

LDR Segmented Mirror Technology Assessment Study
M. Krim
J. Russo

```
(NASA-CE-165493) LDE SEGMENTED MIRDOE
    #83-31549
TECHMOLOGY ASSESSMENT STUDY Final Repuct
(Perkin-elmer Corp., Danbury, Conn.) isup
HC A15/aF AO1 CSLi U3A Inclas
G3/89 13185
```


NASA CONTRACTOR REPORT 160493

LDR Segmented Mirror Technology Assessment Study

M. Krim
J. Russo

Perkin Elmer Corporation
Electro-Optical Division/Optical Technology Division
100 Wooster Heights Road
Danbury, Connecticut

Prepared for
Ames Research Center under Contract NASZ-11104

National Aeronautics and Space Administration

Ames Research Center

Moffett Field, California 94035

OREWR ME Of Bur givir

Abstract:

In the mict 390 s. NASA olans to orbit a giant ielescope, whose aperture may be as zreat as 30 meters, for infrared and sub-millimeter astionomy. Its primary mirror will ba sapicyed or sesembied in orbit from a mosaic of possibly hundreds of mirror segments. Earh seament musi be shaded to precise curvature tolerances so that tiftaction-lmited pertormance will be achieved at 30 wm nominal operating wavenmont dil paneis m:ust lie within 1 um on a theoretical surface described by the opirat preser*on of the telescope's primary mirror. To attain diffraction-limitad crtormance, the :ssues of alignment and/or position sensing, posision control to micron tolerances, and struciural, thermal, and mechanical considerations for stowing, deploybs, anc eresting the refiector musi be resolved. Radius of curvature precision influences pane: size, shade, material, and iype of construction. Two superior material cholces emerged: iused quar:z (sufficiently homogeneous with respect to thermal expansivity to permit a thin shell substrate to be drape molded between graphite dies to a precise encugh off-axis asphere for optical finishing on the as-received a segments) and a pyrex or Duran (less expensive than guars and formable at lower temperatures). The optimal reflector pane! size is between $1-i / 2$ and 2 meters. Naking one, two-meter mirror every two weeks requires new approaches to manufacturing oif-axis parabolic or aspheric segments (drape molding on precision dies and subsequent finishing on a nonrotationally symmetic dependent machine). Proof-of-concept developmental programs were identified to prove the feasibility of the materials and manufacturing deas. Sucn a program would cost between $\$ 3 M$ and 5 M and could be completed in three to iour years.

DISTRIBUTION:

NASA Headquarters
Washington, DC 20540
(1) Dr. Leonard Harris/RTM-6
(1) Dr. Lee Holcomb/RSI-5
(1) Dr. Martin Sokoloski/RTE-6
(1) Mr. Charles Bersch/RTM-6
(1) Dr. Michael Greenfield/RTM-6
(1) Mr. John DiBattista/RSS-S
(1) Dr. George Newton/SC-5
(1) Dr. John Warner/SC-7
(1) Dr. Nancy Boggess/SC-7
(2) Rome Air Development Center RADC/OCSE

Att: Captain Doris Hamill/J. Cusack
Griffiss Air Force Base, New York
(1) AF Weapons Laboratory AFWL/ARAA

Att: Dr. J. Fender
Kirtland AFB, NM 87117
(1) AFWAL/FIBAC

Att: Dr. George Holderby
Wright-Patterson AFB, OH 45433
(2) Aerospace Corp.

Att: Dr. Louis Reuben/Dr. Wayne Stuckey
MS A-6/1629
P.O. Box 92957

Los Angles, CA 90009
Jet Propulsion Laboratory
4800 Oak Grove Drive
Pasadena, CA 91109
(1) Dr. Paul Swanson/168-327
(1) Dr. Tom Kuiper/T-1165
(1) Dr. Steve Szirmay/198-326

Langley Research Center
Hampton, VA 23565
(1) Mr. William Boyer/158
(1) Dr. Martin Mikulas/190
(1) Mr. Ray Hook/364
(1) Mr. Wayne Slemp/224
(1) Lewis Research Center

Att: Mr. Charles Raquet
MS 54-5
Cleveland, OH 44135

California Institute of Technology 1201 East California Blvd Pasadena, CA 01125
(1) Dr. Tom Phillips
(1) Dr. Tom Leighton
(1) Dr. Tom Soifer
(1) University of California

Lawrence Berkeley Laboratory
Atr: Dr. Jerry Nelson
Bldg. 50-351
Berkeley, CA 94720
(1) University of California Department of Physics Att: Dr. Paul Richards Berkeley, CA 94720
(1) University of Arizona Steward Observatory Att: Dr. Roger Angel Tucson, AR 84721
(1) Duke University Department of Physics Att: Dr. Frank Delucia Durham, NC 27706
(1) University of Texas of Austin Department of Astronomy Atr: Dr. Paul Vanden Bout Austin, TX 78712
(98) NASA/Ames Research Center Att: Mike Kiya/244-15 Moffet Field, CA 94043 (plus Camera-ready originals)
(1) Ames Reaseach Center Patent Counsel Moffet Field, CA 94043 N200-11A
(1) Ames Research Center

Technology Utilization Office Moifet Field, CA 94043
Internal
(1) M. Krim/813
(1) J. Russo/879
(1) R. Babish/880
(1) R. Scott/089

TABLE OF CONTENTS

Section Title Page
1
INTRODUCTION AND CONCLUSIONS 1
Introduction 1
1.1
Conclusions 2
Materials 2
Size 3
1.2.11.2.21.2.3Manufacturing Approach3
1.2.4 Near-Term Recommendations 3
2 REQUIREMENTS AND EVALUATION CRITERIA 4
2.12.1 .12.1.22.1 .42.1.52.1 .62.2
2.2.12.2.22.3
3
3.1
3.2
3.3
Top-Level System Requirements 4
Figure Type 6
Figure Quality 9
2.1.3 Weight 9
Operating Temperature 10
Stability 12
1987 Technology Readiness 12
Panel Design Requirements 12
Panel Error Budget 14
Packing Efficiency 19
Evaluation Criteria 22
CURRENT TECHNOLOGY ASSESSMENT 28
Production of Off-Axis Aspherics 28
Material Selection 33
Semi-Replicated Sandwich Mirrors 39
IDENTIFICATION AND EVALUATION OF PRIME TECHNOLOGIES 47
4.1 Overview 47
4.2
Metal and Composite Mirror Technologies 47
4.3
4.3.1Glass and Glassy-Ceramic Technology50
Material Testing 50
4.3.2 Fabrication Technologies 50
5ANALYTIC STUDIES53
Structural Modeling 53
5.2Thermal Analysis54
5.3 Quilting 60DESIGN DEFINITION AND CONCEPT SELECTION62
Fused Quartz Sandwich 62
Pyrex Sandwich Core 64
Quilting Avoidance Technique 64
Surface Measuring Technique 67

TABLE OF CONTENTS (Continued)

Section Title Page
7 RECOMMENDED TECHNOLOGY DEVELOPMENT PLANS 69
7.1 Schedule Objectives 69
7.2 Plan Description 69
7.2.1 Material Characterization Tests 72
7.2.27.2.3Material Removal Experiments72
7.378Summary79
APPENDIX A FIRST BRIEFING
APPENDIX B LDR INTERIM REVIEWAPPENDIX C FINAL BRIEFING
or come

LIST OF ILLUSTRATIONS

Figure Title Page
2-1 Longitudinal Spherical Aberration, Spherical Primary Mirror 7
2-2
Weight Budget (Not Much Available for 20m+ LDRs) 11
2-3
Figure Control Definitions (Schematic) 132-4
Wavefront Error Budget 15
2-5
Radius of Curvature Prevision -- A Big Driver for Phased (Coherent) Operation 16
2-6 Required Radius of Curvature Precision for Wave/60rms Coherence WF Error 18
2-7
Glass Homogeneity Requirements -- Thermal/Operational 20
2-8
Preassembled Panel Module Concept 21
2-9
The $\Delta R / R$ Influence Tree 24
2-10
Number of Segments and Number of Different Segment Types to Fill an Aperture ($\Delta=$ Number of Different Figure Types) 25
3-1 Perkin-Elmer Computer Controller Polisher (CCP) Operiation Cycle 31
3-2
Nominal CTE ($\bar{\alpha}$) Selection Guide 36
3-3 The Alcoa Coilzak "Stamped" Metal Mirror Approach 37
3-4
Graphite-Epoxy CTE Variability Limits as Applied to LDR Panels 403-5
How to Make a "Replicated" Sandwich Mirror 42
3-6 Mirror Cross Section Optimization 43
3-7 Static Deflection for a Family of Ultralightweight Mirrors 44
3-8
Static Deflection for a Family of Ultralightweight Mirrors (Material is fused quartz; $\mathrm{c} / \mathrm{h}=0.95$; for all configurations $\sigma \leq 1000 \mathrm{psi}$ © 10 g) 454-15-15-2
Candidate Materials 48
Support Moved Inboard Resulted in a Nearly 2X Frequency Increse 55
LDR Enciosure Design Concept 56
5-3 Maximum Energy Absorbed by the Reflector 57

LIST OF ILLUSTRATIONS（Continued）

Figure Title Page
6－1 Optimal LDR Mirror Panel 63
6－2 Pyrex Ribbon Core Mirror Construction，Feasible by Virtue of Pyrex＇s Highly Formable Nature 65
6－3 How to Avoid Quilting Simply 66
6－4 Contour Sensing of Non－Symmetric Convex Aspheric Optical Surfaces 68
7－1 Ultralightweight Mirror Development Program Formulation 70
7－2 Apparatus for Thru－the－Thickness CTE Measurements 73
7－3 Experiment Sequence 74
7－4 Alternative Measurements Concept $⿰ ⿰ 三 丨 ⿰ 丨 三 ⿻ ⿻ 一 𠃋 十 一 1$ 75
7－5 Shell in Tooling Fixture（Concept Only） 77

LIST OF TABLES

Table Title Page
2-1 Top-Level LDR Requirements (From SOW and Attachments) 5
2-2 Radial and Tangential Sagittal Differences ($\triangle S A G$) for Panels in the Outermost Rings 8
2-3 Packing Efficiency 22LDR Requirements Summary29
3-2 Candidate Materials and Producibility Factors 34
5-1 LDR Enclosure Temperature 58

SECTION 1

INTRODUCTION AND CONCLUSIONS

1.1 INTRODUCTION

In the mid-1990s, NASA is planning to place in orbit a giant telescope, whose aperture may be as great as 30 meters, for infrared and sub-millimeter astronomy. This program, now in an early technical planning stage, is referred to as the LDR (Large Deployable Reflector) Program. This descriptive name derives from its primary mirror, one of the most obvious features of the telescope, which will be deployed or assembled in orbit from a mosaic of possibly hundreds of small mirror segments.

Each of these segments, or panels, must be shaped to precise curvature tolerances so that when they are aligned with respect to each other, diffraction-limited performance will be achieved at the nominal operating wavelength of 30 micrometers. Diffraction limit, in this context, requires that all of the individual panels which comprise the reflecting surface lie within a precision of less than one micrometer on a theoretical surface described by the optical presciption of the telescope's primary mirror. To attain diffraction-limited performance, a variety of technologies must be employed, including alignment and/or position sensing, position control to micron tolerances, and structural, thermal, and mechanical considerations for stowing, deploying, and erecting the reflector.

However, the best sensing and alignment system cannot ensure satisfactory performance if the individual panels themselves do not conform to precise radius of curvature tolerances. A random distribution of radius of curvature errors as small as 100 parts per million could result in wavefront degradation sufficient enough to preclude phased or coherent operation. The ability to produce panels economically and rapidly to these demanding radius of curvature tolerances, to design them in such a manner that this precision is not lost due to temperature or gravity release changes between
manufacture and operation, and to do so without the need for active deformation control, were in fact central considerations for almost every issue associated with panel design. Radius of curvature precision influenced panel size, shape, material, and type of construction.

This report addresses the design requirements and recommended solutions for the development of these panels. It is organized according to the task outline contained in the statement of work, specifically:

1. Development of Requirements and Evaluation Criteria
2. Assessment of Existing Technology
3. Identification and Evaluation of Prime Technologies
4. Analytic Studies and Performance Predictions
5. Design Definition and Concept Selections
6. Selection of Two Most Promising Concepts and Preparation of Technology Development Plans.

During the course of the program, three briefings were presented to the customer. Copies of these briefings are included in their entirety as appendices to this report. The body of the report itself employs key material from these initial, interim, and final briefings plus additional textual material to give the reader sufficient explanatory information to follow the logic leading to the conclusions drawn.

1.2 CONCLUSIONS

The conclusions of this study are summarized in this section.

1.2.1 Materials

Two superior material choices emerged. One was fused quartz, the natural rather than the synthetic product, produced by Heraeus in Hanau, West Germany. This material, Optosil III, appears to be sufficiently homogeneous with respect to thermal expansivity to simply permit the use of a thin shell substrate. We believe, too, that it may be drape molded between graphite dies to an off-axis aspheric shape of sufficient precision for optical finishing to proceed directly on the as-received segments. The need for extensive shaping and material removal is thereby eliminated.

```
0r-ar. - % %
```


The second choice is Pyrex manufactured by Corning (or Duran, a Schott product). While the homogeneity of this material is not as favorable as quartz, it is less expensive and is formable at lower temperatures. To preclude warping with the large isothermal temperature changes characteristic of the LDR operation, it will be necessary to employ this material in a sandwich configuration such that the effects of through-thethickness thermal expansion variations are less critical to performance.

1.2.2 Size

We believe that the optimal size for the reflector panels is between $1 / 2$ and 2 meters. Larger sizes in the areal density range of interest of 15 to $25 \mathrm{~kg} / \mathrm{m}^{2}$ are either too fragile from a mechanical and producibility aspect, or are too big too confidently expect that the shape of the individual segments could be maintained without the use of bending-type figure control actuators, or both of the above.

1.2.3 Manufacturing Approach

Production rates of a single two-meter mirror every two weeks would be required to make enough panels in seven years for a 25-meter mirror. This is the nature of the producibility issue. To achieve this rate, new approaches to manufacturing off-axis parabolic or aspheric segments are required if an LDR is to become a near-future practical reality. We believe that the approach of producing accurate pre-forms by drape molding on precision dies and subsequent finishing on a CCP* or similar nonrotationally symmetric dependent machine is the best way to produce.the reflector panels.

1.2.4 Near-Term Recommendations

A series of proof-of-concept developmental programs was identified to demonstrate the feasibility of the principal ideas contained in the materials and manufacturing areas. This activity would result in the production of several one-meter, $15 \mathrm{~kg} / \mathrm{m}^{2}$ segments embodying the same features and producibility methods that would be used for the full scale $11 / 2$ to 2 m segments. Such a program would cost between three and five million dollars and could be completed in three to four years.

[^0]
SECTION 2

REQUIREMENTS AND EVALUATION CRITERIA

2.1 TOP-LEVEL SYSTEM REQUIREMENTS

A comprehensive set of reflector panel design and performance requirements was derived from the top-level LDR system and programmatic objectives shown in Table 2-1. How they were reduced to requirements for the individual segments or panels will be discussed in Section 2.2.

As shown in Table 2-1, several of these technical and programmatic requirements considerabley influenced the areas where emphasis was placed in this study. For example, the overall reflector size range of $\pm 10 \mathrm{~m}$ about a nominal 20 m diameter would have permitted a segment areal density as high as $90 \mathrm{~kg} / \mathrm{m}^{2}$ for the 10 m size but would demand extraordinary efforts to achieve $10 \mathrm{~kg} / \mathrm{m}^{2}$ in the 30 m size range. The former $90 \mathrm{~kg} / \mathrm{m}^{2}$ unit weight value is not a technical challenge today in 2 m sizes, but producing this much glass and finishing all the 27 segments (for a 10 m aperture using 2 m hexagonal segments) to precise curvature limits in a five to seven year period is. If our efforts were concentrated solely of this producibility issue, however, an LDR would be limited to about ten meters. As such, it would not receive the enthusiastic endorsement of the science community and, therefore, might never happen.

If efforts were concentrated on the 30 m size where $10 \mathrm{~kg} / \mathrm{m}^{2}$ areal densities are needed, the emphasis pendulum would most probably swing over towards novel but highly risky approaches and "gimmics", again missing the point of a 1987 technology readiness demonstration (another top-level requirement). Therefore, we concentrated our efforts regarding size in the 20 m range where the resulting $22 \mathrm{~kg} / \mathrm{m}^{2}$ areal densities are judged a more reasonable technical challenge and where, of course, the producibility issues still demand solutions. This size is certainly more attractive to the science community and still is sufficiently revealing of 30 m technology issues to provide a suitable technological base should this size, and its weight implications, ultimately become the goal.

