## General Disclaimer <br> One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.


# Mns <br> Technical Memorandum 84985 

## NIMBUS-7 ERB MATGEN Science Document

(NASA-TM-84985) NIMBOS-7 ERB MATGEN SCLEACE<br>N83-31343<br>DOCUMENT (NASA) $135 \mathrm{p} \mathrm{HC} \mathrm{AO7/MF} \mathrm{A01}$<br>Csus U9B<br>G3/61 \(\begin{array}{ll} \& Unclas<br>28366\end{array}\)

April 1383

National Aeronautics and
Space Administration
Goddard Space Flight Center
Greenbelt, Maryland 20771

## NIMBUS-7 ERB-MATGEN SCIENCE DOCUMENT

# Prepared For <br> NATIONAL AERONAUTICS AND SPACE ADMINISTRATION GODDARD SPACE FLIGHT CENTER GREENBELT, MARYLAND 20771 

Prepared By
RESEARCH AND DATA S YSTEMS, INC.
10300 GREENBELT ROAD
LANHAM, MARYLAND 20706

Under
CONTRACT NO. NAS 5-26123
TASK ASSIGNMENT 21

TECHNICAL MONITOR
DR. LEE KYLE

APRIL 1983

The requirement for the use of the International System of Units (SI) has been waived for this document under the authority of NPD 2220.4, paragraph 5.d.

## PREFACE

This ERB MATGEN Science Document was prepared for NASA under contract NAS 5-26123 by Harold V. Soule of Research and Data Systems, Inc.

This document was developed to describe in detail the algorithms and data flow used to completely convert sensor data into equivalent radiometric data. The Nimbus satellite location, orientation and sensor orientation algorithms (at the data gathering time) and relevant software for use in data footprint location are also detailed. The computer housekeeping and data flow algorithms required to facilitate these computations are outlined. Calibrated and located earth radiances and irradiances, calibrated solar irradiances, pertinent housekeeping data and orbital summary data are recorded on the ERB Master Archive Tape (MAT).

The MATGEN has been continually improved resulting in at present over 14 versions. The early versions (up to 10) contain data for only one day's observations on a magnetic tape. Versions 11 and greater contain 3 day's observations on a magnetic tape in a densor format. In addition, other changes were made in the data flow and a Trailing Documentation File (TDF) was added to version 11 and greater. The detailed information regarding the tape content in each version will be contained in the User's Guides and where applicable will be noted in this document.

The scientific algorithms used in the MATGEN program were established by the ERB NIMBUS Experiment Team (NET) whose members and affiliations are given below.

ERB NET Members

| * Kyle, L. | NASA/GSFC |
| :---: | :--- |
| **Arking, A. | NASA/GSFC |
| **Campbell, G.G. | CIRA, Colorado State U. |
| ***Coulson, K.L. | University of California, Davis |
| Hickey, J.R. | Eppley Lab., Inc. |
| House, F.B. | Drexel University |
| Ingersoll, A.P. | California Inst. of Technology |
| Jacobowitz, H. | NOAA/NESS |


| ** Maschhoff, R.H. | Gulton Inductries Inc. |
| :--- | :--- |
| Smith, G.L. | NASA/LaRC |
| Stowe, L.L. | NOAA/NESS |
| Vonder Haar, T.H. | Colorado State University |
|  |  |
| * Elected NET Leader <br> **) Elected Members |  |
| * Left the NET because of other committments. |  |

**Maschhoff, R.H.
Smith, G.L.
Stowe, L.L.
Vonder Haar, T.H.

Gulton Inductries Inc.
NASA/LaRC
NOAA/NESS
Colorado State University

[^0]The computer algorithms were written by Systems and Applied Sciences Corporation under a separate contract. John Kogut and Richard Heasty did the original programming in 1977, 1978 and 1979 but many other analysis have helped maintain the program in subsequent years.

The Editor would particular like to thank the following individuals who gave important assistance in assembling the material for this document.

| Mr. J. Hickey | Eppley Lab |
| :--- | :--- |
| Dr. H. Jacobowitz | NOAA |
| Dr. L. Kyle | NASA |

PAGE
PREFACE ..... i
SECTION 1.0 INTRODUCTION ..... 1
1.1 Science Document Purrose ..... 1
1.2 General MATGEN Objectives ..... 7
SECTION 2.0 INPUT PARAMETER DEFINITIONS ..... 8
2.1 Data From User Formatted Output Tape ..... 8
2.2 Data From Image Location Tape ..... 19
2.3 Data From Disc Data Set ..... 27
SECTION 3.0 SOLAR LOCATION ALGORITHMS ..... 28
Minimum Solar Elevation Time ..... 28
3.1
Sun/Earth Distance ..... 29
SECTION 4.0 SENSOR STATUS, TEMPERATURES ANDHOUSEKEEPING35
4.1 ERB Status Determination ..... 35
4.2 Temperature Data Conversion ..... 36
4.3 Software Data Flow ..... 40
SECTION 5.0 LOCATION ALGORITHMS ..... 50
5.1 Introduction ..... 50
5.2 Time, Position and Angle Computations ..... 52
5.3 Basic Location Subroutines ..... 58
5.4 Supplemental Subroutines ..... 66
SECTION 6.0 EARTH OBSERVATION CHANNELS ..... 72
Introduction ..... 72
6.1
Wide FOV Channels ..... 72
6.2
NFOV Processing Channels ..... 72
6.3
Software and Data Flow ..... 75
6.4Longwave Scanning Channels76
SECTION 7.0 SPECIAL MODE PROCESSING ..... 89
7.1 Introduction ..... 89
7.2 Data Updating, Quality Control and Regression/Correction ..... 89
7.3 Calibration Algorithms ..... 97
SECTION 8.0 SOLAR DATA PROCESSING ALGORITHMS ..... 111
8.1 Channels (1-10) Algorithms ..... 111
8.2 Software and Data Flow ..... 115
SECTION 9.0 REFERENCES ..... 116

| APPENDIX A | DIGITAL SOLAR ASPECT SENSOR (DSAS) ANGLE |  |
| :--- | :--- | :--- |
|  | DEFINITIONS AND COMMENTS | 117 |
| A-1.1 | Angle Definitions and Comments | 117 |
| APPENDIX B | DATA MANIP ULATION SUBROUTINE LIST | 124 |
| APPENDIX | C | ABBREVIATIONS AND DEFINITIONS |

## FIGURES

Figure No. Page No.
1.1 Overall MATGEN Data Processing Flow ..... 2
1.2 General MATGEN Data Flow ..... 3
1.3 MATGEN computer hierarchy ..... 5
2.1 Celestrial Sphere Geometric Angle Orientations ..... 24
3.1 ORBPER Data Flow Chart ..... 30
3.2 CALEND Data Flow Chart ..... 31
3.3 SUNDIS Data Flow ..... 33
3.4 MINSEL Data Flow ..... 34
4.1 STATUS Data Flow ..... 37
4.3.1 MDNTMP Data Flow Chart ..... 42
4.3.2 IPMT Flow Diagram ..... 43
4.3.3 rMTEMP Data Flow Chart ..... 45
4.3.4 HkSTS Flow Diagram ..... 47
4.3 .5 MAIN ..... 48
5.1 Spacecraft (S/C) Position and Velocity Vectors ..... 53
5.2 Spacecraft Coordinate System ..... 54
5.3 ORBSTS Data Flow Diagram ..... 59
5.4 LOCNDR Flow Chart ..... 61
5.5 PROSCN Data Flow ..... 61
5.6 LOCATR Data Flow ..... 65
5.7 INTERP Data Flow ..... 67
5.8 ALFVFY Flow Diagram ..... 68
5.9 BETVFY Flow Chart ..... 70
5.10 SLEWRT Data Flow ..... "1
6.1 ERBCAL Data Flow Chart ..... 77
6.2 PROCOR Data Flow ..... 79
6.3 STC Data Flow Chart ..... 82
6.4 FRAD Data Flow Chart ..... 83
6.5 FILRAD Data Flow ..... 88
7.1 SPMODE Data Flow ..... 90
7.2 SECAL Data Flow Chart ..... 91
7.3
SWCHK Data Flow Chart ..... 95
7.4 REFCC Flow Diagram ..... 96
7.5 ECAL Data Flow ..... 98
7.6 PLATE Flow Diagram ..... 99
7.7 LWCAL Data Flow ..... 101
7.8 SPACE Data Flow ..... 103
7.9 SPSCS Data Flow Diagram ..... 105
7.10 LWCHK Flow Diagram ..... 107
7.11 GONOGO Data Flow ..... 108
7.12 ISTAT Data Flow ..... 110
8.1 SOLAR Data Flow ..... 112
A-1 Schematic of the S/C Orbital Plane Angle ..... 118

### 1.0 INTRODUCTION

### 1.1 SCIENCE DOCUMENT PURPOSE

Details regarding the ERB scientific algorithms and the manner in which they are implemented on a computer are necessary in any analysis or ERB MATGEN diagonistic work. This document describes in detail the manner in which raw ERB data counts in conjunction with satellite housekeeping and location daca is processed producing calibrated earth and solar radiation. These calibrated data are recorded on magnetic tape on an orbit by orbit basis with each day covering one data day. There are about 14 Nimbus-7 orbits per data day. At the beginning of each tape there is a header file and following the up to three days calibrated data, a Calibration Adjustment Table (CAT), and Trailing Documentation File (TDF) (version 11 and greater).

During the development of this document it was noted that important algorithms such as those used in the Digital Solar Aspect Sensor (DSAS) which were used in but not programmed in MATGEN were not available elsewhere. Therefore the DSAS data reduction was put into Appendix A.

The overall input/output characteristics of MATGEN are shown in Figure 1.1. This Figure also gives the basic MATGEN tasks. The basic MATGEN task is computing the sensed radiances and irradiances using satellite transmitted data. The geographic location of the data, orbital and daily data averages are also determined by this set of algorithms.

The MATGEN subprograms are divided into a number of basic tasks in Figure 1.2. It will be noted that each task makes use of both the outputs of other tasks and of other data which are generated separately (i.e. ILT and UFO data). The characteristics of the basic MATGEN tasks shown in Figure 1.2 are as follows:

TASK I - Solar Location
This program determines the exact "butchered" Julian time* so that the exact double precision earth sun distances can be determined. It also computes the minimum solar elevation determining the pre-set time at which space reference data and then the solar data is used.
TASK II-ERB Status, Housekeeping Update and Temperature Determination

This aspect of ERBMAT reads all logical status indicators from odd digital "A" words. It also determines ILT status and updates

* Julian time divided into hours, minutes and seconds see section 3.1
nomery reat is or roor cuniry


FIGURE 1.1 Overall MATGEN Data Processing Flow
the housekeeping data for use in next digital A frame analysis. All pertinent temperature counts are converted to temperatures for use in the data reduction.
TASK III - Geographical Location
Using ILT data the geographical nadir grid points and attitude of ERB at the time of data acouisition is determined. The narrow field-of-view (NFOV) channel pointivg locations are also computed.
TASK IV - Radiation Data Conversion
All of the earth channel count data are coverted into equivalent radiances or irradiances using these routines.
TASK V - Special Mode Processing
Several instrument calibration measurements made at frequent intervals are processed by this program. They include the staircase electronics calibration, NFOV scanner space and interval calibration target viewing and the wive field-of-view intercomparison of shannels 11 and 12. The channel gains and gain change corrections are also done by these programs. buth long and shortwave solar and earth flux :alues are corrected. Regression analysis is used to correct for gain and linearity changes.
TASK VI - Solar Data Processing
Using appropriate temperature and housekeeping data all of the solar data are converted from counts into solar irradiances.

Figure 1.3 shows all of the MATGEN subroutines and their inter-relationships. Many of these subroutines are primarily of a data manipulation nature and therefore have only been listed and briefly described in Appendix B. The MATGEN code number following esch subroutine name has been included in the figure identification of all flow diagrams. This should aid in cross-referencing the subroutines and the data flow. All oí the data flow diagrams are from the SASC document listed in the references.

A summary of the terms ald abbreviations used in this document will be found in Appendix C. Sone pertinent terms are included with their use in this document.


Figure 1.3 MATGFN Conputer Hararchy Chart Showing the Subroutine Re'.ationships. In this report these subroutines are re :- anted into the various tasks given in Figure 1.2


### 1.2 GENERAL MATGEN OBJECTIVE

The MATGEN program accomplishes the following specific operations:
o Reads satellite data from the UFO and the ephemeris data from the ILT.
o Matches UFO and ILT records
o Unpacks UFO Digital A data and telemetry data
o Unpacks Digital A data to determine Instrument Status during M.F.

- Converts temperature monitor counts to temperature and maintain statistics.
o Interpolates orbital parameters for each observation
o Convert instrument counts to irradiances or radiances and screen for validity.
o Processes special modes
o Channel 10C tests
o Electronic Calibrations
o GO/NO GO tests
o Space View checks
o Reference Channel Calibrations
o Long wave channel checks
o Short wave channel checks
o Processes NFOV instrument data
o Sereens instrument angles for velidity
o Locates instrument field of views on earth
o Computes statistics on performance of scanning channels
o Computes solar irradiances for orbit
o Maintains information for Orbital and Daily Summary records
o Writes Master Archival tape with records containing located and converted major frame data, orbital and daily summary information.
- This program which is no longer used wrote the Solar Earth Flux Data tape (SEFDT) which was a monthly tape and was a subset of the MAT's for the month. In all cases to avoid confusion SEFDT subroutines will be identified in this document.


### 2.0 INPUT PARAMETER DEFINITIONS

### 2.1 DATA FROM USER FORMATTED OUTPUT (UFO) TAPE

### 2.1.1 Introduction

The ERB UFO tape is generated by a CDC 3200 computer and each file contains one data orbit's worth of data. A data orbit is defined as beginning at one descending node and ending at the following descending node. Data will be written only when the ERB Sensor system is "ON" or when ERB is turned from ON to OFF and a physical record is incomplete where it will be completed with ERB OFF data. No duplicate data will be written and no data records will be written through data GAPS.

The ERB data will be extracted from a DATA Tape (DT) which has time in ascending order. Time from each VIP major frame is noise smoothed.

### 2.1.2 Parameters

The following parameters are extracted from the ERB UFO tape by the MATGEN program in subroutine NXTUFO.

### 2.1.2.1 Data Orbit Number

The Nimbus-7 data orbit number is not the same as the standard NASA data orbit number. It starts with the time this polar orbit satellite crosses the equator going South (the descending node). Thus South of the equator the number is ( $\mathrm{N}+1$ ) while North of the equator it is ( N ). The numbering system was started immediately after launch in October 24, 1978 and continues sequentially thereaf ter including leap year's extra day. There are 13.8 orbits per day. First ERB-7 scientific data was taken November 16, 1978.

### 2.1.2.2 S/C Day Number

The S/C Day Number starts with the Greenwich time at which the S/C crosses the equator on the descending node at a local time nearest midnight. It has a 24 hour duration.

The ILT data tape supplies MATGEN with S/C time correction information which MATGEN processes and uses in data processing.

### 2.1.2.3 Syne Word/Bit Slip Summary (2LSB of 8)

Bit Slip Flag - This flag is set to 1 if any one or more of the 80 minor frame syne bit slip flags indicate a 1 ; otherwise set it to zero. (1 bit)

Bad Sync Word Flag - This flag is set to 1 , if any one or more at the $\mathbf{8 0}$ minor frame bad syne word flags indicate a 1 , otherwise set it to 0 . (1 bit)

Minor frames flagged with both bit slip and bad sync word indicate loss of sync. These minor frames will contain "old" data, i.e., data from previous minor/major frames.

### 2.1.2.4 Spacecraft Major Frame Time (24 bits)

This is spacecraft time in integer seconds. This is the time of the beginning of the VIP major frame.

### 2.1.2.5 Minor Frame Sync Bit Slip and Bad Sync Word Flags ( 160 bits)

There are 80 bits allocated to the sync bit slip flags and 80 bits to the bad sync word flags. These will be placed in the record starting in pairs from minor frame 1 to 80 . The pairs will be bad sync word flag first followed by syne bit slip flag.

### 2.1.2.6 ERB Digital A Data

A description of this data is contained in Table 2.1 through 2.5. Table 2.1 contains a complete description of the data content of the Digital A data format. Table 2.2 is the major frame format in abbreviated form. Table 2.3 gives the even digital word meanings while 2.4 describes the odd digital word meanings. The TM word assignments are given in Table 2.5. All of these tables are from the Gulton (revised 1975) report.

```
Or ruf!
```

TABLE 2.1
DIGITAL A DATA FORMAT DATA CHANNEL DESCRIPTIONS

| BTE Channel Number | Power <br> Source | Sampling <br> Rate | Description |
| :--- | :--- | :--- | :--- |
| iS through 10 S | CP | $1 / 1$ | Solar Channels |
| 11 E through 14E | CP | $1 / 4$ | Earth Flux Channels |
| 15 through 22 | CP | $2 / 1$ | Scan Channels |
| 23 through 70 | CP | $1 / 16$ | Platinum Wire Thermometers |
| 71 through 150 | CP | $1 / 16$ | Temperature \& Voltage Monitors |
| 151 | CP | $2 / 1$ | Alpha Angle Encoder |
| 152 | CP | $1 / 1$ | Beta Angle Encoder |
| 153 through 168 | CP | $1 / 16$ | Digital Data |

## ABBREVIATIONS

```
S = Solar Channels
E=Earth Flux Channels
+PTM, - PTM = Platinum Thermometer Data (plus or minus)
PTM EX = Platinum Thermometer Bridge Excitation Data (plus or minus)
CH=Channel
BB=Blackbody
DIG WD=Digital Word
TM = Temperature or Voltage Monitor
MSB=Most Significant Bit
LSB=Least Significant Bit
\propto=Scan Head Angle
\beta=Gimbal Angle
\gamma=Solar Assembly Angle
n=Angle Symbol
Sign=Polarity Sign Bits
10 LSB and 10 Sign = Ten least significant bits and ten sign bits of ten preceding PTM and
channel words in chronological order from MSB to LSB.
y=6 Bit Gray Code for Solar Channel Assembly Encod`r
NOTE: The digital Data Word makeup is shown in the following Tables. Even rumbered "digital words" are actually 10 bits of voltage monitor data. All channel, PTM, TM, Angle Words have MSB first and LSB last. +PTM CH20 is positive readout of platinum wire thermometer measuring scanning channel \(\# 20\) chopping reference temperature. (-PTM) BB19 is negative readout of platinum wire thermometer in blackbody area viewed by channel 19.
```

