
General Disclaimer

One or more of the Following Statements may affect this Document

 This document has been reproduced from the best copy furnished by the

organizational source. It is being released in the interest of making available as

much information as possible.

 This document may contain data, which exceeds the sheet parameters. It was

furnished in this condition by the organizational source and is the best copy

available.

 This document may contain tone-on-tone or color graphs, charts and/or pictures,

which have been reproduced in black and white.

 This document is paginated as submitted by the original source.

 Portions of this document are not fully legible due to the historical nature of some

of the material. However, it is the best reproduction available from the original

submission.

Produced by the NASA Center for Aerospace Information (CASI)

https://ntrs.nasa.gov/search.jsp?R=19830024085 2020-03-21T03:27:08+00:00Z

1,

i

rF
WWI

$O"WVARE ENMEERMNi LABORATORY UL42.007
	

SEL42-007

4► Ag^'
*4
'r

PROCEEDINGS OF THE
SEVENTH ANNUAL SOFTWARE

ENGINEERING WORKSHOP

(WASA-iA-d^)40Uj	 IitLCLLulNGS Gr THE Sc1Y.:a ti
ANNUAL -jUFVWAiiZ LNG1NItti.LNG wiu, hNSHOF (ua.,u)
394 p c1L A 1 7 /mt Au 1	 L^^y u y^,

NdJ-J2J56
THHU
fr8j—.sd.Jbd
Uncias

GJ/6 1 ^ 84 7b

National Aeronautics and
Space Administration
Goddard Space F119ht Center
Greenbelt, Maryland 20771

I

PROCEEDINGS

OF

SEVENTH ANNUAL SOFTWARE ENGINEERING WORKSHOP

Organized by:

Software Engineering Laboratory
GSFC

December 1, 1982

GODDARD SPACE FLIGHT CENTER
Greenbelt, Maryland

FOREWORD

The Software Engineering Laboratory (SEL) is an organization

sponsored by the National Aeronautics and Space Administra-

tion Goddard Space Flight Center (NASA/GSFC) and created for

the purpose of investigating the effectiveness of software

engineering technologies when applied to the development of

applications software. The SEL was created in 1977 and has

three primary organizational members:

NASA/GSFC (Systems Development and Analysis Branch)

The University of Maryland (Computer Sciences Department)

Computer Sciences Corporation (Flight System3 Operation)

The goals of the SEL are (1) to understand the software de-

velopment process in the GSFC environment; (2) to measure

the effect of various methodologies, tools, and models on

this process; and (3) to identify and th 	 o apply success-

ful development practices. The activities, findings, and

recommendations of the SEL are recorded in the Software En-

gineering Laboratory Series, a continuing series of reports

that includes this document. A version of this document was

also issued as NASA/GSFC document in 1982.

Single copi_s of this document can be obtained by writing to

Frank E. McGarry
Code 582.1
NASA/GSFC
Greenbelt, Maryland 20771

EUCEDING PAGE' BLANK NOT FILMED

SEVENTH ANNUAL SOFTWARE FWANEF.RING WORKSHOP

ABOUT THE WORKSHOP

1

The Seventh Annual Software Engineering Workshop was held oil 1, 1982, ai Goddai:f
Share Flight Center in Greenbelt, MU. Nearly 250 people, representing 9 universities, 22 agencies
of the federal government, and 43 private organizations, attended the mecting.

As in the past 6 years, ti ► e major emphasis for this meeting was the reporting and discussion of
experiences in the identification, utilization, and evaluation of software methodologies, models,
and fools. Twelve speakers, making up four separate sessions, participated in the meeting with
each session having a panel format with heavy participation from the audience.

The workshop is organized by the Software Engineering Laboratory (SIL), whose members repre-
sent the NASA/(;SF(', University of Maryland, and Computer Sciences Corporation (CSC). The
meeting has been an annual event for the past 7 years (1976 to 198), and there are plans to con-
tinue those yearly meetings as long as they are productive.

The record of the meeting is generated by members of the SFJI and is printed and distributed by
the Goddard Share Flight Center. All persons who are registered oil 	 mail list of the SEL
receive copies of the proceedings at no charge.

Additional infor union about the workshop or about the SFL may be obtained by contacting:

Mr. Frank McGarry
Code 582.1
NASA/k,SFC
Greenbelt, MI) 20771

301-344-5048

v

AGENDA

SEVENTH ANNUAL SOFTWARE ENGINEERING WORKSHOP
NASA/GODDARD SPACE FLIGHT CENTER

BUILDING 3 AUDITORIUM
DECEMBER 1, 1982

8:00 a.m.	 Registration "Sign-In"
Coffee-Donuts

8:30 a.m.	 INTRODUCTORY REMARKS
"What Have We Learned in 6 Years?"

9:00 a.m.	 SESSION NO.

"Software Errors and Complexity,
Are Empirical Irivestiga'.ion"

"When and How to Use a Software
Reliability Model"

"Measuring the Application of
Software Prototypes"

10:30 a.m.	 BREAK

11:00 a.m.	 SESSION NO. 2

F. E. McGarry (NASA/GSFC)

TOPIC: The Software Engineering
Laboratory (SEL)

Discussant: J. Page (CSC)

V. Basili (University of MD)

A. Goel (Syracuse University)

M. Zelkowitz (University of MD)

TOPIC: Software Tools

Discussant: P. Scheffer
(Martin Marietta)

"Experience and Perspectives
with SRI's Tools for Software	 J. Goguen (SRI)
Design and Validation" 	 K. Levitt (SRI)

"Technology Transfer Software
Engineering Tools"	 I. Miyamoto (University of MD)

"Design Aids for Real-Time Systems" 	 P. Szulewski (Draper Labs)

12:30 p.m.	
LUNCH PRECEDING PACE PLAN{

vii

1:30 p.m.	 SESSION NO. 3	 TOPIC: Software h.rrors

Discussant: 1). Simkins (IBM)

"Software I?rror Data Collection	 T. Ostrand (Sperry Univac)
and Categorisation"	 F. Weyuker (Courant Inst.)

"An Effective But; Classification	 t•. Solloway (Yale)
Scheme Must 'fake the Programmer	 W. Johnson (Yale)
Into ACCOLInt "	S. Draper (University of CA)

"Software Anomoly 'Taxonomy.
What Can he Gained?"	 D. Buckland (!?rifer Consultants)

3:00 p.m.	 BREAK

3:30 p.m.	 SESSION NO. 4	 TOPIC: Cost Estimation

Discussant: D. Card (CSC)

"Maintenance Estimation
Methodology" K. Rohe OHM)

"Staffing Implications of Software
Productivity Models" R. Tausworthe (JPL)

"Estimates of Software Size From R. Brithcher (IBM)
State Machine Designs" J. Gaffney (IBM)

5:00 p.rtt.	 ADJOURN

K

F

SUMMARY OF THE SESSIONS: SEVENTH ANNUAL SOFTWARE

ENGINEERING WORKSHOP

Michael Rohleder

COMPUTER SCIENCES CORPORATION

and

THE GODDARD SPACE FLIGHT CENTER

SOFTWARE ENGINEERING LABORATORY

Prepared For the

NASA/GSFC

Seventt, Annual Software Engineering Workshop

.,,
-1

December 1982

INTRODUCTORY REMARKS

Frank McGarry - "What Have We Learned in Six Years?"

Frank McGarry of the Goddard Space Flight Center (GSFC)

opened the workshop with a summary of results obtained from

the analysis of data collected by the Software Engineering

Laboratory (SEL). The SEL has monitored 46 software de-

velopment projects at GSFC during the past 6 years. The

discussion covered the areas of profiles, models, and meth-

idologies. Within these areas, a number of results were

presented.

The use of modern programming practices (MPP) favorably af-

fects productivity and reliability. A 15-percent increase

in productivity was demonstrated. However, the effect of

MPP on reliability was found to be highly variable. Pro-

grammer ability and experience was shown to have the

greatest influence on the productivity of the software de-

velopment process. Studies of reliability and cost models

were inconclusive. More theoretical development of and

practical experience with such models is needed before they

can be applied effectively in a production environment.

The costs of data collection %ere iderti.fied and quan-

tified. These include task overhead, data processing, and

aata analysis. Data collection is expensive, but it is es-

sential to understanding and improving the software develop-

ment process.

In response to questions and comments from the audience,

McGarry clarified several points:

•	 A number of methodologies have proved to be cost

effective in the GSFC environment. However,

numerical values for the benefits and costs of

M. Rohleder
CSC
1of17

individual methodologies are difficult to deter-

mine. The maximum savings observed were about 15

to 20 percent for a combination of MPP.

•	 Except for errors, data from the maintenance phase

was not included in these analyses.

M. Rohleder
CSC
2 of 17

SESSION 1 — THE SOFTWARE ENGINEERING LABORATORY

Victor Basili--"Software F,-rors and Complexity, An Empirical
Irivestiyat. ^ on"

The first sneaker of the first session was Victor Basili of

the University of Maryland. This presentation focused on

the distributions and relationships derived from error data

collected during the development of a medium-scale software

project. The error characteristics of this project were

shown to reflect significant differences between this proj-

ect and the class of projects usually studied by the SEL.

Modified and new modules were shown to differ in the types

of errors prevalent in each and the amount of effort re-

quired to correct an error. Modified modules appeared to be

more susceptible to errors due to the misunderstanding of

specifications. One surprising result presented by Basili

was that an increase in module size did not increase error

proneness. In fact, larger modules were shown to be less

error prone. This was true even though the larger modules

were more complex. A number of explanations for this phe-

nomenon were suggested.

In response to questions and comments from the audience,

Basili clarified the following points:

•

	

	 Errors of commission were those errors caused by an

incorrect program statement. Errors of omission

were those errors that resulted from forgetting to

include a statement or parameter.

•

	

	 A large portion of the errors was attributed to a

misunderstanding of specifications or requirements.

•

	

	 The effect of programmer experience was considered

in the investigation.

M. RoWeder
CSC
3 of 17

•	 Additional work is required to determine the op-

timum size of modules with respect to reliability.

•	 Errors caused by earlier error correction efforts

were found to be, at most, 6 pe e.c;ent of the total.

•	 Data was not available on the time required to cor-

rect errors in large versus small modules.

M. Ruhledei
CSC
4 of 17

rit Goel_--'Wh-:n and How To Use a Software Reliability
Model"

e second speaker of the session was Amrit Go•l from

racuse University (on leave to the University of

ryland). This presentation dealt with the role of soft-

re errors in determining the reliability of large- scale,

mputer-based systems. The use of stochastic and combina-

rial models to assess system reliability in the presence

failures caused by software errors was examined. It was

ggested that users were employing models that were readily

ailable on their computer systems rather than the most

propriate model for their development environments. This

is due to incorrect or ambiguous interpretations of model

assumptions Arid output.

Goel presented views about the utility of the available

models during various, stages of the development process and

in different testing situations. Alternatives to reliabil-

ity models were also suggested for occasions when the cur-

rently available models do not seem to be applicable.

The following points were made by the audience in response

to the presentation:

•	 Rick Gale pointed out that software testing should

be driven by reliability model measures.

•	 John Musa agreed that appropriate testing is neces-

sary to obtain valid results from a model.

M. RoWeder
CSC
5 of 17

Marvin Zelkowitz--"Measuring the Application of Software
Prototypes"

The last speaker of the first session was Marvin Zelkowitz

of the University of Maryland. This presentation covered

the development and application of prototypes for software

systems. The differences between models and prototypes were

identified as well as essential elements common to both.

Environmt _al considerations and their influences on proto-

type development were also discussed.

An ongoing experiment in prototyping, the Flight Dynamics

Attitude Simulator (FDAS), was described. A number of fac-

tors motivated the choice of the prototyping approach for

the development of this system. These include uncertainties

about size, requirements, and interfaces.

In response to questions and comments from the audience,

Zelkowitz clarified the following points:

•	 The major goal in the development of this prototype

is to examine project requirements and feasibility

more closely. Specifications for the full system

will be based on the results of the prototyping

experience.

• The need for prototype development stems from the

fact that FDAS is a very different type of system

from those usually developed in this environment.

•	 Prototypes are not built merely to "tack on" ad-

ditional features at a later date 'Lo build the full

system. Some elements may migrate to the full

system, however.

•	 Elaine Weyuker disagreed with the 10-percent esti-

mate for the cost of a prototype versus full imple-

mentation and suggested that 30 percent is more

realistic in a nonacademic environment.

M. RoWeder
CSC
6 of 17

SESSION 2 - SOFTWARE TOOLS

Karl Levitt and Joseph Goguen--"Experience and Perspectives
With SRT s Tools for Software
Design. and Validation"

The initial speakers of the second session were Karl Levitt

and Joseph Goguen from SRI International. The joint presen-

tation described current approaches to software tools for

design specification and presented experiences with several

projects at SRI.

Four development tools were introduced: the STP theorem

prover and its associated Design Verifieacion System; PHIL,

a meta-programmable, context-sensitive structured editor;

Pegasus, a system for supporting graphics programmng; and

OBJ, an u'_tra-high-level programming language based on

rewrite rules and abstract data types.

The speakers described successful efforts to apply these

tools to design specification and verification for two

classes of systems in which reliability is vital: fault-

tolerant systems for aircraft control and secure operating

systems.

In response to questions and comments from the audience, the

following points were clarified:

•	 A major purpose of a specification language is to

support the decomposition and testing of designs at

an early stage.

The most compelling reason for the lack of formal

specifications languages with too! support is the

absence of examples that model good specifi

having the right amount of detail.

•

Isao Miyamoto--"Technology Transfer Software Engineering
Tools"

The second speaker of the session was Isao Miyamoto from the

University of Maryland, Baltimore County, who discussed

technology transfer as it applies to software engineering

tools.

Experiences with tool usage and availability were pre-

sented. Miyamoto identified three reasons that tools ara

not used:

1. Lack of a clearly defined methodology

2. Economic ineffectiveness

3. Lack of measures and criteria for evaluating the

effectiveness of tools

An example was presented of a software maintenance support

tool system called "Pandora's Box." This system provides

users with a hierarchical network of menus designed to

provide user-friendly capabilities from novice to expert.

It is hoped that the project will produce a tool that will

gain user acceptance.

In response to a question from the audience, Miyamoto clar-

ified the following point: designing easy-to-use, cost-

effective tools is the key point in transferring software

engineering technology from the research laboratory to users.

M. RohledeT
CSC
8 of 17

Paul Szulewski--"Design Aida for !teal-Time Systems"

The last speaker of the session was Paul Szulew.-ki of the

Draper Laboratory. The presentation described ongoing ef-

forts with Design Aids for Real-Time Systems (DARTS). This

tool assists in defining embedded computer systems through

tree-structured graphics, military standards documentation

support, and various analyses including calculation of

Halstead's Software Science measures.

DARTS uses a mix of hierarchical organizatiin, control con-

ventions, communications primitives, and data structures to

represent real-time systems. Requirements are expressed as

a functional hierarchy, and the design is represented as a

tree-structured hierarchy of communicating processes.

Throug h a user-friendly, menu-oriented interface, a user can

define a aystem; perform data flow checking; generate sim-

ulations of response time, throughput, and utilization;

request a variety of data tables and graphical tree-

structured output in various sizes; and calculate Software

Science measures.

In response to questions and comments from the audience,

Szulewski clarified the following points:

•	 DARTS is operational on an Amdahl 470 V8. It con-

sists of approximately 20,000 lines of PL1 code.

•	 DARTS has not been used thus far for applications

such as PERT charting.

•	 Tool availability and desirability from a user's

standpoint are important aspects of tool design.

M. Rohleder
csc
9 of 17

•

Al ht

CSC
10 tit

:;E-,;S 10N i - - SOFTWARE 1.I:Itc11::

Tllolll;l:: I l :; t 1 I lid • ":+tt t t wa l e Ft t o t Pa t .1 Co 11 t't't 1011 Mid
C.1tr t)01 1:,1t 1 t i ll ^^

The' t t t :lt . ;poaket tit the t h i t t1	 waa '1'h ollla t; s lat land tit

1;pe ► I y 1 1 11 l': ac, who I'I t' wItt t'tt t he t t':;It I t	 of a t t'ae.1l c11 l t 1 o t -

et't tttt llt')0111t I w 	 It F1.1tllt' WeyitkvI	 Tht' lit 01t': t	 111.i	 .'t'ti

tlit, te1.1t I ,I ilahIp ti t ettti t CIIl%t Wt et tatlt':; to v.1tlt l tl , ; a:;het't:.
t1t the	 tt ►Jale deveIopillellt PIOL't`t;;; Its' :;tudv111%] :;0ttWAtt`

t't t tI t 5 t'0 Mill i t t eti ttllt t Ilk) t hi , kit' VI I IUI'illen	 tit	 ait	 Ilit et at't I%I

:IL t et'lal-pilIE`0'"'t , t`ttItoI	 tI, III .	 A now v ttlt t• att', t oI I:.at ittit

;ystelit wa:I tieveltll'eti alld 11 .1 ('t I.'s I: wete t'lI t it'd with

t h l :1 scheme .

The I It, w et 1.01. t'.1tt't101 1:.1t 1011 :a 11 (1 	 wt I:; tievelolted t 10111 Itt0.-

0tattllilt'1	 tit':;t't I 	 tail:; t t t	 1'1101 :;,	 then	 o.y1liptOlil:;, .1 lid 1'111 tet' -

t Ioits.	 t'oitI.	 t)t' tit , t I c at t I I t
i
ll t t`:;,	 t)t	 kiIMOItS o11:;,	 ca t	 ;"ot twat t`

ett01:+ tot'tt' Idt'ilt I t It'tt; e.1t • h t`t i 01	 W.1:; 01 aa: ;I t iett I)y a;:;itlll-

i no	 1 t	 a va 1 lit'	 t 01	 t'.tt'11 tl 11111`11:1 1 t i ll .	 '1'I It , st' t1 i 1110111, i tI ll:: .111d

t tit , it	 tI:;:littIv vaI tit , a tet Iet't	 tht , aI'et'It it • et Iti t:; i tit, t;tiI ied

•	 t'1llI i li t 	 t Ito I't 0 1t 1 t't .	 '1'ho .I t' d 11110It:; I 011a	 I Ilk' I Ildt' Ill .1 100	 t'.lt -

et)JI y,	 I It , I it , ,	 i I (`:;t` tit' t`,	 AIltt	 it 	 .

111 ret-woil:;t` to kitIv:;ti0ila	 111ki t• t 1 111111eIIt:; tILI M t ht' .Mdit'tlt'e,

O:; t t anti	 l a t i t i t`ti t ht' t t•1 1 taw I n'1 I't' 111 t ;; :

•	 Good ta;'pott wlt11 tlit' I't t't)t.1111111t`t:; 1:; v1t.11	 t	 lly-

k, t, 	 lit tiat.1 C011t't't 1011 ('t t t i t t:;.

Pot; 1.111 wa . ; d0 tit` II1t01 lit. II I\'.	 VIowchaI t:;,	 to1111.11

I t'tlll l l t`Illt'ilt :;,	 .Illti :;I't`t' 1 t IC.It lull:; Wt , t0 ;lt)t	 It a-;"d.

•	 Thr	 IInI
I
t) It.l tit* 0 t i t	 Ielt't',IIIt	 I tit k i t mat lull	 Iit tiatA t'0

It't • t 1011	 t`t t 0l t:1 t',111110 	 1 1 t' 0V01 t' Ill I , 11.1: 1 1: t'tt.

1-. 1 1 it^t ;;tt l lOway-- " A ll 1'3 t est 1Ve Iltltl Cla: nit 11l at Ion Sc'hellle M ust
'fake the I'tt l tlramnit,t Into Account"

The next 21I 1 t 1 .tkt 1 t tit the t It IId sesnI kill wa:, VIII ot SoI!oway of
y a Iv On I veI :11 t , who pt v.svnt etl a papeI Cttatlt ItoI ed by

W. Joh112 ; t t n, a i:+o tit yale, and :+. lltahet of the Lin iveIs	 y U1-

Cal it' l l 111a.	 Tit 	 hte2leiltation tietinett a pat ticulat View of

lh lltl t • Ia::::It Icat lon.	 itatheI than lookino at Iltotillt.-tiVtty of

tellab111ty, the tloal tit lookilltl at ptotat.un but121 was to PLO-
vide I ba::l: l tot butIdlnt', complltet-based ttltotin'.1 2tystenus

that k' All Ald tilt' n0Vik • e ill 1Vl I'll tntl to 11U04Iam. 	 The .:on-

clu:lton is that hutl:l att' 110t t rintiom OCCLIllenreS but, t/lthet,

21y2ltenlat 11- • anti I110vt.9e a window into mielconceht ions that

novice-- have about pl't ► tit,'VIInillq.

Vevt'It'piIItI a t'Iit ..sII Ic'at 1011 :i0 Ile Ill e t01 1)ut121 baSC-	 Solc'1^' Otl

the clot tact , t vak all e:: tr t the LE I otltaIns themselves i2. 111sLlt-

tit'tent to 11111tI11ely t'1as-sIty blttl2,, mild it i kinoren the undot:-

I)'ltltl 1111:1.- ont'el't lull.	 What 1:1 needed ale heuri-,tic Cllles

bast`d oil :l hypot head:: tit what the h t'ograllmet t 21 intent ions

wt`lt` ;1:1 ht` :lhv cl eat ed the Itl'Otl t:1111.	 C l assity lnti bu`ls Il11121t

t ake the Itt o'ltamille t int o ac t-omit .

In It':11 t ollsv t1-, tltlt`:lt1t t 11:1 and comment .. ttk Im tilt, 1ludience,

:1- . l low.1y clal It lt`ti tilt` tollow1Ilk) poi11t'st

•	 bait` le:c:l 1 1 1 00ta1111111'Ikl I N 1.!1-'t ICVto ht tlt'1 OV 11101e et10US

111 t'Otlt'.	 \ 1.121211 t Icat hill lit t. Ile toe ettoIS becoales

itlt'1 t`;t::1Ilk) I^ - 11101 V til t t ICI.1It	 1121 tllt' tlli Ill be1	 ti t el 101: i

1 IICI t,:1 at`

•	 1'. 11t'11. Ill I N t0tit.1111:1 i.I n bV CIISSltIt'd 112:11 1-1 11t0t111.1-

t it)'.! .IhOkit IIOW tilt`\' %,ete t 1XVd.

•	 V I C 1 1 .11 : 111 t'1i21t illtlllI' ; Il `ti 1`VCWV011 t'I V0t1, M ilt

Iault:l.	 1'in.11ltl n tault leads, to A swatch for the

t'ltOt.

M Ntthlodol
CSC
II of, I"

•	 Care must be taken to ensure the quality of data

collected.

M. Rohledel
CSC'
12 of 17

na Buckland--"Software Anomaly Taxonomy--What Can Be
Gained?"

.. last speakec of the third session was Donna Buckland of

Reifer Consultants. This presentation discussed the results

of a study to categorize software errors that had been re-

ported during the stages of testing and operational use of

the Deep Space Network DSN/Mark 3 system and to build a data

base for subsequent analysis.

A three-dimensional classification scheme was devised to

capture error data for statistical and trend analysis.

These dimensions are time of occurrence, error criticality,

and error category. The first dimension defines the par-

ticular software life cycle phase in which the error was

introduced. Criticality assesses the severity of the

error. Error category defines the cause of the error.

Buckland stated that the collection and classification of

software error data provides management with a powerful tool

for isolating problem areas. The data can be used to iden-

tify error-prone modules and serve as a basis for making

repair and/or replacement decisions.

In response to questions and comments from the audience,

Buckland clarified the following points:

•	 Quantification of error data is a very important

tool.

•	 The length of time required to fix a problem is

also very important and is sometimes overlooked.

• Vic Basili pointed out that it is often difficult

to get an individual who fills out a change/error

report to understand exactly what information is

needed.

A,

SESSION 4 - COST ESTIMATION

e Rone--"Maintenance Estimation Methodology"

first speaker of the fourth session was Kyle Rone of the

ernational Business Machines Corporation (IBM). This

sentation described a systematic approach to providing

imates for both staffing and skill levels during the

ntenance phase of a project.

approach presented uses a Rayleigh curve method of pro-

tion combined with a modified matrix method to forecast

ntenance needs and required staffing levels. The curves

generated by both methods are differenced to ascertain how

much new work can be performed given the staffing level.

Actual data is compared to projections to validate or modify

the process.

In response to questions and comments from the audience,

Rone clarified the following points:

•	 Estimation is not a one-time process; it must be

aplilied over and over again.

•	 Maintenance activities include correction of both

latent and ongoing errors.

• The amount of maintenance required can be reduced

by applying more quality control during early de-

velopment phases. Quality is cheaper in the long

run.

• Frank McGarry stated th3t independent verification

and validation (IV&V) is appropriate for projects

with high reliability requirements. The effect of

IV&V on maintenance costs has not been assessed by

the SEL.

M. Rohleder
CSC
14 of 17

•	 Dave Card asked whether unmaintainable software has

ever been encountered. The response from Rone was

that such software has been encountered and mu ,,-,t he

disposed of.

•	 The type of model used in estimation is not a

important as using a given model regularly with

good techniques that are transportable.

NI. Rohledet

CS(,

15 of

RObOt	 Implications of Software
Productivity Models"

The second speaker of the fourth session was

Reber L T,10SWOL the of the Jet Propulsion Laboratory (JPL) .

Hispro:3vntation investigated the implications of equating a

ptoject staffing model with an intercommunication overhead

model in a small neighborhood of project effort. Highlights

from the study include the following: there is a calculable

maximum effective staff level for any project beyond which

additional staff does not increase the production rate; this

limits the extent to which effort and time may be traded ef-

tectively. it becomes ineffective in a practical sense to

expend mare than an additional 25 to 50 percent of reEources

in order to reduce delivery time. Additionally, it was

E)clinted out that the project intercommunication overhead can

be determined from the staffing level for a given project.

The following point was clarified by Tausworthe in response

to a question from the audience: Dave Card asked whether

interconisnunic:ation overhead could be reduced by dividing a

project into a number of tasks that communicate only through

the manager. Tausworthe replied that the increased man-

agement activity would increase overhead costs even faster.

M. RoWedei
CSC
16 of 17

n Gaffney--"Estimates of Software Size From State Machine
Designs"

final speaker of the fourth session was John Gaffney of

the National Weather Service, on loan from IBM, who presented

a paper coauthored by Robert Britcher of IBM. The presenta-

tion explained how the length or size of programs (in number

of source lines of code) represented as state machines can

be reliably estimated in terms of the number of internal

state machine variables. Variables here are defined as the

unique data required by a state machine's transition func-

tior,, not the data retained in the state machine's memory.

These are equivalent to Halstead's operands. The method-

ology presented can be employed at successive stages of the

development process to provide increasingly accurate esti-

mates.

The following points were made during the ensuing discussion:

•	 Kyle Rone asserted that cost estimation is not an

exact science; it is a way of accumulating experi-

ence to make accurate estimates in a given environ-

ment.

•	 Dave Card suggested that different analysts might

decompose a state machine model differently and

thus get differ p nt results. Gaffney replied that

the effect of such results could be important but

that they could be minimized by careful and con-

sistent application of the decomposition technique.

M. RoWeder
CSC
17 or 17

W"T MTR WE LZMW IN = L"T 6 TiA»1>6 h N8 3

323^"^

MEASURING SOFTWARE DEVELOPMENT TECHNOLOGY

BY

FRANK E. McGARRY
GODDARD SPACE FLIGHT CENTER

In late 1976, the Goddard Space Flight Center (GSFC) initiated effort, to create
a software laboratory where various software development technologies and
methodologies could be studied, measured and enhanced. This laboratory became
known as the Software Engineering Laboratory (SEL), and since its inception has
been actively conducting studies and experiments utilizing flight dynamics
projects in a production environment. The SEL evolved to a full partnership in
the efforts between GSFC, the University of Maryland and Computer Sciences
Corporation (CSC).

The approach that the SEL has taken in carrying out the studies has been "o
apply varying methodologies, tools, management concepts, etc. to softwave
projects at Goddard; then to closely monitor the entire development cycle so
that the entire process and product can be compared to similar projects
utilizing somewhat different approaches. This monitoring function led to a need
to collect, store and interpret great amounts of data pertaining to all phases
of the software process, product, environment and problem. This data collection
and data processing process has been applied to over 40 software project-
ranging in size from 2,000 lines of code to approximately 120,000 lines of code
with the typical project running about 55,000 lines of code.

The data that has been collected (and is still being collected) and interpreted
for these projects comes from 5 sources:

1. Data Collection forms utilized by programmers, managers and support
personnel.. Typical types of data collected includco:

• Error and Change Information
• Weekly Hours and Resources
• Component Effort (hours expended on each component by week)
• Project Characteristics
• Computer Run Analysis
• Change and Growth History (week by week records of source code)

(Additional Information is contained in references 1 and 2)

2. Computer Accounting Information

3. Personnel Interviews -during and after the development process

4. Management and Technical Superviaor Assessments

5. Tools-used to extract data and measures from source code

F. McGarry
NASA/GSFC
1 of 34

—"9

^a

For the more than 40 projects which have been monitored, approximately 21,000

forms have been processed and are continually used to perform studies of the
software development process. To support the storage, validation and usage of
this information, a data base was designed and built on a PUP-11/70 at Goddard.
(Reference 3)

Approach (Chart 2)

The steps that have been taken to carry out the investigation within the SEL
have bean:

I. Develop a profile of the software development process as it is
'now'. First we must understand what we do well and what we do not so well so
we can build it baseline of current characteristics whereby later we can honestly
measure change.

2. Experiment with similar type projects. The second step has been to
apply select tools, methodologies and approaches to software projects so they
can be studied for effect.

3. Measure the process and product. As projects are developed which
are utilizing different software development techniques, the SEL uses the
extracted data to determine whether or not the applied technology has made any

measurable impact on the software characteristics (This may include reliability,
productivity, complexity, etc.).

Environment (Chart 3)

The projects which have been monitored and studied are primarily all flight
dynamics related software systems. This software includes applications to
sr., art attitude determination, attitude control, maneuver planning, orbi;.

adjust and general mission analysis.

The attitude systems normally have	 ry similar characteristic and all are
designed to utilize graphics as well as to run in batch mode. Depending on the
problem characteristics, the typical attitude systems range in size from 30,000
to over 120 , 000 lines of cede. * The percentage of reused code ranges from less
than 10 percent to nearly 70, percent with the average software package being
comprised of approximately 30 percent reused code.

The applications are prtr.arily scientific in nature with moderate reliability
requirements and nor- -t" Ily are not required to run in real time. The development
period typically runs for about 2 years (from Requirements Analysis through
Acceptance Testing). The development computers are typically a group of IBM
S/360's which have very limited resources and where reliability is quite low
(typically less than 3 houcs MTBF)

Details describing the environment can be found in Reference 1.

*Here, a line of code is any 80 byte record processable by a compiler or
assembler (i.e., comments are included)

F. WC,,!tr^,
NASA /GS[-C
2 of 34

Experiments Completed (Chart 4)

As was mentioned earlier, the SEL has monitored over 40 software development
projects during the 6 years of operation. During this time period, numerous
methologies, models, tools and general software approaches have been applied and
measured. The summary results to be presented are based in these projects. The
summary will be divided into 3 topic areas:

1. Profiles of the Development Process
2. Models
3. Methodologies

F. McGarry
NASA/GSFC
3 of 34

, rot i le-i of the I)rvelolanent p rocess (Charts 5 thru 12)

'file B est step in at(emptinK to mensure the etIeetiveness of Lilly sot tware
(4chnologV it. to }venerate a baseline or profile of how one typically performs

tilt; job. Then as moditi od approaches are attempted oil 	 projects, the
t-I trct s ma y he ,Il ► par ell t by comparison.

Resourcet; Al beat lot ► (Chart 1)

One tart of 11a1;1v i lit ormat toll that or.• may want to understand is gust where do
pro ►;r.unmert spend t hei t' t tile. When the SFI, looked at it 	 projects to
ettlderst and where tilt- t ins was spent , it found that the SFI, environment deviated
somewhat Irom the old 40- .1 0--411 yule. 'Typically projects indicated that when the
tot a l hours expended were based on phase dates of it project (I .e., it

data 41et((►t-it the ahsol(► te completion of tine phase of the cycle and the beginning
of the next phase) t hr breakdown was lass than I S percent tot' design, clone to
5(I peret-nt 1 or rode :1141 ;shout Ill percent for itltegrat ton and test .

When the pro};r.unnlers provided weekly data attributing their time to the activity
that thev felt thev wil t-(• actually doing, no matter what phase* of software
41eve lopment thev wer e lit-, the pt-ot t le looks quite different. The I phases
(desiells, code, test) each consun ►ed approximately the some percent effort and
over ;5 percent of the time was attributed to 'other' acttvt'tes (such as
travel, tr. ► ini ►► }„ unknown, etc.). The SEI, has continually found that this
effort (other) exists, 111141 cannot easily be reduced, and most probably should be

accepted ;1t; a }riven. The Sha, has found it to be it mistake to attempt to
increase productivity mere 1v by eliminating major portions of this 'other'ttme.

I)evelopment Resources (Chart 8)

Another area of concern to the SEL in defining the basic profile of software

development, was that of staffing level and rbsource expenditure profiles. Many
authorittes st ► hsertbe to the point that there is an optimal staffing level
profile which should he followed for all software projects. Such profiles as a

RrIyle_i^h Cucvr are su};}ested r1s optimal. Chart 8 depictu charnetert tit Ics of
1 • 1.38ses of projects moraltoted tit 	 Sm, and shows the difference In
producttvity rind reliability for groups of projects having different staffing

level pro tiles. Althotigh the Rayleigh Curve may be acceptable far some

projects. the SFI, has found that wide variattonr, on these characteristics still
Ien(i to it succeASful projects. The svl, has also found that extreme deviations

uuly tit , tttdicat ive of problem software.

(Itet,;i led information can he found tit 	 4 and 5)

F WGIIIN.
NASA-t;SFc
4 of 1.1

Productivity for large vs. small systems (Chart 9)

The common belief by many software managers and developers is that as the size

of a software system increases, its complexity increases at a higher rate than
the lines of code increase. Because of this fact, it is commonly believed that
it, the effort equation

E - alb
where E - effort of person time
where I . lines of code

that the value of b must be greater than 1. The projects that the SEL has
studied have beer unable to verify this belief and instead have found the value
of b to approximate .92 in the SEL environment. The fact that tills equation is
nearly linear leads to the counter intuitive point that a project of 150,000
lines of code will cost approximately 3 times as much as a 50,000 lines of code
project-instead of 4 or 5 times as much as is often commonly believed.

(Further details can be found in Reference h.)

Productivity Variation (Chart 10)

Another characteristics that the SEL has been interested in studying has been
the variations in programmer productivity. Obviously one would want to increase
the productivity by whatever approach found to be effective, but first we must
clearly understand what the baseline characteristics of productivity are
(minimum, maximum, average, difference betwein small and large projects, etc.);
only then will we know if we have improved or not in the years to come.

As has been found by other researchers in varying environments, the productivity
of difzerent programmers can easily differ by a factor of 6 or 10 to 1. The SEL
did °.ind that there was a greater variation (from very low productivity of .5
1.o.c/hour to 10.8 l.o.c./hour) in small projects. The probable reason for this
is that newer people are typically put on smaller projects and the SEL has found
extreme differences in the relatively inexperienced personnel.

Reusing Code (Chart 11)

As was stated in the introduction, projects being developed in the SEL
environment typically utilize approximately 30 percent old code. Although it is
obviously less costly to integrate existing code into a system rather than
having to generate new code, there is some cost that must be P.tributed to
adopting the old code. The development team must test, integrate and possibly
document the old code, so there is some overhead. By looking at approximately
25 projects ranging in size from 25,000 lines of code to over 100,000 total
lines of code and ranging in percent of reused code from 0 percent to 70
percent, the SEL finds that by attributing a value of approximately 20 percent
overhead cost to reuse code, the expenditures of the 25 projects can best be
characterized. Now the SEL uses the 20 percent figure for estimating the cost
of adopting existing code to a new software project.

F. McGarry
NASA/GSFC
5 of 34

f

Error Characteristics (Chart 12)

One of the other characteristics of a software environment that is of great
concern to developers and managers is that of expected software reliability and
that of overall software error characteristics. Before attempting to improve
software reliability or before attempting to
minimize the impact that software errors may have, the SEL had to first
understand the error characteristics of the typical applications software in the
SEL environment.

By collecting; detailed error report data and through the monitoring of numerous
applications projects many error characteristics have been studied.

Several pieces of information which are depicted in Chart 12 and which are based
on 1381 error reports from approximately 15 projects include:

o Most errors are local to one component (subroutine or function)

o Less than 10 percent of errors were attributed to faulty
requirements

o A great percent of errors (48 percent) were estimated to be trivial
to correct (less than 1 hour)

o A very low percent of errors (7 percent) were estimLf.ed to be a
major effort to fix (greater than 3 days)

(Further statistics and more detailed explanations can be found in References 7
and 8).

F. McGarry
NASA/GSFC
6 of 34

Models (Charts I1 through Ili)

A second set tit studies that the SFT has act (vety t ►ut'rstled is that of eve ► l tut t ilig
reviewing, and developing sottware models. 'Phis i t ► r l tides t'esource node 1 s ,
rt• liatilllt y models as well :ls complexit y illetrit's.

Measures tut' Sottware	 (Charl Ins)

The SEL lilts atten ► pted to tit.li:e various avrliIahIt , s tit t Wit re metrics to
charact er i re the sot t ware produr: s F;rnerat ed . sm-11 islet r t es its the MrCahe
Cveloulatic Complexit y , Halstead Length, and title•, of code were onlV :► tew of the
invilsilres thill wet'e rt'Vlt'wed.

It is commotlIV believed that the site of it comp mt, tit or the ronlpl • x(t y of it
ro11111ollellt wi 1 1 be t i rect IV vorl't . lat ed t o t tit , re l i abt I i t y t i t t hat colilp011e11t .	 illle
set of studies Ile 1 , tot'uleit in the 1,FL litte tit ptett to verit y this beIiet.	 ltv taking
over W)o Itlodules which had vet'V detai lets records of errot ditta, the SKI, co ►llptlted
the col relrlt ions of 4 ollill'Nrtet'ist its of t he components. 	 The rha VAC tet'INt t
t lit . luded total lines of rude, executable lilies of rode, CVrlon ► at t 	 Coulp text tV
allit lilt l -it rrtit LoligtIt.	 The resultant coIrelatiolts sere itipi . ted (n Cllr► rt 14" which
shows a ver y hi Of direct rol't'elrt(ton tot' the 4 niviistires.

A second st flit v wits lit , rtol'med
plotted agailist site as well
tt . show that Ial-got componen
and t hilt component N of Ifighe
111 of N on CI 1:11 . 	 1 1 show t teat
been limb le t o VvI . i t v t heat l
ert't1r t'Ates.

-CoNt Models	 (%'hal(I'1)

where t he et'rot rat e of earl ► of t he Component s was
its :lF;ainNt Cvt lon►rtt is Complexit y .	 The SK1, exported
N helve higher error rates thills stunt ter components
contplexitV vat ilig had Itigher error rates. The

he resII 1 t N wet'e count er - tilt tit c i ve .	 The I.W.I. hat►
rger or more complex r0111110tleuts indeed have 111 it her

In add it ion to the studies made veI . t:tinifig to various megtsitrees tot'
s ill t wet re, the SKI, hits also tit ilifed the cost fiat:l col lested from ttie manv
protects to ell Ii bra te and ev:tIt ► r► tt- vat'iorts available resource estimation utodeIs.
No at t e ill pt wits lilt ended to (list% l i t v one ntt ► dt• l as he i fig allV het t v t hall :toot her .
The oblect ive of the ,oldie .- was to het tel' undt • rstand tiro st its it ivitit's of the
various models rind to detern ► ilie which models seemed to rhat'acterire the SF:I.
sot tware developloollt enviroclnient most consistetit lv.

