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NOMENCLATURE

A
	

area, or half the length of the minor axis of the coolant
hole exit area

B
	

half the length of the major axis of the coolant hole
exit area

C 

	
specific heat at constant pressure

Cf
	

friction coefficient (Appendix A)

C
	

tunnel blockage factor

do	 coolant hole diameter

D
	

cylinder diameter, or coolant hole diameter (Appendix B)

Ec
	

Eckert number, V^
2
/cp(TW - Tw)

f
	

friction factor

Fs	 surface force due to friction

h
	

local heat transfer coefficient

I
	

momentum flux ratio (a c Vc2 ) /( pa, V„2)

k
	

thermal conductivity

K
	

roughness height

KS	 sand grain roughness

L
	

length of coolant hole

m
	

mass flow rate

M
	

blowing ratio (p c Vc )/(p. V.)

Ma
	

Mach number

Nu
	

Nusselt number, hD/k

P
	

pressure, or spacing of rows of film coolant holes

Pr
	

Prandtl number, ucp/k
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NOMENCLATURE (Cont'd)

q11 heat flux

Re Reynolds number based on mean film temperature

Re Reynolds number based on freestream density and film
viscosity, P. VWD/uf

R gas constant

S coolant hole center-to-center spacing along a row of
holes

St Stanton number, q"/(pcpV).. (TW - Tw) - h /(pcpV)m

SNR Stanton Number Reduction, 1 - StFC/Sto

STR Stanton Number Ratio, StFC/Sto

t time dependent component of temperature

T temperature, or time averaged temperature

u time dependent component of velocity

V velocity, or time averaged velocity

X di sta;;ce in streamwi se direction downstream of
coolant holes

x+ dimensionless distance parameter, (L/D)/(RePr)

y vertical distance

z spanwise or lateral distance along the surface, normal
to the flow direction

GREEK

a coolant hole angle measured along surface relative
to the x-axis, or a parameter in coolant mass flow
distribution (Appendix A)

s	 coolant injection angle measured from the surface
tangent
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NOMENCLATURE (Cont'd)

GREEK (cont'd)

Y	 specific heat ratio, cp/cv

S	 boundary layer displacement thickness

property exponent (i.e., kuTc)

e	 angular position along a cylinder relative to stagnation,
or dimensionless temperature

T	 T•
ac	dimensionless coolant temperature, fi--

w.nom TO

e i	angular position of row of coolant holes relative to
stagnation line

N	 dynamic viscosity

P	 density

SUBSCRIPTS

AVG	 spanwise averaged

b	 bulk temperature

C	 coolant condition at exit of coolant hole

0	 based on cylinder diameter

f	 mean film temperature, T f - (T. + Tw )/2 or T f a (Tb + Tw)/2

FC	 with film cooling

i	 at injection, or denoting the i th element. or inlet
condition

i	 denoting the j th element

M	 average along the length of the coolant hole

MAX	 spanwise maximum SNR. at a fixed blowing ratio, M, and
downstream distance, x/do

- 1
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NOMENCLATURE (Cont'd)

SUBSCRIPTS (con't)

non	 nominal wall temperature, Tw,nom, computed as an average

of the temperatures from the 47 wall thermocouples in the
film cooled region

o	 without film cooling, or outlet condition

p	 plenum condition

ROW	 spanwise averaged wall temperature for a row of
thermocouples

SEG	 temperature of drop-in segment

T	 total or stagnation condition

TOTAL	 total coolant flowrate supplied to plenum

w	 wall condition

x	 parameter is a function of x-coordinate

local freestream condition around the test cylinder

» ,o	 freestream condition upstream of the test cylinder

SUPERSCRIPTS

*	 Reynolds number based on freestream density and film
viscosity

average quantity



I. INTRODUCTION

To meet the demands for improved gas turbine engine performance,

turbine inlet gas temperatures have been progressively increased. This

has required a continuous evolution of improved materials and more effec-

tive methods of cooling turbine vane and blade surfaces.

Typical methods of cooling include: (a) internal convection, where

internal heat removal is enhanced by flow through labyrinth channels, pin

fins and impingement flow, and (b) external film cooling, where external

heat transfer to the surface is reduced by ejection of coolant onto the

vane surface through discrete slots or rows of holes. In regions of high

thermal load (e.g., the leading edge of a turbine vane), the maintenance

of allowable metal temperatures frequently requires the use of closely

spaced multiple rows of holes (i.e. full-coverage film cooling) to obtain

the necessary combination of external film cooling and internal convection

(within the holes).

This study is the second part of an experimental investigation con-

ducted to determine the effects of full-coverage film cooling for turbine

vane leading edge applications. In the first part of the investigation,

Luckey and L'Ecuyer [1] reported the results of film cooling for a range

of coolant hole configurations, with the coolant temperature equal to the

test surface wall temperature. The purpose of the study reported herein

was to examine the effects of film cooling with the coolant temperature

less than the wall temperature.

I.A. Definition of Film Cooling Parameters

The geometric and flow parameters used to describe multiple row film

cooling are illustrated in Figure 1. The film coolant is injected onto

the surface through holes of diameter, do , with center-to-center hole

spacing, S, and row spacing, P. The origin of the coordinate system is

located at the center of the coolant hole with (x) defining the direction

of the freestream flow and (z) the lateral ors anwise direction. Non-di-

mensional coordinates x/do and z/S are used for convenience.
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The orientation of the coolant hole is defined by the angle up with

respect to the streamwise (x) direction, and the angle S, with respect to

the local surface tangent. An angle a-0 0 corresponds to streamwise coolant

injection, while a-90° and 0°<a<900 are referred to as spanwise and cow

pound injection, respectivfly. Due to the angle limitations imposed by

surface curvature in the leading edge region, all experiments in this

study and in part one of the investigation [1] were performed with spanwise

injection (a-0°).

The film cooling performance is governed by the mass flux (p c
 VC) and

temperature (T c ) of the coolant injected onto the surface. It is common
to characterize the injected mass flux by the blowing ratio defined as

M=0CVc

pCe V 

where p. V. denotes the local freestream mass flux at the point of injec-
tion. In the leading edge region, there is a large variation of p, V.
along the surface.

The temperature of the coolant leaving the hole may be characterized

by a dimensionless coolant temperature defined as

ec T̂ ---^ _ (TcIT
"
) _ 1	 (2)

W	 w	 W •

The hydrodynamic behavior of the injected coolant also depends on the

following related parameters.

density ratio

ideal gases of constant molecular weight, constant pressure

P	
T 
	 T	

-1

c

velocity ratio

t

T= M 1 + ec T- 1	 (4)
o	 L

(1)
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momentum flux ratio

2^

I ac Vc2 = M2 1 + 8  ^ - 1	 (5)

V	 •pw w

I.B. Discussion of the literature

A comprehensive review of the film cooling literature  has been pre-

pared by Goldstein [2]. In addition, subsequent reviews of the literature

may be found in [1], [3] and [4] documenting the influence of numerous

variables governing film cooling performance. The purpose of the present

discussion is to review the features of film cooling models important to

the subject study. Of particular interest is the modeling of film cooling

conditions characteristic of the gas turbine environment wherein large

values of gas-to-wall temperature ratio and coolant-to-freestream density

ratio exist.

An examination of the film cooling literature reveals two methods that

have been developed for the analysis of film cooling performance. The

adiabatic effectiveness method is based on a sequence of two experiments.

First, the temperature distribution for an adiabatic film cooled wall is

used to determine the adiabatic effectiveness distribution which is taken

to be independent of coolant temperature. Separately, the hydrodynamic

influence of coolant blowing on the heat transfer coefficient is deter-

mined. This information then enables the prediction of the actual heat

flux for a specified (non-adiabatic) film cooled wall temperature. (See

[1] for more discussion.)

The adiabatic effectiveness method has been used widely. The adia-

batic wall condition usually is achieved using wall materials of very low

thermal conductivity and using wall-to-coolant temperature differences

tha4. are small. In this context, the investigation of the influence of

the gas-to-wall temperature ratio is very limited. The influence of

coolant-to-freestream density ratio has been investigated by using a

coolant gas of high molecular weight, measuring impermeable wall effec-

tiveness, and applying the mass transfer analogy.

s
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An alternate approach to film cooling perfonwce analysis is the

direct heat flux (or isothermal wall) method based on the linear super-

position model of Choe, Kays, and Moffat ^5]. Their analysis of the

energy equation f-3r the thermal boundary layer for isothermal wall, con-

stant property few yields a temperature field that is linearly dependent

on the film coolant dimensionless temperature, ec . Utilizing the Stanton

number defined as

11

St = 
p 

c 
	 . - w
	 (6)

the lisaear temperature field results in a linear dependence of St on ec

given as

St2 - itl

C2	 ecl

Direct heat flux measurements, for an isothermal film cuoled wall, yield

St l and St2 for two different film coolant temperatures, e cl 
and ec2'

Equation (7) then enables the prediction of the heat flux (St) for any

other specified coolant temperature, ec.

To test the validity of the model, Choe, Kays and Moffat 15] performed

experiments on a flat, isothermal test surface to me'sure the heat flux

(St) at constant blowing ratio -for selected coolant temperatures (ed.

Sample results fnr the Stanton number change (&St) for M=0.52 are shown

in Figure 2. Using experimental data for ecl = 0.057 and e c2 = 1.13,

values for aSt were predicted (eqn (7)) for ac = 1.395 and are shown to

be in good agreement with measured values.

The lioear superposition model is based on the assumption of constant

fluid propertie:-. Certainly, for the experiments of [5], with the free-
stream air at roon: temperature and the surface temperature 10° to 20°K

higher, the constant properties model shows excellent agreement with ex-

perimental results.

(7)



a

3.Ox10-a

2.5x10 3

2.Oxi0-3.

ost

1.5xIO-3

I.Ox10-3

0.5x 10-3

6

ORIGINAL PAGS t=
OF POOR QUALITY

o M=0.53, 8=0.057
•M= 0.52, 8=1.13
O M= 0.50 8=1.395
O M= 0.52^, 8 = 1.395, Preftkd

a
W

a	
• •

•

•

8	 OSt=St(F,8=0)-St(F,8)
•

O	 0000000

15XI0	 2.0x10
Rex

Figure 2. Effect of Dimensionless Coolant Temperature on Stanton
Number (Choe, Kays, and Moffat [5])
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Also implied in the constant properties model is the assumption that

the flow field with coolant injection is unaffected by changes in the

coolant temperature (ec). For the experiments of [5], with Tw9ft ' 1.061
and M - constant, the variation of e c from 0.0 to 1.4, corresponding to a

9% variation in the momentum flux, velocity, and density ratios (see eqns

(3) - (5)), should have little affect on the flow field. Hower, for

gas turbine applications (TW/Tw - 1.5 - 2.0), the influence of e c on

property variations and the flow field has not been investigated.

The foregoing discussion illustrates the difficulty -in modeling the

film cooling performance characteristic of the gas turbine environment

wherein the importance of large values of gas-to-wall temperature ratio

and coolant-to-freestream density ratio is uncertain. In the present study,

the direct heat flux method was selected to permit the inclusion of those

parameters in the investigation of film cooling characteristic ;e the

turbine vane leading edge.

I.C. Scope of the Investigation

An experimental program was initiated to investigate multiple row

film ^ooling configurations typical of turbine vane leading edge appli-

cation.. Si.,wlation of the gas turbine environment was accomplished using

the stagnation region of a cylindrical, film cooled test surface in a

crossflow of heated air with Rep - 9 x 104 and Tm/Tw - 1.7. Film cooling

experiments were conducted with spanwise angled holes (a = 900 , s = 250,
see Fig. 1) using miniature heat flux sensors to measu %e the local heat

flux. The film cooling performance was determined by the Stanton Number

Reduction (1 - StFC/Sto ) due to film coolant injection.

In the first part of the investigation, Luckey and L'Ecuyer [1]

reported the results for coolant hole configurations varying the hole-to-

hole spacing, row-to-row spacing, number of rows, and the location of

rows reldtive to the stagnation line. All experiments in the first part

were conducted with the coolant temperature equal to the wall temperature,

ec = 1.

In the second part of the investigation, reported herein, experiments

were conducted using the same cylindrical test surface and instrumentation

to determine the influence of coolant temperature on Stanton Number



Re7

Reduction for the range 1.18 - e  -` 1.56. Experiments were performed with

a single row of spanwise angled holes (a = 90% 0 = 25°) with a hole-to-

hole spacing of S/do = 5. Film cooling data were obtained with the row of

holes at three locations (ei = 5.0% 22.90 , and 40.8°) relative to stagna-

tion covering the same range of coolant blowing ratio (0.25 ` M ` 10.25)

used in the first part of the investigation [1]. Results are presented

to show the influence of ec on the local and spanwise averaged Stanton

Number Reduction.
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II. EXPERIMENTAL INVESTIGATION

1 I . A. Introduction

The objective of the research program was to investigate multiple

row film cooling under conditions characteristic of the leading edge of

a turbine vane. To model the leading edge region. geometric similarity

was obtained using the front stagnation region of a circular cylinder in

crossflow. Initially, an extensive stud y was conducted by Luckey and

L'Ecuyer [1] using a film coolant temperature equal to the wall tempera-

ture, ec = 1.0. In the subject study, experiments were conducted to

determine the influence of film coolant temperature- on the film cooling

performance using T c : Tw , ec ? 1.0. The exn-,rimental apparatus was
essentially the same as that used in [1] wi.h modifications of the film

coolant supply to produce reduced coolant temperatures in the range

1.18	 ec . 1.56.

Effective modeling of the convective heat transfer environment for

the leading edge region requires the simulation of important dimensionless

parameters that govern the flow and heat transfer phenomena. A dimensional

analysis of the governing conservation equations [3] shows that the Nusselt

number can be expected to depend upon the following parameters:

Nu - f(x, z, Rep, Pr, Ec. c, TM/rw).