The entire digital A format is described in the following Tables.
TABLE 2.2

| $\begin{array}{\|l\|} \hline \text { Minor } \\ \text { Frame } \\ \text { Number } \\ \hline \end{array}$ | DIGITAL A MAJOR FRAME FORMAT |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 9 | 13 | 18 | 24 | 29 | 33 | 49 | 56 | 65 |
| 0 | $10 \mathrm{BITS} \beta<$ | + PTM CH 19 | + PTM CH 20 | 10 MSB CH 15 | 10 MSB CH 16 | 10 MSB CH 17 | 10 MSB CH 18 | 10 MSB CH 19 | 10 MSE CH 20 |
| 1 | 10 MSB CH 21 | 10 MSE CH 22 | $\begin{aligned} & 9 \text { BITS } \alpha< \\ & \& 1 \text { BIT } \beta \text { MOTION } \\ & \hline \end{aligned}$ | DIG WD \#1 | 10 LSB | 10 SIGN | TM 1 | TM 2 | TM 3 |
| 2 | 10 MSB is | 10 MSB 2 S | 10 MSB 3S | 10 MSB 4 S | 10 MSB SS | 10 MSB 6 S | 10 MSB 7 S | 10 MSB 8 S | 10 MSB 9 S |
| 3 | 10 MSB 10S | 10 LSB | 10 SIGN | 10 MSB CH 15 | 10 MSB CH 16 | 10 MSB 17 | 10 MSB 18 | 10 MSB 19 | 10 MSB 20 |
| 4 | 10 MSB 21 | 10 MSB 22 | CHAN LIE | + PTM CH 11 E | 10 LSB | 10 SIGN | 9 BITS $\propto<$ $\& 1$ BIT $\beta$ MOTION | TM 4 | TM 5 |
| 5 | 10 BITS $\beta<$ | +PTM CH 21 | +PTM CH 22 | 10 MSB CH 15 | 10 MSB CH 16 | 10 MSB CH 17 | 10 MSB CH 18 | 10 MSB CH 19 | 10 MSB CH 20 |
| 6 | 10 MSB CH 21 | 10 MSB CH 22 | $\begin{array}{\|l\|} \hline 9 \text { BITS } \alpha< \\ \& ~ I ~ \text { BIT } \beta \text { MOTION } \\ \hline \end{array}$ | + PTM EX BB (DIG WD \#2) | 10 LSB | 10 SIGN | TM 6 | TM 7 | TM 8 |
| 7 | 10 MSB is | 10 MSB 2 S | 10 MSB 3 S | 10 MSB 4 S | 10 MSB 5 S | 10 MSB 6 S | 10 MSB 7 S | 10 MSB 8S | 10 MSB 9 S |
| 8 | 10 MSB IOS | 10 LSB | 10 SIGN | 10 MSB CH 15 | 10 MSB 16 | 10 MSB 17 | 10 MSB 18 | 10 MSB 19 | 10 MSB 20 |
| 9 | 10 MSB 21 | 10 MSB 22 | CHAN 12E | -PTM CH HE | 10 LSB | 10 SIGN | 9 BITS $\propto<$ <br> $\& 1$ BIT $\beta$ MOTION | TM 9 | TM 10 |
| 10 | $10 \mathrm{BITS} \beta<$ | -PTM CH 19 | - PTM CH 20 | 10 MSB CH 15 | 10 MSB CH 16 | 10 MSB CH 17 | 10 MSB CH 18 | 10 MSB CH 19 | 10 MSB CH 20 |
| 11 | 10 MSB CH 21 | 10 MSB CH 22 | 9 BITS $\propto<$ <br> \& 1 BIT $\beta$ MOTION | DIG WD \#3 | 10 LSB | 10 SIGN | TM 11 | TM 12 | TM 13 |
| 12 | 10 MSB is | 10 MSB 2 S | 10 MSB 3 S | 10 MSB 4 S | 10 MSB 5 S | 10 MSB 65 | 10 MSB 75 | 10 MSB 8 S | 10 MSB 9S |
| 13 | $10 \mathrm{MSB} \mathrm{10S}$ | 10 LSB | 10 SIGN | 10 MSB CH 15 | 10 MSB 16 | 10 MSB 17 | 10 MSB 18 | 10 MSB CH 19 | 10 MSB 20 |
| 14 | 10 MSE ? | 10 MSB 22 | CHAN 13E | + PTM BE 19 | 10 LSB | 10 SIGN | 9 BITS $\alpha<$ $\& 1$ BIT $\beta$ MOTION | TM 14 | TM 15 |
| 15 | 11 BITS $\beta<$ | -PTM CH 21 | -PTM CH 22 | 10 MSB CH 15 | 10 MSB CH 16 | 10 MSB CH 17 | 10 MSB CH 18 | 10 MSB CH 19 | 10 MSB CH 20 |
| 16 | 10 MSB CH 21 | 10 MSB CH 22 | $\begin{aligned} & 9 \text { BITS } \alpha< \\ & \& \text { I BIT } \beta \text { MOTION } \\ & \hline \end{aligned}$ | (DIG WD "4) <br> - PTM EX BB | 10 LSB | 10 SIGN | TM 16 | TM 17 | TM 18 |
| 17 | 10 MSB IS | 10 MSB 2 S | 10 MSB 3 S | 10 MSB 4 S | 10 MSB 5 S | 10 MSB 6 S | 10 MSB 7 S | 10 MSB 8 S | 10 MSB 9 S |
| 18 | 10 MSB 10 S | 10 LSB | 10 SIGN | 10 MSB CH 15 | 10 MSB 16 | 10 MSB 17 | 10 MSB 18 | 10 MSB CH 19 | 10 MSB 20 |
| 19 | 10 MSB 21 | 10 MSB 22 | CHAN 14E | + PTM BB 20 | 10 LSB | 10 SIGN | $\begin{aligned} & 9 \text { BITS } \alpha< \\ & \& \text { I BIT } \beta \text { MOTION } \end{aligned}$ | TM 19 | TM 20 |

TABLE 2.2 (CONT'D)

| Minor <br> Frame Number | MAJOR FRAME FORMAT <br> - VIP COLUMN NO. $\qquad$ |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 9 | 13 | 18 |  |  |  |  |  |  |
| 20 | 10 BITS $\beta<$ | +PTM CH 19 | -PTM CH 20 | $\xrightarrow{24}$ | 29 | 33 | 49 | 56 | 65 |
|  |  | -PTM ${ }^{\text {Ch }} 19$ |  | 10 MSB CH 15 | 10 MSB CH 16 | 10 MSB CH 17 | 10 MSB CH 18 | 10 MSB CH 19 | 10 MSB CH 20 |
| 21 | 10 MSB CH 21 | 10 MSB CH 22 | \& I BIT $\beta$ MOTION | DIG WD ${ }^{\text {H }}$ | 10 LSB | 10 SIGN | TM 21 | TM 22 |  |
| 22 | 10 MSB is | 10 MSB 2 S | 10 MSB 3 S | 10 MSB 45 | 10 MSE 55 |  |  |  | TM 23 |
| 23 | 10 MSB IOS | 10 LSB | 10 SIGN |  |  | 10 MSB 65 | 10 MSB 75 | 10 MSB 8S | 10 MSB 95 |
|  |  |  | 10 SGN | 10 MSB CH 15 | 10 MSB 16 | 10 MSB 17 | 10 MSB 18 | 10 MSB 19 | 10 MSB 20 |
| 24 | 10 MSB 21 | 10 MSB 22 | Chan lie | + PTM CH 12E | IC LSB | 10 SIGN | 9 BITS $\propto<$ <br> \& I BIT $\beta$ MOTION | TM 24 | TM 25 |
| 25 | 10 BITS $\beta<$ | + PTM CH 21 | +PTM CH 22 | 10 MSB CH 15 | 10 MSB CH 16 |  |  |  |  |
| 26 | 10 MSB CH 21 |  | 9 BITS $\propto<$ | (DIG WD *6) | 10 MSB CH 16 | 10 MSB CH 17 | 10 MSB CH 18 | 10 MSB CH 19 | 10 MSB CH 20 |
|  | H0 MSBCH 21 | 10 MSB CH 22 | \& 1 BIT $\beta$ MOTION | $+ \text { PTM EX SCAN CH }$ | 10 LSB | 10 SIGN | TM 26 | TM 27 | TM 28 |
| 27 | 10 MSB IS | 10 MSB 2 S | 10 MSB 3 S | $10 \mathrm{MSB} \mathrm{4S}$ | 10 MSB 5 S | 10 MSB 6S |  |  |  |
| 28 | 10 MSB 10S | 10 LSB | 10 SIGN | 10 MSB CH 15 | 10 MSB 16 | 10 MSB 17 | 10 MSB 7 s | 10 MSB 8 S | 10 MSB 9S |
| 29 | 10 MSB 21 | 10 MSB 22 |  |  | 10 MSB 16 | 10 MSB 17 | 11 MSB 18 | 10 MSB 19 | 10 MSB 20 |
| 30 | 10 BITS $\beta$ | ${ }^{10}$ MSB 22 | CHAN I2E | -PTM CH 12E | 10 LSB | 10 SIGN | 9 BITS $\alpha<$ <br> \& 1 BIT \& MOTION | TM 29 | TM 30 |
| 30 | 10 Bits $\beta<$ | -PTM CH 19 | -PTM CH 20 | 10 MSB CH 15 | 10 MSB CH 16 | 10 MSB CH 17 | 10 MSB CH 18 |  |  |
| 31 | 10 MSB CH 21 | 10 MSB CH 22 | $\begin{aligned} & 9 \text { BITS } \alpha< \\ & \& \text { I BIT } \beta \text { MOTION } \end{aligned}$ | DIG WD ${ }^{\prime}$ | 10 LSB | 10 SIGN | TM 31 | 10 MSB CH 19 | 10 MSB CH 20 |
| 32 | 10 MSB is | 10 MSB 2 S | 10 mSB 3 S |  |  |  |  | TM 32 | TM 33 |
| 33 | 10 MSB 10 S | 10 LSB | 10 SIGN | 10 MSB CH 15 | 10 MSB 5 S | 10 MSB 6 S | 10 MSB 7S | 10 MSB 8 S | 10 MSB 9S |
| 34 | 10 MSB 21 |  |  | 10 MSB CH 15 | 10 MSB 16 | 10 MSB 17 | 10 MSB 18 | 10 MSB CH 19 | 10 MSB 20 |
| 3 | 10 MSB 21 | 10 MSB 22 | CHAN 13E | +PTM BB 20 | 10 LSB | 10 SIGN | 9 BITS $\propto<$ <br> \& I BIT \& MOTION | TM 34 | TM 35 |
| 35 | 10 BITS $\beta<$ | -PTM CH 21 | - PTM CH 22 | 10 MSB CH 15 | 10 MSB CH 16 | 10 MSB CH 17 |  |  |  |
| 36 | 10 MSB CH 21 | 10 MSB CH 22 | 9 BITS $\times<$ |  |  | 10 MSB CH 17 | 10 MSB CH 18 | 10 MSB CH 19 | 10 MSB CH 20 |
| 37 | 10 MSB IS | 10 MSB 2 S | \& 1 BIT $\beta$ MOTION | $\begin{array}{\|l\|l\|l\|l\|l\|l\|} \hline- \text { PTM EX SCAN CH } \\ \hline \end{array}$ | 10 LSB | 10 SIGN | TM 36 | TM 37 | TM 38 |
|  |  | 10 MSB 2 S | 10 MSB 35 | 10 MSB 4 S | 10 MSB 55 | 10 MSB 6S | 10 MSB 75 |  |  |
| 38 | 10 MSB 105 | 10 LSB | 10 SIGN | 10 MSB CH 15 | 10 MSB 16 | 10 MSB 17 | 10 MSE is | 10 MSB 8S | 10 MSB 95 |
| 39 | 10 MSB 21 | 10 MSB 22 | CHAN 14E |  |  |  | $10 \mathrm{MSB} / 8$ | 10 MSB CH 19 | 10 MSB 20 |
|  |  | 10 MsE 22 | CHAN 14E | +PTM BB 22 | 10 LSB | 10 SIGN | 9 BITS $\propto<$ <br> \& 1 BIT $\beta$ MOTION | TM 39 | TM 40 |

TABLE 2.2 (CONT'D)

| MAJOR FRAME FORMAT <br> - VIP COLUMN NO $\qquad$ |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 9 | 13 | 18 | 24 | 29 | 33 | 49 | 56 | 65 |
| 60 | 10 BITS $\beta<$ | -PTM CH 19 | - PTM CH 20 | 10 MSB CH 15 | 10 MSB CH 16 | 10) MSB CH 17 | 10 MSB CH 18 | 10 MSB CH 19 | 10 MSB CH 20 |
| 61 | 10 MSB CH 21 | 10 MS8 CH 22 | $\begin{aligned} & 9 \text { BITS } \alpha< \\ & \& 1 \text { BIT } \beta \text { MOTION } \end{aligned}$ | DIG WD ${ }^{\text {\# }} 3$ | 10 LSB | 10 SIGN | TM 61 | TM 62 | TM 63 |
| 62 | 10 MSB IS | 10 MSB 2 S | 10 MSB 35 | 10 MSB 45 | 10 MSB 55 | 10 MSB 6 S | 10 MSB 7 S | 10 MSB 85 | 10 MSB 95 |
| 63 | 10 MSB IOS | 10 LSB | 10 SIGN | 10 MSB CH 15 | 19) MSB 16 | 10 MSB 17 | 10 MSB 18 | 10 MSB 19 | 10 MSB 20 |
| 64 | 10 MSB 21 | 10 MSB 22 | CHAN IIE | + PTM CH 12E | 16 LSB | 16 SIGN | 9 BITS $\alpha<$ \& 1 BIT $\beta$ MOTION | TM 64 | TM 65 |
| 65 | 10 BTTS $\beta<$ | + PTM CH 21 | - PTM CH 22 | 10 MSB CH 15 | 10 MSB CH 16 | 10 MSB CH 17 | 10 MSB CH 18 | 10 MSB CH 19 | 10 MSB CH 20 |
| 66 | 10 MSB CH 21 | 10 MSB CH 22 | 9 BITS $\propto<$ $\& 1$ BIT $\beta$ MOTION | $\begin{aligned} & \text { 1DIG WD *14) } \\ & +150 \text { MON } \\ & \hline \end{aligned}$ | 16 LSB | 10 SIGN | TM 66 | TM 67 | TM 68 |
| 67 | 10 MSB IS | 10 MSB 25 | 10 MSE 35 | 10 MSB 45 | 10 MSB 5 S | 10 MSB 6 S | 10 MSB 75 | 10 MSB 8 S | 10 MSB 95 |
| 68 | 10 MSB 105 | 10 LSB | 10 SIGN | 10 MSB CH 15 | $16) \mathrm{MSB} 16$ | 10 MSB 17 | 10 MSB 18 | 10 MSB 19 | 10 MSB 20 |
| 69 | 10 MSB 21 | 10 MSB 22 | CHAS: 12E | - PTM CH 12E | 19) LSB | 10) SIGN | $\begin{aligned} & 9 \text { BITS } \alpha< \\ & \& 1 \text { BIT } \beta \text { MOTION } \end{aligned}$ | TM 69 | TM 70 |
| 70 | 10 BrTS $\beta<$ | - PTM CH 19 | -PTM CH 20 | 10 MSB CH 15 | 10 MSB CH 16 | 10 MSB CH 17 | 10 MSB CH 18 | 10 MSB CH 19 | 10 MSB CH 20 |
| 71 | 10 MSB CH 21 | 10 MSB CH 22 | 9 BITS $\alpha<$ $\& 1$ BIT $\beta$ MOTION | DIG WD \#15 | 10 LSB | 10 SIGN | TM 71 | TM 72 | TM 73 |
| 72 | 10 MSB 15 | 10 MSB 25 | 10 MSB 3S | 10 MSB 45 | 10 MSB 55 | 10 MSB 65 | 10 MSB 7S | 10 MSB 8 S | 10 MSB 95 |
| 73 | 10 MSB 105 | 10 LSB | 10 SIGN | 10 MSE CH 15 | 10 MSB 16 | 10 MSB 17 | 10 MSB 18 | 10 MSB CH 19 | 10 MSB 20 |
| 74 | 10 MSB 21 | 10 MSB 22 | CHAN ISE | - PTM BB 21 | 19 LSB | 10 SIGN | $\begin{aligned} & 9 \text { BITS } \alpha< \\ & \& 1 \text { BIT } \beta \text { MOTION } \end{aligned}$ | TM 74 | TM 75 |
| 75 | 10 BITS $\beta<$ | - PTM CH 21 | -PTM CH 22 | 10 MSB CH 15 | 19 MSB CH 16 | 10 MSB CH 17 | 10 MSB CH 18 | 10 MSB CH 19 | 10 MSB CH 20 |
| 76 | 10 MSB CH 21 | 10 MSB CH 22 | 9 BITS $\alpha<$ \& I BIT $\beta$ MOTION | $\begin{aligned} & \text { (DIG WD } 16 \text { ) } \\ & \text {-15V MON } \\ & \hline \end{aligned}$ | 10 LSB | 10 SIGN | TM 76 | TM 77 | TM 78 |
| 77 | :0 MSB 15 | 10 MSB 25 | 10 MSB 35 | 10 MSB 45 | 10 MSB 55 | 10 MSB 6S | 10 MSB 75 | 10 MSB 85 | 10 MSB 95 |
| 78 | 10 MSB IOS | 10 LSB | 10 SIGN | 10 MSB CH 15 | 10 MSB 16 | 10 MSB 17 | 10 MSB 18 | 10 MSB CH 19 | 10 MSB 20 |
| 79 | 10 MSB 21 | 10 MSB 22 | CHAN 14E | - PTM BB 22 | 10 LSB | 10 SIGN | 9 BITS $\alpha<$ \& 1 BIT $\beta$ MOTION | TM 79 | TM 80 |