111 studyilig these resource models, 9 protects which were somewhat sittli lilt- in
size were used its experimental protects. Enell of the n ►odels was ted collylete
and accul• rtte data trolls the SKL data base and each wets calibrated with nomi lilt I
sets tit pro .lects its comp leteIV as the expet'itt►entel's cost ltt. Stmunar y results,
wilt ell are given in Clutvt IS, i flit lcitte that. uccrlNtorlaIIV	 Nome models call
accut'vteIV lived tet et tort required for it sottwat'e pro_Ioe . The SKI, has

I MA'am
NASA
• of 4

4
t
Y

ore detrlt led discussions caul he tound tit Reterenev 1 and II.

a
1

1' . ntA;;ll l l
NASAiGSIT
S of i4

i

reitterated what manv other software developers and Managers claim. Cost models
should (lever be used as it sole stltlree of est (mat i oil . The user inui;t have access
to experienced personnel lot . est (mitt illy; anti
must also have access to it corporrtte memory which can be used to calibrate and
t'eillltlrce someolles est (mate of cost . Resource models call ollly be tined its a
Nupplrmrntal tool to retntorce ones entimate or to flag possible
inconsistencies.

More detailed intol-mat ion on the SEE studies can be found to Reterence 1, q , Ill,
tl

ReIiitbiIit y Models	 (('hart I

Another tvpe of model that the SFL has spent some efforts in understanding and
calthrating is the reliab(lity model. Although mtmerous approaches have been
stthgested as to)list how tine best predicts till` level o f error proacttess that
software may have, the SFI, has only performed any extended stud Lis oil
modal-thitt which is 11ttr(bited to Johtl Minn. The model is a wnxtmum likelthood
tw-thud rend the SI?L attempted to apply detailed fault reports trom 2 separate
protects to the model in an Attempt to determine it the model could accurately
predict renlailtilig taint:: in the sottware.

('hart to indicates that tine of the experinCIlts was ytltte successful and Otte of
the experin►ents was not successful.	 It should he noted that during and otter
these exllerintents, Joltll Musa reviewed the results and the data very carefully
and he has pointed out some possible dettctencies tit 	 SF.I. data ► which could
possibly lead to erroneous results tit 	 application tit the reliability model.
(tae such piece of ditta is the ftritnularity with which computer CPU time is
rrcoly ded bet wren reported t :nl l t s . The S'Fl, data is not as accurate as the model
calls tor.

The charts show that for expertlnent I, the model yutte accurately predicted it
level of reltabtltty attar approxiauttely 1/2 of the total uncovered tattlts were
reported. The chart also shows that for experiment 2, the model was lit tll
predicting it very high nutttber of errors to be st i t l tit 	 software, when in
tact a millin►al set were ever uncovered during the several years of operation for
that system.

Methodoleiei	 (Charts 11 through 20)

As was mentioned earlier, one of the major objectives of the SM, has been to
measure the effectiveness of various software development methodologies. The

SF.I, has utilized selected development approaches in different applications
software tasks and then has analyzed the process and product to study the

relative impact of the approach. A summary of some of the results of the
experimentation process is presented here.

Use of An 1!A!! dent Verification and Validation Team (Chart 18)

Many software managers, developers and organizations have advocated the usage of
an independent IV&V team during the software development process. The major
advantage of following such an approach, it is claimed, will be the improvement

in software reliability, qualtty, visibility, but not necessarily nn improvement
In overall software productivity.

In
all

attempt to evaluate the impact that the usage of an IV&V team may have on
the SEI, environment, I candidate projects were selected to utilize the

methodology of an IV&V. Two of the projects were vary typical flight dynamics
systems, each containing over 50,000 lines of code while the third wits it smaller
flight dynamics project comprised of abort 10,000 lines of code. In addition to
the IVSV approach being applied to the projects, the development teams utilized

the commonly tollowed standards and approaches normally used by development

efforts within the SEL environment.

The projects lasted approximately Iii months, and the IM effort was active for

the entire duration of the project. The sire of the IV&V effort was about 18
percent of the effort of each of the large development efforts. A series of
measures was defined near the beginning of the experiment by the SEL. These

measures would be used to determine whether or not the application of the IV&V
approach was cost effective in the SEL environment.

A summary of some of the measures is depicted in Chart 18. The results here
indicate:

o total cost of the project increased-as expected

o productivity of the development teams (not counting the cost of
IV&V) was among the lowest of any previous SEL motif to yed project.

o rates of uncovering errors found earlier in the development cycle
was better

o cost rate to fix all discovered errors was no less than in any
other SEL projects

o reliability of the software (error rate during acceptance testing
and during maintenance and operations) was no different than other SEL projects

F. MCGa1n
NASA (;SI:C
Q o f ?4

The conclusion of the SEL, based on these 3 experiments, was that the IV&V
methodology was not an effective approach in this SEL environment.

(A more detailed description can be found in Reference 12).

Effects of MPP on Software Development (Chart 19)

In an attempt to determine if the utilization of Modern Programming Practices
(MPP) has any impact (either favorable or unfavorable) on the development of
software, a set of 10 fairly large (between 50,000 l.o.c. and 120,000 l.o.c.),
and fairly similar projects (same development environment, same type of
requirements, same time constraints) was closely examined. These projects all
had been developed in the SEL environment where detailed information was
extracted from the projects weekly and where each project had i, different level
of MPP enforced during the development process.

The MPP's ranged from various design approaches (such as PDL, Design Walk
Throughs, etc.) to code and test methodologies (such as structured code, code
reading, etc.), to various integration and system testing approaches. All of
the possible MPP's were rated and scaled as to the level to which the practice
was followed for each project (the rating was done by the SEL researchers, not
by the software developers). The only purpose of this exercise was to depict
trends and not to prove that any one single practice was more effective by
itself than any other.

The level to which MPP's were utilized were plotted against productivity and
against error rate. Chart 19 indicates that the application of the MPP has
favorably affected productivity by about 15 percent for these experiments. The
results of software reliability vs MPP is very questionable. The SEL is still
continutog analysis of additional data. The chart shown is obviously eery
inconclusive.

(More details of this effort can be found in Reference 13).

Subjective Summary of Effective Practices (Chart 20)

The previous chart indicated that productivity can be improved by an appreciable
amount if certain, select practices are applied to the software devel3pment7
process. One obviously next would ask, which practices are the most effective?
The SEL has been attempting to analyze the available data from the 40
experiments it has conducted to answer this very question. As was Fcated
earlier, the SEL feels that these types of experiments can only depict trends
and cannot accurately isolate one practice as measurable on its own. Whether or
not this can be done, or whether one should ever attempt it is questionable.
Most software development methodologies represent an integrated set of practices
that only are effective when they are applied in a combined, uniform fashion.
Most practices do not make sense, or at least cannot be effective as a stand
alone approach.

F. McGarry
NASA/GSFC
10 of 34

A summary of tho trends that the SFI, tins discovered for specific experiments

conducted is represented to Chart 20. This chart is it 	 of

experimental results and subjecttve information from the experimenters and users

and should only be viewed its depicting trends in various approaches. No

numerical value of impnet can realistically be assigned to the individual
practices tested. It seems that practices such as PDL, code reading and

librarian have proved most beneficial while such techniques as automated flow

charters, requirements languages and the axriomatic design approach have been
unsuccessful in the SFL.

Cost of Data Collection (Chart 21)

The SEL has been in existence for about 7 years and has been collecting detailed

software development data for over 0 years. Numerous experiments have been
conducted in an attempt to understand and measure various methodologies for
developing software. in support of these efforts, one of the most critical and

difficult element:; of the entire experimentation process is that of data

collection.

The data collection process is time consuming, frustrating, sometimes

unrewarding, and most assurably is expensive. Chart 21 shows the overhead cost

that the SEL tins experienced over the past O years. To accurately collect data
from the development tasks, the SEL finds that there is it I to 7 percent

overhead price on they development ef fort. To process the data that tans been
collected (verification, encoding, data entry, storage, etc.), the SEL has spent

approximately an additional 10 to 12 percent of the development effort. Finally,
the SEL experiences indicate that one can spend up to an additional 25 percent
of the development effort to perform the detailed analysis of the data that has

been collected. This includes support before, during and after the experiments
in defining the data to be collected, monitoring the development data and
effort, formulating hypothesis and performing analysis of th. completed

experiments. The product of the analysis consists of papers, reports, and

documents.

(Detailed information on cost can be found in Reference 2).

Summary (Chart 212)

In summary, the SEL tins had much experience with the data collection process and
with the experimentation process. Many of its attempts have been rewarding and

many have been fruitless, but the SEL feels attempts to assess approaches to
software have to be conducted if we are ever to evolve to it 	 productive
approach to developing; software.

F. MCG'aln
NASA,GSFC
1 I of 34

REFERENCES

1. Software Engineering Laboratory, SF:L 81-104, The Software Engineering
Laboratory, D.N. Card, F. E. McGarry, G. Page, et. al., February 1982

2. SEL, 81-101. Guide to Data Collection_, V. E. Church, D. N. Card,
F. E. McGarry, et. al., August 1982

3. SEL, 81-102, Software Engineerin Laboratory (SEL) Data Base Organization
and User's Guide, D. C. Wyckoff, G. Page, F. E. McGarry, et. al., March 1983

4. Zelkowitz, M. V., "Resource Estimation for Medium Scale Software Projects",
Proceedings of the Twelfth Conference on the Interface of Statistics and
Computer Science, New York, Computer Societies Press, 1979

5. Bailey, J. W., and V. R. Basili, "A Meta-Model for Software Development
Resource Expenditures". 'Proceedings of the Fifth International Conference on
Software Engineering', New York; Computer Societies Press, 1981

6. Basili, V. R., and K. Freburger, 'Programming Measurement and Estimation in
the Software Engineering Laboratory', ,Journal of Systems and Software,
February 1981, Volume 2, No. 1

7. SEL 81-011, Evaluating Software Development by Analysis of Change Data,
D. M. Weiss, November 1981

8. Basili, V. R., and B. T. Perricone, Software Errors and Complexity: An
Empirical Investigation, University of Maryland, Technical Report TR-1195,
August 1982

9. SEL 80-007, An Appraisel of Selected Cost/Resource Estimation Models for
Software Systems, J. F. Cook, F. E. McGarry, December 1980

10. Basili, V. R., 'Software Engineering Laboratory Relationships for
Programming Measurment and Estimation', University of Maryland, Technical
Memorandum, October 1979

11. SEL 80-005, A Study of the Musa Reliability Model, A. M. Miller,
November 1980

12. SEL 81-110, Performance and Evaluation of an Indeyendent Software
Verification and Integration Process, G. Page. and F. McGarry, September 1982

13. SEL 82-001, Evaluation of Management Measures of Software Development,
D. Card, G. Page, F. McGarry, September 1982

F. McGarr
NASA/GSFC
12 of 34

I--
I-

0
2

Q

LLI
:&

en
a:

a.
'-'0

>

LLI ,....
2...1'-'

:&
2

_L
L

lO

:E;:
a: >...1
~
L
U
O

a:
C

o

-I-CI::

c
n

Q
Z

0

C
C

Q

<:
::: w

C
LLI::I:

'-'a.
LLla: CJ

°
0

:
E
C
~

fl-
Q

...I

0
:
)

en
0 ::I:
en

F.
M

cG
arry

N
A

SA
/G

SFC

1.3 o
f 34

-;:-Z"'n
->"
o t:n::
-,>r.
w-CJ
,f::o.CJ~ t:n..,

'Tl-<
~

SEL APPROACH TO SOFTWARE
TECHNOLOGY ASSESSMENT

SOFTWARE EXPERIMENTS IN PRODUCTION ENVIRONMENT:
NASA APPLICATIONS

• DEVELOP PROFILE OF ENVIRONMENT - EXTRACT DETAILED DEVELOPMENT
(SCREENING) DATA

- DETERMINE CHARACTERlmCS OF
DEVELOPMENT PROCESS

• EXPERIMENT WITH PROPOSED - APPLY VARIOUS TECHNOLOGIES
TECHNOLOGIES !CONTROLLEDJ (METHODS, MODELS, AND TOOLS) TO

APPLICATIONS PROGRAMS

• MEASURE IMPACT AND/OR ASSESS
TECHNOLOGIES

- EXTRACT DETAILED DEVELOPMENT
DATA

- DEFINE MEASURES FOR EVALUAnON

- COMPARE EFFECTS OF USING OR NOT
USING APPROACHES IN QUEsnON
(SIMILAR PROJECTS)

- DETERMINE EFFECTIVENESS OF
TEC,HNOLOGIES IN QUESTION (WHICH
ONES HELP AND BY HOW MUCH)

CHART 2 DUtA8-Qc.,

-z~ v.» .
c(l)S: -.»",
w-;;;,;C")
~ IoJ co

(I)"'"
~"'"
1"')'<

SOFTWARE ENVIRONMENT

DEVELOPMENT LANGUAGE ••.••••••• FORTRAN (15% MACROS)

SOFTWARE TYPE ••••••••••••••.••••• SCIENTIFIC, GROUND
BASED INTERACTIVE,
NEAR-REAL-TIME

SIZE ••••••••••••••••••••••••••••••••• TYPICALLY"'&O,OOO SLOC
(2,000 TO 110,000)

DEVELOPMENT TIME •••••••••••••••• 16 TO 24 MONTHS (START
DESIGN TO START
OPERATIONS)

ST AFFI NG ••••••••••••••••••••••••••• 6 TO 14 PERSONS

DEVELOPMENT SySTEM •••• , •••••••• IBM S/3&O (PRIMARILY)
VAX-11/780
PDP-11170

3:M-PAG-Cr1

CHART 3

;:;:Z"'M
~. >.
Ctll:: -, > r.
(.u--C'l
~o~

til
"'M~
r')

EXPERIMENTS WITHIN THE SEL
1977 THROUGH 1982

BASIS FOR SUMMARY INFORMATION
AND CONCLUSIONS

LABORATORY EXPERIMENTS 46 PROJECTS

INFORMATION MONITORED 1.8 MILLION SLOC

PROGRAMMERS/MANAGERS
REPRESENTED 150 PEOPLE

DATA EXTRACTED 20,000 FORMS

METHODOLOGIES APPLIED 200 QUALIFYING PARAM
ETERS AND VARIOUS
MODELS, TOOLS, AND
METHODOLOGIES

~AQ.CPI

CHART 4

2
I

0 en
en

en
w

::»

-~

u
0

en
..I
0

en
V

"l

l-

e
en

e
0::

w

cot:
:t

..I
..I

0
v

LL.
-

w

:c
LI.

e
0

0
I-

0
cc

w

:E
s

en
a.

I
~

c(
•

•
•

LLI
CC
c(

F.
M

cG
arry

N
A

SA
/G

SFC

\7 o
f 34

U
)

W

...I
-U

.
o a:::
a.

F.
Md;"II~

N
A

SA
/(;SF

C

. S
llf .\ol

;:oZ"'Tl >.
o til is:
-,>'"'
W- Cl
-I:>Cltoo

til""
"'Tl-<: n

WHERE DO
PROGRAMMERS SPEND THEIR TIME?

DATE DEPENDENT PROGRAMMER REPORTING

TEST
30%

DESIGN
22%

CODE
48%

CHART 7

OTHER 270/0
DESIGN 21%

CODE 28%
TEST 23%

3M-PAG-trt

NZ'Tl 0>
o til 3: -.>n
W-o
~o",

til ...
'Tl-<
(")

t
Il:
o
IL
IL
IU

PROFILES OF DEVELOPMENT RESOURCES
HOW MANY ROADS TO COMPLETION?

., ..
• I •

: I •
• I • • •

• I •
: I ••
• I • • • , ._._. I •

I . .--' 1 __ • I •
~ I .• • .-. , 1- •

/' I •. -" • . ,..-t--_ .)c.- I " •
," ", I - - I· ,,"' I ,. . ", -- . " " . ~// ----t - I" , •

• /,/ ••• I ••••• I. , • , •

,/ •••• I •••••••••• j I" , ..
/ •• I 1 I' ".

/ •• I '- '.
/ ••• I I I ". "\

./ /.. I I '- ~\
/.. I I "'

~. ,.,. I I
• , I

PROFILE

•••••••

DESIGN

PRODUCTIVITY
(SLOC/HOUR)

RA YLEIGit CURVE

4_4-4.6

2.7-4.7

2.7- ·2.9

CODE AND
UNIT TESTING

TlME-.
RELIABILITY

(ERRORS/K SLOC)

UP TO 2

UPT02

UP TO 2

CHART 8

SYSTEM
TESTING

ACCEPTANCE
TESTING

• RELATIONSHIP BETWEEN
PROFILE AND
PRODUCTIVITY

• NO RELATIONSHIP
BETWEEN PROFILE AND
REliABILITY

JMP-.a..,

.,
!'

• I
p

o

II
II

\

•
. \

r-.
\

U
)

\
~

W

\
~

2
-;

\
~

0
"p

\

'\

..
\

-
0::1

\~
\',...

rn

""
\"

~
Q

Z

~

\
II

C

ICC
-.~

\
III

rn

cc:E
~~

\
I

=
 0

\
~

a:U
)

\
~

"2
~

- ..
~
 .

III
Q

0

4
:

•
0

..
a::I:

u
8

0-.
U

.
I-

"
-I-

..
0

Q:::;

&I
rn

~

W
e

:r::
LI.I

u

"
2

• -
•

...
1:1:-

2 fa
cc :l

A
.

.... m

I
9

w
o

LI.I
•

Iil
~

a: ...
•

C
a:

Q

I

W

iii
e a:

~

CC
,

:I:
•

•
I

I
I

•

~HO:l:l:J :10 S
H
~
N
O
W
·
:
I
:
l
V
 ~
s

F. M
cG

arry
N

A
SA

jG
SFC

21

o
f 34

,~Z ~

'.J>' -::. ::n::: -.>,.. .
. ~~ c: :.:

til = -,4"
~~

PRODUCTIVITY VARIATION (SLoe/HOUR) 1

BY PRO.lECT
CALL CHARGES'

BY PERSON
CPROGRAMMER ONLY)

•
1

I

5

4

3

2

1

MAX -AVG

MiNI, 4.1
3.1

2.7

o ' , •

12

11

10

9

8

7

6

5

4

3

2

LARGE PRO.JECT

MAX

AVG

1.9

5.4

~r rrr1 I I
LARGE PRO.JECT

•
1

•
5
4

3

2
1

MAX

_(:IJ
1.-

.' '---I I

12~ 11 ,.
I

•
1

SMAU PRO.JECT

MAX

AVG" 11.&
.---

5.2

SMAll PRO.JECT

PEOPLE ARE THE MOST IMPORTANT METHODOLOGY

1 A LARGE PRO.lECY IS GREATER THAN 20K SLOC. ~a.·1

CHART 10

t4 Z ~ '.,.. .,.. - -..,
- :r. 7' ;:..-;;':C . ,... -,...
~ .- '"' :!:=

,:.:.

12.5

a:
::l 10.0 o
:t:
----U
o
~ 7.5
(/)

> -:> - 5.0 I
u
~
c
o
a:
Go

2.5 ~

0.0
0

ASSESSING REUSED CODE

•
OfL1"fllfO

Sl.Oe

DEVELOPED SLoe
y y

~

•)(

x
DEV SLoe NEW - 0.2 OLD DEL SLoe

10 20 30 40 50 60

NEW CODE ("i;)

CHART 11

•
)(

•
•

)(

)(

•

70

•

x

••
J(If

80

•

• .x
x

J(•

90 100

J34.PAG a.-I

ERROR CHARACTERISTICS
(MEASURED DURING IMPLEMENTATION)

TYPES OF ERRORS

DEIION OR
IMPLEMENTATION

OF A SINGLE
COMPONENT

12'"

SAMPLE OF 1311 REPORTS

EFFORT TO CORRECT

USS THAN
1 DAY
37%

lEIS THAN
1 HOU'1

4'~"

• MOST ERRORS ARE EASY TO CORRECT

• SEVERAL-COMPONENT ERRORS ARE LESS THAN EXPECTED

• REQUIREMENTS ERRORS ARE LESS THAN EXPECTED

CHART I~

". rAO "."

F. McGarry
NASA/GSFC
24 of 34

en
...-LLI
Q

o :IE

M

-

F. M
cG

arry
N

A
SA

/G
SFC

2S of 34

NZ'Tl
0-;1> .
CVl:;:
-';I>r.
w-::'l -'" n :.: Vl-O

;!5~

SOFTWARE MEASURES IN THE SEL

III ' II

Q
o
U
~

~o
_III
.... 2
iii::;
~II:
.... 111
IIIG.
II:UJ

II:
o
II:
II:
III

n';~.

, ,

.n,",11

1
1
1

,.,
• I • I
, 1

" 1

1
I 1·1'1
... '"

. I ~ II
I III ", ..

·I-h. ,.
I "IHto •.•

I'

McCABE COMPLEXITY

HALSTEAD LENGTH

McCABE COMPLEXITY

EXECUTABLE LINES

TOTAL LINES

SAMPLE OF 688 MODULES

TOTAL
LINES

0.85

0.81

0.84

1.00

1 1

,' ... ,

iii rt~ I,

Q
o
U
~

~O
_III :2
ID::;
~a:
.... 111
IIIG.
II:UJ

II: o
II:
II:
!!!

.O';~

"-
ft.. ... :--;

fU

"".-

1
II

1

" "' .", II I
1 1 , ~
,. :1111
I· 11 • r 1

I VI" I
In .. ~I Ulf I
:,! ;, .. #.-:"I:U I

~ .:. 1 I ••
. 1f.1

lINa:S OF CODE

CORRELAnONS

EXECUTABLE
LINES

0.91

0.87

1.00

CHART 14

McCAPE
COMPlEXITY

0.91

1.00

HALSTEAD
lENGTH

1.00

"I~ ,-

J:M.I'AG-Ck°'

00
","::0
.,,(5
0-
O~ :ur-
O-a
C>
»Q
rill

~ii

COMPARISON OF COST MODELS

ACTUAL PERCENTAGE OF ERROR IN PREDICTION
EFFORT

PROJECT (MM) DOTY PRICE S3 TECOLOTE SEL COCOMO

1 79 +65 +6 -4 -&

2 9& +30 +& -25 -22 +1

3 40 +65 +6 -8 +93

5 98 +74 0 +3 -2 +2

6 116 + 123 +-36 +35 -3

7 91 +52 + 14 -12 -14

8 99 + 127 +.7 +36 +14 +53

9 10& -24 + 16

t.J~~
J, .

SOMETIMES, SOME MODELS WORK WELL
.,

-:. r:z::
-. >- ~ J34..PAG-CZb-'
' .. J ,... _ ~

+- -. '"' :r.=
~

(hART l' "':

NZ"'11
00 >.
o rI2::: -.>n
w-- C"l
""C"lco rI2""

"'11~
I"')

:~
Q ..

t
ii
1 ..
== -
II

3 : ..
Q !II

i a
j ..
-

PREDICTING RELIABILITY
(MUSA MAXIMUM LIKELIHOOD METHOD)

PROJECT A

Q

•

-
-

!i
ra
f
• 1-; 0_

PROJECT B

..

I _ "'""" ~_ z_ --~ ---------------- ..
--------,.

AC:YUAI. -
.•• ~ •• _'.fa

-"OI""UMS~

••• ~ •• _N _____ W ____ _

_01"""-. WI.

WE DON'T KNOW ENOUGH ABOUT REUABIUTY MODELS

CHART 16

00
~x

8~
»J:
.o~ c,.
pC>
r-rr:.

~Ui

en
LLI

CJ
o ...I
o Q

o :c ... LLI
I

F. M
cG

arry
N

A
SA

/G
SFC

29 of 34

WZ'Tl 0>·
om:: >n
woC')
~rn~
~~

u 3
o
-'
(I)

:.:

,..
z o
:E 1
2

A LOOK AT IV&V METHODOLOGY
(BASED ON RESULTS FROM 3 EXPERIMENTS'

-- --- ---MAX---
r---

AVG

MIN
2.0

1.1
1.2

2.2

III
a::-
olf
11.-
lUG
III Z azlii;
::till
o~

MAX

AVGI JI.3

IV&V

74.5

OIl
:E

0_' ~~~L-~-L~L
• COSTINCREASED

1I.:e
CD III
a:~
0-a:> a: CD ...

MIN' •• 4
R.7

RL' __ -L __ ~ __ -L __ ~ __ ~ __ ~

• MORE ERRORS FOUND EARLY

4

U
9 3
Ie
III

~ 2
CI)
a:
o
a: 1 a:
III

o

MAX

IV&V --------
AVG 3.3

2.3
1.4

MIN

• REUABIUTY NOT IMPROVED

e:
~o _a:
oa: uw
w" >U -w
"c ja:
111 0
a: U

IV&V

, •• 1 .• 1.12

I.a

~.I' • • •

• ERROR CORRECTION COST NOT DIFFERENT

• IF YOU MULnPLY ERRORS FOUND EARLY BY A LATENCY
FACTORr IV&V LOOKS GOOD

• IF YOU EXAMINE ALL MEASURESr IV&V LOOKS BAD
~

CHART 18

!'

00
",,:;0

"e 02
O~
:Dr-
.0'0
C~
".n
r-1'I1 =4_
-< ".

wz"" ->-
OrJ'la::;
-'>n
w-C'l -,"C'lc:.

rJ'l-'
",,-<!
(')

EFFECTS OF MPP
ON SEL SOFTWARE DEVELOPMENT

PRODUCTIVITY
I
I
I •••
I

I • I D: I
f3=» 4.0 .. I II:
!~ I I:::;
-' a: 3.0 • • .Iu.
Ow I 1

0 ~IL :XIl: ':X o ~ 2.0 =» I ~ I::;)
iilo 3: 1... 1%
> U 0 10 ~c:J
w u. -' I '=
0

0
I -'" 0.0

500 1000 1500

INDEX OF MODERN
PROGRAMMING PRACTICES

C 2.0
:2 c(cn
cn W
::;)2
O::::i
%0
I-w
a: ~ 1.0
wO
Il.-'

CC
W

o iii

ERROR RATE

•

• •
a:0
a:
w

~.O. --------S=.r-----~~~~::~~ , ... ' -
500 1000 1_

INDEX OF MODERN
PROGRAMMING PRACnCES

• PRODUCTIVITY IS ABOUT 15 PERCENT HIGHER

• RELIABILITY IS HIGHLY VARIABLE

3M-PAG-C2II-t

CHART 19

WZ"r'l
t,j> .

01"'-13:
-,>'"'
W'- C')
"""C')~ til ...

~..";!

t
en
o
u
o
c:c
1.11
%
CIt:
1&1
> o

WHAT HAS BEEN SUCCESSFUL IN OUR ENVIRONMENT?

f:::::\
\::J

.~

~
~~
veJ

COM .,. e~
ES:ir'

~' r.:::::; - (.-, I.:::.

tOO£) -- ~_lSrnJ \ lOT
",_ AUlllTOIlS PUlIS

"
BENEm

CHART 20

.... ,......

.0

.,~

~, * ~
........ :..
.:;) .~
... ~ '1>", .
.0-:; r-
:~~ r~

-4'

COST OF DATA COLLECTION
(AS A PERCENTAGE OF TASKS BEING MEASURED)

OVERHEAD TO TASKS (EXPERIMENTS)
• FORMS
• MEETINGS
• TRAINING
• INTERVIEWS
• COST OF USING TOOLS

DATA PROCESSING
• COLLECTING/VALIDATING FORMS
• ARCHIVING/ENTERING DATA
• DATA MANAGEMENT AND REPORTING

ANALYSIS OF INFORMATION
:- z ~ • DESIGNING EXPERIMENTS
~ ~ ~ • EVALUATING EXPERIMENTS
;:~t • DEFINING ANALYSIS TOOLS

CHART 21

SEL
EXPERIENCES

3-7'90

10-12%

UP TO 25%

1M-ftAG-Gc-.

SUMMARY

• DATA COLLECTION IS EXPENSIVE - BUT
VERY, VERY IMPORTANT

• WE MUST UNDERSTAND WHERE WE ARE
BEFORE HEADING SOMEWHERE ELSE

• EXPERIMENTATION WILL PAY FOR ITSELF (TRY
SOMETHING NEW)