With film cooling along the surface, dimensional analysis shows [6] that

the Nusselt or Stanton number is also a function of the following film

cooling parameters:

St - f(M. c) c , u c/a., d /do , a. d)•

In this investigation (the subject study and [1]), experiments were con--

ducted to simulate the values of Rep, T./Tw, M. ec , pc/pr. a* /do . a, and

h. typical of the leading edge of a film cooled turbine vane.
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II.B. Description of Experimental Apparatus

The investigation of multiple row film cooling typical of a turbine

vane leading edge was conducted using a cylindrical test surface exposed

to a crossflow of air heated by a gas turbine combustor. A brief descrip-

tion of the experimental apparatus is presented in the following sections.

A more detailed description is given in (1].

II.B.1. Flow System

Figure 3 is a simplified schematic of the overall flow system used

in conducting this investigation. A blow-down facility provided an air

flow permitting a continuous run time of approximately one hour. The air

entered a gas turbine combustor, where methyl alcohol was burned to pro-

vide the nominal freestream temperature of T., - 500K.

Downstream of the combustor the flow was dumped into a large settling

chamber to provide some control of the turbulence intensity passing through

the test flow channel. The hot flow from the combustor was directed against

the dome end of the chamber and passed through three stainless steel fine

mesh screens. The flow accelerated through a 2:1 area contraction to the

chamber exit.

At the entrance to the flow channel, a stainless steel honeycomb flow

straightener was maintained in position by a fine screen. The flow channel

sections. shown in Figure 3. had an open area of 0.46m by 0.30m. A turbu-

lence screen could be inserted between any two flow channel sections.

Upstream of the test section holding the cylinder, a special flow

channel section was positioned to allow the insertion of probes into the

flow stream. A traversing mechanism attached to the outside of the flow

section allowed a probe to be traversed across the entire depth or width

of the flow field.

Downstream of the traversing probe, the test cylinder was held in

the flow channel with circular flanges. Each flange consisted of two

separate pieces which were held together by machine screws. As the

machine screws were tightened, o-rings between the two flange pieces pro-

vided a pressure seal around the cylinder. By loosening the machine

screws holding the flange together, it was possible to rotate the cylind-

er with respect to the flow channel.
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The hot freestream flow passed over the test cylinder and was exhausted

to the atmosphere.

II.$.2. Test Cylinder

A schematic drawing of the test cylinder is shown in Figure 4. The

0.15m diameter cylinder, also shown in the photograph in Figure 5, was a

scaled-up model of the leading edge of a turbine vane. The large increase

in size enabled the use of film coolant holes that were large relative to

the instrumentation which measured the surface heat flux and temperature.

This was the same test cylinder used in the first part of the investiga-

tion [1].

Three concentric cylinders were used to construct the 0.41m long

test cylinder. The inner, stainless steel cylinder was machined with

channels to provide for internal cooling of the test cylinder. The second

stainless steel cylinder was slipped over the inner cylinder, sealing the

cooling channels. Tubes were installed at both ends of the cooling

channels to allow for the flow of water coolant. The outer cylinder was

a thin skin of beryllium-copper slipped over, and brazed to, the stainless

steel cylinder.

Film coolant holes were located in removable drop-in segments which

fit into five slots milled into the test cylinder. The coolant holes

were drilled with a hole-to-hole spacing of S/d o = 5, and the segments

were installed with a row-to-row spacing of P/d o = 5. Figure 6 shows the

test cylinder with two of the five drilled segments installed. The experi-

ments of the present study were performed with film coolant supplied to a

single row of holes (Row 1 in Figure 4). The holes in the remaining four

rows were plugged inside the test cylinder.

Figure 7 shows a schematic of the segment used in Row 1. The eleven

coolant holes were counterbored from the bottom of the segment and a short

length of copper tubing was inserted into each hole. The copper tubes

were used to support thermocouples measuring the temperature of the coolant

entering the segment.

Coolant lines were connected to each of the eleven copper tubes in

the segment to supply air film coolant to each coolant hole. In this

study, the coolant supply lines were made of thick-wall rubber tubing.
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In the previous study [1], the coolant supply lines were thin-wall

vinyl tubing.

II.B.3. Film Coolant Supply System

The experimental apparatus described in the previous sections r is

the same for both the present study and the first part of the investigation

[1, with the exception of the film coolant supply system. This sytem was

modified to produce reduced coolant temperatures yielding T c < Two

ec > 1.0.

Figure 8 is a schematic diagram of the film coolant supply system.

Air from the blow-down facility was split and routed to two separate film 	 1

coolant flow paths leading to the test cylinder. Path A supplied the

Primary Plenum with five lines delivering coolant to holes No. 4 through

8 in the drop-in segment for Row 1 (see Fig. 7). Path B supplied the

Secondary Plenum with six lines delivering coolant to holes No. 1, 2, 3,

9, 10, 11 (see Fig. 7). Each of the eleven coolant holes in Row 1 was
fed by a distinct delivery-supply line.

For each of the two flow paths, the coolant flow rate was controlled

with fine needle valves and was measured with hot-film mass flow meters.

The metered air flow was routed to the coils of a methanol heat exchanger.

The methanol heat exchanger consisted of a dry-ice/methanol mixture

(stable bath temperature of 178K) in which coils of tubing (length = 6.1m,

i.d. = 10.8mm, L/D = 560) were submerged. The methanol heat exchanger

was used to remove moisture from the film coolant air to prevent icing

and plugging of the small diameter tubes downstream.

The film coolant air for the two flow paths was dumped into plenums

at the exit of each heat exchanger coil. Five coolant delivery lines were

connected to the primary plenum and six coolant delivery lines were con-

nected to the secondary plenum. The plenums served to apply a uniform

pressure at the inlet of the coolant delivery lines. The measured plenum

air pressure and temperature were used in calculating the coolant mass

flow rate through each coolant line.

The coolant delivery lines were connected from the primary and

secondary plenums to the air inlet side of the nitrogen heat exchanger

illustrated schematically in Figure 9. Eleven tubes passed through the
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shell of the heat exchanger, one for each film coolant delivery-supply

line. Liquid nitrogen was supplied to the shell of the nitrogen heat ex-

changer in a counter-flow arrangement. The nitrogen heat exchanger was

constructed entirely of brass, with all parts joined by silver-solder.

The shell measured 76mm o.d., wall thickness 3.2mm, length 0.20m. The

air cooler tubing measured 3.2mm o. d. , 1.6mm i . d. , length 0.66m, L/D -410.

Liquid nitrogen was forced into the nitrogen heat exchanger through

copper tubing by pressurizing one or two liquid nitrogen storage dewars.

The number of dewars and the dewar pressure were selected to provide a

nitrogen flow rate which produced the desired film coolant temperature.

The chilled film coolant air was routed from the nitrogen heat ex-

changer to the test cylinder drop-in segment (Row 1) through the rubber

coolant supply lines.

As shown in Figure 8, the film coolant supply was split into two

paths (A and B) with the five coolant delivery-supply lines fed by the

primary plenum routed to the primary coolant holes (No. 4 - 8) located

in the instrumented region of the test cylinder. The five primary coolant

lines were selected to minimize the hole-to-hole variation in the film

coolant flowrate and exit temperature in the instrumented region. l The

six remaining lines, fed by the secondary plenum, were routed to film

coolant holes No. 1, 2, 3, 9, 10,.11 to maintain a uniform twmperature

in the drop-in segment.

II.C. Instrumentation and Measurements

The mass flow rates of the combustion air and fuel were measured

using flat-plate orifices with pressure transducers to measure the dif-

ferential and static pressures. The freestream flow conditions (TT , PT , P)

were measured 0.23m upstream of the leading edge of the test cylinder.

Measurements were made with a wedge-shaped pitot-static pressure and total

temperature probe.

1 Preliminary tests were conducted to select those five delivery-supply

lines with nearly equal pressure and temperature drop characteristics

to supply the five primary coolant holes.
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A view of the instrumentation installed in the film cooled region of

the test cylinder is shown in the photograph of Figure 6. In the schematic

diagram, Figure 10, the instrumentation and coolant holes in the film

cooled region of the test cylinder are shown to scale. The coolant holes

represented by solid outlines (Row 1) are those through which coolant was

ejected. All other holes (dashed outlines) were plugged inside the test

cylinder in the present study. The hole and row spacing shown in Figure

10 is S/do = 5, P/do = 5.

The location of the instrumentation (Figure 10) is given in terms of

the dimensionless streamwise coordinate (x/do) relative to Row 1 for

each of the nine rows of heat flux gages (see right margin). The dimen-

sionless spanwise coordinate (z/S) is shown with the origin (z/S - 0) at

the center of coolant hole No. 5. The angular position along the left

margin shows the position relative to the stagnation line when Row 1 is

located 5.0° from stagnation. Table 1 lists the streamwise and spanwise

coordinates for all heat flux gages. The repeatability of operational

heat flux gages is discussed in Section III.F.

The test cylinder was instrumented for surface static pressure and

wall temperature measurements. Thermocouples (copper-constantan)) were

placed on either side of each heat flux gage to determine the streamwise

and spanwise wall temperature distribution.

Table 1.	 Heat Flux Gage Locations
Gage

Number
x/d 

o
z/S

Gage
Number

x/d 
o

z/S

*	 1 -3.50 0.00 * 18 6.50 1.83
* 2 -3.50 0.50 19 8.50 0.50

3 -3.50 0.00 20 8.50 0.83
4 -1.50 0.00 21 8.50 1.17

* 5 -1.50 0.50 22 8.50 1.83
6 -1.50 0.00 23 11.50 0.00

1.50 0.00 24 11.50 0.33
8 1.50 0.33 25 11.50 0.67
9 1.50 0.67 26 11.50 1.33

10 1.50 1.33 27 16.50 0.50
11 3.50 0.00 28 16.50 0.83
12 3.50 0.33 29 16.50 1.17
13 3.50 0.67 30 16.50 1.83
14 3.50 1.33 31 21.50 0.00
15 6.50 0.50 32 21.50 0.33
16 6.50 0.83 33 21.50 0.67
17 6.50 1.17 34 21.50 1.33

*Gage not operational. See Section III.F.

':•- iNiyWYrys	 vY
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Direct measurement of the surface heat flux was made using miniature,

Gardon type, thin foil heat flux gages. Due to the small size of the

gages used, a microvolt signal was produced. Therefore, each gage was

matched with an operational amplifier to provide a millivolt signal pro-

portional to the heat flux.

The mass flow rate of film coolant air to the primary and secondary

Plenums in the methanol heat exchanger was measured with hot film mass

flowmeters. The static pressure and temperature in the plenums were

measured to determine the mass flow rate of coolant delivered to each

coolant hole.

The reader is referred to [1] for a more detailed descriptiton of

the test cylinder instrumentation.

In the subject study, the temperature of the film coolant supplied

to the coolant holes in the drop-in segment was measured using the thermo-

couple fixture illustrated in Figure 11. A copper-constantan thermocouple

was sealed into a short length of copper tubing. A screen was attached

to the inlet of the tube to promote uniformity of the coolant velocity

and temperature profiles. The copper tube thermocouple fixture was in-

stalled into the drop-in segment film coolant hole as shown in Figure 12.

The film coolant supply line was attached to the copper tube to deliver

film coolant from the nitrogen heat exchanger. &-ach of the five primary

coolant holes, No. 4 through 8 (see Figures 8 and 10), was equipped with

the copper tube thermocouple fixture to measure the film coolant tempera-

ture supplied to the primary holes in the drop-in segment. The secondary

coolant holes, No. 1, 2, 3, 9, 10, 11, were supplied by a copper tube

identical to that shown in Figure 11 but with no thermocouple installed.

The wall temperature distribution in the drop-in segment was measured

using four embedded copper-constantan thermocouples as shown in Figure 8.

During an experiment, the voltage output from all heat flux gages

and thermocouples was periodically scanned and recorded with a 96 channel

data acquisition system.
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II.D. Description of the Experiment

This experimental program was conducted to investigate the reduction

in the local heat flux due to film cooling from multiple row injection on

the leading edge of a cylindrical test surface with flow conditions chosen

to simulate the film cooling typical of the leading edge of a turbine vane.

To ensure that the experiment modeled representative leading edge condi-

tions, a survey of turbine engine companies was made to determine flow

conditions and coolant hole geometry typical of current and future leading

edge designs. Table 2 shows the range of parameters important in film

cooling the leading edge of turbine vanes and the specific values of each

parameter being matched in this investigation.

A Reynolds number of 9 x 10 4 based on the leading edge diameter was

chosen to match typical engine conditions. In the present study, a mod-

erate freestream gas temperature (-500K) and water cooling of the test

cylinder to maintain the surface near room temperature (-294K), provided

a freestream-to-wall temperature ratio of 1.7. The use of a copper skin

helped maintain an approximately isothermal wall condition.

The experiments of this study were performed with a clear wind tunnel

(no turbulence generating screens) with the turbulence intensity approach-

ing the leading edge of the cylinder measured to be in the range 4 - 8%.

In the subject study, the coolant hole injection angle of 25 0 and

the spanwise hole-to-hole spacing of S/do = 5 were chosen for direct

comparison with the results of the previous study [1]. Experiments were

conducted with a single row of film cooling holes, placed at angular loca-

tions, e i = 5.00 , 22.9 0 , and 40.80 , corresponding to injection locations

used in the previous study [1].

Experiments were performed with the dimensionless coolant temperature

in the range 1.18 < e  < 1.56. Values for the blowing ratio were chosen

to cover the range used in [1]. Table 3 summarizes the values of e c and

M used in the subject study.



27

OF POOR QJAL(TY

C
0
.r. o

O
r
roro U

d 06
N w Ln }1

O N %0
> ON . LC1 N

N C O
S • 0-4 N r r
cu
{ a

-it
O

000

N
1 1

•r
+1;

b
m Ow kn 00 m

L X 1., 1 O O  O N r
COLn

b d O► r d O N U) U O r U
d d
L
IV

`1
EC
•LN

C 4!

ro 4J
L
H

ry► O
to C

O= N
41 4!