TABLE 2.2 (CONT’D)

| Minor <br> Frame Number | MAJOR FRAME FORMAT -VIP COLUMN NO.$\qquad$ |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 9 | 13 | 18 | 24 | 29 | 33 | 49 | 56 | 65 |
| 40 | 10 BITS $\beta<$ | + PTM CH 19 | + PTM CH 20 | 10 MSB CH 15 | 10 MSB CH 16 | 10 MSB CH 17 | 10 MSB CH 18 | 10 MSB CH 19 | 10 MSB CH 20 |
| 41 | 10 MSB CH 21 | 10 MSB CH 22 | $\begin{aligned} & 9 \text { BITS } \propto< \\ & \& 1 \text { BIT } \beta \text { MOTION } \end{aligned}$ | DIG WD ${ }^{(9}$ | 10 LSB | 10 SIGN | TM 41 | TM 42 | TM 43 |
| 42 | 10 MSB IS | 10 MSB 2S | 10 MSB 3S | 10 MSB 4S | $10 \mathrm{MSB} \mathrm{5S}$ | 10 MSB 6 S | 10 MSB 7 S | 10 MSB 85 | 10 MSB 9 S |
| 43 | IC MSB 10S | 10 LSB | 10 SIGN | 10 MSB CH 15 | 10 MSB 16 | 10 MSB 17 | 10 MSB 18 | 10 MSB 19 | 10 MSB 20 |
| 44 | 10 MSB 321 | 10 MSB 22 | CHAN IIE | + PTM CH IIE | 10 LSB | 10 SIGN | ```9 BITS < <  I BIT \beta MOTION``` | TM 44 | TM 45 |
| 45 | 10 BITS $\beta<$ | + PTM CH 21 | +PTM CH 22 | 10 MSB CH 15 | 10 MSB CH 16 | 10 MSB CH 17 | 10 MSB CH 18 | 10 MSB CH 19 | 10 MSB CH 20 |
| 46 | 10 MSB CH 21 | 10 MSB CH 22 | ```9 BIIS < <  & 1 BIT A MOTION``` | (DIG WD \#10) <br> +PTM EX EARTH CH | 10 LSB | 10 SIGN | TM 46 | TM 47 | TM 48 |
| 47 | 10 MSB 1 S | 10 MSB 2 S | 10 MSB 3S | 10 MSB 4S | 10 MSB 5S | 10 MSB 6 S | 10 MSB 7 S | 10 MSB 8 s | 10 MSB 9S |
| 48 | 10 MSB IOS | 10 LSB | 10 SIGN | 10 MSB CH 15 | 10 MSB 16 | 10 MSB 17 | 10 MSB 18 | 10 MSB 19 | 10 MSB 20 |
| 49 | 10 MSB 21 | IG MSB 22 | CHAN I2E | -PTM CH IIE | 10 LSB | 10 SIGN | $\begin{array}{\|l\|} \hline 9 \text { BITS } \alpha< \\ \& 1 \text { BIT } \beta \text { MOTION } \\ \hline \end{array}$ | TM 49 | TM 50 |
| 50 | 10 BTSS $\beta<$ | -PTM CH 19 | -PTM CH 20 | 10 MSB CH 15 | 10 MSB CH 16 | 10 MSB CH 17 | 10 MSB CH 18 | 10 MSE CH 19 | 10 MSB CH 20 |
| 51 | 10 MSB CH 21 | 10 MSB CH 22 | $\begin{aligned} & 9 \text { BITS } \alpha< \\ & \& \text { I BIT } \beta \text { MOTION } \end{aligned}$ | DIG WD \#11 | 10 LSB | 10 SIGN | TM 51 | TM 52 | TM 53 |
| 52 | 10 MSB 15 | 10 MSB 2S | 10 MSB 35 | 10 MSB 4S | 10 MSE 55 | 10 MSB 65 | $10 \mathrm{MSB} \mathrm{7S}$ | 10 MSB 8S | 10 MSB 9S |
| 53 | 10 MSB 10S | 10 LSB | 10 SIGN | 10 MSB CH 15 | 10 MSB 16 | 10 MSB 17 | 10 MSB 18 | 10 MSB 19 | 10 MSB 20 |
| 54 | 10 MSB 21 | 10 MSB 22 | CHAN 13E | -PTM BB 19 | 10 LSB | 10 SIGN | $\begin{aligned} & 9 \text { BITS } \alpha< \\ & \text { \& : BIT } \beta \text { MOTION } \end{aligned}$ | TM 54 | TM 55 |
| 55 | 10 BITS $\beta<$ | -PTM CH 21 | -PTM CH 22 | 10 MSB CH 15 | 10 MSB CH 16 | 10 MSB CH 17 | 10 MSB CH 18 | 10 MSB CH 19 | 10 MSB CH 20 |
| 56 | 10 MSB CH 21 | 10 MSB CH 22 | $\begin{aligned} & 9 \text { BITS } \propto< \\ & \& \text { I BIT } \rho \text { MOTION } \\ & \hline \end{aligned}$ | $\begin{array}{\|l\|} \hline \text { (DIG WD \#12) } \\ \text {-PTM EX EARTH CH } \end{array}$ | 10 LSB | 10 SIGN | TM 56 | TM 57 | TM 58 |
| 57 | 10 MSB IS | 10 MSB 2S | 10 MSB 3 S | 10 MSB 4S | 10 MSB 5S | 10 MSB 65 | 10 MSB 75 | 10 N:SB 85 | 10 MSB 9S |
| 58 | 10 MSB 105 | 10 LSB | 10 SIGN | 10 MSB CH 15 | 10 MSB 16 | 10 MSB 17 | 10 MSB 18 | 10 MSB 19 | 10 MSB 20 |
| 59 | 10 MSB 21 | 10 MSB 22 | CHAN 14E | -PTM BB 20 | 10 LSB | 10 SIGN | $\begin{aligned} & 9 \text { BITS } \propto< \\ & \& 1 \text { BIT } \beta \text { MOTION } \end{aligned}$ | TM 59 | TM 60 |

> ORIS
> OF POOR QUALITY

TABLE 2.3

| Even Digital Words | Col | Row |
| :--- | :---: | :---: |
| 2 +PTM Excitation Voltage BB | 24 | 06 |
| 4 -PTM Excitation Voltage BB | 24 | 16 |
| 6 +PTM Excitation Voltage Scan Ch | 24 | 26 |
| 8 -PTM Excitation Voltage Scan Ch | 24 | 36 |
| 10 +PTM Excitation Voltage Earth Ch | 24 | 46 |
| 12 - PTM Excitation Voltage Earth Ch | 24 | 56 |
| 14 +15 Volt Monitor | 24 | 66 |
| 16 - 15 Volt Monitor | 24 | 76 |

TABLE 2.4
DESCRIPTION OF ODD DIGITAL WORD BITS

| Digital Word | Bits | Description |
| :---: | :---: | :---: |
| 7 | 4 | "Stepper Drives ON" command verification (*) |
|  | 5 | "Calibration Check" command verification (*) |
|  | 6 | $\propto$ not in Space Position (From Encoder)("Digital 0" only when in Space Position) |
|  | 7 | $\propto$ not in Shortwave Position (From Encoder) |
|  | 8 | $\beta$ not in Shortwave Position (From Encoder) |
|  | 9 | $\propto$ not in Longwave Position (From Encoder) |
|  | 10 | $\beta$ not in Longwave Position (From Encoder) |
| 9 | 1-3 | Same as Digital 3 bits 1-3 |
|  | 4-6 | Instrument ID. Bit $6=$ Engr. Unit |
|  |  | $4.5=$ Proto/Flight Unit |
|  | 7 | "Reference Chan Shutters OPEN/CLOS" (*) |
|  | 8 | "Chan 12 Shutter OPEN/CLOS" (*) |
|  | 9 | "Heat Radiator B Code Bit 2" CLOS/OPEN (*) |
|  | 10 | "Heat Radiator B Code Bit 1' CLOS/OPEN (*) |
| 11 | 1 | $\beta$ not $273{ }^{\circ}$ (From Encoder) |
|  | 2 | $\propto$ not $0^{\circ}$ (From Encoder) |
|  | 3 | Sync Error (should be zero) |
|  | 4 | Scan Logic enabled for scanning. Should become a Digital " 1 " after "Scan ON" command. |
|  | 5 | If routine 5 is selected, this bit is a Digital " 1 " when in the Routine 4 section. |

## TABLE 2.4 (CONT’D)

## DESCRIPTION OF ODD DIGITAL WORD BITS

| Digital Word | Bits | Description |
| :---: | :---: | :---: |
| 13 | 6 | Same as Digital 3 bit 8. |
|  | 7 | Same as Digital 3 it 7. |
|  | 8 | "Scan ON" command verification (*) |
|  | 9 | ''Solar Door OPEN/CLOSE' ${ }^{\text {command verification (*) }}$ |
|  | 10 | "PRP No. 1/2" command verification (*) |
|  | 1 | External BB connected to ERB. Allows processing of target data thmugh $\mathbf{S} / \mathbf{S}$. |
|  | 2 | $\beta$ not $357^{\circ}$ (From Encoder) |
|  | 3 | $\beta$ not $3^{\circ}$ (From Encoder) |
|  | 4 | $\beta$ not $87^{\circ}$ (From Encoder) |
|  | 5 | $\beta$ not $177^{\circ}$ (From Encider) |
|  | 6 | $\beta$ not $205^{\circ}$ (From Encoder) |
|  | 7 | $\beta$ not $183^{\circ}$ (From Encoder) |
|  | 8 | $\beta$ not $19.5{ }^{\circ}$ (From Encoder) |
|  | 9 | $\beta$ not $154^{\circ}$ (From Encoder) |
|  | 10 | $\beta$ not $340^{\circ}$ (From Encoder) |
| 15 |  | Not Used |
|  | 2-6 | Repeats |
|  | 2 | Same as Digital 5 bit 2 |
|  | 3 | Same as Digital 5 bit 3 |
|  | 4 | Same as Digital 7 bit 5 |
|  | 5 | Same as Digital 5 bit 5 |
|  | 6 | Same as Digital 5 bit 6 |
|  | 7 | Same as Digital 7 bit 6 |
|  | 8 | Same as Digital 3 bit 8 |
|  | 9 | Same as Digital 3 bit 7 |
|  | 10 | Same as Digital 3 bit 2 |

$$
\begin{aligned}
& \text { C? } \\
& \text { OF ruci Quibity }
\end{aligned}
$$

TABLE 2.5
DIGITAL A TM WORD ASSIGNMENTS

| Function No. | Monitor Point | TM Number(s) |
| :---: | :---: | :---: |
| 14901 | Channel IIE Shutter | 1, 21, 41, 61 |
| 14902 | Channel 12E Shutter | 2, 22, 42, 62 |
| 14903 | Scan Channel 19 Baffle Port | 3, 23, 43, 63 |
| 14904 | Scan Channel 20 Baffle Port | 4, 24, 44, 64 |
| 14905 | Scan Channel 21 Baffle Port | 5, 25, 45, 65 |
| 14906 | Scan Channel 22 Baffle Port | 6, 26, 46, 66 |
| 14907 | 9S Module | 7,47 |
| 14908 | 10S Module | 8. 48 |
| 14909 | 13E Module | 9, 49 |
| 14910 | 14E Module | 10, 50 |
| 14911 | Channel IS Thermopile Base | 11 |
| 14912 | Channel 2S Thermopile Base | 12 |
| 14913 | Channel 3S Thermopile Base | 13 |
| 14914 | Channel 4S Thermopile Base | 14 |
| 14915 | Channel 5S Thermopile Base | 15 |
| 14916 | Channel 6S Thermopile Base | 16 |
| 14917 | Channel 7S Thermopile Base | 17 |
| 14918 | Channel 8S Thermopile Base | 18 |
| 14919 | Channel 9S Thermopile Base | 19 |
| 14920 | Channel IUS Thermopile Base | 20 |
| 14921 | Channel l1E Thermopile Base | 76 |
| 14922 | Channel 12E Thermopile Base | 77 |
| 14923 | Chaunel 13E Thermopile Base | 78 |
| 14924 | Channel 14E Thermopile Base | 79 |
| 14925 | Channel IS Module | 31 |
| 14926 | Channe: 25 Module | 32 |
| 14927 | Channel 3S Module | 33 |
| 14928 | Channel 6S Module | 34 |
| 14929 | Main Frame Radiator Plate Top-Front | 35 |
| 14930 | Main Frame Radiator Plate Bottom-Front | 36 |
| 14931 | Solar Channel Heat Sink Front | 37 |
| 14932 | Solar Channel Heat Sink Back | 38 |
| 14933 | Earth Flux Channel Heat Sink Bottom | 39 |
| 14934 | Earth Flux Channel Heat Sink Top | 40 |
| 14935 | Main Frame Radiator Plate Bottom-Rear | 51 |
| 14936 | Main Frame Connector Plate | 52 |
| 14937 | Electronics Plate Frame Outboard Rear Comer | 53 |
| 14938 | Gimbal Bearing Housing | 54 |
| 14939 | Gimbal Motor ( $\beta$ ) | 55 |
| 14940 | Solar Channel Assembly Drive Motor (y) | 50 |

TABLE 2.5 (CONT'D)
DIGITAL A TM WORD ASSIGNMENTS

| Function No. |  | Moniter Point |
| :---: | :--- | :--- |
| 14941 | Shortwave Channels Detectors | 57 |
| 14942 | Scan Motor ( $\alpha$ ) | 58 |
| 14943 | Beam Blecker-Chopper Motor | 59 |
| $149+4$ | Post Amplifier-Sync-Demol. Area | 60 |
| 14945 | Power Supply Area | 71 |
| 14946 | A/D Arca | 72 |
| 14947 | Main Frame Radiator Plate Top Rear | 73 |
| 14948 | Scan Mechanism Remote Bearing | 74 |
| 14949 | Channel 12E FOV Stop | 75 |
| 14950 | +15V Logic Level | 80 |
| 14951 | Scan Channel 19 Baffle | 27.67 |
| 14952 | San Channel 20 Baffle | 28.68 |
| 14953 | Scan Channel 21 Baffle | 29.69 |
| 14954 | Scan Channel 22 Baffle | 30.70 |

### 2.1.2.7 ERB Digital B Data

A list of the data elements is contained in Table 2.6.

### 2.1.2.8 ERB Analog Data

A list of this data is contained in Table 2.7.

### 2.2 DATA FROM IMAGE LOCATION TAPE (ILT)

### 2.2.1 Introduction

The ERB-ILT is generated by a CDC- 3300 computer program. The first data file will contain time correction information for the entire tape. Each subsequent file will contain one orbit's worth of data. A file will contain at most, data beginning at ap'roximately one descending node and ending at approximately the following descending node. Data will only be written when ERB Sensor system power is "ON" and no duplicate data will be written.

### 2.2.2 Parameters

The following parameters are extracted from the ERB-ILT tape by the MATGEN program in subroutine NXTILT.

### 2.2.2.: Time Correction Data

The time correction file contains information which allows the user to create linear functions which relate spacecraft time to GMT.

### 2.2.2.2 Data Orbit No.

The data orbit number for data ontained in this file. Data within the file will be from descending node (DN) to descending node.

### 2.2.2.3 GMT Year

The year number corresponding to the data contained in items 2.2.2.8 thru 2.2.2.20 below.

### 2.2.2.4 GMT 1/12 Day

The day number corresponding to the data contained in items 2.2.2.8 thru 2.2.2.20 below, with Day No. 1 being January 1 st.

### 2.2.2.5 GMT Milliseconds of $1 / 12$ Day

The integer number of seconds of the day corresponding to the data contained in items 2.2.2.8 thru 2.2.2.20 below.

### 2.2.2.6 S/C 1/12 Days

Spacecraft time given in $1 / 12$ days to be added to $\mathrm{S} / \mathrm{C}$ time to get the corres, onding spacecraft time for the associated data in items 2.2.2.7 thru 2.2.2.20 below.

TABLE 2.6 DIGITAL B DATA

| $\begin{aligned} & \text { Item } \\ & \text { No. } \end{aligned}$ | Function Number | Function Digital 1/0 | Acronym | GateI.D. | Data Form | Data Rate | Data Location |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  | Row | Col. | Bits |
| P-1 | 14001 | Electronics On/Off | ELECT | 7B32 | DB | 3/16 | 1 | 6 | 7 |
| P. 2 | 14002 | Scan On/Off | SCAN | 8B33 | DB | 3/16 | 2 | 6 | 8 |
| P-3 | 14003 | Scan Otf Reset On/Off | SCAN OFF | 9B34 | DB | 3/16 | 3 | 6 | 9 |
| P-4 | 14004 | Space Look On/Off | SPA LOOK | 0B50 | DB | 3/16 | 19 | 6 | 0 |
| P-5 | 14005 | Short-Wave Check On/Off | SH WAVE | [B51 | DB | 3/16 | 20 | 6 | 1 |
| P-6 | 14006 | Long-Wave Check On/Off | LG WAVE | 2B52 | DB | 3/16 | 21 | 6 | 2 |
| P-7 | 14007 | Solar Ch. $1^{\circ}$ Right On/Off | SLR C IR | 8B56 | DB | 3/16 | 25 | 6 | 8 |
| P-8 | 14008 | Solar Ch. $1^{\circ}$ Leff On/Off | SLR C IL | 8B32 | DB | 3/16 | 1 | 6 | 8 |
| P-9 | 14009 | Go/No Go Test Off/On | GO/NO GO | 9 B 33 | DB | 3/16 | 2 | 6 | 9 |
| P-10 | 14010 | Temp Controller On/Off | TMP CONT | 0B51 | DB | 3/16 | 20 | 6 | 0 |
| P-11 | 14011 | Stepper Drives Off/On | STEP DRV | 1B52 | DB | 3/16 | 21 | 6 | 1 |
| P-12 | 14012 | Ref Ch Shutters Close/Open | REF CSH | 7B56 | DB | 3/16 | 25 | 6 | 7 |
| P-13 | 14013 | Ch 12E Shutter Close/Open | C I2E SH | 9 B 32 | DB | 3/16 | 1 | 6 | 9 |
| P-14 | 14014 | Ch 12E FOV NAR/Wide | C 12E FV | 0 B 52 | DB | 3/16 | 21 | 6 | 0 |
| P-1.5 | 14015 | Cal Initiate On/Off | CAL INIT | 6B54 | DB | 3/16 | 23 | 6 | 6 |
| P-16 | 14016 | Chopper Operating Yes/No | CH OPER | 7854 | DB | 3/16 | 23 | 6 | 7 |
| P-17 | 14017 | Heat Rad a Front Close/Open | RDA FRNT | 8B54 | DB | 3/16 | 23 | 6 | 8 |

TABLE 2.6 DIGITAL B DATA

| ItemNo. | Function Number | Function Digital State, m 1/10/00 | Acronym | GateI.D. | Data Form | Data <br> Rate | Data Location |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  | Row | Col. | Bits |
| P-18 | 14018 | Heat Rad A Rear Closed/Open | RDA REAR | 9B54 | DB | 3/16 | 23 | 6 | 9 |
| P-19 | 14019 | Heat Rad B Front Closed/Open | RDB FRNT | 5B56 | DB | 3/16 | 25 | 6 | 5 |
| P-20 | 14020 | Heat Rad B Rear Closed/Open | RDB REAR | 6B56 | DB | 3/16 | 25 | 6 | 6 |
| P-21 | 14021 | Scan 1 Bit 1 On/Off | 1SC BT 1 | 0B56 | DB | 3/16 | 25 | 6 | 0 |
| P-22 | 14022 | Scan 2 Bit 2 On/Off | 2SC BT 2 | 1B56 | DB | 3/16 | 25 | 6 | 1 |
| P-23 | 14023 | Scan 3 Bit 4 On/Off | 3SC BT 4 | 2B56 | DB | 3/16 | 25 | 6 | 2 |
| P-24 | 14024 | MF 1 in Scan Bit 1 On/Off | 1 FR SC 1 | 0B55 | DB | 3/16 | 24 | 6 | 0 |
| P-25 | 14025 | MF 2 in Scan Bit 2 On/Off | 2 FR SC 2 | 1 B 55 | DB | 3/16 | 24 | 6 | 1 |
| P-26 | 14026 | MF 3 in Scan Bit 4 On/Off | 3 FR SC 4 | 2B55 | DB | 3/16 | 24 | 6 | 2 |
| P-27 | 14027 | Short Grid Processing Yes/No | SHORT GD | 9B56 | DB | 3/16 | 25 | 6 | 9 |
| P-28 | 14028 | Yoke Heater On/Off (ISM) | YOKE HTR | 2B57 | DB | 3/16 | 26 | 6 | 2 |
| P-29 | 14030 | Solar Chan Door Open/Closed | SLR DOOR | 3B48 | DB | 3/16 | 17 | 6 | 8 |
| P-30 | 14031 | PRP No. 1/No. 2 | PRP 1/2 | 9B49 | DB | 3/16 | 18 | 6 | 9 |

```
ompand PABE
15 OF FGOR QUALITY
```

TABLE 2.7 ANALOG DATA

| Item <br> No. | Function Number | Function | Acronym | Gate I.D. | Data <br> Form | Data <br> Rate | Data Location |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  | Row | Col. | Bits |
| P-31 | 14101 | -24.5 Volt TM Monitor | -24V TLM | A258 | A | 1/16 | 27 | 61 |  |
| P-32 | 14102 | Front Mount Tab Temp | F MTG T | A322 | A | 1/16 | 36 | 75 |  |
| P-33 | 14103 | Back Mount Tab Temp | R MTG T | A386 | A | 1/16 | 46 | 10 |  |
| P-34 | 14104 | Gimbal Motor Temp | G MTG T | A450 | A | 1/16 | 55 | 15 |  |
| P-35 | 14105 | Scan Motor Temp | SC MTR T | A514 | A | 1/16 | 64 | 36 |  |
| P-36 | 14106 | Chopper Motor Temp | CH MTR T | A581 | A | 1/16 | 73 | 75 |  |
| P-37 | 14107 | Heat Radiator Plate Temp | RAD PL T | A578 | A | 1/16 | 73 | 40 |  |
| P-38 | 14108 | Temp Controller Voltage | T. CONT V | A365 | A | 1/16 | 43 | 10 |  |
| P-39 | 14109 | -15 Volt Monitor | -15 VOLT | A380 | A | 1/16 | 45 | 15 |  |

### 2.2.2.7 S/C Time Milliseconds

Spacecraft clock time in millisecunds to be added to S/C $1 / 12$ days above to get the corresponding time for the associated data in items 2.2.2.8 thru 2.2.2.20 below.