• MPP CAN FAVORABLY IMPACT PRODUCTIVITY
AND RELIABILITY

• SOME METHODOLOGIES BUY YOU NOTHING
(OR EVEN WORSE)

~~~ • MODELS MUST BE UTILIZED WITH GREAT 
CCIl:::;: 

~~2 CARE 
CIl:! 

;!j'-< CHART 22 

3M-PAG-aIt-1 



PANEL #1

THE SOFTWARE ENGINEERING LABORATORY (SEL)

V. Basili, University of Maryland
A. Goel, Syracuse University
M. Zelkowitz, University of Maryland



^^e
N83 32358

SOFTWARE ERRORS AND COMPLEXITY$

AN EMPIRICAL INVESTIGATION

Victor R. Basili and Barry T. Perrioone

Department of Computer Science

University of Maryland

College Parkq Md.

1982

ABSTRACT

The distributions and relationships derived from the change
data collected during the development of a medium scale
satellite software project shows that meaningful results can
be obtained which allow an insight into software traits and
the environment in which it is developed. Modified and new
modules were shown to behave similarly. An abstract classif-
ication scheme for errors which allows a better understand-
ing of the overall traits of a software project is also
shown. Finally, various size and complexity metrics are
examined with respect to errors detected within the software
yielding some interesting results.

V. Basili
UifM
1 of 49



1.0 INTRODUCTION

The discovery and validation of fundamental relation-
ships between the development of computer software, the
environment in which the software is developed, and the fre-
quency and distribution of errors associated with the
software are topics of primary cc.icern to investigators in
the field of software engineering. Knowledge of such rela-
tionships can be used to provide an insight into the charac-
teristics of computer software and the effects that a pro-
gramming environment can have on the software ;. ,oduct. In
addition, it can provide a means to improve the understand-
ing of the terms reliability and quality with respect to
computer software. In an effort to acquire a knowledge of
these basic relationships, change data for a medium scale
software project was analyzed (e.g., change data is any
documentation which reports an alteration mado to the
software for a particular reason).

in general, the overall objectives of this paper are
threefold first, to report the results of the analyses;
second, to -. sview the results in the context of tualse
reported by other researchers; and third, to draw some con-
clusions based on the aforementioned. The analyses
presented in this paper encompass various types of distribu-
tions based on the collected change data. The most impor-
tant of which are the error distributions observed within
the software project.

In order for the reader to view the results reported in
this paper properly, it is important that the terms used
throughout this paper and the environment in which the data
was collected are clearly defined. This is pertinent since
many of the terms used within this paper have appeared in
the general literature often to denote different concepts.
Understanding the environment will allow the partitioning of
the results into two classes: those which are dependent on
and those which are independent of a particular programming
environment.

1.1 DESCRIPTION OF THE ENVIRONMENT

The software analyzed within this paper is one of a
large set of projects being analyzed in the Software
Engineering Laboratory (SEL). The particular project
analyzed in this paper is a general purpose program for
satellite planning studies.	 These studies Include among
others: mission maneuver planning; mission lifetime; mission
launch; and mission cor;trol. The overall size of the
software project was approximately 90,000 source lines of
code. The majority of the software project was coded in FOR-
TRAN. The system was developed and executes on an IBM 360.

V. Basili
UofM
2 of 49



The developers of the analyzed software had extensive
experience with ground support software for satellites. The
analyzed system represents a new application for the
development group, although it shares many similar algo-
rithms with the system studied here.

Tt is also true that the requirements for the system
analyzed kept growing and changing, much more so than for
the typical ground support software normally built. Due to
the commonality of algorithms from existing systems, the
developers re-used the design and code for many algorithms
needed in the new system. Hence a large number of re-used
(modified)
modules became part of the new system analyzed here.

An approximation of the analyzed software's life cycle
is displayed in Figure 1 . This figure only illustrates the
approximate duration in time of the various phases of the
software's life cycle. The information relating the amount
of manpower involved with each of the phases shown was not
specific enough to yield meaningful results, so it was not
included.

V. basili
UofM
3 of 49



V. Basili
U of M
4of49

M?IP A I-`."
OF POOR QUA61 % t

1.1fF CYCI	 OF ANAI.Y7.FI) SOFTWARE

F.__ _ __, .__, CHANGE. FOKYS

MAINTENANCE 

ACCF. PF"  TAN' F _I

TESTING

C^

f 91'.\

IA'.	 lvn.	 197;	 1978	 1979	 1980
197'

Figure 1
------------------------------------------------------------

1.2 TERMS

This section presents the definitions and associated
contexts for the terms used within this paper. A discussion
of the concepts involved with these terms is also given when
appropriate.

Module: A module is defined as a named subfunetion, subrou-
tine, or the main program of the software system. ;his
definition is used since only segments written in FORTRAN
which contained executable code were used for the analyses.
Change data from the segments which constituted the data
blocks, assembly segments, common segments, or utility rou-
tines were not included. However, a general overviow of the
data available on these types of segments is presented in
Section 4.0 for completeness.

There are two types of modules referred to within this
paper.	 The first type is denoted as modified. These are

lik



modules which were developed for previous software projects
and then modified to meet the requirements of the new pro-
ject. The second type is referred to as new. These are
modules which were developed specifically for the software
project under analyses.

The entire software project contained a total of 317
code segments. This quantity is comprised of 36 assembly
segments, 370 FORTRAN segments, and 111 segments that were
either common modules, block data, or utility routines. The
number of code segments which met the adopted module defini-
tion was 370 out of 517 which is 72% of the total modules
and constitutes the majority of the software project. Of
the modules found to contain errors 49% were categorized as
modified and 51% as new modules.

Number of Source and Executable Lines: The number of source
lines within a module refers to the number of lines of exe-
cutable code and comment lines contained within it. The
number of executable lines within a module refers to the
number of executable statements, comment lines are not
included.

Some of the relationships presented in this paper are
based on a grouping of modules by module size in increments
of 50 lines. This means that a module containing 50 lines
of code or less was placed in the module size of 50; modules
between 51 and 100 lines of code into the module size of
100, etc. The number of modules which were contained in
each module size is given in Table 1 for all modules and for
modules which contained errors (i.e., a subset of all
modules) with respect to source and executable lines of
code.

V. Basili
UofM
5 of 49

J^ .^



I

------------------------------------------------------------

Number modules
i

All Modules Modules with Errors

Number

of Lines Source Exececutable Source Executable

0- r-0 53 258 3 49
5 1- 100 107 70 16 25

101-150 80 26 20 13
1 1+1-:1 00 56 13 19 7
:'01-,'S0 34 1 12 1
29)1-300 14 1 9 0
401-350 7 1 4 1
151-400 9 0 7 0

>400 10 0 6 0
------------------------------------------------------------
Total	 370	 370	 96	 96

Table 1
------------------------------------------------------------

Error: Something detected within the executable code which
caused the module in which it occurred to perform
incorrectly (i.e., contrary to its expected function ).

Errors were quantified from two view points in this

paper, depending upon the goals of the analysis of the error
data. The first quantification was based on a textual rather

than a conceptual viewpoint. This type of error quantifica-
tion is hest illustrated by an example. If a " 11 " was
incorrectly used in place of a "+" then all occurrences of
the 1111 " will be considered an error. This is the situation
even if the 1111 "'s appear on the same line of code or within
multiple modules. The total number of errors detected in
the 370 software modules analyzed was 215 contained within a
total of 96 modules, implying 26% of the modules analyzed
contained errors.

The second type of quantification was used to measure
the effect of an error across modules, textual errors asso-
ciated with the same conceptual problem were combined to

yield one conceptual error. Thus in the example above, all
incorrectly used 11 's replaced by +'s in the same formula
were combined and the total number of modules effected by
that error are listed. This is done only for the errors
reported in Figure 2. There are a total of 155 conceptual
errors. All other, studies in this paper are based upoon the

V. ILIS111

U tit M
6 of 4U



first type of quantification described.

Statistical Term: and Methods: All linear regressions of the
data presented within this paper employed as a criterion of
goodness the least squares principle (i.e., "choose as the
"best fitting" line that one which minimizes the sum of
squares of the deviations of the observed values of y from
those predicted" (11).

Pear-son's product moment coefficient of correlation was
used as an index of the strength of the linear relationship
independent of the respective scales of measurement for y
and N. This index is denoted by the symbol r within this
paper. The measure for the amount of variability in y
accounted for by linear regression on x is denoted as r2
within this paper.

All of the equations and explanations for these statis-
tics can be found in (1). It should be noted that other
Hypes of curve fits were conducted on the data. The results
of these fits will be mentioned later in the paper.

Now that the software's environment and the key terms
used within the paper have been defined and outlined, a dis-
cussion of the basic quantification of the data collected,
the relationships and distributions derived from this quan-
tification, and the resulting conclusions are presented.

2.0 BASIC DATA

The change data analyzed was collected over a period of
33 months, August 1977 through May 1980. These dates
correspond in time to the software phases of coding, test-
ing, acceptance, and maintenance (Figure 1) . The data col-
lected for the analyses is not complete since changes are
still being made to the software analyzed. However, it is
felt that enough data was viewed in order to make the con-
clusions drawn from the data significant.

The change data was entered on detailed report sheets
which were completed by the programmer responsible for
implementing the change. A sample of the change report form
is given in the Appendix. In general, the form required
that several short questions be answered by the programmer
implementing the :hange. These queries allowed a means to
document the cause of a change in addition to other charac-
teristics and effects attributed to the change. The major-
ity o1' this information was found useful in the analyses.
The key information used in the study from the form was: the
data of the change or error discovery, the description of

V. Basih
UofM
7 of 49



the change or error, the number of components changed, the
type of change or error, and the effort needed to correct
the error.

It should be mentioned that the particular change
report form shown in the Appendix was the most current form
but was not uniformly used over the entire period of this
study. In actuality there were three different versions of
the change report form, not all of which required the same
set of questions to be answered. Therefore , for the data
that was not present on one type of form but could be
inferred, the inferred value was used. An example of such
an inference would be that of determining the error type.
Since the error description was given on all of the forms
the error type could be inferred with a reasonable degree of
reliability. Data not incorporated into a particular data
set used for an analysis was that data for which this infer-
ence was deemed unreliable. Therefore, the reader Should be
alert to the cardinality of the data set used as a basis for
some of the relationships presented in this paper. There
was a total of 231 change report forms examined for the pur-
pose of this paper.

The consistency and partial validity of the forms was
checked in the following manner. First, the supervisor of
the project looked over the change report forms and verified
them (denoted by his or her signature and the date).
Second, when the data was being reduced for analysis it was
closely examined for contradictions. It should be noted
that interviews with the individuals who filled out the
change forms were not conducted. This was the major differ-
ence between this work and other error studies performed by
the Software Engineering Laboratory, where interviews were
held with the programmers to help clarify questionable data
(8).

The review of the change data as describe) above
yielded an interesting result. The errors due to previous
miscorrections showed to be three times as common after the
form review process was performed, i.e. before the review
process they accounted for 2% of the errors and after the
review process they accounted for 6% of the errors. These
recording errors are probably attributable to the fact that
the corrector of Lin error did not know the cause was due to
a previous fix because the fix occurred several months ear-
lier or was made by a different programmer, etc.

3.0 RELATIONSHIPS DERIVED FROM DATA

This section presents and discusses relationships derived
from the change data.	

V.	 Basili
UofM
8 of 49



^.1 CNh..uL DISTRIBUTION BY TYPE

Types - changes to the software can be categorized as
error corrections or modifications (specification changes,

k pla,ined enhancements, clarity and optimization improve-
ments). For this project, error corrections accounted for
62% of the changes and modifications 38%. In studies of
other SFL projects, errors corrections ranged frrim 40% to
61A of the changes.

3.P ERROR D ISTRIBUTION BY MODULES

Figure " shows the effects of an error in terms of the
number of modules that had to be changed. (Note that these
errors here are counted as conceptual errors.) It was found
that 89% of the error- could be corrected by changing only
one module. fhis is a good argument for the modularity of

the software. Tt also shows that there is not a large
amount, of interdependence among the modules with respect to

an error.

NUMBER OF MODULES AFFECTFD BY AN ERROR (data set: 2.11 textual errors)
—'	 174 conceptual errrors)

!#ERRORS	 #MODULES AFFFCTFD

	

1 q 9	 (89%)	 1

	

9	 2

	

a	 3

	

6	 4

	

1	 5

-------------------------------------------------------------

Figure 2
------------------------------------------------------------

Figure 3 shows the number of errors found per module.
The type of module is shown in addition to the overall total
number of :nodules found to contain errors.

V. Basili
UofM
9of49



NUMBER OF ERRORS PER MODULE (data sett 215 errors)

#MODULES	 NEW	 MODIFIED	 /ERRORS/MODULE

36 17 19 1

26 13 13 2

16 10 6 3

13 7 6 4

4 1** 3* 5

1 1** 7

------------------------------------------------------------

------------------------------------------------------
Figure 3

------

The largest number if errors found were 7 (located in a
single new module) and 5 (located in 3 different modified
modules and 1 new module). The remainder of the errors were
distributed almost equally among the two types of modules.

The effort associated with correcting an error is
specified on the form as being (1) 1 hour or less, (2) 1
hour to 1 day, (3), 1 day to 3 days, (4) more than 3 days.
These categories were chosen because it was too difficult to
collect effort data to a finer granularity. To estimate the
effort for any particular error correction, an average time
was used for each category, i.e. assuming an 8 hour day, an
error correction in category (1) was assumed to take .5
hour^ an error correction in category (2) was assumed to
take 4.5 hours, category (3) 16 hours, and category (4) 32
hours.

The types of errors found in the three most error prone
modified modules (* in Figure 3) and the effort needed to
correct them is shown in Table 2. If any type contained
error corrections from more than one error correction
category, the associated effort for them was averaged. The
fact that the majority of the errors detected in a module
was between one and three shows that the total number of
errors that occurred per module was on the average very
small.



The twelve errors contained in the t - most error prone
new modules Q* in Figure 3) are shown in Ft le 3 along with
the effort needed to correct them.

NUMBER OF ERRORS	 AVERAGE EFFORT[

(15 total)	 TO CORRECT
---------------------------------------------------------------
misunderstood
or incorrect
specifications	 8	 24 hours

incorrect design
or implementation
of a module
component	 5	 16 hours

clerical error	 2	 4.5 hours
------------------------------------------------------------
EFFORT TO CORRECT ERRORS IN THREE MOST ERROR PRONE

MODIFIED MODULES
Table 2

----------------------------- ------------------------------

------------------------------------------------------------
NUMBER OF ERRORS	 AVERAGE EFFORT

(12 total)	 TO CORRECT

misunderstood
or incorrect
requirements	 8

32 hours

incorrect design
or implementation
of a module	 3	 0.5 hours

clerical error	 1	 0.5 hours

------------------------------------------------------------
EFFORT TO CORRECT ERRORS IN THE TWO MOST ERROR PRONE

NEW MODULES
Table 3

------------------------------------------------------------

V. Basili
UofM
1 1 of 49



3.3 ERROR DISTRIBUTION BY TYPE

In Figure 4 the distribution of errors are shown by type. It
can be seen that 48% of the errors were attributed to
incorrect or misinterpreted functional specifications or
requirements.

The classification for error u^Qd throughout the
Software Engineering Laboratory is given below. The person
identifying the error indicates the class for each error.

A: Requirements incorrect or misinterpreted
B: Functional specification incorrect or misinterpreted
C: Design error invloving several components

1. mistaken assumption about value or structure of
data

2. mistake in control logic or computation of an
expression

D: Error in design or implementation of single component
1. mistaken assumption about value or structure of

data
2. mistake in control logic or computation of an

expression
E: Misunderstanding of external environment
F: Error in the use of programming language/compiler
G: Clerical error
H: Error due to previous miscorrection of an error

The distribution of these errors by source is plotted
in Figure 4 with the appropriate subdistribution of new and
modified errors displayed. This distribution shows the
majority of errors were the result of the functional specif-
ication being incorrect or misinterpreted . Within this
category, the majority of the errors (24%) involved modified
modules This is most likely due to the fact that the modules
reused were taken from another system with a different
application. Thus, even though the basic algorithms were the
same, the specification was not well enough defined or
appropriately defined for the modules to be used under
slightly different circumstances.

V. Biisili
UofM
12 o f 49



40

30

20

10

ORIGINAL PAGE IS
OF POOR QUALITY

A	 B	 C.1	 C. 2 	D.1	 D.2	 E	 F	 G	 H	 A. C.1	 A.5	 D

------------------------------------------------------------
SOURCES OF ERRORS

Figure 4
------------------------------------------------------------

V. Basili
U of M
13 of 49



71

0,,I gn	 be sign
Multi-	 Single

Comp	 Comp

P	 e0
t

70

7	 60

0	 50
r

N	 40
O

)i9
l
F

F	
70

1

c

A	 to

F	 S

S	 _	 1

Neq	 Fnl
5l ai

8

	

1	 1

Lang	 Env	 Other

ORIGINAL PAGE IS

OF POOR QUALITY

7y{e of frr or

------------------------------------------------------------
SOURCES OF ERROR ON OTHER PROJECTS

Figure 5
------------------------------------------------------------

The distribution in Figure 4 should by compared with
the distribution of another system developed by the same
organization shown in Figure 5. Figure 5 represents a typi-
cal ground support software system and was rather typical of
the error distributions for these systems. It is different
from the distribution for the system we are discussing in
this paper however, in that the majority of the errors were
involved in the riesign of a single component. The reason
for the difference is that in ground support systems, the
design is, well understood, the developers have had a reason-
able amount of experience with the application. Any re-used
design or code comes from similar systems, and the require-
ments tend to be more stable. An analysis of the two distri-
butions makes the differences in the development environ-
ments clear in a quantitative way.

V. Basili
UofM
14 of 49



The percent of requirements and specification errors is
consistent with the work of Endres'[1]. Endres found that
46% of the errors he viewed involved the misunderstanding of
the functional specifications of a module. Our results are
similar even though Endres' analysis was based ui, data
derived from a different software project and programming
environment. The software project used in Endres' analysis
,-.,ntained considerably more lines of code per module, was
written in assembly code, and was within the problem area of
operating systems. However, both of the software systems
Endres analyzed did contain new and modified modules.

Of the errors due to the misunderstanding of a module's
specifications or requirements (48%), 20% involved new
modules while 28% involved modified modules.

Although the existence of modified modules can shrink
the cost of coding, the amount of effort needed to correct
errors in modified modules might outweigh the savings. The
effort graph (Figure 6) supports this viewpoint: 50% of the
total effort required for error correction occurred in modi-
fied modules; errors reqiriring one day to more than three
days to correct accounted for 45% of the total effort with
27% of this effort attributable to modified modules within
these greater effort classes. Thus, errors occurring in new
modules required less effort to correct than those occurring
in modified modules.

V. Basili
U of M
15 (if 49

c



OF POOR QUALITY

EVIORT
	

® MODIiIED MODULES

NEW MODULES

271

N
\

10:
^-	 181
191	 112 \\

\

'	 15x
lu'

Ill	 \ A ^	 15S	

I	 I hT . . , f IrhF

1 - 1 hT . t" I day

3 - 1 d.1V to 1 Aryl:

4 - more than 3 days

3t

'	 1	 1	 3	 4

------------------------------------------------------------

EFFORT GRAPH
Figure 6

------------------------------------------------------------

The similarity between Endres' results and those
reported here tend to support the statement that independent
of the environment and possibly the module size, the major-
ity of errors detected within software is due to an inade-
quate form or interpretation of the specifications. This
seems especially true when the software contains modified
modules.

In general, these observations tend to indicate that
there are disadvantages in modifying a large number of
already existing modules to meet new specifications. The
alternative of developing a new module might be better in
some cases if there does not exist good specifications for
the existing modules.

3.4 OVERALL NUMBER OF ERRORS OBSERVED

Figure 7 displays the number of errors observed in both
new and modified modules. 	 The curve representing total

V. Basih
UofM

e
	

16 of 49

)A1

301 \ \\
\1 11



modules (new and modified) is basically bell-shaped. One
interpretation is that up to some point errors are detected
at a relatively steady rate. At this point at least half of
the total "detected-undetected" errors have been observed
and the rate of discovery thereafter decreases. tt may also
Imply the maintainers are not adding too many new errors as
the system evolves.

it ^.an be seen, how ,-ver, that errors occurring in
modified modules are detected earlier and at a slighLly
higher rate than those of new modules. One hypotheses for
this is that the majority of the errors observed in modified
modules are due to the misinterpretation of the functional
specifications as was mentioned earlier in the paper.
F,rrors of this type would certainly be more obvious since
they are more blatant than those of other types and there-
fore, would be detected both earlier and more readily.(See
next section.)

V. Basili
UofM
17 of 49



70

N
0 50
rc

c
w

30

10

IVW AND MOD IFILL) WDLLES

IEW MODUl VS

IUDIFIED MODULES

PAllOU is
OF POOR QUALITY

------------------------------------------------------------

xeu	 10
	 54	 40	 9

MuD	 10	 67	 11	 14
t 044	 !D

	 121	 51	 2)

------------------------------------------------------------
NUMBER OF ERRORS OCCURRING IN MODULES

Figure 7------------------------------------------------------------

3.5 ABSTRACT ERROR TYPES

An abstract classification of errors was adopted by the
authors which classified errors into one of five categories
with respect to a module: (1) initialization; (2) control
structure; (3) interface; (4) data; and (5) compw.ation.
This was done in order to see if there existed recurring
classes of errors present in all modules independent of
size. These error classes are only roughly defined so exam-
ples of these abstract error types are presented below. It
should be noted that even though the authors were consistant
with the categorization for this project, another error

V. Basili
UofM
18 of 49



analyst may have interpreted the categories differently.

r Failure to initialize or re-initialize a data structure
properly upon a module's entry/exit would be considered an
initialization error. Errors which caused an "incorrect-
path" in a module to be taken were considered control
errors. Such a control error might be a conditional state-
ment causing control to be passed to an incorrect path.
Interfa^e errors were those which were associated with
structures existing outside the module's local environment
but which the module used.	 For example, the incorrect
declaration of a COMMON segment or an incorrect subroutine

t call would be an interface error. An error in the declara-
tion of the COMMON segment was considered an interface error
and not an initialization error since the COMMON segment was

r used by the module but was not part of its' local environ-
ment. Data error would be those errors which are a result
of the incorrect use of a data structure. Examples of data

F errors would be the use of incorrect subscripts for an
array, the use of the wrong variable in an equation, or the
inclusion of an incorrect declaration of a variable local to
the module. Computation errors were those which caused a
computation to erroneously evaluate a variable's value.
These errors could be equations which were incorrect not by
virtue of the incorrect use of a data structure within the
statement but rather by miscalculations. An example of thi3
error might be the statement A = B + 1 when the statement
really needed was A = B/C + 1.

These five abstract categories basically represent all
activities present in any module. The five categories were
further partitioned into errors of commission and omission.
Errors of commission were those errors present as a result
of an incorrect executable statement. For example, a com-
misstoned computational error would be A = B * C where the
'*' should have been '+'. In other words, the operator was
present but was incorrect. Errors of omission were those
errors which were a result of forgetting to include some
entity within a module. For example, a ccmputational omis-
sion error might be A = B when the statement should have
read A = B + C. A parameter required for a subroutine call
but not included in the actual call would be an example of
an interface omission error. In both of the above examples
some aspect needed for the correct execution of a module was
forgotten.

The results of this abstract classification scheme as
discussed above is given in Figure B. Since there were
approximately an equal amount of new (49) and modified (47)
modules viewed in the analysis, the results do not need to
be normalized. Some errors and thereby modules were counted
more than once since it was not possible to associate some
errors with a single abstract error type based on the error

V. Kisdi
UofM
19 of 49

-I

e;



description given on the change report form.

--------------- ----------------------------------------------
commission	 omission

new	 modified	 new	 modified

initialization
control
interface
data
computation

initialization
control
interface
data
computation

2 9
12 2
23 31
10 17
16 21

28% 36%
•rrrrrrrrrrrrrrr

64%

total
new	 modified

7 18	 ---
28 8	 ---
50 37	 ---
11 20	 ---

19 24	 ---

115 107

	

5	 9

	

16	 6

	

27	 6

	

1	 3

	

3	 3

23%	 12$
rrrrrrrrrrrrrrrrrr

35%

25 (11%)
36 (16%)

87 (39%)
31 (14x)

43 (19x)

------------------------------------------------------------
ABSTRACT CLASSIFICATION OF ERRORS

Figure 8
------------------------------------------------------------

According to Figure 8, interfaces appear to be the
major problem regardless of the module type. Control is more
of a problem in new modules than in modified modules. This
is probably because the algorithms in the old modules had
more test and debug time. On the other hand, initialization
and data are more of a problem in modified modules. These
facts, coupled with the small number of errors of omission
in the modified modules might imply that the basic algo-
rithms for the modified modules were correct but needed some
adjustment with respect to data values and initialization
for the application of that algorithm to the new environ-
ment.

3. 6 MODULE SIZE AND ERROR OCCURRENCE

V. Bashi
UofM
20 of 4y

K
k

6.



.—I

Scatter plots for executable lines per module versus
the number of errors found in the module were plotted. It
was difficult to see any trend within these plots so the
number of errors/1000 executable lines within a module size
was calculated (Table 4).

	

Module	 Size	 Errors/1000 lines

	

50	 16.0

	

100	 12.6

	

150	 12.4

	

200	 7.6

	

>200	 6.4

-------------I-----------------------------------------------
ERRORS/1000 EXECUTABLE LINES (INCLUDES ALL MODULES)

Table 4
------------------------------------------------------------

The number of errors was nor•:!.alized over 1000 executable
lines of code in order to determine if the number of
detected errors within a module was dependent on module
size. All modules within the software were included, even
those with no errors detected. If the number of errors/1000
exececutable lines was found to be constant over module size
this would show independence.	 An unexpected trend was
observed: Table 4 implies that there is a higher error rate
within smaller sized modules. Since only the executable
lines of code were considered the larger module:i were not
COMMON data files. Also the larger modules will be shown to
be more complex than smaller modules in the next section.
Then how could this type of result occur?

The most plausable explanation seems to be that since
there are a large number of interface errors, these are
spread equally across all modules and so there are a larger
number of errors/1000 executable statements for smaller
modules. Some tentative explanations for this behavior are:
the majority of the modules examined were small (Table 1)
causing a biased result; larger modules were coded with more
care than smaller modules because of their size; errors in
smaller modules are more apparent and there may indeed still
be numerous undetected errors present within the larger
modules since all the "paths" within the larger modules may
not yet have been fully exercised.

3.7 MODULE COMPLEXITY

Cyclomatic complexity [5] (number of decisions + 1) was
correlated with module size.	 This was done in order to

V. Basih
UofM
21 of 49



determine whether or not larger modules were less dense or
co,nplex than smaller modules containing errors. Scatter
plots for executable statments per module versus the
cyelomatie complexity were plotted and againg since it was
difficult to see any trend in the plots, modules were
grouped according to size. The complexity points were
obtained by calculating an average complexity measure for
each module size class. For examplep all the modules which
had 50 executable lines of code or less had an average com-
plexity of 6.0. Table 5 gives the average cyelomatic com-
plexity for all modules within each of the size categories.
The complexity relationships for executable lines of code
within a module is shown in Figure 9. As can be seen from
the table the larger modules were more complex than smaller
modules.

	

Module	 size	 Average Cyclomatic Complexity

	

50	 6.0

	

100	 17.9

	

150	 28.1

	

200	 52.7

	

>200	 60.0

AVERAGE CYCLOMATIC COMPLEXITY FOR ALL MODULES
Table 5

V. Basili
UofM
22 of 49

i



7o

Y	 Id)W
tirc

;u
4.

W
K	 1,

Y
K
!L
S.

W
m

2(
T

ORS "'I"N. PAGE IS

OF POOR QUALITY

1	 1	 1	 1	 I	 n 	 !	 1

50	 1O0	 111	 Inn	 7111 (^^ 	 I X 11	 401)	 21400

MODCLI slur.

Figure 9

For only those modules containing errors, Table 6 gives
the number of errors11000 exe;utable statements and the
average cyclomatic complexity. When this data is compared
with Table 5 , one can see that the average complexity of
the error prone modules was no greater than the average com-
plexity of the full set of modules.

V. $asih
UofM
23 of 49



F_l

Module Size	 Average Cyclomatio	 Errors/1000
Complexity	 executable lines

50 6.2 65.0
100 19.6 33.3
150 27.5 24.6
200 56.7 13.4
>200 77.5 9.7

COMPLEXITY AND ERROR RATE FOR ERRORED MODULES
Table 6

4.0 DATA NOT EXPLICITLY INCLUDED IN ANALYSES

The 147 modules not included in this study (i.e.,
assembly segments, common segments, utility routines) con-
tained a total of six errors.	 These six errors were
aetectcd within three different segments. One error
occurred in a modified assembly module and was due to the
misunderstanding or incorrect statement of the functional
specifications for the module. The effort needed to correct
this Error was minimal (1 hour or less).

The other five errors occurred in two separate new data
segments with the major cause of the errors also being
related to their specifications. The effort needed to
correct these errors was on .:he average from 1 hour to 1 day
(1 de; representing 8 hours).

5.0 CONCLUSIONS

The data contained in this paper helps explain and
characterize the environment in which the software was
developed. It is clear from the data that this was a new
application domain in an application with changing require-
ments.

Modified and new modules were shown to behave similarly
except in th,̂  types of errors prevalent in each and the
amount of effort required to correct an error. Both had a
high percentage of interface errors, however, new modules
had an equal number of errors of omission and commission and
• higher percentage of control errors. Modified modules had
• high percentage of errors of 3ommission and a small per-
:entage of errors of omission with a higher percentage of

V. Basili
UofM
24 of 49



data and initialization errors. Another difference was that
modified modules appeared to be more susceptible to errors
due to the misunderstanding of the specifications.
Misunderstanding of a module's specifications or require-
ments constituted the majority of errors detected. This
duplicates an earlier result of Endre3 which implies that
more work needs to be done on the form and content of the
specifications and requirements in order to enable them to
be used across applications more effectively.

There were shown to be some disadvantages to modifying
an existing module for use instead of creating a new module.
Modifying an existing module to meet a similar but different
set of specifications reduces the developmental costs of
that module. However, the disadvantage to this is that
there exists hidden costs. Errors contained in modified
modules were found to require more effort to correct than
those in new modules, although the two classes contained
approximately the same number of errors.	 The majority of
these errors was due to incorrect or misinterpreted specifi-
cations for a module. Therefore, there is a tradeoff
between minimizing development time and time spent to align
a module to new specifications. However, if better specifi-
cations could be developed it might reduce the more expen-
sive errors contained within modified modules. In this
caee, the reuse of "old" modules could be more beneficial in
terns of cost and effort since the hidden costs would have
been reduced.

One surprising result was that module size did not
account for error proneness. In fact, it was quite the con-
trary, the larger the module the less error prone it was.
This was true even though the larger modules were more com-
plex. Additionally, the error prone modules were no more
complex across size grouping than the error free modtiles.

In general, inv3stigations of the type presented in
this paper relating error and other change data to the
software in which they have occurred is important and
relevant. It is the only method by which our knowledge of
these types of relationships will ever increase and evolve.



Acknowledgments

The authors would like to thank F. McGarry, NASA Goddard,
for his cooperation in supplying the information needed for
this study and his helpful suggestions on earlier drafts of
this paper.

RArArPnnA!

(1) Mendenhall,W. and Ramey,M., Statistics for Psychology,
Duxbury Press, North Scituate, Mass., 1973 9 pp. 280-315.

(2) Endres,A.,"An Analysis of Errors and their Causes in
System Programs", Proceedings of the International Confer-
ence on Software Engineering, April, 1975, pp. 327-336.

(3) Belady,L.A. and Lehman,M.M., "A Model of Large Program
Development", IBM Systems Journal, Vol.15, 1976, pp.225-251.

(4) Weiss,D.M., "Evaluating Software Development by Error
Analysis . The Data from the Architecture Research Facil-
ity", The Journal of Systems and Software, Vol.1, 1979, pp.
57-70.

(5) Schneidewind,N.F., "An Experiment in Software Error
Data Collection and Analysis", IEEE Transactions on Software
Engineering , Vol. SE-5, No-3, May 1979 1 pp.276-286.

(6) McCabe, T.J., "A Complexity Measure", IEEE Transactions
on Software Engineering, Vol. SE-2, No. 4, Dec. 1976,
pp.308-320.

(7) Basili,V. and Freburger,K., "Programming Measurement
and Estimation in the Software Engineering Laboratory", The
Journal of Systems and Software, Vol.2, 1981, pp.47-57.

(8) Weiss, D.M.," Evaluating Software Development by
Analysis of Change Data", University of Maryland Technical
Report TR-1120, November 1981.

V. Basili
UofM
26 of 49



—coon van E darts

q Repuacnrnw incorrect or inisi ntarpnbd q MlnxdMetatdMy of aaunW emMannaR, adapt'Mnguege

q Functional %.scifkrticns irnarrew or mbinlrprotW q (hear in un of Isogrdttenby larspo	 sompllo

Oss" wmr, imoiving several components q Chrism wren
II
r̀,C

Error m the o"d n or fmollmritabon of a sk*1 comPo ant q Odw (Eaphln in v

i	 FOR DESIGN OR INIM EINENTATION ERRORS ONLY

it the 	 was ooip or Imahrnwrcte►bn:

TIr eta was a mittaedn aaumptlon about tM vaoe or e0tn'l11a of dew

The ~ was a mistalr In control Iqk or oomputodon of an aatirlon

ORIGINAL PAGE 1$
OF POOR QUALITY

-----------------•-------------------------------------------

NUMEER

CHANGE REKRT FORM

PROJECT NAME	 CURRENT OATS

SECTION A - IDENTIFICATION

REASON: Why we the change modal'—

OESCRIFTION: What chop wa mdeN

EFFECT: What carnove oa (cl doormrnal an Wgedi (InoYWe ewalonl

	

EFFORT What additional a0mllofrma la ddw,mnd wan aamYrd In dahtnlnft what dwyl ens nsOMd? 	 .—^

Nand for am" dew kh d on ....

Chap tdwad an ............

Most ws the allot In Poston tlnr roYUbod to udantand and If V" 01 th dnwcgd

—1 hour or left _-1 Inv to 1 dry, _t dry to 3 NYC

SECTION S - TYPE Of CHANGE (Barr Is this dww Sat *muorlsdll

O Emor Col. ion	 q Inaaedoiddrhddn of debug cede

q Flenned *nhV% mam	 0 Optimmodot of tfltWONO trwery

q Ifnphmmtwoon of re0uinn erm days	 (3 Ad/rdo n to emko nrm W wW

q Imonovoment of clwnv. mabnamabiilty, or doau.rnWon	 q Odw IEootaN In EI

q lffwowvw nt of uaar atr.rica

Wad nest then oft compoiwA aMeaw! bar tlr olrrngs► Ya	 No

FOR ERROR CORRECTIONS ONLY

SECTION C - TYPE OF ERROR INow is dW arm bat dWnWitadl)

---------------_ ------------------,------•--------------------

Change Report Form
------------------------------------------------------------

V. Basili
(1 of M
27 of 49



ORIGINAL PAGE 18
OF POOR QUALITY

POR ERROR CORRECTIONS ONLY

SECTION 0 - VALIDATION AND REPAIR

What acbvibw "it used w nlidrse tw Prop ant, acct M ors ►, and MS le csuwl

Atlfviliw	 Aotbltbs	 Activities Activities
Used fee
	 &NC"Oi l 	 Tried to Sucomful

program	 in mug""	 Ind in Fin/Uti
VNW ilow	 Error Symptoms	 Cauca Cauw

f r► .=.Ptanc. .t furs

Amptance cad"
a atcatlt̂  /tea use

I Innleethon of output l
coda nding by orop,—immao —

^Code read ng by other Pendn
Tal ks with other P rogrammers 1
Spew-	 too

__

LS.vr^um 
error mnsagee	 —ou—^e ror

ro► 	 Nn tpaeHie uror messages
ReWmg donlmentabon T—

raor^
;Dump	 1
lCrossaabrenwitsttntirs his
Proof toonMPre

Other IExplan in III

What was the time used in hsdfate the cause?

_ow chow or 4ts.	 one hour to one day, -more than one day. -raw found

It rover found, was a workaround utedl 	 Yes	 No (Ex plain in EI

Was this error eland to a Previous CA"?

_Vat ICtorhpe Report sl fDate__1 _No	 _.Can't tell

When did the error enter the system?

-raouvenwml _.functional 1peo _design _codmg Ind oest -Othw _won't tell

SECTION E - ADDITIONAL INFORMATION
P leefe ghe any Inlormathon that 	 be helpful n categonzing the error or champ, and undernanding io cause and its
ramdicathona

Marne	 Authorized' .._ Data.

---------------------------------"--------------------------
Change Report Form

------------------------------------------------------------

28



THE VIEWGRAPH MATERIALS

for the

V. BASILI PRESENTATION FOLLOW

V. Basili
U of M
29 of 49



SOFTWARE ERRORS AND ''̂OMPI-LXITY: AN

EMPIRICAL INVESTIGATION

VICTOR R. BASILI

BARRY T. PERRICONE

UNIVERSITY OF MARYLAND

-.1

V. Basili

U of M
30 of 49



STUDY OVERVIEW

STUDY THE ERRORS COMMITTED IN DEVELOPING SOFTWARE

REVIEW THE RESULTS IN LIGHT OF THOSE FROM OTHER STUDIES

ANALYZE THE RELATICN ìHiP BETWEEN ERRORS AND COMPLEXITY

V. Basili
UofM
31 of 49



PROJECT BACKGROUND

GENERAL PURPOSE PROGRAM FOR SATELLITE PLANNING STUDIES

SIZE: 90K SOURCE LINE /517 CODE SEGMENTS

370 FORTRAN SUBROUTINES /36 ASSEMBLY SEGMENTS /111

COMMON MODULES, BLOCK DATA, UTILITY ROUTINES

MODIFIED MODULES — ADOPTED FROM A PREVIOUS SYSTEM (72%)

NEW MODULES	 — DEVELOPED SPECIFICALLY FOR THIS SYSTEM

REQUIREMENTS FOR THE SYSTEM KEPT GROWING AND CHANGING OVER THE

LIFE CYCLE

ERRORS: TWO DEFINITIONS — TEXTUAL (215) AND CONCEPTUAL (155)

490' ERRORS IN MODIFIED MODULES

51/ ERRORS IN NEW MODULES

ERROR CORRECTIONS VS, MODIFICATIONS

3H% OF CHANGES WERE MODIFICATIONS

62% OF CHANGES WERE ERROR CORRECTIONS

--q

V. Basili
UofM
32 of 49

xtiI



In

V
. B

asili
U

o
fM

33 of 49



r.,-t!GIMAL PAGE IS
Of POOR QUALITY

NUMBER MODULES

ALL MODULES MODULES WITH ERRORS

NUMBER OF SOURCE EXECUTABLE SOURCE EXECUTABLE
LINES

0-50 53 258 3 49

51-100 107 70 K 25

101-150 80 ?f, 20 13

151-7)() 56 13 19 7

211-250 34 1 12 1

251-300 11I 1 0

301-3 50 7 1 1

351- 1 Er^ ,̂ ^) ^ ► 7 0

> ^^^)^^ 10 C r 0

TOTAL 370 370 9G 96

V. Basili
UofM
34 of 49



NUMBER OF MODULES AFFECTED BY AN '..RROR (DATA SET: 211 TEXTUAL ERRORS
17 L I CONCEPTUAL ERRORS)

i ERRORS
	

►I MODULES AFFECTED

155 (39%)
	

1

9
	

2

3
	

3

F
	

Ll

1
	

r,

RESULTS: SIMILAR TO OTHER STUDIES, FEW ERRORS INVOLVE

MORE THAN ONE MODULE

V. Basili
UofM
35 of 49



__-I

NUMBER OF ERROR,	 AVERAGE EFFORT

(12 TOTAL)	 TO CORRECT

MISUNDERSTOOD
OR INCORRECT
REQUIREMENTS	 a	 32 NOURS

INCORRECT DESIGN
OR IMPLEMENTATION
OF A MODULE	 3	 O,5 HOURS

CLERICAL ERROR	 HOURS

EFFORT TO CORRECT ERRORS IN THE iWO MOST ERROR PRONE

NEW MODULES

V. Basili
UofM
36 of 49



NUMBER OF ERRORS PER MODULE QDVA SET: 215 ERRORS)

►j MODULES NEW MODIFIED 4ERRORS/MODULE

36 17 19 1

2C 13 13 2

16 10 6 3

13 7 6 4

4 1** 3* 5

1 1** 7

C - a,

V. Bashi
UofM
37 of 49



g

MISUNDERSTOOD
OR INCORRECT
SPECIFICATIGNS 24 HOURS

NUMBER OF ERRORS
	

AVERAGE EFFORT

(15 TOTAL)
	

TO CORRECT

INCORRECT DESIGN
OR IMPLEMENTATION
OF A MODULE
COMPONENT
	

5
	

16 HOURS

CLERICAL ERROR	 2	 11.5 HOURS

EFFORT TO CORRECT ERRORS IN THRLE MOST ERROR PRONE

MODIFIED MODULES

V. Basili
UofM
38 of 49



LRROR DISTRIBUtION BY IYVE

CATEGORIES:

A: REQUIREMENIS INCORRECT OR MISINIERPRETED

B: FUNCTIONAL SPEC HICATION INCORRECT OR MISINTERPRETED

C: DESIGN ERROR INVOLVING SLV[RAL COMPONENTS

D: DESIGN ERROR IN A SINLILE COMPONENT'

E: MISUNDrRSTANDING OF EXTERNAL INVIRONMENI

F: ERRORS IN PROGRAMMING LAN(;LJAGr OR COMPILER

(;: CLERICAL ERROR

H: ERROR DUE 10 PI;EV!OLIS MISCURREC.11ON OF AN ERROR

V. Hasili
Ll of M
39 of 49



O.v

cI;I^,I;IS
S

IC
) S

M
l)?IM

A

0-
4

Nan	
c
n

q
q
	

;
a

u
l

h
ar-1	

I •J

(30

yW0a
A
 
WZ

rn	
Uws.,.
a.r

r
4
	

A

U
QHNWAN

(„f
AWJ0WQ:W

W
 
=C
J
V

Q
 
V
1tJ
.i

A
VJ
 
NC
n

.a	
W

J
 
AzWOwa.JzNNH-JNWCY

V
. B

asili
U

o
fM

40 of 49

a0aawU-0Wwui
r

0N

N

O
R

IG
II NNP

O
F

 rO
C



t.

O
R
I
C
I
N

IA
L
 
P
A
G
E
 
I

O
F
 
P
O
O
R
 
Q
U
A
L
I
T

m
 
0

00
V

i
(r.

02
,4

&
j

u
l

«
4

—
4

uV
)

0cncn

0
, 

t
L
I
 W
.
 

(--)
 
t
a
 
I
 
"
 
"
 
f
-
•
	

(,:?
 
;
1
.
	

'
!
 
.
 
-
,
 
,
 
. • 

t-
 
i
 
-
I
 
t
^
l
 
n
,
 
"
 
U
 
•
 
^
 
-
4
 
w

V
.
 
Basil

i

U
 
o
f
 
M

4
1
 
o
f
 
4
9



19

^
rA

i

O
R

IG
IN

A
L P

A
G

E
 13

O
F P

O
O

R
 Q

U
A

LITY

9

u
1

w
 
.
C
i

b
 i^
V

"
T
 
a

Qw
 
.
S

9

1s

9.



. 
L 

a..">. 

117.: 

2 

, -~, 
.... .) l .... 

'. 

) 

EF!="0RT 

. 
! 

. ! 
"~I 

'. 

15:'( , :-:r. -:.r less ... 

- hr 
_r 

"- cay :.. - . '--

.; - 1 day to 3 days 



ABSTRACT ERROR TYPES

CATEGORIES:

INITIALIZATION - FAILURE TO INITIALIZE DATA ON ENTRY/EXIT

COPITROL STRUCTURE - INCORRECT PATH TAKEN

INTERFACE - ASSOCIATED WITH STRUCTURES OUTSIDE MODULES

ENVIRONMENT

DATA - INCORRECT USE OF A DATA STRUCTURE

COMPUTATION - ERRONEOUS EVALUATION OF A VARIABLE S VALUE

COMMISSION - INCORRECT EXECUTABLE STATEMENT

OMISSION - NEGLECTING TO INCLUDE SOME ENTITY IN A MODULE

RESULT: LARGEST PERCENT OF ERRORS INVOLVE INTERFACE (39%)
CONTROL MORE OF A PROBLEM IN NEW MODULES

DATA AND INITIALIZATION MORE OF A PROBLEM IN MODIFIED

MODULES

SMALL NUMBER OF OMISSION ERRORS IN MODIFIED MODULES

MIGHT IMPLY - BASIC ALGORITHMS FOR THE MODIFIED MODULES

WERE CORRECT BUT NEEDED SOME ADJUSTMENT WITH RESPECT

TO DATA VALUES AND INITIALIZATION FOR THE APPLICATION

OF THE OLD ALGORITHM TO THE NEW APPLICATION

V. Basili
UofM
44 of 49



K E

COMMISSION OMISSION

NEW MODIFIED NEW MODIFIED

INITIALIZATION 2 9 5 9

CONTROL 12 2 15 6

INTERFACE 23 31 27 6

DATA 10 17 1 3
COMPUTATION 16 21 3 3

23% 36%  
e 

_~P 23% ^ _
	

12%

64% 35b

TOTAL

NEW	 MODIFIED

INITIALIZATION 7 18 --° 2^ (11%)

CONTROL 26 R -- — 36 (16/0

INTERFACE 50 37 --- 81 (39%)
DATA 11 20 - -- 31 (14%)

COMPUTATION 19 211	 ---•- 43 (^)%)

115 197

ABSTRACT CLASSIFICATION OF ERRORS

V. Basili
UofM
45 of 49



MODULE SIZE	 ERRORS /1000 LINES

5n 16.0
L0 12.6
150 12,4
200 7,6

> 200 6.4

ERRORS /1000 EXECUTABLE LINES (INCLUDES ALL MODULES)

EXPLANATIONS:

INTERFACE ERRORS SPREAD ACROSS ALL MODULES

MAJORITY OF MODULES EXAMINED WERE SMALL BIASING THE RESULT

LARGER MODULES WERE CODED WITH MORE CARE

ERRORS IN SMALLER MODULES 14ERE MORE APPARENT

V. Basin
UofM
46 of 49



MODULE SIZE	 AVERAGE CYCLOMATIC COMPLEXITY

	

50	 6.0

	

190	 17,9

	

150	 28.1

	

200	 52.7

	

> 200	 60,0

AVERAGE CYCLOMATIC COMPLEXITY FOR ALL. MODULES

V. HuW
UofM
47 of 49

IA



MODULE °{IZS	 AVERAGE CYCLOMATIC	 ERRORS /1000
COMPLEXITY	 EXECUTABLE I.INES

	

50	 6,2	 65.0

	

100	 19,6	 33,3

	

150	 27,5	 24,6

	

200	 56,7	 13,4

	

> 200	 77,5	 9,1

COMPLEXITY AND ERROR RATE FOR ERRORED MODULES

RESULT: AVERAGE CYCLOMATIC COMPLEXITY GREW FASTER THAN SIZE

V. BUM
UofM
48 of 49



CONCLUSIONS

ERROR ANALYSIS PROVIDES USEFUL INFORMATION

- CAN SEE NEW APPLICATION WITH CHANGING REQUIREMENTS

- INSIGHTS INTO DIFFERENT ERRORS FOR NEW AND MODIFIED

MODULES

- MAJOR ERROR PROBLEMS WITH DIFFERENT APPLICATION EXPERIENCE

- CAN COMPARE ENVIRONMENTS

MODULE SIZE AN OPEN QUESTION WRT. ERRORS

- THE LARGER THE MODULE (WITHIN LIMITS) THE LESS ERROR PRONE

- WE ARE NOT READY TO PUT ARTIFICIAL LIMITS

RECOMMENDATIONS:

- THE ENVIRONMENT MUST BE BETTER UNDERSTOOD

- MORE DATA MUST BE COLLECTED

- MORE STUDIES MADE

V. BUM
UofM
49 of 49



X83 32359
WHEN AND HOW TO USE A SOFTWARE RELIABILITY `tODEL

Amrit L. Goal 1 , Victor R. Basili2,

and Peter M. Valdes3

Many analytical models were proposed during the last decade for

software reliability assessment. These models served a useful purpose

in identifying the need for an objective approach to determining the

quality of a software system as it goes through various stages of dev-

elopment. However, by and large, these models have not been as widely

and convincingly used as was expected.

In this paper we attempt to identify the causes of this state of

affairs and suggest some remedial actions. For example, we feel that

very often the models are used without a clear understanding of their

underlying assumptions and limitations. Also, there seems to be some

misunderstanding about the interpretations of model inputs and outputs.

To overcome some of these difficulties, we provide a classification of

tha available models and suggest which types of models are applica-

ble in a given phase of the software development cycle.

The work reported in this paper represents the first step towards

developing a general methodology for assessing software quality and re-

liability throughout the development cycle. Further work on this topic

will be published in the near future.

1Professor of Industrial Engineering and Operations Research; and Com-
puter and Information Science, Syracuse University. Visiting Professor,
University of Maryland, College Park, MD.

2Chairman and Professor, Dept. of Computer Science, University of Mary-
land, College Park, M.

3Graduate Assistant, University of Maryland.

A. Goel
Syracuse U.
1 of 36



THE VIEWGRAPH MATERIALS

for the

A. GOEL PRESENTATION FOLLOW

A. Goel
Syracuse U.
2 of 36



WHEN AND HOW TO USE A SOFTWARE

RELIABILITY MODEL

AMRIT L. GOEL, VICTOR R. BASILI,

AND PETER M. VALDES

SEVENTH ANNUAL SOFTWARE ENGINEERING WORKSHOP

NASA/GSFC

DECEMBER 1, 1982

A. Goel
Syracuse U.
3o(36



e
E
k

OUTLINE

- SOFTWARE RELIABILITY

- SOFTWARE RELIABILITY MODELS

- CLASSIFICATION

- SOFTWARE DEVELOPMENT PHASES

- APPLICABILITY OF MODELS IN EACH PHASE

- DISCUSSION OF MAJOR MODEL ASSUMPTIONS

A. Cod
Syracuse U.
4 of 36



ORIGINAL PACE IN
OF POOR (QUALITY

SOFTWARE

SOFTWARE (ALSO CALLED PROGRAM)
IS ESSENTIALLY AN INSTRUMENT FOR
TRANSFORMING A DISCRETE SET OF INPUTS
(FROM INPUT DOMAIN) INTO A DISCRETE SET
OF OUTPUTS (INTO ITS OUTPUT SPACE)

I:	

INPUT DOMAIN, I

FPROGRAMIP]

OUTPUT SPACE, 0

A. Goel
Syracuse U.
5 of 36



SOFTWARE ERROR

SOFTWARE ERROR IS A DISCREPANCY
BETWEEN WHAT THE SOFTWARE DOES AND
WHAT THE USER OR THE COMPUTING
ENVIRONMENT (PHYSICAL MACHINE S 0/S,
COMPILER, ETC. ) WANTS IT TO DO.

A. Goal
Syracuse U.
6 of 36



SOFTWARE RELIABILITY

o THE PROBABILITY THAT SOFTWARE WILL NOT CAUSE THE
FAILURE OF A SYSTEM TO PERFORM A REQUIRED TASK
OR MISSION FOR A SPECIFIED TIME IN A SPECIFIED
ENVIRONMENT.

o AN ATTRIBUTE OF SOFTWARE QUALITY PERTAINING TO THE
EXTENT TO WHICH A COMPUTER PROGRAM CAN BE EXPECTED
TO PERFORM ITS INTENDED FUNCTION WITH REQUIRED
PRECISION,

A. Goel
Syracuse U.
7 of 36	 !



SOFTWARE RELIABILITY

LET E BE A CLASS OF ERRORS OF INTEREST AND T BE

A MEASURE OF RELEVANT TIME (UNITS DETERMINED BY

THE APPLICATION AT HAND).

THEN THE RELIABILITY OF A SOFTWARE PACKAGE WITH

RESPECT TO THE CLASS OF ERRORS E AND WITH RESPECT

TO THE METRIC T IS THE PROBABILITY THAT NO ERROR

OF THE CLASS OCCURS DURING THE EXECUTION OF THE

PROGRAM FOR A PRESPECIFIED PERIOD OF RELEVANT

TIME.

A. Goel
Syracuse U.
8 of 36



NEED FOR SOFTWARE RELIABILITY, ASSESSMENT

o ESTIMATE POTENTIAL RELIABILITY DURING CONCEPTUAL
PHASE

o ESTABLISH REALISTIC NUMERICAL RELIABILITY GOALS
DURING DEFINITION PHASE

o ESTABLISH EXISTING LEVELS OF ACHIEVED RELIABILITY

o MONITOR PROGRESS TOWARD ACHIEVING SPECIFIED
RELIABILITY GOALS OR REQUIREMENTS

o ESTABLISH RELIABILITY CRITERIA FOR FORMAL

QUALIFICATION

A. Goel
Syracuse U.
9 of 36



ORIQINAL PAGE 19
POOR QUALITY	

GENERi L APPROACH

FAILURE

OR

ERROR DATA

MODEL

SOFTWARE RELIABILITY

ASSESSMENT

A. Goel
Syracuse U.
10 of 36



OF
O	

OPOOR QUALITY0

SOFTWARE
FAILURE DATA

POSTULATE A
FAILURE 'Y 10:L

ESTIMATE PARAMETERS

OBTAIN FITTED MODEL

POSTULATER
ANOTHER
UODEL

/FERFORY^^
VNIDDNESS air FIT
*k` TE3T _i

IACCEPt

OBTAIN PERFOR14ANCE
MEASURES

UNDETECTI
ERRORS

TIME TO V h	SOFTWARE
FAILURE I	 I NELIABILIT

DECISION MAKING
0 SYSTEU READY FOR

RELEASE t
0 HOW f.IUCH MORE

TESTING TO 00 f
ETC.

FLOWCHART FCR SOFTWAR E FAILURE DATA
ANALYSIS AND DECISION MAKING

r
t
G

A. Goel
Syracuse U.

11 of 36



W

INPUT
DOMAI N

PROGRAM

ERROR
HISTORY

ORI(INU FADE IS
OF POOR QUALITY

TESTING PROCESS AND ERROR HISTORY



V!Wa.VWOZ►
r

.
N

JWOf/7
ZOHQ

ŴZZa...

wWZJL
L

H^
r

L
L

its
D
G

Z

9ZW
N

1--
W^
D

dHS."Jar
LLZQW

4av
c
j

H•••5Z

L
L
J

Q
O

yO
,^

Ja.+L
LJQ

Hone

gopow
4
c

a
r

L
L

V
5

O
V
A
I
I

QO
C
 
~

N
 
dN1.
r

q̂ q
 
~

L
f.

c
n

ci

!W -
 
L

L

J
J

p
_
J
q
 ^

--

JH

d

A. G
oes

Syncw
e U

.
3 of 36



O
R

IO
IN

A
l. P

A
G

E
 19

O
F

 P
O

O
R

 O
U

A
'L

'lY

l

	

•
-
	

Q
t

0 CISOva

v

	

_
	

v

W
..w

 t.
v

4 —
s	

(n 	
O

W
	

C
a
.
.

	

as	
a
	

C
O

 o

	

7
 

a
6
	

d
 

a
s

P
O

 J
m

^

	

1 11	
O

M
 
2

 
m

 
O

2
 00

A
. G

oel
S
y
r
a
c
u
s
e
 
U
.

1
4
 o

f 3
6



ORIMAE pAj

OF POOR QUi

SOFTWARE RCL I AB I L I'C'Y MODELS

.:

TIME INDEPENDENT MODELS

- USE OBSERVED RESULTS OF EXPERIMENTS CONDUCTED ON ELEMENTS OF THE

PROGRAM'S INPUT SPACE

- USE A-PRIORI KNOWLEDGE OF INPUT SPACE

- TWO CLASSES

ERROR SEEDING

INPUT SPACE SAMPLING

A. Gael
Syracuse U.
15 of 36



,..rz
N

ti
(A

Q
1

.
:

Crw
oa

6:3
^

J
1
-- L

J

x
.
.
y
	

1
^
T

M

n
/
p

A
 
^
^
 

N
ib

Y
 
W

 
&

^
C

 
f
l^

 
°
'4

&
 

^	
..

^
 
J

z
 
C
O

VWZ
 
C
O

J.^, --I-

9W N
XW
 
J

O
aw

GW(AQm
NJWOJQmOQ70

0wô
w

cm

ri

A
. G

o
el

S
y
r
a
c
u
s
e
 
U
.

1
6
 o

f 3
6

I,



ASSUMPTIONS

T.1MF_5 B.r.TWEEN FALLURE.-MODELS

- INDEPENDENT INTERFAILURE TIMES

- EQUAL PRCBABILITY OF EXPOSING EMBEDDED ERRORS

- ERRORS EMBEDDED ARE INDEPENDENT

- TIME-DEPENDENCE

- IMMEDIATE ERROR REMOVAL, PERFECT ERROR REMOVAL,

NONINTRODUCTION OF NEW ERRORS

- RELIABILITY BASED ON REMAINING NUMBER OF ERRORS

FAILURE -COUNTING MODELS

- ERRORS IN NONOVERLAPPING TIME INTERVALS ARE INDEPENDENT

- FAILURE RATE PROPORTIONAL TO EXPECTED ERROR CONTENT

- DECREASING FAILURE RATE WITH TIME (DISCRETE OR

CONTINUOUS)

ERROR-_KEDINO. MODELS

- INDIGENOUS AND SEEDED ERRORS HAVE EQUAL PROBABILITY

OF BEING DETECTED

IV, INPUT. DOMAIN BAUD- MOULS

- INPUT PROFILE DISTRIBUTION IS KNOWN

- RANDOM TESTING IS USED

- INPUT DOMAIN CAN BE PARTITIONED INTO EQUIVALENCE CLASSES

A. God
Syracuse U.
17 of 36



SOME LIMITATIONS OF MOST MODF^

O
	

INDEPENDENCE OF TIMES BETWEEN FAILURES

+0
	

EQUAL IMPORTANCE TO DIFFERENT TYPES OF
ERRORS

O
	

SAME FAILURE RATE FOR EACH ERROR

O
	

NO PROVISION FOR INTRODUCTION OF NEW
ERRORS

O
	

DECREASING FAILURE RATE DURING DEBUGGING
OR OPERATION

A. Goci
Syracuse 11.
18 o(36



INDEPENDENT INTERFAILURE TIMES

NOT A REALISTIC ASSUMPTION IN GENERAL, ESPECIALLY

WHEN THE TESTING PROCESS IS NOT RANDOM, TIME TO

NEXT FAILURE MAY VERY WELL DEPEND ON THE NATURE OF

THE PREVIOUS FAILURE. IF THE PREVIOUS ERROR WAS

CRITICAL, WE MIGHT INTENSIFY TESTING AND LOOK FOR

ADDITIONAL CRITICAL ERRORS, WHICH IMPLIES NON-

INDEPENDENT INTERFAILURE TIMES.

NHPP TYPE MODELS ARE ROBUST TO SUCH LACK OF

INDEPENDENCE.

A. Goel
Syracuse U.
19 of 36

 Al



SOFTWARE FAILURE RATE IS PROPO T I ONA TO NUMBER

DOES NOT HOLD IN MANY CASES

REMAINING ERRORS THAT RESIDE IN THE FREQUENTLY

USED PORTION OF THE CODE ARE MORE LIKELY TO BE

DETECTED THAN OTHERS.

IF, HOWEVER, TESTING IS REPRESENTATIVE OF USE,

FAILURE RATE COULD BE CONSIDERED PROPORTIONAL TO

ERROR CONTENT.

A. Goel
Syracuse U.
20 of 36



ERRORS DETECTED ARE IMMEDIATELY CORRECTED

NOT A REALISTIC ASSUMPTION IN MOST PRACTICAL

SITUATION S1

A. Goel
Syracuse U.
21 of 36



CORRECTION PROCESS DOES NOT INTRODUCE NEW ERRORS

VERY RARELY SATISFIED IN PRACTICE. A PARTIAL

SOLUTION WAS ATTEMPTED IN THE IMPERFECT DEBUGGING

MODEL, BUT A GENERAL SOLUTION IS NOT AVAILABLE,

A. Goel
Syracuse U.
22 of 36



TESTING PROCESS IS REPRESENTATIVE OF

OPERATIONAL ENVIRONMENT

THIS IS RARELY TRUE. WE PREFER A RELIABILITY

MEASURE BASED ON USER REQUIREMENTS RATHER THAN A

SIMPLE UNCONDITIONED SOFTWARE RELIABILITY MEASURE.

A. Goel
Syracuse U.
23 of 36



USE OF EXECUTION TIME BETWEEN FAILURES

HAVE TO USE IT WITH CAUTION# ONE DEBUGGER COULD

RUN AND RERUN THE PROGRAM TO UNCOVER REMAINING

ERRORS CAUSING HIGH EXECUTION TIME BETWEEN FAILURES

WHILE ANOTHER ONE MIGHT ANALYZE THE PROGRAM IN DETAIL

AND THEN RUN THE (SAME) PROGRAM JUDICIOUSLY. FORMER

CASE WOULD GIVE A WRONG IMPRESSION OF HIGHER RELIA-

BILITY$

A. Goel
Syracuse U.
24 of 36



INCREASING FAILURE RATE BETWEEN FAILURES

CONTRARY TO THE ASSUMPTION THAT SOFTWARE DOES NOT

WEAR OUT. BUT, THIS WOULD BE 50 IF TESTING IN-

TENSITY INCREASES DURING SUCH INTERVALS, OVERALL

NOT A REALISTIC ASSUMPTION

A. Goel
Syracuse U.
25 of 36



SOFTWARE DEVELOPMENT PHASES

DESIGN

UNIT TESTING

INTEGRATION TESTING

ACCEPTANCE TESTING

OPERATION

A. Goel
Syracuse U.
26 of 36

x



APPLICABILITY OF EXISTING SOFTWARE

RELIABILITY MODELS

EXISTING MODELS NOT APPLICABLE

SEEDING MODELS APPLICABLE IF WE CAN ASSUME THAT

INDIGENOUS AND SEEDED ERRORS HAVE EQUAL

PROBABILITIES OF DETECTION,

INPUT DOMAIN BASED MODELS MAY BE APPLICABLE.

TBF AND FC MODELS NOT APPLICABLE.

III , I N T E^.T„t9^t,.slw.s^1.C^,

ALL MODELS APPLICABLE IF RANDOM TESTING IS USED,

FC MODELS MAY BE APPLICABLE FOR DETERMINISTIC TESTING,

IV. ACCEPTANCE TESTING

INPUT DOMAIN BASED MODELS APPLICABLE.

ERROR SEEDING MODELS NOT APPLICABLE

TBF AND FC MODELS DO NOT SEEM TO BE APPLICABLE AS

ERRORS ARE NOT IMMEDIATELY CORRECTEDi SOME TBF AND

FC MODELS MAY BE ROBUST TO THIS REQUIREMENT

V, OPERAIION

INPUT DOMAIN MODELS MAY BE APPLICABLE PROVIDED USER

INPUTS ARE RANDOM FROM THE INPUT PROFILE DISTRIBUTION,

A. Goel
Syracuse U.

27 of 36



DESIGN PHASE

0 USER REQUIREMENTS Ak TRANSFORMED TO COMPUTER

COMPATIBLE SPECIFICATIONS$

0 DESIGN ERRORS MAY BE CORRECTED BY VISUAL IN-

SPECTION OR BY OTHER INFORMAL PROCEDURES$

0 EXISTING SOFTWARE RELIABILITY MODELS ARE NOT

APPLICABLE AT THIS STAGE BECAUSE

- TEST CASES TO EXPOSE ERRORS REQUIRED

BY SEEDING AND INPUT DOMAIN BASED

MODELS DO NOT EXIST

- ERROR HISTORY REQUIRED BY TIMES BETWEEN

FAILURES AND FAILURE COUNT MODELS DOES

NOT EXIST

A. Goel
Syracuse U.
28 of 36



UNIT TESTING

EACH MODULE HAS ITS OWN SPECIFIED INPUT DOMAIN AND

OUTPUT SPECIFICATION.

MODULE SPECIFICATION IS TRANSFORMED INTO A PROGRAM

(CODING).

TEST CASES BASED ON THE INPUT DOMAIN AND OUTPUT

SPECIFICATION ARE DESIGNED TO EXPOSE ERRORS. THE

TEST CASES DO NOT USUALLY FORM A REPRESENTATIVE

SAMPLE OF THE OPERATIONAL PROFILE DISTRIBUTION.

TIMES BETWEEN EXPOSURE OF ERRORS ARE NOT RANDOM SINCE

TEST CASES ARE EXECUTED AND DESIGNED IN A D JJ M,lKUU C

FASHION

EXPOSED ERRORS ARE CORRECTED (DEBUGGED),

A. Good
Syracusc 11.
'129 of 3b



UNIT TESTING: RELIABILITY MODELS

SEEDING MODELS ARE APPLICABLE IF WE CAR ASSUME THAT

INDIGENOUS AND SEEDED ERRORS HAVE EQUAL PROBABILITIES

OF DETECTION

INPUT DOMAIN BASED MODELS MAY BE APPLICABLE

IF TESTS CAN BE MATCHED WITH THE OPERATIONAL PROFILE

DISTRIBUTION

TBF AND FC MODELS NOT APPLICABLE



A. Goel
Syracuse U.
31 of 36

INTEGRATION TESTING

MODULES ARE INTEGRATED INTO SUBSYSTEMS OR INTO THE

WHOLE SYSTEM

TEST CASES ARE GENERATED TO VERIFY THE CORRECTNESS

OF THE WHOLE SYSTEM.

DUE TO THE COMPLEXITY OF THE INTEGRATED SYSTEM, TESL

CASES MAY BE GENERATED

— RANDOMLY (BASED ON AN INPUT PROFILE DISTRIBUTION);

— DETERMINISTICALLY (BASED ON A SET OF TEST CRITERIA).

EXPOSED ERRORS ARE CORRECTED. HOWEVERo ADDITIONAL

ERRORS MAY BE INTRODUCED.



INTEGRATION TESTING; RELIABILITY MODELS

ALL MODELS APPLICABLE IF RANDOM TESTING

IS USED$

FAILURE COUNT MODELS MAY BE ROBUST TO LACK

OF INDEPENDENCE AND COULD BE USED FOR

DETERMINISTIC TEOTING1

A. Goel
Syracuse U.
32 of 36



A. Goel
Syracuse U.
33 of 36

ACCEPTANCE TESTING

SOFTWARE IS GIVEN TO ItFRIENDLY USERS"

THESE USERS GENERATE TEST CASES (USUALLY E3AN=)

TO VERIFY SOFTWARE CORRECTNESS. THE GENERATED TEST

CASES MAY RE ASSUMED REFREUNTALLYE OF THE QPE AIIONAL

PRUILE._DISTR.UMT10

USUALLY EXPOSED ERRORS ARE RQI IMMEDIATELY CORRECTED.



OPERATIONAL PHASE

SOFTWARE IS PUT INTO USE.

INPUTS MAY NOT BE RANDOM ANYMORE SINCE A USER

MAY BE USING THE SAME SOFTWARE FUNCTION ON A

ROUTINE BASIS. INPUT MAY BE CORRELATED.

ERRORS ARE KI. IMMEDIATELY CORRECTED. APPLICABLE

MODELS (MAY NOT SATISFY ALL ASSUMPTIONS).