C b Cr C ro
r OU
Ou y U
E V O
r LLJ Ln C

U- C7
O Ch N

C ^FmX
C
ro

V
ro r

•tANOV
E J 1 CA N 0 O O
(U r d r 32 O d O N N 0) w
L to O O O O
4-1 U r 1 N 1 1 r 01 1 1
N r 7 N

X d• 1 r O 1 1 Ln d N
yl . Ln
ro F- d r n O r d O O r ro C
C7 V
O i m
C 4-

U
¢

r

J
41 Vu

1 . •^ C
u

^

4 1

i
...i

^O G! +J .-. 4-1 Gl 4-

N .- d' •r O C •^
L

ra.+ N O 'a •• 7 010
.^.i b

U
L Gl O N i•1 O ro

a c o 4J c7
v u

L.
oto

v
0 8 ++

0 rn v1 0
-i

y
8+-+ E

•r- c
+1i r c c

b Z v _
.v

c i ce to-

•° } uL v
N

aci +•1 0 a ++ v1 +•1 o
4J ,- r C C •.- N r•1 c c U c 42
N O 3 O to U ro a to CW
41 C ►_ -p t r Cl G^ r

6
^ r n-^ O

U
8 L)ct Ln =^

m ^-



28

ORIGINAL 171"'G1° 19

OF POOR QUALITY

Table 3. Range of Conditions Simulated
in the Present Study

e i = 5.0°

M 2.01 2.99 5.17 10.23

a
c

1.29 1.29 1.32 1.38

e i = 22.9°

M 0.25 0.74 1.23 2.07 2.45

8 1.18 1.33

1.45

1.30

1.56

1.29

1.36

1.29

1.39

e i = 40.8°

M 0.51 0.74 0.95 1.14 1.58

6 1.36

1.50

1.34 1.38 1.40 1.36
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H.E. Data Reduction

During each experimental run, the following measurements were

recorded:

(a) freestream total temperature

(b) freestream total pressure and total-to-static pressure difference

(c) cylinder surface and segment temperatures and surface heat

flux distributions

(d) film coolant flowrate to the primary and secondary plenums

(e) coolant pressure and temperature in the primary and secondary

plenums

(f) film coolant temperatures at the inlet to the primary film

coolant holes (No. 4 through 8)

These measurements were used to compute the film cooling performance

parameters.

The freestream total temperature and total-to-static pressure ratio

were used to determine the freestream velocity (V,.'o ) and static temperature.

The Reynolds number was calculated based on the cylinder diameter. Fol-

lowing convention in the gas turbine industry, a mean film temperature,

T f = (T. + Tw ^ nom)/2, was used to determine the density and viscosity

in the Reynolds number. The perfect gas law was used to compute the

freestream density (p. '0 ) and other physical properties of the freestream

(u, k, y, Mol.Wt.) were determined from Ref. [7].

The local freestream velocity around the cylinder, V.. , was computed

from incompressible potential flow theory. The expression for a cylinder

in an infinite freestream was corrected to account for tunnel blockage

effects, yielding

V00 = C 2V. o sine.

The tunnel blockage correction, C,

tial flow theory (see [1]) had the

Degrees from Stagnation,

Correction Factor, C

Because of the low freestream Mach

freestream flow was assumed such tl

calculated

values

e i	 5.0°

= 1.089

number (Ma

iat P. VOD =

from incompressible poten-

	

22.9 0	40.80

	

1.091	 1.093

D,0 
0.03), incompressible

P„ ' o ^^,
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The surface heat flux for each gage was measured first with film
Is

coolant flow (q 
I'd' 

immediately followed (allowing for thermal equilibrium)

by measurements of the heat flux without film coolant flow (q o ). The

Stanton number with film cooling and without (i.e. dry wail) were computed

as

q

of

 FC
St

FC = ^
P VC p ). ( T. - T

w ) 1FC

q 
Sto = 

1^ 
PVC 

P). 
(Tm 

Tw o

Repetitive measurements, to ensure constant flow conditions, were made to

obtain four values for St FC and Sto . The average values for StFC and Sto

were used to compute the Stanton Number Reduction

SNR = 1	
StFC

0

The Stanton Number Reduction gives the fractional change in surface heat

transfer due to film coolant flow. To ensure reproducibility, data are

only reported for experiments in which the four measured values of StFC

were within ± 5% of the average, and the four measured values of St o were

within ± 3% of the average value.

A nominal cylinder wall temperature, 
Tw,nom, 

was calculated as the

average of the wall temperatures at the 47 thermocouple locations shown

in Figure 10.

The coolant mass flow rate supplied to the primary plenum was measured,

along with the temperature and pressure of the coolant air in the primary

plenum. The coolant temperature entering each of the five primary coolant

holes in the drop-in segment was measured. These measurements provided

for the calculation of the coolant blowing ratio (M) and dimensionless

coolant temperature (9c).

a
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For each of the primary coolant holes, the mass flow rate and coolant

exit temperature were calculated by the method of Appendix A. l The

coolant mass flux for each primary hole was calculated as the coolant

mass flow rate divided by the coolant hole cross-sectional area. The

blowing ratio (M) was calculated as the ratio of the average coolant mass

flux for the five primary coolant holes to the local freestream mass flux

(Pm V.)•

The value of the coolant dimensionless temperature (e c) was calculated

from the freestream temperature, T W,o , the nominal wall temperature, Tw,nom,

and the average of the coolant exit temperatures for the five primary

coolant holes, Tc. Thus,

T
c 

-
 
T.o

ec 
Tw,nom	 .,o

The coolant-to-freestream density ratio was determined by assuming ideal

gas behavior, equal coolant exit did freestream pressures, and using the
average of the coolant exit temperatures for the five primary coolant

holes (Tc ). Thus,

PC _ T-10

Pm	 T 

The coolant-to-freestream velocity ratio (V C/V.) and momentum flux ratio

(p c V
c2

/Pm V.2 ) were computed from the values of M and pc/Pm.

The method used to calculate the mass flow rate and coolant exit

temperature was based on a combination of the momentum equation and a
convection correlation for temperature rise in the film coolant hole

(Appendix B).
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The raw data indicate the following uncertainties in the film cooling

parameters:

Blowing ratio, M:	 t 5%

Dimensionless Coolant Temperature, ec :	 i 6%

Stanton Number Reduction, SNR: 	 ± 0.05 in SNR (STR) units
(and Stanton Number Ratio, STR)
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III. PRELIMINARY EXPERIMENTS

III.A. Introduction

The experimental investigation reported herein was conducted to

examine the effects of dimensionless coolant temperature on leading edge

film cooling. The flow system used in the subject experiment was identi-

:!! to that used in the initial study [1]. Preliminary experiments to

qualify the test apparatus included profiles of freestream velocity,

temperature, and cold flow turbulence intensity and test cylinder pressure

and temperature distributions. These results were reported in [1] and

were not repeated in the subject study. However, to ensure repeatability

of the data, some preliminary experiments were conducted in this study

to measure cylinder heat transfer with and without film cooling under

conditions similar (i.e. e c = 1) to those used ;n the previous study [1].

Additional preliminary experiments were performed to determine the hot

flow freestream turbulence intensity and to define the hole-to-hole dis-

tributions of coolant blowing ratio and dimensionless coolant temperature

pertinent to the subject film cooling experiments with e c > I.C.

III.B. Freestream Conditions

In the initial study [1], freestream velocity, ten;perature and cold

flow turbulence intensity profiles in the wind tunnel were reported.

Results showed that the velocity profile was uni form within 3% of the

centerline value, and the total temperature profile was uniform within

2% of the centerline value in the region of the test cylinder. Under

cold flow, with a clear wind tunnel (no turbulence screens), the turbulence

intensity in the region of the cylinder was 4.4% t 0.3%.

Measurements were made in the subject study to determine the center-

line turbulence intensity in the clear wind tunnel (no turbulence screens)

with hot flow. The results for hot flow, performed in a manner similar

to the cold flow measurements [1] indicated a value for "apparent turbu-

lence intensity" higher than the 4.4% found for cold flow turbulence
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intensity. This was attributed to the hot wire probe response to both

freestream velocity and temperature fluctuations.

Experiments were conducted to isolate the contributions of velocity

and temperature fluctuations by (a) determining the anemometer sensitivity

to velocity ( V,, = 11.3, 14.6, 17.7 m/s) at constant freestream temperature

(T. = 501,	 1°K) and (b) determining the anemometer sensitivity to tempera-

ture (T. = 467, 501, 534°K) at constant freestream velocity (Vp 14.7,±0.2m/s).

Unfortunately, due to scatter in the data, it was not possible to

accurately isolate the probe sensitivities to velocity and temperature

fluctuations. The results did show consistently that the ratio of velo-

city fluctuation to temperature fluctuation had a value

(u2)/V..,o
-	 1.15

^(t/TW,o

An estim,.te of the turbulence intensity (due to velocity fluctuations)

for the hot flow showed (a) a lower bound of 2.7 - 4.1% using the above

ratio (1.75) to extract the temperature influence, and (b) an upper bound

of 6.3 - 8.1% assuming the influence of temperature fluctuations is

negligible. I These results show that the hot flow film cooling experiments

in the subject study and the previous study [1] were exposed to a turbulent

freestream ms velocity fluctuation at least of the order of 4% and a tur-

bulent freestream combined tins velocity and temperature fluctuation of

approximately 6 to 8'%. While the hydrodynamics of film cooling is expected

to be primarily influenced by the freestream velocity fluctuations, the

surface heat flux is most likely influenced by the combined velocity and

temperature fluctuations.

III.C. - Cy linder Pressure Distribution

Test cylinder surface static pressure measurements were reported in

[1]. The measurements were made with solid segments installed in the test

cylinder (no film coolant holes). It was found that the pressure distri-

bution indicated a supercritical flow with boundary layer separation at

1 for more details see Appendix C, reference [8].
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about 900 to 1000 from stagnation. The cylinder pressure distribution

was found to be unchanged when turbulence screens were inserted in the

wind tunnel or when coolant holes were present in the cylinder surface

[1]. Thus, for the present study, with a clear wind tunnel and coolant

holes in the cylinder surface, there existed an orderly development of the

boundary layer for the entire film cooled region (0 < e i < 900).

III.D. Cylinder Temperature Distribution

The temperature distribution of the surface of the test cylinder has

measured with thermocouples embedded flush with the surface. To arrive

at a nominal wall temperature, Tw,nom, the indicated temperatures of the

47 thermocouples (see Figure 10) were averaged. At each streamwise row of

temperature instrumentation, an average temperature also was calculated

and denoted T ROW . The streamwise variation of T ROW is shown in Figure

13 for a representative film cooling experiment (e i = 5.0°, M = 2.03,

ec = 1.29). In this experiment, the maximum value for (T
ROW	 Tw,nom)/

Tw,nom was -2.5% (ie. - 7°K). The distribution of wall temperature

(Figure 13) was similar for all experimental tests, with the maximum

value of (T ROW
	

Tw,nom)/Tw,nom equal to -3.2% (ie. = -900.

In a given row (at a particular angular location) the maximum-to-

minimum variation in local temperature was typically 3°K to 5°K. The

largest maximum-to-minimum variation of temperature in a row of thermo-

couples was found directly behind the coolant holes and was 17°K.

In the first drop-in segment, the temperature was measured at four

spanwise locations. Across the span of this segment, the temperature

variation was small, typically 2 - P K. At the highest values of blowing

ratio and ec , the average temperature of this segment was 18°K lower than

the nominal wall temperature.

For the remaining four segments, the temperature was measured at one

location per segment. The temperatures of these segments were usually

7 - g°K lower than the nominal wall temperature. The segment temperatures

(TSEG) are Plotted in Figure 13 for the representative case.
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III.E. Spanwise Distribution of Cop ant

Blowing Ratio and Dimensionless

Loolant Temperature

Coolant blowing ratio (M) and dimensionless coolant temperature (e c)

were based on average values for the five primary coolant holes. The

spanwise (hole-to-hole) variations of blowing ratio and dimensionless

temperature were monitored fr, rough the course of the subject study.

The spanwise distri6 ution of blowing ratio typically was uniform

within ± 3.4% of the averagF: value. The smallest variation seen was ± 0.9%,

the largest was ± 8%. The J'.stribution of dimensionless temperature typi-

cally was uniform with:r ± 2.8% of the mean. The smallest variation seen

was ± 1.0%, and the l argest was t 6.9%. In general, the largest spanwise

variations in M and C were seen with low values of blowing ratio.

III.F. Heat Transfer Without Film Cooling

In both the previous study [1] and the present study, cylinder sur-

face heat transfer was measured without film cooling (referred to as "dry

wall" heat transfer). The measurements of the present study served to

verify the integrity of the heat flux gages and to establish the repeat-

ability of dry wall heat transfer data in [1].

The parameter used to describe dry wall surface heat transfer is

Nu/ Rep , where Nu is the local Nusselt number (Nu = hD/k f) and Rep is a

freestream Reynolds number (Rep 
"'oV.,0 

D/uf). As conventionally used in

literature on cylinder heat transfer, the properties viscosity and thermal

conductivity in Nu and Re D are based on the mean film temperature, T f , and

the density in Rep is based on freestream temperature T^,o,l

The value of Nu/^ for each heat flux gage was monitored throughout

the present study. An average value of Nu/Ren was calculated for each

gage for a given angular location from stagnation. This average value

was considered the property of a particular heat flux gage and angular

location and was used as a basis of examining gage output repeatability.

1 Film cooling experiments were performed with a value of Re D , based on

film temperature, Rep = 9.0 x 10 4 . The corresponding value based

on freestream density is Rep =1 .1 x 10
4

.
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The results of the present study for the average value of Nu/, Rep
for each gage (and common angular location) were compared to the results
of the previous study [1]. For the majority of the heat flux gages, the
value of average NuQ rR D was within +20%, -0% of the value reported in
[1] for the corrPSDonding gage. Neat flux gages which indicated a value
of average Nu/ ep greater than +20% of the corresponding value in [1]
were considered inoperational in the present study.

The comparison with the dry wall heat transfer results of [1] showed
a group of heat flux gages which reproduced the results of [1]. These
heat flux gages are listed in Table 1 showing the streamwise and spanwise
locations of -he operational heat flux gages. Reference to Figure 10
shows that the operational gages covered the cylinder surface from
x/do = 1.50 to x/do = 11.50 downstream front 	 1.