### 2.2.2.8 X (S/C Location)

The $X$ co-ordinate of spacecraft location (in earth-centered inertial coordinates true of date) at time specified in items 2.2.2.3, 4, 5 expressed in meters. 2.2.2.9 Y (S/C Location)

As in item 2.2.2.8 above for $\mathbf{Y}$ co-ordinate.

### 2.2.2.10 Z (S/C Location)

As in item 2.2.2.8 above for 2 co-ordinate.

### 2.2.2.11 Greenwich Hour Angle from Aries

The angle between the inertial $x$-axis and the earth fixed $x$-axis, expressed in $10^{-6}$ radians.

### 2.2.2.12 $\mathrm{X}^{\prime}$ (Spacecraft Velocity)

The X-component of the spacecraft velocity in $\mathrm{km} /$ second scaled by $2^{18}$ corresponding to the position giver.

### 2.2.2.13 $\mathrm{Y}^{\prime}$ (Spacecraft Velocity)

The same in item 2.2.2.12 above, for $Y$ component.

### 2.2.2.14 $\mathrm{Z}^{\prime}$ (Spacecraft Velocity)

The same in item 2.2.2.12 above, for Z component.

### 2.2.2.15 Sun Right Ascension (Azimuth)

The angle measured in the plane of the equator from a fixed inertial axis in space (vernal equinox), to a plane normal to the equator (meridian) which contains the sun (true of date) and positive counterclockwise as seen as $+\mathrm{Z}(-\pi \leq \phi \leq \pi)$. Figure 2.1 shows the geometric orientations of these angles.


FIGURE 2.1 Celestial Sphere Geometric Angle Orientations

### 2.2.2.16 Sun Declination (Elevation)

The angle between the sun and inertial equator measured in a plane normal to the inertial equator, which contains the sun and the earth center (true-of-date) positive above equator. $\left(-\frac{\pi}{2} \leq \delta-\frac{\pi}{2}\right)$.

### 2.2.2.17 Sub. Sat. Longitude

East longitude of normal from spacecraft to ellipsoid, expressed in $10^{-6}$ radians. Equatorial radius $=\mathbf{6 3 7 8 . 1 4 4} \mathrm{Km}$, Polar radius $=\mathbf{6 3 5 6 . 7 5 9} \mathrm{Km}$.

### 2.2.2.18 Sub. Sat. Latitude

Same as in item 2.2.2.17 above, for Geodetic Latitude.

### 2.2.2.19 Altitude

The distance from the spacecraft to ellipsoid measured along the normal, expressed in meters.

### 2.2.2.20 S/C DAY/TWI/NT Status

Code describing spacecraft orbital position:

$$
\begin{aligned}
& 0= \text { DAY } \quad(S / C \& S u b t r a c t ~ P t . ~ b o t h ~ i l l u m i n a t e d) ~ \\
& 1= \text { TWILIGHT }(\text { Earth-Night)(S/C illuminated, Sub- } \\
& \text { tract Pt. in shade) } \\
& 2= \text { NIGHT } \quad \text { (S/C \& Subtract Pt. both in shade) }
\end{aligned}
$$

### 2.2.2.21 Repeat For 2nd GMT Minute

Items 2.2.2.8 (X S/C Position) through 2.2.2.20 (Spacecraft D/T/N Status) are repeated for the second GMT minute contained in this 2 min 8 sec data period. That is, the time of these values will be for 60 GMT seconds after the GMT given in items 2.2.2.3 through 2.2.2.5

### 2.2.2.22 Repeat For 3rd GMT Minute

As above for third GMT minute contained in this 2 min 8 sec data period, but only if 3 minutes of ephemeris data coincide with the 2 minute 8 second time period contained in this record.

### 2.2.2.23 GMT (MS) of Start of First VIP Major Frame

This is given as increment in milliseconds from the time given in items

### 2.2.2.3 through 2.2.2.5 above.

### 2.2.2.24 S/C Time ( $1 / 12$ Days) of Start of First VIP Major Frame

S/C time in $1 / 12$ days to be added to the next 24 -bit word (item 2.2.2.25).

### 2.2.2.25 S/C Time (MS) (1/12 Days) of Start of First VIP Major Frame (24 Bits)

This provides the start time of data which follows in items 2.2.2.26 through 2.2.2.34. It is given as $S / C$ milliseconds to be added to the previous 24 bit word (item 2.2.2.24) and will be the time at the beginning of the first major VIP frame.

### 2.2.2.26 VIP Major Frame Q/C ( 160 Bits)

There are 80 bits allocated to the syne quality flags and 80 bits to the sync loss flags.

### 2.2.2.27 Sensor - S/C Status

The spacecraft status and events shown below

| ERB ELECT | ON/OFF |
| :--- | :--- |
| ERB SCAN | ON/OFF |
| ERB STEPPER DRIVER | OFF/NO |
| ERB CHOPPER OPERATING | YES/NO |

### 2.2.2.28 S/C Pitch

The spacecraft pitch angle at the time given in items 2.2.2.23 through 2.2.2.25.

### 2.2.2.29 S/C Yaw

The same as in 2.2.2.28 for yaw.

### 2.2.2.30 S/C Roll

The same as in 2.2.2.28 for roll.

### 2.2.2.31 S/C Pitch Rate

This describes rate of change of S/C Pitch.

### 2.2.2.32 S/C Roll Rate

The same as in 2.2.2.31 for roll rate.

### 2.2.2.33 DSAS Right Ascension to Sun (Azimuth Angle)

The azimuth angle is the tenths-of-degrees relative to the S/C axes from the Digital Solar Aspect Sensor (DSAS) data and ranges fro - 1800 to 1800 with negative values for Sun directions to the left of S/C track ( -Y hemisphere). The azimuth angle is zero when sun directior is aligned with S/C XZ-plane.

### 2.2.2.34 DSAS Declination to Sun (Elevation Angle)

The elevation angle in tenths-of-degrees relative to the S/C axes is obtained from the DSAS subsystem. Values range from -1800 to 1800 with positive values corresponding to sun directions below th.e S/C XY-plane ( +Z hemisphere).

### 2.2.2.35 Additional Attitude Data

Fifteen additional sets of items 2.2.2.28 through 2.2.2.34 for a total of 16 sets. Each set is for 1 spacecraft second after previous set.

### 2.2.2.36 Additional Data

Seven additional sets of items 2.2.2.24 through 2.2.2.34 for a total of 8 sets ( 8 VIP frames) for 2 Min .8 Sec of coverage. (NOTE: GMT of each VIP frame is implicitly 16 sec . (S/C time) later than the previous one).

### 2.2.2.37 Start Data Quality Loss Time (24 Bits)

The start time of an interval contained in this 2 Min 8 Sec period, where Data Quality Loss has occurred, expressed as a GMT (milliseconds) increment from time given in item 2.2.2.23. The values should be multiples of 40 milliseconds ( $1 / 25$ seconds).

### 2.2.2.38 End Data Quality Loss Time

The end time (milliseconds increment from time in item 2.2.2.23) of the Data Quality Loss interval described above.

### 2.2.2.39 Additional Data Quality Loss Time

Sixty-one additional pairs of Data Quality loss intervals as described in items

### 2.2.2.37 and 2.2.2.38.

### 2.2.2.40 Data Quality Loss Interval Count

Integer value indicating number of valid bit slip intervals described in this record.

### 2.3 DATA FROM DISK DATA SET

Data from the disk data set is updated manually and provides information for MATGEN to set up the necessary run parameters.

The following parameters are extracted from the Disk Data by the MATGEN program in subroutine SETRNP.
2.3.1 ERBON Time - Time that ERB was last turned on calculated in days from January 1, 1978.
2.3.2 UFO tape numbers, sequence numbers, start orbit, stop orbit and first file.
2.3.3 ILT tape numbers, sequence numbers, start orbit, stop orbit, first file and day/fraction of day (modified Julian day) of the start of the data.
2.3.4 Master Archival Tape (MAT) tape number and sequence number.

### 3.0 SOLAR LOCATION ALGORITHMS (Reference Task 1, Figure 1.2)

### 3.1 MINIMUM SOLAR ELEVATION TIME

### 3.1.1 Introduction

The solar channels are oriented along the velocity vector and because of geometric deviations only view the sun during one short period per orbit. It is necessary at some time just prior to solar viewing to view space for reference purposes. Thus it is necessary to estimate the time of the next minimum solar elevation to properly process the solar data.

This processing is done in the following manner:

The maximum and minimum solar elevation for an orbit occurs when the $Z$ component of the spacecraft velocity is zero. Given the cartesian orbital elements at a particular time, the corresponding Keplerian elements are computed, and the orbits eccentric anomaly when ZDOT $=0$ is computed. Using Kepler's equation for the two body orbit for this eccentric anomaly, the resulting mean anomaly, and thus time is computed. Whether the computed time is for the maximum or minimum solar elevation is determined from the position of the satellite.

The Digital Solar Aspect Sensor (DSAS) angle definitions and comments are not computed by the MATGEN program. However, because of their importance in MATGEN work, they are included in Appendix A.

Another important parameter used in the correction of the solar data is the sun-earth distance. This distance computed to a double precision accuracy has also been used to determine the accuracy of other parameter computations such as the butchered Julian day (which because of an oversight neglected the leap year extra day).

### 3.1.2 Reference

Kepler's Equation as described in "Foundation of Astrodynamics" by A.E. Rey.

### 3.1.3 ORBPER

Purpose: $\begin{aligned} & \text { To calculate the approximate orbital period of a } \\ & \text { satellite given its state vector in cartesian } \\ & \text { coordinates. }\end{aligned}$.

Method: Kepler's Laws for two-body motion are used to find the semi-major axis of the orbit and then its approximate period. MKS units are used in the subroutine.

References: 'Foundations of Astrodynamics' by A. Roy
Figure 3.1 shows the ORBPER data flow

### 3.2 SUN/EARTH DISTANCE

A cosine polynomial function fitted to the sun/earth distance in the U.S. Nautice' Almanac were used to determine this factor. Double precision computations using butchered Julian days is required to obtain a sufficiently accurate correction factor.

Reference: Kepler's equation is described in "Foundation of Astrodynamics" by A.E. Rey.

### 3.2.1 CALEND

# Purpose: To convert butchered Julian dates to calendar dates and times. January 1, 1978 @ 0000Z = Day 0.0. 

Method: Use as a reference day, calendar date January 1, 1904
$=$ Julian day 2416481 and compute number days since then. The fraction leftover can be converted to time.

Reference: None

Figure 3.2 shows the CALEND data flow.


FIGURE 3.1 ORBPER Data Flow Chart (MATGEN 1.5.2)


FIGURE 3.2 CALEND Data Flow Chart (MATGEN 3.1)

### 3.2.2 REAL* 8 SUNDIS

Purpose: To compute the sun-earth distance given the time in Nimbus-7 modified Julian days (MJD).

Method: (1) Compute mean anomaly (MA) and eccentricity (E).
(2) Compute eccentric anomaly (EA) from MA, and E.
(3) Compute true anomaly (TA) from EA and E.
(4) Compute SUNDIS from TA and E.

The exact earth sun distance variation as a function of time was required to determine a reference distance to which all of the ERB solar measured fluxes could be referenced.

References: Tom Von Flandern, U.S. Naval Observatory
Restrictions: The numbers published in the nautrical almanac may change over time. The numbers present are valid in the 1979 Almanac. It would be advisable to check the accuracy every couple of years. The claimed precision of the parent routine (SUNLOC) is RMS error $=\mathbf{0 . 0 0 0 3 0 3}$, maximum error $=\mathbf{0 . 0 0 0 0 6 5 8}$.

Figure 3.3 shows the SUNDIS data flow.

### 3.2.3 MINSEL

| Purpose: | Estimate the time of the next minimum solar elevation for the first orbit of a MATGEN run. MINSEL also calls the subroutine which computes the orbital period. |
| :---: | :---: |
| Method: | Maximum and minimum solar elevation for an orbit occurs when the Z component of the spacecraft velocity is zeru. Given the cartesian orbital elements at a particular time the corresponding Keplerian elements are computed, and the orbits eccentric anomaly when Z DOT $=0$ is computed. Using Kepler's equation for the two body orbit for this eccentric anomaly, the resulting mean anomaly, and thus the time is computed. |
|  | Whether the computed time is for the maximum or minimum solar elevation is determined from the position of the satellite. |

Figure 3.4 shows the MINSEL data flow.

```
ormonat rem:s
of PCOR QUSITY
```



FIGURE 3.3 S'JNDIS Data Flow (MATGEN 6.2.7)

## ORIGINAL PACE IS OF POOR QUALITY



Figure 3.4 Minsei, Data Flow (MATGEN 1.5)

### 4.0 SENSOR STATUS, TEMPERATURES AND HOUSEKEEPING

Both sensor and data status information and data processing algorithms have been extensively used in ERB. Status information is therefore spread throughout the data hendling system.

Temperature information in many cases was measured and transmitted from Nimbus every few seconds. The vast quantity of temperature data have made it essential that much of it be averaged in data reduction. Regression curve fitting using experimental data was used to convert the counts to temperatures.

One often thinks of data manipulation as a form of housekeeping. As will be noted in Appendix B there are more of these type subroutines than data reduction routines. A brief description of each is contained in this Appendix.

### 4.1 ERH STATUS DETERMINATION

### 4.1.1 Introduction

A considerable number of sensor status measurements have been built into the ERB. The resultant information is periodically monitored and transmitted to the ground station. In addition, the data flow is monitored and one bit flags are generated when the data do not meet quantity control requirements.

The location of this status information in the data, its characteristics and meaning are indicated in this section.

### 4.1.2 Reference

All of the data status information is contained in the Gulton (revised 1975) report. The equations are given in Soule (1983).

### 4.1.3 Status Details

The instrument functional requirements document gives the ERB instrument status. These instrument status words are principally in the Digital A Table.

There are eight odd digital words located in Column 24 of the Digital A format. These eight words are status words and each bit of each word indicates unique instrument status. The status for each of these bits is defined in Table 2.1 through 2.7.

### 4.1.4 STATUS

Purpose: To determine the ERB status for one major frame.
Method: From "Digital Words" input, key command verification words are determined which indicate the status of the ERB instrument. Important status is described in the coded decimal integer returned via the calling sequence.

## References:

Science and App:'cations Computing Center User's Guide. Preliminary Edition. Decemher 1975. NASA-GSFC. Greenbelt, Maryland.

Figure 4.1 shows STATUS data flow.

### 4.2 TEMPERATURE DATA CONVEL ION

### 4.2.1 Int:oduction

The importance of temperature measurement is indicated by the fact that almost half of the Digital A data record consists of temperature counts. Very high accuracy temperature measurements were made on internal calibration target areas and certain sensors. These measurements were made with balanced circuits using platinum resistance temperature sensors. Polynominals were used to accurately curve fit the data counts to laboratory measured temperatures.

### 4.2.2 References

Ardanuy, P., (1981), Estimate of the Effect of PTM coefficient errors on the Nimbus-7 Radiance and Irradiance measurements. Contract NAS 5-26123, Task 1.

### 4.2.3 Temperature Count Conversion

Both platinum resistance temperature sensors and thermistors were used to measure a large number of component temperatures on ERB-6 and 7. Individual calibration of the platinum resistance sensors provided accuracies requiring a power series and coefficients for each unit, to duplicate. A single set of coefficients was used in a power series for both the ERB-6 and 7 thermistors.

### 4.2.3.1 Platinum Resistance Equations and Coefficients

To convert Digital PTM Output to Temperature (Celsius) (PTM = Platinum Temperature Monitor) the following equation from reference 4 was used:


FIGURE 4.1 STATUS Data Flow (MATGEN 6.2.3)
original page is
OF POOR $\mathrm{C}^{\prime}$


FIGURE 4.1 (CONTINUED)

$$
T=\sum_{i=0}^{5} C_{i}^{(n)} R^{i}
$$

$C_{i}(n)=$ calibration coefficients $(i=0,1 \ldots, 5)$ for PTM no. $N$

$$
\begin{equation*}
R_{T}=\frac{V_{Q}-V_{N}}{\left|V_{E P}+V_{E N}\right|+2048} \tag{4.2}
\end{equation*}
$$

$\mathrm{V}_{\mathrm{p}}=$ PTM output voltage (counts) in positive mode
$V_{\mathrm{N}}^{\mathrm{P}}=$ PTM output voltage (counts) in negative mode
$V_{E P}=P T M$ excitation voltage (counts) in positive mode
$\mathrm{V}_{\text {EN }}=$ PTM excitation voltage (counts) in negative mode
These voltages are transformed to counts using this equation. The PTM volts which are in the numerator of the equation must be transformed with an 11 bit conversion of 204.7 counts per volt, while the excitation voltages in the denominator of the equation are transformed with a 10 bit resolution of 102.3 counts per volt.

Where
$V_{P P}=$ positive $P T M$ voltage
$V_{P N}=$ negative $P T M$ voltage
$V_{E P}=$ positive excitation voltage
$\mathrm{V}_{\mathrm{EN}}=$ negative excitation voltage
Note that the numerator is the algebraic difference of the actual voltages and not of their absolute values, whereas the excitation voltages are added according to their absolute values. Since this equation is the equivalent of the previous one used in the ERB data reduction, it follows that the algebraic difference of the counts is used in the numerator while the absolute value of the excitation counts is used in the denomonator. The numerator count sign values are found in a separate box in the digital A major frame format.
(a) The following constants were used to convert the ERB-7 platinum resistance counts to temperatures $\left(^{\circ} \mathrm{C}\right)$.

