal' axes, which coincide with the axes of coordinate system

Ox1x2x3 at 0•0. The 0x3 axis is the axis of symmetry of the satel-

lite. The point is designated by differentiation over u. The deriva-

tion of system of Eq. ( 1) is described in [1], where another sequence
of flight angles a. B, y is introduced.

Let I/E« I. The motion of the satellite is then [1] described to
within 0 ( I/E) by the following equations:

	

..:; ..^.,cos.c	 w,	 (2)

	

w,ti,i.	 Jw,-,	 siWLaMa.k^^Q^fij,►tW.^'•

Wj -easy!

Isere ,

	

	 /
Qs -/,&• wit*vaW#h&&i'y.+w,w-A*Mt.. )

We will next investigate system (2). Angle 8 8 which describes the
rotation of the satellite around its axis of symmetry, is determined

by the equation

5
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System of Bq. (2) with 2w periodic clockwise segments with respect

to u contains three parameters i, a, kg. The latter two satisfy the

inequalities 0<A42, kg >0. Equation-- ( 2) do- not change their form In
the following substitutions of the phase variables and parameter is

J2	 i -X

li-P.-I
i -Ai

-W
j -wi, w -wj,r^.-r.^-- ^^

In accordance with this, it is sufficient to investigate the solu-

tions of Eq. (2) in the interval 04it v/2.

With kg=0, system (2) permits solutions which correspond to

stationary rotations of the satellite. With kg>0 8 we obtained and

Investigate the 2w periodic with respect to u solutions of system

(2) generated from them.

3. Stationary Rotations of a Satellite with kgn0

If kg=0, system (2) has the generalized energy integral

T, s	 ski ^` W,av,^s	 v, a—w as- (4)

and stationary solutions Y=Y0 , a•a0 (YO , a0=const), which are de-

termined by the system of equations

where 110= 0 +-sinYOcosa
O=const is an integral which corresponds to

cyclic coordinate 0. We consider that apfl. System (5) permits the

following solutions:

6
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Angle v between the Ox  axis of the natural rotation of the satel-	 L
lite and the current radius vector of the satellite center of mass

relative to the center of mass of the earth is determined by the re-

lationship

"N VP- a4 t^ dwa. ,

the angular velocity of the natural rotation is determined by the

equation

Jh • 4 .0 NMI; 40M..

By using integral ( 4) and the motions of the satellite linearized in

the vicinity of the stationary solutions of the equations, both suf-

ficient and necessary conditions of stability of these solutions can

be obtained [4].

Solution (6)

The sufficient condi^ion of stability is satisfied If.

1-1<0.

The necessary conditions of stability are satisfied in the following

two regions:

2-1s 0.

The condition of existence of solution (6) has the form

I X% Id.14- 311
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The sufficient and necessary conditions of stability of the
solutions coincide and have the fora

A-1>0 0 61"OfO.

To these editions must be added the condition of existence of so-
lution (7)

11001,41.

Solution (8)

Let Yost/2. The sufficient conditions of its stability have

the form

AnCl),09 AQO♦3A-4>0,

and the necessary conditions of stability are
	 d

(•Z12,-1Jer^j.^•?^^i yl':^'tX^r f.^-if sO.

4. Satellite Motion Close to Stationary Rotation (6)

We will investigate the forced 2* periodic solutions of system
(2) which satisfies the boundary conditions

V1ft1A?JP"'	 +^+al^^r^.	 (9)

by solving boundary value problem (2) 1, (9). We investigate boundary

value problem (2) 9 (9) by the Foincare small parameter method [5]•
We use solution (6) as the generating solution. For the other gen-
erating solutions examined in this work, such an investigation is
carried out similarly. We use vector notation to shorten the writing

[9]• We introduce vector Z•(Wl ,W2 ,Q,Y,a)T, and we define function

8
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.0 (Mi . s . ve 0	 so that system (2) and boundary conditions t 9 ^

could be written in the form

s airfy. a,i"O
AY)
	 t2'^

and	 ^^-sl^•D
t9')

respectively. Let f (y.o.s'. A^) • tty,q.s .,^ )^(tj,4yoi,,^^

pjt4oslyj,Jjgv, 4)) 	 be the solution of system ( 2 1 ) with the initial
conditions $(O,a,i,kg )=as(al,	 ., a5 )T . Boundary value problem
(2 1 ), (9 1 ) can then be written