TABLE 2-1
TOP-LEVEL LDR REQUIREMENTS (FROM SOW AND ATTACHMENTS)

Overall Diameter
Figure Type
Figure Quality
$10 \leq \mathrm{D} \leq 30 \mathrm{M}$
Parabola or Hyperbola/Not Simply Spherical
D/L @ $30 \mu \rightarrow \lambda / 13.7 \mathrm{rms}$ or
$2.2 \mu] \overrightarrow{\text { System }} 2 \mu_{\mathrm{mms}}$ Mirror
f/0.5 To f/l
$25000 \mathrm{lbs}(11360 \mathrm{~kg})$ Including Actuators
150-200K (-100 to -1900F)
Operating Temp
Operating W/L
Dynamics
Stability
Technology Demon.
Operational System
Deployment
Mission Duration
2μ to 1000μ
0.00035 g (Slew), F> 10 cps (Spatial Chopping)

Passive Segments Preferred
1987
1993
Single STS Flight, Manual Assist OK
10 yrs

Less amenable to compromise or trades than the overall size and areal density issue, and the 987 technology readiness requirements, is diffraction-limited performance at wave $=30$ micrometers. This is really the central concept of the LDR - that the entire mirror composed of up to 400 individual segments act optically as a monolithic reflector. As stated in the introduction, new demands are placed on radius of curvature precision, or stated more completely, absolute surface accuracy. Referring back to Table 2-1, there is also a requirement for (light bucket) operation down to wavelengths as short as 2 micrometers. This requirement, in turn, necessitates figure accuracy (relative to a best fit sphere) of between wave/ 20 and wave $/ 40$ rms at 2 micrometers, equivalent to wave/ 10 in the visible with surface roughness not in excess of $500 \AA$. A detailed figure error budget will be found in subsection 2.2.1 where traceability back to the top-level performance requirements will be shown.

Thus, at the broadest level, this is the key issue - the rapid production of a large number of lightweight, wave/ 10 (visible) off-axis parabolas whose radii of curvature are initially matched and thermally stable to a value on the order of 100 ppm over a temperature range of $200^{\circ} \mathrm{F}$.

The following discussion addresses in more detail some of the panel design requirements implied by the parameters contained in Table 2-1.

2.1.1 Figure Type

The overall reflector must be parabolic (or aspheric). Unless the primary f / No was as slow as $\mathrm{f} / 100$, the resultant longitudinal spherical aberration would be in excess of $0.0001 \times$ EFL. For a 10 m system, this amounts to 0.01 m ms , a useless solution. This is shown graphically in Figure 2-1.

The possibility of approximating a parabola with a large number of small spherical elements was addressed. It was found that individual segments would need to be as small as 0.125 m in diameter in order that the differences between radial and tangential sagittas of the prescribed parabola and the local spherical surface not exceed a wave/40 peak-to-peak surface error (ref. error budget). This is illustrated in Table 2-2, based on a 20 m diameter, $\mathrm{f} / 1$ reflector. At a point near the rim ($r=9.5 \mathrm{~m}$) the sagittal and tangential radii of curvature are 43.43 and 41.11 m , respectively. The mean radius is

Figure 2-1. Longitudinal Spherical Aberration, Spherical Primary Mirror
TABLE 2-2
radial and tangential sagittal differences (asag)

Bracketed Values 2-m Panels
Non-Bracketed Values 1-m Panels
42.27m. The panel center-to-edge curvature depth, or sagitta, is denoted as SAG in the table where the subscripts 1 and 2 refer to the sagittal and tangential directions respectively. The difference between these curve depths relative to the curve depth of the mean spherical radius, $\overline{\mathrm{S}}$, is denoted as $\triangle S A G$. The table shows $\triangle S A G$ values for 1 and 2 m panels. Only if the panels were as small as 0.125 in diameter would the error budget requirements on $\triangle S A G$ be satisfied (at the edge of the mirror).

The purpose of these investigations was to determine if spherical segments would be optically satisfactory at the wave $=30$ micrometers operating wavelength, which would greatly simplify the optical figuring process. Rotationally symmetric elements are more easily produced than asymmetric ones and, of course, spheres are symmetric.

But we have concluded that they will not meet performance as practical configuration requirements. So as stated in the introduction, one of the key issues is the efficient production of off-axis parabolic segments. A considerable amount of study effort was directed towards solving this producibility problem.

2.1.2 Figure Quality

The implications of diffraction-limited performance on the figure precision of the panels and the requirements imposed by (light-bucket) operation down to wave $=$ 2 micrometers will be described in Section 2.2 where error budgets are presented.

2.1.3 Weight

Cost is a design dimension for the LDR Program and the goal is to be able to launch and deploy the system with a single shuttle flight, which today costs about $\$ 100,000,000$. Considering a $64,000 \mathrm{lb}$ total (ETR) lift-off weight to reach the final 400 mile orbit, of which approximately $10,000 \mathrm{lbs}$ is fuel and tankage, some $15,000 \mathrm{lbs}$ is available for the reflector panels. This is illustrated in Figure 2-2.

In this figure, "Spacecraft" refers to that part of the vehicle which includes attitude control, communication, power generation, and the command and control subsystem as well as the structure and crew systems provisions for on-orbit servicing. This weight is on the same order as the spacecraft portion of the Space Telescope (ST). The thermal
enclosure weight is based on the presently envisioned concept of a deployable flexible shroud, stabilized with a "tent pole" framework whose primary functions are to keep sunlight from directly illuminating the reflector, and to provide via controlled radiation paths a cool, uniform, and stable environment for the mirror. We believe that a 200 K environment can be achieved with this passive approach.

The Science Instrument weight of 8000 lbs is intended to account for several experiment packages as well as cooling or heat rejection systems necessary for their operation. Those electronics functions which are unique to controlling the reflector, i.e., beyond the scope of the basic spacecraft function, are accounted for in the 2000 lb . weight entry. Thus, we are left with $30,000 \mathrm{lbs}$ for the reflector system. Using the "principle of reasonable proportions", we found that the weight of the integrating structure would be between one-third and one-half of the reflector panel weight for reflectors between 20 and 30 meters. This assumed a 10 cps first mode criteria necessary for pointing control system compatibility.

Each panel will also require at least three actuators for position control. Assuming that 500 panels are necessary to fill the aperture and that each actuator and its associated cabling weighs $5 \mathrm{lbs}, 7,500 \mathrm{lbs}$ will be required. This leaves $22,500 \mathrm{lbs}$ for the panels and support structure and, with the $2: 1$ weight ratio described above in mind, 15,000 lbs are available for the reflector panels. At the 20 m size, this represents an areal density of $21 \mathrm{~kg} / \mathrm{m}^{2}$, very light by current standards. At 30 m , this value is $9.5 \mathrm{~kg} / \mathrm{m}^{2}$, beyond today's achievements even in moderate size mirrors.

2.1.4 Operating Temperature

The most significant thermal requirement is believed to be the bulk temperature change of -170 to $-260^{\circ} \mathrm{F}$ between fabrication and operation. While axial and radial gradients within a panel can be controlled to acceptably low levels by thermal design techniques, the large isothermal change imposes stringent requirements on material selection, specifically on the homogeniety of thermal expansion ($\triangle L / L$) both within a given segment and between segments. This will be reviewed in considerably more detail in Section 4.

STRUCTURE

7,500
7,500
15,000 LBS

Figure 2-2. Weight Budget (Not Much Available for $20 \mathrm{~m}+$ LDRs)

	Cmone bas u
2.1.5 Stability	OF Pon Man

Once operating temperature is achieved, the thermal environment seen by the segments in benign. It is nominally constant and uniform. In such cases, the need for active figure control, i.e., the compensatory bending of the segments by actuators to nullify the distortions caused by non-uniform temperature distributions, is not mandatory.

It is imperative, though, that the thermal expension (contraction) of the mirror blank be uniform to a sufficient extent such that the shape of the mirror is preserved over the large bulk temperature change. Allowances for this effect will be seen in the subsequent error budget.

Gravity release deformations also may be considered under the stability topic. The impact of these deformations on the proportioning of the mirror blanks will be covered in Section 3.

2.1.6 1987 Technology Readiness

This system-level objective was interpreted as a design dimension in the following sense. To accomplish the fabrication of several panels and to demonstrate their performance as a flight quality segmented mirror by 1987 virtually demands that materials and processes currently available or nearly so must be employed. This is not to say that optically non-conventional materials cannot be used; in fact, exploitation of such materials and ideas was investigated as a cost or schedule reducer. What was avoided, however, were those expensive approaches which are still only laboratory curiosities, where scale-up to the panel sizes required or quantities necessary would entail major capital expenses or uncalculable technical risk.

2.2 PANEL DESIGN REQUIREMENTS

These top- or systems-level issues were reduced to specific design requirements at the individual reflector panel level. We believe that the most important technical requirement to have come out of this investigation is radius of curvature precision. It affects panel size, shape, material selection, structural configuration, and optical producibility. In short, it is the driver in coherent segmented mirror design.

Cf rux cuan

Figure 2-3. Figure Control Definitions (Schematic)

As stated earlier, it is desirable to avoid the use of two levels of figure control, as illustrated in Figure 2-3. While it is necessary in certain programs where the thermal environment is significantly transient and non-uniform to series-combine bending and. position figure control, we believe the more economical approach, considering the relatively stable environment surrounding the mirror, is to employ dimensionally stable panels and position control only. This, as will be shown later, favors smaller segments and, hence, more "Level 1 " or position control actuators. But on the whole, fewer actuators per square meter, simpler on-board electronics and sensing, lower weight, and reduced cost are anticipated.

2.2.1 Panel Error Budget

Figure 2-4 shows the error budget from which the panel performance and manufacturing requirements were derived. It presumes a two-mirror telescope whose static, jitterfree performance at the second focus is wave/13.7, a commonly accepted definition for diffraction-limited wavefront quality. Except for the $\Delta \mathrm{R}$ terms, it is similar in content to error budgets for systems with monolithic, or one-piece, primary mirrors. In such systems, if the radius of curvature of the primary is somewhat different from the nominal design value, a slight adjustment of the spacing with respect to the secondary can compensate for it, albeit with refocussing at the final image. With a segmented mirror, each panel of which might/will have a radius of curvature error, this obviously cannot be accomplished. In this instance, radius of curvature errors are analogous to mid-frequency figure errors in a monolith.

An expression relating radius of curvature error to wavefront error was derived to quantify how well each panel had to conform to its prescribed radius. This expression is based on a Gaussian, or random, distribution of curvature errors, which is deemed valid for a system composed of a large number of panels. It would not be entirely valid if only a few, say three or five, panels were employed and could be treated systematically:

$$
\Delta W F=\frac{1}{3.46}\left(\frac{r}{R}\right)^{2} \Delta R \text { Ims. }
$$

In this expression, R is the nominal radius of curvature and r is the half span of an individual panel, as shown in Figure 2-5.

NOTES :

1. $\Delta S=$ WAVEFRONT ERROR DUE TO FIGURE CHANGE (rms)
$\Delta R=$ WAVEFRONT ERROR DUE TO RADIUS CHANGE (rms)
2. TOTAL RSS $\triangle R$ WAVEFRONT ERROR $=.95 \mu$ Ims

MFG RSS \triangle R WAVEFRONT ERROR $=.5$
OP'N RSS \triangle R WAVEFRONT ERROR $=.81$

Figure 2-4. Wavefront Error Budget

Figure 2-5. Radius of Curvature Precision - A Big Driver for Phased (Coherent) Operation

For the case of a simple axial temperature gradient (ΔT^{\prime}) or a bulk average temperature change $(\Delta \bar{T})$ acting on panels with axial expansivity inhomogenities,

$$
\Delta R=\frac{R^{2} \alpha \Delta T^{\prime}}{h}, \frac{R^{2} \Delta \alpha \Delta \bar{T}}{h}
$$

where h is the panel thickness. Substituting this in to the $W F$ expression, one finds that

$$
W F=\frac{1}{3.46} \Sigma^{2} \alpha \frac{T^{\prime}}{h} \quad, \quad \frac{1}{3.46} \quad I^{2} \Delta \alpha \frac{\Delta \bar{T}}{\mathrm{~h}}
$$

for axial gradient and bulk average temperature changes, respectively. This suggests the advantage of "small" panels from a thermal or material homogeneity aspect.

The manufacturing precision, which may be expressed as $\Delta R / R$, is obtained by rearranging the first equation and is equal to

$$
\frac{\Delta R}{R}=\left(\frac{3.46 R}{s^{2}}\right) \Delta W F_{5 m s}
$$

Figure 2-6 shows graphically the relationship between $\Delta R / R$, segment diameter, and nominal radius of curvature for the 0.5 micrometer, or wave/60, wavefront error allocation shown in Figure 2-4. In terms of absolute surface contour error, from the familiar $\Delta=r^{2} / 2 R$ equation for the sagitta of a parabola, there is no size-dependent effect. Manipulation of the above equations shows that

$$
\left[\Delta \simeq 1.7 \quad W F_{\mathrm{rms}}\right.
$$

However, the issue when $\Delta W F=0.5$ micrometer rms is the relative difficulty between fabrication of a 60 -inch-diameter optic to an absolute surface precision of 0.85 micrometer, or 30×10^{-6} inches rms, versus an $80^{\prime \prime}$ or larger optic to the same tolerance. It is generally agreed that such a trade would favor the smaller sizes.

Turning our attention to the thermal issue, we can illustrate further the small panel advantage. Consider for simplicity a panel configured as a shallow solid shell. It is

presumed are all materials will exhibit some degree of coefficient of thermal expansion (CTE) inhomogeneity. And, in fact, this inhomogeneity will vary not only within a given part but also from part-to-part due to process and/or batch variations. Considering only the part-to-part variances, the maximum allowable difference in the CTE axial homogeneity between panels is given by

$$
\Delta \alpha^{\prime} \leq \frac{3.46 \Delta \mathrm{WF}_{\mathrm{rms}} \mathrm{~h}}{r^{2} \Delta \mathrm{~T}} .
$$

The terms in this equation are defined in Figure $2-7$ where α^{\prime} is axial inhomogeieity and ΔT is the bulk average temperature change of the panel, approximately -1700 F between factory and orbit. To relate overall reflector diameter to glass thickness "h", a Constant reflector weight of $15,000 \mathrm{lbs}$ was assumed. Once again, a greater than 2:1 advantage was found between 2 and 1.3 m panels. At 4 m , this ratio would have been 9:1. It should be noted that regarding a 1.3 m panel for a 20 m reflector, a 4×10^{-10} inhomogeneity value is approximately equal to one part in 750 for fused quartz and one part in 75 for Zerodur ($\bar{\alpha}=0.3$ and $0.03 \times 10^{-6} \mathrm{in} / \mathrm{in} /{ }^{\circ} \mathrm{F}$ respectively) and that data is a vailable indicating that these values can be met.

While the $\Delta \alpha$ ' parameter was illustrated for solid mirrors, it is also applicable to sandwich mirrors where it defines the CTE mismatch limits between the front and back plates. For example, if "h" in this instance is 4 inches and $\Delta \bar{T}$ is $170^{\circ} \mathrm{F}$, the front-toback matching for a 2 m panel such that the wavefront error did not exceed 0.5 m would be 13×10^{-10}, or 7 times that of the reference solid. Trades between thin shell solid mirrors and sandwich configurations will be reviewed in a subsequent section.

2.2.2 Packing Efficiency

Another size consideration is packing efficiency relative to the cargo bay diameter. For hexagonal panels, one 4 m , one $3-2.5 \mathrm{~m}$, and one $7-1.7 \mathrm{~m}$ panel could all be placed in a single plane whose superscribed diameter is 4.5 m . For trapezoidal (square) panels arranged in a square array, as shown in Figure $2-8$, this selection is one at 4.5 m , four at 2.25 m , and none at 1.5 m (measured on the diagonal). The packing efficiency is shown in Table 2-3.