INPUT DOMAIN BASED MODELS.

A. Goel
Syracuse U.
34 of 36



rg.

RRQBLEMS. Wl.Tti-UL I AH I L I TY..AS SES SBERT

SOMETIMES MODELS ARE USED (SUCCESSFULLY OR OTHERWISE) WITH

INCOMPLETE UNDERSTANDING OF UNDERLYING ASSUMPTIONS AND

LIMITATIONS.

ROBUSTNESS TO DEVIATIONS FROM ASSUMPTIONS IS NOT FULLY KNOWN

APPLICABILITY OF MODELS IN DIFFERENT ENVIRONMENTS NEEDS

FURTHER WORK.

MEASUREMENT (FOR RELIABILITY ASSESSMENT) IS DONE TOO LATE

IN THE LIFE CYCLE.

NEED FOR MODEL SIMPLICITY (USABILITY) VS. CAPTURING DETAILS

OF REALITY NOT FULLY APPRECIATED,

A. Goel
Syracuse U.
35 of 36

-y	 `



CURRENT ACTIVITIES

-• EXAMINING RELIABILITY MEASURES ACROSS A6L LIFE CYCLE

PHASES

STUDYING EFFECTS OF TESTING ON RELIABILITY

EXPLORING USE OF TEST CRITERIA AS MEASURES OF QUALITY

AND RELIABILITY

- DEVELOPING RELATIONSHIPS BETWEEN DESIGN, COMPLEXITY]

TESTING AND RELIABILITY

BASICALLY STUDYING THE ENTIRE LIFE CYCLE RATHER THAN JUST

THE FINAL TESTING PHASE FOR QUALITY AND RELIABILITY

ASSESSMENT.

A. Goel
Syracuse U.
36 of 36

f

Y



SOFTWARE PROTOTYPING IN THE SOFTWARE ENGINEERING LABORATORY

MARVIN V. ZELKOWITt	
60

N DEPARTMENT OF COMPUTER SCIENCE
UNIVERSITY OF MARYLAND

COLLEGE PARK, MARYLAND 20742

INTRODUCTION

Over the last few years, several techniques have become popular withing
the software engineering world. Concepts like "structured programming," "dis-
tributed processing," "expert systems," and others have ali been proposed as a
means to enhance software productivity. Recently the term "prototyping" has
been applied to productivity improving (SENSO, SEN82). The NASA Goddard
Software Engineering Laboratory is starting a project to evaluate prototyping
within the NASA environment.

First of all, there are several definitions of'a prototype. The diction-
ary defines it as an original or model on which something is based or formed.
However, in looking at several computer glossaries through the year 1981, not
one of them mentions a prototype software development. Thus the term is quite
new and has yet to be standardized.

Prototyping is not modeling - another well used concept. In a model we
are looking at only a few characteristics of an object. For example, in a wind
tunnel, we are interested in the airstream past an airplane, not in its inter-
not design. However, in a software prototype, we usually mean a complete work-
ing system, although it may be missing some functionality. Thus we are doing
more than modeling, or its companion operation - simitation.We wish to build
a system that demonstrates most of the behavior of the final product.

PROTOTYPING

In developing a prototype for NASA we need to understand what a prototype
is. More importantly, for NASA, the issue of prototyping must answer the fol-
lowing questions:

What are the goals of a prototype? Is it to develop the requirements for
a product? Evaluate its performance? Predict its final costs?

What are the issues involved? How does one design for a prototype? Does
the software lifecycle change? Do we want multiple prototypes for different
phases of the life cycle? How do we use a prototype when built?

What tools can be used to design a prototype? to build a prototype? 	 to
evaluate a prototype?

How does one measure a prototype? How do you know if your prototype was
successful? Should you invest the cost and build the full system or abandon
the project? What SHOULD a prototype cost? 10% of the final product or 50% or

M. Zelkowitz
U. of M.
1 of 22



even 100%?

The final question is does prototyping even fit into the NASA environ-
ment? Every software development environment is unique, and techniques which
work in one environment aright not work in another, so is talking about proto-
typing at NASA even relevant?

These are att questions which must he addressed, and the current project
is one data point in evaluating its effectiveness.

RESEARCH ISSUES

WHAT IS A PROTOTYPE? There are several different models. In one it is a
quick, dirty throw away implementation for evaluation purposes. The goals are
to get something working quickly. This is often useful when the full require-
ments are not know well at the start and the prototype can be used to refine
these requirements.

WHAT PROGRAMMING LANGUAGE SHOULD BE USED? There are several views as to
the language that is to be used in a prototype. A low level language (e.g.,
Fortran, PL/I) can be used as the same implementation language for the futl
system. This leads to greater efficiency in the final prototype, but forces
the programmer to design more details into the initial implementation.

There are several high level languages that have been proposed for proto-
typing. Snobol4 and SETL are two such examples. Both allow the programmer to
avoid many details at a cost in execution speed. Unfortunately, these high
Level. languages are not universally available and can not be used on alt pro-
jects.

There is also research on very high level languages - often called
specification or non-procedural languages. These specify what is to happen and
not how, thus are good for a prototype where performance is not critical. How-
ever, these are still very experimental and not yet available in a production
environment.

WHAT ARE PROGRAMMER CAPABILITIES? One unfortunate issue in the current study-
ing of prototyping, is that it is a research topic being investigated by
expert "supercoders". Once prototyped, a system is then built by "mere mor-
tals". What wilt happen if prototyping becomes "an accepted" technique and
mere mortals must build the initial design?

SOFTWARE ENGINEERING LABORATORY

So far the issue of prototyping has been described in very general terms.
However, how does it apply to the NASA Software Engineering Laboratory?
Within the Laboratory, three characteristics of software are under study: Pro-
files, Models and Methodologies. The effects of prototyping on each of these
will be described.

M. Zelkowitz
U. of M.

F	 2 of 22
i



PPOFILES. One important aspect of the SEL is simply to measure software.
Very little is generally know of a quantitative nature about software. This
is certainly true of prototyping. One important goal is to simply add
prototyping projects to the SEL data base in order to apply previous SEL ana-
lyses to this project as had been done to previous projects. Do cost models
work? reliability models? error models? We need to simply characterize this
software (SEL82).

MODELS. Once data is collected on prototyping projects, we need to evalu-
ate models to see if they apply. Previously the SEL evaluated carious cost
models (Rayleigh, etc.). Do these apply to a prototype? Should they even
apply? Is another model more appropriate?

METHODOLOGIES. Finally we need to revise the standard life cycle to
account for prototypes. Now are they designed, built and evaluated?

FLIGHT DYNAMICS ANALYSIS SYSTEM (FDAS)

At NASA a new product is being designed which seems like a good candidate
for prototyping. This system, the Flight Dynamics Analysis System (FDAS), is
being built to help experimenters try alternative flight dynamics models.

For example, today if an experiment is to be run (e.g., try a new orbit
calculation model), the experimenter must access the Fortran source library,
know which module to modify and make the changes, test the changes, recreate a
new load module, and then run the experiment. The experimenter must have
detailed knowledge of the software and the changes are a time consuming opera-
tion.

With FDAS, the experimenter enters the system, and an interactive dialo-
gue, controlled by a data base, directs the experimenter to the correct module
and aids in the change. Thus changes to software are easier, require less time
and less expertise about the internals of the system.

Now why is this a good candidate for prototyping? In the past, software
has generally been built for ground support software. Similar projects have
been built for the last 15 to 20 years, thus NASA is an expert at such
software. Issues like:

Requirements
Size
Execution characteristics
User interface
Algorithm design
Cost

are all well known (or as well known as is possible). Thus prototyping would
not aid significantly. One can view all previous developments as "prototypes"
for the next one.

However, FDAS is a very different system. Most of the factors mentioned
above are unknown, so a prototype should aid greatly in this evaluation. In
this case, the prototype has two functions: Refine the requirements so that a
full FDAS implementation can be easily built, and test some of the design

M. Zelkowitz
U. of M.
3 of 22



ORIGINAL PACE If

ideas for feasibility. 	 OF POOR QUALITY

in order to build the prototype, the following general strategy will be
used:

(1) A subset of the requirements for FDAS will be written.

(2) A prototype will he built to these requirements.

(3) The prototype will be instrumented to collect usage and performance

data.

(4) S.E.L. project data will be collected.

(5) The prototype will be evaluated.

(6) Features that are not effective wilt be redesigned.

(7) The full FDAS system will be built.

(8) The effectiveness of the prototype on the final product will be
evaluated. Was FDAS cheaper to build? Will it be more reliable? Wilt it be
more efficient? Will it have a better man/machine interface?

This evaluation will be by automatel probes into the system. A logging
file is being created for each user command. Execution characteristics wilt be
added to this file as the prototype executes. A feature in the prototype to
allow the user full range of changes to the software will be measured to see
how often the experimenter must go "outside" of the commands provided by FDAS.
This should greatly help in the user interface.

it is still too early in the development cycle of FDAS to give any
conclusions. However, the project is moving along and a prototype should be
ready for evaluation sometime midway into 1983. This should prove useful in
addng to our knowledge about this important concept.

ACKMOWLEDGEMENT

This paper was supported by NASA grant NSG-5123 to the University of

Maryland.

REFERENCES

(SEL82) Software Engineering Laboratory, Collected Papers - Volume 1, 1982.

(SEN80) ACM SIGSOFT Software Engineering Notes, Rancho Sante Fe Workshop,
October, 1980

(SEN82) ACM SIGSOFT Software Engineering Notes, 2nd Software Engineering Sym-
posium: Rapid Prototyping, December, 19821

M. Zelkowitz
U. of M.
4of22



`1'111? VIFWGRAPII MATERIALS

for the

M. 1.1 ,.l.KOWI'IZ PRESENTATION FOLLOW

M. 70kowitz
U. of M.
5 of 22



JARGON

STRUCTURED PROGRAMMING

SOFTWARE ENGINEERING

DISTRIBUTED PROCESSING

DATA BASE

PROTOTYPING

M. Mkowil
U. of M.
h of 22

36.



PROTOTYPE

- THE ORIGINAL OR MODEL ON WHICH SOMETHING

IS BASED OR FORMED

- SOMEONE OR SOMETHING THAT SERVES AS AN

EXAMPLE OF ITS KIND

IN LOOKING AT SEVERAL COMPUTER GLOSSARIES UP THROUGH 1981,

NO MENTION IS MADE OF PROTOTYPE.

USED IN:

1979 RANCHO SANTE FE WORKSHOP

198? ACM SIGSOFT RAPID PROTOTYPING WORKSHOP

RECENT DOD REPORTS

SEVERAL THESES STARTING, TO APPEAR ON TOPIC

M. 7.oIkowitx
U. of M.
7 of 22



1

A PROTOTYPE IS NOT A MODEL

- A MODEL USUALLY INVOLVES LOOKINn AT

ONLY A FEW CHARACTERISTICS

- A SIMULATION IS USUALLY A MODEL AND NOT A

PROTOTYPE

- THE PROTOTYPE NEEDS TO DEMONSTRATE MOST OF

THE BEHAVIOR OF THE FINAL PRODUCT

M. Z.elkowitz
U. of M.
8 of 22



WHAT IS A PROTOTYPE?

- WHAT ARE THE GOALS FOR A PROTOTYPE?

- WHAT ISSUES ARE INVOLVED?

- HOW DOES 11' FIT INTO THE SOFTWARE LIFE CYCLE?

— HOW DO YOU U3E PROTOTYPES?

— WHAT TOOLS CAN BE USED TO:

DESIGN PROTOTYPES?

BUILD PROTOTYPES?

EVALUATE PROTOTYPES?

— DOES IT FIT INTO THE NASA ENVIRONMENT?

M. Zelkowitz
U. of M.
9 of 22



WHAT IS A PROTOTYPE?

- "QUICK AND DIRTY" "THROW
AWAY" FOR EVALUATION

- SUBSET IMPLEMENTATION
- HOW DIFFERS FROM "INCRE-

MENTAL DEVELOPMENT?"

LANGUAGE LEVEL?

- "LOW" (FORTRAN, PL/1, PASCAL.)
- "HIGH" (SETL, SNOBOLQ
- "VERY HIGH'" (SPECIFICATION

LANGUAGES-GIST)

t



NOW PROTOTYPING A

!RESEARCH ISSUE- -

- PROTOTYPE BY SUPERCODERS

- DEVELOPMENT BY MERE

MORTALS

1. WHAT EFFECT ON DEVELOP=

MENT OF TECHNIQUES?

2. WHAT WILL HAPPEN WHEN

MERE MOTALS START TO

PROTOTYPE?

M. Zjlkowitz
U. of M.

L

k'
	 11 of 22



IS NOT REALLY ADDRESSED

YET-MEASUREMENT

- PROTOTYPE USED FOR
EVALUATION, BUT HOW
EVALUATED?

- USER "SATISFACTION", "USER
FRIENDLY"

- PERFORMANCE
- COSTS
- NEED MODELS OF PROTO-

TYPING AND PROBES CAN
BE ADDED TO PROJECTS TO
PERFORM EVALUATION

M. Zelkowitz
U. of M.
12 of 22



AREAS OF DISCUSSION 

(j PROFILES 

• MODELS 

• METHODOLOGIES 

.PM", 



PROFILES

- LACK OF KNOWLEDGE ABOUT CHARACTERISTICS OF

A PROTOTYPE

- WHAT IS REASONABLE COST RELATIVE TO FULL

DEVELOPMENT?

- WHAT LEVEL OF RELIABILITY SHOULD RE

ACHIEVED?

- WHAT LEVEL OF FUNCTIONALITY IS DESIRED?

NEED TO COLLECT DATA TO CHARACTERIZE THIS TYPE OF DEVELOPMENT

r



MODELS

- LIFE CYCLE MODELS

- ERROR MODELS

- COST MODELS

NEED TO COLLECT DATA TO GENERATE VARIOUS MODELS

AND TEST EXISTING MODELS ON PROTOTYPES

M. Zelkowitz
U. of M.
IS of 22



METHODOLOGIES

- HOW TO BUILD A PROTOTYPE

- NOW TO EVALUATE A PROTOTYPE

- NOW TO USE PROTOTYPE TO BUILD

FULL IMPLEMENTATION

M. Zelkowitz
U. of M.
16 of 22



ORIGINAL PAGE is
OF p0OR QUALITY

FLIGHT DYNAMICS ANALYSIS SYSTEM

C1IRRENT METHOD: E.R., TO TFST hEW OPPIT PALCULATIONSl:

- ACCESS FORTRAN ". URCF LIPMART

- MODIFY ►Rfl►ER SUNWITINF

- RECOMPILE AND PUILD NEW LOAD w ►011t.F

- TEST NEW ALGORITHM

- RUN EXPERIMENT

---I THUS NEED DETAILED KNOWLFDAE Of SYSTEM

FDAS:

- ENTER FDAS

- FDASACCESSES DATA PASF AND ASKS FAR TASK

- EXPERIMENTER SWIFIES CHA49F

- FDAS RECOMPILES FORTRAN SOURCE AND P111LDS NFW LOAD MODULE

- RIM EXPERIMENT

--I LESS DETAILED KNOWLE1114 NFFDF.D OF S011PrE oRO1:PAP

AND LESS TIME NEEDFO TO RUN FVPERIPENT

M. Zelkowitz
U. of M.
17 of 22



FACTORS IN SOFTWARE DEVELOPMENT

GROUND SUPPORT SOFTWARE

REQUIREMENTS KNOWN

SIZE KNOWN

EXECUTION CHARACTERISTICS KNOWN

USER INTERFACE KNOWN

ALGORITHM DESIGN KNOWN

COST KNOWN

M. Zelkowitz
U. of M.
18 of 22



FACTORS IN SOFTWARE DEVELOPMENT

NEW DEVELOPMEW

REQUIREMENTS	 ?

SIZE	 ?

EXECUTION CHARACTERISTICS 	 ?
i

USER INTERFACE

ALGORITHM DESIGN	 ?

p
COST	 ?

M. Zelkowitz
U. of M.
19 of 22



PROTOTYPE STRATEGY

- DEFINE A SUBSET OF THE RETIREMENTS OF A NEW DEVELOPMENT

- BUILD A PROTOTYPE TO THESE REQUIREMENTS

- INSTRUMENT THE PROTOTYPE TO COLLECT USAGE AND PERFORMANCE

. DATA

- COLLECT S.E.L. PROJECT DATA

- EVALUATE PROTOTYPE

- REDESIGN FEATURES THAT DO NOT MEET SPECIFICATIONS

- BUILD FULL IMPLEMENTATION

- EVALUATE EFFECTIVENESS OF PROTOTYPING ON FINAL PRODUCT:

- CHEAPER?

- RELIABILIT!?

- EFFICIENCY?

— MAN/MACHINE INTERFACE?

M. Zelkowitz
U. of M.
20 of 22

-I.. - —.A



AUTOMATED ''^ORES

- USAGE OF FEATURES

— TIMING DATA

— ERROR COUNTS

— HOW OFTEN PROTOTYPE IS BYPASSED

M. Zelkowitz
U. of M.
21 of 22

t - -	 _A



CONCLUSIONS

- GENERATE PROFILE OF PROTOTYPE DEVELOPMENT

- IS IT SUCCESSFUL IN NASA ENV'"^',WNT?

COME BACK NEXT "FAR!!!

M. Zelkawitz
U. of M.

F
	

22 of 22



N83 32361

PANEL #2

SOFTWARE TOOLS

J. Goguen /K. Levitt, SRI
I. Miyamoto, University of Maryland
P. Szulewski, Draper Labs



ORIOINAL PAGE 15
OF PGOR QUAIATY

EXPERIENCES AND PERSPECTIVES WITH SRI'S TOOLS
FOR SOFTWARE DESIGN AND VALIDATION

by Joseph Goguen and Karl N. Levitt
Computer Science Laboratory

SRI International
Menlo Park, CA 04025

For the past 10 years SRI bas bad a major research program concerned wit►
program specification. design and verification. The product of this work
has been an evolving methodology supported by specification languages and
tools for reasoning about specifications. Among the most iaportant tools
are: syntax and type checkers; semantic checkers and theorem provers;
interpreters for processing test ,data; and analyzers for proving particular
properties of specifications (e.g., the absence of security violations). To
evaluate this methodology, we have undertaken successful large scale
applications to both fault tolerant computing and to secure computing. Our
research is now evolving to an environment that can support the entire
programming lifecycle. Among tools now under construction for this more
comprehensive methodology are structured editors, pretty printers, program
libraries, and program testing systems. We are also considering the use of
graphics, e.g., pictures to display important properties of systems. This
paper triefly describes the current methodology, with emphasis on the role
of specifications in the design process, and presents our experience (and
that of others who have used the techniques) on several significant
projects.

We have found it useful to consider a spectrum of different specification
languages, each most suitable for a different purpose. A major purpose of a
specification language is to support the decomposition and testing of
designs at an early stage, so as to forestall unnecessary effort at later
stages. Sometimes it is only necessary to obtain a prototype system which
demonstrates the feasibility of some concept; in such a case, it would be
desirable to directly execute its specification. In other cases, one wants
to be able to easily verify some particular but subtle property of a system,
such as its ability to recover from certain classes of fs p:its; then one
might want to structure the design to facilitate the proof. In other cases,
one might want to use specifications for documentation, and thus maximize
their understandability and flexibility. In still other cases, one might
want to be able to change easily from one design to another closely related
one for a slightly different application or context. The languages and
environments that are best for one of these purposes will not necessary be
the best for another, and we have found that there are interesting trade
offs, for example, between the expressive power of a specification language
and its intuitive simplicity.

Although not denying the utility of specifications, designers have in
general been reluctant to write formal specifications. Perhaps the most
compelling reasons for this have been the absence of a good specification
language with tool support and the absence of examples that can serve as a

K. Levitt
SRI
I of 23

E



ORIGINAL PAGE M
OF POOR QUALITY

modelof a "goad" specification; a specification with too such detail is not
worth the effort. Consequently, formal methods have only been seriously
attempted for those systems where reliablity is vital. We see these methods
as now becoming ready for a broader class of systems.

In support of our efforts, we are developing tools that i:clude the following:
the STP theorem prover and its associated Design Verification System
(developed by Schwartz, Shostak, and Melliar-Smith); PHIL, a meta-programmable
context sensitive structured editor (developed by Coguen and Lamport);

Pegasus, a system for support of graphical programming; and 0BJ, an ultra
high level programming language based on rewrite rules and abstract data
types (developed by Coguen). We are also doing some related work ou acquir-
ing and expressing requirements, and on performance analysis.

We have had particular success with the specification and verification
of two classes of systems for which reliability is vital:
fault-tolerant systems for aircraft control and secure operating
systems. For the former, we have developed a fault-tolerant computer
called SIFT (Software Implemented Fault-Tolerance), and have verified
that it is correct with respect to a reliability model. Several
subtle bugs in our original .,oftware were uncovered in the process of
specification and verification. The most significant was that the
results of infrequently executed.tasks were not voted on sufficiently
often and, hence, were not adequately protected against faults.

For the secure systems work, we (in cooperation with Honeywell Systems and
Research, Ford Aerospace, and several other companies) have worked on
several secure operating systems, ranging from small guards and kernels to a
full, general purpose operating system (PSOS -- Provably Secure Operating
System). For PSOS, in particular, the salutary effects of prodycing formal
specifications were:

- A clean decomposition of the system into modules that are
largely independent

- Minimization of the total number of modules through the
the identification of multipurpose, parameterized
modules

- A clean user interface

- A, portable design im that each level in the hierarchy provides
an interface independent of how it is implemented

- Identification of easily-formulated properties that were used
as the basis in proving a design to be secure.

K. Levitt
RI
2of23



THE VIEWGRAPH MATERIALS

for the

J. GOGUEN/K. LEVITT PRESENTATION FOLLOW

K. Levitt
SRI
3 of 23



1
I

1

WORK AT SRI INTERNA'rIONAL ON SOFTWARE
SPECIFICATION AND REQUIREMENTS

JOSEPH GOGUEN
KARL N. LEVITT

COMPUTER SCIENCE LABORATORY
SRI INTERNATIONAL

MENLO PARK, CA

K. Levitt
SRI
4 of 23



OUR MESSAGE

- A "new" paradigm for software

development is gaining acceptance

- FORMAL (i.e., precise) REQUIREUENTS

and SPECIFICATIONS are now possible

for most systems

- Experimental languages and tools for

analyzing specifications and

requirements are available, e.g, SRI's

Hierarchical Development Methodology

(HDM) and specification languages

SPECIAL and OBJ

- Experiences with these techniques

have been positive

* SIFT (Software Implemented

Fault Tolerance) ul.trareliable

flight-control computer

* PSOS (Provably Secure

Operating System)

- These techniques give promise of

reducing lifecycle cost
K. Levitt
SRI
5 of 23



PREFERRED APPROACH TO SOFTWARE
DEVELOPMENT

---> Requirments

<--> 1st Design

^	 V
<--> 2nd Design

Prototypes

Production
Systems

<-- Implementation

K. Levitt
SRI
6 of 23



ACTIVITIES AT EACH STAGE

Formal specification -- Supported in

functional behavior
	

HDM and OBJ

Supported

in HDM

Verification of specs

Testing of executable

specs -- with real

and symbolic data

Interstage consistency

(including design

and code

verification)

Pictorial descriptions

of specs and code

Supported

in OBJ

Supported

in HDM

In progress

K. Levitt
SRI
7 of 23



APPROACHES TO INTERSTAGE REFINEMENT

- Vertical refinement -- Hierarchical

decomposition using Abstract Data

Types

- Horizontal refinement -- Building a

module out of existing modules

- Program transformation -- Improving

the performance of a program while

preserving its functional behavior

K, Levitt
SRI
8 of 23



WHAT IS A SPECIFICATION

A specification is the DEFINING statement
of a system's BEHAVIOR

It should resolve UNAMBIGUOUSLY questions
about how the system should resolve
in ANY situation

System
Inputs
	

Outputs

A spec is a BLACK-BOX Description

UNAMBIGUOUS => specs are FORMAL

1



QUALITIES OF A "GOOD" SPECIFICATION

-- Concise

-Easy to produce (compared with an

implementation)

- Readable

- Executable (in support of testing)

- Support automated reasoning

(e.g., verification)

- Allow for performance analysis and/or

simulation

K. Levitt
SRI
10 of 23



FEATURES OF A SPECIFICATI]N LANGUAGE

- Allow specification just in terms of

"callable" functions. E.g., a "file"

system is definable in terms of

CreateFile, OpenFile, C1oseFile,

WriteFile, ReadFile, MovePointer

An OBJ specification consists of
equations e.g.,

ReadFile (WriteFile (CreateFile () , Val)

= Val

- Allow specification in terms of

abstract (i.e., high-level

data structures

An HDM specification would represent

a "file" in terms of a semi.-infinite

array (Fi,.eVal) and a pointer
(FilePointer)

6

F

WriteFile (val)

EXCEPTION: FileFull

EFFECTS:

'FilePointer = FilePointer

'FileVal ('FilePointer ()) =
+ 1

Val
K. Levitt
SRI
II of 23



FEATURES (cont.)

- PARAMETERIZATION, i.e., using

a library of previous developed

specifications

a "secure" file could be specified as

SecureFile(Contents, SecurityLevel)

vvh?re :

Contents is any type

SecurityLevel is 1°Partially Ordered
Set"

- Logical and Set statements (including
infinite sets)

Finding an element val in a file:
EXISTS i : Fi leVal (i) = val

Number of appearances of element
val in file:

CARDINALITY ({ i F i l eVal (i) = val }

K. Levitt
SRI
12 of 23



ORMINAL PAGE IS
OF POOR QUALITY

TOOLS IN SUPPORT OF HDM AND SPECIAL

specs I
1
I

------------
I Syntax aad i
I	 Type	 I
I Checker	 I

I
------------------------------

I	 I	 I
------------	 ------------	 ---------
I General	 I	 I Security I I Code	 I
1 Design	 I	 I Verifier I I Verifier I
IVerif ier(1) 1	 1	 (2)	 1	 1	 (3)	 I
------------	 ------------	 ---------

Notes:
1. Verifies properties of spec, e.g, "File will

never overflow"
2. Checks for information flows in violation with

Multi-Level Security Model

3. Languages supported: Pascal, Jovial, Fortran 77

K. Levitt
SRI
13 of 23

s



TOOLS IN SUPPORT OF OBJ

specs

	

I
	

i

	

>1
	

Editor

------------	 / Test

Syntax
	

Cases
Checker

---------------

^ Interpreter

K. Levitt
SRI
14 of 23

R



REFINEMENTS FOR SIFT ULTRARELIABLE COMPUTER

I/O Model System SAFE =>
"all tasks correct"

I
Replication Task replicated;

Model Values voted on each
execution of tasks

I
Activity Task activties: startup.
Model broadcast of values, vote

I
execute. synchronization

Operating SPECIAL specs for OS routines:
System scheduler. voter, dispatcher

i

I
buffer manager, etc.

Pascal Code for each routine
Programs

i

I
BDX-930 Code

K. Levitt
SRI
15 of 23



f
r

EXPERIENCE WITH SRI's FORMAL TECHNIQUES

Organization System	 Specs Design	 Code

Proof	 Proof

SRI SIFT	 x x	 x
PSOS	 x x

k Real-time	 x

OS

Ford KSOS ii	 x x
Aerospace

Honeywell SCOMP	 x x	 a

Sytek
i.

SACDIN	 x x

Merdan Secure	 x x
msg system i

{

i

K. Levitt
SRI
16 of 23



OR ',GII` X. Fdl'.7.T. 1,q

OF POOR QUALITY

PSOS DESIGN HIERARCHY
S-------------------------------------------------- -5
L  VI:L;	 P30S A1lSTRACTION Olt FUNCTION

: ---------------------------------------------------- ;
16	 ; USER REQUES'P INTERPRETER •	 ;

15	 ; USER ENVIRONMENTS AND NAME SPACES • 	 ;

14	 ; USER INPUT—OUTPUT M	 ;

13	 ; PROCEDURE REXORD.S N 	 ;

12	 ; USF:I?	 I'll OCESSL•':-")	 a	 AND	 VISIBLE	 INPUT'—OUTPIIT	 N	 ;
11	 ; C!+ i.." ', 1014	 A14D DELETION OF	 USER OBJECTS	 N	 ;
10 V

9	 ; FX i ,.;%DED	 'I'YI'F::;	 (") [ C 1 I

8	 ; SEGMEN'1ATION A14D WINDOWS (e)[C11)

i 7	 i PAGING [ 0)
6	 ; SYSTEM PROCESSES AND INPUT—OUTPUT [ 12)

i 5	 i P11I11I'1'IVL': 	 INf11Ti0UTPUT	 [6)
4	 ; AIII1'llf4	 TIC AND OTIIFR BASIC OPEIIATIOUS
3	 ; CLOCKS	 [())	 61

2	 ; 114TERRUPT0"'	 [ 6)	 ;
1	 ; REGISTERS ('t )	 AND ADDRESSABLE MEMORY ( '11	 ;

U	 ; CAPABIL^'I'IES	 10

_ MODULE FUNCTIONSVISIBLE AT USER INTI:I1FACE 	 ;

(^)	 = MODUI.r PARTIALLY VISIBLE AT USER INTERFACE. 	 to

[ I)	 - 140DULE HIDDEN BY LEVEL 1.

[ c ] 1 ] = CREATION/DELETION ONLY BIDDEN BY LEVEL 1 1 . ;

------------------------------------- ----------------

K. Levitt
SRI
17 of 23

k



BEGSgooses

USER

cocre	 I	 ^W-- CODE

VERIFICATION

memo

S/W Eng Methodology

PROTOTYPE

OBJ

PROTOTYPING:	 Feedback to user is a fuzzy concept

EXAMPLE.	 Use of scenarios

ALSO need feedback to the designer/coder

e.g., performance models

TOPICS:	 Early in process

This roughly corresponds to level of abstraction

K. Levitt
SRI
18 of 23



?NERAL MOTIVATION

) provide a precise scientific way

) discover

ORIOVA[: PA ,' C3
OF POOR QUALIrY

a) What users want or need

(requirements)

b) What "linguistic structures"* work best for a given purpose

(user interface dssign)

c) What is really going on in a given social context

(social system analysis)

* may be graphical, textual, speech, or mixed media; all are "linguistic" in the sense of
being hierarchically structured into atoms, phrases, and discourse units.

K. Levitt
SRI
19 of 23

_ate



REQUIREMENTS

Two major components:

I. Now the client will use the system.

information flow at the interface, inside the system, and in the client's

organiza s ;on.

2. Client's criteria for evaluation of the system.

a hierarchy of values: may be subjective factors and organizational

factors, as well as objective and individual factors.

These lead to two representation system.

1. Abstract Data Flow Diagrams

2. Value System Trees

Note that both are graphical in nature.

K. Levitt
SRI
20 of 23



a

1

ABSTRACT INFORMATION FLOW

A. MOTIVATION

We want to characterize information by its use and intention (social meaning),

not by its physical representation.

vs. operations r°search

This can be done if we look at the information from the viewpoint of those who

use it.

Such information is available ir, the users' language.

B. DATA FLOW DIAGRAMS

Graphs, with "files," -•nich re`, re:ent some type of data, generally structured-, and

"actions," which are operations on that data.

We can have both iteration and recursion in DFDs.

Also hierarchical structure.

C. ABSTRACT DATA FLOW DIAGRAMS

"Abstract" means independent of representation data characterized by relations

among op's on it.



INTERSECTION

r^,)(D,

ORIOWAL PAM re
TRAFFIC LIGHT PROBLEM	

Z	
OF POOR QUALITY

C4)

CAR - ADT

1

rLIGHTSTOP
_—> 	 _

RIGHT

c
"abstract car flow processor"

can be compiled into a simulation

2

=LIGHT
RIO T

WE
DOWN SAFE

0
K. Levitt
SRI
22 of 23

4

ABSTRACT DATA FLOW DIAGRAM



REGULATE TRAFFIC FLOW

PERFORMANCE	 SENVICE	 SAFETY	 FUNCTIONAL
REDS

/	 we ADFD

SIZE	 RELIABLE FAIR EFFICIENT

VALUE SYSTEM TREE

Can be used to organize:

Management effort

Organizational structure

Accounting

Structured walkthroughs

Acceptance tests

Redesign criteria

Natural visualization

Can be used to compile tools foi later phases.

K. Levitt
SRI
23 of 23

p?.

C_

E



0RICMNAL PAGE IS

OF POOR QUALITY	 -716

'.USER INTERFACE ^E S" 1 GN OF 3OFTVARE TOOL S YSTEM AS
A TECHNC'LOSY TRANSFER VEMCLE

Isao Mivam:to

De:artment of Mathematics	 and Computer Science
Universit y of Mar y land, laltimore County
c ► t:nsville, MD 21228

k N83 32362

ABSTRACT

The paper introduces design considerations of an oft-going research
Drofect for developing an effective and easy-to-use tool system that

supports entire maintenance phases. The primary focus is the design

of in "intelligent" user interface mechanism. By analysing why existing
tools and tool systems are not used very effectively, we can define

users requirements for the,user interface mechanisms. spectfy design
criteria of user interface functions, and introduce some features of
the intlementaticn. Because this project is still in process, intermediate

evaluation and expected effectiveness are discussed. The author believes

that only a well-designed tool system can be a powerful softwar=

engineerinq technology transfer vehicle.

1. INTRODUCTION

"	 important in a oompvter-base: system.he role ofthesoftwaresystem is extremely 
The technolog y to develoo and maintain quality software is the key to the

advancement of computer applications; such technology is called software

engineering

We h ► y e surveyt! current techniques, methodologies, and tools (or tool systems)

for producing high quality software Ell. The most serious finding is that

although many techniques, methodologies, and software tools are available,
they are nct used very much or very effectively in real software production

environments E27. Sometimes, programmers do not know what items are available

or how to use them. Sometime, their productivity and quality of their software

fail to improve anyway. Later we will discuss some reasons for the failures.

The author has experience in the development of a large-scale integrated tool
r1stem. This project was carri-d out in the author's former company from 1976

to 1979. We tried to develop a software support system named Software
De v elopment b Maintenance Support System (SDMSS)I61 that was supposed to cover

the entire software life cycle. Although we had developed some parts of the
system, 1 frankly think we failed to develop an easy-to-use and effective tool
system. We did not sotril enouch time designing the framework of the system.

such as maintainability, portability, database, command langusge, graphics
ratability, etc	 U* simply tried to integrite many attractive ideas. We
reeuired a very large host computer, much programming effort, many resources
t^ execute this system, etc 	 We did not have any clear methodology for rising

a!! of the functions of the system. We learned many !assons from the failure
f this :, r c 7 s c t	 1. Miyamoto

U. of M.
1of12



*Jk1U114AL PAGIZ ffa

OF POOR QUALITY

:n -,dd.t:,n t: thiG exeerteno*. the author has Promoted modern so!t,vare
enginittrim4 te:hniques in the software industries Thrcuoh this type of

p rotesstonal dev*lcpment. the author made valuable :indingv about the issues

of	 transfer	 To summarise, transfer of technolo g v sr, very
difti::'lt if we lick tools that rea p :e and sup p ort the procos • d methodology

or twchniout

Frcm those experiences we discovered wh y it is diffic+i	 to transfer software

*rgineerinc technology from the research environment to t;te Production

environment The production environment is in great need of these new ideas.

We a:sr reali :e why extst.ng individual tools and tool systems are not used

ver ,e much or very offtotIvely &Ithoughthey were developed to be used frequently.

Some of the problems come from management, some ;ome iron human factors, and

man y are assoctated with tha tool or tool system itself

Howe %P er, man y of those reasons male be integrated as a "technology transfer

problem " We would like to introduce some ideas for the transfer of software

en=ineering tools

1 1 Wh y software tools are not used.

Out sur g e', 133 and some other 4 , rveys 14,53 indicate+ that we have many

indi ,, tdual tools and several tool systems	 However, almost none of these is

sssed effectively

For individual toils, some )f the maior reasons are as follows.

1)	 Most tools do not have o. clearly defined methodology, and only the program

:ode is available	 Rarely is a user's guide available

Z i	 Most tools have not verified their economic effectiveness.

3) Because of the difficult y in defining criteria for evaluating the quality

and effectiveness of software tools. man y tools have not been tested by

users

4) Manv tools are not evaluated at all

5 1	Some to01s have been *valuated, but they are clearly not cost-effective.

6 1	It is ver y hard to use or describe some tools

Documentation (user's manual	 design specification, maintenance

manual, etc ) is poor	 Sometimes there is no available documentation.

9 1 Tools assume man y predetermined environmental conditions which are not

documented. Most of the time. these conditions do not match the real

conditions of the users.

1. Miyamoto

U. -,f M.

2 of 12



oR^'^aL PAGE 19

or 100ft QUALM

o '	 Vsabillt y of tco. s is very Door because of lack of proper methodology

10, Sometimes	 the tool itself does not pro p erly su p port user activity

1)eciuse : f oo)r understanding of software production proc, : •f models.

11, The reliability of the algorithms, the ouality of the implemention, and

the efficienc 'i of the tool are not sufficient for the user.

12' Many individual tools are not designed to have common inputloutput

tormats

13) Users strongly resist tools that were designed at other organisations.

14) Special-purpose tools servtce a very small audience.

15) Programmers generally resist 	 new or foreign languages and tools. Expert

ercprimmers are the most resistant, as they are the most conservative.

16) If the development g r oup has a bad reputation, most programmers do not

want to use the products.

17) Sometimes, the particular tools have a bad reputation.

18) Sometimes tools do not fit the existing working criteria

19) Many	 ools do not have ebtendability or modifiability to accommodate

each user ' s environment

20 1 The +azintanance of the tool itself has not been taken into account properly;
and the quality and functionality of the tool become ineffective over time.

21) The portability of the tools is very poor.

Several points represent the problem of designing our tools to improve the
situation. For example, reasons 1, o, 7, 9, 9, 12, 19, 20, and 21, all depend

on design or on support methodology to apply a tool ' s capabilities totte aser's

,,roper production activites.

1. Mlyamoto
U. of M.
3 of 12



r
k

ORIG I NAL PAGE IS

OF Wort QUALITY

y Whv !t:l rvstea are !tot used

Taal s y s,ems ire collections of many individual tools. There are two types of

tooi s^stem	 heterogeneous and homogeneous

The first tyre of tool system integrates different types of tools and supports
ns common methodology for using the com p onent tools The second typa also
integrates individual tools but supports some common methcdclooy for using
the component to:is 	 UNIX is representative of the first type, and SDMSS
is representative of the second type Iol

Each t y pe has both merits and demerits, neither is a perfect tool system.
Existinc tool systems have the following major problems

1)	 In general, tool systems have the potential to be bigger and bigger

Tc , create and use i tool system requires a large memory space, 	 many
camputtr resources. a large database, a large-scale computer, sophisticated

terminal devices, etc.

I!	 A oarticclar toot system is very a:pensive to use

?)	 The development cost of a tool system itself is extremely high

4 ,	 :otceonents of tool system are tightly integrated and so add+.ng or deleting
tool functions is quite dilficult.

5)	 The maintenance of a tool system itself is tremendously expensive,

in fact, sometimes it is impossible to maintain.

6^	 The input and output of the components art not uniform.

71	 Mary user interfaces of tool systemsde p end on the host operating
s y stem, and they are not easy to use.

8)	 ecause many functions depend on the specific hardware or o p eratinq system,
:he p ortability of the tool system to other environments is very poor.

V	 'Very few tool systems are designed to support both expert programmers
and novices.

10) Most tool systems are not designed to sup p ort groups of users.

11) Few tool systems are graphics-oriented, and so many users must list text
type information

12, Most tool systems d; not have any elobal-level methodology, and are
just a collection of individual tools.

Sometimes. tool systems enforce a very biased ( e.g. improper, and always
same) methodoloc y to users

13  Management of the activities done through the tool systems is not available

14% It is diff:cult to cover the entire software life cycle Secause of the

,urrent le %, el - ^f 9oohisticaIior, of -- of:wore technoIoc,y
1. Miyamoto

U. of M.
4 of 12



ORIGINAL PAGE JS
OF POOR QUALITY

A - o1 s y stsm has m)nv ac'w blems tit y ,°nd those of tools	 "his is wh y ver y few
4x il t inq holm % i 'vol s y stems are used very such of v e r y effectively.
In order to in coast software )rodjctivlt y and sottwire qu ► lit y .11	 we must

design and use +support tools to t,ol systems , that 41d our software
develotmen! and matntenancv activities at least

Thoret.re	 a question we must answer is how t	 i I n effective and eas y
-to-,]It t+ols or tool systems

A t cc, I or tool s y stem can be a ver y powerful medium that transfers software
engineering methodolog y from tesearchers to nractioners i n the real world
Careful'y .fesignol tool systems can very effectively transfer technology

We believe that tool design is onl y one strong mechanism to aid transfer
of existinq technology	 ► ' e also bet to y * ► hat t,tcls trust be easy-to-use and
cost - effec tive to miAe peopla appl y new ,software engineering to,,hnolog v

PRLIVLEMS

We ate dos;gning a rather ambi I &vus tool system to support software maintenance
actt y ittes	 which is called Pand,,ra'e Boat f°'1 	 The tool s oars available
individuall y now	 Taking inta account prtvious	 or ptob1ems	 we have
artfull y defined cur dest ,;n criteria
Concerntnq the big scale of tool s y stems%rrobi em o 	 the Pandora's Box
is designed to have several subsystems which Pro independentl y executable
Entire whole functionaltties of tool s y stem are gtatnq to be very large bat each
o omoonent is desi g ned to be ^vory compact and to be execu°able on a super mtcro -
computer	 Therefore	 the vsaga cost is expected to be very low %Problem s%

Those components and tune-ionaltttet ate designol to use available tool

functions - e q	 full uve .^f VNIX environment % 	Ttien	 we will avoid wasting
'ouch ',%Qn*v	 tiJli,`dtinq those functions	 .he itr'J.°(ti-ea of s u bs y stems are t2 be
siaduIar and ill neceesar y interiet,ont ate to be done via database tProbles
04 % 	"her. the s y stem structure is ver y flexible	 a d each function is designed
to be rather small to increase maintainability of the tool system itself

%?r,blem 45%

Intetsctions between tool functions are ;lone by database %c f	 software

knowledge base % 	and snout-:p utout formats are common	 as in UNIX tProbiem tie+
with UNIX environment as a host for this tool s y stem	 the portability of the
s y stem is assured t^ some extent % Problem 00 % 	This t,% ,, i s y stem is gra p hics -
i, riented	 Then users can use the graphics ca p abilities of acoIorgraphics terminal
and color x - v plotter	 In the s y stem	 gra p hics are not secondar y to or
a substitute for text type commands 	 The p olicy calls tot graphics first and
text nex t tProbfem M11 % 	The tool s y stem is designed to keep all of the usage
histor y an y! register individual tcenar ; os	 using a scenario s y stem and a

hitrarchical m ,tnt! system. we can manage the user ' s a,tivttres and collect some
2ana4ement Oita % Problem Nit%	 We have tried to apply the latest techntgues
t^ t he design of Pind°ra ' s Box i;nd we limit the usage )f the system to ;*A tin
phases ot the software life cycle

We, sele.ted onl y alrerdv evaluated techniques and teals %Problem 014 t 	 The
or^bie ,,as related with user interface and methodology %Problems 07. fl y , tll g . and
s lo t are described orectsel y in the next section

I.	 ;mioto
t i . at' M.
5 of 1



ff `
ORIGINAL P i	 I
OF POOR QUALIr t

3	 CEEI31N::.0 *JEER 111TERFACE MECHANISM

'.e in .#sign ^c 1 scftware-maintenance support tool system named 'Pandora's
Box , and mould like to introduce some 	 ideas from this protect	 Those ideas

ire rtlate-± to the user interface desigp of this tool system. The user

interface is designed to have twc fundamental functions for users 	 One is a

three-level menu hterarehy to serve different s ,.enarios to various type of

orogrammers, from ex p ert programmers to nonce programmers. Another function

is the knc-wled9*-Date guidance mechanism for those users

3 ! Basic rtautrements of user tnterface functions

W& issamed three types of users	 novice users, expert users, and frequent

exatrt users	 Each t y pe of user has different requirements for the user

tn:erfice functions

For txamole, novices need tquoted from I931

utmost in clarit y and si%pitcity.

small number of user commands.

,meaningful commands knot a single letter, and not with complex syntax?,

lucid trrar messaces and htlo facilities. ar.d

reinfoccemtnt from success

Novices may want computer-directtd mods and system's "friendliness

Intrequent expert users prefer

stool& commands,

meanina!ui commands,

easy to remember operations. and

prompting

On the other hand, frequent expert users want.

powerful commands, command strings, user-defined commands,

minimal number of	 keystrokes,

brief messages (with access to detail at request). and

hick rpeed interaction.

Experts demand user control and system's "intelligence "

In order to satisfy all user levels, how should we proceed'

Wt might do the following	 1) to expect a 'graceful evolution' of users

themselves. 21 to apply 'information hiding' techniques to user interface
mtahantsm. .r 3? to have ah1erarch1ca12enU selection system with

"intelligence" and "individual" scenarto	 In general. a menu selection

user interface may give us

l it t!e training

little memorisation,

:star str ijoture for user activity,

ease in designing individual small tool functions, and

simplicit y in software structure.

But because of the predetermined entries to the menu. usage can be somehow

restrictive	 In order to design a good menu selection system, we need to

make a big development effort	 f 

M

nU. 

o M.U. of .

6 of 12



? 2 Design criteria of hierarchical menu s y stem	 OF PCOR t 1,'; I'ry

8y taking into account the basic ragvirements of user interface functions and

referrir.: tc the material 193 and borrowing some ideas, we have set up the
followinq design criteria.

appl y intelligent user guidance mechanism,

use small number of choices per screen,

consider semantic organisation and give title,
shcw hierarchy by graphic diisign,
permit simple back, left, right. up and down traversals in the

menu hierarchy,

use proper combination of colors,

permit type-ahead,

p'it most important and frequent choices first.
begin choices with keyword, if possible, and
require an enter key or use light-pen mode consistently

Sotae Dther considerations are.

display rate
response time,
help/explain facilities,

short cuts/menu mac:v, and

human reaction to colors.

3 3 Some features of usar interface

a	 hierarchical scenarios

The scenario hierarchy of Pandora's Box consists of three levels of menus.
The top level to so-called "methodology-oriented menu" tot scenario), and

this will provide userr "!tow-to-maintain scenarios" which will guide users
toIoai lot thenecessary maintenance activities. Those activities include
the detailed phase plans of each type of maintenance, The ocenarios are prepared

in flexible wa y fcr emergency maintenance, planned maintenance, deferred

maintenance, and preventive sainte-nance. The work breakdown structures and
necessary procedural steps are the elementary source of this level. When users

interact with this scenario, users can get complete quidance as to hobo to

maintain users programs and data setswithout precise knowledge about maintenance
activities. The users do not need any written guideline to maintain their

software, they need only follow.

The second level menu is "how-to-select proper tool functions menu" to do

necessar y action guided from the top level menu. The elementary information

of this level is a list of tool functions provided by the Pandora's Box. The

tool s y stem will be expanded to contain all of the functions necessary to do
all of the naintenance activities from maintenance requirements analysis to

validation of maintained software 	 The menu at this level is constructed based on
an activity-tools function] matrix	 The third level menu contains the
information about "how-to-use a p articular tools function"	 This level gives

users the exact information about the user commandsto execute a particular tool

function.	 I. Miyarnoto
U. of M.
7 of 12



ORIGINAL PAGE 13
OF POOR QUA PTY

Novice User
or expect us+ar -
at ItartInc;	 sme
of maintenance

Infrequent

HOW-TO-MAINTAIN MENU " KNOWLEB+E BASE SYSTEM
(activity-senu)

Expert User	 _^ HOW-TO-SELECT TOOL FUNCTION
MENU ( tools aenu)

Frequent
Expert User	 HOW-TO-USE FUNCTION MENUMENU

(command menu)

TOOL BOX

FI A Hierarchical Menu System

Figure 1 is a representation of this menu hierarchy. Users can access the Pandora 's Box in any way from
the top (in this case, users will be guided smoothly to next level menu and finally guided to command-
level menu,) to the lowest level of hierarchy to achieve some particular maintenance activity. The system
will record the histories of activity profile use for each user; and so the system can provide the best scenario
to each user individually when users access the system the next time. The system will guide users by scan-
ning the menu hierarchy up and down. The top level menu provides users with the methodology to main-
tair, software. Users do not need a maintenance guidebook and users manual of the tool system itself any
more.
11►e system will guide users and provide necessary information and functions to do the necessary activities.

I. Miyamoto
U. of M.
8 of 12



C'-'— ,	 ,-+CF. IS
OF NOW QUALITY

b. Knowledge-base guidance

When the system guides users, the system refers to a knowledge base that contains software error information
and maintenance pattern information. 'the knowledge base contains exactly two types of error information,
ant is the general tendency type error occurrence distribution, the other is the error history of each user col.
lected during their use of Pandora 's Box. 'the latter type of error information is analyzed according to the
target program and individual user.

Some 
basic 	 of the error information collection mechanism within the autcmated tool system are given in

the previous article [b].

tcroc informattonlmaintenance nattern
data ba se 	 4

knowledge

acceptance
process

aatntenance pattern/

error knowledge base

individualinference	 optimum	 menu
ercQram	 — r	 mechanism	 ----^ individv !	 system
information

	

	 maintenance

scenario

FIG 2 Knowledge Base System

1. Miyamoto
U. of M.
9 of 12



OF POOR ^ IT^1f
OF

In mainttnanct phast in general, especially in a case of corrective
main,enanco. to test modified programs in an efficient way is scat

important and necessary he emphasised in CIL there are rather
clear relationships between testing techniques and error types
To dtttot a par.leulattyptofetror we need some specific techniques

We examine,. these relationships and made up 	 testing techniques-error type
matrix in the knowledge base system [7].

RetRrrinq to error information, we can get the information of the general
ttndtncv of error occurrence distribution, and by referring to the user's
individual history, we say adjust this distribution to an individual user-

oriented one Based on this knowledge, atthetist when the user signs on to
Pandora ' s Box, we can provide the optimum individual	 scenario.
This scenario is based on a prioritised menu so that the user can continue his/
her most necessary and effective ietivities

4 REMARKS

A technology transfer problem is not easy, because it is related to the

tr y :atios^, training, techniques, methods, supporting tools, management
oroani:,ation, and human factors. Also, we don't know yet what should be
transferred Unless we know it, we can ' t discuss how we should do technology
trinster	 This say cause severe questions like, "what is &really useful

so!twart engineering ttchnol ,)gy to be transferred"	 or "from whom to whom?"

Beside discussions on the desk, we suet take sons approaches to imp ► ove
the situation of existing tool 	 usage. We hope that sose of our ideas on the

dtsign of user interface for tool systems may show some possible direction.

Final!v, "friendly" and "intelligent" user interface mechanism of well-

designed tool systems could be a powerful technology transfer vehicle.

5 Acknowledgement

The author would like to txprtss his special thanks to Drs. Victor Basili.
Son Shneiderman, Kouichi Kishids, and to his research associates for their
advicts and support.

L Miyamoto
U. of M.
10 of 12



OR POOR QUALMY

REFERENCES

[%I I	 Miyamoto, "Nigh quality software produati;n tachnioues". T'S Pub.

Cc , it12. Tokyo, Japan

C23 1	 Miyamoto, "Management of software maintenance (NO-5)". bit, Sept.

1912, K y oritsu Pub., Tokyo, Japan

C3I 1. Miyamoto, "Management of software maintenance (No q )", bit, Auq•

1912. Kyoritsu Pub , Tokyo, Japan

(4) Reiter Consultant, "Software Tools Directory"

:S) NOS, "Software Tools Directory", Oct. 1960

C61 I Miyamoto, "Reliability Evaluation and Management 	 for An Entire

Software Life Cycle", The 2nd Software Life Cycle Management Workshop,

1971

(73 I. Miyamoto, it al, "Conceptual design of Pandora's Boa", to be

a;peared

C13 1. Miyamoto, "Management of software maintenance (No.3), bit, July

1912, Kyoritsu Pub., Tokyo, Japan

11) Ben Shneiderman, Lecture Note of Software Engineering Seminar,

Oct	 1912, SRA International tne.

I. Miyamoto
U. of M.
11 of 12



THE VII WGRAPH MATERIALS

for the

1. MIYAMOTO PRESENTATION WI-,RE INCORPORATED IN ]'HE PAPER.

1. Miyumoto
U. of M.
12 of 12



i

ORIGINAL PAGE 13

OF POOR (QUALITY N83 32363
DESIGN AIDS FOR REAL-TIME SYSTEMS (DARTS)

Paul A. Szulewski
The Charles Stark Draper Laboratory, Inc.

Cambridge, Massachusetts, 02139

Abstract

Introduction

Design-Aids for Real-Time Systems (DARTS) is a toot that assists in

defining embedded computer systems through tree-structured graphics,

military standard documentation support, and various analyses including

automated Software Science (1) parameter counting and metrics calculation.

These analyses provide both static and dynamic design quality feedback

which can potentially aid in producing efficient, high-quality software

systems.

DARTS Overview

DARTS uses a mix of hierarchy, control and communications primitives

and data structures to represent real-time systems. Requirements are

expressed as a functional hierarchy and designs as a tree-structured

hierarchy of communicatinq processes. This hierarchical structure pro-

vides two distinct advantages, the system can be viewed at different

levels of detail as required and changes (e.g., subtree move and delete)

can be easily implemented.

Although developed specificall y to represent real-time interactions,

DARTS can be used co define both real-time and non-real-time systems.

Specific real-time capabilities include an ability to represent and model

(1) interactions between the computer system and external

sensors and effectors,

(2) interactions between processors in a distributed

system design, and

(3) interrupt processing and the flow-of-control in mnilti-

programmed software designs.

P. Szulewski
Draper Lab
1 of 20

i



OWGINAL PAGE IS
OF POOR QUALITY

Through a friendly, mans-oriented interface, a user can represent a

syntom; F'wrform data floor vheckinq; clenerate simulations of the design for

res ponse time, throughput., and utilization, request it variety of data
tables and graphical tree-structured output in various sizes; and
calculate software Science com plexity mmasures.

DARTS User Interface

MARTS in implomented as a Pi,/I program on an Amdahl 470 V/H. A
user its presented with a menu-driven, full-screen interface (21 which
users with no prier computer backgrorsnd have found easy to learn and use.
Throuqh this interface, an analvst can build and maintain a library of
DARTS data bases, generate both graphical and tabular output, and initiate
various analvtsirs functions.

DARTS Data Base

The DARTS data Nine* is hierarchical, with records cotrespondinq to
each of the nodes in the DARTS tree. The records contain data pertaining
to control flow, data flow, and relational information for the nodes in
the treys. V:,rious attributes can be associated with the nodes of the

tree. Nodes can have names, input and output variable lists, free text
descriptors, durations, anti actual assignment statements to be executed
during a simulation. Nodes canalso have predica`!ss that determine the
flow of control at branch points. Durations can be deterministic or can
be given as random distributions. DARTS processes can be assigned
priorities to allow one process to interrupt another. Thus, interrupt
structures and preemption can be explicitly specified and modeled.

Data Flow Checkinj

Data flow consistency checking verifies that variables are produced
before they are referenced a,id referenced after they are produced.

	

Documentation outputs currently consist of a data base listing, the DARTS	 !
tree, a data-flow table showing data producer/consumer relationships for

the nodes in the tree, data set/use tables, and module tables.	 These

graphical and tabular outputs are embedded easily into word -process i nq
files for automatic specification generation. 	

N. Szulewski
Draper Lab
2of20

3



Automatic Simulation
d ► ^'QINAI, PAGE 13

.`	 p-: puci.L QUALITY

A simulation capability [3) is available to provide estimates of per-

formance factors, using a simulation language develo ped at the University

of Birmingham, the Extended Control and Simulation Language (DCSL). A

translator automatically converts a DARTS representation into an ECSL

program. Statistics on performance factors such as response time, down

time, utilization, and throughput are automatically collected and main-

tained by the DARTS/ECSL system. These statistics can be displayed in

histogram formats for analysis.

Software Qqality Metrics

An experimental metric of software design quality is among the desiqn

feedback analysis features in DARTS. These metrics, based on Software

Science [1), are useful in assessing the quality of competing software

designs as well as being predictors of other software planning parameters

(e.g., size, effort, project duration, and number of modules).

Prior research ( 4,5) has shown that it is possible to identify and

count Software Science parameters in software desiqn media. Experimental

data suggests that these metrics correlate with a subjective assessment of

the criteria they were intended to measure.

References

(1) Halstead, M.H., Elements of Software Science, Elsevier North-Holland,
Inc., New York, 1977.

(2) "Design-Aida for Real-Time Systems ( DARTS): Users Guide," Version 3,
CSDL-C-5441, The Charles Stark Draper Laboratory, Inc., January 12,
1982.

(3) Furtek, F.C., DeWolf, J.B., and Buchan, P., "DARTS: A Tool for
Specification: and Simulation of Real-Time Systems," Proceedings of
the AIAA Computers in Aerospace III Conference, October 1981.

[4) Szulewski, P.A., Whitworth, M.H., Buchan, P., DeWolf, J.B., Quality
Assurance Guidelines and Quality Metrics for Embedded Real-Time
Software Designs, CSDL-R-1376, The Charles Stark Dranar Laboratory,
Inc., May 1980.

[5) Szulewski, P.A., Whitworth, M.H., Buchan, P., DeWolf, J.B., "The
Measurement of Software Science Parameters in Software Designs," ACM
SIGMETRICS Performance Evaluation Review, Vol. 10, No. 1, Sprinq
1981.	 P. Szulewski

Draper Lab
3 of 20



THE: VIEWGRAPH MATERIALS

for the

P. SZULE:WSKI PRESENTATION FOLLOW

P. Szulewski
Draper Lab
4 of 20



VlO~ .... 
O~cn 
-,"C IS 
t.,;I(l>C 

O~~ 
O"c. 

8211C376-1 

The Charles Stark Draper Laboratory, Inc. 
Cambridge, Massachusetts 0213S 

[tARTS· 
DESIGN-AIDS FOR REAL-TIME SYSTEMS 

by 

Paul A. Szulewski 

Presented at the 
Seventh Annual Software Engineering Workshop 

December 1,1982 

Goddard Space Flight Center 
Greenbelt, Maryland 

00 
"71;0 

"UGj 
0-
o~ 
:1Or-

o~ 
~G) 
r- ... 

~iI 



010:'1' .. 
Oll>rn 
-''0 N 
NQe 

O~[ 
c:r~ 

DA.RTS OVERVIEW 

• Wilat is DARTS? 
- An automated tool for the specification, simulation, and 

analysis of distributed, real-time systems 

• What is its underlying model? 
- Hierarchical structure 
- Process oriented 

• What features aid the designer? 
- Documentation in a variety of formats 
- Explicit control flow and data flow 
- Automatic simulation 
- Automatic software quality analysis 

• What features aid management? 
- Concise and understandable documentation 
- Computerized data base 



-.1-"",= ;::to 
~:';tn 
~-:: ~ 

Q -,.j ~ ::.. 

o~~ 
:r?r 

PROBLEM 

• Defining requirements and preliminary designs 

Crucial 

But time consuming 

Not Systematic 

• Resulting deficiencies 

Inadequate throughput/memory 

Cost/time overruns 

Reduced reliability, testability, maintainability 

Project failure 



000:-0 ... 
O"'rn ..... "a N 
N~E. 
O~~ 

CTer. 

82HC3767 

REOUIREMENTSlDES'GN Mc,HODOLOGY 

REQUIREMENTS TREE • FUNCTIONS· 

'- ~~ 
> ~ I 

REQUIREI£NT 
DOell·tENT 

SlflJlATlON 
OUTPUTS 

DESIGN TREE 

cvJ 

DESIGN 
DOCtlDT 

-tIJOUlES· 

""' 

00 
~::;c 

!e 
o~ 
21'-

~i 
~fII 
~iJ 



-.oO:,!, ... 
OCOcn 
""'0 N 
IV~E. 
0t"~ 
CT~ 

USING DARTS 

DARTS 
USER 
INTERFACE 

DESIGN AIDS 
FOR REAL-TIME 
SYSTEMS (DARTS' 

DATA 
EXTRACTION 

• DISPLAYS 

• TABULATIONS 

DESIGN 
ANAt.YSES 

• DATAFLOW 

• SIMULATION 

• QUALITY METRICS 

DES1GN FEEDBACK 

REPORTS 
DISPLAYS 

00 
"'rI:II 
.,,9 
~z 
0,. 
:or-

°11 C:
D ~ ... 

~iI 



-c=-,", 
°Dlrn 
0"0 N 
--ftC .. -
~E;'~ 

O"!: 

8211C376-6 

DARTS MENUS 

• Primary features 

Darts invocation 
Simulation 
Utilities 

• Secondary features 

Systems management 
Tree management 
Graphics 
Tables 
Analysis 



-0:'1' 
~~ ~ 
"-"!ls. 
t-.» fa 
o E;" ~ 

c:rB: 

ITERATOR 

EXCHANGE 
NODES 

~ 

PROCESS ARCHITECTURE TREE 

XA 1 

co.rONENT. .., 

NOOEID 
NOOENAME 
PREDICATE 

TYPE EO A 

IEQUENCEII 

.UC1O'I 

XC2 

oc ..,x 

~~ 
0> 
~.-

0"'0 C:.. 
~o 
r-1"1 

~iI 

... 



ORIGINAL PA
G

I • 
O

f pO
O

R Q
UALI'I"i 

• 
, .
-
-
-
=
~
=
-
-
-
-
-

; 
I 

I 
. .: .

I
t
 

.n 

L
 

I 
________ ~~--------l 

• J j t f 1 

P. Sotulew
ski 

O
m

l1t:t' Lab 
12 (If 20 



wS?~ 
o ~ [f 
-,Qc t-,);:&," 
o .. ! 

CJ'25: 

8211C376-2 

DARTS AUTOMATED SOFTWARE QUALITY MEASUREMENT 

• Objective measure of software quality 

• US85 Halstead's software science method 

• A~mmodates varying levels of design detail 

• AuMmatic measurements from DARTS data base 



~~!"C' 
o~ ~ --n e 

... -N n 
O~~ 

a> 8: 

8211C376-3 

DARTS THREE COUNTING METHODS 

• Simple 

All nodes are counted the same, and all indata and outdata 
iists are counted 

• Uninterpreted 

Nodes are differentiated as being either functional nodes or 
decision nodes. Data lists an: read accordingly: indata and 
outdata for functional nodes, and predvar lists for decision 
nodes. Each node is couoted separately by node 10 

• Interpreted 

Nodes are counted by name and all tabs are parsed for oper
ators and operands. Data lists are ignored 



O
RIG

INAL 
PAGE' rs 

O
F PO

O
R Q

UALITY 

::-
': 

I 
-, 

I 

-
;.. 

• 
-

J 

/ p, Szulew
ski 

D
raper Lab 

IS of 20 



tt 

O
RIG

INAL PAGE IS 
O

F 
PO

O
R Q

U
A

LITY 

g ) i 
I 

g i z ::J -
:
~
 

I 

'" i 
I 

: 
•
•
•
 ~ 

I 

P. Szulew
ski 

D
raper Lab 

16 of 20 



I 
\
-
-
-
_

_
 • _

_
 -1 

I 
'
)
 

.... 

ORIGINAL 
PAGE II 

O
F PO

O
R Q

U
A

LITY 

P. Szulew
ski 

D
raller Lab 

17 o
f 20 



oc;Si'~ 
o~ ~ -'(l>c: 