*.)a11ZT,4,i, 	 (10)

We will consider relationship ( 10) as an equation relative to a. If
kg•0 1 this equation permits the solution 11(—a,'#., a5 )T where

too. ji'041,44's-A-ca	, Ora 0.	 (11)

Because of the analytical nature of the right side of system

(2 1 ) with respect to Z and kg, with sufficiently small kg and JZ -11,

function g(a,i,kg) analytically depends on kg, a in the vicinity of

point kg•O and. an!. If

according to the theorem of the implicit function, with sufficiently

small kg, Eq. ( 10) has the unique solution a•I(kg ,i), which depends

analytically on kg and satisfies the condition J(0,1)=a. In this

case, boundary value problem (2 2 ) 9 (9 1 ) has the unique solution

which depends analytically on kg in the vicinity of point kg•0 and

coincides at this point with stationary rotation (6) with oO.0.

9
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we will In"at1sate solution (13) In the f"rx of- an Integral

power series of parameter kg

with 2w periodic coefficients with respect to u. The equations In

the variations for stationary solution i have the form

A

A V;,1j	A Wy
A-dxP, JjxdWrj9Yj;A4

The characteristic equation of system (15) is separated into the

equations p-0 and

where &x;LOj_ s2lo-As4l,	
For determination of

the forced solution of system (2), we substitute series (14) In sys-

tem (2). and we equate the terms with the same powers of kg. We

obtain a series of systems, the general form of which is the following

(17)
'*C

Korea Si sk Unls	 5; kwis2a . . .) are some functions Wl' Of 0 0 so /11

W	 0 ** a	
a 
u s 3 so. and system (17). tt within

lak-1 11 0	
9 Of	 %-is	 Ito

the designation of the variables with k wO. coincides with system (15).

In the solution of system (17). we will use the results of [6]. Lot

the solution of system M) be found up to k-1 Inclusive. This solu-

tion depends on integration constant "k-l' The equation for Ok
 in

separated outs and it can be Integrated. Then,

10
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The condition of 2 ,w p.riodicity of the function

permits determination of the value of a0k_1 • In particular, to find

function a1(u), we have the equation

hi

_^u^s ^in,t^"^i^)d►„d•, fj^vJ /^ ^ ^"^'^aot^d',^ .

According to Eq. (18), function 0 1(u) is 2w periodic if sinY O=0 or

2(! .t)(9 ll3sfifo - ^^35%A ►ssJ

To within 0(kg), the first condition corresponds to the motion of the

satellite in the orbital plane. From the second condition, we find

the region of existence of generating solution (6) in the plane

(sin 2i, A). The boundaries of this region are determined by curves

A 1 (I),, X2 (
I), which are assigned by the expressions

 d+ as	Wihdfr^s ^'h►̂ fs

The equality cos2Y0=0 (cos 2Y0al) is satisfied along the curve

A1 (i) (A 2 (I)). 
The region within which the inequality 0<cos2Y0<1

Is satisfied is crosshatched in Fig. 2. Curves X 1(1) and A2 (1)

Intersect at point P with coordinates

11
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Subsequently in this section, we consider that YO and consequently 	 /_2

no are determined by Eq. (19).

Expansion of the following functions in a Fourier series is

subsequently required:

f'.	 A'yam= #M&O	 ar eO•s 2na ,

a
0:f"^SJnf2r^ff)^^

1^S^ni 103S% s ^..e

N s3dv/s^s' ffdsi^' 1^3Si/^s -1-2^ ar A 2na) s

dig	
we
 209

!^' Y'Si//ft L Y

*3dt%^ .3	 xL'cas 2na. .

Here is introduced the notation

x= 
Ŝ fns

The expression for 01 can now be written. It has the form

where	
12JAYA	 2M

The value of 010 will be determined below. By substituting the ex-

pression found for A1 (u) in the equations of system (17) for W1,1'

w2,1' Y1, 
019 we obtain a system of linear heterogeneous equations

with periodic free terms. The corresponding uniform equations coin-

cide with the equations of system (15), in which the equation A& O

should be excluded, AnwO should be set, and the variables should be

i

12
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nated. We assume that Eq. (16) does not have a root of the

k -1 with
i

any whole k, i.e.,

erogeneous system in question then has the unique 2 T periodic /I3
n W101 (u), W2,1(1), yl(u), al(u). This solution can be found

form of trigonometric series of the form

4VWs 	 (21)