Figure 2-7. Glass Homogeneity Requirements -- Thermal/Operational

Chrmay eng -

Figure 2-8. Preassembled Panel Module Concept

TABLE 2-3
PACKING EFFICIENCY

Major Dimension	Number		$\begin{aligned} & \text { Area } \\ & \left(\mathrm{m}^{2}\right) \end{aligned}$	
	Hexagonal	Square	Hexagonal	Square
4 m	1	1	12	10.1
2.5 m	3		14	
2.25 m		4		10.1
1.7 m	7		15	
1.5 m	7	9	11.8	10.1

This table shows the packing efficiency of hexes with respect to squares and the minor advantage of small hexes as opposed to large ones. Practically, however, the hex vs. square advantage will be diminished when consideration of support cradles to hold the panel module during ascent is factored in. This is indicated by the $7-1.5 \mathrm{~m}$ hex module whose packing efficiency is only 17% greater than the square. It should also be noted that an array of squares (or more precisely trapezoids) can better approximate a circle than an array of hexes, which is an optical performance advantage.

2.3 EVALUATION CRITERIA

At this point, we have established that the panels need to be:

- Lightweight ($10-20 \mathrm{~kg} / \mathrm{m}^{2}$)
- between $11 / 2$ and 2 meters in size (hexes or trapezoids are acceptable)
- off-axis parabolas with base radii precise to about 100 ppm
- thermally stable and homogeneous to preserve this curvature accuracy as well as the figure accuracy of wave/40 p-p necessary for light-bucket operation
- producible economically in large quantities at rapid rates.

$$
\begin{aligned}
& \text { OF pote admay }
\end{aligned}
$$

There are potentially many material and configuration choices and combinations that might be able to meet the above requirements. Some are more suitable from a system compatibility aspect than others. To address this issue as well as the producibility question, we assembled a list of evaluation criteria to serve as guides in narrowing down the number of solution possibilities. These criteria are most succinctly found in Appendix A, First Briefing and in Appendix B, LDR Interim Review. They covered a wide spectrum of considerations spanning the issues of shuttle bay stowage, erectability, and alignment sensing system compatibility (all related to segment size which, in turn, is influenced by material selection, structural form, and dynamic and thermal characteristics) to the more immediate concerns of producibility, an issue which encompasses segment size, material and facilities availability, materials utilization, experience and usage history, and the rapid production of off-axis aspherics.

Attempts were made (see Appendix B) to systematically relate the four principal segment questions - size, shape, material, and structural configuration - to the general evaluation categories of performance capability, overall system and mission compatibility, cost and schedule projections, and risk or degree of development required. What we concluded from these sorting exercises was that glass or glassyceramic materials were required based on performance, that panel sizes in the $1 / 1 / 2$ and $1 / 2-$ to 2 m sizes were optimally driven by the goal of passive stability as well as structural and dynamic considerations consistent with the $15-20 \mathrm{~kg} / \mathrm{m}^{2}$ areal density constraint, and that all of these factors considered together caused producibility to emerge as the governing concern.

How these issues all relate is seen in Figure 2-9. This figure traces the way the requirement for absolute figure precision, or $\triangle R / R$, drove the materials selection which, in combination with the weight/areal density requirement, had profound influence on how the mirror blanks would need to be fabricated and optically finished. What this figure shows is the sharp break-point in material homogeneity requirements between 2- and 4 m panels which is based on the relationship shown in Figure 2-7. Referring to Figure 2-10, panel sizes on the order of 1 m are deemed impractically small from the aspect of the sheer number required and the number of position actuators (and cabling) which is (at least) three times the number of panels.

Figure 2-10. Number of Segments and Number of Different Segment Types to Fill an Aperture ($\Delta=$ Number of Different Figure Types)

In addition, for a given areal density, frequency is inversely proportional to the diameter squared, making $4=d$ mirrors impractical. It is shown later in Section 4 that the first mode of a $2 \mathrm{~m}, 17 \mathrm{~kg} / \mathrm{m}^{2}$ (thin shell) mirror with a major diameter d is 11 cps . At the same areal density, this would be .reduced to three cps for a 4 m mirror. This is too low considering the ten cps disturbance frequency associated with the background chopping mode. Further, only one facility exists capable of producing ultralightweight glass mirrors as large as 4 m with areal densities in the $20 \mathrm{~kg} / \mathrm{m}^{2}\left(0.3^{\prime \prime}\right.$ equivalent solid thickness) range. That is the Schott Co. in Mainz, W. Germany and the material is Zerodur. The 1 g handling stresses would exceed 5000 psi which, referring back to the evaluation criteria contained the the appendices, fails in the fragility category for a thin shell mirror.

In a word, 1 m panels are too small from a controls aspect and 4 m panels are too large from a structural, dynamic, availability, and risk aspect. Hence, the 2 m to 1.35 m size is the most viable. Note that these sizes are evenly divisible into the basic 4 m diametrical space available within the orbiter bay. The 0.5 m margin between the 4 m panel module size and the 4.5 m bay diameter was reserved for support structures and deployment devices. Note, too, that the use of the word "module" signifies that four or nine (trapezoidal) 2 - or 1.35 m panels could be preassembled on the ground and stowed in the orbiter as a unit, as shown in Figure 2-9.

Implicit in the above discussion is the desire to employ thin shell mirrors. Such mirrors, although critically dependent on the spatial uniformity of the thermal expansivity, are most compatible with the idea of semi-replication on the forming of the shell to the approximate off-axis parabolic shape. They avoid the high material removal rates associated with conventional optical operations. A method has been identified whereby the semi-replication, or accurate preform approach, can be applied to sandwich or structured mirrors as well. A sandwich mirror relieves, by an order of magnitude, the degree of homogeneity needed for the thin solids. (Refer to the equation in Figure 2-7 where " h " for the sandwich might be 3 " or 0.3 " for a solid.)

The issues of quantity and manufacturing interact and together are influenced by weight, or more specifically the fragility associated with very-low-areal-density, moderately large mirrors. As seen in Figure 2-9, these considerations led to the idea of replication or at least the production of accurate preforms which would minimize the
time required to optically finish the parts and reduce the risk of damage associated with high material removal rates on very lightweight substrates.

This, in tum, led to a search for materials which were compatible, at least in principal, with the production of accurate preforms and which also met the requirements for figure stability (homogeneity) between room and operating temperature ($\Delta \overline{\mathrm{T}} \simeq 200{ }^{\circ} \mathrm{F}$). Associated with this materials evaluation task are the evaluation criteria:
a) Does the material exist today and is it producible in the size range of interest? The thrust behind this question is to avoid dependence on materials which are limited by process physics to small sizes or unsuitable forms where scale-up to the size range of interest could be a program stopping risk.
b) Does the material exist today and is it optically of interest? New materials, particularly ceramics and glassy ceramics and composites, are rapidly emerging as engineering realities. Some of them possess many attractive features for mirror substrates but might fall short in one or several critical areas. Surface granularity in some ceramics and CTE content in composites are two examples of such concerns. The continued development effort to rectify these problems is often a very lengthy, somewhat inventiondependent process. We therefore believe the better approach is to exploit existing, proven materials and to place the engineering emphasis on methods for lightweighting and related configuration issues.

SECTION 3

CURRENT TECHNOLOGY ASSESSMENT

The requirements developed in the previous section are summarized in Table 3-1 for a variety of overall mirror diameters, f / No 's, and segment sizes. Note that because the thickness of a solid segment applicable to a 25 m LDR can only be 6.4 mm (0.25 inches) based on weight considerations, the panel-to-panel variation in the coefficient of thermal expansion in the thickness direction is limited to $1 \times 10^{-10} / \mathrm{F}$. This may be too stringent a requirement to expect of even the best materials. On a unit basis, this is equal to $4 \times 10^{-10} \mathrm{in} / \mathrm{in} / \mathrm{OF}$ per inch of thickness. If, then, the mirror were a 4 -inchthick sandwich, and the back and front faceplates were matched to 16×10^{10}, then the response to a bulk average temperature change would be the same as that of a 6.4 mm thin shell whose expansivity diifference is 1×10^{-10} ?

With this last factor in mind, the focus of the "ciurrent technology assessment" task was concentrated in three areas:

1. Production of off-axis aspherics.
2. Materials which were compatible with semi-replication and which were highly homogeneous and suitable for solid mirrors.
3. Techniques for rapidly producing semi-replicated sandwich mirrors.

3.1 PRODUCTION OF OFF-AXIS ASPHERICS

Optical design requirements demand that the overall reflector be parabolic. This in turn requires that each panel must be an off-axis aspheric. Because of differences in radial and tangential curvatures of these elements, it is not possible to adequately simulate the parabolic shape with spherical elements.

The consequence of this is principally a manufacturing issue. Rough shaping of mirror blanks, using spherical generating techniques, depends on the property of circular symmetry. The majority of the fine shaping, or figuring, processes employed in the
TABLE 3-1.
LDR REQUIREMENTS SUMMARY

		105 15m				20 m				25 m			
					1/1	1/0	0.5	-					
Figure Type		OfF-AXIS PARABOLIC SEGMENTS											
Nominal Padius ot Curvature		150		30 m		20 m		40 m		250		Soun	
Nominal Radus of Curvalure		1.5 m	2 m	1. 5 m	2 m	1.5 m	$2 m$	T. 5 m	2 m	T. 5 m	2 m	T. mm	2 m
Number Panels Required	HX	112	66			200	120			320	180		
	TRPZ	250			Same	440	195			560	290		
Nunber Ditterent Panels Required	${ }_{\text {HRP }}^{\text {HRP }}$	${ }^{16}$	9			25	17			36	20		
Radius of Curvature Precision, innat ($\Delta R=3.46 R^{2} / \mathrm{r}^{2}, \Delta W F \mathrm{~ms}$, and $\left.\Delta W F=0.5 \mathrm{~nm}\right)$	TRPZ		0.39	2.77	1.56	10 1.23		4.92	2.71	13 1.92	$1.0{ }^{9}$	7.69	4.33
Corresponding Sagitia Error, mm		0.00087 (32 rinches) -											
Figure Eircor Allowable		$\lambda / 8$	(a)	2 2 m									
Areal Density, kg/m ${ }^{2}$		39			\rightarrow	22			\cdots	14			
Solld Tiuckness (h), mm		18			\rightarrow	10			\rightarrow	6.4			
$\begin{aligned} & \Delta a^{\prime} \times 10-10 \\ & \left(\Delta a^{4}=3.46 \mathrm{awFh} / \mathrm{r}^{2} \Delta \bar{Y} \text { and } \Delta W F=0.8 \mathrm{wn}, \overline{\Delta \mathrm{f}}=1700 \mathrm{P}\right. \end{aligned}$		5.2	3	5.2	3	3	1.6	3	1.6	2	1	2	1
Aa ' Applicability (S = Solid, C = Cored Sandwichi)		S,C	S,C	S,C	S,C	S,C	c	S,C	C	C	C	C	C

cer poos
optics industry today to modify the spherical blank into a parabola, or other desired asphere, also rely on this property. It will be shown later that this is not universally true; advanced machines such as the Perkin-Elmer Computer Controlled Polisher (CCP) can produce virtually any shape. This machine, however, is most effectively employed only after the blank is rough shaped to within several micrometers rms of its desired final figure.

Because the off-axis elements have significant departures from a best-fit sphere, conventional spherical generating techniques are inadequate. Using a $20 \mathrm{~m}, \mathrm{f} / 1$ parabola as an example, the instantaneous radii of curvature in the radial and tangential directions at a distance of 0.75 m from the edge are 41.11 and 43.43 meters respectively. Assuming a 1.5 m panel size, the depths of curvature, or sagitta, in these two directions are 0.00684 and 0.006648 meters. The difference is 360 micrometers or 0.0144 inches, a considerable amount of material to be removed from a figuring aspect using the CCP machine.

Methods are under development, notably by Dr. Jerry Nelson at Berkeley, to pre-bend mirror blanks in a specific way, generate them as spheres, and then release the constraints and allow the piece to relax into the desired (off-axis) parabolic shape. Such techniques are not so readily employed with the extremely lightweight sandwich structures envisioned for the LDR Program due to fragility, quilting potential, and structural orthotropy, the last being a property of square grid sandwich mirrors. However, the CCP machine can also perform rough grinding operations unconstrained by rotational symmetry. But because of the small tool sizes employed by this machine, the process is less rapid than with the classical approach.

A potential solution for overcoming this slowness lies with semi-replication, or accurate "preforms", such that the basic aspheric shape of the mirror is "molded in" though not necessarily to optical quality tolerances, reducing the amount of material that needs to be removed. If this can be achieved, then all optical operations could be performed on the CCP machines more quickly and economically. Concepts for preforming mirror blanks will be described later in this report for both thin solid and sandwich configurations.

Figure 3-1. Perkin-Elmer Computer Controlled Polisher (CCP) Operation Cycle

The CCP machine system is illustrated schematically in Figure 3-1. The grinding head is carried by an $X-Y$ carriage assembly and may be programmed to follow spiral, raster, or any other desired path while the tool itself rotates at a constant velocity. By varying the dwell rate (x, \dot{y}) at any $x-y$ position, the amount of material removed at that position may be controlled. Constant tool pressure is maintained by a pneumatic spring. A single complete process loop is shown in this figure where:
a. The surface error to be corrected is determined by, full aperture interferometry. Profilometer measurements could also be employed if the surface is so far from an optically good surface that interferometric methods would be impossibly difficult to interpret.
b. A percentage of the total amount of material to be removed is selected and, based on tool mechanics, dwell times over the piece are determined. The times are then converted into an $X-Y$ displacement schedule. These operations are carried out within the machines' dedicated computer.
c. The actual grinding or polishing operation is carried out. This may encompass several identical passes over the mirror surface.
d. The figure is finally remeasured to verify that what was commanded to be removed actually was, and to determine the next removal schedule.

This process might be repeated between five and fifteen times to achieve the desired final figure perfection. As stated earlier, on-axis or off-axis does not matter. The \dot{X}, Y program is in no way symmetry-dependent.

As it concerns LDRs, the CCP exerts very low forces on the mirror panels, a necessary element considering how lightweight they are. The tools are small, which is important in avoiding quilting in sandwich applications with thin faceplate. The more critical issues are probably measuring off-axis elements and the ability of the machine to "clean up" the as-received surface (which will most likely contain high spatial frequency errors from the molding (replication) process and may demand extreme agility of the \dot{X}, \dot{Y} program). The measuring of off-axis elements interferometrically presents problems since the optical axis or vertex of the element does not physically exist and centering of the mirror and null lens becomes difficult, if not imprecise. We will subsequently describe a measuring system that does not rely on interferometry as a potential solution

to this problem and which solves the problem of how to measure an as-received surface, one whose surface is (probably) too difuse or irregular to permit interferometric techniques to be used.

3.2 MATERIAL SELECTION

Initially it was hoped that a sufficiently homogeneous material could be found with a low enough softening, or forming, temperature to permit molding or replicating of the off-axes panels. Ideally, the optical shop would only need to "shine" the surface to about $1000 \AA$ to make it sufficiently specular at wave $=30$ micrometers. Such a process would tend to ensure that each panel in a given radial position would have identical curvatures, an effective way to solve the $\Delta R / R$ manufacturing issue. It would also minimize to almost zero the amount of material that would have to be removed by controlled grinding, a classically time consuming process. Short of reaching this goal, accurate preforms, not quite to final curvature tolerances, would still represent a major time savings.