~~~ 
C"~

CSDL ** DESIGN-AIDS
FOR REAL-TIME SYSTEMS
HALSTEAD METRIC

COUNTING METHOD:

DISTn~CT OPERATORS

DISTINCT OPEP.A~:OS

TOTAL OPERATORS

TOTAL OPERANDS

VOCABULARY

DESIGN LEt:GTH

ESTIMATED LE~~GTH

PERCEllT OFF

DESIGN \,OLUME

POTENTIAL VOLUME

DESIGU LEVEL

ESTIf1ATEO DESIGtl LEVEL

nnELLIs=tiCE CCNTENT

LANGUAGE LEVEL

EFFO:fT
-- -

DARTS METRIC A(~AL VSIS

TOr-NODE !D:7.2.2.2.4
3 GENERATlm~S
DATABASE IS: TEST
USE~ IS: PAS3132

SIMPLE

3

20

35

55

23

90

91.2

-1.33

407.121

~8.529

0.070

0.2",2

98.696

1.999

5309.715

PAGE 2
DATE: Z4 NOV 1982
TIME: 13:12:14

UNINTERPRETED INTERPRETED

14 24

20 21

31 56

42 49 I
34 45

73 105

139.7 202.3

-91.43 -92.G5

371.3S5 576.645

28.529 250.529

0.077 0.049

0.&68 0.036

25.264 20.594

2.192 1.411 I
I

4834.553 ll655.336 I

00
"TI:O

"'De
02
0> ::ar-
.oJ
~G') r-n
~iI

~S?:-=
'"til C -0 s

~~E.
t..l ~

o~~ :Tz::

•
•
•
•
•
•
•

8211C376-4

DARTS SUMMARY

User friendly

Hierarchical st~cture

Can accommodate reai-tirTie softw~re

Static qual ity analysis

Dynamic analysis

Documentation support

Design traceability

N-"'CI
0:::;'-
O~ ~
"""n>C

~~f
erE:

8211C376-5

• Nearterm

DARTS "FUTURE

Validate existing metrics and add others to DARTS
design quality analysis feature. (This effort is p",
ently under contract to Rome Air Development Center
#F30602-B2-C-0130)

• Long term

Consider DARTS as a part of an integrated software
engiileel'ing support environment

N

PANEL #3

SOFTWARE ERRORS

T. Ostrand /E. Weyuker, Sperry Univac/Courant Institute
E. Solloway/W. Johnson/S. Draper, Yale/University of California
D. Buckland, Reifer Consultants

k

SOFTWARE ZRROR DATA COLLECTION AND CATBOORIZA":ON

Thomas J. Ostrand
Software Technology
Sperry Univao
Blue Hell, PA 1942,

Seventh

Blaine J. Wsyuker
Research	 Courant Institute

New York University
4	 New York, NY 10012

Annual Software Engineering Workshop
Goddard Space Flight Center

December 1, 1982

A study has been made of the software errors detected during

development of an interactive special-purpose editor system. This product

has been followed during nine months of coding, unit testing, function

testing, and system testing. Detected errors and their fixes have been

described by testers and debuggers. To help analyze the relationship of

error characteristics to the various aspects of the software development

process, a new error categorization scheme has been developed. Within this

scheme, 174 errors were classified. For each error, we asked the

programmers to select the most likely cause of the error, report the stage

of the software development cycle in which the error was created and first

noticed, and the circumstances of its detection and isolation, including

time required, techniques tried, and successful techniques.