The results of the present study for the average value of Nu/ ep
for each gage were used to quantify the repeatability of heat transfer
nreasurenrents made during the course of the present study. For each gage,
the average value of Nu/ Rep for a given angular location was used to cal-
culate no rnralized values, (Nu/ Rep)/(Nu/ ReD)avg. The range of repeat-
ability for all operational heat flux gages and all dry wall heat transfer
data over the course of the subject study is shown in Figure 14 in terms
of the normalized value for Nu/Rep. The vertical bands encompass the
range front 	 to minimum values of normalized Nu/ Re* observed for
a gage throughout the subject study. The results show that two-thirds
of the heat flux gages indicated values of Nu/ Rep within ± 15% of the
average for that gage. Ninety five percent of the gages indicated values
of Nu/ Rep within A 20% of the average for that gage.

III.G.	 Film Cooling with ti c = 1.0

Filar cooling experiments in the first part of this investigation [1]
were conducted usingacoolant dimensionless temperature of e c = 1.0. As

part of the process to qualify the perfo rnrance of the test apparatus for
the subject study, experiments were conducted with a coolant temperature
oc = 1.0.

For • these preliminary experiments, the test apparatus coolant supply
system wa% restored to the configuration used in [1]. With reference to
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Figure 8, the nitrogen heat exchanger was removed from the flow path and

the eleven coolant supply lines were routed to a common plenum in the

methanol heat exchanger. However, the coolant supply lines (rubber vacuum

tubing) in the present study were used instead of replacing with the vinyl

tubing used in the previous study [1]. Experiments were conducted with a

single row of film coolant holes located at e
i 
= 22.90 from the cylinder stag-

nation line with the blowing ratio varied over the range 0.25 <M <3.00. Re-

sults are presented in the form of Stanton Number Reduction, SNR, as a func-

tion of blowing ratio, M, for selected heat flux gages. The value of blowing

ratio was taken as the blowing ratio of the film coolant hole directly up-

stream of the particular heat flux gage which was necessary due to the varia-

tion of blowing ratio that resulted from the differences inflow resistance in

each of the installed rubber coolant supply lines.

Results for SNR vs. M are presented in Figure 15 for heat flux gages 8

and 10. These gages were selected because of similar locations on the cylin-

der surface: x/do = 1.50, z/S = 0.33 (see Table 1 and Figure 10). The results

obtained in the present study show good agreement when comparing the results

for gage 8 to that for gage 10. Also, good agreement is obtained when com-

paring results for the present study to those of the previous study [1].

Best agreement is seen for M ? 1.0.

Similar conclusions are reached when examining the results for gages 12

and 14 (x/do = 3.50, z/S = 0.33) as shown in Figure 16. Agreement between gages

12 and 14 is good. Agreement with the results of [1] is good, with best

agreement for M > 1.0. The discrepancy at M= 2.4 may be due to the possible

unstable nature of the flow situation producing values of SNR <0.0 [1].

It was concluded that the experimental aparatus of the present study

reproduced results obtained in the previous study [1]. The results of [1],

for 0  _- 1.0, were used in comparison with the results of the present study,
0  >1.0, to determine the influence of coolant dimensionless temperature(ec ) on film cooling performance.

Additional comparison of the heat flux gage reproducibility from the

previous study [1] and the present are presented in Appendix F.



N
M
O

m
m
N
CID

N

N
N
N
O
N `J
m O
.r

(D Q. w

^ CD•Z
N 3.p
O ^
.-1

m

to

•

N

41

0

ORrol"r,l• F,,Gz 13
OF F©CR	 CITY

O

Dr

El

N

u . .

LL
W

O
Z

« U.1 C3
II 

WH 
D O

ce

CL

«00 Ujm m O
cr. .^
O

_o

c
b
co

a
v+

O

b
a:
rnc

co

t

C
O

V

C!

L
a,

z
C
O
cb
N

O
C
O
N
L
Rf
d

v

^i

d
L
3
01

O

O O O O O O O O O O O O O O O
O m w ^" N O N :t- w W O N ^ w

I	 1	 I	 1

( DNS ) NO I nnoi^ ^3ewm NOAKS



N
m
O

m

W
N
9

N

N

N

N
O

co

w Q

.r

CD
• Z

N 3•Q...4 J
O m

O

•

N

O

O O O O O O O O O O O O O 00O O w ^ N O N :t- w m O N =' w

I	 i	 I	 I

(8NS) NOIiono0 8 8^ow N N@iNH1S

O
^ 0

El

u .
U-
W

®O O
zr

^ I I cWn Cl ^ O

aY LcLr_l ^C—o

O
CD cv :r
CL
C9

c

N

a
rn
b
c^

0

.o

rn
c

0
m
t
4-►

3
c
O

Z
V

0!
cx

L
Gl

E
z

Q
0
c
b
N
4-0
c0N
L
^O
CL
EOv

vi
rn
U-



43

G °£	 ^ ^- f
Gr f v;k	 rY

IV. RESULTS

IV.A. Intrroducti2a
9

Film cooling experiments were conducted to examine the effects of

dimensionless coolant temperature (ec ) on film cooling performance. The

results discussed in this chapter show that changing ec results in a

change in the level of local surface heat flux and also a shift in the

distribution of local surface heat flux.

Experiments were conducted with blowing from a single row of coolant

holes, with the row located at three angular locations relative to stag-

nation, e i = 5.00 , 22.90 , 40.80 . These angular locations were selected

to match those used in the previous study [1], where single and multiple

row film cooling experiments were performed with e c : 1.0. The range of

blowing ratio simulated in the present study (0.25 < M < 10.23) reproduced

the range reported in [1]. The present study extends the range of ec to

1.18 < oc < 1.56.

The film cooling results are presented in terms of the Stanton Number

Reduction, defined as

Stanton Number Reduction, SNR =_ 1 -g
o- '

Positive values of SNR represent the fractional reduction in heat flux due

to film cooling while negative values correspond to an increase in heat

flux due to film cooling. The condition SNR - 1 corresponds to an adia-

batic (locally) film cooled surface and SNR > 1 implies heat transfer from

the film cooled surface.

The value of ec quoted for each experimental test condition was cal-

culated from the :reestream temperature (T.1o ), the nominal wall temperature

(Tw,nom), and the average of the coolant temperatures for the five primary

coolant holes (T c) in the instrumented region of the test cylinder. Thus,

8 =	 Tc-Tc	 W,o	 .

Tw,nom T. 'o
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The blowing ratio for each experimental test condition was calculated as

the average value of the blowing ratio for each of the five primer; coolant

holes.

The data from [1] for single row film cooling with e c : 1.0 were used

for direct comparison with the data of the present study for e c > 1. Data

for ec : 1.0 at values of M not reported in [1] were obtained by linear

interpolation from the tabular data in Appendix III, reference [1].

The results are presented to show the influence of e c on the local

level of SNR and on the calculated spanwise averaged Stanton Number Reduc-

tioa, SNRAVG' The data are interpreted to illustrate the influence u' ec

on the apparent coolant jet location. Finally, the results are viewed in

terms of the linear superposition model to quantify the influence of ec

on SNR.

IV.B. Effect of Dimensionless Coolant Temperature

on Stanton Number Reduction

IV.B.I. Distribution of Stanton Number Reduction

Selected results for the local distribution of SNR are presented in

this section to illustrate the major trends shown by the data. l The

results for four combinations of injection location (e i ) and blowing ratio

(M) are discussed for the conditions shown below.

e 1 5.00 22.9 0 22.9 0 40.80

M 2.01 1.232 2.07 1.14

ec 1.03 1.02 1.02 1.04

1.29 1.30 1.29 1.40

1.56 1.36

1 Appendix E contains a complete listing of all data in graphical and
tabular form.

2 For the present study, M was held constant within t 0.01 as ec was
varied. The nominal value of M quoted is the average value. (See
tabular data in Appendix E).
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The data for ec : 1.0 were taken from the previous study, Appendix III,

[1], with linear interpolation with respect to M when necessary.

Figures 17, 18 and 19 show the spanwise distribution of Stanton

Number Reduction for the location e i - 5.00 at a blowing ratio of M- 2.01.

E.ch plot shows SNR (along the ordinate) as a function of spanwise location

z/S (along the abscissa l ). Symbols defined in the legend represent the

data for the values of x/do and ec . The range of the abscissa, the span-

wise distance from z/S - 0.0 to z/S - 1.0, represents the spacing between

the centers of two adjacent coolant holes (S/d o = 5). The hash marks

along the abscissa illustrate the break-out length of the coolant holes,

extending to z/S - t 0.24.

The symbols representing data taken in the present study (for

ec > 1.0) are connected with solid or dashed lines to suggest the profile

shape and to facilitate reading of the plots. For the locations

x/do = 6.50 and x/do = 8.50 (e.g., Figure 18) dotted lines extend from

the measured data points to z/S = 0.0 and z/S = 1.0. The value of SNR

at z/S = 0.0 (reflected to z/S = 1.0) for x/d o = 6.50 and x/do = 8.50

was calculated by linear interpolation of the data of Appendix E at

z/S = 0.0 between x/do = 3.50 and x/do = 11.50.

Figures 17, 18 and 19 show the spanwise distribution of SNR at the

location e i = 5.0% for 1.50 < x/do < 11.50, at a value of blowing ratio

of M = 2.01. Figure 17 shows an increase in SNR at x/d o = 1.50 when ec

is increased from ec= 1.03 to ec = 1.29. It is seen that behind the

coolant hole, at x/do = 1.50, z/S = 0.0, with e c = 1.03, the value of SNR

was SNR = 0.0 (no effect of the coolant), while increasing e c to ec = 1.29

provided a heat flux reduction of SNR = 0.45. At z/S - 0.33, x/do = 1.50

(Figure 17), the value of SNR was increased from SNR - 0.23 with

ec = 1.03 to SNR = 0.39 with e c = 1.29.

The general pattern of increased SNR with increased e c is seen at

all streamwise locations (Figures 17, 18 and 19, 1.50 < x/d o < 11.50)

though the SNR levels diminish with downstream distance.

The value of qNR at z/S = 1.00 was taken to be the same as the value
of SNR at z/S = 0.0.
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The value of SNR was unaffected by a change in e c at locations

z/S = 0.67 for x/do = 1.50 and x/do - 3.50 (Figure 17) and at z/S = 0.83,

for x/do = 6.50 and x/do = 8.50 (Figure 18). It is inferred that the

localized coolant jet did not influence those spanwise locations. Further

discussion of the effects of ec on the distribution of SNR is found in

Section IV.C.

At ei = 22.9°, the plots of Figures 20 through 24 present the span-

wise distribution of SNR, for a value of blowing ratio M - 1.23. 1 As

seen in the legend for each plot, results are presented for three values

of ec : ec = 1.02, 1.30 and 1.56.

The effect of increasing the value of e c at ei = 22.90 , M = 1.23

is to increase the levels of SNR. At all x/d o locations, the maximum

values of SNR with ec = 1.30 or ec = 1.56 are greater than the maximum

values of SNR with ec = 1.02. Directly behind the coolant hole

(x/do = 1.50, z/S = 0.0, Figure 20), the value of SNR with e c = 1.30 is

a large positive number, where it is seen that the value of SNR with

ec = 1.02 was a negative number.

At the value of blowing ratio M = 1.23, film cooling with e c = 1.56

provides large increases in SNR levels, with the maximum value of SNR for

ec = 1.56 at the downstream location x/do = 11.50 (Figure 24) nearly equal

to the maximum value of SNR with e c = 1.02 at the location x/do = 1.50.

The results for a larger value of blowing ratio at ec = 22.90,

M = 2.07, are shown in Figures 25 through 29, where the distribution of

SNR is shown at three values of ec , 1.02, 1.29 and 1.36. Figures 25

through 29 show that the result of film cooling with e c = 1.02 at a blow-

ing ratio of M = 2.07 was generally detrimental to the cooling of the

surface, with significant negative values of SNR and low positive values

of SNR found in the range 1.50 < x/do < 11.50. Results with a value of

ec of 1.29 show that the cooling level was improved, largely at x/do =1.50

(Figure 25) but also at locations in the range 1.50 < x/do < 11.50. How-

ever, significant negative values of SNR were still observed with ec =1.29

at locations x/do > 3.50.

The value of SNR was unavailable at some locations (e.g. x/d = 1.50,
z/S = 0.33 and 0.67, ec = 1.56) due to heat flux gage malfun?tion.
See Appendix D.
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With an increase in ec from 1.29 to e c = 1.36, a value of SNR

greater than 1.0 was observed at x/do = 1.50, VS = 0.33 (Figure 25).

There was an overall increase in SNR over the case with ec = 1.29, but

large negative values of SNR remained in the range 3.50 < x/do < 8.50.

Results for 9  = 40.8°, M = 1.14 are shown in Figures 30, 31 and 32.
The plots for SNR vs. z/S and x/do present the data taken with e c M1.04

and ec = 1.40. As was the case with ei = 5.00 and ei = 22.90 , increasing

ec caused an increase in SNR in regions where the coolant apparently was

localized. The value of SNR was greater than 1.0 at x/do - 1.50,
z/S = 0.33, and the maximum level of SNR was increased downstream through

x/do = 11.50.

To summarize, the local film cooling performance at all values of

blowing ratio, dimensionless coolant temperature, and injection location

exhibits increased values of SNR with an increase in ec as would be ex-
pected from the linear superposition model. As will be discussed in

IV.C, the trends for the distribution of SNR with z/S or x/do suggest

that the localized behavior of the coolant, i.e. the flow field, is also

dependent on the dimensionless coolant temperature.

IV.8.2. Results for Spanwise-averaged Stanton Number Reduction

In the application of film cooling data to turbine vane cooling

designs, it is convenient to have film cooling performance averaged in

the spanwise direction (i.e. average hole-to-hole). The results from

the present study (Appendix E) were used to determine the spanwise-aver-

aged Stanton Number Reduction, 
SNRAVG. 