Table 3-2 summarizes the pertinent characteristics of the six leading candidate LDR materials, the latter two of which are metals. Composites such as graphite-epoxy were also considered but were rejected for reasons discussed at the end of this paragraph. The important homogeneity parameters $\Delta \bar{\alpha}$ and $\Delta \alpha$ refer to the average CTE difference between mirrors and the difference between through-the-thickness, mirror-to-mirror CTE variations respectively. The former is important in sandwich applications where front plate and back plate CTE differences from mirror to mirror will cause a ΔR error distribution to occur when the ayerage temperature is changed. Of the materials investigated, Heraeus Fused Quartz and Schott Zerodur appear to possess the necessary homogeneity requirements for thin shell applications. However, the accuracy of the molding process with both of these materials will require approximately 10 mils of material removal. We might thus expect reasonably accurate preforms and not "shineonly" replicas. Heraeus Fused Quartz is moldable, as shown in Table 3-2, at approximately $1800^{\circ} \mathrm{C}$ in an oxygen-free atmosphere using graphite dies. Schott Zerodur is moldable at much lower temperatures $\left(800^{\circ} \mathrm{C}\right)$, but in glassy or non-ceramed state. Subsequent ceraming to reduce the expansivity from nominally $2 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ to the range of interest required will result in distortion. It is the extremely high quartz
CANDIDATE MATERIALS AND PRODUCIBILITY FACTORS

Candidate Materials	Configuration Applicability				Forming Temp	Frits, Adhesives	Delivery Rate	Current Size Limit	Cost	2μ Perf
	$\Delta \bar{\alpha}$		$\Delta \bar{a}$							
	Solid	Sandwich	Solld	Sandwich						
Heraeus Fused Quartz	-	\checkmark	\checkmark	-	$200^{\circ} \mathrm{C}$	NO	SLOW	44°	HIGH	YES
Schott Zerodur	-	\checkmark	\checkmark	-	$800^{\circ} \mathrm{C}$	Yes	FAST	250"	HiGH	YES
Corning Pyrex	-	(V)	?	-	\sim	Yes	(FAST)	?	LOW	?
Corning "Alumina Silicate"	7	-	-	?	$600^{\circ} \mathrm{C}$	Yes	?	$?$?	7
HIP Beryllium	-	-	-	$?$	$80^{\circ} \mathrm{C}$	NO	(FAST)	48'	MODERATE/HIGH	YES
"Coilzak"/AL.Foam	-	(s)	-	N/A	RT	YES	FAST	$80^{\prime \prime}$	VERY LOW	NO
* Subs. Ceraming Required										

```
Crara
```


molding temperature and the subsequent Zerodur heat treating operation that fundamentally limit the accuracy of these preforms. No other materials appeared to be sufficiently homogeneous for thin shell applications.

We found that Corning Pyrex and probably Schott Duran, much cheaper materials, would be adequately stable in sandwich configurations. They might result in a more economical approach despite the fact that a core structure and back plate would be required and that an appropriate fit for these materials - and the attendant application and firing facilities - would have to be developed.

Figure 3-2 illustrates how CTE bounds were arrived at for the LDR panels. This figure plots CTE against the allowable back-to-front temperature difference for a variety of mirror thicknesses for the specific wavefront error allocation shown in Section 2. These results are for 1 m panels and would be reduced by the square of the diameter for larger panels as indicated by the ΔT equation in the figure. The figure also shows the predicted axial temperature differences that would exist in typical LDR ultralightweight sandwiches due to the thermal resistance of the core structure. Indicated along the bottom are the CTE values of the candidate materials at 200K. Pyrex is just acceptable although reallocation of tolerances and a larger allowable $\triangle W F$ error, always a possibility in the trade stages of a system's development, might provide a more comfortable margin for this potentially attractive material.

The ΔT_{c} values for all glass and glass-ceramic solids and metals are less than the cutoff lines shown on the curve and, hence, these materials are all viable, up until subsequent limiting criteria are discussed. The "XXX" material is a non-designated lithium silicate which Corning suggested as a potential LDR material. It was originally developed in the 1940 s as a lower expansion replacement for Pyrex for mirror applications but is not currently in production.

Metals, aluminum honeycomb, or foam core sandwiches, for example, were "in the running" for a long period of time. The stamped, or replicated, Alcoa Coilzak metal mirror approach shown in Figure 3-3 represented our best solution for this class of reflector. It is in the high risk/big payoff category in the sense that extensive development would be required to determine its ultimate feasibility with respect to

ORIGRE Fe?
OF POOR QUSLHE

Figure 3-3. The Alcoa. Coilzak "Stamped" Metal Mirror Approach
initial forming precision (absolute surface accuracies are fractional micrometers) and thermal and/or temporal stability. This concept is truly a "stamped out" mirror since the thin facesheets and core structure are too flexible to permit any optical finishing subsequent to assembly. The Coilzak material was measured in our laboratory and was found to have a $1000 \AA \mathrm{rms}$ surface. This is adequate for wave $=30$ micrometers performance but does not offer performance growth potential down to the 10 or less micrometer wavelength range. However, the concept should not be forgotten entirely since it may be an optimal solution for multisegment, large submillimeter-type systems and does not require (or permit) any subsequent optical finishing operations.

Another concern with these materials, though, was the bending potential caused by uneven bondlines between the front and rear faces and the core and the resultant thermal moment. This is treated in Appendix C, Final Briefing. Besides this macro issue were also the questions of orthotropy and residual strain, questions which, singly and in combination, have plagued the precision metal mirrors despite their appeal as potentially very low cost solutions. Regarding orthotropy in a thin shell mirror made of rolled material such as aluminum, this property will result in an astigmatic wavefront error whose value can be estimated by

$$
\Delta W F_{A S T I G} \frac{r^{2}(\alpha x-\alpha y) \Delta \bar{I}}{4 h}
$$

where r and h are the radius and thickness of the panel, respectively. For a maximum wavefront error of 0.5 micrometer rms, αx - αy for a 1.5 cm diameter thin shell cannot exceed $1.3 \times 10^{-10} \mathrm{in} / \mathrm{in} / 0 \mathrm{~F}$. For aluminum, whose nominal CTE is 12×10^{-6}, this amounts to 1 part in 10^{5}, which is beyond the range of measurement with this material. Quartz, on the other hand, needs to be isotropic to only 1.5 parts in a thousand, which is within the observed, or inferred, results from a wide variety of optical test sources.

What about composites? One could mold segments against master forms (for each radial zone of the reflector) and bypass the traditional optical shop - and accomplish this with a "near-zero" CTE material! Unfortunately, composites will not pass the $\Delta R / R$ criteria. Referring back to the $\Delta \alpha^{\prime}$ equation, the required faceplate matching for a family of sandwich panels was calculated and compared to average part-to-part CTE variations achieved with graphite epoxy structures on the Space Telescope Program.

These results are shown in Figure 3-4. A great deal of effort was expended on that program, particularly with the metering truss, to understand and control all of the process variables and minimize CTE variations. Even so, this degree of control would not be adequate or even possible for a 32 -inch-thick, 40 -inch-diameter mirror! Of course, such proportions are absurd and many other factors in addition to simple plate bending would need to be evaluated with such a design.

This is not to say that composites might not be adequate for a monolithic submillimeter (or IR) primary mirror. In such an instance, the segment-to-segment coherence issue is absent and with it, the $\Delta \alpha$ mismatch problem.

3.3 SEMI-REPLICATED SANDWICH MIRRORS

The obvious advantage of thin shells is their compatibility with the replicating or drapemolding process, and hence cost and schedule minimization. Their success demands close control of through-the-thickness CTE homogeneity within a part and on a part-topart basis, as discussed earlier. Special techniques would need to be developed to support these panels in a strain-free state during optical shop figuring and/or shining operations. This issue would yield to an engineering development program. So, too, would the problems of mounting and attachment, coating stress negation or balancing, and handling. Low natural frequencies remain a drawback in sizes in excess of 1.5 m and aereal densities less than 17 or $18 \mathrm{~kg} / \mathrm{m}^{2}$. The first mode of a 2 m thin shell mirror whose areal density is $18 \mathrm{~kg} / \mathrm{m}^{2}$ was calculated to be only 10.3 cps , with the support points at optimal locations. The model and analysis from which this result was derived will be found in a later section. It did include the slight stiffening effect associated with curvature, but even so, this value is judged to be too low or at best only borderline acceptable considering the frequency reductions associated with mount and attachment hardware flexibility.

To increase rigidity and hence facilitate the figuring process as well as to solve the low frequency problem, we began looking at more traditional approaches, namely sandwich mirrors. Obviously, distributing a total equivalent solid thickness of 0.2 to 0.3 inches or so of glass into a sandwich form will result in a relatively fragile structure. This perceived fragility limits the amount of material that could be removed at reasonable generating rates unless we were able to couple the core structure to a preformed offaxis aspheric faceplate and then add a backplate to this "stack".

Figure 3-4. Graphite-Epoxy CTE Variability Limits as Applied to LDR Panels

In Figure 3-5, the basic idea for accomplishing this is illustrated. Note that the nominal asphericity and curvature is produced by drape molding a constant thickness faceplate between two matching dies in the same manner that a solid preform is produced. It should be noted that the differential sagitta between radial and tangential curvatures is as great as 0.023 inches for a 2 m -diameter panel employed in a 20 m overall f / l reflector. This needs to be accounted for in establishing the nominal faceplate thickness to ensure against excessively thin regions subsequent to generating the spherical core-matching surface. It is within the proven capability of the precision mirror community to generate an initially plano-plano core structure into a constant thickness spherical shape and to match machine faceplates to conformance within several millimeters. The generation of a precision off-axis asphere on a core-only structure, however, is not practically possible. Such is the basis for this design approach and hence the purpose of Step 3 shown in the figure.

To provide proportioning or material distribution guidelines for these sandwich mirrors, relationships were developed between overall mirror thickness and core depth, core density and self weight deflection, and stress and natural frequency. For core areal densities of 10%, the ratio of total height to core height is optimum at 0.94 . As lighter and lighter core structures are employed, this value increases to 0.96 where the areal density of 4%. Cross section optimization curves derived to meet a specific selfweight deflection value have the general form shown in Figure 3-6, which also shows the governing equation and defines the terms in it. From this, a family of mirror blank cross sections was designed employing 3% core densities of various cell size geometries. Based on cell size and a "quilting parameter" defined in Figure 3-7 as $54 / \mathrm{t} 3$, which ranged from two to ten thousand, faceplate thickness and overall heights consistent with a c / h value of 0.95 were determined. Within this design family are a series of cross section configurations whose overall areal densities range from 11 to $20 \mathrm{~kg} / \mathrm{in}^{2}$, spanning our range of interest.

Finally, the self-weight deflection, stress, and natural frequency of $0.5-, 1-$, and $2 \mathrm{~m}-$ diameter sandwich mirrors employing these crosssections were determined. These design possibilities are shown in Figure $3-8$ and reveal that 15 - to $20 \mathrm{~kg} / \mathrm{m}^{2}$ mirrors are within the bounds of acceptable performance limits. Self-weight deflection, in the sense that it influences the requirements on metrology support systems, was found to be

Ge poon even

- PRODUCE THE MOLDING FORMS

- MOLD THE GLASS

- machine surface to SPHERICAL (R) CONTOUR
- ASSEMBLE PARTS
- TOUCH-UP AND SHINE THE OPTICAL SURFACE

Figure 3-5. How to Make a "Replicated" Sandwich Mirror

$$
w=.229 O D^{4} \frac{(1-n+d n)^{1.5}\left[\left(1-v^{2}\right)\right]^{.5}}{\left[E\left(1-h^{3}\right) \Delta\right]^{5}}
$$

$\Delta=$ SPECIFIED DEFIECTION
n = CORE/OVERALI TEIGHT RATIO
$d=$ CORE AREAL DENSITY
$\rho=$ MATERIAL DENSITY
$D=$ MIRROR DIAPETER
Figure 3-6. Mirror Cross Section Optimization

heraeus 3\% cores and p-E quilting avoidance willi result in super lite-weigilt mirrors
Figure 3-7. Static Deflection for a Family of Ultralightweight Mirrors

Figure 3-8. Static Deflection for a Family of Ultralightweight Mirrors (Material is fused quartz; $\mathrm{c} / \mathrm{h}=0.95$; for all configurations $\sigma \leq 1000 \mathrm{psi} @ 10 \mathrm{~g}$)
the principal design limitation. Experience gained on the Space Telescope Program with a precision metrology mount showed that the uncertainty in self-weight deflection compensation was $1 / 3750$ th the peak-to-peak deflection itself.

Thus, for a wave/ 125 rms $W F$ error (wave/ 250 figure) at wave $=2.8$ micrometers attributable to gravity release uncertainties, the self-weight or static deflection of the mirror must not exceed:

$$
\Delta_{1 g} \leq 2.8 / 250 \times 3750 \times\left(39.37 \times 10^{-6}\right)=0.0017 \text { inches }
$$

as indicated in the figure.
Our next step was to meet with the leading glass houses, Corning, Schott, and Heraeus, to review the producibility issues raised by these exceptionally lightweight mirrors. Both Heraeus and Corning have already produced small cores and mirrors in this lightness range. The "newness" introduced on this program is quantity and size, and associated with the latter, the semi-replication idea, i.e., the die forming and subsequent sphericization of the core mating surfaces.

Summarizing, we believe that there are several materials in production today which satisfy the CTE and CTE homogeneity requirements for LDR mirror panels as defined in Table 3-1. The issues requiring further development or investigation include proof of large-scale replicability, optical operations on thin, flexible substrates, and the economics of production facilities to support a delivery rate of one panel every two weeks.

In the next section, the influence of flexibility on optical operations will be discussed from an analytical aspect along with additional performance estimates relevant to thermal and dynamics issues.

SECTION 4

IDENTIFICATION AND EVALUATION OF PRIME TECHNOLOGIES

4.1 OVERVIEW

In this section, we will review the key technologies that would need to be developed to support an LDR panel acquisition program. These technology issues are grouped according to materials as shown in Figure 4-1 and reveal the degree of developmental work required as well as where the major risk areas might be for these basic material classes.

We have employed a three-level evaluation code in this figure. The first, indicated by a solid circle, signifies that developmental work is required to resolve the technical issue but that its impact on the program is one of degree rather than "go" or" no-go". The last category, an open circle, is indicative of high risk area, one where an "invention" or major advance in the state-of-the-art is required. This demands an intensive development program. The second category is simply midway between these two.

4.2 METAL AND COMPOSITE MIRROR TECHNOLOGIES

Quickly scanning the figure, one sees that the glasses have the highest performance potential but that composites offer the best producibility solution. However, for the reasons described in Section 2, we do not believe that they could meet the stability requirements imposed by the $\Delta R / R$ coherence criteria over the wide temperature change between factory and operation. We believe that the inherent characteristics of (graphite-epoxy) laminates are such that their development as an LDR segment material should be discouraged.

Metals, in this case hot isostatically pressed (HIPd) I-70 beryllium, have better performance potential than composites with regard to R / R by virtue of homogeneity. In terms of availability, 0.4 m HIPd beryllium mirrors have already been produced and tested by Perkin-Elmer, demonstrating that in sizes larger than "test coupons" the

OTHEHAR FMGE ES OF POOR QUALITY

tecinology issues	Candidate materials			
	GLasses	GLASS/CERAMICS	metals	COMPOSITES
PERFORMANCE DIMENSIONAI SLABIIITY HOMOGENEITY POLISHABIIITY AVAILABILITY/DELIV. RATES				
FABRICATION FORMABIIITY/REPIICATION JOINING SHAPING AND FIGURING "SPEED" FACILITIES LIGHTWEIGHTING	0 0 0 0		$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	
MetroLogy MOUNTING				

DEVELOLTENT REQUIRED
(1) SEE TEXT

INTENSIVE DEVELOPMENT, HIGA RJSK

Figure 4-1. Candidate Materials

Cricuta fret is
 OF POOR QUALITY

availability of the material is assured. While tests indicated that the figure of these test mirrors were stable down to near-cryogenic temperatures, no data exist relative to their gross (ΔR) deformation characteristics nor have enough samples been produced to assess part-to-part homogeneity, the $\Delta \alpha^{\prime}$ issue described earlier. As a result, their Ultimate performance compliance with the LDR coherence requirements is still unknown. Because this material is of prime interest to other government programs and because funding is anticipated from them, we recommend only that the LDR program be kept informed of progress in this area.

Facilities do not presently exist for producing panels larger than 1.4 m (this size can be fabricated at Battelle in Columbus, Ohio). In fact, the development and qualification of an autoclave capable of 15000 F and 15000 psi performance is crucial to the consideration of this material. The up-front costs are estimated to be in the $\$ 10 \mathrm{M}$ to \$15M range. Issues to be resolved regarding HIPd (thin shell) mirror panels include the $\Delta \alpha^{\prime}$ parameter and forming accuracy, both of which are highly dependent on the autoclave and compaction processes, before further consideration is given to this material. The parameter could be assessed using the same equipment envisaged to make these measurements on the glass and glassy ceramic candidate materials (this equipment will be discussed shortiy).

The advantage of HIPd beryllium over the glasses may reside in cost and schedule. The cost of a HIPd blank ready for optical finishing is on the order of $\$ 1250 / \mathrm{lb}$., based on the several pieces already fabricated by Perkin-Elmer. For a $15,000 \mathrm{lb}$. total panel weight, the blank costs would be $\$ 19 \mathrm{M}$ and delivery rates would (probably) be faster than they could be processed through the optical shop(s). Glass cost estimates, using fused quartz as an upper bound baseline, range from about $\$ 11 \mathrm{M}$ for 1.5 m thin shells to $\$ 45 \mathrm{M}$ for sandwiches. These numbers are predicated on a 25 m overall reflector diameter where 560 trapezoidal segments are employed. The delivery rates for fused quartz blanks are also nowhere near competitive with the beryllium potential, but they may be rapid enough to be compatible with oprical shop capabilities.