The programmers were also asked to give a written description of the

error, its symptoms, and its correction. The new error categorization

scheme was developed from these descriptions. Four generic attributes or

dimensions of software errors were identified; an error is classified by

assigning it a value for each dimension. The four dimensions and their

possible values reflect the specific errors studied for this project. As

the study is extended to development projects producing different typeb of

software and different types of errors, the dimensions and their values will

be extended as needed.	 T. Ostrand
Univac
1 of 33

k

The four present error dimensions are:

• Major Category - a broad description of the error, identifying
the type of code that wao changed to make the correction.
The seven mayor categories into which errors from the
interactive editor have been put are:

jai Definition Code that defines constants, storage areas, control
codes, transfer tables, eta.

JAi Handling Code that modifies or initializes the values of
variables.

Decision Code that evaluates a condition and branches according
to the result.

Decision j1W Code that evaluates a condition and performs a specific
Processing computation if the condition is satisfied.

Documentation Written description of the product.
System M error external to the program itself, including

operating system, compiler, hardware, etc.
JBLt&a Error Problem reports that are resolved without changing any

part of the system or product.

s Type - more specific information modifying
the mayor category.

• Presence - whether the error involves omitted,
superfluous, or incorrect code.

• Use - whether the error involves an initialization,
update, or setting of data.

The interactive editor system is a small project; three programmers

spent about two person-years in its development and testing. The source

code consists of about 9000 lines of high-level language, and 1000 assembler

instructions. Obviously, this small size and the limited number of

programmers prevent us from drawing any far-reaching conclusions from the

error data. We view this study as a pilot effort whose primary results have

been the experience gained in collecting software error data, creation of

the error categorization scheme, and the formation of a number of hypotheses

about software development and validation methods.

The experience will be applied to future or . ,r studies, which are

planned on other software projects. The categorization scheme will be used

to classify the errors reported from these projects, and will be extended
T. Ostrand
Univac
2 of 33

with additional attributes and major categories. The hypotheses will, be

examined in light of the error information collected from these additional

projecti.

Even within the small scope of the data collected from the editor

project, some interesting relationships were observed between an error's

major category on the one hand, and the error's presence and the type of

testing which detected it on the other. Among decision-related errors

(major oategory decision or decision 2JU orocessint), 81% were omitted code
and 19% were incorrect code. For data definition errors, 31% were omissions

and 69% incorrect. Data handling errors were split approximately evenly

between omitted and incorrect code, as was the entire set of errors reported

on. Previous error studies have reported a similar majority of omitted code

errors involving decisions. In five software projects monitored at TAW

[131, decision-related errors of omission ranged from 65% to 96% of all

decision-related errors. In turn, the decision errors were 11% to 36% of

&11 errors. Glass [71 counted 60 "omitted logic" errors out of a total of

200.

At the present time the interactive editor has just been released to

customers; all errors reported to date have been detected during internal

testing activities. A very large majority of these pre-release errors were

isolated and corrected quickly. Less than 1 hour per error was expended to

isolate 79% of the errors and to correct 71%. Within 4 hours, 88% were

isolated and 90% were corrected. These figures are similar to the effort

measured by Weiss [161 and Presson [111.

Since our error collection spanned the entire development process, we

were able to observe substantial differences between the effectiveness of

unit and function testing for detecting some categories of errors. Unit

testing is performed by the software project's original coders, testing
T. Ostrand
Univac
3 of 33

their own modules or procedures. The goal is to find errors affecting the

functional behavior of these individual units. Function testing is

performed on the complete product by a separate testing group. A test plan

is developed from the user manual, and the test oases attempt to execute all

potential user activities with the product. Unit testing detected twice as

many (22 vs. 11) data handling errors as function testing did. Function

testing was more successful on data definition errors (47 to T), decision

errors (20 to 10), and decision plus processing errors (25 to 1).

These figures may reflect an inherent weakness in the ability of unit

testing to detect certain eategoriei of errors. Another possibility,

however, is that unit testing is most successful when errors occur primarily

through programmer failings, and least successful when errors are due to

"high-level" problems such as ambiguous or incomplete specifications. This

interpretation is supported by the programmers' choices of reasons for

errors occuring. The three most commonly cited error causes were protrt^er

_error (68x), noon specifications (13x), and ,clerical (9%). Of the 21 errors

due to poor speeifieatons, only one was detected in unit testing, and

seventeen were detected in function testing.

Errors caused by poor specifications were not only detected later than

the average of all errors; they also required more effort to correct. Only

24% of specification-csused errors were fixed in under 1 hour, 52% in 1 to 4

hours, and 24 % in 4 hours to 1 day and over 1 day. The relatively high

correc +, ion effort for these errors illustrates the common belief that the

cost of correcting an error increases when the error remains in the system

during multiple phases of the development cycle. Page (10], for example,

states that the correction cost approximately doubles as an error enters

each successive phase. These specification -caused errors entered the system

during program design, and remained undetected during coding and unit
T. Ostrand

Univac
4 of 33

testing. In addition, the error fixing effort reported here is only the

time spent by the programmers in constructing fixes, and does not include

the effort expended by an independent tester in detecting the error and

supplying additional diagnostic information. If these were included, the

total correction cost would be even higher.

He ferences

[1) Amory, W. and J . A. Clapp, " A Software Error Classification Methodology",
MTA-2648, Vol. VII, Mitre Corp., Bedford, MA, 30 June 1973.

(2) Baker, W.F., "Software Data Collection and Analysis: A Real -Time System
Project History", RADC-Tn-77-192, Rome Air Development (enter, Griffis AFB,
NY, June 1977.

131 Basili, V.R., "Data Collection Validation and Analysis", Draft Software
Metrics Panel Final Report, ed. A.J. Perlis, F.G. Sayward, and M. Shaw,
Wa3hington, DC, 30 June 1980.

[4) Basili, V.R. and D . M. Weiss, " Analyzing Error Data in the Software
Engineering Laboratory", Fourth Minnowbroc,k Workshop on Software Performance
Evaluation, Blue Mtn. Lake, MY, August 1981.

(5) Basili, V.R., M.V. Zelkowitz, F.E. McGarry, R.W. Reiter, W.F.
Truszkowski, and D.M. Weiss, "The Softw"--^ Engineering Laboratory", Tech.
Report TR-535, U. Maryland Computer Science Center, College Park, MD, May
1977.

[6) Endres, A., "An Analysis of Errors and Their C& uses in System Programs",
TEES Trans. Softw. Zn&., Vci SE-1, June 1975, 140-149.

(7) Glass, A.L., "Persistent britware Errors", I= Trans, Softw• Zpg.,
Vol. SE-7, March 1981, 162-168.

[81 Litecky, C.R. and G.B. Davis, " A Study of Errors, Error-Proneness, and
Error Diagnosis in Cobol", Comm. A0, Vol. 19, January 1976, 33-37.

[91 Mendis, K.S. and M . L. Gollis, "Categorizing and Predicting Errors in
Software Programs", Proe. = AM Computers In Aeroseaee J=., Los
Angeles, October 1979, 300-308.

[10) Page, J., "Evaluating the Effects of an Independent Verification and
Validation Team", Proc. J= ,gnaw Software ,figL Worj ot), Goddard Space
Flight Center, Greenbelt, MD, December 1981.	

T. nstrund
Univac
5 of 33

[11l Presson, P.E., "A Study of Software Errors on Large Aerospace
Projects", pled ,, Nat• Conf• ffi Software Technology AjA Management,,
Alexandria, VA, October 1981

[12] Sehneidewind, N. and H. Hoffman, "An Experiment in Software Error Data
Collection and Analysis", I= Trans, Softw• ZU., Vol SE-5, May 1979,
276-286.

[13] Thayer, T.A., M. Lipow, and E.C. Nelson, SoftwIrg Reliability, TRW
Series of Software Technology, Vol. 2, North-Holland, Amsterdam, 1978.

[14] Thibodeau, R., "The State-of-the-Art in Software Error Data Collection
and Analysis - Final Report", General Research Corp., Huntsville, AL,
Jan. 31, 1978.

[15] Weiss, D.M., "Ev€luating Software Development by Error Analysis: The
Data from the Architecture Research Facility", jL. Systems AD , Software,
Vol. 1, 1979, 57-70.

[16] Weiss, D.M., "Evaluating Software Development b;{ Analysis of Change
Data", Tech. Report TR-1120, U. Maryland Computer Science Center-, Collo r,e

THE VIEWGRAPH MATERIALS

for the

T. OSTRAND/E. WEYUKER PRESENTATION FOLLOW

T. Ostra°.1
Univac
7 of 33

SOFTWARE ERROR DATA COLLECTION

AND CATEGORIZATION

THOMAS OSTRAND
	

ELAINE WEYUKER
SOFTWARE TECHNOLOGY
	

COURANT INSTIi'UTE
SPERRY UNIVAC
	

NEW YORK UNIVERSITY

SEVENTH SOFTWARE ENGINEERING WORKSHOP

GODDARD SPACE FLIGHT CENTER

DECEMSER 1, 1982

T. Ostrand
Univac
8 of 33

PROJECT DESCRIPTION

PURPOSE:	 IMPLEMENT A LANGUAGE-SPECIFIC INTERACTIVE
EDITOR$

FEATURES:	 - TEMPLATES FOR DATA DEFINITIONS AND
CONTROL STRUCTURES

- FORMATTING OF SOURCE CODE,

- DYNAMIC SYNTAX CHECKING

- PROMPTING FOR REQUIRED PROGRAM SECTIONS,

SCHEDULE:	 - SPECIFICATION AVAILABLE 	 11/80

- CODING BEGAN	 4/81

- FUNCTION TESTING BEGAN	 11/81

- SYSTEM TESTING BEGAN 	 4/82

- CUSTOMER TESTING BEGAN	 6/82

- RELEASE	 11/82

T. Ostrand
Univac
9 of 33

PROJECT DESCRIPTION

	

STAFF:	 - 1 FULL TIME. 2 PART-TIME PROGRAMMERS

	

SIZE:	 - SOURCE CODE	 9000 LINES NLL
1000 LINES AL

- OBJECT CODE	 70.000 BYTES

T. Ostrand
Univac
10 of 33

CHANGE INFORMATION COLLECTED FROM PROGRAMMERS

CHECK-OFF INFORMATION

- PROBLEM DETECTION METHODS

- PROBLEM ISOLATION METHODS

- ORIGINAL CODER

- TIME REQUIRED FOR ERROR ISOLATION AND ERROR FIXING

- SIZE OF CHANGE

- WHEN PROBLEM WAS NOTICED

- WHEN PROBLEM WAS CREATED

- WHY DID THE PROBLEM OCCUR

T. Ostrand
Univac
I1 of 33

CHANGE INFORMATION COLLECTED FROM PROGRAMMERS

WRITTEN INFORMATION

- DATES

- NAMES OF CHANGED UNITS

- DESCRIPTIONS OF

• PROBLEM SYMPTOMS

• ACTUAL PROBLEM

• FIX

- OTHER MISCELLANEOUS INFORMATION

T. Ostrand
Univac
12 of 33

i

ERROR CATEGORIZATION METHODS

AMORY & CLAPP	 MITRE

ENDRES
	

IBM DOS SOF1W ARE

THAYER ET AL	 TRW APPLICATIONS

GLASS
	

BOEING APPLICATIONS

CHARACTERISTICS OF THESE METHODS ARE;

- TREE SCHEME FOR CATEGORIZATION

- AMBIGUOUS, OVERLAPPING, INCOMPLETE CATEGORIES

- TOO MANY CATEGORIES

FAILURE TO DISTINGUISH BETWEEN;

• SYMPTOMS OF AN ERROR

• DESCRIPTIVE CHARACTERISTICS OF AN ERROR

• CAUSE OF AN ERROR'S EXISTENCE

T.Ostrand
Univac
13 of 33

ATTRIBUTES IN OUR CURRENT SCHEME

• MAJOR CATEGORY

TYPE

• PR7SENCE

0 USE

T. Ostrand
Univac
14 of 33

ATTRIBUTES

MAJOR CATEGORY

DATA DEFINITION - DEFINE CONSTANTS, STORAGE AREAS, CONTROL
CODES, ETC,

DATA HANDLING 	 - SET, INITIALIZE, OR MODIFY VALUES OF
VARIABLES.

DECISION	 - EVALUATE A CONDITION AND BRANCH ACCORDING

TO THE RESULT.

DECISION $	 - EVALUATE A CONDITION AND PERFORM A

PROCESS	 COMPUTATION.

DOCUMENTATION 	 - DESCRIPTION OF PRODUCT OR CODE

CLERICAL	 - TYPING, HANDWRITING

SYSTEM	 - PROBLEM IN THE ENVIRONMENT EXTERNAL TO

THE PROGRAM AND ITS DOCUMENTATION.

NOT AN ERROR	 - PROBLEM RESOLVED WITHOUT CHANGING THE

PRODUCT OR SYSTEM

T. Ostrand
Univar
15 of 33

ATTRIBUTES

TYPE: MODIFIES THE MAJOR CATEGORY

• FOR ERRORS INVOLVING DATA:

ADDRESS	 -	 IDENTIFIES LOCATION IN MEMORY,
EXAMPLES: ARRAY INDEX, LIST POINTER,

TABLE NAME, OFFSET INTO A

DEFINED STORAGE AREA$

CONTROL. 	 -	 DETERMINES APPROPRIATE FLOW OF CONTROL

DATA	 -	 PRIMARY INFORMATION WHICH IS READ,
WRITTEN, OR PROCESSED#

• FOR ERRORS INVOLVING DECISIONS:

LOOP

MULTIPLE-WAY BRANCH

T. Ostrand
Univac
16 of 33

ATTRIBUTES

PRESENCE:	 CODE WAS

OMITTED	 -	 LEFT OUT

SUPERFLUOUS -	 PRESENT. BUT NOT NEEDED

INCORRECT -	 PRESENT. AND HAD TO BE
CHANGED@

USE: THE TYPE OF OPERATION PERFORMED ON DATA

SET

INITIALIZE

UPDATE

114

T. Ostrand
Univac
17 of 33

~

N

! g
w

-'" u .-..

in

CD
cr:

-
i

(.)
a:

•
w

C

-'

0
-'
c

Z

.... 0 en
CD
.-.. 0 Q

CD
.... '" (.) .. 0
.....

z
c:t

0 E

z --'
Z

Q

-

Z

I&.
w

c

Q

%

'" ~
~

c =

~
Q

;;
~

c:t
z m

§ Do
..

Z

Z

i
i

~
u I!t.

.... I ~ Z

::t
.. a:
1&1
: i-0

I ~

, .

T. O
strand

U
nivac

18 of 33

-C-:l
\0 ::I •

o <:- 0
-,IlO",

() -IN ...
IN §

Co

Major Categories of Non-Clerical Errors

DATA DEFINITION

DATA HANDLING

DECISION

DECISI(,N • PROCESSING

OTHER. UNKNOWN

All ERRORS

.:.:.:.:.:.:.:.:-:.:.:.:.:.:.:.:.:.:.:.:.:-:.:.:.:.:.:.:.:.:.:.:.:.::.:.:.:-:-::.:.:.: .. :.:.:.:.:.:.:.:.::-: .. :·:-:·:·:·:·:·:·:·:·:-:-1 •.........•.•........••...•.••.•.......•..•..••••••.•.. ..•..•.•.•.......••.....•.•••••...•..• -......••. ~- •.••....... ..••.......••.•.. .••......•.•.•.....•..• ~ ...••.•..•...•....•......•••••............•.••••.....

" .. , I .•••..........•...• ,.................. ~

10 20 30

T.J'; 1.". '-UMBER

~ DETECTED IN UNITJESnNG

40

DETECTED IN FUNCTiON TESTING

IjO 60

00 -n:a
.,,§
02
0>
:or-
.0-0
C>
>G)
r-III

~ii

t.J'" -- - --= ~<C
~~:!, - ..
~ ::

c...

Major Categories of Non-Clerical Errors

ALL ERRORS

-,--

r~TA DEFINITION 33

DATA HANDLING 23

DECISION 19

DECISION AND PROCESSING " 20

OTHER & UNKNOWN Os
10 2C 30 40 SU

f'ERCENT

00
-n::r:i

-as
02
O~
zr-
.0-0
c:=
>Q
r-rTi =4_
<ua

IVC::~ -= .
0<'0
-."''''

(') -W ...
W '" = Co

Major Categories of Non-Clerical Errors

ALL ERRORS

DATA DEFINITION

DATA HANDLING

DECISION

DECISION AND PROCESSING

OTHER & UNKNOWN

10 20 30 40 ~

PERCENT

~~ DETECTED IN IINIT TESTING

I
I

00
"'W1 ;;1
." (,,l
C\:)
C ~;
;:0 -

r... "0)
,..- "'";I;

~:. G:>
;:. r::j

=<ti

'"

~~~ 
o :;:'0 .... ~'" ('> .-
IN ... 
IN ~ 

Co 

........., .. 

Major Categories of Non-Clerical Errors 

DATA DEFINITION 

DATA HANDLING 

DECISION 

DECISION AND PROCESSING 

OTHER & UNKNOWN 

All ERRORS 

.............................. ............................... 
I •••••••••••••••••••••••••••••• ............... ~ .............. . , ............................... . 
••••••••• ~ •••••••••••••••••••• l .............................. 
....... ........ ....... ~ ........ ..... " .. ....... 
................ ................. ................. ................. ................. ................. •.....•...•..•.. 

................. 

:::::::::::::::::::::::=:=:::=::::::: 

~ .. ... . ::. l 
~ .. I .~ ... ... 

.,:.:~ 

.. ::.~ ... ... 

~o 20 3CI 

........ ~ I ••••••• ..... ., .. ......... ......... ......... 
••••••••••••••••• Jj 

40 50 

PERCE~T 

~ETECTEC ,.- FUNCTiON TESn~G 

00 .,,::c 
"C; OZ 
O:J:::or-
O." c:> 
:a;.G') 
.-1'11 
=i_ 
<CIa 



~~~ 
o ==-o -."'''' (') -W ;
w ::s

Co

Error Presence Attribute for
Each Major Category

NUMBER OF ERRORS
IN THIS CATEGORY

PERCENT OF ERRORS
WHICH WERE
INCORRECT CODE

PERCENT
OMmEDCODE

PERCENT
SUPERFLUOUS CODE

DATA
DEFINITION

54

69%

D
31%

L __ . __]

DATA
HANDLING

38

50%

I I L..

45%

n
5%

OECISIO"4 PLUS
DECiSiON P'!CCESSING

31 3~
00
""~
"'ti ::-l o .,.
05:;
::;jr-

35%
.0-0

I I c:: ;.., 3". ;PG)
r-J'Z1
=i_

a7"!. -<C4
I I

e.1;%

11
I _ I

NC'"'i
~= .
c <'0
-.~."

o -w ... w ~ = Co

Error Isolation Effort

ALL ERRORS

UNKNOWN 112

MORE THAN 1 DAY I 18

4 HOURS TO 1 DAY [13
1 TO 4 ItC~P.S 9

lESS THAN 1 HOUR I 79

16 20 30 ~fJ 50 60 10 eo

PERCENT OF ERRORS ISOLATED IN GIVEN nME

I 00

I
.,,:;0

~~

I
~f::
.0'" cl" J>" I r-r.'I

I =I_
• -<en

f
I

J
90 100

~s=~
0<"0
...,11>",

(') ...
IN ...
IN II> :::

Co

Error Isolation Effort

ALL ERRORS

UNKNOWN

MORE THAN 1 DAY

4 HOURS TO 1 DAY

1 T04HOURS

LESS THAN 1 HOUR

10 20 3G 40 sa 60 70 10 80 100

PERCENT OF ERRORS ISOLATED IN GIVEN TIME

~ ERRORS DETECTED IN UNIT TESTING

00
..,.;0

.,,~
07-
O~ ;or-

O" c:>
~c::
r-rri

~ii3

NC::~
0\:3 •
0:;:"0
-,1»",

oW ...
W II>

:3
Clo

..........

Error Isolation Effort

UNKNOWN

MORE THAN 1 DAY

4 HOURS TO 1 DAY

1 T04HOURS

LESS THAN 1 HOUR

......
~

... ,

ALL ERRORS

...................................... ~~-............................... , .. ".......•... _ _ _ _ rn w w .. ~ ~

... ····················I·~··•• .•.•.•.•............•...................•......••...•..•..•...•.....•......•...•.•.........• ~ ...•.......... ~ .••.......•.•. ~ .•...•.•..•.••.........•....•. ~•..........•.•...•..........•...•....••... ...•..•.•....•.•....•...........•.•...•..•.•.••..•....... •.•.•.... ... ~. ~-~.:

10 20 30 .to 50 ~ 7G !II

PERCENT O!= ERRORS ISOLATEC IN G:~EN nilE

ERR\)RS DETECTED IN FUNCTION TESTING

10 100

00
..... :D

~e
0

2
:DE!
0'"
C~
~n
r-~
=4 ...
-<: ~t.!