## ORIGINAL PAGE IS <br> OF POOR QUALITI

For ERB-6:
The coefficients for ERB-7 ERBMAT are:
PTMCO/-0.11159, 43.704, 3.97491, 0.12585, 0.3106, 0., Channel 11 Module
$-0.11159,43.704,3.97491,0.12585,0.3106,0 ., \quad$ " 12 "
$-0.11153,43.704,3.97491,0.12585,0.3106,0$. " 19 "
-0.11159, 43,704, 3.97491, 0.12585, 0.3106, 0., " 20 "
-0.11159, 43.704, 3.97491, 0.12585, 0.3106, 0., " 21 "
$-0.11159,43.704,3.97491,0.12585,0.3106,0$. " 22 "
$-0.11159,43.704,3.97491,0.12585,0.3106,0 ., \quad$ " 19 Internal BB
$-0.11159,43.704,3.97491,0.12585,0.3106,0$. " 20 "
-0.11159, 43.704, 3.97491, 0.12585, 0.3106, 0., " 21 "
$-0.11159,43.704,3.97491,0.12585,0.3106,0 ., \quad$ " 22

$$
R=\quad 1.15 \times 10^{4} \text { if ICKT }=1
$$

NOTES: (a) ICKT = 1 for all TM's except: $55,58,59,60,71,72$
(b) If $\mathrm{IE}_{\mathrm{O}} 1$ or $1023, \mathrm{TC}=999.9$
(c) If $\mathrm{x}-0, \mathrm{TC}=999.9$

NPTM-1*4-Platinum temperature monitor indicator.
NPTM= 1 for ch. 11 module NPTM= 2 for ch. 12 module NPTM= 3 for ch. 19 module NPTM= 4 for ch. 20 module NPTM= 5 for ch. 21 module NPTM= 6 for ch. 22 module NPTM= 7 for ch. 19 internal black body NPTM= 8 for ch. 20 internal black body NPTM= 9 for ch. 21 internal black body NPTM= 10 for ch. 22 internal black body

### 4.3 SOFTWARE DATA FLOW

To implement these temperature equations MONTEMP was required to screen the raw data and determine whether it was within limits. IPTMT computed the PTM temperatures and TMTEMP computed the thermistor temperatures. The statistics of the temperatures was computed by subroutine HKSTS.

### 4.3.1 MONTMP

Purpose: To convert platinum temperature monitor (PTM) and thermistor monitor (TM) counts to temperatures for one major frame.

| Method: | PTM excitation counts are screened and function IPTMT is called to obtain scaled temperatures (Degrees $C \times 10$ ) from them. These temperatures are then also screened. TM counts output and appropriate circuit parameters are passed to subroutine TMTEMP to obtain scaled temperatures (Degrees C $\times 10$ ). <br> Thermistor counts are compared with preset limits and if out-of-range, an out-of-limits counter is incremented and the temperature for these erroneous count is replaced by an average temperature for that thermistor. |
| :---: | :---: |

References: None
As shown in Figure 4.3.1, MONTMP uses IPTMT to convert the PTM values and the TMTEMP program to compute the thermistor temperatures.
4.3.2 IPTMT

Purpose: To compute platinum temperature monitor temperatures from output voltage counts and excitation voltage counts. Temperatures are in degrees Celsius $x 10$.

Method: Excitation voltage counts are checked for being within a very generous range. If not within this range, temperatures are assigned a default value of 9999 and execution returns to calling routine. If the output voltage counts are equal, the temperature is assigned an average, or rather an approximate value. Otherwise, the temperature calculation algorithm is executed.

References: P. Ardanuy, (1981), An estimate of the effect of platinum temperature monitor coefficient errors on the Nimbus-7 radiance and irradiance measurements.

Figure 4.3.2 shows the IPTMT flow.

### 4.3.3 Thermistor Equations and Coefficients

The equation and coefficients for both ERB-6 and 7 count conversion to temperatures are:

$$
T\left({ }^{\circ} C\right)=\left(C_{1}+C_{2} x+C_{3} x^{3}\right)-1-273.16
$$



FIGURE 4.3.1 MONTMP Data Flow Chart (MATGEN 6.2.4)

> C: Of POCR QUALITY


$$
\begin{aligned}
& x=\ln \left(\frac{E_{i} R_{2}}{E_{O}}\right) \quad \begin{array}{l}
\text { ORICNAL PAG } \\
\text { OF POOR QUALI: }
\end{array} \\
& C_{1}=1.02433 \times 10^{-3} \\
& C_{2}=2.40027 \times 10^{-4} \\
& C_{3}=1.54612 \times 10^{-7} \\
& E_{i}=15.0 \text { volts (input voltage) } \\
& E_{0}+I E_{0} \times \frac{100}{1023 .} \text { (thermistor output voltage) } \\
& R=10000
\end{aligned}
$$

### 4.3.4 TMTEMP

Purpose: To compute thermistor monitor temperatures from output voltage counts and the circuit resistance. Temperatures returned are in degrees Celsius.

Method: Thermistor monitor counts are checked for being within a specified range. If not within this range, temperatures are assigned a default value of 999.9 and execution returns to calling routine. If within specified range, the circuit resistance is determined from the circuit type and the temperature calculation algorithm is executed. During the course of algorithm execution, if the natural logarithm of a non-positive number is attempted, a default value of 999.9 is again assigned to the thermistor monitor temperature.

References: None
COMMENTS:
All of these thermistors used a single averaged set of coefficients to determine the thermal temperatures. They were not calibrated in the manner the platinum resistance units were supposed to have been calibrated.

Figure 4.3 .3 shows the TMTEMP data flow.


FIGURE 4.3.3

### 4.3.5 HKSTS

Purpose: To compute statistics for the ERB instrument temperatures.

Method: Subroutine RSTATS is used to update the statistics for groups of thermistors and platinum temperature monitors.

Reference: Subroutine HKSTS from Nimbus-6 software
Figure 4.3.4 shows the HKSTS , sata flow.

### 4.4 HOUSEKEEPING

ERB INGEST MAIN PROGRAM
Purpose: To process NIMBUS-7 ERB data
Method: ERB instrument measurements are read from the UFO tape and spacecraft ephemereris and time correction information is read from the ILT. For each 16 seconds of ERB data (one VIP major frame) the data from the two tapes are matched and quality screened. The locations on the earth where the instruments are pointing are found, and the instrument counts are ccinverted to irradiances. Statistics for special operating modes are kept. The output data are written onto the MAT.

Figure 4.3.5 shows the MAIN data flow.


FIGURE 4.3.4 HKSTS Flow Diagram (MATGEN 6.2.5)

CRECNAL PASE 13
OF POOR QUAsity


SEPOT no longer mounced.

$$
\begin{aligned}
& \text { ORtcly r is } \\
& \text { OF POOR Conty }
\end{aligned}
$$


*No Data Written to SEFDT

FIGURE 4.3.5 (Continued)

### 5.0 LOCATION ALGORITHMS

### 5.1 INTRODUCTION

The following MATGEN subroutines determine the earth-location of the Nimbus- $6 / 7$ spacecraft ( $\mathrm{S} / \mathrm{C}$ ) Sub-Satellite Point (SSP), the WFOV image centroid and the nine sub-target area centers from each of the four NFOV telescopes. Inputs to MATGEN include the Image Location Tape (ILT) and User Formatted Output (UFO's) tapes.

An individual ILT contains up to 7 days of data within a set of files, each containing up to a maximum of one orbit of data ( 104 minutes). Each physical data record contained within these files contains a maximum of 2 minutes 8 seconds of data ( 8 VIP frames) and contains all information necessary to locate data plus data quality loss interval information. (Data quality lost intervals are produced before or during Nimbus data telemetry and are indicated by start and stop times during which there are sync and/or bit losses rendering the data unusable).

The S/C ephemeris data is given at every integer GMT minute. Interpolation/extrapolation algorithms are used to alleviate the need for any ILT overlaps. For each minute of ILT data there exists the components of the S/C geocentric inertial position and velocity vectors. The following information is also produced (Ref. 1):

- GMT and S/C clock times
o Solar right ascension and declination
o SSP geocentric latitude and longitude
- S/C altitude normal to the earth elliposid
o Three components of the $\mathrm{S} / \mathrm{C}$ attitude
o Data quality loss start and stop times
When data are found to exist simultaneously within the ILT and UFO, MATGEN processes an appropriate set of major frames of data and writes them onto the Master Archival Tape (MAT). Within MATGEN, processing (location, calibration and computations) occurs on an orbit-by-orbit basis within subroutine PROCOR. Within this subroutine, processing occurs on a major frame-by-frame basis. For every major frame, three relevant subroutines are used. These are ORBSTS (which locates the SSP and the WFOV image centroid), LOCNDR (which locates the nine sub-target area centers from each of the four NFOV telescopes
when the scanner is in "NADIR" mode) and PROSCN (which locates the nine subtargets area centers from each of the four NFOV telescopes when the scanner is in "SCAN" mode). Each of these three subroutines calls another subroutine LOCATR which incorporates the effects of S/C attitude onto the true Line of Sight (LOS) of the WFOV channels and NFOV telescopes. Another capability of this subroutine is the correction for the lateral spread of the four NFOV telescopes and their individual elevation deviations.

Having obtained, from the appropriate subroutine, the geocentric inertial position vector of the SSP or the WFOV and NFOV image points on the earth ellipsoid, the latitudes and longitudes in a geodetic fixed reference frame are obtained.

The algorithm employed by MATGEN is of the form:

$$
\begin{aligned}
& \lambda=\tan ^{-1}\left(\frac{y}{x}-h\right) \\
& \varphi=\tan ^{-1}\left(\frac{a^{2}}{b^{2}} \times \frac{z}{\left(x^{2}+y^{2}\right)^{\frac{1}{2}}}\right)
\end{aligned}
$$

Where:
$\lambda \quad$ is the longitude
$\varphi \quad$ is the latitude (geodetic)
a is the equatorial earth radius
b is the polar earth radius
$h \quad$ is the Greenwich hour angle
$\mathbf{x}$ is the first inertial geocentric position vector component
$y$ is the second inertial geocentric position vector component
$z \quad$ is the third inertial geocentric position vector component

### 5.1.1 References

1. Nimbus-7 Nimbus Operation Processing System, Requirements Document \#NG-14, Tape Spec. No. TI23044 ERB-ILT, ERB Image Location Tape, 1977.
2. Nimbus-7 Nimbus Observation Processing Systems, Requirements Doc. \#NG-1, Tape Spec. No. T113011 ERB-UFO, ERB User Formatted Output, 1977.
3. MATGEN Source Code, Version 9, Subroutines ORBSTS, LOCNDR and PROSCN.
4. Memorandum from $415 / 9 /$ NOPS Manager for Distribution regarding "Nimbus-7 Image Location Tapes (ILT's) for the First Year in Orbit), November 24, 1980.
5. Data Validation of ERB-7 MAT Data, November, December 1978, January, February 1979 Results, prepared for Goddard Space Flight Center, NASA by Research and Data Systems, Inc.

### 5.2 ERB TIME, POSITION AND ANGLE COMPUTATIONS

The nature of the solar data made it important that the exact time in "butchered" Julian days be determined. Unfortunately Julian day accuracies have been a problem for a variety of reasons. For some data this time was needed to double precision accuracy.

In Appendix $A$ is given the manner in which the DSAS hardware operates and the solar angles determined. Although these algorithms are not in MATGEN, they are used in the solar data work and are not readily available elsewhere.

### 5.2.1 Earth Location Algorithms

The earth location of the field of view of the Nimbus-7 ERB sensors in the MATGEN program is determined by calculating the intersection point between the vector representing the ERB field-of-view and the earth's surface. Geometric identification of the vectors and coordinate system used in this section are given in Figures 5.1 and 5.2. John Kogut provided the equations in this section.

To compute the earth location of the field-of-view at any specified time, the following parameters are required:

Spacecraft position vector ( $\overrightarrow{\mathrm{X}}$ ) in Earth Centered Inertial (ECI) coordinates.
Spacecraft velocity vector ( $\overrightarrow{\mathrm{V}}$ ) in ECI (Figure 5.1).
Spacecraft attitude angles Roll (R), Pitch (P), and Yaw (Y) in the spacecraft coordinate system (Figure 5.2).
The direction cosines for the field-of-view vector (scan angles) in the. spacecraft coordinate system $\alpha, \beta$ rand $\mu$
The Greenwich Hour angle at the specified time ( $\Theta_{g}$ ).
The values for the equatorial (ERAD), and polar (PRAD) radii of the earth.


FIGURE 5.1 Spacecraft (S/C) Position and Velocity Vectors

GRIGINAL PACE IS OF POOR QUALITY


Attitude Angles $R, P, Y$
Field of view angles $\alpha, \beta, \mu$

FIGURE 5. 2 Spacecraft Coordinate System

The earth location of the sensor field of view is specified by giving the Earth Centered Fixed geodetic latitudes and the longitude of the intersection point between the field-of-view vector and the surface of the earth.

In the spacecraft coordinate system the field-of-view unit vector $\hat{s}$ is initially along the Zsc axis, and thus produces the components ( $0,0,1$ ). Rotating $\hat{\mathbf{s}}$ about the appropriate axes by the field of view angles ( $\alpha, \beta, \psi$ ) gives, $\widehat{s}$ in the form:

$$
\begin{aligned}
& \mathrm{s}_{\mathrm{X}}=\sin \alpha \cos \beta \cos \mu+\sin \beta \sin \mu \\
& \mathrm{s}_{\mathbf{y}}=\sin \alpha \sin \beta \cos \mu-\cos \beta \sin \mu \\
& \mathrm{s}_{\mathrm{z}}=\cos \alpha \cos \mu
\end{aligned}
$$

To take into account the effect of the spacecraft attitude offsets form the rotation matrix $[A]$ from the roll, pitch and yaw angles. If

$$
\begin{align*}
& S R=\sin R \\
& C R=\cos R \\
& S P=\sin P \\
& C P=\cos P \\
& S Y=\sin Y \\
& C Y=\cos Y
\end{align*}
$$

then the components of $[A]$ are:

$$
\begin{aligned}
& \mathbf{A}_{11}=\mathbf{C P} \cdot \mathbf{C Y}+\text { SP•SR } \cdot \mathbf{S Y} \\
& \mathbf{A}_{12}=-\mathbf{C P} \cdot \mathbf{S Y}+\mathbf{S P} \cdot \mathbf{S R} \cdot \mathbf{C Y} \\
& \mathbf{A}_{13}=\mathbf{S P} \cdot \mathbf{C R} \\
& \mathbf{A}_{21}=\mathbf{C R} \cdot \mathbf{S Y} \\
& \mathbf{A}_{22}=\mathbf{C R} \cdot \mathbf{C Y} \\
& \mathbf{A}_{23}=-\mathbf{S R} \\
& \mathbf{A}_{31}=\mathbf{S P} \cdot \mathbf{C Y}+\mathbf{C P} \cdot \mathbf{S R} \cdot \mathbf{S Y} \\
& \mathbf{A}_{32}=\mathbf{S P} \cdot \mathbf{S Y}+\mathbf{C P} \cdot \mathbf{S R} \cdot \mathbf{C Y} \\
& \mathbf{A}_{33}=\mathbf{C P} \cdot \mathbf{C R}
\end{aligned}
$$

Assuming the attitude correction angles are small, the small angle approximation can be used without compromising the desired accuracy of the final location. The field of view unit vector corrected for attitude $S^{\prime}$ then becomes:

$$
\begin{aligned}
& S^{\prime}{ }_{x}^{\prime}=(C P \cdot C Y+P \cdot R \cdot Y) S_{X}+(-C P \cdot Y+P \cdot R \cdot C Y) S_{y}+(P \cdot R) S_{z} \\
& S^{\prime}=(C R \cdot Y) S_{x}+(C R \cdot C Y) S_{y}+(-R) S_{z} \\
& \left.S_{z}^{\prime}=(P \cdot C Y+C P \cdot R \cdot Y)\right) S_{x}+(P \cdot Y+C P \cdot R \cdot C Y) S_{x}+(C P \cdot C R) S_{z} 5.8
\end{aligned}
$$

The field of view unit vector is transformed from the spacecraft coordinate system to the Earth Centered Inertial coordinate system. In this procedure the direction cosines between the spacecraft and ECI coordins e system are determined assuming that the $z$ axis in the spacecraft coordinate system is normal to the earth ellipsoid so its components ( $\mathrm{Z}_{1}, \mathrm{Z}_{2}, \mathrm{Z}_{3}$ ) in ECI coordinates are:

$$
\begin{aligned}
& \mathrm{Z}_{1}=-\mathrm{X}_{1} \\
& \mathrm{Z}_{\mathrm{g}}=-\mathrm{X}_{0}
\end{aligned}
$$

$$
5.9
$$

$\mathrm{Z}_{3}$ is somputed in the following manner:

$$
\begin{aligned}
& \mathrm{e}^{2}=1-\left(\frac{\mathrm{PRAD}}{\text { ERAD }}\right)^{2} \\
& \mathrm{c}=\mathrm{ERAD}|\overrightarrow{\mathrm{X}}|^{2} \\
& \mathrm{D}=\tan ^{-1}\left(\mathrm{X}_{3} /\left(\mathrm{X}_{1}^{2}+\mathrm{X}_{2}^{2}\right)^{\frac{1}{2}}\right. \\
& \mathrm{F}=\frac{\mathrm{c}}{2} \sin (2 \mathrm{D}) \\
& \mathrm{G}=\left(\frac{1}{2}-2 \mathrm{c}\right) \sin ^{2} \mathrm{D}+\mathrm{C} \\
& \mathrm{P}=\mathrm{D}+\mathrm{F} \mathrm{e}^{2}\left(1+\mathrm{G} \mathrm{e}^{2}\right) \\
& \mathrm{Z}_{3}=-\tan (\mathrm{P})\left(\mathrm{Z}_{1}^{2}+\mathrm{Z}_{2}^{2}\right)^{\frac{1}{2}}
\end{aligned}
$$

So the direction cosines for the Z axis are:

$$
\begin{align*}
& \overrightarrow{\mathrm{Z}}=\left(\mathrm{Z}_{2}^{2}+\mathrm{Z}^{2}+\mathrm{Z}^{2}\right)^{\frac{1}{2}} \\
& 2 \\
& \mathrm{D}_{31}=\mathrm{Z}_{1} /|\overrightarrow{\mathrm{Z}}| \\
& \mathrm{D}_{32}=\mathrm{Z}_{2} /|\overrightarrow{\mathrm{Z}}| \\
& \mathrm{D}_{33}=\mathrm{Z}_{3} /|\overrightarrow{\mathrm{Z}}|
\end{align*}
$$

The spacecraft y axis in ECl coordinates is calculated by crossing spacecraft $Z$ axis with the velocity vector $\nabla$

$$
\begin{align*}
& y_{1}=\left(z_{2} v_{3}-z_{3} v_{2}\right) \\
& y_{2}=\left(z_{3} v_{1}-z_{1} v_{3}\right) \\
& y_{3}=\left(z_{1} v_{2}-z_{2} v_{1}\right) \\
& |\vec{Y}|=\left(y_{1}{ }^{2}+y_{2}{ }^{2}+y_{3}{ }^{2}\right)^{\frac{1}{2}}
\end{align*}
$$

$$
\begin{align*}
& D_{21}=y_{1} /|\vec{Y}| \\
& D_{22}=y_{2} /|\vec{Y}| \\
& D_{23}=y_{3} /|\vec{Y}|
\end{align*}
$$

The spacecraft x axis completes the right handed system so it is the y axis crossed with the Z axis

$$
\begin{align*}
& D_{11}=D_{22} D_{33}-D_{23} D_{32} \\
& D_{12}=D_{23} D_{31}-D_{21} D_{33} \\
& D_{13}=D_{21} D_{32}-D_{22} D_{31}
\end{align*}
$$

### 5.2.1.1 Field-of-View

Thus the field of view unit vector in ECI coordinates (SI) is:

$$
\begin{align*}
& S I_{1}=D_{11} S_{x}^{\prime}+D_{21} S_{y}^{\prime}+D_{31} s_{z}^{\prime} \\
& S_{2}=D_{12} S_{x}^{\prime}+D_{22} S_{y}^{\prime}+D_{32} S_{z}^{\prime} \\
& S_{3}=D_{13} S_{x}^{\prime}+D_{23} S_{y}^{\prime}+D_{33} s_{z}^{\prime}
\end{align*}
$$

To find the intersection point between this vector and the surface of the earth, represent the ellipsoid surface of the earth in parametric form as:

$$
\mathrm{E}\left(\mu_{1}, u_{2}\right)=\left(\begin{array}{l}
\mathrm{ERAD} \cos \mu_{1} \cos u_{2} \\
\mathrm{ERAD} \sin \mu_{1} \cos u_{2} \\
\mathrm{PRAD} \sin \mu_{2}
\end{array}\right)
$$

The parametric form of the line representing the field of view unit vector is:

$$
L(\mu)=\overrightarrow{\mathrm{x}}+\mu \overrightarrow{\mathrm{s}}
$$

solving for $\mu$ gives

$$
\mu=\frac{-B-\left(B^{2}-A C\right)^{\frac{1}{2}}}{A}
$$

where

$$
\begin{align*}
& \mathrm{A}=\operatorname{PRAD}^{2}\left(\mathrm{SI}_{1} 2+\mathrm{SI}_{2} 2\right)+\operatorname{ERAD}^{2}\left(\mathrm{SI}_{3} 2\right) \\
& \mathrm{B}=\operatorname{PRAD}^{2}\left(\mathrm{x}_{1} \mathrm{SI}_{1}+\mathrm{x}_{2} \mathrm{SI}_{2}\right)+\operatorname{ERAD}^{2}\left(\mathrm{x}_{3} \mathrm{SI}_{3}\right) \\
& \mathrm{C}=\operatorname{PRAD}^{2}\left(\mathrm{x}_{1}^{2}+\mathrm{x}_{2}^{2}\right)+\operatorname{ERAD}^{2}\left(\mathrm{~s}_{3}^{2}-\operatorname{PRAD}^{2}\right)
\end{align*}
$$

The field of view vector intersects $t$.،e surface of the earth only when $\mu$ is a real number greater than 0.