Despite the potential attractiveness of beryllium from a producibility or fabrication aspect, we do not deem it a "prime" candidate at this time because of performance (homogeneity) uncertainties. It should be mentioned that cryo null figuring, subsequent
to a thermal strain relief cycle, might offset the (potential) homogeneity issue but at greatly increased optical fabrication time.

4.3 GLASS AND GLASSY-CERAMIC TECHNOLOGY

As stated in Section 2, glasses and glassy-ceramics are the recommended materials. They include fused quartz, Zerodur, Pyrex, and. Duran. These materials all are in the minimal performance risk category. The problems to be solved to make them fully compliant with the requirements of the LDR Program reside in rapid and high quantity production and in lightweighting, where these two factors are not mutually exclusive. Fused quartz, for example, virtually guarantees performance, if we can make the mirror blanks light enough and rapidly enough. Thus, the emphasis for continued panel development should be on these issues rather than materials development itself.

4.3.1 Material Testing

One aspect of this effort must deal with the thin shell vs. ultralightweight sandwich decision, specifically the $\Delta \alpha$ ' question. A modest development effort is recommended to verify that the Heraeus Fused Quartz material does indeed meet this crucial homogeneity requirement and that such mechanical processing as grinding does not produce internal strain unbalances, and also that coatings are sufficiently strain-free and athermalized to ensure adequate dimensional stability for a thin shell. We would also recommend that alternative materials to fused quartz be verified as a cost reduction goal and as a second source for mirror blanks to enable parallel procurement. It is not necessary that all the panels in a segmented mirror be constructed of the same material. Pyrex, Zerodur, and Duran are potentially less costly alternative materials. In Section 6, several concepts for assessinq the $\Delta \alpha^{\prime}$ ' parameter over a temperature range from RT to - $100^{\circ} \mathrm{F}$ will be described.

4.3.2 Fabrication Technologies

As stated earlier, the LDR mirror blanks are deemed too fragile for machine generation at reasonable materiai removal rates. That, as you will recall, was the thrust behind the semi-replication approach. The goal of our approach is to obtain curvatures of sufficient accuracy from the blank manufacturer to enable us to proceed directly to our small and light tool Computer Controlled Poisher and thus obviate the quilting, or mechanical damage, problem.

Forming precision, because of the high temperatures involved, is expected to be most critical with fused quartz. Pyrex, Duran, and Zerodur are all formable at lower temperatures and if the techniques are perfected for quartz, the extension (or retraction!) of the technology to these other materials is relatively straightforward. We show in Figure $4-1$ this forming issue as being in the third, or most critical, category. Development work in this area is applicable to both thin shells and sandwich configurations.

When dealing with sandwich mirrors, quilting avoidance at rapid material removal rates will require tool development tests and other related processing techniques such as the "Quilting Post" described in Section 6. The issue here is not whether it can be done, but whether it can be done quickly. Assuming for argument that all the panels need to be fabricated within a six-year period, beginning with a 1987 proof-of-concept demonstration and culminating in a mid-1995 flight date target, mirrors would need to be finished at the rate of two per week (in the Im size for a 20 m reflector). Once more, the importance of "replication" and rapid, quilt-free material removal is strikingly apparent.

Related to optical shop operations also is the ability to directly interface an asreceived, semi-replicated surface directly with the CCP (or equivalent machine). Two factors are dominant in this regard. One is how to measure the surface shape in order to be able to generate the machine command program (i.e., the material removal profile) despite the fact that the surface is diffuse and (optically) irregular which preciudes the use of interferometric, Hartman, and related reflective and/or imaging techniques. Actually, this can be done by mechanical means for wave $=30$ micrometer mirrors with sufficient accuracy, as will be shown in the next section. The development of this measuring system is needed for the LDR Program. Transition to more conventional metrology, if required, would occur after the blank had achieved the near-desired figure and specular surface.

Characterization of the non-specular, as-received surface we believe will yield to the above referenced solution or one like it. The second factor pertains to the ability of the CCP machine to correct what are potentially high spatial frequency errors in the as-received blank without destroying the formed or replicated off-axis aspheric shape. Tool size and conformability to the changing curvature of the aspheric surface as well as tool path velocity control are involved in this issue.

Consider a $20 \mathrm{~m}, \mathrm{f} / 0.5$ reflector where the sagittal and tangential radii of curvatures at a point half a meter in from the edge are 22 and 27 meters respectively. For a tool diameter of 0.025 m (1 inch), the difference in sagitta under the tool would be 0.7 micrometer (26×10^{-6} inches). This is equivalent to 0.023 wave at wave $=30$ micrometers or 0.35 wave at wave $=2$ micrometers peak-to-peak. The latter value (which is equivalent to about a wave/ 2.5 rms value in the visible for reference) is indicative of the surface quality that would be achieved with the initial grinding tools used to "clean up" the as-received mirror blanks. Subsequent tools will need to be somewhat larger and more compliant to remove the cusps left by the initial tooling as the higher quality final surface is approached. The development of this grinding and polishing technology is recommended as a high priority activity. It is a mandatory adjunct to the concept of semi-replication which, in turn, is the basis of the LDR panel fabrication approach.

SECTION 5

ANALYTIC STUDIES

5.1 STRUCTURAL MODELING

For the most part, deflection, thermal bending, and stress trades and sizing studies were performed using closed form solutions for flat plates. The bulk of these study results is found in Appendix B. However, a finite element model of a "typical" trapezoidal panel was constructed to verify these closed form solutions, particularly with regard to the effects of initial curvature on thermal bending (comer curl phenomena) and frequency. In addition, this model provided a rapid means for evaluating alternative support point location options.

Some general results from this finite element model investigation will be stated below:
a. Initial curvature had no significant effect on panel stiffness when 2 m panels were employed with a 20 m , $\mathrm{f} / 2$ reflector. As the reflector became "faster", say $\mathrm{f} / \mathrm{l} .5$, then about a 10% stiffening effect was observed. At $f / 0.75$ the stiffening effect was approximately l.S. These results are applicable to thin shell mirrors only; structural or sandwich mirrors did not exhibit any stiffening effect within the LDR range of geometry. This would be expected since the saggita of a 2 m panel employed in a 20 m , $\mathrm{f} / .75$ reflector ($R=30 \mathrm{~m}$), for example, would be 0.033 m (1.3 inches) which is less than half the thickness of a "typical" sandwich panel. Obviously, it represents a large initial curvature in a thin shell of 8 mm (0.3 inches) thickness. Therefore, to a certain extent the frequencies calculated in the trade studies for thin shells (Appendix B) are conservative by about 25 to 30%.
b. For trapezoidal (square) thin sheil panels, no "corner curl" was observed. It was feared that circumferential discontinuities or internal hoop stress in these initial curved shells might cause anomalous behavior when subjected to a uniform bending moment, such as caused by an axial " α ' ΔT." The
occurrence of such a non-spherical bending term would have been significant in that it might have eliminated thin shells from further consideration.
c. The trade studies assumed three-point edge support for frequency calculations. Moving the support inboard, as shown in Figure 5-1, resulted in almost a $2 x$ frequency increase. For example, the closed form/edge support solution for this showed a first mode of 5.45 cps . The FEM solution with inboard support demonstrated that this could be raised to 0.26 cps . At this stage the sensitivity to small changes in the support location has not been performed, nor have any preliminary design concepts for the support hardware been identified. The conclusions obtained from this point design example, though, do confirm the mechanical viability of thin shells. Considerably more work needs to be performed, however, to support a final concept decision. This work would include mount location optimization for $11 / 2-$ and 2 m panels of both $0.25,0.35$, and 0.45 -inch thicknesses from a stress and frequency aspect, the effect of secondary mount constraint forces on figure precision, and the development of attachment concepts for thin shells.

5.2 THERMAL ANALYSIS

This section summarizes the relevant temperature change conditions important to panel design and material selection. It is based on a thermal shroud concept with an L/D ratio on the order of $1.5: 1$ and assumes a 400 nm circular orbit in the plane of the ecliptic where earth viewing will occur for approximately 50% of the time. Only by using a large shroud, in contrast to a simple sunshade, were we able to passively provide a relatively cool 200 K environment for the reflector and to limit diametrical gradients to insignificantly small values. The basis of this shroud design concept is shown in Figure 5-2, and in Figure 5-3 the influence of the shroud's length to diameter ratio on the total amount of energy observed by the reflector when occulted by the earth is shown. The performance of this shroud concept is summarized in Table 5-1.

As previously stated, the LDR shroud was conceptually designed with two major requirements in mind: to minimize the reflector temperature passively and to minimize the side-to-side variation across the LDR diameter such that the lateral temperature gradients across an individual panel are negligible.

wame 208 ij
 Cry foon guamy

6/11/82 MAX-DEF. $=9.04840640$
2 meter segment

2M F-10.0 SEGMENT LDR

MODAI DEFOR. SUBCASE 1 MODE 1 FREQ. $\quad \begin{aligned} E & =9.8 \times 10^{6} \\ 10.26792 & =.079 \\ E & =.3 \mathrm{IN} \\ R & =40 \mathrm{~m}\end{aligned}$

Figure S-1. Support Moved Inboard Resulted in a Nearly 2 X Frequency Increase

PARAMETER

PORTARD ENCLOSURE LENGTH (L)

ENCLOSURE MEI

RADIATOR
RADIATDR/SAADE
SUN SFADE

MATERIAL
ABSORBTIVIT: (a)
EMISSIVITI (c)

CONTROLS ENERGY IRRADIATING/ABSORSED BY THE LDR

MINDMIEES SIDE TO STDE GRADIENTS WITH MII MAXCMMM GRADIENT CRANGE $<1^{\circ} \mathrm{F}$
provides an arra for earth ir and albedo energit rejection

ELTMINATES THE ROSSIBILITY OP THE SUN IRRADIATING THE INTERIOR OF THE FORWARD ENCLOSURE

THEPMAL RADIATION PARAMETERS

- Exiernal enclosure a/e = .21.8
- LDR a/a = .1/.
- internal enctosure $\alpha / \varepsilon=.8 / .8$

Figure 5-2. LDR Enclosure Design Concept

CE POOR GEMEM

Ontrmate mio

OF POQR QSidit

TABLE 5-1
LDR ENCLOSURE TEMPERATURE

- FORWARD ENCLOSURE TEMPERATURE

Configuration/Temperature $\sim O^{\circ}$

	Maximum		Minimum	
	$\frac{83}{}$		Average	
No Radiator	44		-225	
Albedo Radiator	-105		-127	
Moveable Shade	-114			
Mos	-120			

- AFT ENCLOSURE TEMPERATURE

Configuration/Temperature $\sim 0 \mathrm{~F}$

	Maximum		Minimum
No Radiator			Average
Albedo Radiator	-105		-460
	-127		-145
Moveable Shade	-460		-460

- ABSORBED ENERGY

Maximum 1.5 BTU/hr - ft^{2}
Side-to-side variation $\simeq 10 \%$

- SIDE-TO-SIDE GRADIENT

Less than $1^{\circ} \mathrm{F}$

The resulting design is summarized in Table 5-1. The radiators and the radiator shade provide the means to reject the reflected earth shine (albedo) and IR energy entering the aperture, thus providing for an average LDR temperature of -1200 F . Radial energy variations are minimized by the 1.5 D long shroud which minimizes direct irradiation of the LDR. Additionally, multi-layer insulation reduces the LDR interior environment gradients, due to the maximum exterior gradient of 5000 F , to less than 10 F .

Figure 5-4 illustrates the maximum flux variation condition for the LDR. The earth has just passed from view of point " A " while point " C " is fully illuminated. The magnitude of the absorbed flux on point " C " is attenuated by the shroud so that the resulting side-to-side variation is less than $0.2 \mathrm{BTU} / \mathrm{hr} \mathrm{ft}^{2} \mathrm{OF}$.

The deployment of hardware concepts which satisfy the thermal design parameters of the shroud and also are compatible with stowage and deployment, weight, dynamics, and pointing control system requirements is envisaged as a very critical factor in the LDR Program. Performance trades between L/D and average reflector temperature as well as side-to-side temperature differences within the cavity (versus various candidate panel materials) and hardware implementation concepts unfortunately were beyond the scope of this study but should be pursued in any follow-on work.

Earlier, the desirability of insulating the rear surface of the panels with a low emissivity coating (or MLI) was identified as a means for minimizing axial temperature gradients. In subsequent analyses this concept needs to be explored in more depth, particularly with regard to (conductive) heat leaks associated with mounting and attachment hardware.

Even though the thermal work is far from complete, we can conclude that a cylindrical shroud, at least as long as the diameter, is required to attain a cold reflector. And further, the shroud will probably require some form of internal heat rejection system, the "albedo radiator" shown in Figure 5-3, to ensure both a cold and spatially uniform environment for the mirror. We do not believe that simple occulting disks or "sunshades" could achieve the low and uniform temperature requirements unless augmented by an active coolant loop flowing through the panels. This is a viable trade issue when considering the enormity of the shroud and its ramifications on the system's mechanical, dynamic, packaging, and related technical issues.

Chamal poe ls of. PCOR Quality

5.3 QUILTING

In the case of sandwich mirrors with uncommonily thin faceplates, such as those potentially of interest to the LDR Program as a conservative alternative to thin solids, the issue of quilting or print-through of the core is of interest. The effect of quilting is to diminish the central amplitude of the image spot and redistribute this energy into false spots, spaced away from the principal image. The relationship between quilting amplitude and the central spot energy reduction factor was derived for a square cell quilt pattern and is:

$$
\frac{M_{1}}{M_{0}}=1 \frac{4\left(I_{(1,0)} I_{(0,0)}\right)}{\operatorname{Streh} 1}
$$

where

$$
I_{(1,0)} / I_{(0,0)}=\frac{\pi^{2} \sigma^{2}}{1-2 \pi^{2} \sigma^{2}}
$$

and

Strehi $=1-4 \pi^{2} \sigma^{2}$,
and where
σ is the rms WF error, equal to the quilt amplitude divided by two, and
M_{1} / M_{0} is the ratio of energy in the central spot to the energy that would have existed without quilting.

For a 3% reduction in performance the quilt amplitude cannot exceed 0.05 wave based on the above equation. For an operating wavelength of wave $=2$ micrometers, this is equal to 0.1 micrometer or 4×10^{-6} inches.

Quilting wiil occur in sandwich mirrors when one of two conditions exist. The first and generally that which is most often observed occurs during polishing when the interface pressure between the tool and mirror is spatially modulated by the presence of the ribs, which present a stiffer resistance to the tool than the center of a cell where the faceplate bending resistance is less. As a result, more material will be removed in the regions of higher interface pressure, the ribs, than over the center of the cell. This is termed "quilting." Soft tools or tools smaller than a cell are of ten solutions to this

issue within given ranges of practicality for a specific faceplate to span thickness. In "the world or visible optics," the space and thickness relationship, $\mathrm{s}^{4} / \mathrm{t}^{3}$, is generally maintained by these producibility considerations between 250 and 1000. In the case of the latter, this higher value is reserved mainly for small mirrors where lower nominal tool pressures and concomitantly reduced material removal rates can be tolerated. For the LDR class of mirror, however, where S might be $1 / 2$ to 2 inches and t equal to 0.15 inches, $\mathrm{s}^{4} / \mathrm{t}^{3}$, ratios on the order of 5000 must be dealt with. This might "just be 'OK' "for a wave $=2$ micrometers or $4 x$ visible wavelength. To achieve a 4 microinch quilting limit, however, the nominal polishing pressure, calculated from "flat plate" equations, could not exceed 0.17 psi. Typically, though, pressures on the order of 0.35 to 1 psi are used to achieve reasonable schedules vis a vis material removal rates. In the next section, we will present a method for increasing the stiffness of the faceplate by a factor of 16 during the optical finishing phase without adding any weight to the mirror.

While increased tool resilience, reduced pressure, and/or small tool sizes provide a degree of anti-quilting control during polishing, not all of these are available during the grinding stage where the basic mirror shape is created. The hard grinding tools, cup wheels for example, are more aggressive quilters than the softer figuring tools or the even more resilient polishing laps. The semi-replication approach described earlier is intended to reduce the amount of material that needs to be removed during this phase.