The value of SNRAVG 
for a particu-

lar x/do location was computed as follows:

(a) a series of straight line segments were fit through the

data points of SNR vs z/S for the range 0 < z/S < 1,

(b) the value for SNR at z/S - 0 (when a heat flux gage was not

located at that point) was obtained by linear interpolation

(at z/S = 0) from values for SNR at x/d o = 3.50 and

x/do = 11.50,

t c) the value of SNR at z/S - 1 was assumed equal to the value at

VS = 0, and
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(d) the value of 
SNRAVG 

was obtained by integration under the

straight line segment curve:

1
SNR

AVG = fo  SNR d(z/S)
A complete tabulation of the computed values of 

SNRAVG 
is given in

Appendix E.

The user of spanwise averaged data should note that averaging tends

to smear out localized effects. A low value of SNRAVG could result from

a profile with a large negative value of SNR compensated by a large posi-

tive value of SNR. Or the value of SNR could be more uniform across the

span with 
SNRAVG 

a good representation of the spanwise distribution of

SNR.

Figures 33 and 34 show the values of spanwise-averaged Stanton Number

Reduction, 
SNRAVG' as a function of downstream distance for the four values

of blowing ratio investigated with e i = 5.00 . The legend defines the

corresponding values of ec. Both Figures 36 and 37 show that the

level of 
SNRAVG 

increased with an increase in ec.

The effect on SNRAVG of increasing e
c was largest at the location

x/do = 1.50. The effect of e c diminished along the surface, with SNRAVG

tending toward 0.0 as x/do approached x/do = 11.50.

Figures 35 through 39 show results for SNRAVG for the five blowing

conditions tested with an injection location e i = 22.9 0 . The legend of

each plot defines the symbols representing values of e c for the test

conditions.

At a blowing ratio of M = 0.25, Figure 35 shows that there was a

slight effect on the levels of SNRAVG when e c was increased from 1.03

to 1.18. At the downstream location x/d o = 11.50, the level of SNRAVG

approached zero.

Figure 36 presents the data for SNRAVG at a blowing ratio of M= 0.74.

It is seen that increasing the value of ec to 1.45 resulted in an increase

in SNRAVG for downstream locations x/do < 8.50. Similar results for

M = 1.23 are shown in Figure 37.

Figures 36 through 39 indicate that increasing the blowing ratio, for

ec = constant, generally caused 
SNRAVG to decrease and to become
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increasingly negative. However, for any value of blowing ratio, the

effect of increasing e c was to increase the level of SNRAVG'

Figures 40, 41 and 42 show the results for SNRAVG 
at the five values

of blowing ratio tested for injection at e i = 40.80 . The legend of each

figure defines the values of M and ec.

Figure 40, the results for M - 0.51, shows that increased values of

ec bring about a general increase in the value of SNRAVG. The largest

increases are seen at x/do = 1.50 and x/do = 3.50. Though values of

SNRAVG decrease with distance downstream, the effect of increased e c re-

mains as an increase in SNRAVG'

Similar trends were found with values of blowing ratio M = 0.74,

0.95 and 1.14 (Figures 41 and 42). Film cooling with ec : 1.0 at each

of the blowing ratios resulted in negative values of SNRAVG while the

data for ec > 1.0 showed significant increases in SNRAVG'

In summary, the results for injection at e i = 40.80 follow the

patterns extablished at e i = 5.0° and 22.9°. Film cooling with increased

values of ec resulted in a general increase in the level of 
SNRAVG 

over

the levels seen with e c : 1.0. The largest increase in SNRAVG 
with ec

was observed at x/do = 1.50.

A comparison of the results for SNR
AVG

 for different injection loca-

tions (e i ), shows that as the injection location is moved further from

the cylinder stagnation line, the change in 
SNRAVG 

with a change in ec

also increased.

D.C. Effect of Dimensionless Coolant Temperature

on the Distribution of Stanton Number Reduction

The previous discussion described the effect of ec on the level of

SNR. The data of Figures 17 through 32, showing local values of SNR,

and Figures 33 through 42, showing SNRAVG demonstrate that an increase

in ec resulted in an increase in the level of SNR.

Equations (4) and (5), Chapter I, also show that a variation of ec,

while M and T./Tw are held constant, results in a variation of the

coolant-to-freestream velocity and momentum flux ratios, Vc/Vm and I.

Consequently, it can be expected that e c (through Vc/VW and I) may have

an influence on the fluid dynamic behavior of the coolant. For model
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experiii.ents wherein 0.93 ^ T W/Tw ^ 1.07 [5], large changes in e c (e.g. 1.0

to 1.4) correspond to less than a ten percent change in V c/Vm and I, and

consequently, the effect on the flow field is probably insignificant.

However, in the present study, where TW/Tw - 1.7, an increase in e c from

1.0 to 1.3 corresponds to a 21% reduction in Vc/V and I. In this section,

the results presented in Figures 17 through 32 (and those in Appendix E)

are interpreted to demonstrate that changes in e c can result in a change

in the fluid dynamic behavior of the coolant.

A parameter SNRMX is introduced to aid in the description of the

surface heat transfer distribution. SNR
MAX is defined as the maximum

value of SNR measured at a given streamwise location, x/do . The spanwise

(z/S) location of the occurance of SNR
MAX is used to define the approxi-

mate location on the surface of the coolant jet. By reference to the

local distributions of SNR vs z/S and x/d o it is possible to determine

the coordinates (z/S vs x/do ) of SNR
MAX and thereby define the approximate

trajectory of the coolant along the test surface. This technique was used

to examine the influence of dimensionless coolant temperature (e c ) on the

trajectory of the coolant.

Of the selected cases presented in sections IV.B.1, the data for

ii = 40.8°, M = 1.14 (Figures 30 through 32) moF-t clearly demonstrates

the influence of e c on the SNR distribution ano the implied affect on

coolant trajectory. Figure 30 shows that at x/d o = 1.50 9	^*, ec = 1.04,

the maximum value of SO R, SNRMAX , occurred at z/S = 0.67. Wit.i e c = 1.40,

the location of 
SNRMAX is shifted to z/S = 0.33. At x/d o = 3.50, a

similar shift from z/S = 0.67 to 0.33 is indicated when e c was increased

from 1.04 to 1.40. Figures 31 and 32 show a similar trend for the coolant

trajectory (i.e. SNRMAX coordinate) to shift toward z/S = 0 as ec was

increased.)

To illustrate the influence of e c on the localized behavior of the

coolant, the foregoing technique was used to construct plots of the

coordinates (z/S vs x/do ) of SNRMAX.

1 In instances where two adjacent measurement points indicated equal
values for the maximum SNR (within the SNR data band, ± 0.05 units),
the z/S location of SNRmAX was taken as the midpoint between the two
measurement points.
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The results for e i = 5.00 are presented in Figure 43 showing, to

scale, the coolant hole orientation, the z/S and x/d o coordinates, and

the directions of coolant and freestream flow. The curves represent

the coolant jet trajectory (inferred from SNR 
MAX

coordinates) for each of

the run conditions tested.

The results for M = 2.01 shown in Figure 43 indicate a small effect

on coolant trajectory as e c was increased from 1.03 to 1.29. For

M = constant, the colder coolant (ec = 1.29) was ejected with a lower

velocity resulting in less movement in the spanwise direction when com-

pared to the trajectory for ec = 1.03.

For increased values of the blowing ratio, the data of Appendix E

for e i = 5.00 and M > 2.99 show no apparent shift in the location of

SNR
MAX

 as shown in Figure 43. The trajectory of the coolant for M > 2.99

was unaffected by a change in e c , for the range of values of e c tested.

Figures 44a and 44b show the e} .r:J mate coolant trajectories for

e i = 22.9°. 1 From Figure 44a, it is seen that the coolant trajectory

for M = 0.25, e c = 1.18, as inferred from the locations of SNR MAX
, re-

mained nearer the z/S = 0.0 location than did the coolant trajectory for

M = 0.25, ec = 1.03. There was little spanwise movement of the colder

coolant jet.

The results for e i = 22.9°, M = 0.74, shown in Figure 44a, indicate

that the coolant trajectory was relatively unaffected by increasing ec

from e c = 1.02 to ec = 1.33, but Chere was an effect with e c = 1.45,

with the colder coolant exhibiting less spanwise movement. Similar plots

of coolant trajectory for M = 1.23, 2.07 and 2.45 are shown in Figures

44a and 44b. There is a small reduction in spanwise movement of the

coolant when ec is increased from = 1.0 to z 1.30 and a much i3ore pro-

nounced reduction for e c = 1.45 - 1.56.

The results for injection at e i = 40.8° shown in Figure 45 exhibit

similar trends. For the five values of blowing ratio shown, it is seen

that increasing e c at constant M causes the coolant trajectory to shift

toward z/S = 0.0.

1 Figure 44b -hows trajectories for M = 1.23 and M = 2.45. For clarity,
two plots were used to present the trajectories for film cooling at
e i = 22.9°.
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It is concluded from these interpretations that a change in ec can

produce a change in the fluid dynamic behavior of the coolant jet in

addition to the influence of ec on the surface heat flux level.

IV.D. Effect of Dimensionless Coolant Temperature

on Heat Transfer

The experiments of the present study were conducted to examine the

effects of dimensionless coolant temperature, e c , on film cooling per-

formance. The experiments were performed with film cooling from a single

row of coolant holes, with the row located at three injection locations,

e i = 5.0°, 22.9° and 40.80 , relative to stagnation.

The results presented in the previous sections have shown that in-

creasing the value of ec with a constant blowing ratio can have two effects:

(a) an increase in the Stanton Number Reduction (SNR), and (b) an altera-

tion of the local SNR distribution (i.e. coolant trajectory). In some

instances, the change in Stanton Number Reduction was relatively small

(see Figures 17 through 19 for e i = 5.0°, M = 2.01) and the affect on

coolant trajectory was insignificant (Figure 43). There were some cases

where an increase in ec resulted in large differences in SNR and coolant

position (see Figures 30 through 32, and Figure 45 for e i = 40.80,

M = 1.14). Because of this twofold influence of e c , it is difficult to

quantify the effect of dimensionless coolant temperature on film cooling

performance. The linear superposition model of Choe, Kays and Moffat

[5] does suggest one approach to characterize the influence of e c on the

heat transfer to the film cooled surface.

The linear superposition model for an isothermal surface, constant

property flow [5] shows that the film cooled surface heat flux (St FC ) for

an arbitrary coolant temperature (e c ) is given by the linear relationship

St FC
 = StFCI + SteC2 _ StFCl (e

c - ecl )	 (7)
c2	 c1

where 
StFCI and StFC2 correspond to the values of Stanton number with

film cooling when using coolant dimensionless temperatures e cl and ec2,

respectively. The Stanton number (St FC ) can be normalized with respect

L
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to the local Stanton number without film cooling (St o ll giving

St FC - St
FCI +	 tFC2 _ 

St
FCI ec _ ecl	

(8)Sto Ito
	

to	Sto ec2 ecl

The Stanton number Ratio (St
FC
/Sto ll given by equation (8) is directly

related to the Stanton Number Reduction (SNR) used to present the film

cooling data of the present study. Noting that

Stanton Number Reduction, SNR = 1 - StFC
Ito

we can rewrite equation (8) as

STR = STRI + m ( ec - ecl )	(9)

where

STR =
St

 St C = 1 - SNR
0

STR2 - STR1 - SNR I - SNR2
m=	 -

ec2 - e cl	 6 c - acl

The experimental data from the present study (values of SNR for selected

values of ec ) were used to calculate the value of the slope, m. The

empirical values for m, when used in conjunction with equation (9), pro-

vide a means for determining the influence of e c on film cooled surface

heat transfer.

To determine the slope, m, from the experimental data of the present

study, it was necessary to note that t',e coolant jet trajectory can be

changed by an increase in e c . It was seen from the data that the region

of the surface affected by the coolant jet was dependent on the value of

ec (see Figures 43 through 45). For this reason, two different approaches

were adopted to correlate the effect of e c on the surface heat transfer.

First, since engineering application of film cooling data frequently
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deals with spanwise-averaged analysis, the effect of e c on the surface

heat transfer was based on the spanwise averaged data, 
SNRAVG' 

Values

of the slope based on 
SNRAVG 

for a given M were calculated as

SNR
AVG,1 - 

SNR
AVG,2

mAVG	
ec2 ecl

Second, because of the localized influence of the coolant, the effect of

ec on the surface heat flux was based on the spanwise maximum data,

SNRmAX. Values of the slope based on SNR MAX for a given M were calcu-

lated as

SNRMA
X,1

 - SNR
MAX,2

mMAX	
ec2 ecl

The value for 
mMAX 

was determined using the spanwise maximum values

SNRMAX,1 
at 

ecl 
and SNRMAX,2 at ec2 . It should be noted that the span-

wise location (z/S) for SNRMAX,1 and SNRMAX2 may be different due to the

effect of e c on the coolant jet trajectory.

Results of the calculations for 
mAVG 

using SNRAVG at e i = 5.00 are

shown in Figure 46 as a function of the downstream distance (x/do). The

ordinate scale was chosen to permit comparison with results for other in-

jection locations. Symbols defined in the legend denote values of the

blowing ratio studied and the lines represent the data band defining the

range of most of the data points.

From the data of Figure 46, it is seen that the values of m
AVG were

generally negative due to the increase in 
SNRAVG 

with an increase in ec.

The data show that the absolute value of mAVG decreased with downstream

distance. Most of the data fell within the band, -0.8 ` mAVG ^ -0.1,

independent of the blowing ratio.

The band of data shown in Figure 46 is approximately ± 0.2. This is

not unreasonable when viewed in relation to an uncertainty in the change

in STRAVG (A STRAVG - 
± 0.05) ratioed to the change of e c (nec = 0.25).

A small data band is helieved to be due to the similarity of the spanwise

profiles for SNR data at e c z 1.0 and ec > 1.0. The alteration in pro-

file shape with an increase in e c at ei = 5.0 0 was small, and most
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measuring points seemed to experience a change in coolant temperature with

little or no change in coolant jet trajectory.

It should be remembered that use of the parameter 
mAVG' 

based on

SNRAVG' involves averaging the values of SNR across the span from hole to

hole, and tends to smear out localized effects. To examine the influence

of ec on local film cooling performance, the value of m MAX , based on

SNRMAX' was calculated.