~

~~~ 
o :;r 0 
-,"'r.n 

(') -\oJ .... 
\oJ '" ::s 

0. 

Error Isolation Effort 

ALL ERRORS 

UNKNOWN 

MORE THAN 1 DAY 

4 HOURS TO 1 DAY 

1 T04HOURS 

LESS THAN 1 HOUR 

10 20 ~ 40 SG 60 :ro eo 

PERCENT OF ERRORS iSuLATED IN GIVEN TIME 

trG1w\,j~'®ltD ERRORS DUE .0 POOR S~ECIFJC_TtmlS 

90 100 

00 
.... :;:0 

"'DQ Oz 
O;b 
::Or-

.:'; "0 
...= .)1 e ~~ . '. 
~ 8"2 . , 
--. -Iof 

-- ._ ......... ...-..- . -........ 

1 



~S:;J 
o :::- 0 ...... '" nIN ... 
IN ~ 

Q. 

Error Fixing Effort 

UNKNOWN 

MORE THAN 1 DJ., Y 

4 HOURS TO 1 DAY 6 

1 T04HOURS 

LESS THAN 1 HOUR I 
I 

10 

ALL ERRORS 

I 
I 

I 
i 
I , 
i 

I;~~ .. ~ 
20 30 40 :;u fO 70 eo 80 100 

PERCENT OF ERRORS FIXED I .. GIVEN TIME 

00 
"':xI 
",e 
OZ' 
0> 
:Dr-

~~ >G) 
r-r.'I 
=1_ 
<w 



" c: -oJ :so 
0<"0 -.m", 
w n ::;w ... :s 

Q. 

Error Fixing Effort 

ALL ERRORS 

UNKNOWN 

MORE THAN 1 DAY 

4 HOURS TO 1 DAY 

1 T04HOURS 
I 

LESS THAN 1 HOUR 

10 20 30 4R 5U 6U 10 10 eo 100 

PERCENT CF ERRORS FIXED ,tf ";IVEN TIME 

~ EiiilORS DETECTED IN UNIT TESTING 

00 
"';:u ."e 
O~ 
0> :or-
.0" c::> 
:r> ;:) 
r- I'll 

~Ci 



WC::~ 
0:= • 
o ~.~ -n_ 
~ ... 
w § 

Q. 

.-. 

Error Fixing Effort 

UNKNOWN 

MORE Tti"N i uAY 

4 HOURS TO 1 DAY 

1 T04HOU!I~ 

LESS THAN 1 HOUP. 

ALL ERRORS 

.....•.••.•••..• ................. 
t:::::::::::::::::::::::::::::::::' 

f..:~ •• 
• ••• 1 ..... .• ·.1 ..... 
•••• 1 .... 

.......•••.•.•............ ~ ..........................................................• ... -..... ~ ..................... ~ ........................... . ......•.•.....•..•.•....•..••••....••.••••..•.••••.•..•.••• ~ .................................. -... : .................... . 
••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• j .....•..•...•....•..•.....•.•.•.•.•.•.•.•.•.•.••..•.•...•.•. .....•..•......•.•......•.•.•.•...•...•...•.••.•......•..•• 

10 20 30 40 50 10 70 10 

PERCENT OF ERRORS FIXED IN GIVEN nME 

ERRORS DETECTED IN FUNCTION TESTING 

10 100 

00 
~:a 

"S oS! 
0» ::ar-
C" c» 
>Q 
r-PI 

~iS 



wc:~ ..... = .. 
0<0 -,11> ... 

nw .. w II> = Co 

Error Fixing Effort 

All ERRORS 

UNKNOWN 

r 
r-

MORE THAN 1 DAY -
~~.l 

4 HOURS TO 1 DAv ;~. 

••• ;?;-w-'~~ 

1 T04HOURS 

lESS THAN 1 HOIJR 
I. .. ~. ".", '~.>~" 

I 
10 20 30 40 50 a 10 10 

PERCENT OF ERRORS FIXED IN GIVEN nME 

r;:,,;,". ..' -] ERRORS DUE TO POOR SPECIFICATIONS 

10 100 

~g 
~;;; 
O~ 
O~ 
:0.-

to'1l 
C:l:i 
~O 
r- Ira 
=i ... 
-<CIJ 



SUMMARY OF RESULTS

- UNIT TESTING DETECTS DATA HANDLING 	 :OURS WELL,

FUNCTION TESTING DETECTS DECISION-RELATED ERRORS

AND DATA DEFINITION ERRORS WELL#

LARGE MAJORITY OF DECISION-RELATED ERRORS ARE

OMISSIONS. (AGREES WITH PRIOR STUDIES).

MOST ERRORS DETECTED BEFORE RELEASE ARE 751)1.,ATED

AND CORRECTED WITH LITTLE EFFORT. (AGREES WITH

WEISS AND PRESSON)l

SPECIFICATION-CAUSED ERRORS ARE MORE DIFFICULT TO

CORRECT THAN OTHERS

T. Ostrand
Univac
32 of 33



CONCLUSIONS OR HYPOTHESES

MULTI-DIMENSIONAL ERROR CATEGORIZATION SCHEME IS

EASIER TO USE AND MORE USEFUL FOR APPLICATIONS THAN

TRADITIONAL TREE SCHEMES.

CODE COVERAGE IS UNSATISFACTORY AS A BASIS FOR TEST

CASE GENERATION AND AS A MEANS OF ASSESSING TEST

ADEQUACY, BECAUSE OF THE LARGE NUMBER OF ERRORS IN-

VOLVING OMITTED CODE.

UNIT TESTING IS AN INHERENTLY WEAK METHOD FOR DETEC-

TION OF ERRORS CAUSED BY POOR SPECIFICATIONS.

-- EFFORT SPENT IN PRODUCING HIGH-QUALITY SPECIFICATIONS

WILL SUBSTANTIALLY REDUCE THE COST OF CORRECTING

SOFTWARE,

T. Ostrand

C

	

	
Un1Vac
33 of 33

t

	 a

F

	
5

i



Classifying Bugs Is a Tricky Businer 
N$3

W. ' -is Johnson *
St Y hey. Draper**
Eliot :,,jloway *

i

32365

* Department of Computer Science
Yale University
P.O. Box 2158

New Haven, Connecticut 08520

* * Institute for Cognitive Science
University of California, San Diego Mail Code C015

La Jolla, California

1. Context: Motivation and Goalal
About 2 years ago we decided to build a computer-based programming tutor to help students

learn to program in Pascal; we wanted the system to identify the non-syntactic bugs in a
student's program and tutor the student with respect to the misconceptions that might have

given rise to the bugs. The emphasis was on the system understanding what the student did and

did not understand; we felt that simply telling the student that there was a bug in line 14 was
not sufficient --- since oftentimes the bug in line 14 was really caused by a whole series of

conceptual errors that could not be localized to a specific line in the program. However, in order
to design the system we needed to know what bugs students did make in their programs and

what misconceptions they typically labored under. On the basis of bug types found in a number

of pencil-and-paper studies with student programmers (novices, intermediates, and advanced)
(9, 10), we built and classroom tested a first version of such a programming tutor [11]. In the

proceb& of testing that system we instrumented the operating system on a CYBER 175 to

automatically collect a copy of each syntactically correct program the student programmers
attempted to execute while sitting at the terminal; we call this form of data "on-line protocols".

We collected such protocols on 204 students for an entire semester (7 programming assignments).

We have systematically analyzed only a small portion of these data: the basis for this paper is
the hand analysis of the first syntactically correct program that students generated for their first

looping assignment, 2 i.e., 204 programs.

'This work was co-sponsored by the Personnel and Training Research Groups, Psychological Sciences
Division, Office of Naval Research and the Army Research Institute for the Behavioral and Social Sciences,
Contract No. N00014-82-K-0714, Contract Authority Identification Number, Nr 154-492. Approved for
public release; distribution unlimited. Reproduction in whole or part is permitted for any purpose of the
United States Government.

E. Soloway
Yale
1of18

2This problem is given in Figure 8, which will be discussed in section 4.



The story we tell in this paper deals with our experiences in analyzing these 204 on-line

protocols. In particular, we will describe the observations we made in trying to build a bug

classification scheme; the actual details of what bugs we found, their frequency, etc. can be found

in (5J. The key observation is the following: while one might think that building a classification

scheme for the bugs would be straightforward, it turns out not to be so simple; in fact, we will

argue that:

Bugs cannot be uniquely described on the be-os of features of the buggy program alone, one
must also take the programmer's intentions ai :i knowledge state into account.

2. A Simplified Example
Consider the problem statement in Figure 1, which is a simplified version of the first looping

problem that the students in our study had to solve in Pascal. From a novice's perspective the

difficult part of this problem is making sure that the negative inputs are filtered out before they

are processed. There are two common approaches to solving this type of problem in an Algol-like

language such as Pascal. In Figure 2 we depict a solution in which a negative input causes

execution of one branch of a conditional, while a nvu-negative input causes execution of the

major computation of the loop. We call this type of structure a Skip-guard Plan:3 a
conditional statement is used to guard the main computation from illegal values. Notice that one

pass through the loop will be made for each input value. The second approach is given in Figure

3; here an embedded loop filters out the illegal values. Notice that one pass through the outside
loop will be made for each --- and only each --- legal value. We call the nested loop structure an
Embedded Filter Loop Plan.

Write a program that reads in integers, that represent the daily rainfall in the New Haven area,
and computes the average daily rainfall for the input values. If the input is a negative number, do
not count this value in the average, and prompt the user to input another, legal value. Stop
reading when 99999 is input; this is a sentinel value and should not be used in the average
calculation.

Figure l: Simplified Looping Problem

Now consider the buggy program in Figure 4. The problem with this program is that if the

user first types a negative input, and then types the sentinel value 99999, this value will

--- incorrectly --- be processed as a legitimate value. A number of questions come to mind:

1. How should we classify this bug?

2. What piece of code is to blame?

3. What mental error on the student's part might have caused this bug?

3See 18, 3, 91for a more complete discussion of programming plans.

E. Soloway
Yale
2 of 18



ORIGINAL PAGC IS
I ...

AINFALL)	

OF 
Poor? QUALITY

WHILE RAINFALL <> 99999 DO

BEGIN

IF RAINFALL < 0

THEN

WRITELN('BAD INPUT, TRY AGAIN')

ELSE

BEGIN

TOTAL := TOTAL + RAINFFAIL;

DAYS := DAYS + 1;

END;

READ(RAINFALL);

END;

Figure 2: Using a Skip-Guard Plan

READ(RAINFALL)

WHILE RAINFALL <> 99999 DO

BEGIN

WHILE RAINFALL < 0 DO

BEGIN

WRITELN('BAD INPUT, TRY AGAIN');

READ(RAINFALL)

END;

IF RAINFALL <> 99999 'THEN

BEGIN

TOTAL := TOTAL + RAINFALL;

DAYS := DAYS + 1;

READ(RAINFALL)

END;

END;

Figure 3: Using an Embedded Filter Loop Flan

d. What piece of code should we change to make the program correct?

In order to answer these questions, however, we need to answer another one first:

What programming approach was the user trying to implement? That is, did the student intend
to implement the skip-guard plan or did he try to implement the embedded filter loop
plan?

Answers to the first A questions will be different depending on how we answer this last question.

We will continue this example by presenting first an argument that supports the choice of the

skip-guard plan, and then an argument that supports the choice of the embedded filter
C. Soloway

Yale

3 of 18



ORIGINAL PAGE 18
OF POOR QUALITY

READ(RAINFALL)

WHILE RAINFALL <> 00090 DO

BEGIN

WHILE RAINFALL < 0 DO

BEGIN

WRITELN('BAD INPUT, TRY AGAIN');

READ(RAINFALL)

END;

TOTAL : s TOTAL • RAINFALL;
DAYS := DAYS • 1;

READ(RAINFALL)

END;

Figure 4s Sample Buggy Program

loop plan; we will then describe a basis for making a choice between the two competing

positions. Consider, then, Figure b in which we depict the buggy program again, plus a

generalized, template version of the skip-guard plan. We can describe the buggy program in

terms of a difference description between it and the generalized plan. As shown in Figure b,

there are 3 differences:

1. need an IF instead of a WHILE insides the loop,

2. have an extra read inside the loop,

3. will always execute the processing steps since there is no way to skip around the
processing.

The first difference is a plausible bug for a novice to make; in our examination of novice

programs we have seen novices confuse IF and WHILE: students sometimes construct a loop with

simply an IF, and sometimes they use just the test part of the WHILE statement 4 12, 6).

Similarly, the second difference is also plausible for novices; again, we have found that novices

often add bits of spurious code, oftentimes attempting to mimic the redundancy they omen use in

formulating plans and actions in the real world. Finally, if we assume that the programmer

really meant to simply test RAINFALL, then all that is missing is an ELSE to cause the skip

around the computation; novices notoriously have trouble with the ELSE parts of conditionals.

Thus, the buggy code in Figure 5 is not that different from the skip-guard plan; when

considering differences from only this plan it is entirely conceivable that the novice

programmer was trying to implement this plan in his code.

"While tb3e may seem strange to us as expert programmers, if we take a moment to reflect, we can see that using
WHILE for a conditional and a loop, and IF for only the conditional part is somewhat arbitrary, given their meanings
in English.

E. Soloway
Yale
4of18



ORIGINW.
OF POOR

d

READ(RAINFALL)

WHILE RAINFALL <> 09000 DO

BEGIN

WHILE RAINFALL < 0 DO

BEGIN

WRITELN C BAD INPUT,

READ(RAINFALL)

r	 END;

TOTAL := TOTAL * RAINFALL;

DAYS := DAYS * 1;

f	 READ(RAINFALL)

END;

Skip•Cuard Ran

IF  <min

THEN
TRY AGAIN');	 BEGIN

print error message

END
ELSE

BEWN
process Input

END

BUG DESCRIPTION:

1. need an IF instead of a WHILE

2. have an extra READ in inner loop

3. missing ELSE; orocessing of input

will never be sk;pped

Figure 5: Bug Description Assuming Skip-Guard Plan

Now consider !F igure 4 in which we again depict the buggy program. This time, however, we

show differences between it and a generalized, template version of an embedded filter loop
plan. Notice that the code matches the plan well; the only bug is a missing guard before the

code that processes the input: the running total update and the counter update must be

protected from including a sentinel value in the computation.

The analysis in Figures 5 and 6 would lead to different answers to the first 4 questions above.

For example, if we believe that the analysis in Figure 5 is correct, we might say the following to

the student:5

It seems that you are having some trouble with conditional statements. For example, did you
realize that there exists a statement called IF that allows you to test ....

To correct your program, you might want to add an ELSE clause...

Moreover, we would classify the bugs as an (1) incorrect statement type, (2) spurious read, (3)

missing ELSE. On the, other hand, if we believe that the analysis in Figure 6 is correct, then we

5We do not want to argue about the best pedagogical strategy for interacting with the student; that in itself is a
very difficult question. The particular response shown is simply meant to illustrate one type of response to this
situation.	 E. Soloway

Yale

t
	 5of18

f



ORIGINAL PAGE IS
OF POOR QUALITY

READ(RAINFALL)

WHILE RAINFALL <> 00000 DO

BEGIN

WHILE RAINFALL < 0 DO

BEGIN

WRITELN('BAD INPUT,

READ(RAINFALL)

END;

TOTAL := TOTAL + RAINFALL;

DAYS := DAYS + 1;

READ(RAINFALL)

END;

Embedded Miter Loop Fran

WHILE x < min DO
BEGIN

print error message

TRY AGAIN');
	

READ x
END

sentinel guard plan

process input

BUG DESCRIPTION:

1. missing conditional (guard) on

processing the input

Figure 6: Bug Description Assuming Embedded Filter Loop Plan

might say something like the following to the student:

You should notke if the sentinel value follows the input of a negative value that your program
will compute an incorrect average. ....

The bug type then might be a missing guard (conditional) plan.

By this time the reader's intuition is surely saying that the correct analysis of the buggy

program in Figure 4 is that the programmer intended to implement an embedded filter loop
plan. Vie bug counts (3 for the skip-guard plan and 1 for the embedded filter loop
plan) provide quantitative support for this decision. However, we feel that the key in the

decision process --- and the basis for our intuition --- is our understanding of the student's

program provided by the plan analysis in Figure 5: thus, the bug categorization and bug count

follow from our understanding of the program --- and not the other way around. We purposely

choose an example over which there would be little controversy. However, the point was (1) to

show how much reasoning we often do about programs implicitly, and (2) to show how different

bug categorization and bug counts could be as a function of choice of intended underlying plan.

While the above decision was relatively clear, let us perturb the buggy code a bit further and

see how murky these type of decisions can --- and do --- become. In Figure 7 we show three

buggy program fragments; let us compare the bug categorization and bug counts using the two

F. Soloway
Yale
6 of 18



r

k

4

ORIC'MIAL PAC2 IS'

alternative plans for each of the programs. OF P00R QUALITY

• Figure 7a
► Using the embedded filter loop plan we get the following bug differences:

1. the WHILE and IF keywords have been interchanged

2. there is a missing read for a new value

3. there is a missing guard on the subsequent input processing
3

► Using the skip-guard plan we get the following bug differences:

1. missing ELSE on the internal IF	 !
3

• Figure 7b

► Using the embedded filter loop plan we get the following bug differences:

1. the WHILE and IF keywords have been interchanged

2. there is a missing guard on the subsequent input processing
► Using the skip-guard plan we get the following bug differences:

1. spurious READ

2. missing ELSE on the internal IF

• Figure 7c
► Using the embedded filter loop plan we get the following bug differences:

1. missing read for a new value

2. there is a missing guard on the subsequent input processing
► Using the skip-guard plan we get the following bug differences:

1. the WHILE and IF keywords have been interchanged

2. missing ELSE on the internal IF

We would argue that the programmer of the code in Figure 7a intended to encode a
skip-guard plan: again, the bug counts (3 for the embedded filter loop plan and 1 for the
skip-guard plan) support the intuition that it is more plausible that the programmer simply
left out an ELSE, as opposed to swapping keywords, etc. However, the code in Figures 7b and c

are not so easily analyzed: the bug counts are the same and the plausibility of the bug types are
reasonably similar. In order to make a reasoned decision we need to bring other evidence from
the program to bear. For example, in Figure 7b the programmer used a WHILE loop to correctly

implement the outer loop; this is some evidence that he understands how and when to use this

construct. Thus, we might be confident that the programmer really meant IF in the program in
Figure 7b. On the other hand, the inclusion of the spurious READ is unsettling. However, the

program in Figure 7c is certainly the most problematic: the bug counts are the same, the

plausibility of the bugs are similar, and the additional outside information is equivocal. The
moral of this program is that it can be exceedingly difficult to make decisions about plans -- and

bugs --- by simply looking at the code.

The point of these latter examples is to illustrate how quickly the decision about what the
E. Soloway
Yale
7of18



r

ORIGI IN (L PAGE NJ
OF POOR QUALITY

AF A t, IFAIWALI )
WHILE RAINFALL c > 99999 DO

PE,,IN
IF RAINFALL < 0 THEN

WkITI M 'LAD INPUT.
TOTAL	 T('TAL • RAINFALL,
El y"	 DAYS • 1
AJAL(RAIV ALL)

END

READ(RAINFALL)
WHILE RAINFALL <> 99199 DO

MIN
IF RAINFALL < 0 THEN

TRY AGAIN') 	 IEGIN
WRITEIN('9AD INPUT, TRY AGAIN'),
READ(RAINFALL).

END,
TOTAL n TOTAL • RAINFALL,
DAYS n DAYS • 1,
READ(RAINFALL)

END,

C

READ(RAINFALL)
WHILE RAINFALL <> 99999 DO

BEGIN
WHILE RAINFALL < 0 DO

WRITELN('BAD INPUT, TRY AGAIN'),
TOTAL t TOTAL # RAINFALL,
DAYS	 - DAYS • 1,
READ(RAINFALL)

END.

Figure 7: Clouding the Waters: Additional Buggy Programs

programmer intended gets murky, and how additional information outside the buggy area needs

to be brought to bear. We see again that for the programs in Figure ^' the bug categorization

and bug frequencies change depending on what decision is made about the programmer's

intention.

Finally, the fact that the programs we have shown are noWees' programs is really irrelevant to

the point in question: the problem is that the intention of the programmer effects the bug

categorization and the bug . count. Quite reasonably, we would not expect a professional

programmer to mistake an IF for a WHILE. The observation that we would not expect this

particular confusion would in fact aid us in inferring the intention --- it would not, we believe,

simply make the problem go away. In fact, we might well see buggy code such as Figure 4,

Figure 7 from a professional programmer.

8. Methods for Specifying the Intention of a Program
In the above section, the basis for describing bugs was the difference between a program and

the programming plans that specified a correct program. There are other methods of specifying

the intention of a program:

• 1/0 Behavior	
E. Soloway
Yale
8 of 18

L



• Programming Plans
• Corrected Version of the Buggy Program
• Program Description Language (PDL)

In what followb we will examine each of these in turn, and explore their good points and the bad
points with respect to using a m::thod as a basis for developing bug difference descriptions. 	 j

I/O BEHAVIOR

An 1/0 specification for the problem in Figure 1 would be quite close to the problem statement
itself. The obvious problem with this method is its vagueness with respect to the code: many
different code fragments can misbehave in the same manner (e.g., there we many, many ways to
generating an infinite loop --- but the 1/0 result is the same in all c?ues). One needs to be able
to make finer-grain distinctions than are facilitated by a comparison of the code to simply 1/0
specifications.

PROGRAMMING PLAJS

The major problem with this method is the need to guess what plan the programmer intended
to implement. However, once the decision is made, then describing the bug as a difference
between the plan and the code is relatively easy. One method of coping with the plan decision
problem is interviews with the original prolgammerr; this technique has been used to "valuate"
change report data in several software monitoring projects (e.g., 1121). Unfortunately, in a class
of 200 students writing code at different terminals, interviews, with subjects is a bit more
difficult.

The major benefit derived from building a bug description using this method is an accurate
i

reporting of the cause of the bug. That is, clearly the goal of a bug taxonomy in which one
captures bug type and bug frequency is the ability to pinpoint the sources of the bugs: one
would like to know which bugs came from misunderstandings of the specifications document and
which bugs arose from coding errors, etc. For example, in the previous section if we assumed
that the programmer intended to implement a skip-guard plan then we would say that there
were a number of coding level bugs (e.g., WHILE instead of IF, missing ELSE, spurious READ).
However, if we assume that the programmer intended to implement an embedded filler loop
plan, then the source of the bug may be a problem of specification interpretation: the
programmer may not have thought that someone would ever input the sentinel value after
inputing an illegal (negative) value. Thus he felt no need to guard subsequent computation. (An 	 i
inters%,;w with the programmer would be particularly useful in this specific case.) Thus, bug 	 j
categorization and bug origin is directly influenced by the choice of underlying plan structure in
the buggy program.

CORRECTED VERSION OR THE BUGGY PROGRAM
E. Soloway
Yale
9of18



The typical method of describing a bug is to compare the original buggy program with the

corrected version of that program (e.g., 112, 7, 11). While there is no guessing as to the intention

of the original programmer, we see 2 basic problems with this approach:

• 7be choice of the particular corrected program used sit the measure is relatively
arbitrary. That is, there are few hard guidelines for making changes to code. Thus,
different programmers could well take the same buggy program and correct it in
different ways. This would result is two different bug description --- an intuitively
unsatisfactory situation. Moreover, different bug descriptions could lead to different
conclusions as to the origin of the bugs, which, afterall, is the the point of doing the
bug categorization in the first place. For example, if the buggy program in Figure
4 were corrected by implementing a ship-guard plea, then the difference between
the buggy program and the corrected program would result in a bug description
containing 3 coding level bugs. On the other hand, if the program is corrected by
putting in a guard around the subsequent computation to protect against a sentinel
value, then the bug description would only contain 1 bug, a missing conditional
(guard plan) --- which may or may not be a coding level bug (as discussed above).
While we might prefer the programmer to make the latter change, there is no way to
guarantee this situation.
Interviewing the original programmer might shed some light on his intentions --- and
guide the subsequent bug analysis or even bug correction. However, this additional,
programmer-supplied, information goes beyond the corrected program --- and
approaches a bug description based on the programmers original plan.While we have
some methodological reservations about using interviews collected after the fact,d the
main issue is that information gotten from the interview is of a different sort than the
information gotten from the corrected program --- where the former information is
much more akin to the programming plans described above.

• What is actually counted can be quite problematic. For example, if we correct the
buggy program in Figure 7c by adding the missing ELSE, we also need to add a
BEGIN-END block around the running total update and the counter update. Should
we count this as 1 bug era 2 bugs? It seems unfair to count the BEGIN-END block
against the programmer, since this change is required by the "real" change. On the
other hand, however, in the next section we will show programs in which the "real"
bug is a missing BEGIN-END block. Thus, it is not inconceivable that a programmer
could add the ELSE in Figure 7c, but forget to put in the now necessary BEGIN-END
block. What one counts is a tricky issue.

The upshot of these two problems with categorizing and counting bugs based on a corrected

version of the program was suggested above: one is less confident of the origin- of the bugs, and

thus is less confident about percentages of bugs with those origins. Depending on the particular

corrected solution and the particular choice of counting scheme, one could paint a picture of a

sThe problems with using interview data has received significant attention in psychology. For example, Ericsson
and Simon (4) have argued that one can reliably only use verbal information given by the subject as the eu►fect is
doing the task. T 1y argue that such a concurrent verbal report is effectively an on-line dump from short-term
memory. In contrast, a report after the fact could be a story about what the subject thought he was thinking, and
that significant distortions can occur in this type of situation. While one might arguably feel that the Ericsson and
Simon position is a bit extreme, nonetheless, it seems only prudent to exercise care in interpreting interview data.

E. Soloway
Yale
10 of 18

61—A



program that contained many more coding level errors, my, than specification-based errors. The
worst part of this situation is that we would not have a good way of knowing how right or wrong
this analysis was --- since we don't know how the bug categories and counts would have turned
out if a different corrected version were used as the basis for difference descriptions.

PROGRAM DRICRIPTION LANGUAdi JPDL)

PDL's come in all flavors; some are very close to the code, while others are more high level,
and closer to the plan level description. The former PDL would suffer from the same problems M

using a corrected versions as the standard. The latter type of PDL would suffer from the problems
associated with using the programming plans as the standard.

4. An Extended Example
Let us aow consider an actual example from the on-line protocol data. In Figure 8 we depict

the problem the students were trying to solve; in Figure 9 the program on the left is a buggy
program generated by a stn4ent in our study. If we take a "local view" of the bugs in this
program, we can generate a corrected version as shown in Figure 9 (right hand side). Notice that
if we do a difference description between the corrected and the buggy versions we can come up
with 8 changes:

• The rainyday counter, COUNTI, will he always be updated; in order to correct for
the times when a negative rainfall is input, we need to decrement COUNTI. Thus, (1)
added a begin-end block after (NUM < 0) test, and (2) added a decrement of the
rainyday counter.

• COUNT2 must be made to contain the number of rainy (not just valid) days.
COUNT2 keeps track of the non-rainy valid days in the loop. Thus, we need to
subtract the non-rainy days (COUNT2) from the total valid days (COUNTI) in order
to get the number of rainy days: (a) changed addition of COUNTI and COUNTx to
subtraction of COUNT2 from COUNTI.

• The guard on the average calculation is incorrect. Thus, (4) changed guard on average
calculation to COUNTI.

• The divisor in the average calculation should be the valid day counter, COUNTI, not
the valid, but non-rainy day counter, COUNT2. Thus, (5) changed COUIM to
COUNTI in the divisor of the average calculation.

• If there is no valid input the program should neither calculate the average, nor should
the program print it out --- as well as not printing out the maximum. Thus, (a) added
a login-end block after division guard around average calculation and output
statements.

• The WRITELNs give a message about what should be output; in order to make the
message agree with the actual output, the variables need to be changed: (7) the valid
day counter needs to be COUNTI, while the jS) rainy day counter needs to COUNTS.

Given the number of changes that need to be made to the counters (COUNTI and COUNT2), it
would appear that the student has some confusion over the roles of the two counters.

E. Soloway
Yale
11 of 18

i

L



The Noah FhoNer»: Noah needs to keep tract of the rainfall is the New Naves arcs to determine
whom to launch his ark. Write a program whkh he can one to do this. Your program should read
the rainfall for each day, stopping when Noah types "~, which is not a data value, but a
sentinel indicating the end of input. U the our types is a negative value the program should
reject it, since negative rainfall Is mot possible. Your program #hould print out the number of
valid days typed in, the somber of rainy days, the average rainfall per day over the period, and
the maximum amount of rainfall that fell on any one day.

Figure At The Noah Problem: .A Fint Looping Problem

E. Soloway
Yale
12 of 18



MOW PAGE IS
OF POOR QUALITY

[p

BUGGY IMAMMS
SEOIN

WRITELN (' ►LEASEI INPUT AMOUNT OF RAINFALL'):
AEADLN.

READ ft")
COUNTI • 0.
COUNT2 • 0,
SUN • 0.

HIGHNIM • 0,

WHILE (NUN <> SENTINAL) DO

COIN

IF (NUN )- 0)

THEN

SIN • SUM • NUM:
COATI • owl • 1

IF (M1M > HIGHNUM)

THEN

HIGHNUR • NUM,

IF (NUM • 0

THEN

COUNT2 • COUNT2 • 1:

IF (NUM < 0)

THEN

WRITELN (":LEGAL INPUT, INPUT NEW VALUE'):

READLN,

READ(NUM).

END.
COUNT2 * COUiT9 • COUNTI,
IF (NUM r 0

THEN

TOTAL n SIN/COUNT2.

WRITELN ('AVERAGE RAINFALL WAS ',TOTAL.' INCHES PER DAY'):

WRITELN ('HIGHEST RAINFALL WAS ',HIGHNUM,' INCHES'),

WRITELN (COMM,' VALID DAYS WERE ENTERED').

WRITELN ( COUNTI,' RAINY DAYS IN THIS PERIOD '):

END

00RRRCTM M61014
SEOIN

WRITELN ('►LEASEI INPUT AMOUNT OF RAINFALL'),
IEAOLN:
IEAMMN) :
Cowl so
MUIT2 . n 0:

SUN .• 0,

NIONNUM .• 0:

WNILE (RUN <> SENTINAL) 00

SEOIN

.F (MIN > 0)
TNEN

SUN : n SIN • MAN:
COATI . n COATI • 1.
IF (MIN > NIORNN)
THEN

HIM" : • IAN.
IF (NUM • 0)
THEN

COMT2 • COUNT2 • 1:
IF (NUM c 0)
THEN

Iryln	 ^0841 this tiles 0)
s0ni1 := 0001 • J; / aid this am 0)
WRITELN ( ' ILLEGAL INPUT. INPUT NEW VALUE %

owl	 (0 ON this tint 0)
READLM,

READ(NUI)
Ella.

small :M small • me t;	 (O 4owd this time 0)
IF (small :0 0)	 (0 Ad" d this Nm •J
THEN

we	 (0 did this time 0)
TOTAL n SUM/smalJ; (o Anwill Ohio JiK.+ 0)
WRITELM ('AVERAGE RAINFALL WAS '.TOTAL.' INCHES PER DAY'):

WRITELN ('RICHEST RAINFALL WAS '.HIOHNUM,' INCHES'):

0d;	 (0 add this tint 0)
WRITELN(swmill. VALID DAIS WERE ENTERED'); (O tAsnttdOhio tint 0)
MITELN(Nmalt.' RAINY DAIS IN THIS PERIOD '): ( 0 sAanpdOhio tint 0)
END.

a III added a begin-end block after (NUM a 0) test, and )j added a decrement of the reieyday counter

a (iI changed addition of COUNTI and COUNT2 to svbtractioa of C(XM T2 from CM MTI.

a 141 changed guard on a w rage cslcvlatios to COUNTI

a isI changed COUNT2 to COUNT) in the divisor of the average calcuiatiot

a 161 added a begin-end block after division guard arovsd average calcvlatios and oatpvt statements.

a (7I the valid day counter needs to be COUNTI, mAile the [III rainy day coaster seats to COUNT2.

Figure Ot A Bgrjy Program and a Corrected. 'Version

E. 8oloway
Yale
13 of 18



However, consider now a different corrected version of this buggy program as depicted in

Figure 10. A difference description between the buggy version and the corrected version yields the

following set of bugs:
• We caa make COUNTI only keep track of the rainy days; this is consistent with code

already in the program: the line that adds COUNT2 and COUNTI now makes sense
--- COUNT2 now keeps track of the valid days, and the divisor in the average
calculation suggests that COUNT2 should be the valid day counter. In order to make
COUNTI perform in this manner, we need to (1] add a begin-end pair around all
computation after NUM > 0 test, up to the NUM — 0 test.

• If there is no valid input the program should neither calculate the average, nor should
the program print it out --- as well as not printing out the maximum. Thus, we need
to (z] add a begin-end block after division guard around average calculation and
output statements.

• The guard on the average calculation is incorrect. Thus, (E] changed guard on average
calculation to COUNTI.

Which description should we choose? And why? Nutice that neither of the corrected versions

were that unreasonable. However, it would seem to us that one should choose the second bug

description over the first. The basis for that decision is the hypothesized plan structure
underlying the buggy version: it appears to us that the student was trying to structure the

actions in the main loop in terms of cases. For example, the program explicitly tested for NUM

> 0, NUM = 0, and NUM < 0 and took the appropriate actions --- almost. In. order to make
the case structure wo*k, the code following the NUM > 0 up to the NUM — 0 test should be

grouped together. While one cannot put too much faith in the indentation of a novice's

program ,7 it appii ars that the indentation supports this analysis. Thus, what €s missing from the
main loop is a begin-end pair surrounding the code between the NUM > 0 test and the NUM

0 test. On this analysis, the student does not have a misunderstanding surrounding the two

counters, but rather has a coding level misunderstanding about how to block code together.
Moreover, this same :misunderstanding can explain the lack of a begin-end pair surrounding tht
average calculation in the next two write statements. The reduced bug count in the second

description follows directly from this analysis: in effect there are . my 3 bugs in this program, 2
of which have the same underlying origin.

This example illustrates a point made earlier: the bug categorization and bug count follow
from an understanding of the program that is provided by the hypothesized plan structure of
the program. That is, to understand a buggy program ; one must make inferences about what
plan structure the programmer intended to implement; the program only "makes sense" in terms

of these plan descriptions.

7 W have observed in the on-line protocols that the physical layout rf a student's program suffers as the student
makes changes to his program in the process of debugging it. 	 E. Solowa Y

Yale
14 of 18



ORIGINAL PACE 1.S
OF POOR QUALITY

BUGGY EXAMPLE
BEGIN

VRITELN ('PLEASEi INPUT AMOUNT OF RAINFALL'),

READLN.

READ (NUM),

COUNTI = 0.

COUNT2 = 0,

SUM c 0,

HIGHNUM = 0,

WHILE (NW	 SENTINAL) DO

BEGIN

IF (NUM > 0)

THEN

SUM = SUM + R M,

COUNTI = COUNTI + 1.

IF (NUM > HIGHNUM)

THEN

HIGHNUM = NUM.

IF (NUM = 0)

THEN

COUNT2 = COUNT2 • 1,

IF, (NUN < 0)

THEN

WRITELN ('ILLEGAL INPUT. INPUT NEW VALUE'),

READLN,

READ(NiM).

END,

COUNT2 = COUNT2 • CO.M I,

IF (NUM > 0)

THEN

TOTAL = SUN/COUNT2.
WRITELN ('AVERAGE RAINFALL WAS ',TOTAL,' INCHES PER DAY')

WRITELN ('HIGHEST RAINFALL WAS '.HIGHNUM,' INCHES').

WRITELN (COUNT2.' VALID DAYS WERE ENTERED').

WRITELN (COUNTI.' RAINY DAYS IN THIS PERIOD

END

ANOTHER CORRECTED VERSION
BEGIN

WRITELN ('PLEASEI INPUT NMI nF RAINFALL'),

READLN,

REANNUN),

COUR1 n 0,

COUNT2 : 0,

SUN n 0,

HIGHNUM = 0,

WHILE (NUM c> SENTINAL) DO
BEGIN

IF (NUN ), 0)

THEN

l"in	 (* aN this fine e)
SUN = SUN • NUN,

COUNTI = COUNTI • 1,

IF (NUN > HIGHNUN)

THEN

HIGHNUM z NUM,

ard;	 ($•dd this use e)
IF (NUN = 0)

THEN

COUNT2 = COUNT2 + 1,

IF (NUN < 0)

THEN

WRITELN ('ILLEGAL INPUT, INPUT NEW VALUE').

READLN,

READ(NUM),

END,

COUNT2 = COUNT2 + COUNTI.

IF (ran(# > 0)	 (* chows this tine e)
THEN

lain	 (*add this fine *)
TOTAL = SUN/CDUNT2.

WRITELN ('AVERAGE RAINFALL WAS '.TOTAL.' INCHES PER DAY'),

WRITELN ('HIGHEST RAINFALL WAS ',HIGHNUM,' INCHES'),

end,	 (*add this line •)
WRITELN (COUNT2.' VALID DAYS WERE ENTERED'),

WRITELN (COUNTI,' RAINY DAYS IN THIS PERIOD

END

• 1 1 1 add a begin-en;l pair wound all computatioh after NUM > 0 test, up to the NUM • 0 test
• 121 add a begin-end block rftor division guard around average calculation and output statements

• sa l changed guard on average calculation to COUNTI

Figure 10: A Bugg,gy Program an an Alternative Corrected Version

E. Soloway
Pale
15 of 18



S. Concluding Remarks
We have argued that a bug description is a difference description between the realization and

the intention specification. We have presented a number of techniques for specifying the intention
and have pointed out the problems associated with each type of specification in developing an
accurate picture of bug types and bug frequency. While no technique is without its problems, we
have argued that the understandiug provided by a plan analysis of the buggy program stands a
better chance, as compared to the other techniques, of providing a more accurate categorization
and count of the bugs --- and thus a more accurate reflection of the origins of the bugs.

E. Soloway
Yale
16 of 18



References

1. Basili, V., Perrieone, B. Software Errors and Complexity: An Empirical Investigation. Tech.
Rept. TR-1195, University of Maryland, Dept. of Computer Science, 1982.

9. Bonar, J. Understanding the Novice Programmer. Dissertation, in preparation.

a. Ehrlich, K., Soloway, E. An Empirical Investigation of the Tacit Plan Knowledge in
Programming. in Human Factors in Computer Systems , J. Thomas and M.L. Schneider (Ede.),
Ablex Inc., in press.

4. Eriesse n, A. and Simon, H. "Verbal repork• as data." Psyeholopical Review 87 (1980),
215.251.

b. Johnson, L., Draper, S., Soloway, E. The Nature of Bugs in Novices' Pascal Programs. in
preparation

8. Miller, L. A. "Natural Language Programming: Styles, Strategies, and Contrasts" IBM
Systems Journal 20(1981),184-215.

7. Ostrand, T., Weyuker, E. Collecting and Categorizing Software Error Data in an Industrial
Environment. Tech. Rept. 47, New York University, Dept. of Commputer Science, 1982.

S. Rich, C. Inspection Methods in Programming. Tech. Rept. AI-TR-604, MIT Al Lab, 1981.

9. Soloway, E., Ehrlich, K., Bonar, J., Greenspan, J. What Do Novices Know About
Programming? In A. Badre, B. Shneiderman, Ed., Directions in Human-Computer Interactions,
Ablex, Inc., 1982.

10. Soloway, E., Bonar, J., Ehrlich, K.. Cognitive Strategies and Looping Constructs: An
Empirical Study. Communications of the ACM, in press.

11. Soloway, E., Rubin, E., Woolf, B., Bonar, J., Johnson, L. MENO-I1: An Int,41igent
Programming Tutor. Journal of Computer-Based Instruction, to appear.

18. Weiss, D. Evaluating Software Development By Analysis of Change Data. Tech. Rept.
TR-1120, University of Maryland, Dept. of Computer Science, 1981.

E. Soloway
Yale
17 of 18



THE VIEWGRAPH MATERIALS

for the

W. JOHNSON/S. DRAPER/E. SOLOWAY PRESENTATION

WERE INCORPORATED IN THE PAPER

E. Soloway
Yale
18 of 18



ERROR TAXONOMY

WHAT CAN BE GAINED?

by

D. E. Buckland

Reifer Consultants, Inc.

Dec ember 1 9 1982

3/D

N83 32366

D. Buckland
Reifer Cons.
1 of 28



(MMINAL PAGE IS
OF POOR QUALITY

System development has been and continues to be an evolutionary
process. Technology is rapidly catching up with the science
fiction writers of yesterday. We see some form of computer in
Just about all of our equipment, including cars, watches,
cameras,	 hone appliances, weapons systems, 	 communications
devices, space ships, etc. In the good old days, hardware did it
all. Today more and more capabilities are being fashioned by
some form of software, and computers are becoming smaller, more
powerful and far more complex. We've recognized that, no matter
what our task is, experience is our best teacher. In the field of
system development we'd like to profit not only from our awn
experiences, but also from the experiences of our fellow computer
scientists

In order to , ghiop we need a history of what we've done. We can
accomplish toiu by implementing some of the formal procedures and
documentation requirements from the older, hardware side of the
house. In order to profit from our mistakes, we need to keep
track of what want wrong, and what was done to correct each
situation. One technique used to accomplish this is to implement
an error taxonomy.

Exactly what is an error taxonomy? Simply stated, it is the
classification and quantification of errors. Numerous studies
have been conducted in an attempt to provide quantitative data on
errors that occurred in relatively large systems. 	 The study of
errors is important for the following reasons:

o A major item impacting costs, risks and uncertainty in
system development is the lack of knowledge of what causes
errors, why they occur and how they can be reduced (or at
least located more quickly).	 The development of error data
bases for systems is a step towards the statistical
quantification of error occurrence. Once error occcurrences
can be quantified, steps can be taken to reduce them.

o Identification of relationships between error occurrences,
causes, criticality and time of error occurrence can lead to
improved methods of detecting errors before they become
difficult and costly to correct.

o Reliable error data can be used to measure the impact (both
positive and negative) of modern software development and
validation m`thodologies and tools on quality and
productivity.

o The formal error documentation process forced by error data
collection itself can provide better error control and help
&%sure appropriate corrective actions are taken.

Errors cat, be categorized in a n6iooer of ways. 	 The key is to
define categories that are useful and applicable to 	 the
application. The more common categories are:

U. Buckland
Reifer Cons.
2 of 28



o Time of occurrence 	 ORIGINAL PAGE Ig
o Level of criticality	 OF POOH QUALITY
o Error type
o Time of introduction

The main reason for reporting problems is so that each problem
can be resolved in a timely fashion. During system development
and subsequent use, problems are found and reported regularly.
If a formal reporting process is not used, even in a one man Job,
some problems fall by the wayside, and linger to make themselves
known at same inconvenient time in the future. Programmer X
discovers a problem in programmer Y's code, and with full
intentions of telling him (or her) about it as soon as his test
time is finished, becomes involved in another problem, or runs
off to a meeting, and forgets. Or how many times have we heard
'Such and such doesn't work correctly • with no indication of what
was being done or what was expected? Much time and effort must
then be expended to investigation prior to resolution.

In order to identify and solve problems in a timely fashion, a
clean, simple problem reporting mechanism is required. Using
such a mechanism, problem status reports can be produced that
enable masragement and staff alike to evaluate what is left to be
done, a%sign priorities so that the more painful items are taken
care of first and group similar problems together for expeditious
handling. When problem reports are up to date, test coverage can
be maximised 4y staying clear of known problem areas,
concentrating on new territory and reducing duplication.	 When
thorough problem reports are required, test objectivity increases
because test conditions must be substantiated. 	 The problem
report itself serves as a form of communication between reporter
and resolver, and problem turnaround increases. A careful
analysis of problem status reports can identify weak areas, spot
trends and enable the application of past experiences in the
future.

The	 reporting mechanism must include the filling out and
gathering of problem reports, enable expedient investigation,
archive the resolution and enable problem evaluation. 	 All of
this should be accomplished with a minimum of clerical time. A
key point to remember is to gather enough data at the time so
that information you may need in the future is readily available.

When implementing a problem reporting system, several factors
need to be considered beforehand. The first is to define a
common set of terms so that all involved with the system are
speaking the same language. 	 Establish and publish a list of
keywords, acronyms and abbreviations. 	 Next one should design a
problem reporting form.	 This should be kept to one page and
should make use of checkboxes where practical.	 Plenty of space
should be provided for both the problem symptom and the
resolution.	 Allow for problems to be reported against a
baseline, with all deviations from the baseline noted (patches,
etc.).	 One central point of control should be maintained, where
new prob l ems can be logged open, and resolved problems closed.

D. Buckland
Rcifer Cons.



ORIGINAL PAGE IS
OF POOR QUALITY

This may be as simple as a notebook or as complex as an automated
system.	 Of prime importance is to assure that the system is
flexible and growth oriented. It is much easier to gather data
in real time than to acquire it from the memories of those
involved when the proJec t is completed.

Information on problems is usually collected in serial fashion.
When a problem is discovered, the following is neededt

o Who found the problem? Should a question arise as to the
nature of the bug, facts not included in the report itself,
interpretation of the test, recreation of the problem, etc.,
it will be necessary to speak with the reporter.

o When was this problem found? Recording this date enables
the analyst to arrive at such facts as what phase of the
life cycle this occurred in, how long the problem has been
open and how long it took to resolve, and also to track how
many problems were opened during given phases.

o What happened?	 The reporter should detail the exact
symptoms whenever possible. This includes, but is not
limited to, the system identification, hardware and software
configurations, test case, inputs, test programs, expected
outputs or reactions, etc. There should be enough detail to
enable the programmer to recreate or pinpoint the problem.
Remember, it is entirely possible that one problem can have
several symptoms.

o What was being used? The system the problem occurred on,
along with any test equipment should be identified. This
will enahle the programmer to determine whether the problem
is configuration dependent, or possibly caused by a hardware
failure.

o Is this a reoccurrence of a previously closed problem? This
would indicate that a problem may have occurred in
configuration management, or all of the causes had not yet
been discovered.

o What is the level of criticality? The category must take
into consideration whether or not the problem itself is
mission critical, prevents further checkout of mission
critical areas of the system, will involve a lot of rework
and impact schedule, is cosmetic in nature, etc. The level
of criticality is not always evident when the problem is
originally reported, but may change as investigation reveals
the mitigating conditions.

When	 a problem is resolved,	 the	 appropriate	 historical
information should be recorded.	 Analysts will need to knows

o Why did it fail?	 The clinical reasons for the failure must
be recorded.	 The modules and interfaces involved should be
noted.	 The exact cause should be given, whether it was an

D. Buckland
Reifer Cons.
4 of 28



ORIGINAL PA(3r IS
OF POOR QUALITY

error or oversight in the requirements, a design failurep
coding error, test error, human operation fault, etc. This
information will allow the analyst to identify error trends
and weak areas, and suggest recovery actions.

c What was the solution? Exactly what was done to resolve the
problem? This might be to correct a piece of documentation,
revise the codep or even do nothing at all.	 Depending on
when a problem is found, it is sometimes more costly and
more risky  to fix it than to work around it.

o Who supplied the resolution? Should questions arise in the
future, this is the person to whom they will be directed.

c When was it closed? The presence of this date indicates
that the problem is not active, and will not be included in
the 'current open • count. It also enables time information
to be extracted.

During the time that a problem is open, it may prove helpful to
give it a status, such as new, patchedg reported fixed on a
certain baseline, retry, recreate d revised, etc. These can
indicate to those using the report actions that need to be taken
to close the problem. For instances a problem that is
categorized as criticalp but has not been reproducible, would
carry a recreate status to indicate that the programmer wishes to
be informed immediately when the problem re-occurs. Or a problem
reported as fixed on a given baseline should be validated prior
to its being officially closed.

this fine datag
share with you a
Inc. of errors
the Deep Space
the Deep Space

Now that we have the ability to collect all of
what can it tell us?	 Ely way of exampi •, lot me
study that was conducted by Reifer Consultants,
reported during the development and use of
Network/3 in preparation for the development of
Network./4.

The problem reports for this program were initially meant to
indicate to the programmers that a problem existed, and not much
more. In preparation for this study, a team of analysts
evaluated existing taxonomiesp and with a little embellishment,
developed a taxonomy applicable to this JPL project. 	 A three
dimensional	 classification	 scheme was devised to 	 capture
meaningful error data in a manner suitable for additional
statistical and trend analysis.	 Each of the dimensions is
summarized below:

C Time pd prriirpanra - Defines in which of the four DSN phases
of the software life cycle the error occurred. 	 The four
times were:	 Development,	 Verification,	 Acceptance or
Transfer.

ro C-11ici1i1,e - Defined in which level of severity the error
could be categorized.	 The three levels of sr^erity wares
Crit ical , Dangerous and Minor.	 D. Buckland

i	 Reifer Cons.
5 of 28



QRIGIN n L PAGE HS
Or POOR QUALITY

	o Catagoeye - 4':ategorized the cause of the error.	 The ten
error typ.s worts Computation, Logic, Data handling,
Interface, Data base, Operation, Requirement% incorrect,
Design, Clerical and other.

(Because it is important to precisely define terminology, I have
enclosed a detailed description of the taxonomy as an appendix to
this paper.)

The same team of analysts then analyzed approximately 1808
problem reports,	 and interviewed people involved with the
projects in an attempt to fill in the blanks. Using the DSWRCI
softwareerror taxonomy, each problem report was categorized in
terms of its category, criticality and time of occurrence.

A preliminary analysis of the resulting data base was performed.
Summaries of the data were compiled and evaluated so that
recommendations for improvement could be formulated. Hittograms
were used to idtnti*y apparent trends and conclusions without
resorting to a detailed statistical analysis. 	 The histograms
combine errot data W Din accuracy range of plus or minus 1%.
Three histogr,^s fcl1ow along with a 	 discussion	 of	 the
observations.	 To simplify the graphs, the common abbreviations
listed in Table i wore used.

Table 1
ABBREVIATIONS/ACRONYMS

o Time of Occurrence

D - Development - design, coding and unit test
V - Verification - integration and testing of subsystem
A - Acceptance - Formal testing and acceptance of subsystem
T - Transf Bred - software subsystem operationai
U - Unknown

o Criticality Levels

A - Critical	 C - Minor
8 - Dangerous	 U - Unknown

o Error Category

CO - Computational Error OP - Operation Error
LO - Logic Error RI - Requirements Incorrect
DH - Data Handling Error DE - Design Error
IN - Interface Error CL - Clerical Error
D8 - Data Base Error OT - Other

D. Buckland
Reifer Cons.
6 of 28



OF POOR QUALITY

A histogram illustrating errors by time of occurrence (Figure 1)
was produced. The undefii._d time occurrences resulted from
problem reports which hod no time of occurrence and for which no
time of occurrence cotild be ascertained. The observations we can
make based on this histogram are as foilowso

o The data seems to indicate that formal problem reporting
procedures were not strictly enforced during the development
of most of the subsystems investigated by this study.

o The software verification and acceptance testing processes
uncovered a large number of errors. Unfortunately, there
were still many more errors not discovered until the
subsystem was placed in operation.

The next histogram (Figure 2) illustrates errors by criticality
level for each of the three criticality indices. An additional U
classification was included to identify anomalies for which no
criticality level could be ascertained. The observations we can
make based upon this histogram are as fol 1 owst

o level 8 errors were in the majority. Although work &rounds
could be devAsed, such a large number of errors makes
existing quality assurance practices suspect.

o A large number of level A errors were identified. Critical
errors of such a large proportion immediately call attention
to review procedures and testing approaches used during
de%-e 1 opmen t .

The next histogram (Figure 3) illustrates criticality level by
error category.	 An additional classification, "questionable*,
consists of • ether O Problem reports for which no change was
generated,	 TP ivse "1 qu r s 1 x on bl e • errors were the subset of
• other • '̂ 'Il fors ..a:ich racui ted from documentation	 requests,
gripes,	 rd sunderstandings,	 politics and potential hardware
failures.	 The observations we can make based on this histogram
are as fol 1 owsi

o Design errors seemed to cause a large number of critical
errors. This provided us with further evidence of the need
to investigate earlier detection of design errors.

o Data handling errors were also a cause of a large number of
critical errors.

o Surprisingly, 'other • errors contributed a large number of
critical errors. This could be attributed to the user who
could not operate or understand operational anomalies and
categorized them as critical to get immediate attention.
This data mciphl,sized the need to revamp the existing problem
reporting procedure and to investigate ways of improving the
man/machine interface.	 D. Buckland

Reifer Cons.
7 of 28

L



OR:GIV -141AL PAGE 19

OF POOR QUAl.l1 'e

FIGURE 1

ERRORS BY TIME OF OCCURRENCE

400

300

oc
ac
W

W
O

OG
W 

200

100

0

0	 V	 A	 T	 U

D. Buckland
J	 Reifer Cons.

(`	 I	 8 of 28



A	 e	 C	 U

1), Burklund
Rc Ili r Conm
l) ul 28

400

300
N
c.
O
cz
ccW

c 
200ccW

100

0

ON, , 11 t '!  I, NA( ", rz
GK "(")R Q'L " ' ITY

FIGURE 2

ERRORS BY CRITICALIT7



LEGEND:

Level C

Level B

Level A ii

CO	 LO	 ON	 IN	 DB OP RI	 r.E	 CL	 OT	 OT?

D. Buckland
Rcifer Cons.
10 of 28

ORMANAL PAGE 13
OF POOR QUALITY

FIGURE 3

ERRORS BY CATEGORY

300

0

200

N
4S
O
CG
W
W
O
CC
WI
Z

100



0RV,0 11 X. PAC C IS
OF POOR QUALITY

• Design and requirements errors were the largest single
source of problems.

• Some errors of the 'questionable* subcategory of •other•
were not errors but realty requests for changes or
documentation. This seemed to indicate the need to improve
existing problem reporting procedures and the mechanisms
used for qual i ty control .

The major findings of this study can be summarized as followst

o Software error data is an important management tool because
it indicates where problems exist acid where management
attention should be placed. 	 For future projects, the
classification	 of error data should be performed	 as
anomalies are reported. 	 This would help assure that the
error was more fully understood as it was reported. It
could also be used to identify error-prone modules and
provide information upon which repair or replace decisions
could be based.

o Analysis of the DSfh ±software error data base indicated that
many of the critical errors occurred during the requirements
definition and design phases. These error% are the most
cooly to correct, especially if they are not caught early
in the development cycle.

o Many of the • other • error types could be attributed to
poorly defined man/machine interfaces (e.g., commands that
are difficult to use or whose incorrect usage causes the
system to halt), improper and imprecise procedures for
handling exceptions, inadequate documentation and/or user
misconceptions (requestsd for enhancements/modifications
that were not real' y probl ems at ai I).

ACKNOWLEDGEMENT

Portions of this paper are based upon work performed by Reif er
Consultants, Inc. under Contract LO-726923 to the Jet Propulsion
Laboratory, California Institute of Technology. It utilizes Deep
Space Network anomaly data compiled by Ms. Connie Johnson and
analyzed by SoHaR, Inc. under subcontract to RCI.	 Many poop:*
supported our efforts and all of their contributions	 are
acknowledged. Special thanks are extended to the DACS at Rome
Air Development Center who has agreed to distribute the error
data base free to interested parties.

i

D. tiuckland
Reifer Cams.
11 .A 28



ORIGINAL PAGE f5
OF POOR QUALITY

Appendix

Software Error Taxonomy Definitions

Time of Error Occurrence

I

Four time classifiers were chosen because they were compatible
with the OSN anomaly report data provided as input. The classifiers
are as follows:

(0) Development - Anomalies in this category were reported
wring the design, coding and module unit testing act-
ivities. Most required design or programming revisions
to be made. Errors in the category typically dealt with
design problems between modules or with functional
limitations of design. An example follows:

"A system was required to provide human readable
error messages on a log device. Unfortunately,
the function was not specified in either the re-
quirements and design specification. The error
was discovered during a design review and an
anomaly report was opened. Under such circum-
stances, we would state that the anomaly had
occurred during development."

(V) Verification - Anomalies in this category were reported
during integration and testing activities. Most were
specification deviations that required the code to be
revised. An example follows:

"Module X expects a true or false condition as
input from module Y. Unfortunately, module Y has
not been specified to provide the true or false
input. A test identified this problem during
testing and an anomaly report was written scoping
the rework. Under such circumstances we would
state that the anomaly had occurred during ver-
ification."

(A) Acceptance - Anomalies in this category were reported
during 	 testing of the software. Errors in this
category usually stem from requirements problems or im-
proper mechanization. An example follows:

"The system malfunctions when accepting more than
six simultaneous inputs. The error was discovered
during formal testing when the program was stressed
and an anomaly report was written. Under such
circumstances, we would state that the anomaly had
occurred during acceptance."

D. Buckland
Reifer Cons.
12 of 28



Clt C r NAL PJ%v,^ 6j
OF POUR QUALITY

(T) Transfer - Anomalies in this category were reported after
the software package was put into operation in a live
environment. These anomalies usually resulted from halts,
failures or malfunctions. An example of such an anomaly
follows:

"The software halfts when a zero input value is re-
ceived. This error was discovered during operation
when the DSN was reducing telemetry data. Under such
circumstances, we would state that the anomaly occurred
during transfer."

Error Criticality

The three error criticality classifiers used are defined as follows:

a Level A - Critical error (error impacts mission performance
or seriously degrades capability and no workaround exists).
An example follows:

"The system halts when the value of one of its inputs
exceeds its nominal end of range. Manual intervention
is required before operation can be resumed. Under such
circumstances, we would state that a level A error had
occurred."

• L ,^-vel 8 - Dangerous situation terror exists that could degrade
performance or capability but a workaround exists). An example
follows:

"A particular utility function causes the system to halt
to await operator's action. The utility function is not
required for correct system operation and can be
disabled temporarily to correct the problem. Under
such circumstances, we would state that a level 8 error
had occurred."

• Level C - Minor problem (error exists that doesn't impact
performance or capabilities and can be fixed at a more leisurely
pace. An exaWle follows:

"An informational message is displayed twice (rather
than once) each time it is enabled. No other
negative effect happens. Under such circumstances,
we would str^e that a level C error had occurred."

Error Cateqor

The third dimension of the DSN/RCI error taxonomy is error category.
Each of the ten error categories was defined so that insight into the error
causes could be ascer • taitied. The ten categories are defined as follows:

D. Buckland

Reifer Cons.
13 of 28



I . Computation - Computation anomalies are errors in or re-
sult n^ g from coded equations. Examples of computation
errors include: (a) Incorrect operand in equation, (b)
Incorrect use of parenthesis, (c) Incorrect equation,
(d) Missing computations and (e) Rounding or truncation
error.

2. Logic - Logic anomalies are errors in sequencing, control
or loop conditions. Examples of logic errors include:
(a) Logic otit of sequence, (b) Wrong variable being checked,
(c) Missing logic or condition tests, (d) Too many/few
statements in loop and (e) Loop iterated incorrect number
of times.

3. Data Handlin - Data handling anomalies are errors in hand-
iiiq input output. Examples of data handling errors include:

(a) Data initialization incorrect, (b) Variables not set
properly, (c) 'lariable type incorrect, (d) Data packing/
unpacking incorrect and (e) Subscripting error.

4. Interface - Interface anomalies are errors in ccaiiruni cations
between a routine and other routines, the data base and/or
the user. Examples of interface errors include: (a) Data
incorrectly transmitted from one routine to another, (b)
Data incorrectly set/used from the data base, (c) Improper
input/output synchronization and (d) Data sent to wrong
destination.

5. Data Base - Data base anomalies are errors in present data.
Examples —of data base errors include: (a) Data should have
been initialized in data base but wasn't, (b) Data initialized
to incorrect value and (c) Data base units are incorrect.

6. Operation - An operation anomaly is an error occurring
as the software executes. Examples of operation errors
include: (a) Operating systems errors, (b) Hardware
errors, (c) Operator errors, (d) Compiler or support soft-
ware errors and (e) Test execution errors.

7. Requirement s Incorrect - Requirements errors deal with im-
proper or ambiguous unctional and software requirements
specifications and not with implementation and/or
operation. Software may correctly solve the wrong problem
if it is specified improperly.

8. Desi n - Design errors deal with improper architectural and
deed design specifications which form the basis to
which the program and the data base are mechanized.

9. Clerical - Clerical anomalies occur when people are involved
in the translation. Examples of clerical errors include
keypunch, typos and/or transliteration.

10. Other - Other is a "catch-all" for other types of errnr^; not
encompassed by the scheme. cxar+ples of other errors include
incorrectly reporting that an anomaly had occurred when in
reality it was a programmer T; ;concept ion. 	 U. Buckland

Reifer Cons.
14 of 28



FllF VIFWGRAPIi MAITRIAI S

for the

1). 1;L I CK I AN1) PRI'SFN I'A I'IUN 1`01 1 OW

D, Bucklund
keit'cr Cons.
15 of 28



ERROR TAXONOMY

W HAT CAN B E GA I N E D'?

by

D. E. Buckland

1Acx(1(<<1pi%
Reifer Consultants, Inc.

25550 Hawthorne Boulevard, Suit6 208ITorrance, California 90505

D. Duckland
Reifer Cons.
16 of 28



~, 

0 0 I-~
 

00 W
 

0 0 l-~ I 1 

ORtGJ:'.JAL 
PAGe: rs 

OF PO
O

R Q
UALlTV 

..J 0 
~ 

0 
W

 
00 

l-
I-

IiJ 
I-

J: 
<I 

IiJ 
<I 

III 
I-

(Jj 
(Jj 

~
 

0 
~
 

I-
r 

>-r 
(Jj 

ct 
0 

:l 
:J 

Z
 

0 
0 

(Jj 

X
 

IiJ 
r 

~ 
..J 

0 
I-

III 
ct 

q: 
IJ. 

u: 
. ., f. 

0 
W

 Z
 

et: 
ct 

ct 
I-

<I 
w

 
~ 

IiJ 
I 

..J 
Z

 
I-

~ 

D
. B

uckland 
R

eifer C
ons. 

t7
 of 28 



-~o 00 t:> • 

,... =. = - t:> _ 
-, ... -

f"> 
Nf':)r. 
OCC~ 

::s ::s 
!" Q. 

WHY R~~ORT PROBLEMS? 

r SO THEY CAN BE RESOLVED, I 

PROBLEM STATUS REPORTS 

o Aid In the 
H .... _e Le~t 

E_ .... luation 
To 000 

o~ Wh .... t You 

o Group Si~il .... ~ Ite~s Together For 
Expeditious Handling 

o Assign Priorities 

o Increase: Test C~ __ r .... g_ 
00"; ec t i_i ty 
Corn~unicatiQon 

Turnaround 

o Reduce Ti~e ~ P_p_r~orK 

o Learn From P .... st Experiences 

o ~denti~y We~K Spots 

o Spot Trends 

All rnth.,uJ, rr.'1 ............. f.., If( I :.J.. .. , ... ,. Itl#,., .... d ~l.,t.I"" , __ " l"f,' , 

00 ... ,., 
(!e 
O~ ,., ... 
O~ 
c:> 
;a:.Q ...... 
~(i 



- :iII:H:; 
'<0 !!. . 