However, quilting produced during these operations is usually not seen because the surface is too diffuse to permit optical measurements to be made. The quilting produced here, if it occurs as a result of high s^{4} / t^{3} ratios or pressures, is first observed during figuring when the surface is sufficiently specular to permit interferometric measurements to be made. The faceplate stiffening method previously referred to is perhaps more important to the shaping or grinding phase than to figuring and polishing.

SECTION 6

DESIGN DEFINITION AND CONCEPT SELECTION

In the course of presenting our results for each of the specific statement of work tasks， we have identified fused quartz as the material of choice for thin shell solid mirrors． Pyrex would be a second choice but would probably be limited to sandwich forms to satisfy the $\Delta \alpha$＇criterion．Quartz，in sandwich form，is undoubtedbly the best performance－oriented solution but has schedule and／or cost drawbacks．It does virtually assure performance as a wave $=30 \mathrm{~m}$ coherent system and as a wave $=2$ micrometer ＂light bucket＂composed of diffraction－limited，but not necessarily phase－matched， segments．We also believe that 15 to $20 \mathrm{~kg} / \mathrm{m}^{2}$ sandwiches in the LDR size range of interest are within realistic expectations．

The development of these semi－replicated，off－axis，ultralightweight quartz sandwich mirrors would encompass all of the required LDR panel technologies．Reversion to thin solids or other candidate materials such as Pyrex，if feasible and／or desirable，would be a relatively simple matter if the quartz sandwich technology were a proven capability．

6．1 FUSED QUARTZ SANDWICH

The mirror blank shown in Figure 6－1 is illustrative of the design of such a sandwich mirror and employs a 4% areal density core．With the dimensions shown on the drawing the full circular planform version of this mirror would have a first mode of almost 100 cps if supported at three equally spaced points on the rim．The maximum faceplate stresses，at $10-\mathrm{g}$ ，would be 550 psi and，based on a 2000 psi allowable，the margin of safety would be +2.6 ．If the same cross section were employed with a 2 m diameter mirror（i．e．，constant areal density）the frequency and stress would be 49 cps and 1050 psi respectively，Both are acceptable values based on the criteria established in Section 2.

Implicit in the above results was fused quartz as the mirror material．To the best of our knowledge only Heraeus in West Germany can produce the dual thickness welded

Crsmat mos is OF FCOR qumby

Figure 6-1. Optimal LDR Mirror Panel
eggcrate core shown in the drawing. The core itself would be joined to the faceplates with a $\Delta L / L$ matching frit which fires at a temperature well below the softening point of the quartz parent material. Fusion of the faceplates would soften them and destroy the initial precision of these replicated (i.e., accurately molded) elements.

6.2 PYREX SANDWICH CORE

If the mirror were made of Pyrex, a core structure similar to that shown in Figure 6-2 would be recommended for reasons of producibility with this material. For quilting resistance equal to that of the square grid core, the dimension h, or height of the equilateral triangle, can be $1: 4 \mathrm{X}$ the cell span of the former. Hence the areal density of the triangular core is equal to:

$$
P_{A}=3(t / h) .
$$

Setting h equal to 1.4 times the 1.5 inch square cell spacing, the value t which is commensurate with a 4% areal density is 0.028 inches. . This is (probably) too thin to enable the core to be generated to a spherical surface without fracturing some ribs. The state of the art, with very careful machine control, gives about 0.05 inches which is one of the reasons behind the Heraeus dual thickness approach. So if Pyrex were used with an 0.05 -inch wall thickness, the areal density of the core would be 7%. The unit weight of the mirror would rise from $16 \mathrm{~kg} / \mathrm{m}^{2}$ to $19 \mathrm{~kg} / \mathrm{m}^{2}$, still acceptably light for an LDR reflector.

6.3 QUILTING AVOIDANCE TECHNIQUE -

With these mirrors, we are dealing with quilting susceptibility values, $54 / \mathrm{t} 3$, of $\widetilde{5000}$. This is well beyond the range of current practice for mirrors of this size. We propose as a solution to this problem the use of a temporary faceplate reinforcing device which is referred to as the "Quilting Post." As shown in Figure 6-3, it exploits the fact that Heraeus mirrors are produced with vent holes in the center of each cell on the back surface. In principle, this could also be done with Corning Pyrex or virtually any type of sandwich mirror.

The sketch is almost self-explanatory. Basically, a temporary load path whose stiffness is nominally equal to the rib stiffness is used to reduce the unsupported faceplate span

Figure 6-2. Pyrex Ribbon Core Mirror Construction, Feasible by Virtue of Pyrex's Highly Formable Nature
or rom

Figure 6-3. How to Avoid Quilting Simply

```
ONam,0-7-5
% : mit obmig
```

by a factor of 2. As this span enters the deflection equations as a fourth power, the span reduction is expected to provide a 2^{4} or 16 x increase in the faceplate stiffness. The selection of adhesives shown in the figure is based on the requirement that the post/ferrule assemblies be easily removed from the mirror subsequent to polishing.

6.4 SURFACE MEASURING TECHNIQUE

Figure 6-4 depicts a concept for measuring the surface of the as-received mirror blank, assumed to be non-specular. It is an adaptation of the Hewlett-Packard 5501 Laser Measuring System configured in a straightness measuring mode. We in our application are interested in the non-straightness aspect of the surface but fundamentally the approach is the same. Predicted measurement accuracies of 2 to 4×10^{-6} in. are certainly adequate for the wave $=30$ micrometers requirement and probably are satisfactory down to waves of 2 or 3 micrometers. This approach, coupled with visible or, even better, infrared interferometry as the precision of the mirror is impoved in the figuring process, is how we would propose to go directly from the "box" to the CCP machine.

In the limit it would be desirable to eliminate the need for any interferometry by developing the concept to a point where it is sufficiently accurate down to wave $=2$ micrometers. This is important with regard to segmented mirrors with off-axis aspheric panels which ordinarily would require a null lens for each (different) segment. It would also avoid the problems associated with centering the null lens and panel. This, of course, is a difficult problem when the panel is off-axis and has no center.

Figure 6-4. Contour Sensing of Non-Symmetric Convex Aspheric Optical Surfaces

SECTION 7

RECOMMENDED TECHNOLOGY DEVELOPMENT PLANS

7.1 SCHEDULE OBJECTIVES

This final section describes a recommended technology development plan which would lead to mechanically and thermally qualified prototype LDR panels in three years. The plan covers thin solids and sandwiches, fused quartz, and Pyrex materials, and the development of those manufacturing processes necessary to fabricate these ultralightweight, off-axis aspheres in the 1987-1990 time frame. Should the LDR Program be shifted further out from a 1993 initial operational capability (as stated in the top-level system requirements) to a 1998 or 2000 period, we would probably be recommending a different plan, and perhaps also a different concept.

The thrust behind this caveat is that our plan is tailored, along with our recommended design(s), to the earlier IOC date and that to meet it we must begin critical hardware experiments now. What is precluded from consideration by this constraint are several emerging technologies which may have long-range payoff. These include ion milling and large scale selective deposition techniques which might be favorably employed for very lightweight substrates. We do not see these techniques totally as replacements for those grinding and polishing operations presently envisaged as being carried out on the CCP. Rather, they might take a hand-off from CCP when a panel is only partially completed and possibly finish it in a shorter time. In this sense, the work identified in the plan is not in jeopardy of being obsoleted by ion milling techniques (for example) but, indeed, may be a necessary adjunct.

7.2 PLAN DESCRIPTION

The plan to be described is shown in Figure 7-1. It is divided into three experimentally oriented areas plus a continued facilities scale-up and cost assessment task. The first area deals with the development of Heraeus Fused Quartz thin solid mirrors. Embedded in this are several activities also required to support semi-replicated
ORIENAL PAEE IE
OF POOR QUALITY
ULITA LITE-WEIGHT MIRROR DEVELOPMENT PROGRAM FORMIIATION

Figure 7-1. Ultralightweight Mirror Development Program Formulation (Sheet 1 of 2)

Figure 7-1. Ultralightweight Mirror Development Program Formulation (Sheet 2 of 2)
sandwich mirror technology and the characterization of alternate materials for thin shell mirrors, as well as demonstrating the adequacy of quartz itself. What this refers to are the through-the-thickness $\left(T^{3}\right)$ homogeneity measurements to assess the $\Delta \alpha^{\prime}$ thickness (T^{3}) parameter discussed earlier in this report.

7.2.1 Material Characterization Tests

Several approaches to accomplishing this measurement have been identified and are shown in Figures 7-2 through 7-5. In the first figure, the bending of a beam-like specimen as a consequence of bulk average temperature change would be measured using a precise, remote sensing appartus such as a Hewlett-Packard Laser Measurement System. Measurements would be made following the sequence shown in Figure 7-3 to detect and negate any experimental biases. An alternate scheme employing holography has also been identified and might result in a time savings since only one setup is required per specimen. As shown in Figure 7-4 (sheet 2), the effect of such experimental biases as non-uniform specimen temperatures could be back out of the experimental data directly. These experiments would be performed on sample populations of as-received/optically polished, and on optically polished/coated fused quartz specimens. Subsequently, Pyrex, Duran, Zerodur, or metals could/would be evaluated to assess T^{3}.

7.2.2 Material Removal Experiments

The ability of the CCP process to directly attack the as-molded surface with its high spatial frequency error content also is a fundemental element of the semi-replication process requiring development and demonstration. This activity could be combined with the quilting avoidance task by supporting the work piece, as shown in Figure 7-5. The objective here is to develop the CCP technology to the point where the as-received surface could be optically "cleaned up" without having to resort to first producing a spherical surface with large tools. Rather, the as-molded asphere would be worked on directly without losing its basic shape. Part of this effort would also be to learn how to do it rapidly which, of course, is interdependent with the quilting issue. Finally, in this same sphere of development is the issue of strain-free support of very lightweight, easily deformed mirrors during the figuring process We believe that a dual support approach might best be employed here. A relatively rigid support might be employed to

Figure 7-2. Apparatus for Thru-the-Thickness CTE Measurements

Figure 7-3. Experiment Sequence

Figure 7-4. Alternative Measurements Concept \#1 (Sheet 1 of 2)

G FOSN CORBy

PART 2
SIDE B SIDE A
$\Delta T^{1} \otimes{ }^{8} \Delta \bar{T} \quad{ }^{8} \Delta T^{1} \quad \& \Delta T+\Delta T^{1}$
PART I

$\delta_{1}=\frac{i^{2} g \Delta I^{1}}{8 h}+\frac{2^{2} \Delta \alpha \Delta \bar{T}}{8 h}$
$\delta_{1}=C_{1} \Delta T^{1}+C_{2} \Delta \alpha$
$\Delta I^{2}=\delta_{1}-C_{2} \Delta \alpha \square$
sIDE A

HOW TO KEEP THE INFLUENCE OF AXIAL TEMPERATURE GRADIENTS
(AT ${ }^{2}$) FROM FOULING UP THE
data.

4

$$
\begin{gathered}
\delta_{2}=\frac{e^{2} G \Delta T^{2}}{8 h}-\frac{l^{2} \Delta Q \Delta \bar{T}}{8 h} \\
\delta_{2}=C_{1} \Delta T^{1}-C_{2} \Delta a \\
\text { ARD } \delta_{2}=\delta_{1}-C_{2} \Delta \alpha-C_{2} \Delta \alpha
\end{gathered}
$$

$$
\therefore \Delta \alpha=\frac{\delta_{1}-\delta_{2}}{2 e_{2}} \quad \text { AND } C_{2}=\frac{\delta^{2} \Delta \bar{T}}{8 h}
$$

$$
\Delta \alpha=\frac{4\left(\delta_{1}-\delta_{2}\right)}{\ell^{2} \Delta \bar{T}}
$$

Figure 7-4. Alternative Measurements Concept $\# 1$ (Sheet 2 of 2)

Figure 7-5. Shell in Tooling Fixture (Concept Only)
hold the piece during actual grinding and polishing operations while a precision metrology mount would "float" the mirror during figure measurement. Subsequently it would be transferred back to the stiff mount for additional material removal. Most of this CCP development work could be performed using " thin shells of opportunity" and special pieces would not have to be procurred. Several such shells were produced by Heraeus and are presently at Perkin-Elmer. They are 16 inches in diameter, 0.13 inches thick and are approximately $\mathrm{f} / 2.5$. They were molded over graphite dies in the manner described earlier in this report.

7.2.3 Mirror Fabrication

Presuming success in being able to interface the CCP directly with the as-received shells, supported in principle as shown in Figure 7-5, the ability to figure sandwich mirrors would be, to a large extent, demonstrated. It would then be necessary to demonstrate the fabricability of semi-replicated sandwich mirror blanks according to the concept shown in Figure 3-5. The bulk of this activity could be deferred to the second year of the planned development program. During this year, too, and assuming that the T^{3} testing program confirmed (at least) fused quartz as a suitable material, we would recommend figure thermal stability tests to be performed on a lm thin shell mirror. During the first year, in preparation for this molding process, development work should be supported at Heraues. Remember, if the process can be developed for quartz and its concomitant high temperatures, confidence in process success for lower temperature softening materials shouid be very high. We would expect that several lm spheres or aspheres would be produced by Heraeus that year for figuring and testing in the second.

Some of these faceplates would be used for fabricating the sandwich quartz mirror. If funds permit, an alternative to quartz, namely Pyrex, should be pressured at Corning as a potential cover-cost option. Finally, in the third year the quartz sandwich mirror blank which was assembled in the second year would be figured and subjected to the full spectrum of structural and thermal qualification tests. If all the elements in this plan were funded and were successful, at this point in time we would have a Im fused quartz thin shell, a Im fused quartz sandwich, and optical performance data for both of them at the system operating temperature. Whether or not their inherent performance characteristics define an ultimate decision or if the solid vs. sandwich choice resides
with overall system design and facilities/cost studies, for the technology to produce these mirrors will have been demonstrated.

7.3 Summary

In summary, the first year of this plan is directed towards fundamental technology issues:
i. $\quad T^{3}$ measurements
ii. accuracy attainable
iii. thin facesheet/core joining techniques
iv. CCP interfacing and rapid quilt-free material removal.

These are denoted by the (\ddagger) symbol in the figure. The second year will result in a figured and tested thin shell and the third year will resuit in an off-axis aspheric Im фmirror of about 15 to $20 \mathrm{~kg} / \mathrm{m}^{2}$.

The cost of implementing such a plan has been estimated at between $\$ 3 \mathrm{M}$ and $\$ 5 \mathrm{M}$, including continued design and performance analyses and facilities utilization and scale-up studies. The direct experimental costs are on the order of $300 \mathrm{~K}, 650 \mathrm{~K}$, and 1000K for the three years respectively

The plan is flexible in that certain elements are essentially stand-alone technologies and could be funded as isolated projects if funding constraints so required. For example the Optical Stylus (or an equivalent approach) could be developed independently, and the T^{3} measurements could be treated as a separate investigation, as could the quilting avoidance experiments. However, they must all be successfully completed prior to embarking on the actual fabrication of shell and sandwich mirrors. It should also be noted that very little additional funding is required to develop the shells since the forming technology is required for the semi-replicated sandwiches as well. Expressed somewhat differently, the shells are a very-low-cost spinoff from the sandwich development effort.

किकn⿻ mas
 Or pCOR Ganimy

LDR
 SECMENT TECHNOLOCY ASSESSMENT STUDY

FIRST BRIEFING

APPENDIX A

FIRST BRIEFING

PERRIN-ELMER
 LDR KICKOFF MEETING AGENDA

 OCTOBER 15, 1981NASA AMES

1. INTRODUCTION
2. SCIENCE OBJECTIVES
3. STUDY OBJECTIVES OVERVIEW

- OVERALL SYSTEM REQUIREMENTS
- OVERALL PROGRAM MILESTONES
- STUDY FLOF DIAGRAM
- program plan
- SUPPLEMENTAL EFFORT

4. STUDY TASES

TASK I - EVALUATION CRITERIA

- SYSTEMS
- materials
- CONFIGURations

TASK II - ASSESS TECHNOLOGY

- programs
- TECENOLOGY INTERCHANGE
- LIterature search
- CONTACT LIST

TASK III - IDENTIFICATION \& EVALUATION OF PRIME TECE.