The ECI vector which represents this intersection point is then:

$$
\overrightarrow{\mathrm{I}}=\overrightarrow{\mathrm{x}}+\mu \hat{\mathrm{S}}
$$

### 5.2.1.2 Latitude and Longitude

The geodetic latitude $\mathscr{A}$, and longitude $\lambda$ associated with this intersection point are then given by

$$
\begin{align*}
& \varnothing=\tan ^{-1}\left(\frac{\mathrm{ERAD}^{2}}{\mathrm{PRAD}^{2}} \times \frac{\mathrm{I}_{3}}{\left(\mathrm{I}_{?}^{2}+\mathrm{I}_{2}^{2}+\mathrm{I}_{3}^{2}\right)^{\frac{1}{2}}}\right) \\
& \lambda=\tan ^{-1}\left(\mathrm{I}_{2} / \mathrm{I}_{1}\right)-\theta g
\end{align*}
$$

### 5.3 BASIC LOCATION SUBROUTINES

To accomplish the tasks indicated in the introduction, Subroutines PROCOR, ORBSTS, LOCNDR, PROSCN and LOCATR are required. PROCOR primarily processes the earth observation channels and therefore was put in Section 6.0. The others operate in the following manner:
5.3.1 ORBSTS

Purpose: Update orbital parameters for a major frame. Spacecraft position, velocity, and attitude are updated for each half second during the major frame. The WFOV latitude and longitude, the subsatellite latitude and longitude, spacecraft altitude and solar right ascension are updated to 2, 6, 10 and 14 seconds from the beginning of the major frame. Solar deciination, zenith angle, azimuth angle from the subsatellite track, and a flag telling if the subsatellite point is illuminated or not are updated to the middle of the major frame.

Method: Linear interpolation of scalars and vectors
Reference: None
Figure 5.3 indicates the ORBSTS data flow.
of fom

```
C.".........j
```




FIGURE 5.3 ORBSTS Data Flow Diagram (MATGEN 6.2.6)

### 5.3.2 LOCNDR

Purpose: To locate the field of view for the scanning channels when the instrument is in Nadir position.

Method: The four corners of the field of view for each scope are lecated each half second. Then the 9 sub-field of views are found by interpolation. The method is the same used in subroutine PROSCN.

Reference: None
Figure 5.4 gives LOCNDR data flow.

### 5.3.3 PROSCN

Purpose: To process scan information and scan error checks, to locate field-of-view subpoint latitudes and longitudes, and to update scan statistics for one major frame.

Method: If the instrument is determined to be scanning, subroutine ALFVFY and BETVFY are called to determine the number of scan errors for this major frame. The scan information word is constructed and then the statistics are updated for the scan modes. Latitudes and longitudes are determined for each of the four slopes of the nine field-of-view subpoints which occur every half second or 32 times in a major frame, giving 1152 locations. Statistics are then updated for the space scan counts and the gimbal slew rates.

Reference: None
Figure 5.5 shows the PROSCN data flow.

### 5.3.4 LOCATR

Purpose: Calculates the geodetic latitude and longitude which the ERE scanner views for given satellite position, velocity, pitch, roll, yaw, and scanner angles.

Method: This routine determines the scan vector in earth centered frame and finds the intersection of the scan vector with the surface of the earth. If they do not intersect, the latitude and longitude are filled.

Figure 5.6 shows the LOCATK data flow.


FIGURE 5.4 LOCNDR Flow Chart (MATGEN 6.2.8)


CRSMTAL PREE is OF POOR QUALITY


FIGURE 5.5 (CONTINUED)


FIGURE 5.5 (CONTINUED)


FIGURE 5.6 LOCATR Data Flow (MATGEN 6.2.6.2)

### 5.4 SUPPLEMENTAL SUBROUTINES

A number of routines are required to provide inputs to the section 5.2 basic location software. INTERP interpolates for the velocity vectors between computed vectors. The NFOV encoder angles ( $\alpha$ ) and ( $\beta$ ) are verified by ALFVFY and BETVFY while the slew rate statistics are determined by SLEWRT.

### 5.4.1 INTERP

$$
\begin{array}{ll}
\text { Purpose: } & \begin{array}{l}
\text { Given the position and velocity vectors foi the } \\
\text { spacecraft at time T1 and T2, this subroutine linearly } \\
\text { interpolates to find the spacecraft position and } \\
\text { velocity at some intermediate time T. }
\end{array} \\
\text { Method: } & \begin{array}{l}
\text { Using velocity vectors for two given positions and } \\
\text { related times, incremental velocity vectors at incre- } \\
\text { mented times were determined. This program is } \\
\text { called } R^{*} 8 .
\end{array}
\end{array}
$$

Figure 5.7 shows the INTERP data flow.

### 5.4.2 ALFVFY

Purpose: To verify that the alpha encoder positions are appropriate for the particular major frame.

Method: Using the major frame count, nominal alpha encoder positions are chosen. An initial value is taken from array "IVAL" and an increment is added on to produce more values. This increment is found in array "INC" and it is added on the number of times indicated in array "NINC". The number of different initial values in the major frame is known through array "NTVLS". These nominal values are tested against the actual alpha encoder positons. If there is more than a one encoder position difference, an alpha positon error counter is incremented, and the encoder value put in common /ASCAN/, which is used in the scanning. If a major frame is missing, a major frame error counter is incremented.

Figure 5.8 shows the ALFVFY data flow.


FIGURE 5.7 INTERP Flow Diagram (MATGEN 6.2.6.1)


FIGURE 5.3 ALFVFY Flow Diagram (MATGEN 6.2.9.1)

### 5.4.3 BETVFY

$$
\begin{array}{ll}
\text { Purpose: } & \begin{array}{l}
\text { To verify that the beta encoder positions are } \\
\text { appropriate for the particular major frame. }
\end{array} \\
\text { Method: } & \begin{array}{l}
\text { Using the major frame count, scan mode indicator, and } \\
\text { scan mode \#5 routine indicator, the nominal beta } \\
\text { encoder positons are chosen from array "BETA". } \\
\text { Each value is repeated during a major frame the } \\
\text { number of times indicated in array "NSAME". The } \\
\text { number of different beta values is known for array } \\
\text { "NVALS". These are tested against the actual beta } \\
\text { encoder positions, If there is more than a one encoder } \\
\text { position difference, a beta position error counter is } \\
\text { incremented and the ideal encoder value is put in } \\
\text { common /B SCAN/ instead of actual /B SCAN/. It is } \\
\text { used in the scanning sequency only if the scan is in } \\
\text { transition and a transitional counter error is } \\
\text { incremented. }
\end{array}
\end{array}
$$

Reference: None
Figure 5.9 shows the BETVFY data flow.

### 5.4.4 SLEWRT

Purpose: To update statistics for beta gimbal slew rates
Method: The subroutine is called if this is the third, fifth, or seventh major frame in the scan sequence. Beta slews take place between the tenth and eleventh seconds of major frame three. They also occur between the first and second seconds of major frame five, and between the thirteenth and sixteenth seconas of major frame seven. Subroutine RSTATS is called to update the statistics for the amount of beta encoder position movement during consecutive seconds.

Reference: None
Figure 5.10 shows the SLEWRT data flow.

or rocin arary


### 6.0 EARTH OBSERVATION CHANNELS

### 6.1 INTRODUCTION

The earth viewing channels consist of four sensors having field-of-views (FOV) which encompass the entire earth's dise and a narrow ring of space outside the disc. Two of these Wide Field-of-View (WFOV) channels accept only visible and near infrared radiation and the other two accept in addition radiation out to 50 um .

The earth scanning Narrow Field-of-View (NFOV) channels follow a number of different scanning modes. Four of them receive visible and near infrared radiation while the other four view only infrared radiation from 4.5 to 50.0 um. A general program called ERBCAL (Section 6.1.2) converts all of the earth viewing channel counts into radiances or irradiances. The other subroutines modify this conversion applying various correction factors.

Since the earth channel computer data reduction subprograms do not treat the various channels separately it will be necessary to give the equations used to convert from counts into radiances or irradiances first and then give the subroutines used to accomplish these tasks next (in Section 6.4).

In the case of the infrared scanning channels the conversion from calibrated blackbody into an earth radiation distribution theoretical calibration is unique and will be treated separately (Section 6.5).

### 6.2 WIDE FIELD-OF-VIEW (WFOV) CHANNELS

There were four wide field-of-view sensors, two longwave (channels 11 and 12) and two shortwave (channels 13 and 14). The optical centerlines of these channels were continuously pointed parallel to the local vertical of Nimbus-7. Channel 11 was used principally for calibration and was kept shuttered most of the time. The algorithms listed in Section 6.2 were developed for these channels.

### 6.2.1 Algorithms Channels (11-12)

For channels 11 and 12 wide field-of-view sensors the basic equation used to convert ERB-7 counts to blackbody equivalent irradiances. This equation for the fixed earth flux channels 11 and 12 was:

$$
\begin{aligned}
& H_{T} \cdot F_{T}=\left[\Delta W-\varepsilon_{s} F_{s} \sigma T_{s}^{4}+\varepsilon_{D} F_{D} \sigma\left(T_{D}+k \cdot V\right)^{4}\right] \\
& \text { where } \\
& H_{T} \cdot F_{T}=\text { Combined Target irradiance (watts/m2) and target } \\
& \text { configuration factor }{ }^{3} \text {. } \\
& \Delta W=\text { Effective thermopile irradiance (watts/m2) } \\
& \varepsilon_{S}=\text { Emissivity of the FOV stop } \\
& F_{s}=\text { Configuration factor of F0V stop } \\
& \sigma=\text { The Stefan-Boltzman constant }=5.6697 \times 10^{-8} \text { watts } / \mathrm{m}^{2} K^{4} \\
& T_{s}=\text { Temperature of the FOV stop (K) (Thermister value) } \\
& \varepsilon_{D}=\text { Emissivity of the thermopile } \\
& F_{D}=\text { Configuration factor of the thermopile } \\
& T_{D}=\text { Temperature of the thermopile (K) (plot res. value) } \\
& k=\text { Correction factor for the temperature of the thermopile } \\
& V=\text { Thermopile output (counts) }
\end{aligned}
$$

The equation developed for $\Delta W$ for ERB-7 is:

$$
\Delta W=\frac{\left[V-V_{0}+b\left(T-25^{\circ} C\right)\right]}{s+a\left(T-25^{\circ} C\right) 2.9}
$$

where
$v_{0}=$ Zero offset in counts at $25^{\circ} \mathrm{C}$
$\mathrm{b}=$ Zero of fset temperature coefficient (counts $/{ }^{\circ} \mathrm{C}$ )
$T=$ Module temperature ( ${ }^{\circ} \mathrm{C}$ )
$s=$ Channel sensitivity at $25^{\circ} \mathrm{C}$ (counts/watts m${ }^{-2}$ )
$a=$ Sensitivity temperature coefficient (counts/watts $\mathrm{m}^{-2} /{ }^{\circ} \mathrm{C}$ )

### 6.2.2 Channeis 13-14

For the ERB-7 fixed earth flux channels 13 and 14 the following equations were used to convert from counts to radiance:

$$
H_{T}=\left(V-V_{0}\right) / s^{\prime}
$$

$$
H_{T} \cdot F_{T}=\left[\Delta W-\varepsilon_{S} F_{S} \sigma T_{S}^{4}+\varepsilon_{D} F_{D} \sigma\left(T_{D}+k \cdot V\right)^{4}\right]
$$

where

$$
H_{T} \cdot F_{T}=\text { Combined Target irradiance (watts } / \mathrm{m}^{2} \text { ) and target } \begin{gathered}
\text { configuration factor }{ }^{3} \text {. }
\end{gathered}
$$

$$
\Delta W=\text { Effective thermopile irradiance (watts/m²) }
$$

$\varepsilon_{s}=$ Emissivity of the FOV stop
$\mathrm{F}_{\mathrm{s}}=$ Configuration factor of F0V stop
$\sigma=$ The Stefan-Boltzman constant $=5.6697 \times 10^{-8}$ watts $/ \mathrm{m}^{2} \mathrm{~K}^{4}$
$\mathrm{T}_{\mathrm{s}}=$ Temperature of the F0V stop ( K ) (Thermister value)
$\varepsilon_{D}=$ Emissivity of the thermopile
$F_{D}=$ Configuration factor of the thermopile
$T_{D}=$ Temperature of the thermopile ( $K$ ) (plot res, value)
is = Correction factor for the temperature of the thermopile
surface ( ${ }^{\circ} \mathrm{K} /$ count)
$\mathrm{V}=$ Thermopile output (counts)
The equation developed for $\Delta W$ for $E R B-7$ is:

$$
\Delta W=\frac{V-\left[V_{0}+b\left(T-25^{\circ} \mathrm{C}\right)\right]}{s+\mathrm{a}\left(\mathrm{~T}-25^{\circ} \mathrm{C}\right) 2.9}
$$

where

$$
\begin{aligned}
& v_{0}=\text { Zero offset in counts at } 25^{\circ} \mathrm{C} \\
& b=\text { Zero offset temperature coefficient (counts } /{ }^{\circ} \mathrm{C} \text { ) } \\
& T=\text { Module temperature }\left({ }^{\circ} \mathrm{C}\right) \\
& s=\text { Channel sensitivity at } 25^{\circ} \mathrm{C} \text { (counts/watts } \mathrm{m}^{-2} \text { ) } \\
& a=\text { Sensitivity temperature coefficient (counts/watts } \mathrm{m}^{-2} /{ }^{\circ} \mathrm{C} \text { ) }
\end{aligned}
$$

### 6.2.2 Channels 13-14

For the ERB-7 fixed earth flux channels 13 and 14 the following equations were used to convert from counts to radiance:

$$
H_{T}=\left(V-V_{c}\right) / s^{\prime}
$$

$$
\mathrm{s}^{\prime}=\mathrm{s}\left\{1.0+(0.01)(\mathrm{A})\left(\mathrm{T}_{\mathrm{B}}-25^{\circ} \mathrm{C}\right)\right\}
$$

where
$H_{T}=$ Target irradiance (watts $/ \mathrm{m}^{2}$ )
$V=$ Channel output (counts)
$V_{0}=$ Channel offset (counts)
$\mathbf{s}^{\prime}=$ Corrected channel sensitivity (counts/watts m${ }^{-2}$ )
$s=$ Channel sensitivity in vacuum at $25^{\circ} \mathrm{C}$
$A=$ Channel sensitivity correction factor (\% per ${ }^{\circ} \mathrm{C}$ deviation from irom $25^{\circ} \mathrm{C}$ )
$\mathrm{T}_{\mathrm{B}}=$ Channel thermopile base temperature $\left.\mathbf{(}^{\circ} \mathrm{C}\right)$

### 6.3 NFOV PROCESSING ALGORITHMS

The scanning narrow field-of-view channels are divided into shortwave ( 0.2 to 4.8 um ) and longwave ( 4.5 to 50.0 um ) data processing routines. As will be noted in the following algorithms and data processing, there is a considerable difference in the way the two spectral regions are processed.

### 6.3.1 Narrow Field-of-View Short Wavelength Channels

The scanning shortwave length channels used the same equations as were used for channels 13 and 14. They are given in Section 4.1.

### 6.3.2 Algorithms Channels (15-18)

For the ERB-7 channels 15 and 18 the following equations we used to convert from counts to ratiance:

$$
\begin{align*}
& \mathrm{H}_{\mathrm{T}}=\left(\mathrm{y}-\mathrm{V}_{\mathrm{o}}\right) / \mathrm{s}^{\prime} \\
& \mathrm{s}^{\prime}=\mathrm{s}\left[1.0+(0.01)(\mathrm{A})\left(\mathrm{T}_{\mathrm{B}}-25^{\circ} \mathrm{C}\right)\right] \\
& \text { where }
\end{align*}
$$

$\mathrm{H}_{\mathrm{T}}=$ Target irradiance (watts $/ \mathrm{m}^{2}$ )
V = Channel output (counts)
$V_{0}=$ Channel offset (counts)
$\mathbf{s}^{\prime}=$ Corrected channel sensitivity (counts/watts $\mathrm{m}^{-2} \mathrm{sr}^{-1}$ )
$s=$ Channel sensitivity in vacuum at $25^{\circ} \mathrm{C}$
$A=$ Channel sensitivity correction factor (\% per ${ }^{\circ} \mathrm{C}$ deviation from $25^{\circ} \mathrm{C}$ )
$\mathrm{T}_{\mathrm{B}}=$ Channel thermopile base temperature $\left({ }^{\circ} \mathrm{C}\right)$

### 6.4 SOFTWARE AND DATA FLOW

As indicated in the Introduction, the basic subroutine converting counts into radiances or irradiances is accomplished by ERBCAL. In order to obtain the input data required to process the earth channels updating of the data is required. This is accomplished by the routine PROCOR.

### 6.4.1 ERBCAL

Purpose: To convert digital counts from channels 11-22 to irradiances ( $W^{*} M^{* *}-2$,CHNLS 11-14) and radiances ( $\mathrm{W}^{*} \mathrm{M}^{* *}$-2/STER,CHNLS 15-22)

Method: The counts are converted using several different formula.