Figure 47 shows the values calculated for mMAX using the results for

e i = 5.0°. The solid lines drawn represent the data band for mA
VG

(Figure 46). Figure 47 shows that the effect of e c was largest at

x/do = 1.50, and decreased with x/d o . The values of 
mMAX 

were of the

same magnitude as the values of mAVG (represented by the band), but

the data for 
mMAX show more scatter. There was no significant trend with

respect to blowing ratio.

A more detailed examination of the effect of e c was obtained from the

data taken at the injection location e i = 22.9 0 . For M > 0.74 data were

available for two values of ec > 1.0 in addition to the data for

ec Z 1.0 from [1] (see Appendix E, Table A9). This enabled the calcula-

tion of two values of mAVG' mMAX (designated as Regions 1 and 2) for

each value of M. For example, with M = 0.74, data were available for

ec = '1.02, 1.33, and 1.45. Region 1 defines the values of m
AVG' 'MAX

obtained for ec increasing from 1.02 to 1.33. Region 2 defines the

values of m
AVG' mMAX for e

c increasing from 1.33 to 1.45.

The results for mAVG from the data for injection at e i = 22.9 0 are

shown in Figure 48. The open and filled symbols show the results for

Regions 1 and 2, respectively. The solid lines were drawn to represent

the bands of the data in Region 1 and Region 2, as labeled. The data in

both regions show that the absolute value of mAVG was largest at x/d o - 1.50,

and generally decreased with increasing x/do . Downstream from x/uo = 1.50,

Region 1 snows mAVG in the range -0.6 :5 	 $ 0.0, similar to that for

injc;tion at e i = 5.0°, while Region 2, shows the range of mAVG

-1.6 ` 
f
''AVG ^ -0.6. In both regions the results show no significant trend

with respect to blowing ratio.

Figure 49 shows the results for 
mMAX 

for injection at e i = 22.90.

The data bands for Region 1 and Region 2 from Figure 48 are reproduced

LLI
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on Figure 49. The magnitudes of the slope based on SNRAVG and SNRMAX

are comparable, but there is more scatter and less separation of the

regions when SNR
MAX

 is used.

The data for mAVG with injection at e i = 40.8° are shown in Figure

50. The solid lines represent the band of the data. In the range

1.50 < x/do < 8.50, the values of mAVG were comparable to those found in

Region 2, for e i = 22.90 . The large (unrealist4c) values of mAVG at

x/d0 = 11.50 are attributed to the existence of negative values of SNRAVG

for the data with ec = 1.0.

The values for mMAX for injection at e i = 40.80 are shown in Figure

51, along with the data band from Figure 50. As before, the data for

mMAX are more scattered than for 
mAVG' 

A comparison of the values of

mAVG for the three injection locations shows that the influence of e c was

greatest for e i = 40.8°.

In summary, the effect of dimensionless coolant temperature (e c) on

the surface heat transfer is illustrated by the results obtained for mAVG

and mmAX. As expected, an increase in e c generally g'ves rise to a

decrease in S'R (m<0). The magnitude of the decrease in STR is dependent

on the downstream location (x/d o ) and the injection location (e i ). The

absolute value of mAVG increased as e i increased ano x/do decreased. The

results for injection at e i = 22.9 0 (Region 1 vs Region 2) indicate that

the influence of ec is not linear; that is, the value of m depends on the

range of ec . While the values of m
AVG 

and mMAX did vary some with respect

to M, it was concluded that the blowing ratio had little influence on the

slope when considering the data bands that resulted.
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V. CONCLUSIONS

This investigation was conducted using the stagnation region

cylinder in cross-flow to investigate the film cooling performance

typical of a turbine vane leading edge. Experiments were conducted with

film coolant injection from a single row of coolant holes angled in the

spanwise direction with S = 25 0 . A freestream-to-wall temperature ratio

of T./Tw = 1.7 and a Reynolds number of Re D = 9 x 104 were maintained

throughout the investigation to simulate the gas turbine environment.

The test cylinder was instrumented with miniature heat flux gages

and thermocouples to determine the Stanton Number Reduction with film

cooling, SNR = 1 - ( St FC/Sto ). The data are presented in terms of SNR

as a function of the distance downstream from injection (x/d o) and the

location between adjacent coolant holes (z/S). The local values of SNR

were in:,-grated to determine the spanwise-averaged Stanton Number Reduc-

tion, 
SNRAVG' 

as well.

The objective of the present study was to examine the influence of

dimensionless coolant temperature, ec , on film cooling performance for

single row injection. Data were taken with the row of coolant holes

located at three injection locations, e  = 5.0°, 22.90 and 40.80 , using

a hale-to-hole spacing of S/do = 5. The results for 1.18 < ec < 1.56

we.,e compared with those from the previous study [1] where similar experi-

ments were conducted with ec = 1.0. From analysis of the data, the

following observations and conclusions were drawn concerning the effects

of dimensionless coolant temperature on film cooling in the stagnation

regi on.

1) The data revealed that the effect of increasing the dimensionless

coolant temperature, e c , was to increase the value of SNR in the spanwise

region of the surface affected by the coolant. Typically, an increase in

the local value of SNR of 0.25 to 0.50 units was observed near the row of

holes as 
a
  was increased from -1.0 to -1.3.
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2) The spanwise averaged data demonstrated a similar increase in

SNRAVG as ec increased, with a rapid decay of the effect with downstream

distance (x/do).

3) An analysis of the heat transfer distribution (SNR vs t/S) was

utilized to identify the apparent trajectory of the coolant jet along the

surface. The results showed that an increase in e c could yield significant

changes in coolant jet trajectory depending on the injection location, the

magnitude of e  and the blowing ratio.

4) The data for 
SNRAVG 

and SNR MAXwere used in conjunction with the

linear superposition model [5] to determine the change in surface heat

transfer with respect to a change in e c . The calculated results for the

slope, 'AVG ( mMAX)+ showed that the influence of e c on the heat transfer

increased as the injection location (e i ) was varied from 5° to 40.8°.
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Appendix A

COOLANT MASS FLOW DISTRIBUTION

Film coolant air was supplied to the five primary coolant holes in

the instrumented region of the test cylinder, via the primary plenum,

the nitrogen heat exchanger, and the five coolant delivery-supply lines

(Figure 8). The distribution of coolant flowrate among the five lines

was calculated from a model derived from the momentum equation, using

measured values of the primary plenum pressure, temperature, and flowrate,

and the measured temperature of the coolant 
(Tc,in) 

as it entered each

tube in the drop-in segment (see Figures 11, 12, and Al).

Variations in coolant flowrate from line-to-line are coupled with

variations in temperature change from line-to-line. Examination of the

momentum equation for a given coolant delivery-supply line (i) shows the

effect of temperature change on flowrate.

The momentum equation for flow through line (i) is

-Fsi + ( Ap Pp - Ac Pc) = m  (Vc,i - Vp ,i )	 (Al)

where

Fs = friction surface force on walls of tubing

A = cross-sectional area

P = static pressure

m = mass flowrate

V = velocity

( ) p = primary plenum condition at entrance to line

( ) c = coolant condition at exit of coolant hole.

Assuming

V = T

PRECEDING. PAGE PLANK NOT FILMEQ
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then equation (Al) becomes

•2	 1	 -	 1
-Fsi + (A piPpi - Aci Ppi ) = mi 

pci Aci pp— i Tpi

Rearranging gives an expression for mass flowrate:

•	 (A i P
pi  -.Aci PCO - 

F
si	

1/2

mi =	

)/ppiA Ppi - pci 	 p ci Api

The ratio of the flow rate in a second line (j) to that in line (i) is

A	
1/2

}	 pi

•	 j^ApiPPi - Acj Pcj/ - Fs j ]	 Ppi-Pci /(pPjpcjAPj)
mi	

A	
)(ppipciApi)RApipi-AciPci)- Fsil (e 

PPj Pcj C3

The above equation shows that the coolant density (or temperature)

achieved at the coolant hole exit, p ci , has an effect on the mass flow

rate, mi . Temperature differences between line (i) and line (j) are then

coupled with flow rate differences between line (i) and line (j).

The above equation can be reduced further by noting that:

(1) all coolant lines have the same geometry, A pi = Apj and Aci = Ad,
(2) all coolant lines have the same inlet condition, P pi = Ppj,

Ppi = Ppi = pp,

(3) all coolant holes exhaust to a common injection location on the

cylinder, P
ci = Pcj'

(4) an order of magnitude calculation for the friction contribution,

based on Fs = 1/2 PV 2ACf , shows that the value of Fs is at least an

order of magnitude lower than the value of (A pPp - Acpd , and can

be neglected.

(A2)

(A3)
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RM
	

Thus, equation (A3) reduces to
	

CF jvt'.

GAa
	 1	

1 /2

r -	 m.	 pp - pci/ pci

CA pp pci) pci

Assuming ideal gas behavior, the density is given as

Pc

Pc = RTc

By defining the parameter a as

A^A
_,p ^ 1 _ a

AC pp - Ac Tp R 

then equation (A4) for the ratio of mass flow rates becomes

Pc 
1	

1/Z

C i
^.	 Ca ^T/Pc T c i_ 

m i (cl mac ) Tcj Pc

 Tci

which is simplified to

- (aTci _ Pc) I

laT	 - P
C )

(A6)
mi	 c^ 

The ratio of the total flowrate supplied to the , primary plenum to the

flowrate in tube (i) is

5

mTOTAL = ^ m

mi	 mi
j=1

(A4)

(A5)



(A7)

Therefore, the fraction of the total flowrate delivered through line (i)
is given by

Ai	 1

mTOTAL - 5

Z ^j

j-1 mi

The model developed above was used to calculate the distribution of

the mass flow rate for the five primary coolant delivery-supply lines

using the following procedure.

1. Measured values of primary plenum pressure and temperature

were used to calculate a.

2. Measured values of the coolant temperature entering the

tubes in the drop-in segment 
(Tc,in) (see Figures 11, 12

and Al) were used to calculate Tci using the calibration

of Appendix B for the coolant temperature rise in the hole.

3. An iterative calculation was required. An initial guess

for mi was used to calculate T ci from the calibration of

Appendix B. The value of m i was then calculated from the

momentum equation model herein. By iterating until con-

vergenc ,2 of m  and T ci , the distribution of coolant flow-

rate and temperature was obtained.
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Appendix B

TEMPERATURE RISE IN FILM COOLANT HOLE

The present study was conducted to determine the effects of dimen-

sionless coolant temperature (ec) on film cooling performance. The

dimensionless coolant temperature at the exit of the coolant hole was

calculated from the measured values of coolant flow rate, coolant hole

wall temperature, and coolant temperature at the inlet of each tube in

the drop-in segment. This Appendix details the development of the corre-

lation between these measured parameters and the coolant temperature at

the exit from the hole.

B.1. Model for Coolant Temperature Rise

An illustration of a typical film coolant hole is shown in Figure

Al. The hole was drilled into a drop-in segment at an angle of B - 250.

A copper tube was inserted into the inlet of the hole (a) to provide for

the connection of the film coolant supply line, and (b) to support a

thermocouple to measure the enterin^ coolant temperature (T bi ) (see

Figures 7, 11 and 12). The screen at the tube inlet was used to promote

a uniform velocity profile. Two thermocouples (.not shown, see Figures

7 and 12) were installed to measure the coolant hole wall temperature.

An energy balance for the differential control volume shown in

Figure Al yields

m cp T = hxP(Tw - Tb)	 (A8)

whe re

m = coolant mass flow rate

cp = specific heat at constant pressure

T  - coolant bulk temperature
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hx , 

q^^^(Tw - Tb)
P - perimeter of hole. wD1

Assuming a constant coolant hole wall temperature, equation (M) can be

rearranged to

d(Tb - Tw )	 hx ?r0
- Tb Tw
	

= - m cp dx	 (Ag)

Equation (A9) can be integrated with the limits

x = o	 T  = Tbi (inlet temperature measured)

x = L	 T  = Tbo (coolant temperature at hole exit)

Assuming D and cP are constant gives
P

In 1 r (Tbo _ Tw ) S _ n D 
L

1 hx dx	 (A10)
L1 bT= m 

cP o

Equation (A10) is rut in conventional form by defining an average

heat transfer coefficient for the hole

L

hm =	 f hx dx
0

then

(Tbo - Tw )	 ,rkhm
Int b' i Tw- ) -	 ih c (All)

Equation (All) is transformed to dimensionless form by defining

(Tbo - Tw)0m
	 Tbi Tw^

uc	 hm 0
Re = F- u6	

'r = ^

	

Nu = k

I 0 = d0 = coolant hole diamter



or

Nu = 
0.036	

Pr
-0.47	 L 0.745

m	
(X+) 

0.8	 (D
(Al 5)
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Then	
wDhmL	 4NumL

In 9m = - A c 	 R-e7rD

and

em = e-4Numx+

where	 x+ _ RePr

(Al 2)

Equation (Al2) can be rewritten to enabl- the calculation of the

coolant temperature rise in the coolant hole (T
bo - TO using an

empirical correlation for Nu m. Thus,

(1 bo - 
TO 

= 1 - e-4Numx+
Tw - Tbi

(Al 3)

Two correlations for flow in the entrance region of a tube are recom-

mended by Holman [9]. For laminar flow in the entrance region, the corre-

lation by Hausen [9] is

Nu = 3.66 +
3.0668

m	 x+ + 0.04 (x+)1/3
(Al 4)

For turbulent flow in the entrance region, the correlation by Nusselt [9] is

Num = 0.036 Re0.8 
Prl/3 (0/L)0.055	

for 10 < L < 400

Table Al shows a comparison of the values for Nu m computed from equations

(AM and (A15) ..d the corresponding coolant temperature rise from equa-

tion (A13). For the present study, Pr = 0.7 and L/D = 9.23.