- CONFIGURATIONS
- materials

TASK IV - DEVELOPMENT OF DETAILED MODELS/TRADEOFFS
TASK ∇ - DEFINITION OF PROMISING DESIGNS
TASK VI = DEFINITION OF TECHNOLOGY DEVELOPMENT PLAN
5. NEAR TERM ACTIVITIES

- tolerancing segmented mirrors
- SPECIFIC PERFORMANCE REQUIREMENTS

6. CONCEPT SAMPLES

- UNUSUALLY LIGET MIRRORS
- PRODUCIBILITY SOLUTIONS

7. DISCUSSION

CROSAE FRE :
 OF FOOR QURBTY

STUDY
OBJECTIVES
OVERVIEW

Cr Poo whan

-TASK 1
-TASK 2
-TASK 3
-TASK 4
-TASK 5

LIDR SEGMENT TECHNOLOGY PROGRAM
DETERMINE TWO MOST PROMISING CONCEPTS
AREPARE TECHNOLOGY DEVELOPMENT PLANS
REQUIREMENTS AND EVALUATION CRITERIA
ASSESS EXISTING TECHNOLOGY
IDENTIFY AND EVALUATE PRIME TECHNOLOGIES
DESIGN DEFINITION AND CONCEPT SELECTIONS

IOP LEVEL LDR REQUIREMENTS
(FROM SOW \& ATTACHMENTS) MIRROR
OF FOOR QEMTY

OVERALL DIA................. $10 \leq D \leq 30 \mathrm{M}$

of poos Qumb

Fas

SUPPLEMENTAL EFFORT.

Page 1

Continued on Page 2

Evaluation Criteria

> SYSTEM COMPATibility - Continued

METROLOGY \& GRAVITY RELEASE
 on-orbit thermal variations
 SEGMENT-TO-SEGMENT
 AXIAL GRADIENT VARIATIONS
 bulk variations

COMPLEXITY
Continued on Page 3
GRACEFUL FAILURE MODES
EVALUATION CRIIERIA

NAIERIAL SELECTION.

ENSURE AN AFFORDABLE PROGRAM

homogeneity
ISOTROPY
Continued on Page 4
Page 4
OREMAS PEES TE
18/51/0I

SEGMENT DESIGN CONFIgURATION CRITERIA
INTERNAL STRAIN UNBALANCE
Continued on Page 6

OF POOR QUGLiti
COATING COMPATIBILITY
segMent design conelguration (continued)

ACCURATE MODELLING

TASK II
ASSESS TECHNOLOGY
PLANS
0 EXISTING PROGRAMS REVIEW
0 LITERATURE SEARCH
0 TECHNICAL INTERCHANGE
0 SUPPLIER CONTACT
omme pes is of FCOR QUMMTY
TECHNOLOGY MIRRORS AT PERKIN-ELMER

0 3-ELEMENT SEGMENTED MIRROR 30" \emptyset
Y7WIJ-NIXYZd IV SyOyyIW 19070NH271
TECHNOLOGY MIRRORS AT PERKIN-ELMER
> (COHTINUED)
> ITEK: FUSED SILICA S/L MACHINNED 24" MIRROR
> ITEK: HALO GLASS/COMPOSITE $72 " \emptyset$
EK:: FRITTED ULE SANDWICH $24 " \emptyset$
HERAEUS: WELDED FUSED SILICAL "SAMPLE".
> ITEK: HALO GLASS/COMPOSITE $72 " \emptyset$
EK:: FRITTED ULE SANDWICH $24 " \emptyset$
HERAEUS: WELDED FUSED SILICAL "SAMPLE".
> ITEK: HALO GLASS/COMPOSITE $72 " \emptyset$
EK:: FRITTED ULE SANDWICH $24 " \emptyset$
HERAEUS: WELDED FUSED SILICAL "SAMPLE".
> o FOAM CORES
> AS EARLY AS 1960 AND STILL A CONSIDERATION.
> ELSEWHERE:

SUPPLIER CONTACT LIST

ORICMAL PRE
CORNING GLASS WORKS
of PCCR gumbtyULEFUSED SILICACER-CORLi Al Si gLASS CERAMIC
BATTELLE
BERYLLIUM PROCESSING
METALS (IN GENERAL)
LOCKHEEDGRAPHITE MAGNESIUMLI-900, 1500 STS TILE MATERIAL
SCHOTT (DUREA, PENK.)
ZERODUR
FOAMED ZERODUR
HERAEUS-AMERSIL (SAYERVILLE, NJ)
WELDED FUSED QUARTZ
UNITED TECH (UTC)
gLass-GRaphite
ALCOA RESEARCH
CHEM. BRIGHTENED ALUMINUM SHEET
(80\% REFLECTIVITY)
TASK III
PRIME TECHNOLOGIES

at Ros guar $\geqq \geqq \lesssim$

SOME MATERIAL POSSIBILITIES THERM COMPAT.

MATERIAL
CORNING ULE
CORNING FUSED SILICA
CORNING TGC
CORNING VYCOR
HERAEUS FUSED QUARTZ
PYREX
BATTELLE S10 0_{2}-T10 2 SOL-GEL
SCHOTT ZERODUR
ALUMINUM (5K)
COIL-ZAC ALUMINUM
BERYLLIUM
"LOST HAX" BERYLLIUM
GRAPHITE EPOXIES
LMSC GRAPHITE-MAG
GLASSY CARBON
CONTINUED

SOME MATERIAL- DASSIBILITIES

(Continued) | INHERENT |
| :--- |
| LIGHTISITY |
| G00D |
| G00D |
| G00D |
| N/A |
| N/A |
| N/A |
| FAIR |
| FAIR | THERM COMPAT.

$a-100^{\circ} \mathrm{F}$

POOR
GOOD
GOOD
N/A
N/A
N/A
GOOD

$?$ | APPLICATION |
| :--- |
| CORES |
| CORES |
| CORES |
| JOINTS |
| JOINTS |
| LOTSA LUCK:: |
| CORES |
| CORES |

MATERIAL
CORNING ULE TUBES
CORNING F/S TUBES
HERAEUS QUARTZ TUBES
ULE FRITS
FUSED SILICA FRITS
TGC FRITS
FOAMED CORE MATERIALS
CORNING CER-COR

$\geq \gg$
NEAR-TERM ACLIVIUIES

$$
10 / 15 / 81
$$

BEFORE I CONCLUDE......
dISREGARD MINIMUM FACEPLATE THICKHESS, CORE DENSITY,
-

Aild core cell size constraints.
and cone cell size constrins.
o WORK WITH BLANK MANUFACTURER TO FIND PRODUCIBILITY
SOLUTION FOR THE "BIG PAYOFF" AREAS.

"Omega is a point ot ur mine of Progress"
6:1 SOLIDS
CORE GEOMETRY - FACEPLATE RELATIONSHIP
cor 10 ch

CORE GEOMETRY - FACEPLATE RELATIONSHIP

TVE COPE DES15N

Cr

NET AREA $=.433013 d_{0}^{2}$
SCSID AREA $=\frac{1}{2} \frac{\pi}{4}\left(d_{0}^{2}-d_{i}^{2}\right)$

$$
d_{i}=d_{0}-2 t, d_{i}^{2}=d_{0}^{2}-4 d_{0} t+4 t^{2}
$$

$$
d_{0}^{2}-d_{0}^{2}=d_{2}^{2}-d_{0}^{2}+4 a_{0}^{\prime} t-4 t^{2}
$$

$$
=4 d_{0} t \quad \text { when } t \ll d_{0}
$$

$$
\therefore \operatorname{SOL} 10 \text { AREA }=\frac{1}{2} \frac{\pi}{4}\left(4 d_{0} t\right)
$$

$$
\text { socio/nET }=\frac{\pi d_{0} t}{2 \times .433013 d_{0}^{2}}=3.6 \% \frac{t}{d_{0}}
$$

EXAMPLE
. 18 FACESHEETS — " "CERL SPAN j.e. $d_{0} \cong$ " "

$亡$	$.01 \%$.06	.62	.025	.03	.035
$\% \rho_{\text {efF }}$	3.6	5.4	7.3	9.1	10.9	12.7

C:
C. C -
$80^{\prime \prime} \mathrm{Q}$ MFFGE DESIQ ENAHPER
FUSEO SILICA
FRIT JCINEO

WEHHT $W=\frac{\pi}{4}+80^{2} \times \rho\left(2 t_{f}+n h_{c}\right)=176 \mathrm{ks}$

$$
\begin{aligned}
& \frac{\text { STRESS }}{\text { @1RGUCT }} \quad \sigma=\frac{\text { Wgt }}{t_{e}^{2}}=865 \text { psi } \\
& \left.\frac{D E F L^{\prime} N}{D \lg } \quad \Delta=.036 \frac{w r^{2}}{E t_{c^{3}}^{2}} 12\left(1-v^{2}\right)=.00176^{\circ}(1.42) \in 30 \mu\right) \\
& \therefore \quad \text { FREQ } \quad f=\frac{1}{2 \pi} \sqrt{\frac{25 E I_{q}}{W^{2}}}=72 \mathrm{cps}
\end{aligned}
$$

CHANGING DIAMETER TO 160":
DEFL'N $\Delta=.0272^{\prime \prime}(22 \lambda$ a $30 \mu)$
FREQ $\quad \mathrm{F}_{1}=18 \mathrm{cPs}$

1SSUES:

LSSUES:
ADHESNES
THICKNESS UNIFAPMITY
BENDING MCNEUT
SPRMG BACK
OUTGASSING/COATINE CH
ALUM. SEGMENTS FCN WEL
$\Delta S=f(\alpha \Delta t) \Delta \bar{T}$

COUTROLLED
Env't
k
\vdots
\vdots
\vdots
\vdots
\vdots
\vdots
\vdots

THEPN
COMPATIBILITY

[^1]

SECMENTED MIRROR TECHNOLOGY ASSESSMENT STUDY

INTERIM REVIEW

APPENDIX B
LDR INTERIM REVIEW

LD R

SEGTENTE MIRROR TECHOLOGY ASSESSYENT

INTERIM REIEN

AT

NASA AMES PESEARCH CDITER MOUNAIMIEN, CA.

Fgerlary 25, 1982

PERKIN-EIER COPPOPATION OPTICAL TEAHOLOGY DIVISION DANBURY, CONNECTICUT

LDR: SEGMENTED MIRROR TECHNOLOCY ASSESSMENT
AGENDA

- PROGRAM OVERVIEW
- WORK ACCOMPLISHED PER TASK AREA

1. EVALUATION CRITERM
2. EVALUATE CURREUT TECHNOLOGY
3. IDEUTIFY F EUALUATE PRME TECHNOLOGIES
4. ANALYTIC STUDIES -
STRUCTURAL

- PLANUED DE EXPERIMENT

雨。
$\begin{gathered}\circ \\ \text { gi } \\ \text { gi }\end{gathered}$
9011^{15}
$\stackrel{y}{*}$

$$
\begin{aligned}
& \text { き } \\
& 3 x / 10 \\
& : \\
& \begin{array}{l}
\text { GREC RUTHVEN } \\
\text { MIKE KRIM }
\end{array} \\
& \text { = }
\end{aligned}
$$

SPEAKERS AGEUOA
PROGRAM OVERVIEW

－トロニルス
－analytic studies
structures
thermal
－pavel expepiment

PROGRAM OVERVIEW

PROGRAM OBJECTIVES \mathcal{F} TASK STRUCTURE PANEL REQ'TS SYNOPSIS

THE $\triangle R$ ISSUE AND other....
KEY TECHNKAL ISSUES
OVERALL DIS................. $10 \leqslant D \leqslant 30 \mathrm{~m}$
MIRROR

σ

KEY STUDY ISSUES
(:

ORMM2 Fri.

OF FOOR QUME:
OVERVIEUS OF THIS SECTION

Γ
m

EVALUATION CPITERIA RESULTS
$1-2 \mathrm{~m}$ PAVELS PREFEREABLE. TO 4-m PANELS

- fused silica/quadtz conventional sandwiches
techuically acceptable w/o risk,
- but we berleve are cost-wise prohibitive.

I Attractive Panez Possibuities

SOLID "GLASS" MONOLITH

- pused qumete (henievs)
- fised sinca (conving)
- TCC (

METAL/METAL SANDWICH

- ALUM. "LIGHTIOG SHEET" (ALCOA)
WITH. FOAMED AL CORE (ERG)
61 PERMITS RADIUS OF CURVATURE ADJUSTMENT AS READ TO

TruHTEM
のウソいけいつワ

CHOCES

$$
\ggg
$$

$$
\begin{aligned}
& \text { THW SOLID "CLAS" } \\
& \text { SAUOWRCH 'GLASS' }
\end{aligned}
$$

THUU SOLID ALCMS.
SANDWKH ALUM

$$
\begin{aligned}
& \text { RIBBED } \\
& \text { HYBRDD }
\end{aligned}
$$

$$
\begin{aligned}
& \text { comen Trat } \\
& \text { Comat aray }
\end{aligned}
$$

$\underset{\sim}{\infty}$

[^2]1ε

$+$

丞

cricns 9 -
 or puch cuin:

* details in thermal analysis section
FUSED SILRA/GURPTZ SAWDWICH

of Reme whity

\int_{6}

8
ommar Pras or pocn gumat
\rightarrow

$\frac{1}{2}$

TASK 2

3

ssungers Qanders zunta Sxutuzes dilt
momize dit

r,z_Ey ES-705
POTENTAL SUPPLIER COUTACTS

> CORNING
> 号
> cum:
HERAEUS

C
CEFCH

- Fivisitco To dotichl AxSESAPTINA ind swncirvoss
 8Y ETCH:NG iF PESD
- DILWETER \quad 侯 $<0<60$ inches
- equos of Curvatige $\quad 300<R<2 \div 00$ inches
-" " " TVERAUCE $300 \pm .025,2 \div 0 \pm .132$ inénes

j
ALCOA/ERE

$\stackrel{B}{6}$
or mod

THERMAL BENDING SENSITIUITY
ALL-ALUM SANOWICH, $\Delta t_{2}=t_{2}$


```
ORCWR MSE C
```

COMPARSO WITH GR-EP/AL. MOWEYCOMB PSNEL

COMAOSITE PANEL

for

ceraor ainy

s
ormand
品

-robal sels ziva slsoj solviav:

3
cow par of poor gummy

픈

UP TO THIS POINT:
UP TO THIS POINT:
THERMAL DEFORMATIOW \& DYNAMIC ANALYSES
PREDICATED OU FLAT-PLATE THEORY.
THIS IS CONSERVATIVE!
NEXT SPEAKER WILL ADDRESS:
EFFECTS OF NITIAL CURVATURE
i.e. SHALLOW SHELL THEORY
BENDNG EXTEUSIONAL STRAIUS
WHICH STIFFEN THE SEGMENTS.