Aso can be shown that, upon satisfaction of condition (20), such

s exist and are unique. From the condition of 2 1 periodicity of

	

lon 22 (u), we find	 An example of construction of the

ton in the form of trigonometric series in explicit form will be

kited in Section 6. The solution for arbitrary k is constructed

similar manner, if all solutions to some k-1 inclusive are found.

ate find the values of A-a(sin2i) at which condition (12) is

.ed. It can be shown that J-0 when and only when system (15)

is a nontrivial solution which satisfies the boundary conditions

	

JW7sJ3r1,P)A 	 Kl4#	 AO144"x4f4A4.GAO( l-

by writing out the general solution of system (15), we find that

en and only when solution (16) has the root p-k/=T with sone

k. Thus, condition (12) is equivalent to condition (20). Cal-

tons have shown that condition (20) is violated at k-0 on the

.curve (Fig. 2). At k-1, condition (20) is violated on the res-

t curves designated by the dashed lines. If k>1 0 the resonance

3 pass through point p, but they lie outside the region of exist-

Df generating solution a.

Lcal Study of Satellite Motion generated from Solution (6)

?or arbitrary values of parameter kg, we construct solution (13)

13
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numerically, by solving boundary value problem (2), (9), and.we in=
castigate its dependence on parameters kg, A. The solution.of this
boundary value problem is reduced to solution of system (10). Here
and subsequently, system (10) is considered a system of equations which
defines the curve in space R 6(as kg) with leconst [73• Systeml10)
was solved numerically by the method:df Newton, in which both a and
kg were refined at each step. For calculation of functions

OL D ka)a a as	 , which are used in the method of Newton, system

(2) and the system in ,.variations corresponding to it were integrated

in the interval O4u42w. The solutions of boundary value problem (2),

(9) presented in Fig. 5 were found by this method. Figure 5 also

presents the dependence of a l , . . as a5 on kg with A•const, law/2.
It is easy to obtain the other curves by means of substitution (3).

Here and subsequently, the number beside the curve in the figures

designates the value of fixed parameter A. With law/2 8 the right

sides of the equations in system (2) are w periodic functions of the

true anomaly, which permitted the substitution 2w*w to be performed

in boundary conditions (9) and permitted restriction to the Integra-

tion interval 04 u¢w.

For convenience, we will call this method of construction of

curves in space R6 (a, kg) extension by parameter kg. Three types of

solution of stationary rotation (6), obtained by extension by kg,

can be distinguished. In the interval 4/T<X<2/3, solution (13) is

extended right up to merger with the plane solution which describes

the motion of the axis of symmetry of the satellite in the orbital

plane. Branching of the solution within the region of its existence

does not occur. In the interval 2/3<1<8/11, solution (13) also is

extended right up to merger with the plane solution, but branching of

this solution within the region of its existence occurs. In the in-

terval 8/il<X<4/5, merger of solution (13) with the plane solution

does not occur. This solution "escapes" to the region of larger

values of kg. Interval 4/70<4/5 of existence of * periodic solutions

Is broken down into the intervals indicated by points X •2/3 and X•8/11,

from which the resonance curves for k-1 originate.

14
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Amplitude curves of the solutions obtained are presented in

Fig. 5. We understand amplitude here to be the quantity

where ez , rr are unit vectors along the Oz axis and the axis of sta-

tionary rotation of the satellite respectively. The position of the

latter in space is determined by relationships (19) and a0=0.

The stability of the solutions obtained was investigated in the

following manner. The system in variations along solution (13) which
corresponds to system (2) was integrated. Roots p l , . . ., 

0
5 of the

characteristic equation for the system in variations were calculated.

Degree of stability a s of the resulting periodic solution, which de-

termines the response speed of the system, was calculated by the

equation
.^3s = P, s /,p l

The condition a s>0(1a40) corresponds to a stable (unstable) solution.

Sections of the a s curves which X 8>0 are presented in Fig. 6 with

various X. The nature of the roots which determine a s changes at the

break points of the curves. The curves marked with hachures in Fig.

5 [sic] correspond to stable solutions.