Turbulent
(Nusselt [ 9 ])

-
(Tbo - Tbi)Numl

w	 bi

32.2 0.227

15.5 0.267

5.10 0.335

2.93 0.374
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QLALITY

Table Al. Estimetion of Nu. and (Tbo - TO
in the Coolant Hole

lami nar
(Hausen [ 9 ])

+x NUM (Tbo-, O
w	 bi

0.007 13.15 0.100

0.005 9.30 0.170

0.02 5.02 0.372

0.04 4.90 0.543

Pr a 0.7. l!U n 9.23

a:
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Because of the uncertainty of the correlation for Nu m to be used

in equation (A13), experiments were conducted to determine a correlation

for Num vs x+ for the coolant hole geometry used in the present study.

B.2. Experimental Apparatus

One of the drop-in segments was removed from the test cylinder and

arranged in a configuration where velocity and temperature profiles could

be measured at the coolant hole exit. The experimental apparatus is

illustrated in Figure A2. The drop-in segment was supported by a mounting

jig. Electrical heater plates were clamped to either side of the segment

to maintain the wall temperature approximately constant. High conductivity

thermal paste was applied between the heater strips and the segment. The

copper tube fixture was inserted into the film coolant hole to support a

vinyl coolant supply line and an inlet thermocouple. Two thermocouples

were embedded to measure the segment wall temperature. Air flow was

supplied to the film coolant hole and the air flow rate was measured with

a hot-film mass flow meter. The film coolant flowed through a circular

tube of length, L/0 - 9.23, from the inlet thermocouple to the center of

the coolant hole exit plane. The length from the screen to the center of

the exit plane was L/0 n 12.32.

A copper wedge, drilled with a coolant hole identical to the segment,

was mounted over ;.tie coolant hole, and was sealed to the segment with RTV

compound. The drilled wedge was installed to permit the velocity and

temperature profilemeasurements in the coolant hole exit plane without

influence from the free Jet expansion of the coolant into room air.

Temperature and velocity traverses in the coolant hole exit plane

were obtained using two separate probes. The temperature probe was con-

structed from a length of rioid 1.59mm o.d. tube. A copper-constantan

thermocouple ran through the length of the tube. A bare length (5.1mm,

`20 wire dia.) of thermocouple lead extended from the tube to the sensing

bead.)

1M 
An analysis of the temperature measurement error was performed [8] 	 i

(Appendix B) using a one-dimensional model with the following values:
dwire$0.25mm, d ead*0.43mm, lwiren5.imm, lwire=398W/mK, Rebeado47-430,

hbead 
= 29-14 W/X, T

w
 =367K. The worst error,	

ead
r, (T	-Tbi )/Tbi , was less

than 0.5% at the lowest coolant flow rate. 3
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The velocity probe was constructed from hypodermic tubing

(0.51mm i.d., 0.94mm o.d.). The velocity probe was used to measure

the total pressure profile in the coolant hole exit plane using an

inclined manometer with vernier scale (resolution = 0.025mm deflection).

The location of either probe in the coolant hole exit plane was

measured with the use of dial indicators attached to the probe traversing 	 j

mechanism (resolution = 0.013mm).

The static pressure was measured by a wall trap (0.46mm di.a.) drilled

in the wedge at a location 1.59mm downstream from the coolant hole exit

plane.

B.3. Description of Experiment

The flow conditions used in the coolant hole calibration were chosen

to simulate conditions encountered during the film cooling experiments.

For the film cooling experiments, the coolant mass flow rate through one

hole, for film cooling, was in the range 0.137 < m < 1.37 Kg/hr. The

segment wall temperature had a nominal value of 294K and the coolant in-

let temperature fell in the range 155 = Tbi ` 300K. This combination of

temperature and flowrate extremes results in a range for x + 1 of

1.7 x 10
-3
 < x+ < 2.3 x 10-2 . The range of inlet temperature difference

(Tw - Tbi ) was -6 < AT < 140K°.

For the coolant hole calibration, an inlet temperature difference

was created by heating the segment to a wall temperature of about 360K.

The resulting inlet temperature difference was in the range 40<(Tw-Tbi)<55K0.

By varying the coolant flow rate, the range of x + investigated in the cali-

bration was 2.4 x 10-3 < x+ < 2.3 x 10-2.

For a given calibration experiment, the coolant mass flow rate and

electrical power to the heater plates were adjusted to give the desired

values of x+ and inlet temperature difference. The temperature and velo-

city profiles in the coolant hole exit plane were measured to evaluate

Tbo'

1 The properties in x+ were based on an inlet film temperature,

Tfi - (Tbi + Tw)/2.

____ ..
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Figure A3 illustrates the typical grid used for measuring the

coolant temperature and velocity in the coolant hole exit plane. Prior

to probe insertion, the alignment of the probe traversing mechanism was

checked with a dial indicator to ensure traversing in the x-z plane.

The temperature probe was inserted to locate the probe tip at the center

of the coolant hole exit plane. The probe was traversed along lines of

constant x, in increments of approximately 1.02mm. Probe movement in

the z-direction was halted when the probe body contacted the wedge, as
determined by electrical continuity between the probe body and the wedge.

When the temperature traverse was completed, the flow conditions

were maintained constant and the total pressure probe was inserted and

located at the center of the coolant hole exit p"Iane. The total pressure

was measured at selected grid points as shown in Figure A3.

After completing the total pressure traverse, the total pressure

probe was placed at the center of the coolant hole and the wall static

pressure at the exit of the coolant hole was measured.

B.4. Bulk Temperature Evaluation

The bulk temperature is defined to represent the energy convected

through a given area.

mcpTb = j p cpT (V FA)
Assuming the variation of specific heat is negligible, the expression for

bulk temperature at the coolant hole exit plane can be written as

-	 j pT(VsingdA)	 (A16)
Tbo - m A

where	 V • dA = VdAcos(w/2-0) = VdAsins

dA = element of area in th,::nolant hole exit plane

g = angle between hole centerline and segment surface

The integration is performed over the coolant hole exit plane area where

temperature, velocity and density are functions of x and z.



ORIGINAL PA"

OF pWR QUAMY

110

N

\\x

x 0 ® x

O O 00

00 00
00 00
00 00
00 00
0 0 00

PC	 Q
No

00 00

00000

00008
000080 0 x

x x x x x

x x x x x

O 4
CL

b

d
CL
^

•Q

t-

O 'D

Md

CL C8

a ^,

t
3

^
.o
a
c

E
E o

H a

Ox

0`,	 La
d	 w

N	 0

N

1

O2
Cv
6OU

L
N
a^

4J
•r
VO
a,



111	 ;^^^ .. 	 ^

OF	
iU.f jY

Equation (A16) can be put in dimensionless form by defining

8= Tw -T
Tw- b i

Tbo =

	

	 I pV[Tw - e(Tw - Tbi)]sinsdAm A

then

Rearranging the above gives

m(Tw - Tbo ) = J pVe(Tw - Tbi)sinsdA
A

Then noting

em Tw Tbi	 m = 1 PV sinsdA

A

we obtain

em

f
A 

pVedA
_  j

A pVdA

(All)

Assuming ideal gas behavior for the air and a uniform static pressure in

the coolant hole exit plane, equation (All) becomes

1 eVdA
em =	 A	 (A18)

j	
T dAA

The measurements of temperature and velocity in the coolant hole exit

plane were used in conjunction with equation (A18) to determine e m by

numerical integration.



112

	

OF	 u'	 EPOOR QUALITYITY

B.S. Data Reduction

For each calibration experiment, the following data were recorded.

(1) coolant mass flow rate, m, ( uncertainty t 5%).
(2) coolant inlet temperature, Tbi , and coolant hole wall tempera-

ture, Tw (average of two wall thermocouples),

(3) coolant temperature distribution, T(x,z), (see Figure A3),

(4) coolant total pressure distribution, PT (x,z) - Patm, (see

Figure A3) ,
(5) coolant static pressure, Ps - Patm , (total pressure probe

centered) and atmospheric pressure.

At each location of temperature measurement, the value of dimension-

less temperature (e) was calculated as

e(x,z) _ [T(x,z) - Tw]
Tbi  - Tw

At the wall, the value of e(x,z) was set equal to zero.

The velocity was calculated, assuming incompressible flow, as

V(x,z) =	 2jPT(x,z^-Ps^]/p(x^.z).

where

Ps
p(x,z) = R x,z

To account for small variations of Tbi and Tw during the course of an

experiment, the temperature, T(x,z), was determined using the value of

G(x,z) from the temperature profile measurements and the values of Tbi

and Tw observed during the total pressure survey. At velocity measure-

ment locations which did not coincide with temperature locations (see

Figure A3), a was determined by interpolation using a second order poly-

nomial.
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The dimensionless bulk temperature at the coolant hole exit plane

was determined from equation (A18).

ff e(x,z) Y x,z 
dx dz

x z

em =	 (A18)

r V x t 
dx dz

J T x,t
x z

The integrals were evaluated numerically using a second order polynomial

fit to the data.

The average Nusselt number was calculated from equation (Al2)

where x+ was based on the measured coolant mass flow rate with fluid

properties based on the inlet film temperature, Tfi = (T
bi + Tw)/2.

The velocity profile also was used to calculate the coolant mass

flow rate according to

mcaic - sin$ PR f T dx 	 dz
	

(A20)

The integration was performed numerically using a second order polynomial

fit of the data.

B.6. Results

The calibration for temperature rise in the coolant hole was per-

formed for four flow conditions: x + = 2.40 x 10-3 , 3.30 x 10-3,

6.28 x 10-3 and 2.27 x 10-2 . This section presents the temperature and

velocity profiles for each flow condition and the resulting data for

Nusselt number vs. x+.

Figures A4 through All present plots of the dimensionless temperature

and velocity for the four flow conditions. The abscissa for each is the

nondimensional z coordinate, z/B, normalized with respect to half the
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length of the major axis (see Figure A3). Symbols, defined in the legend

represent the nondimensional x coordinate, x/A, (A = half the length of

minor axis, Figure A3) for a traverse at constant x.

The plots for dimensionless temperature (Figures A4 through A1) show

that the value of a increases as x+ decreases, indicating that the temper-

ature at the hole exit tends toward the inlet temperature (T bi ) as mass

flow rate increases. The profiles generally are skewed with the point of

maximum a (minimum coolant temperature) usually found when z > 0.

Figures A8 through All show similar results for the velocity measure-

ments. The profiles are relatively flat for the two larger values of x+

(smaller coolant flow rate). The velocity profiles are somewhat skewed

toward z>0.

The skewing of the temperature and velocity profiles may be attri-

buted to the shallow angle of the coolant hole. Reference to Figure Al,

for a coolant hole at S = 25 0 , indicates a centerline l ength of L/D=12.32

from the screen,L/D = 9.23 from the inlet thermocouple. The surface

length along the bottom of the hole, x/A = 0, z/B = +1, is L/D = 13.37

from the screen, while the surface length along the top of the hole,

x/A = 0, z/B = -1, is L/D = 11.27 from the screen. An additional influ-

ence on the profiles may be the presence of the inlet temperature thermo-

couple which protrudes from the lower surface, halfway into the flow

stream.

The velocity profile data were integrated (equation (A20)) for each

flow condition, to determine mcalc for comparison with the mass flow rate

indicated by the flowmeter. Figure Al2 shows the percent error in the

calculated mass flow rate, 
(mtrue - mcalc)/mtrue' using the flowmeter

reading as the true flow rate. It is seen that the integrated results

agreed within ± 20% of the flowmeter flow rate. An analysis to determine

the effect of velocity profile on the integrated value of the bulk dimen-

sionless temperature [8] Appendix B. showed that an error in the shape of

the velocity profile would cause a maximum uncertainty in em of about

±6% for 2.4 x 10 -3 4 x+ -4 6.3 x 10-3 and an uncertainty of about ±16%

in em for x+ near 2.3 x 10-2 (low flow rate).

The final results of the calibration experiments are shown in Figure

A13. The Nusselt number was calculated from equation (A19) after integrating
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the profile data for em. Also shown on Figure A13 are two curves repre-

senting the correlations of Nusselt and Nausen. There is good agreement

between the data of the present study and the curve for turbulent flow

in the range x+ ` 0.001 (Re ' 1900). The data are higher than the corre-

lation for laminar flow which may be due to the presence of the screen at

the inlet to the coolant hole.

Figure A13 indicates the estimated uncertainty in the value of mean

Nusselt number. Using the method of Kline and McClintock [10], the un-

certainty in x+ was determined to be t 6%, due mostly to the uncertainty
in the flowmeter calibration. Using this estimate for uncertainty in x+,

and the previously mentioned uncertainty in e m due to profile errors, the

estimated uncertainty in Num is about t 10% for x+ s 6.3 x 10-3 and about
±17% for x+ ' 6.3 x 10-3.

A second order least squares curve fit to the data for mean Nusselt

number versus bulk dimensionless temperature yielded the following equation

+ (0.686 + 0.302logx+)
Num = 14.85 x	 (A21)

For the film cooling experiments, the coolant exit temperature (Tc)

was determined by equation (A13) (T c = Tbo ) using equation (A21) for

Num , the measured values of T 
b i 

and Tw , and the coolant hole mass flow

rate determined as described in Appendix A.

L
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Appendix C

SURFACE ROUGHNESS

The instrumented test cylinder was equipped with drop-in segments.

Measurements were made of the surface roughness created by the segments,

and the effect of roughness was evaluated in terms of findings in the

literature on the effects of roughness on cylinder surface heat transfer

(see [1] for more details).

The roughness at the seam between the cylinder surface and the seg-

ment was measured by rotating the cylinder past a dial indicator (60m

resolution). The roughness was measured along all seams with the resulting

step-changes in surface height shown on Figure A14.

Figure A14 shows, to scale, a schematic of the five drop -in segments

(S1-S5), with ticmarks along both seams of each segment representing the

locations along the segment at which the step-change in height was

measured. The measuring point locations are shown relative to the side

walls of the flow channel and relative to the heat flux gage locations.

Numerical values for roughness are given in microns, with a positive

sign denoting a step increase in height between the cylinder surface and

the segment, and a minus sign denoting a step decrease in height between

the cylinder surface and the segment.

The measurements show that the largest roughness measured was

K = -228um, or, nondimensionalized, K/D = 15.0 x 10-4 (D = cylinder

diameter). This was located at the end of Segment 2, far from the in-

strumented region of the cylinder. Considering the instrumented region,

the largest roughness measured was K = 126um, K/D = 8.3 x 10 -4 (along

the second and third segments).