ORICMAS PAGE IS
of poch guality

- LARGE DEPLOYABLE REFLECTOR
SEGMENT TECHMOLOGY ASSESSMENT STUDY
TASK 4: ANALYTIC STUDIES \& PERFORMANCE PREDICTIONS
SENSITIVITY STUDIES - G. RUTHVEN
o: poon empty
- MODEL DEVELOPMENT AND CORRELATION
- $F / N O$ (i.e., INITIAL CURVATURE) STIFFENING EFFECTS
STATICALLY DETERMINATE \& MULTIPLY SUPPORTED PLATES
- \quad RR PERFORMANCE PREDICTIONS

ANALYSIS METHODS
- ALL ANAL YSIS UTILIZED THE GENERAL PURPOSE FINITE ELEMENT COMPUTER PROGRAM,
MSC/NASTRAN
MODEL CONSTRUCTION - Utilization of ctriaz \& couad4 isoparametric plate elements
Model verification
(BASELINE MODEL) VERIFICATION ACCOMPLISHED BY
"CLOSED-FORM SOLUTION" CORRELATION.
higher order analysis employed "baseline model" modified for investigation
of SEVERAL Parameter changes (tee., boundary conditions, moNo's, etc.)
this modification entailed miss refinement of the (+) (+) SEGMENT quadrant
G.P.R. - 2/25/82
CATALOG OF TEST MODELS

SKEWED PLOT TO SHOW INITIAL

$$
\begin{aligned}
& \begin{array}{l}
\text { MODEL } \\
\text { CONFIGURAIION }
\end{array} \\
& \text { FLAT PLATE } \\
& \text { FLAT PLATE } \\
& \text { SHALIOM SHELL } \\
& (\text { F/7.5) }
\end{aligned}
$$

$$
\begin{gathered}
\text { MODEL VERIFICATION PLOTS } \\
\text { (LATERAL" DIRECTIOH DISPLACEMENTS) }
\end{gathered}
$$

- Statically determinate flat plate TRANSVERSE THERMAL GRADIENT

CLAMPED-CLAMPED FLAT PLATE
 POINT LOAD a CENTER

lateral, in all proceeding viengraphs, is symomymous with axial
APPLICABLE SEGMENT F/NO's

SEGMENT F/NO
G.P.R. - 2/25/82

- SYSTEM/SEGMENT f/NO's (DETERIIINATION OF BEHAVIOR REGIME)
- FLAT PLATE VS. SHALLOW SHELL BEHAVIOR
BOUNDARY CONDITIONS
- STATICALLY DETERMINATE
- MULTIPLY SUPPORTED
- SEGMENT SIZE
- MaTERIAL SELECTION
SEGMENT THICKNESS
PANEL STUDIES

BOUNDARY CONDITIONS
- A DESIGI CONSIDERATION (FOR RADIUS OF CURVATURE ADJUSTMENT):
POST SUPPORTED (IN THE LATERAL DIRECTION) INFINITE PLATES DO NOT
BEND (EXCLUDING EDGE EFFECT PROPAGATION) DUE TO THRU-THE-THICKNESS
THERMAL GRADIENT.
• BOUNDARY CONDITIONS INVESTIGATED (2M \& 4IM SEGMENTS)

1) STATICALLY DETERMINATE SYSTEM (RIGID BODY CONSTRAINTS)
2) POST SUPPORTED SEGMENT w/O EDGE SUPPORTS
3) POST SUPPORTED SEGHENT WITH EDGE SUPPORTS

Crichme sex is
OF FOOR GBATY
l
元

\qquad

ZOE－7 7

20

 Prop
SE－7
\qquad
正 －
 $\frac{1}{1+1}$ $1+1$ 1×1 —
 ＋ 5步 —

3.3

0.0

$-5=-7$
 \square
苼

 8 8 8 8

$+2$

0 － 7
全

，
奴

再
友 ，a

开

雨

```
Cusers.
Of POR Gidity
```

$\therefore-6.0 c-7$
$\stackrel{\circ}{2}$
 of POOR QURET:
SEGMENT THICKNESS VARIATIONS
SENSITIVTY OF THICKNESS ON STIFFNESS

ORTMRA PECE
 OF POOR QUARIT

\therefore
 a

 ․ 1 1 1 1 1 1 1 ， 1 血

1． 1 1 1 ｜ 1 ｜ 1 ｜

11．0E－6

\qquad ＋
\qquad年 \qquad

 \qquad
T \qquad \geq
－是 （

$$
\overline{5} ; \frac{20}{1}=
$$

$\begin{aligned} R & =\frac{r^{2}}{2 \Delta} \\ \frac{d P}{d s} & =\frac{r^{2}}{2 \Delta} \\ \therefore d R & \frac{1}{2}\left(\frac{r}{4}\right)^{2} \\ & =\frac{1}{2} \frac{r}{r} \\ \Delta^{R} & =2\left(\frac{R}{r}\right)^{2}\end{aligned}$

6Ren -ra
of poca axay
TREND STUDY APPLICATION

- MODELS NORKING PROPERTY AND READY FOR DETAILED STUDY OF SELECTED
CANDIDATES.
- SHELL CHARACTERISTICS SHOW STIFFENING EFFECT
- makes flat plate evaluation criteria resulis conservative
$\triangle R / R$ THERMAL EFFECT WITHIN SPEC. FOR THIN "GLASS" SHELLS
.
G.P.R. - 2/25/82

THERMAL ANALYSIS

Chen frae le G: FOUR QUALITY

METHOD

- ENCLOSURE DESIGH CONCEPT COMPLETE
- SEGMENT THERMAL MODEL OPERATIONAL
- SEGMENT THERMAL ANALYSIS UNDERWAY
- MAINTAIN: MIRROR SURFACE AT LOW TEMPERATURES PASSIVELY
METHOD

 STATUS
 aNalyze mirror segments
 DETERMINE PASSIVE ENCLOSURE DESIGN

DETERMINE PASSIVE ENCLOSURE DESIGN
ANALYZE MIRROR SEGMENTS
STATUS

 Segment thermal analysis underway R.G.B. 2/23/82
N甘Td SISスTVN甘
－DETERMINE＂REALISTIC＂THERMAL ENVIRONMENTS
Cr
Padt
！
CT TOR QUabTY

－MINIMIZE HEAT LOADS

－Minimize side to side gradients
－LOW TEMPERATURES

DEVELOP SEGMENT THERMAL MODEL
t：integrated design－
R．G．B．－2／23／82
PARAMETER

FND EnClosure length (l)
enclosure mi
RADIATOR
RADIATOR/SHADE
SUN SIIADE
MATERIAL
ABSORBTIVITY (${ }^{\text {a }}$
EMISSIVITY ()
THERMAL RADIATION PARAMETERS
TYPICAL VALUES EXTERNAL ENCLOSURE $\alpha / \varepsilon=.2 / .8$
L. or' $\alpha / \varepsilon=.1 / .1$, internal enclosure $\alpha / \varepsilon=.8 / .8$
eliminates. possibility of the sun irradiatilig the
interior of the forward enclosure.

COHTROLS ENERGY IRRADIATING/ABSORBED BY LD
MINIMIZES SIDE TO SIDE GRADIENTS WITH ALI MAX $=.40^{\circ} \mathrm{F}$
provides an area for earth ir and albedo energy rejection
WITHOUT MAX $=460^{\circ} \mathrm{F}$ irradiatilig tile

$$
\infty
$$

monea ree e
OF FOOR QUALity

SEGMENT THERMAL MODEL

R.G.B. - $2 / 23 / 82$
R

- CONCLUSIONS
- LOW TEMPERATURES ARE ACHIEVABLLE L/D HAJOR DRIVER IN ENVIRONMENT
- NOW ON TO SEGMENT ANALYSIS ∇

OF POCR EMPD?

LDR
 SEGMENT TECHNOLOGY ASSESSMENT STUDY

FINAL BRIEFING

APPENDIX C

FINAL BRIEFING
Ger PGOR Guaty
PERKIN-ELMER

$9 / 21 / 82$

GOAL

PANEL REQUIREMENTS

GLASSES, GLASS -

- COMPOSITES
- ALUM"COU 3 AK"
swien

- PASSIVE

- ACTUATORS/ M^{2}
$\underbrace{\text { CDR }}$ -- Wr. alloc'N $16 \mathrm{~kg} / \mathrm{m}$ $\Delta R / R$
FIG.GUAL.
PASSIVE

TEMP
D/L
HeDRE
COST
RUSK

C 0. PC:

etc

THE LDR PROGRAM IN A NUTSHELL

- MINIMIZATION OF MAT'L REMOVAL
- Rapid, damage-freg removal
OF MATL.
Of POUR Quant
LDR SEGMENT TECHNOLOGY ASSESSMENT STUDY
THE SOW TASKS
- REQUIREMENTS \& EVALUATION CRITERIA
- ASSESS EXISTING TECHNOLOGY
- IDENTIFY \& EVALUATE PRIME TECHNOLOGIES
- ANALYTIC STUDIES \& PERFORMANCE PREDICTIONS
- DESIGN DEFINITION \& OONCEPT SELECTION
- TECHNOLOGY DEVELOPMENT PLANS FOR
TWO MOST PROMISING CONCEPTS

$$
\begin{aligned}
& \text { FUSED QUARTZ SANDWICH PANELS } \\
& 15 \mathrm{~kg} / \mathrm{m}^{2} \quad 1.5-2 \mathrm{~m} \text { DIAMETER } \\
& \text { SEMI-REPLICATION } \\
& \text { UNIQUE MANUFACTURING IDEAS }
\end{aligned}
$$

$$
\begin{aligned}
& \text { ALTERNATE MATERIAL EXPERIMENTS } \\
& \text { ADDITIONAL (DOMESTIC) SOURCE }
\end{aligned}
$$

REQUIREMENTS AND EVALUATION

 CRITERIAREQUIREMENTS \& EVALUATION CRITERIA

- $\triangle R / R$ or RADIUS OF CURVATURE PRECISION
- absolute surface accuracy a key issue for coherent segmented performance
- concluded that $1 \frac{1}{2}$ to $2-m$ panels more CAPABLE OF MEETING THIS REQ'T THAN 4-m ONES
- $\Delta R / R$ DRIVES:
- panel size
- mat'l selection re. te homogeneity
- PRODUCIBILITY blank manufacture optical processing
- AND SHAPE, quantity REq'D,......

NETES:

$\Delta R / R$

THE
INFLUENGL
TREE

$$
\nu=\omega+\cdots \dot{L} \quad=L-\frac{1}{r^{2}}
$$

- unique to cohereut segmented mirbors.
- an initial manufacturing and....
- material selection issue.

PRECISION REQ'TS for PANELS
PRECTION REQ's for

or
$\Delta W F=\frac{Q}{1.7}$

OF FOCR QUADMy

ASSESS EXISTING TECHNOLOCY

> ADEQUATE MATERIALS EXIST
> - homogeneous
> - in Production FULLY PROVEN PRODUCIBILITY METHODS DON'T - REPLICABILITY ACCURACY
-OPTICAL PROCESSING re.
FLEXIBILITY
MATIL REMMOVAL RATES
QUITING
SUB-SURACE DAMAGE
PRRODUCTIN RATES ~LIKE 2 PER WEEK!
COST/FACILITIES FOR BLANKS COST/FACILITIES FOR BLANKS
DITTO FOR OPTICS OPERATIONS
PEPFFORMNCE/PRODLZIBILITT REZATIONSHIPS

PRODUCIBILITY

- REPLCABILITY
- MININAL COST
- RAPID DEZIUERY RATES
-

of Pour eunk

ORIGMAL FRER
 OF POOR Qumbis

 CWEI SNIWXOA

$$
3-\frac{1}{2}
$$

SCHOTT ZERODUR
CORNING "ALUMINA SILICATE" HIP BERYLLIUM
"COILZAK"/AL. FOA
CAUDIDATE MATL'S \& PR ODUCIBILITY FACTORS

* subs. ceramming req'D
Of POOR Qum,

Of ran en
CORNING PYAQT F ALUMANA SILICATESS

or Fook quan
HIP BERYLLIUM AT PERKIN-ELMER
R.

ORIMWE Prs

OF FOOR QuNGT.

COILZAK ALUMINUM MIRRORS: THE $\triangle t_{2}$ BONDLINE ISSUE

COILZAK MIPAORS COUCLUSIOUS

MUTIPLY Supapred ARE-FORMED

ally

ANALYTIC STUDIES AND PERFORMANCE PREDICTIONS
ANALYTIC STUDIES \& PERFORMANCE PRED'US
PERFORMANCE
To
Depioviant
pouting
CURVATURE
crease
INITIAL
FROM
MIRRORS BENEFIT
ABOUT A 45% STIFFNESS
TRADE SOLUS (HAND AUALY
CORNERS OF TRAPEZOID
SOLID
THERMAL ENCLOSURE
"Phalanges"
sldgamo ikynlonyls
STOWAGE
sourerad
\Longrightarrow
CRUNE PRER
OF POOR Qun-

OF̈ POOR QUALTTY
OBJECTIVE
THERMAL ANALYSIS

$\angle D R$ Enclonures Design Concept

Iト

6xam best 15
OF POCR QUALITY
sunceradmsi sunsoisN 7 d $C 7$

DESICN DEFINITION AND CONCEPT SELECTION

- Heraeus fused quartz ULTRA LIGHT $15 \mathrm{~kg} / \mathrm{m}^{2}$. OPTIMIZED SANDWICH

CHARACTERIZATION TEST
- Alternate material
HOMOGENEITY
FORMABILITY
JOINABILITY
$\Delta \alpha^{\prime}$

Figure 19

(5in)

or pock cumay

ORIGINAL PRGE IS OF POOR QURELITY

SEMH-REPLICATCD SAUDWICH MIRRORS

MOLDED IN , I.e.

semi-REPLICATION

- spherically generated cores won't "Match"
the aspheric faceplate
faceplate is
MOLD FORM
- unless the faceplate is "spherized"

TOUCH-UP \& SHINE WICTITIT
THE OPTICAL
SURFACE
HOW TO AVOID QUILTINC SIMPLY

xisting veur holes

TECHNOLOCY

IDENTIFY AND EVALUATE
PRIME TECHNOLOCIES
PRIME TECHNOLOGIES

IDENTIFY \& EVALUATE

- FUSED QUARTZ
VIRTUALLY GUARANTEED PERFORMANCE....
IF WE CAN MAKE IT LIGHT ENOUGH
- AND IF ITS LIGHT ENOUGH
CAN WE MAKE IT ?
- WEIGHT DRIVEN CONFIGURATIONS \& PRODUCIBILITY

MATERIAL SELECTION IMPLICATIONS

* ALSO FRIT DEVEL. ISSUES
* OPTOSIL-III
SOLID TUARTZ REFLECTOP PASNELS
($20 \mathrm{~m} f / 1$ DASELHE EXAMPLES SHO

PAVER SIRE	8	AREAL DEUSITY ($\mathrm{Kg} / \mathrm{m}^{2}$)						
		10	12			18	20	
$1-m$ lis		12.8	15.6	17.7			? 6	
1.5 m :	4.4	3n530	7			10	11.4	
2-m .	2.5	3.2	3.9	4.4		5.7	6.7	
EIRST PESQUANCE (CPS)								
THICRNESS		. 14	. 18	. 22	. 25	. 28	. 32	. 36

96

POLISHED
of turativi
RADIAL \& TANGENTIAL SAGITTAL DIFFERENCES (ASAG)
SOr OUTERMOST RING

$\begin{aligned} & \text { DIA } \\ & (m) \end{aligned}$	f/No	$\begin{aligned} & R \\ & (m) \end{aligned}$	$\begin{gathered} R_{1} \\ (m) \end{gathered}$	$\begin{aligned} & S A G_{1} \\ & (m)^{2} \end{aligned}$	$\begin{gathered} R_{2} \\ \left(m^{2}\right) \end{gathered}$	$\begin{aligned} & S A G_{2} \\ & (\mathrm{~m})^{2} \end{aligned}$	$\begin{aligned} & \triangle S A 6 \\ & (\text { in }) \end{aligned}$
20	$f / 1$	40	$\begin{array}{r} 41.11 \\ (41) \end{array}$	$\begin{aligned} & .003041 \\ & (01219) \end{aligned}$	$\begin{aligned} & 43.43 \\ & (+3.076) \end{aligned}$	$\begin{aligned} & .00288 \\ & (.01161) \end{aligned}$	$\begin{aligned} & .0064 \\ & (.0231) \end{aligned}$
20	$5 / 5$	20	$\begin{gathered} 22.14 \\ (21.93) \end{gathered}$	$\begin{aligned} & .005646 \\ & (.0228) \end{aligned}$	$\begin{gathered} 27.14 \\ (26.37) \end{gathered}$	$\begin{aligned} & .00461 \\ & (.01896) \end{aligned}$	$\begin{aligned} & .0409 \\ & (.151) \end{aligned}$
40	5/. 5	40	$\begin{gathered} 44.50 \\ (44.283) \end{gathered}$	$\begin{aligned} & .002809 \\ & (.01129) \end{aligned}$	$\begin{aligned} & 55.08 \\ & (54.27) \end{aligned}$	$\begin{aligned} & .002269 \\ & (.00921) \end{aligned}$	$\begin{aligned} & .0213 \\ & (.0818) \end{aligned}$

1-m powas
nOU-bancketted values
BRACKETTED
:reur's

$\Delta=$ SFECLFIED DEFLLECTION
$h=$ COIE/OVERALL HEGGTT RATIO
$d=$ " AREAL DENEITY
$\rho=$ MAT'L DENSITY
D- MIRNOR DIAMETE

$$
\begin{aligned}
& \text { organg men IS } \\
& \text { of FOOR QuRITY }
\end{aligned}
$$

SCHED ULE

$$
\frac{\text { SY of }}{\text { fyeduk }}
$$

SCHEDCKA

$$
\begin{aligned}
& 36 \quad 39 \quad+2 \\
& \hline
\end{aligned}
$$

$$
\begin{array}{lll}
\text { FY } 6 \\
11 & \\
36 & 39 & 42
\end{array}
$$

[^0]: * The proprietary Perkin-Elmer Computer Controlled Polisher, which will be briefly described later in this report.

[^1]: PRE-ASSEMBLED SMALL SEGMENT MODULES
 FACILITATES SMALL SEGMENT ERECTABILITY

[^2]: PREASSEMBLED SMALL SEGMENT MODULES FACILITATES SMALL SEGMENT ERECTABILITY