We extend the periodic motions of the satellite plotted with

i=w/2 by parameter i for kg=kg*>0. It can be proved by the Poineare

small parameter method that, because of analytical nature of the right

side of system (2) with respect to Z and i, with sufficiently small

function g(a.,i,kg) depends analytically on i, a
'	 in the vicinity of point i nw/2, a=G0, kg=kg*. Here, Z 0 is solution

(13) with i=t/2, u=0. If

Pralw/	
041	 Is

according to the implicit function theorem, with sufficiently small

11-w/21 0 Eq. (10) has the unique solution

15
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which depends analytically on i in the vicinity of point i• */2 and°;

coincides at this point with solution (13) with l aw/2, which was

constructed above. This same solution can be obtained by extension

of solution (13) by parameter kg with i •if . This method of extension

of periodic solutions in the (i, kg) plane was described in 4etail in

C8].

Solution (23) was constructed numerically. The results of the

calculations, which were performed for kg=0.2 and several values of

A. are presented in Fig. 7. Curves of the initial values of phase

variables 8m and As are represented here by the solid lines. The

curves of the tabulated values for the solutions which are not char-

acterised by rotation, but by oscillations of the satellite around

Its axis of symmetry, are represented by the dashed lines. Such

solutions were constructed in [1]. Solution (23) exists right up to

the point of merger with the solution, the curves of which are desig-

nated by the dashed lines.

The explicit form of periodic motion at A=0.63, kgo0.2 0 1.1.37

is presented in Fig. 8. Curves of the phase variables, angle 0 and the

trace of the Oz axis on a unit sphere which surrounds point 0 are

presented here for 04n%<2, n is the number of orbits. Angle 0 is de-

termined by the expression (see Eq. (22))

o'=aza Mt14.1 P.

Where possible, the curves of the corresponding stationary solution LA

Z are designated by dashed lines and the symbol ( 0 ). The arrow on

the curve in the (a,y) plane indicates the direction of motion of the

trace of the Oz axis with increase in u. The points on the curve are

0.1 orbit apart. The values of y. and 00 were determined from Eq.

(19) and (6).
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5. Satellite Mtion Close to Stationary Rotation (7)

By using the algorithm and notation of Section 4, we will seek
a solution of system (2) in the form of integer power series (14) of
parameter kg. As solution a of system (10) with kg•0, we select ata-
tionary rotation (7):

4JR-4ft4 as Qr v?'A, $ssd4.	 (24)

The equations in variations for the stationary solution selected have

the form

d14_4*2)=k ; dWj =-0 dW- '2&&WPAA (25)

The characteristic equation of system of equations *_(25) is broken down

into the equation p-0 and

(26)

For determination of the forced solution of system (2), we substitute

series (14)s where the first terms are determined by Eq. (24) s in Eq.

(2), and we equate the terms for identical powers of kg. We obtain a

series of systems, the general form of which is the following

►^=,t = — COSeI, ^3̂i,r ^.^^/laCi ' ^Ac ♦ ri,c ,
W

Here, Ti k (1•1 9 . . ., 5) are some functions Wl ,,
 
0' ' ' '' Wl k-1'

-0. Similarly to 	 way it was done

In Section 4, for determination of the constant value of 00 and con-

sequently, the value of cosmos we write the equation for 01(u)

12, (^): ^ j ^ aosel^h^ Svn^ ?.//^„fis,.^i^as^ f^`^K^
s'n^t^^^vs"fiu'a3"^m^" '^•( am *w.i AiAO •	

(27)

4,^Sir% „he'd

,o''t fi.?-^)p's-3(>-^t)i	 s o.

17
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The condition of 2w periodicity of function 01(u)

^T,^lt1dl:O

is reduced to the equalities cosa0.0 or
	 az

The equality cosm 0-0 is satisfied with any permissible a and I. It

corresponds to orientation of the axis of symmetry of the satellite

along the velocity vector of its center of mass. Investigation of

this generating solution can be carried out within the framework of

another sequence of rotations as g, y a that presented in [1] for

example. With a>l, such a solution is stable. From the condition

04coso24 1, we find the region of existence of generating solution

a (24) determined by equality (28) in the (sin 
21 0 a) plane. The

boundaries o f the region are fixed by the T► 1(1), T► 2 (1) curves, which
are determined by the expressions

" ^' I ! ̂ i^	 ' n 6^r1' ..1 ^ ŝ r3s/^ r̂3si^^ 1.