The input to FRAD was developed by NOAA personnel using laboratory vacuum cold chamber measurements. These measurements were made with the entire sensor system in the satellite viewing a uniform temperature controlled target which emitted essentially blackbody radiation. Several different target temperatures were maintained in the calibration. In addition, the sensor temperature was also carefully regulated at several d:e nt values.

The resulting data was quite linear for a range of target temperature when the sensor temperature was kept constant. Thus a linear relationship having a constant slope and offset target radiance value was determined.

Figure 6.1 shows the ERBCAL data flow.

### 6.4.2 PROCOR

Purpose: To process all of the data in one orbit, update the statistics and counters for the orbit and find the time of the minimum solar elevation, and do the long weve scanning and short wave calibrations.

Method: The orbit is processed one major frame at a time. For each UFO major frame, the corresponding attitude and ephemeris data is found. The Digital A data is then unpacked and the status of the instrument is found using the odd digital words. The irradiances, temperatures, locations and special mode processing are done by the appropriate subroutines. The solar data is collected according to the predicted time of the minimum solar elevation, then searched to find the actual time $\varepsilon$ at the end of the orbit. The counters and values for the histogram are updated for each major $f$ ame.

Figure 6.2 shows the PROCOR data flow.


## ORICRALEASE IS OF POGR QURATIY




FIGURE 6.2 PROCOR Data Flow (MATGen 6.2)


### 6.4.3 Scanning Channel Temperature Corrections and Statistics

Long wavelength scanning channel temperature correction because to an error in the ERB-7 PTM coefficients is accomplished by FRAD. This subprogram is contained in Section 6.4.4.1.
6.4.3.1 STC

Purpose: To correct channel calibrations for temperature variation.

Method: A linear correction is applied to the sensitivity at 25 degrees centigrade.

The sensor calibration depended upon the sensor tempeature. Thus a simple equation relating the offset to a reference sensor temperature of $25^{\circ} \mathrm{C}$ was developed for most of the ERB sensors.

In the case of channels 11 and 12 , a different procedure was used to correct for this offset. Both the shutter blackbody energy emission and the sensor emission were used in the algorithm.

Reference: Function STC from Nimbus-6 software
Figure 6.3 shows the STC data flow.

### 6.4.3.2 FRAD

Purpose: To compute a filtered radiance in milliwatts per meter squared per steradian from a given temperature in degrees Celsius.

Method: Depending on the temperature interval of the given temperature, a set of coefficients is determined for the radiance algorithm polynominal $\mathrm{AX}^{* *} 4+\mathrm{BX}^{* *} 3+\mathrm{CX}^{* *} 2+\mathrm{DX}+$ E , where X is the natural logarithm of the input temperature in degrees Kelvin. If the temperature is outside the acceptable range, a default of 999.9 is returned.

References: H.V. Soule, Memo on B.B. calibrated sensor corrections.

Program Calling Sequence: FRAD(TC)
COMMENTS:
The validity of this assumption is presently under investigation.
Figure 6.4 shows the data flow of FRAD.


FIGURE 6.3 STC Data Flow Chart (MATGEN 6.2.10.2)

## oricinal page is OF POOR QUALITY



FIGURE 6.4 FRAD Data Flow Chart (MATGEN 6.2.10.1)

### 6.5 LONGWAVE SCANNING CHANNELS

These scanning channels were used to check the calibration of many of the other earth viewing channels. This was because these longwave channels made use of accurate warm and cold calibration targets.

However, all calibration was cione using the energy spectral distribution of a blackbody. It was therefore necessary to correct the blackbody irradiances to typical earth spectral distributed irradiances. Thus, the convolution blackbody irradiance was determined using equation 6 and appropriate coefficients. Equations 6.8 throurgh 6.10 determined the unfiltered earth irradiances.

The present state-of-the-art makes it impossible to calibrate the sensors using an earth radiance spectral distribution. There is a considerable difference in sensor response to sources having different spectral distributions. However, if the response of the complete sensor system to narrow bandwidth radiation throughout the spectral region of interest is measured, then it is relatively easy to compute its response to any known source spectral intensity distribution. This type response measurement is commonly made using a monochrometer. Lacking this measurement, if the spectral transmission of the filter and the response of the detector as a function of wavelength is known, the complete sensor system response can be determined. The error produced by different source spectral distributions is largest in the infrared when filter and detector response as a function of wavelength vary considerably as a function of wavelength. For this situation the following assumptions must be made:

* The measured (count) response of an infrared detector is only dependent on the total received radiation energy. Thus, the relationship between two different spectral sources, such as a blackbody and earth/atmosphere, can be determined by equating their detected filtered values.
* Determination of the filtered values requires the measurement or an estimate of the complete sensor system response as a function of wavelength.
* For the same total filtered (or detector sensed) thermal radiation, the detector emitted radiation back toward the source will be the same and can be neglected because ratios of unfiltered blackbody radiance to earth/atmosphere radiance are usually determined.


### 6.5.1 COMPUTATIONS:

In these computations, the basic criteria was the determination of the amount of unfiltered earth/atinosphere radiation producing the same filtered detected radiance as the calibration blackbody unfiltered radiance. These two detected filtered radiances produce the same recorded counts. Thus it is necessary to know the theoretical relationship or ratio of unfiltered earth/atmosphere radiance to unfiltered blackbody radiance for the filter transmission and detector spectral detection characteristics. In the laboratory it is almost impossible to duplicate the spectral distribution produced by the earth/atmosphere in an accurate manner.

Using the above technique FRAD (Section 6.3.4.1) computed the filtered blackbody radiance. FILRAD (Section 6.4.1.1) converted the longwave filtered radiances to unfiltered radiances.

### 6.5.2 Channels 19-22 Algorithms

For ERB-7 the equation used to convert from counts to filtered radiance was:

$$
\begin{array}{ll}
\mathrm{N}_{\mathrm{T}}=\mathrm{N}_{\mathrm{m}}+ & a_{\mathrm{O}}+a_{1} \cdot \mathrm{~V} \\
\text { where } & \mathrm{N}_{\mathrm{m}}=\text { module radiance }\left(\mathrm{wm}^{-2} \text { ster }^{-1}\right) \\
& a_{0}=\text { channel intercept }\left(\mathrm{w}^{-} \cdot \mathrm{m}^{-2} \text { ster }^{-1}\right) \\
& a_{1}=\text { channel slope }\left(\mathrm{w} \cdot \mathrm{~m}^{-2} \mathrm{ster}^{-1} / \text { count }\right) \\
& \mathrm{V}=\text { channel output (counts) }
\end{array}
$$

$$
6.7
$$

Coefficients $a_{0}$ and $a_{1}$ were determined from early inflight calibrations as well as from preflight thermal-vacuum calibrations.

The module radiance is computed by the solution of:

$$
N_{m}=\exp \left\{A_{0}+A_{1}[\ln (T)]+A_{2}\left[1 n(T)^{2}\right]+A_{3}\left[\ln (T)^{3}\right]+A_{4}\left[1 n(T)^{4}\right]\right\} 6.8
$$

Here the coefficients $\mathrm{Ai}, \mathrm{i}=0,1, \ldots ., 4$, are determined prior to launch for the temperature ranges $50 \mathrm{~K}-200 \mathrm{~K}, 200 \mathrm{~K}-298 \mathrm{~K}$ and $298 \mathrm{~K}-400 \mathrm{~K}$ and are given in the ERB-7 MATGEN (ref. 3).

If the filtered radiance reading from the channel is less than or equal to 30.0 $\mathrm{W} / \mathrm{m}^{2} \mathrm{sr}$ the unfil'ered radiance ( R ) is computed using the Stefan-Boltzmann law as follows:

$$
\begin{gather*}
R=\frac{\sigma T^{4}}{\pi} \\
\ln R=\ln \left(\frac{\sigma}{\pi}\right)+4 \ln T=\ln \left(\frac{\sigma}{\pi}\right)+4 \sum_{n=0}^{4} A_{n}\left(\ln R_{f}\right)^{n}
\end{gather*}
$$

ORIGINAL PAGE 18
OF POOR QUALITY
where
$\mathrm{R}_{\mathrm{f}}=$ filtered radiance (Watts $/ \mathrm{m}^{2} \mathrm{sr}$ )
$R=$ unfiltered radiance (Watts $/ \mathrm{m}^{2} \mathrm{sr}$ )
$T$ = equivalent blackbody temperature (K) (plat.res.value)
$\sigma=$ Stefan-Boltzmann constant
$A_{n}=$ regression coefficients
Thus, knowing the filtered radiance and the regression coefficients, the unfiltered radiance can be computed.

Different sets of regression coefficients are used depending on the filtered radiance value. The regression coefficients for equation 2.15 for the two ranges of filtered radiance values is given by:
for a range of $0.005 \mathrm{R}_{\mathrm{f}} 17.5 \mathrm{~W} / \mathrm{m}^{2} \mathrm{sr} \quad$ for a range of $17.5 \mathrm{R}_{\mathrm{f}} 30.0 \mathrm{~W} / \mathrm{m}^{2} \mathbf{s r}$ $A_{0}=4.68705$
$A_{1}=2.03572 \times 10^{-1}$
$A_{2}=4.14465 \times 10^{-3}$
$A_{3}=-3.24279 \times 10^{-4}$
$A_{4}=-5.80911 \times 10^{-5}$
$A_{0}=4.68888$
$A_{1}=2.00549 \times 10^{-1}$
$A_{2}=5.78289 \times 10^{-3}$
$A_{3}=-1.18646 \times 10^{-3}$
$A_{4}=1.63483 \times 10^{-4}$
Several special cases apply to filtered radiances less than $30.00 \mathrm{~W} / \mathrm{m}^{2} \mathrm{sr}$ ).
If $\mathbf{R}_{\mathbf{f}}<0,\left|\mathrm{R}_{\mathbf{f}}\right|$ is used in the conversion formula and the resulting unfiltered radiance is multiplied by $\mathbf{- 1 . 0}$.

If $\mathbf{R}_{\mathrm{f}}<-3.0 \mathrm{~W} / \mathrm{m}^{2} \mathrm{sr}$ the unfiltered radiance is set "out of range".
If $0.0 \leq \quad\left|\mathbf{R}_{\mathbf{f}}\right| \leq 0.005$ the unfiltered radiance is set equal to the filtered radiance.

For telescope readings of the filtered earth irradiance ( $\mathbf{R}_{\mathrm{f}}$ ) greater than $\mathbf{3 0 . 0}$ $\mathrm{W} / \mathrm{m}^{2} \mathrm{sr}$ the unfiltered radiance is computed using the formula:

$$
R=a_{0}+a_{1} R_{f}
$$

The values for $a_{0}$ and $a_{1}$ for equation 5.5 have the values:

$$
\begin{aligned}
& \mathrm{a}_{\mathrm{O}}=8.8584 \mathrm{~W} / \mathrm{m}^{2} \mathrm{sr} \\
& \mathrm{a}_{1}=1.2291 \\
& \text { In MATGFN } \mathrm{R}_{\mathrm{f}}=\mathrm{N}_{\mathrm{T}}
\end{aligned}
$$

If the filtered radiance is greater than $300.0 \mathrm{~W} / \mathrm{m}^{2} \mathrm{sr}$ the unfiltered ratiance value is set "out of range".

Implementation of this conversion from blackbody calibration values to earth. wavelength dependent radiation is accomplished by FILRAL.

### 6.5.3 FILRAD

## Purpose: Convert long wave filtered radiances to unfiltered radiances.

Method: Compute the equivalent blackbody temperature for the observation by fitting it to a polynomial in the filter radiance. Then using this equivalent blackbody temperature and the Stefan-Boltzman law, compute the unfiltered radiance. This approach is somewhat in error.

References: "Applying Nimbus-3 methods to ERB-G" L-Stowe-NOAA-NESS 8-29-78.

| Modified By: | R.D. Heasty to use in MATGEN |
| :--- | :--- |
|  | J.A. Kogut $5-79$ to compute unfiltered radiances from |
|  | filtered radiance using a linear fit when the filtered |
|  | radiance is 30 watts $/ M^{* * 2}$ Sr. This change is based on the |
|  | memo by L. Stowe of N0AA dated $3-29-79$ "Conversion of |
|  | filtered radiances to unfiltered for the ERB long wave |
|  | scanning channcls (LWSC)". |

Figure 6.5 shows the FILRAD data flow.

### 6.5.4 C0MMENTS:

With few exceptions all sensors were calibrated in the laboratory and in operation using a radiation source having a black or gray body energy distribution. The common practice was io assume that all observed radiation also had this type distribution and thus could be related to the calibrations via the sensor system.

It has been noted that there is considerable difference in the response of a sensor to blackbody and sarth/atmosphere emitted radiation. This difference wouldn't matter if the sensor system were perfect, i.e. the filter had a perfectly rectangular transmission and the detector sensitivity were constant at all measured wavelengths. Unfortunately this type response does not occur in any sensor.


### 7.0 SPECIAL MODE PROCESSING

### 7.1 INTRODUCTION

There are a number of special data processing requirements required in ERB. These include processing the electronic calibration, the space viewed data and other ERB calibration data. In addition, data updating and interchannel comparisons are needed. The special modes requiring processing are determined by SP MODE.

### 7.1.1 SPMODE

Purpose: To process special modes of ERB data
Method: The routine determines which special modes are to be processed, then calls the appropriate routine to do so.

## Comments

As will be noted in Figure 7.1 showing the SPMODE data flow, the electronic (stair case) voltages used to determine the gain stability are checked. Also channels 11 and 12 are compared to determine any channel 12 degradation.

### 7.2 DATA UPDATING, QUALITY CONTROL AND REGRESSION/CORRECTION

In the ELBMAT program it has been necessary to perform a number of routine updating and quality control tasks as well as determine data statistics and correlate some of the data. The following MATGEN programs accomplish these tasks.

### 7.2.1 SWCAL

Purpose: To compute ratios of the short wave scanning channels views of the terrestrial target reduced to the ( 0.0 ) source direction (normal to target) to the reflectance values obtained from Nimbus- 6 orbit 276 during short wave check.

Method: The short wave data from disc unit 24 is searched until the solar peak is found. Net counts averages for channels 15-18 are obtained, as well as the solar elevation, solar azimuth, and various spacecraft temperatures. The offsets for these channels are determined and function PLATE is called to determine reflectance ratios for net counts minus offsets for each channel These reflectance ratios are divided by the offsets and these values are called "observed counts". Finally, subroutine RSTATS is called to update statistics for the ratio of these observed counts to predicted ones.

$$
c-2
$$

orignal page is
OF FOOR QUNity


FIGURE 7.1 SPMODE Data Flow (MATGEN 6.2.11)


FIGURE 7.2 SWCAL Data Flow Chart (MATGEN 6.2.17)



Reference: None
Figure 7.2 shows SWCAL data flow.

### 7.2.2 SWCHK

> Purpose: To update counts statistics for seanning channels 1518 during short wave check (commented out at present) and to write onto disc the current major frame averages of channels counts and detector, target, port, and baffle temperatures.

> Method: Subroutine RSTATS is called to update scanning channel counts during short wave check (commented out at present). Subroutine LWSCT computes major frame averages of the module, target, port, and baffle temperatures. Detector temperature ITM(57) replaces the module temperatures.

> Reference: None

Figure 7.3 shows the SWCHK data flow.

### 7.2.3 REFCC

Purpose: To update irradiances statistics for earth flux channels eleven and twelve either with shutters both open or both closed.

Method: As long as earth flux channels eleven and twelve shutters have remained either both open or both closed for more than ten consecutive major frames, statistics for channel eleven irradianices, channel twelve irradiances, and channel twelve minus channel eleven irradiances are updated via call to suroutine RSTAT'IS. Statistics are update ifor each case separately; cases being shutters both open or both closed.

Figure 7.4 gives the REFCC data flow.

```
C.
OF FOOR SM:ITY
```



FIGURE 7.3 SWCHK Data Flow Chart (MATGEN 6.2.11.6)

ORICTNA PG: S OF POOR QUALITY


### 7.3 CALIBRATION ALGORITHMS

Electronic calibration of ERB is used to monitor the channel gains and enable correction for any change in gain. Other calibration requirements include computing the shortwave scanning channel reflectances from a solar illuminated plate (subroutine PLATE), determining the statistics of the internal blackbody and space data (subroutine LWCAL) and updating the detector count statistics (SPSCS, LWCHK and GONOGO).

### 7.3.1 ELCAL

Purpose: To analyze the results when electronic calibration signals are applied to the solar and earth flux detectors.

Method: The calibration signals are applied as a staircaseshaped pulse at $0,30,60$ and 90 percent of some nominal value. In the first major frame of the calibration sequence, 5 samples of the $0 \%$ pulse and 8 of the $30 \%$ pulse are stored in the program for each of the 10 solar channels, 2 samples of $0 \%$ and 2 samples of $30 \%$ are stored for each earth flux channels. In the second major frame, corresponding samples of the $60 \%$ and $90 \%$ calibration pulses are stored. The program then calculates the gain and linearity of each channel by means of a regression analysis.

Reference: Subroutine ELCAL in Nimbus-6 software
Figure 7.5 gives the ELCAL data flow.

### 7.3.2 PLATE

Purpose: To compute PLATE reflectances ratios for short-wave scanning channels fifteen through eighteen.

Method: Given the channel number and the source direction (elevation and azimuth angles), values of the reflectance ratios are chosen corresponding to intervals of the elevation and azimuth angles. These values are then interpolated linearly to obtain the PLATE reflectance.

Reference: None

## RESTRICTIONS:

A PLATE reflectance ratio of 1.0 is returned for elevations outside the range of $\mathbf{- 5}$ to 15 degrees or azimuths outside the range $\mathbf{- 2 0}$ to 20 degrees.

## C?C: <br> OF PCOR QUnLII



FIGURE 7.5 ECAL Data Flow (MATGEN 6.2.11.2)

```
OnTons: a is
OF PCOR OSMTY
```



## COMMENTS:

The reflectance radiance are essentially solar blackbody in nature and therefore may be used in the ilight calibration of the sensors.

Figure 7.6 shows the PLATE data flow.

### 7.3.3 LWCAL

Purpose: To deterinine the slope and intercep. of the calibration line from fixed space and internal blackbody views, and to ou!put a statistical summary of them for the orbit.
$\begin{array}{ll}\text { Method: } & \begin{array}{l}\text { The long wave channels are calibrated by comparison } \\ \text { of counts during views of space and during views of } \\ \text { the internal blackbody. Best-iit slopes and intercepts } \\ \text { are calculated, along with statistics. }\end{array}\end{array}$
Reference: Subroutine LWCAL in Nimbus-6 software

## Program Calling Sequence: Call IWCAL

Figure 7.7 shows the LWCAL data flow.

### 7.3.4 SPACE

Purpose: | UpCate the statistics for the scanning channel counts |
| :--- |
| during the fixed views of space and write to disk the |
| current major frame average of the mean counts, and |
| mean module, target, PCRT, and baffle temperatures. |

Method: | Scanning channel statistics are updated in array |
| :--- |
| SCSPVW by subroutine RSTATS. Average assembly |
| temperatures are calculated by subroutine LWSCT, |
| and the data for this major frame are then written out |
| onto disk. |

Reference: Subroutine SPACE in Nimbus-6 software
Program Calling Sequence:
Call SPACE (MFTIME, MFNO, ISCANS, JPTM, ITM,
SCSPVW, NSPREC)

Figure 7.8 gives the SPACE data flow.