The effect of roughness on cylinder heat transfer was studied by

Achenbach [11], where roughness was created by attaching emery paper to

a test cylinder surface. When tested with a Reynolds number of

Rep = 8.3 x 104 , and a sand-grain roughness of K
S
 /D = 7.5 x 10-4 , the

heat transfer around the cylinder, compared to that of a smooth cylinder,

PRECEDING PAGE BLA`K NOT FILMED'
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was unaffected by the roughness. The heat transfer around the cylinder

was unaffected by a four-fold increase in roughness, K s/D n 30 x 10-4,

at the Reynolds number Rep s 6.3 x 104.

It was concluded from Achenbach's results that the heat flux data

of theresent study,dy, conducted under conditions of Re D = 1.1 x 10

K/D < 8.3 x 10-4 , were unaffected by surface roughness.

k-
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Appendix D

ADDITIONAL COMMENTS ON HEAT FLUX GAGE BEHAVIOR

Throughout the present study, the reproducibility of the heat flux

gage output was carefully monitered because of the increase in indicated

dry wall heat flux by some gages between the previous study [1] and the

present.

% It has been mentioned previously (Section III.F.) that some heat

flux gages were disqualified on the basis of an increase in Nu/ Rep of

greater than 20% over the results of [1]. These gages were disqualified

throughout the present study. The data from other gages, however, were

occasionally disregarded when their output was seen to be erratic.

In cases where heat flux gage output was disregarded, it was due to

large variations in the four readings obtained at a given condition (see

Section II.E.). When inspected after finding a given gage had produced

an erratic reading, the physical reason for gage malfunction could be seen.

For an erratic gage, it was found that a residue had deposited over the

heat flux gage surface. The residue was believed to be caused by the

oxidation of the beryllium-copper surface.

The fact that the residue appeared during runs in this study and

not in the previous study [1] is likely caused by a difference in run

technique. Between blowing ratio conditions in this study, the hot

freestream gas flow was shut off while the liquid nitrogen heat exchanger

reached a new steady heat transfer condition. In the meantime, condensate

developed on the test surface. It is believed that the combination of the

condensate and possible oxidation caused a residue to develop on the gage

after the combustor was restarted and the condensate evaporated. In the

previous study [1], experiments were run from start to finish in the

presence of the hot freestream gas flow without the opportunity for con-

densate to form.

In the present study, when a gage was observed to indicate errati-

cally, the output from that gage was consistently erratic throughout the



remainder of that test, and thus was discarded. After the test, when

the cylinder surface was routinely cleaned, the residue was removed and

the gage was returned to normal operation.

A list of gages and the conditions under which their output was dis-

carded is contained in Table A2.

Table A2. List of Conditions Under Which
Specified Gage Was Erratic

Condition Gage Location

e i M ec x/do Z/S

22.9 0 0.25 1.18 25 11.50 0.67

0.75 1.33 9 1.50 0.67

1.44 13

19

3.50

8.50

0.67

0.50

8

9

.50

1.50

0.

0.67

. 30 0

1.56

9

.50

1.50

0.33

0.67

0. 0. 1.36 25 11-50 0.6

0.51<M<1.58 <ec<1.4

20

6.50

8.50

0.83

0.83

.58 1.36 1	 7 1.50 0.0
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Appendix E

TABULATION AND PLOTS OF EXPERIMENTAL DATA

Tables A3 through A5 summarize the data of the present investigation

for film cooling with ec > 1.0. Tabular entries give the value of SNR

at the streamwise (x/d o) and spanwise (z/S) coordinate for each heat flux

gage. The valut! of blowing ratio M, was calculated as the average value

of the blowing ratios for the five primary coolant holes. The value of

ec , was calculated as the average of the values of e c for the five primary

coolant holes.

Table A6 lists the spanwise-averaged Stanton Number Reduction, SNRAVG'

and the corresponding streamwise location of the row of gages.

A dash (-) in the table means no data was available at that condition

(see Appendix D).

Figures A15 through A50 are plots of the date in Tables A3, A4 and

A5. Plots that are presented in Chapter IV (Figures 17 throuah 321 are

not repeated here. The plots illustrate the spanwise distrib

SNR. The plots and the data were used to calculate values of

the coolant trajectories as discussed in Chapter IV. All plo

are presented in Chapter IV (Figures 33 throug: 42).
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OF POOR QUALITY

i
i

	

1.00	
INJECTION LOCATION = 5.0 DEG.

	

.90	 M = 2.99
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X/do = 1.50	 X/do = 3.50

8c = 1.03	 x 8c = 1.03

	

.70	 a GC = 1.29	 a GC = 1.29

.60
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0.0	 .1	 .2	 .3	 .4	 .5	 .6	 .7	 .8	 .9 1.0

SPANWISE LOCATION (Z/S)

Figure A15. Spanwise Variation in Stanton Number Reduction
(e i = 5.0°, M=2.99, x/do= 1.50 and 3.50)
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OF Hu:	 N..^Y

INJECTION LOCATION = 5.0 DEG.

M=2.99
X/do = 6.50	 X/do = 8.SD
w GC = 1.03	 x 8c = 1.03
0 8C = 1.29	 a GC = 1.29

r

0.0	 .1	 .2	 .3	 .4	 .5	 .6	 .7	 .8	 .9 1.0
SPRNWISE LOCATION (Z/S)

Figure A16. Spanwise Variation in Stanton Number Reduction

( a i = 5.0°, M= 2.99, x/do=6.50 and 8.50)
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INJECTION LOCATION = 5.0 DEG.
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SPRNWISE LOCRTION (Z/S)

Figure A17. Spanwise Variation in Stanton Number Reduction
(e i = 5.0°, M=2.99, x/do=11.50)
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OF	 Q--` fliTY

INJECTION LOCATION = 5.0 DEG.
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* 8C = 1.03	 x 8c = 1.03
0 8C = 1.32	 a 8C = 1.32

0.0	 .1	 .2	 .3	 .4	 .S .6	 .7	 .8	 .9 1.0
SPANWISE LOCATION (Z/S)

Figure A18. Spanwise Variation in Stanton Number Reduction
(e i = 5.0 0 , M=5.17, x/do= 1.50 and 3.50)
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INJECTION LOCATION = 5.0 DEG.
1.00

	

.90	 M = 5.17	 -

	

.60	 X/do = 6.50	 X/do = 8.50
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SPRNWISE LOCATION (Z/S)

Figure A19. Spanwise Variation in Stanton Number Reduction
(0 i = 5.0°, M=5.17, x/d o=6.50 and 8.50)
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INJECTION LOCHU ON = 5.0 DEG.
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SPANWISE LOCATION (Z/S)

Figure A20. Spanwise Variation in Stanton Number Reduction
(0 i = 5.0°, M=5.17, x/do=11.50)
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0.0	 .1	 .2	 .3	 .4	 .S	 .6	 .7	 .8	 .9 1.0
SPRNWISE LOCATION (Z/S)

Figure A21. Spanwise Variation in Stanton Number Reduction
(e i = 5.0°, M=10.23, x/d o=1.50 and 3.50)
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OF POOR Qom: y i ^`^

INJECTION LOCATION = 5.0 DEG.
.60

.50

.40

.30

.20

z .10

.00

o -.10
H^

U -.20

C3 -.30w
-.40

w - .50
M

-.60

Z - .70
z
ED -.80

CC -.90

(0 -1.00

-1.10

-1.20

-1.30

-1 40
0.0	 .1	 .2	 .3	 .4	 .5	 .6	 .7	 - 8	 .9 1.0

SPRWISE LOCRTION (Z/S)

Figure A22. Spanwise Variation in Stanton Number Reduction
(e i = 5.0°, M=10.23, x/do=6.50 and 8.50)
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ORICANAL PAVE 19
OF POOR QUALITY
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SPRNWISE LOCRTION (Z/S)

Figure A23. Spanwise Variation in Stanton Number Reduction

(e i =5.0°, M=10.23, x/do=11.50)
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INJECTION LOCATION = 22.9 DEB.
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0.0	 .1	 .2	 .3	 .4	 .5	 .6	 .7	 .8	 .9 1.0
SPANWISE LOCATION (Z/S)

Figure A24. Spanwise Variation in Stanton Number Reduction
(0 i "22.9 0 , M=0.25, x/do= 1.50 and 3.50)
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INJECTION LOCATION = 22.9 DEG.

M = 0.25
X/do = 6.50	 X/do = 6.50
* 8c = 1.03	 x Ac = 1.03
0 8c=1.18	 ABC= 1.18

0.0	 .1	 .2	 .3	 .4	 .5	 .6	 .7	 .8	 .9 1.0
SPANW I SE LOCATION  (7_/S )

figure A25. Spanwise Variation in Stanton Number Reduction
((,i.22.9", M=0.25, x/d o=6.50 and 8.50)
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INJECTION LOCATION = 22.9 DEG.

M = 0.25
X/do =11 .50
w 8c= 1 .03

0 8C = 1.18

0.0	 .1	 .2	 .3	 .4	 .5	 .6	 .7	 .8	 .9 1.0
SPANWISE LOCATION (Z/S)

Figure A26. Spanwise Variation in Stanton Number Reduction

(0 i =22.9°, M =0.25, x/do=11.50)
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ORIGINAL PAW IS
OF POOR QUALITY

INJECTION LOCATION = 22.9 DEG.
1.80

	

1.70	 M = 0.74

	

1.60	 X/do = 1.50

	

1.50	 w 80 = 1.02
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0.0	 .1	 .2	 .3	 .4	 .5	 .6	 .7	 .8	 ,9 1.0
SPANWISE LOCATION (Z/S)

Figure A27. Spanwise Variation in Stanton Number Reduction
(0 i =22.9°, M=0.74, x/do=1.50)
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SPANWISE LOCATION (Z/S)

Figure A28. Spanwise Variation in Stanton Number Reduction

(e i =22.9°, M=0.74, x/do=3.50)
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OF POOR tL 's° !`C Y

INJECTION LOCATION = 22.9 DEG.
i

M = 0.74

X/do = 6.50	 -

mk 8c= 1.02

0 8c = 1.33
e 8c = 1.45

0.0	 .1	 .2	 .3	 .4	 .5	 .6	 .7	 .8	 .9 1.0
SPRNWISE LOCATION (Z/S)

Figure A29. Spanwise Variation in Stanton Number Reduction
(0 i = 22.9°, M =0.74, x/do=6.50)
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OE POOH Q, IIIUTY

INJECTION LOCATION = 22.9 DEG.
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Figure A30. Spanwise Variation in Stanton Number Reduction

(e i =22.9
0 , M=0.74, x/do=8.50)
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INJECTION LOCATION = 22.9 DEG.
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0.0	 .1	 .2	 .3	 .4	 .6	 .6	 .7	 .8	 .9 1.0

SPANWISE LOCATION (Z/S)

Figure A31. Spanwise Variation in Stanton !Number Reduction

(a i =22.9°, M=0.74, x/do=11.50)
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F

INJECTION LOCATION = 22.9 DEG.
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Figure A32. Spanwise Variation in Stanton Number Reduction

( ( i = 22.9°, M=2.45, x/do=1.50}

M=2.45
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\ ABC =  1.39

i



156

i
i

INJECTION LOCATION = 22.9 DEG.
1.40

1.20

1.00

.80

.60
cn

.40

zo .20H
U .00
ZD
nw - .20

c^ -.40w
- .60

z - .80z
-1.00

z
CC -1 .20

t1^
-1.40

-1.60

-1.80

-2 00

t

M = 2.45
X/do = 3.50
w 80 = 1.01

0 8C = 19 09
e 8C _ 1.39

0.0	 .1	 .2	 .3	 .4	 .5	 .6	 .7	 .8	 .9 1.0
SPRNWISE LOCRTION (Z/S)

Figure A33. Spanwise Variation in Stanton Number Reduction
(0 i = 22.9°, M=2.45, x/do=3.50)
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Figure AX Spanwise Variation in Stanton Number Reduction

e i =22.9% M=2.45, x/do 6.50)
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OF POOR QUALITY

INJECTION LOCATION = 22.9 DEG.
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0.0	 .1	 .2	 .3	 .4	 .5	 .6	 .7	 .8	 .9 1.0
SPRNWISE LOCATION (Z/S)

Figure A35. Spanwise Variation in Stanton Number Reduction
(0 i = 22.9°, M=2.45, x/do=8.50)
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Figure A36. Spanwise Variation in Stanton Number Reduction
(e i =22.9°, M=2.45, x/do=11.50)
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INJECTION-LOCATION 40.8 DEG.
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A37. Spanwise Variation in Stanton Number Reduction
(e i =40.8, M= 0.51, x/do=1.50)
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OF POOR

INJECTION LOCATION = 40.8 DEG.
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Figure A38. Spanwise Variation in Stanton Number Reduction
(e i =40.8°, M-0.51, x/do=3.50)
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INJECTION LOCATION = 40.8 DEG.
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Figure A39. Spanwise Variation in Stanton Number Reduction
(0 i = 40.8°, M=0.51, x/do=6.50)
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Figure A40. Spanwise Variation in Stanton Number Reduction
(e i =40.8% M=0.51, x/do=8.50)
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INJECTION LOCRTION = 40.8 DEG.
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Figure A41. Spanwise Variation in Stanton Number Reduction
(0 i =40.8°, M=0.51, x/do=11.50)
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Appendix F

HEAT FLUX REPRODUCIBILITY
(ec _ 1.0)

Preliminary film cooling experiments were conducted in the present

study with ec -- 1.0 to verify the reproducibility of data obtained in

Reference [1]. See Section III.G. for discussion. Figures A51 through

A58 show the data for additional heat flux gages (e i s 22.90 ) from the

present and previous studies. The value of the blowing ratio was taken

as the blowing ratio of the film coolant hole directly upstream of the

particular heat flux gage,. This was necessary due to the variation of

blowing ratio that resulted from the differences in flow resistance in

each of the installed rubber coolant supply lines. In general, the agree-

ment of the data from the two studies was good.
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