The equality c08 2a0-0 (co82a0-1) is fulfilled along the Tl(i) (Yi))

curve. The region bounded by the 11 (i), T1 2 (i) curves is crosshatched

In Fig. 3. The 11 (i) and Ti 2 (i) curves intersect at point F. with co-

ordinates	 z O, 61-s

'^ s ! 1	 I^r	 I	 r !	 •

By using the expansion of the functions included in the right

side of Eq. (27) in a Fourier series, we-write the solution of Eq.

(27) in the form

r A), - Wf A X -, fl— VM'& IWO f5of

where

18
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„i s l^rnlel^ 1^	 d.^i^ '

For determination of . tunations W1,1' W2,1' Y It a If we obtain a eye-
tem of linear heterogeneous equations with periodic free terms. The

corresponding uniform equations coincide with Eq. (25), where the

equation Ai sO should be excluded and a0=0 should be placed in the

remaining equations. If Eq. (26) does not have the root p=k 3-f at
any integer k, i.e.,

the resulting system of heterogeneous equations then has the unique /18
2* periodic solution 

W1 9 1(u) ' W2,1(u), Y 1 (u), a l (u). It can be found

In the form of a trigonometric series of the type of Eq. (21). A

series for arbitrary k is constructed in a similar canner, if all

solutions to some k-1 inclusive are found.

The calculations showed that condition (29) is violated at k•0

(knl) on the 1*2 (1) (TM) curve. If k> 1, the resonance curves pass

through point p and lie outside the region of existence of generating

solution a (24).

For arbitrary values of parameter kg, construction of 2u periodic

motions of the satellite is reduced to numerical solution of system

(10) and extension by kg of the solution constructed in form (14),

which is close to stationary rotation (24). In the case of a polar

orbit, the results of extension of solution (13) by kg, in the form

of curves of functions a l , . . ., It with Asconst, are presented in

Fig. 9. The initial conditions of the solutions obtained from the

solutions found by transformation (3) can be plotted by symmetrical

representation of the curves (Fig. 9) relative to the corresponding

axes.

Investigation of the stability showed that all the solutions con-

19
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strutted are unstable. The amplitude characteristics are presented

In Fig. 10. They were determined by Eq. (22), where the position r

Is determined by relationships (28)-and Y0• */2.

6. Satellite Motion Close to Stationary► Rotation 8

By using the algorithm and notation of Section 4, we sock solu-

tion (13) of system (2), generated from stationary solution (8), in

the form of series (14). We select stationary rotation (8) as solu-

tion a of system (10) with kg n0:

(30)

The value of B0 is subject to determination. The equations in varia-

tions for the stationary solution selected have the form

d W s o,'?12,) d W J (31)

Al : d W/ -df( , d,. = dW ra/!

The characteristic equation of system (31) is broken down into the

equations p•0 and

O'•1(.2S2,+ff r3.^ c^f(.?1?,,.y-./.tsT,,i^^'^	 (32)

For determination of the coefficients of series (14), we obtain a

series of systems, the general form of which is easily described from

Eq. (17), (31). The condition of existence of a 2w periodic solution

of the equation

Is reduced to the expression

s —
!f

~, `^ ^s sg 'fie •^• s Qr' fj, ^j ^Q
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lie solution of Eq. (33) can be written in the form

J ka-vA -	 Ai

If Eq. (32) does not have the root p uki11 at any integer k, i.e.,

man the linear system relative to variables wl k' W2 k' Yk' °k' with
riodic tree terms, has a unique 2u periodic solution. For k•1, we

this solution in the following way

``ire,	 ^'. f^lZn.^^.^^.,x^^,•^.^^,•y-^1,

goo'

From the condition of existence of 2n periodic function n2(u),

-"'ne equation for determination of which is not presented here be.
cruse of the cumbersome form, we obtain n 10n0. The solution can be

--^.instructed in the same manner, in the Form of series for arbitrary

.:, if all solutions up to k-1 inclusive are known.

Thus, in the two preceding sections, investigation with arbitrary

- kg of solution (13) generated from Eq. (30) was reduced to numerical

solution of system ( 10) with Anconst. The calculation results are pre

- :aentsd in Fig. il, in the form of a3 curves for several values of A an

i•w/2. Condition (34) is violated in the curves presented in Fig. 12.
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Fig. 8. (As0.63, kg=0.2 9 inI.37)
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