ORIGNAL RACE IL OF POOR QULin:



FIGURE 7.8 SPACE Data Flow (MATGEN 6.2.11.4)

### 7.3.5 SPSCS

Purpose: To update the statistics of detector counts for the eight scanning channels during scans of space.

Method: The subroutine is called if this is the second or the
sixth major frame in the scan sequence. It is the
second major frame, space scans take place during the
ninth and tenth half-seconds. If it is the sixth major
frame, space scans take place during the fifteenth and
sixteenth half-seconds. Subroutine RSTATS is then
called to update the scanning channel counts.
Reference: None
Figure 7.9 shows the SPSCS data flow.

### 7.3.6 LWCHK

> Purpose: $\begin{aligned} & \text { Update the statistics for the scanning channel counts } \\ & \text { during the views of the internal blackbody, and write } \\ & \text { the data onto disk. }\end{aligned}$ Method: $\begin{aligned} & \text { Scanning channels blackbody statistics are updated in } \\ & \text { array SCBBVW by subroutine RSTATS. }\end{aligned}$ Reference: Subroutine LWCHK in Nimbus-6 software

Figure 7.10 shows the LWCHK flow diagrams.

### 7.3.7 GONOGO

| Purpose: | To update statistics during the G0/N0 GO test for the |
| :--- | :--- |
| ten solar channels and four earth flux chanrels, and to |  |
| perform the calibration for channel 10 C. |  |

Method: The subroutine is called every major frame of the GO/NO GO test, which last 100 major frames. It is called when the G0/N0 G0 heaters are on and $u_{1}$ itil forty major frames after they are turned off. The maximum counts for each channel are determined during the first major frame of the test. On the last major frame that the heaters are on, the minimum counts for each channel are determined. Counts averages are computed for each channel during every fifth major frame, whether or not the G0/N0 G0 heaters are on. After 100 major frames, or after the G0/N0 G0 test is over, these averages are printed and statistics are updated for each channel for the ratio of the difference between the minimum and maximum counts to a prelaunch value for same.

## cenco..

Or PoON Quabir


For the channel 10 c calibration during the GO/NO GO test, the output heater current output, and the heater voltage output once per second. These outputs from channel 10 c during the GO/NO GO test are tested against the provided limits to determine the type of measurement. The cavity, current, and voltage values for each major frame are averaged and used to compute an average power sensitivity.

Figure 7.11 gives the GONOGO data flow.

### 7.3.8 ISTAT

Purpose: To determine the statistics (minimum, maximum, mean and standard deviation) of a group of numbers.

Figure $\mathbf{7 . 1 2}$ gives the ISTAT data flow.


FIGURE 10.0 LWCHK FIOW Diagram (MATGEN 6.2.11.6)

ORIGINAL PAEE IE OF POOR QLILLTI


FIGURE 7.11 GONOGO Data Flow (MATGEN 6.2.11.1)


FIGURE 7.11 (CONTINUED)
original pher is
of POOR QURLS


### 8.0 SOLAR DATA PROCESSING ALGORITHMS

The solar sensor system does not track the sun throughout the Nimbus orbit. The sensors can be oriented so that they are above to view the sun for only a brief period each orbit at satellite sunrise. Thus the nature of the solar data during the three minutes the sun is in the sensor field of view makes it necessary to use special analysis techniques to determine the exact time at which to determine the on-sun average counts. To determine the correct time at which space and later the sun is viewed the subroutine PROCOR is used (Section 6.4.2).

Before and after solar acquisition (over the South Polar region) the ERB sun sensors view space. This almost constant value is averaged over three major frames at 26 and 13 minutes before and after solar acquisition and used as a reference value for Nimbus-7.

### 8.1 CHANNELS ALGORITHMS (1-10)

For channels 1 to 9 the following equations are used:

$$
\begin{align*}
& H=\left(V-V_{0}\right) /\left(S_{V} \cdot f\left(T_{B}\right)\right) \\
& f\left(T_{B}\right)=1.0+0.01 A\left(T_{B}-25.0^{\circ} \mathrm{C}\right)
\end{align*}
$$

where

$$
\begin{aligned}
& H=\text { Solar irradiance }\left(\text { watts } / \mathrm{m}^{2}\right) \\
& \mathrm{V}=\text { A verage on sun counts }{ }^{1} \\
& \mathrm{~V}_{0}=\text { Average off-sun counts }{ }^{2} \\
& \mathrm{~S}_{\mathrm{V}}=\text { Channel sensitivity at } 25^{\circ} \mathrm{C} \text { (counts/watt } \mathrm{m}^{-2} \text { ) } \\
& A=\text { Temperature correction coefficient }\left(\% \text { per }{ }^{\circ} \mathrm{C}\right. \text { deviation } \\
& \text { from } \left.25^{\circ} \mathrm{C}\right) \\
& T_{B}=\text { Thermopile base temperature }\left({ }^{\circ} \mathrm{C}\right)(\text { Thermister })
\end{aligned}
$$

For ERB-7 channel 10 c is a self-calibrating cavity thermopile. The equations used to convert counts to irradiance for this channel are:

$$
\begin{align*}
& H_{10 c}=E_{m} c_{f} S_{p}(T) \\
& E_{m}=E_{o s}-\frac{E(-13)+E(+13)}{2} \\
& S_{p}(T)=S_{0}+S T_{H}
\end{align*}
$$

where
$\mathrm{H}_{10 \mathrm{c}}=$ Channel 10c irradiance (watts $/ \mathrm{m}^{2}$ )
$c_{f}=$ Channel $10 c$ correction factor for aperture area and nonequivalence ( $\mathrm{m}^{-2}$ )
$E_{o s}=$ A verage channel 10 c on sun counts
$E( \pm 13)=$ Average channel 10 c courits at $\pm 13$ minutes from on-sun time.
$S_{0}=$ Power sensitivity zero level (counts/watt)
$S \quad=$ Power sensitivity slope (counts/watt ${ }^{\circ} \mathrm{C}$ )
$\mathrm{T}_{\mathrm{H}}=$ Channel 10 C heat sink temperature $\left({ }^{\circ} \mathrm{C}\right)$

### 8.2 SOFTWARE AND DATA FLOW

To process the solar data only one subroutine (SOLAR) was required. This routine is described and the data flow shown in Section 2.2.1.

To locate the solar data on the striped out ERB data tape it was necessary to determine the exact Julian time at which it was measured. This program and the data flow diagram is given in Section 2.2.2.

The sensor temperatures also required in the solar count to irradiance equations were also required for the earth viewing sensors. Therefore, this program and its data flow will be found in the general information sections (Section 7.0).

### 8.2.1 SOLAR

Purpose: Collect process data from ERB solar chs. when N-7 is in the solar collection zone of its orbit.

Method: Solar counts and instrument temperatures are saved for each of the 5 solar zones for later processing. The major frame in solar zone 3 in which the solar minimum occurs is also saved. When solar is called with ISLRZN=6, the stored values are recalled and statistics on the temperatures counts are computed. Normalized solar irradiances are also computed.

Figure 8.1 shows the SOLAR data flow.


FIGURE 8.1 SOLAR Data Flow (AOPS ERB MATYEN 6.2.15)


FIGURE 8.1 (CON'INUED)


FIGUR 8.1 (Continued)

### 9.0 GENERAL REFERENCES

Ardanuy, P., (1981), "An Estimate of the Effect of Platinum Temperature Monitor Coefficient Errors on the Nimbus-7 Radiance and Irradiance Measurements", Research and Data System Memo, NASA Contract NAS 5-26123, Task 1, March 1981.

Attachment C, Ninth NET Meeting minutes, Dec 1977, and telephone message from J. Hickey to J. Kogut, 11-9-78.

Flynn L. R.M. (1982) "ERB MATGEN Programmer's Manual" SASC contract NAS5-26773 for NASA Goddard (Sept. 1982)
G.E., (1975), "Nimbus 6 Data Catalogue Vol 1", 12 June 1975-31 August 1975, orbits i through 1082.

Gulton (revised 1975) "Operation and Maintenance Manual for ERB Radiometer Subsystem for Nimbus F," Gulton Rept. 13936-970, NOAA Contract 2-35297

Howell, H.B., (1975), "Recalibration of Platinum Resistance Thermoeters (PRT's) in Four ERB Calibration Black Bodies", U.S. Dept. of Commarce, NOAA, National Environmental Satellite Service, 12 September 1975.

Howell, H.B., (1975) "ERB Calibration Coefficients", Letter to record U.S. Dept. of Commerce, Environmental Science Services Administration, National Environmental Satelhtf- Denter, 16 May 1975.

Howell, H.B., (1980), "Letter to A. Arking, re: ERB-6 Ingest Program", July 1980.

Jacobowitz, H., "ERB-6 Ingest Print Documentation", N0AA World Weather Building.

Kogut, J.A., (1979), "Current MATGEN Calibration Constants", SASC memo July 1979.

SASC document, "0verall ERB Subsystem Process Flow", MATGEN 5-level summary working paper (subject to change during 1981).

Soule, H. $\because$, (1983), "ERB Calibration Algorithm History", Research and Data Systems, Inc., Contract NAS 5-26123, March 1981.

## APPENDIX A

## A-1 DIGITAL SOLAR ASPECT SENSOR (DSAS)

## A-1.1 ANGLE DEFINITIONS AND COMMENTS

The DSAS sensor system is a separate set of four pairs of orthogonally oriented sensors providing the orientation of the sun with respect to Nimbus-7 and particularly ERB. The four pairs of arrays each have a $\mathbf{6 2 0}$ different field-of-view. Appropriate coordinate computation depends upon the set of sensors receiving the greatest solar illumination.

Referring to Figure A-1 in which the observer is in the plane of the Nimbus orbit; (plane of the paper) it will be noted that the DSAS( $\alpha$ ) angle is between the plane of the sun and Nimbus orbit plane through the center of the earth. The descending and ascending nodes about the earth's equator are as noted.

Because of the earth's shape $\beta$ increases at about one degree a year. For this reason the time at which the satellite crosses the equator changes and a noon crossing in 1975 will become 11:40:30 in 1980.

Sometimes the $\beta$ angle is called the solar right ascension relative to the spacecraft (S/C). Shown in Figure A-2 is the (S/C) reference system with X, Y and $Z$ coordinates representing the conventional axis. The sun's motion about this system is shown via the dotted line. Here the ( $B$ ) angle lies between ( $A$ ), the $S / C$ to sun vector, and the ( $X$ ) velocity vector.

The DSAS ( $\alpha$ ) angle is the elevation of the S/C solar vector above the S/C ( $\mathrm{X}, \mathrm{Y}$ ) plane. As the Nimbus orbits the earth the ( $\alpha$ ) angle goes through $\mathbf{2}_{\boldsymbol{\pi}}$ radians. The ( $\alpha$ ) angle is considered zero at the time of the ERB solar observation it then goes negative and becomes $-\pi$ near the North Pole and $+\pi$ just prior to solar observation near the South Pole.

The DSAS ( $\gamma$ ) angle gives the azimuth of the solar aspect sensors with respect to the ( X ) axis in the $\mathrm{S} / \mathrm{C}(\mathrm{X}, \mathrm{Y})$ plane. To correct for the varying angle between the $S / C$ orbital plane and the sun-earth vector, $(\gamma)$ is adjustable. It is nominally set equal to ( $\beta$ ) but with an opposite sign.

1. The " $\beta$ " angle is the angle between the sun-earth vector and the S/C orbit plane.
2. This angle increases from year to year by about $1^{\circ}$ per year. Thus, a sun-synchronous orbit ascending at noon in 1975 will ascend at 11:40:30 AM in 1980.


FIGURE A-2 SATELLITE/SUN FRAME OF REFERENCE


FIGIJRE A-1 Schematic of the S/C orbital plane angle with respect to the sun about the center of the earth.
3. The DSAS (digital solar aspect sensor) " $\beta$ " angle is the azimuth angle between the projection of the S/C-solar vector onto the S/C $x-y$ plane and the S/C x-axis. For the $N-6$ and $N-7$ S/C it is always positive and varies throughout the orbit. It reaches a minimum when the S/C-solar vector is along the S/C $x-y$ plane near $S / C$ sunrise. This is the time of the solar observation and is the only time for an orbit when the two definitions of the " $\beta$ " angle coincide. The " $\beta$ " angle is sometimes also defined as the solar right ascension relative to the S/C.
4. The DSAS " $\alpha$ " angle is the elevation of the S/C-solar vector above the $S / C x-y$ plane. This angle goes through $2{ }^{\pi}$ radians in the time of one orbit period. For ERB-6 this is approximately -. 058 radians per second. It is zero at the time of the solar observation and becomes negative immediately after.
5. The $S / C$ " $v$ " angle measures the azimuth of the solar channel subassembly to the $S / C x$-axis in the $S / C$ x-y plane. This is adjustable to correct for the varying angle between the S/C orbit plane and the sun-earth vector. This angle is nominally set to a value corresponding to the magnitude of the $" \beta$ " angle with opposite sign.
6. DSAS " $\alpha$ " and " $\beta$ " angles are computed from four pairs of orthogonally oriented sensors each angularly separated by 62 degrees. Depending on the pair of sensors most illuminated by the sun, an appropriate coordinate rotation is performed.

INPUT
ORB:TAL PERIOD
Calculate orbital period - Calculate the approximate orbital period of a satellite given its state vecotr in cartesian coordinates. Kepler's laws for two-body moter and are used.
find the semi-major axis of the orbit and the approximate period. MKS unites are OUTPUT
ORBITAL PERIOD
ORIGWAL PRAm
OF POOR QU,tix.


## APPENDIX B <br> DATA MANIPULATION SUBROUTINE LIST

The following listing and program descriptions are used in MATGEN to produce the proper operations and data flow. These data flow diagrams will be found in reference 1.

| ABCHK | Checks alpha and Beta positions for a major frame to determine scan head position specified by IAR or IBP. If IAP or IBP position maintained then IAY or IBY equals 1. Otherwise they are set to zero (MATGEN 6.2.3.1). |
| :---: | :---: |
| ACTINF | Prints the accounting information for MATGEN. (MATGEN 9.0) |
| CHKSUM | Compute a 16 -bit check sum word for an integer* 4 array for length "NIN". The input array is an integer* 2 array of dimension (2*NIN). (MATGEN 8.1) |
| CP YSEF | Mount a new and old SEFDT tape and copy the old SEFDT onto the new. (MATGEN 1.4) |
| DEFDSR | Inputs arrays, other data is stripped and placed in the daily summary record. (MATGEN 7.1) |
| DEFOSR | Puts data into the orbital summary data buffer scaling where necessary. (MATGEN 6.3.1) |
| DLYSUM | Creates and writes the Daily Summary Record on the Master Archive Tape and prints the various other daily averages and statistics. (MATGEN 7.0) |
| EFLXLR | Writes the earth flux logical record onto the SEFDT tape. It fills the logic record with two major frames of earth flux data and copies it onto the solar earth flux data tape physical record when the logical record is full. (MATGEN 6.2.1.4) |
| INIORB | Initializes orbital variables and co..Ipute the next orbit to be processed. (MATGEN 6.1) |
| LRMAT | Write a major frame of data onto the MAT tape logical data record. In version 1 data is converted into 16 bit integers with appropriate scaling attempting to store data volume. (MATGEN 6.2.13) |
| LWSCT | Computes the major frame averages of the ERB module, target, part and buffer temperatures (MATRIX 6.2.11.4.1). |
| MATREC | Inserts the logical record into the physical record buffer for the MAT tape. When this buffer is filled, it will be written onto the tape. (MATGEN 7.3) |

$\left.\left.\begin{array}{ll}\text { MNOPS } & \begin{array}{l}\text { Mounts the appropriate input or output tapes. It contains a } \\ \text { program calling sequence. (MATGEN 3.2) }\end{array} \\ \text { MNTILT } & \text { Mount the correct ILT. (MATGEN 1.3) }\end{array}\right] \begin{array}{ll}\text { MNTMAT }\end{array} \quad \begin{array}{l}\text { Mounts the Master Archival Tape and its copy. It also writes the } \\ \text { Standard Header and prints a copy on a shipping label. (MATGEN } \\ \text { 3.0) }\end{array}\right\}$
RSTATS Updates statistics (minimum, maximum, mean, std, number of elements and sum of squares) of a group of numbers by adding the effec' of NX values of array (X) (real numbers).
iUUNINT Establishes run parameters, mount correct input tapes and copies the input SEFDT. (MATGEN 1.0)
SCTGMT Converts spacecraft time to modified Julian date using time correction file data (MATGEN 6.2.1.2).
SEFREC Creates a physical record from the computed logical data and record in the buffer. When the buffer is full it records this data on tape. (MATGEN 8.0)
SETRNP Sets the day's run parameters. These parameters are read off a logical dise unit and cards and are stored for common use. (MATGEN 1.1)
SOLDLR Writes the solar data logical record on the SEFDT tape and fill buffer. (MATGEN 6.2.12)
SPRAY2 Sets 2-byte array to scme value. (MATGEN 4.1)
SPRAY4 Sets 4-byte array to some value. (MATGEN 2.0)
UNPACK Unpacks the ERB digital A data, and create variables for the digital A words. (MATGEN 6.2.2)
UNPDQ Unpacks the data quality information from the ILT tape. (MATGEN 6.2.1.1.1)
UNPILT Unpack ephemeris data from the ILT taps. (MATGEN 1.5.1)
UNPTCF Unpack the time correction file from the ILT tape. (MATGEN 1.3.1)

## APPENDIX C <br> ABBREVIATIONS AND TERMINOLOGY

| ACS | Attitude Control System |
| :--- | :--- |
| BB | Blackbody |
| CAT | Calibration Adjustment Tape |
| CH | Channel |
| DIG WD | Digital Word |
| DSAS | Digital Solar Aspect Sensor |
| DT | Data Tape |
| E | Earth Flux Channels |
| ERBMAT | ERB Master Archival Tape |
| ILT | Image Location Tape |
| LOS | Line-of-Sight |
| LSB | Least Significant Bit |
| MAT | Master Archive Tape |
| MATGEN | Master Archive Tape Generation |
| MF | Major Frame |
| MSB | Most Significant Bit |
| n | Angle Symbol |
| NFOV | Narrow Field-of-View |
| NOAA | National Oceanic and Atmospheric Administration |
| PRT (PTM) | Platinum Resistance Thermometer |
| PTM EX | Platinum Thermometer Bridge Excitaticn Data (plus or minus) |
| +PTM/-PTM | Platinum Thermometer Data (plus or minus) |
| QC | Quaity Control |
| S | Solar Channels |
| S/C | Spacecraft |
| SEFDT | Summary Earth Flux Data Tape |
| Sign | Polarity Sign Bits |
| SSP | Subsatellite Point |
| UFO | User Formatted Output |
| VIP | Versatile Information Processor |
| WFOV | Wide Field-of-View |
|  | Scan Head Angle |

## APPENDIX C (cont'd)

## Gimbal Angle-or Solar Right Ascension Angle

Solar Assembly Angle

10 LSB and 10 Sign

Ten least significant bits and ten sign bits of ten preceeding TPM and channel words in chronological order from MSB to LSB.

6 Bit Gray Code for Solar Channel Assembly Encoder


[^0]:    *Elected NET Leader
    **Elected Members
    ***Left the NET because of other committments.