~~~ 
t~ r) ~ 00 _ -

...; DO
::: :::
!"c.

J«7 WHAT IS THE MECHANISM?

A CLEAN. SIMPLE PROBLEM REPORTING S~STEM

~ Pr~blern Repc.rts.

c:> Pr~bl err. In_E's.tig.-ti~n

~ Indi_idu4ILl

Pr~blern R_s.olut:1~n
B.-sis

~

~ Probl e-rn E_aluati~n

41 til.:" I. l' - "'1 " . "oil. '". II.. • ...

00 ..,;n

"tte
02
0> ::or-
.0-0
c>
~G')
.... rra

~ii

N::OO
OG'

O~= ..., .. C
N (') cone

o '" :;, :;,
!"c.

HO DO I DO IT?

RECORD ENOUGH DATA TO GET AT THE

INFORMATION YOU MAY NEED LATER

~ BUILD IN FLEXIBILITY

~ REPORT BY BASELINE

~ USE CHECKBOXES HERE POSSIBLE

~ PLAN AHEAD

~ AUTOMATE

~ ONE CENTRAL POINT OF CONTROL

~ COMMON TERMINOLOGY

U nUl,.,ul. Uf'''f...''',T 1 •• 1:(It 'ui,.- "'1~"""H: ad! ' pI::>'" 'H 1'n

00
"'1'1::0

)tiS
o~
:Dr-

O~
~£)
r'!'It

~i'I

N:=O ~~ ..
ona=' -. .. c

(')

Nn~
00 0 ",

=' =' !" Po

~--

WHAT WILL I NEED TO KNOW?

AT TIME OF DISCOVERY:

<:) WHO FOUND IT?

<:) WHEN WAS IT FOUND?

<:) WHAT HAPPENED?

<:) WHAT WAS BEING USED?

<:) IS THIS A REOCCURRENCE OF A CLOSED
PROBLEM?

<:) WHAT IS THE LEVEL OF CRITICALITY?

AI rn..h.,,,,,I'Io (C.fl).IJ.. .. lllI} ~n ~. 'u I,. ,I)~ •• LI(.~ ,,,,hili'· I"'"" ~'\fl"':,.

00
." .~

.,,~
02
O~ ::or
O _.
C-
):10 C~
.- ~,,-:t

=i -< (0'::

N~O
No·

0;;=
-'''5
N('l~
00 0 ",

::2 ::2
!ftc.

WHAT WILL I NEED TO KNOW? <c~n~>

AFTER THE PROBLEM HAS BEEN CLOSED:

o WHY DID IT FAIL?

o WHAT WAS THE SOLUTION?

o WHO ASSIGNED THE RESOLUTION?

o WHEN WAS IT CLOSED?

.'" nutt'tl,l," U.ll',.' lt~ f\C, ,-!lo, lu I,.· '~lW •• ""t" ""h"",. ,WM'" \utllr .. ••· ·,"IF

00
"'1'1;0

.,,§
02
O~
~
.013
C;:.
J;.c;)
.-1'11

~iii

~,

w

) ... ~

w

0

... Z

<I u
~

0)
w

>-

<I
~

~

I
<I

0
1

~

~

W

W

t-
U

<I

Z

(0
U

W

 w

Il':
~

>-
Il':

<I
III

:J
~

U

Z

u
Z

0

0
0

...
...

~
r

~
<I

W
 :J

r
J

J
Il':

III
0

0
0

to
11.

Il':
W

 Z

11.
IX

Irl

0
0

0

O
R

IG
IN

A
L

PAuL,
~3

O
F PO

O
R Q

UALITY

~
>.

0.
..,

>,
E

' ...

~
~ ...
..,

4 C
 E

E

 -
t U

,,
~ >, .. '
..,_,..,t.D

_
.
D
'
O
'
~
_
O

>
"
O
L
~
L

o)(n r U
 III Q.

0
0

0
0

0
0

0
0

0

~
 • . ~ ~ ~ ~ , "E ~ ~ <

.! " ;! ~ $ ~ .. ~ i '3 t:

~

D
. B

uckland
R

eifer C
ons.

23 o
f 28

W

I!)

J (~

z lIJ Q.

Dt\~(1\W\l
PhC.~

13
OF

PO
O

R Q
U

A
LITY

IJ)

u: a u: u: w

w

u: <[l I-U. a
(~

(0
\ Z

I~

(0
~

Q

I~
0'4

r a Il:
U.

U.
a (0
104

(f)

" ,. j <I Z

<I ... '-<I

-':0 ~:: H

oJ
11.
~

'-0
' ... -'oJ IX

>.
.&l

'0

III
.. I
j

:')
'0

.:: 0

roJ ~
,

1
]

~

... rn

E
 <

• · ~ .. 1 ~ <

~ i <

· ~

;'!

-" .!

D
. B

uckland
R

eifer C
ons.

24 o
f 28

I" \ ...

h
'

'*' ... ,\e

'\
" , ,
,"\

" " , .\\

, . . \ " .\'
,. , ..

." ,h
,"

.. "' '"

-
-
~
-
.
-
-
-..... --...

-
~
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
~

H
'

", ." =""~~---'--ll " II
lhld"!:!,,,1

No"II"I
l \-'"S.

~!i \,1'
~~

\

, J

In

O
r:

0 O
r:

ex
.....

~

~

g M

O
R

IG
IN

A
L

PA
G

E
IS

O
F

PO
O

R Q
U

A
I.ITV

.. N

N

8
g

N

SHOHH3
~o

H391~nN

r-

IO

-.'

o

u C
D

:: <

. ,

cc

. 1:

D
. B

uckland
R

eifer C
ons.

26 o
f 28

300

200

VI
a:
0 a:
a, ...
'"" 0
co: ...
~ z

100

LEe.END:

Red . Level A
Purple • Level B
Black . Leve'l C

0

CO

,,, • .,., ot" , ... ,

• I.'.... '..J

301

152

60

31

LO or. IN DB OP RI DE

322

6

CL OT OT?

D. Buckland
Reifer Cons.
27 of 28

u. r ... - .. : I
-1/1

l'
1.0
.... r

J
l-

I]

J
0

LJ
l-

t!.
I-

(I ..
.l.

JJ
i

...
..;

III 'D
LL

1
CI ..
~

1
.. ..
0

l-
I-

~

..
r

r
u

I-
....

U.
LL

I]
....

u.
r'

\
1 :t Ci

~
~
£

w

U
~
·

I I-
.
,
,
~

~
S

'
~
.
~
 =2

O
R

IG
IN

A
L

PA
G

E
IS

OF
PO

O
R Q

UALITY

.'
01

.. :
C

al

I)

.""
l-

ll:
~

.:.
al I-

l}
1)

,r
....

..
w

" u

J (i
J

:!
':-

(I
0

'.
\.

~ L. .' .'
III

It I
III

t:.
i:.

i:.
...

...
~

~

.... -
(I

(I
I)

D
. Buckland

R
eifer C

ons.
28 of 28

PANF 1 #4

COS 1' FS HMA I'loN

R. Rene. It;At
R. I'au -worthe, .I PI
R. Britcher J. Gaffney. IHNI

K.
IB
I

L- I

ov

r N83 3236'7

MAINTENANCE ESUMATION METHODOLOGY

BY

KYLE Y. BONE

_-I

INTERNATIONAL BUSINESS MACHINES CORPORATION

FEDERAL. SYSTEMS DIVISION

HOUS'T'ON, TEXAS

INTRODUCTION

As a project nears the end of its development phase and prepares to enter

a maintenance phase, several questions ar ;e for which there are • no ready

answers:

o	 Now many people are required to maintain the system?

o

	

	 What is the required critical skills level to support the

project?

o

	

	 What is the required staffing level to be responsive to

customer needs?

o

	

	 How much of the staffing level can be used to perform new

development work?

The purpose of this paper is to develop a rational, systematic approach

to answering these questions. The approach selected uses a Rayleigh

curve method of projection combined with a modified matrix method to

forecast maintenance needs and required staffing levels. The curves

generated by both methods are differenced to ascertain how much new work

can be performed given the staffing line. Finally, actual project data

is-compared to the projeet,ton to validate or modify the process.

K. Rone
IBM
2of28

DETERMINING MAINTENANCE NEEDS

In order to determine maintenance needs in the future, it is first

neVessary to examine the entire software development process. Studies by

Peter Norden of IBM (Reference 1) have shown that research and development

projects are composed of cycles. When these cycles are related to one

another and added together, a curve results whi. ,h represents the entire

project. Furthermore, these curves can be approximated by the Rayleigh

curve forms given in Figure 1. Since software systems follow a life

cycle process similar to other research and development projects, tho

Rayleigh curve method is selected for use in this methodology.

To use this method, the foregone development phase is examined for actual

manpower expenditures. A Rayleigh curve is then generated which

approximates the curve of the expenditures during the development process.

The resultant curve beyond the delivery point of the software system

represents a projection of manpower needs during the maintenance process

which is driven by the work expendtsd during the development process.

K. Rone
IBM
3 of 28

MRIGINAL PAGE 13
OF POOR QUALITY

LIFE CYCLE MODEL	 CUM EFFORT
ICS

CUM
96

OF
TOTAL

EFFORT

2	 4	 6	 8	 10 t

Ymax

LTY

2	 4	 6	 8	 10 t

Y'- 2Kate8tl	Y " K0.e atl)

IMPORTANT PARAMETERS:

K = TOTAL MY FOR ENTIRE PROJECT

K = e Yr •Y'max 0 ty 'max = fe y'max • ty'max
a = '% t2y'max

K. Rone
IBM
4 of 28

UF.TERMiN1NC A REASONABLE LEVEL OF SUPPORT

The Rayleigh curve method, then, projects future work based on past work.

This method however is based on pure work required and does not address

other project needs as critical skills and response to software system

problems. Civen that the develop-tent work stops of some point, then the

curve will eventually go to zero. whereas, as long as software support is

required, the project will continue to supply it. A method is required,

then, to determine a reasonable level of software development support to

be provided to the customer at some steady state period in the future.

To accomplish these goals, a study is performed across the software

project to determine functional elements and drivers for each project

area. These functional elements and drivers are then used to develop a

matrix approach to estimating support levels for each project area. Each

element is then quantified by software size, number of test cases

required. or by development manpower level. These quantifiers are then

transformed into maintenance levels for the element by use of the

following general equation:

Maintenance Level a	ELEKZNT SIZL

(Productivity)(Complexity Factor)(Level Factor)

Where:	 Productivity	 • development or test producti%- 4 ty factor

Complexity Factor • varies about .5 based on the complexity

of the element

Level Factor	 12 (length of development)
K. Rmic
IBM
S 0' 28

The resultant maintenance levels are then tempered and modified based on

judgments concerning critical skills and operations support and the

totals are increased by a fixed percentage to cover management and

support. An example of a matrix for a given area of software is depicted

in Figure 2. All areas are summarized for the project to determine the

required support level (Figure 3). This generated level can be plotted

with the Rayleigh curve as shown in Figure 4. The Rayleigh curve

represents current effort required bases on past effort. The optimal staffing level to be

reached- in steady state is represented by the support line.

OF i-C)o t

K. Rone
IBM
6 of 28

O
R

IG
IN

A
L

 P
A

G
E

 iS
O

F
 P

0
0

, 1 (f n
 t-.iT

Y

iii W
	

^
	

10 	
r
	

N
	

O
	

ri	
O

yQ	
O

r
ZO

 vt

H	
o

t	
^ ^
u
y

c 	

'

I
^
	

^O
	

^
	

N
	

O
	

r^1 	
1A

ri (
^
	

•	
.-1
	

^
	

r
l	

.-1
	

r
l

•
 a
	

N
	

f")	
N
	

f-
	

O

	

M
	

r
i
	

f
r
1
	

N
	

N
	

N
	

o
f

us 	
G

•

N
	

N
	

A
	

rl	
%

0	
10	

co

-• M
	

W
	

N
	

O
	

O
fJ; N
	

M
	

M
	

9-4

r
4
	

w
l
	

%
0
	

u
1
	

a
^

40
	

IV

ENi
N

o

V

a
	

o
	

m
N

 N
	

r4	
.-1

•	
z
	

3
Fri

•

H

N
	

N0 	
a

u
	

'^ 	
a
	

'	
°a

H
	
a

	

c
w

W
	

N

H
a

	

N
	

V
f	

N

mMaiOtr^

C
6

NwaIsW

K
. R

o
n

e

IB
M

7
o

f2
8

O
R

IG
IN

A
L

 P
A

G
E

 69
O

F
 P

O
O

R
 Q

U
A

L
IT

Y

t

0
 0

 0
 0

 0
 0

 0
 0

N
	

^

o

N

.^
	

O
	

p
X

11
1
b

44;*

O
^

sEr
1
+

!
•
a

Q

O
O

o
0

0

Z
 aW or

e^i
a
s

•
I
 a

^

N
.
4

E
O

N

z
•.^

o
^

o
0

0
^-^

•
oGE

+

w
r4

64
r4

a
N

p
NE

^	
!

w
a

r7

► xi
3
3

^
N

H
^
	

^
W4

G
4

c
o

a
m

W
^

r4

1

'n

N
1

e+1

N
N

fn
ca

r
/

N
N

•

W
^

a

^
^

OV
W

O
N

N
NN

N
N

4

K
.

R
o
n
e

IB
M

8

o
f

2
8

. -,

LEVEL

TIME:

FIGURE 4. PLOT OF RALEIGH AND SUPPORT LINE

K. Rook
I IINI

U of 28

ORIGINAL PAGE IS

OF POOR QUALITY

MANPOWKK AVAILABLE TO PERFORM NEW WORK

The plot of the Rayleigh curve and the support line can also be

represented as two equations. By integrating the difference between the

two equations and evaluating over the time of interest, the area between

the curves is generated. This area represents the amount of manpower

supported by the :staffing level which is not committed to maintenance of

past work, and hence. can be applied to new tasks (Figure 5).

K. Rone
ABM
10 of 28

TIME

FIGURE 5. MANPOWER AVAILABLE TO PERFORM NEW WORK

K. Rune
IBM
tl of 28

ORIGINAL PAGE 13
OF POOR QUALITY

CONVERTING DIRECT ESTIMATES TO TOTAL PROJECT COSTS

Using the manpower available to perform new work requires that direct

work estimates be converted to project costs consistent with the project

costs represented by the curves. To derive this relationship, examine

the direct costs and overhead costs from actual data and calculate:

1'RuJECT FACTOR - Total Project Cost

Direct Estimate

Using this factor, an estimate for a change or group of changes can be

turned into a total project cost and used to "fill up" the area between

the curves (Figure 6) iiiitil the project's capacity to perform new work is

exhausted.

K. Rone
IBM
12 of 28

TIME

FIGURE 6. USING THE MANPOWER TO PERFORM NEW WORK

K. Rone
IBM
13 of 28

VALIDATION OF THE PROCESS

This methodology can be validated only by using sae process and comparing

the result to actual dat;i. Since the maintenance phase has not yet

occurred, a comparison cif' the method to an independently derived

projection is an alternate approach. Figure 7 represents the use of the

methodology on the Onboard Shuttle Software project. The figure presents

the Rayleigh curve representing Release 19 of the flight software.

Actual data from the project was compared with the curve as shown from

1/78 through 9/79. The results compared within 7% of reel costs. The

projected costs beyond 9/79 compared within SX of projected costs derived

by a bottom up estimate. The data from 1/77 to 1/78 were not comparable

due to previous project costs embedded in the actual costs and functional

design costs not included in the Rayleigh curve.

K. Rone
IBM
14 of 28

Y

^T

..
0 V̂

.)

K. Konc
IBM
15 of 28

ORISWAL.	 Caj
OF POOR QUALITY

FIGURE 1, USING THE METHODOLOGY ON THE ONDOARD SHUTTLE SOFTWARE PROJECT

ORIGINAL PAQLr tg	 SUMMARY
OF POOR ni vi i 1TY

The Maintenance Estimation Methodology is a method of projecting

maintenance needs and required staffing levels. The methodology is

summarized iii the following steps:

SOFTWARE DEVELOPMENT AND MAINTENANCE PROJECTION

1. Use previous projection or actual data and assume that the work

stops after last designated release.

2. Use Rayleigh curve method to project maintenance needs after the

release.

3. Use matrix method to determine support line needed in a steady state

period.

4. Compute the area between the two curves by integration.

5. Estimate the new work to be performed by transforming direct work

estimates into project estimates.

6. Determine if new work fits under the support line. If not, either

adjust schedules or phasing to reach support line.

7. Add new work scope and recompute Rayleigh curve to compare phasing

and for basis of next projection.	 K. Rone
IBM
16 of 28

iL

REFERENCES

1. Norden, Peter V., "Useful Toole for Project Management," Management
of Production, M. K. Starr (Editor), Penguin Books, Inc., Baltimore,
MD, 1970, pp. 71-101.

K. Rone
IBM
17 of 28

THE VIE l /GRAPH MATERIALS

for the

K. RONE PRESENTATION FOLLOW

K. Rone
IBM
18 of 28

space shuttle
-~- ~ ------ ----
-~--- ~---- ~ - _ ... --------~-.-

Federal SysUtms Division
1322 SpaCe PM'k Drive, Houston 77058

D;;r::
O==:;c
-, 0

N = OC r.>

MAINTENANCE ESTIMATION METHODOLOGY

PRESENTATION

programs

K.Y. RONE

AUGUST 7, 1980

00
,..;:0

"'De
02
O:P :or-
,o"'D
Cl"
~~ r-1Ti
=4_
<ell

~=7.
2.:::~ . -
,..." ::
or; '"

953-1471

SPACE SHUTTLE !"ROGRAMS

T G. MAIN'rENAt'CE ESTIMhT IUN l"-=::l-ic,;;r,L:'G'f CRle :'/H/&0 ".~::.f2-

IBM

PREMISE

A SYSTEM;-.'!'IC ¥.ETHOD CiF !'1A!t.TEl',&_"CE ESTIMATION IS t.~EfJED ON THE PFOJECT

• CONFIDENCE OF BEING ABLE TO MEET REQUIREMENTS OF TP.E JuB
IN THE FT~TURE

• RATIONAl.. SIMPLIFIED METHOD OF PROJECT ESTIMATION FOF
RUNOUTS A C PROPOSALS

• REA50NAELE ALLOCATION OF aLCCl(UPDATE MANPOWER IN THE Fl.'TURE.

I

I
I

I
I
I

".

I
-'
"'0 ~)

\
O?
o:ii ::c ,-

I
.0-0
C>
l>C)
r-rt'I

~Cii

t f t I

W

\I:

8 f 1&1
oJ I

,:2
.JI

I ,~ • "
,

I

Ig ..J
g 0 ~ ~ ... ~ M

fn III

i I:
t!

i i
1&1

~
!

8s
.: X

•

O
R

IG
IN

A
L

PA
G

E
IS

O

F
PO

O
R

 Q
U

A
LITY

p
.

C

III
Q

III

~ I/)
M

i

~
~
~
-
-
-
-
-
-
-
-
-
-

.. u
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
 ~
m

K
. i{onc

IB
M

21

o
f 28

~;;r:
0::::=
...., 0
IV ::3
OD ~

.....

953-1411

SPACE SHUTTLE PROGRAMS

"UP MAINTENANCE ESTIMATION METHODOLOGY 0.. 1/16/80 ... lo.L

IBM
• NEED: A METHOD OF DETE~JNING MAINTENANCE NEEDS IN THE FUTURE

• SOLUTION: RAYLEIGH CURVE METHOD

• USE:

." .. , r(.
U'II'
ttYI , ~il

~i
0> :or-
.0" -> -Q
~ ..
=t_
-<-

I'..,)-~

(,N ~.
sa, ~

953-1411

I'..,) :s
OD (D

SPACE SHUTTLE PROGRAMS

Fie 1/16._1_8_0.....J. _______ ~ T.IIP MAINTENANCE ESTIMATION METHODOLOGY r.p-!""otL

IBM
USE: (CONTINUED)

..
• -."

'-

llfl ani "DOll

.
faa

a. mOIl

-' _,I

• •

Y·: ZKMe'" Y = Itll

.,POfIIANI PtoRtoMUIRS.

'1= rOlAl MY fOR ENTIRE PROJEct

I:.,..r _.1 •. _ = fi. ,_ .1 •. _

a=l/Z'I

oi

oc
..,,~

-ae
OZ
O:tlt :u'-
.0'"
C:P

l!F.l
~ca

~=~
;::3::;0

o
IV ::s
00 (!)

953-1411

SPACE SHUTTLE PROGRAMS
"i.,.. MAINTENANCE ESTIMATION METHODOLOGY [My 1/16/80 I P • .Lof-!..

IBM
• NEED: A METHOD OF DETERMINING A REASONABLE LEVEL OF SOF'IWARE

DEVELOPMENT SUPPORT IN A STEADY S':'ATE PERIOD

• SOLUTION: MATRIX METHOD

• USE: DETERMINE FUNCTIONAL ELEMENTS OF PROJECT

QUANTIFY MAINTENANCE NEEDS B~ED ON: LEVEL = FUNCTION
SIZE/«PRODUCTIVITY) (COMPLEXITY) (FACTOR»)

CONSIDER CRITICAL SKILLS. LE~~L 3 TEST, OPERATIONS
SUPPORT AND MANAGEMENT AND SUPPORT

SUMHAAIZE FOR PROJECT

PLOT WITH RAYLEIGH CURVE

RAYLEIGH CURVE REPRESENTS CURRENT EFFORT REQUIRED
BASED ON PAST EFFORT

SUPPORT LINE RE~RESEN~S LI~E TO TEND TOWARD AND
REACH IN STEADY STATE

LEVEL

TIME

00
"ti ~

~~
,~~! ~

.~ -:::, -~

" :.,.,
~

';'!!. ,...

s::-
.(....

~;;~

g.:::~
. c

t...l = QI; ,.,

i53-1471

SPACE StiUTilE PROGRAMS

TiM MAINTENANCE ESTlMATIG!~ METHOOOLOGY L.- _/16/80 p ... ~ofL

IBM
• NEED: A METHOD or DE'TERMINING MANPOWER AVAILABLE '!'O PERFORM

NEW WORX

• SOLUTIOH: CALCUlATE AKA BETWEEN CURVES

• USE: INTEGRATE DIFFERENCE BETWEEN CURVES

EVALUATE OVER TIME or nrl'EREST

AREA REPRESENTS EFFORT NOT USED IN MAINTENANCE
OF PAST HOB WHICH CAN BE APPLIED TO HEW TASI(S

00 :a
"ViS
0-
o~
;::or-

.0."
Cla
):loG)
r-f'q

~iii

N-~
0\ =.
oS:",
.... 0
N ::I
00 til

953-1471

SPACE SHUTTLE PROGRAMS

'.tlp MAINTENANCE ESTIMATION ME':'HC,D·)L:lGY O.'e 1/16/80 I p • ...l..o.~_

IBM
• NEED: A METHOD OF CONVERTING CR ESTIMATES TO TOTAL PROJECT COSTS

• SOLUTION: PROJECT COST EQUATIONS

• USE: EXAMINE ·CR- AND ·FIXE~' CG5TS IN RECENT PROPOSALS

DETERMINE RELATIONSHIP BETh~EN CR AND TOTAL COSTS

t>ROJECT COST = 6.25 (CRA + CRS + CRV)

WHERE CRA APPLICATION C'R COSTS
CRS = SSW CR COSTS
CRV = VERIFICATION CR COSTS

PROJECT COSTS REPRESENT. THE COSTS WHICH .YILL BE
USED TO ·FILL up. TI!E J\REA BETWEEN THE CURVES

00 "",:a
.,,§
02
~l!
.0"'0 c>
:i>~
...-fT.

~ C:~

N-~
-.I 1:1'.
os:::,.,
.... 0
N = OQ fa

...

953-1411

SPACE SHUTTLE PROGRAMS

T... MAINTENANCE ESTIMATION METHODOLOGY 0_ 1/16/80 ILot,L

IBM
• NEED: VALIDATIOtt

• SOLtJTIOII: COMPARE RESULTS OF TIlE SCIfEMB 'l'O PA: T PIO.1ECT DATA AND

•

CUlUtEllT PRO.JEC'tIONS

COMPARISON: - RESULTS COMPARED WITH RESULTS OF THE EXTEHSIOII
PROPOSAL

COMPARES WITHIN n OF REAL COSTS

COMPARES WITHIN 3-5' OF PROJl!!CTED COSTS

EARLY COSTS HOT COMPARABLE DUE TO:

o ALT COSTS
o OFT FUNCTIONAL DESIGN COSTS HOT INCLUDED

IN RAYLEIGH CURVE

COMPARISON FAVORABLE

0;)
...-. :-1

) "'0_
0·'
O~
::D 1-

.0-0
C::P
~O rm
=t_
-<m

':l

~;;~

c::~,
t-.l ::::
oc ~

-

SPACE SHUTTLE PROGRAMS

Totl. MAINTENANCE ESTIMATIGN M£7~CD('L0CY

IBM -
-

Del" 1/16/80 P.~cf~

........ 1'
""'-11

....
+++

Suppon l_ 000
I1ISI

JIrIIfIId 0... • • •
(Aclwh-tnS

Eat Prop tin-I

. ~~

/~.~ .
/_e

~

- ""... 0 0

.~.~
. ~

~

1110

j o , .h.
'JSZ '1'13 In7 ,,.,

'179 ,110

953-1471

00
"'"= ."S
0-0%
:D~
.o~
C:l»
>G)
r&1l

~iI

STAFFING IMPLICATIONS OF SOFTFAU RODOCTIVITI MODELS

Robert C. Tausworthe

Jet Propulsion Laboratory

California Institute of Technology
Pasadena, California

ABSTRACT

This paper investigates the attributes of software project
staffing and productivity implied by equating the effects of two

popular software models in a small neighborhood of a given
effort-duration point. The first model, the "communications

overhead" model, presupposes that organizational productivity
decreases as a function of the project staff size, due to
interfacing and intercommunication. The second, the so-called

"software equation," relates the product size to effort and
duration through a power-law tradeoff formula. The conclusions

that may be reached by assuming that both of these describe

project behavior, the former as a global phenomena and the latter
as a localized effect in a small neighborhood of a given effort-
duration point, are that (1) there is a calculable maximum
effective staff level, which, if exceeded, reduces the project
production rate, (2) there is a calculable maximum extent to
which effort and time may be traded effectively, (3) it becomes
ineffective in a practical sense to expend more than an

additional 25-50S• of resources in order to reduce delivery time,
(4) the team production efficiency can be computed directly from
the staff level, the slope of the intercommunication loss

function, and the ratio of exponents in the software equation,
(S) the ratio of staff size to maximum effective staff size is
directly related to the ratio of the exponents in the software

equation, and therefore to the rate at which effort and duration
can be traded in the chosen neighborhood, and (6) the project

intercommunication overhead can be determined from the staff

level and software equation exponents, and vice versa. Several
examples are given to illustrate and validate the results.

*The research reported in this paper was carried out at the Jet
Propulsion Laboratory of the California Institute of Technology
under a contract sponsored by the National Aeronautics and Space
Administration.

R. Tausworthe
JPL
1 of 34

ORMNAL PA ' IS
OF POOR QUALITY

STAFFING IMPLICATIONS OF SMVARE PRODOCPIVITT ANDS

Robert C. Tausworthe
Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California

I. INTRODUCTION

Brooks [1), in IM Mythical ,fan—NQnth proposed a simple
model of software project intercommunication to show that, if
each task of a larje project were required to interface with
every other task, then the associated intercommunication overhead
would quickly negate the believed advantage of partitioning a
lame task into subtasks. While not meant to be an accurate
portrayal of an actual project, the model effectively illustrated
an increasing inefficiency symptomatic of projects too large to
be performed by a single individual.

Putnam [2). in a 1977 study of software projects undertaken
by the US Army Computer Systems Command, discovered a statistical
relationship among product Lines of code, cork effort, and lime
duration for those projects, whose best —fit formula was a powor-
law relationship, now referred to as the "software equation,"

L - ck W0.33 11.33

(I have taken the liberty of changing Putnam's notation in order
to be consistent with my notation in the remainder of the
article.)

One rather startling extrapolation one may make from the
software equation is that in order to halve the duration of any
one of the projects studied, it would have taken 16 times the
resources actually used) I say "extrapolation" because I
suspect the software equation is more likely to be applicable
incrementally--that is, if one were to require a 5% shortening of
the schedule, then a 20% (actually 21.5%) increase in resources
would be required.

In this paper, I will generalize both of these models
parametrically, and suppose that both do describe the statistical
trends of software projects in small neighborhoods about a chosen
project situation. Dy equating the model behaviors in these
neighborhoods, we shall be able to see how the parameters of one
model relate to the parameters in the other. In addition, we
shall discover some rather interesting facts about some actual
projects for which published data ezists.

R. Tausworthe
JPL
2of34

Or PGOR QUALITY

II. A GENERALIZED INTERCOMMUNICATION OVERHEAD MODEL

Let us suppose that a software project is to develop L kilo-
Lines of executable source language instructions, and that this
number remains fixed over all our considerations of effort,
duration, staffing, *to. That is, wo &hail suppose that the
product size is invariant over the neighborhood of variability in
these parameters— a project utilizing greater effort attempting
to shorten the schedule slightly would produce the same program
as a smaller effort requiring somewhat more tike.

Let us denote by M the Work effort (in person-months) to be
expended in the production of the L lines of code, and let the
lime duration, in months, be denoted by T. Then the average
full-time equivalent ,staff size, S, in persons, is

S - W / T

and the overall team productivity can be defined as the number

P - L / N	 (kilo-lines/person-month)

Let us further suppose that the average fraction of time
that each staff member spends in intercommunication overhead is
dependent on the staff size alone, within a particular
organizational structure and technology level, and let this
fraction be denoted by t(S):

t(S) - (intercommunication time) / (hours/mo. worked)

Generally speaking, one intuitively expects t(S) to increase
monotonically in S due to the expanding number of potential
interfaces that arise as staff is increased.

But the individual averate productivity of the staff, defined as
the individual productivity during non-intercommunication
periods, Pi , is somewhat greater than P. being related to it by

P - P i I 1 - t(S) l

The relationship between the number of kilo-lines produced,
the effort, and the staffing is

L - Pi p [1-t(S))

Let us denote by po and Tp the effort and time,
respectAvely, that would be required by a single unencumbered
individual to perform the entire software task (assuming also
that it could be done entirely by this individual, no matter how
long it took). Then, with respect to the actual p and T. there
is the relationship

R. Tausworthe
JPL
3 of 34

ORIGINAL FACE IS

OF POOR QUALITY

wo - L/Pi - M[1-t(S) I - TO

This NO represents the least effort that must be expended, and Tpp
is the maximum time that will be required. by substitutiag N/T
for S. one obtains an effort-time tradeoff relationship

w-1 / [1-t(0/0 I

where m- M/MO and s - T/TO are "normalized" effort and
duration, respectively.

The rate at which an increase in staffing results in an
increase in normalized work effort is then

aw
-- - m s t'(S)) 0
as

where t'() refers to the derivative of t with respect to S.
Because of the monotone character of t(S), an increase in staff
leads to an increase in effort.

The overall staff production list@, R. is the number of kilo-
lines of code M month produced by the entire team of S persons,

R- Pi S[1- t(s) I

The factor

q - [i - t (S) I

is then the team production efficiency. Note that the normalized
task effort is the inverse of the production efficiency,

yr -1 / q

The maximum rate of software production will occur when the
derivative of R with respect to S becomes zero, a condition
requiring a value SO that will satisfy the relationship

t I (so) - [1 - t(SO) I / SO

We shall refer to this staffing level as the 2,g"2jjjg effective
staff. Two particular examples of t(S) will serve to illustrate
the characteristics of the intercommunication overhead model.

R. Tausworthe
JPL
4 of 34

OR!C`!(`!AL E r`tia,& C
OF POOR QUALITY

Linear Intercommunication Overhead. Let us assume first, as

did Brooks, that the overhead is linear in staff,

t(S) - t0(S-1)

that is, there is no overhead for i person working alone, but
when there are S-1 other people, then each requires an average

fraction to of that individual's time. Under these assumptions,

the maximum effective staff level is

SO . (1 + t0) / (2 t0)

This value yields a maximum team production rate of

Rmax ` Pi Sa / (2 SO - 1)

and team efficiency

n0 s (1 + to) / 2 a S0 / (2 SO - 1) -_ 0.5

This perhaps alarming result states that a team producing at its

maximum rate is burning up half its effort in intercommunication
overhead) The behavior is illustrated in Figure 1.

The normalized effort-duration tradeoff equation for this
model takes the form

to W3

(1 + to) W - 1

which has its minimum value at the maximum-production-rate point,

zmin ` 4 t0 / (1 + t0) a - 4 t0

at which point the normalized effort is

W0 =2/ (1+to) (2

Figure 2 shows the characteristic of this tradeoff law at to
values of 0.1 and 0.2, for illustrative purposes.

According to this model, it never pays to expend more than
twice the single-individual effort. Moreover, even though the W

producing the shortest tchedule is less than 2, the effective

range is much less than this, as shown in the figure. Effort can
be traded for schedule time realistically only up to about 1.25
Wo. and a factor of two saving in time can only come about if the

individual intercommunication can be kept below about 15% per

interface.

R. Tausworthe
JPL
5 of 34

10	 15
Staff size, S

10I

CL

ai 4
L

3
L4

G1	 t

0
0

ORIGINAL PAGE IS

OF POOR QUALITY

 _T' ;- -- - -''-T'7--

Unencumbered
rate

/
Interface
loss

Jnear

R, 1auxwolffiv
MII
6 ot'.4

Software
Equation, r ® 4

t

0 0.4

H
0

8 0.3

ORIOINAL

OF PouR QUALITY

1.0

	

0.9
	 t0.0.2

0.8

	

0.7
	

tOr0,1

0.6 [U

	0.11
	

1

	

1
	 2	 1	 q	 0	 U	 1	 o

Work Effort Ratio, WM0

R. Tausworthe
JPL
7 of 34

to
a

0.2

ORIGINAL. PAGE IS
OF POOR QUALITY

1.0

0.9

0.8

0.7

0.6

0.5

c 0.4

t
1-

0

^o
tr

0 0.3

0

0.2

0.1

t1 = 0,2

1

^ 1

Software
Equation, r = 4

t1 = 0.1

1

Software
Equation, r = 4

1	 2	 3	 4	 5	 6	 7	 R	 9

Work Effort Ratio, W/WO

R. Tausworthe
JPL

8 of 34

ORICINAL PA(; 1$;
OF POOR QUALITY

Exponentially Decaying late rcoamunication Overhead. One
unsettling aspept of the linear intercommunication overhead model
is that, at some staffing level, the production rate goes to
zero, and beyond, unrealistically into negative values. Perhaps
a more realistic model is one which assumes that t(S) tapers off,
never exceeding unity, at a rate proportional to the remaining
fraction of time availgble for intercommunication as staff
increases, or

t 1 1.0 - ti [1 - t(S) I

Then we are led to the form

t(S) -1-exx[—ti (S-1) I

The maximum effective staff in this case becomes

SO -1 / ti

and the maximum production rate is

Rmax - Pi S exp[-1 + 1/S I - Pi S / e

The team efficiency at this rate is

A0 - ezp[-1 + 1/S I N 1/e

Now this is perhaps even more alarming a revelation than before,
because it says that when producing software at the maximum team
rate, that team is burning up 63% of its time in
intercommunication! The consolation, as shown in Figure 1, is
that the team performance under this assumed model is superior to
that of the linear-time team model. More staff can be applied
before the maximum effective staff level is reached.

The effort-duration tradeoff equation according to this
model is

s-t1 to 	 [tl +ln(w) I

The minimum v occurs at

w0 - alp(1 - ti) (e

and the minimum value is

train - ti ezp (1 - ti) 4 a ti

The form of this tradeoff is shown in Figure 3 for t i values of
0.1 and 0.2, for illustrative purposes. Note that the minimum s
is much broader in this model, so that, although the actual
minimum occurs when w is about a in value, the realistic

R. Tausworthe
JPL
9 of 34

ORIGINAL PAGE IS
OF POOR QUALITY

effective range for w is lose than about 1.5. That is, it to not
cost- effective to expend m ore than about 1.5 times the single-
individual effort Wo in an attempt to reduce the schedule time.
A reduction in schedule by a factor of two is possible only when
the individual intercommunication factor t i can be kept below
0.2.

Conclusions from Intercommunication Overhead Models. Both
of the examples of intercommunication overhead above bespeak a
maximum effective staffing level at which the project is 37-50%
efficient. Beyond this point, further staffing is counter-
productive. Both examples conclude that the maximum practical
extent to which added effort is effective in buying schedule time
is limited to about 25-50%. significant schedule reduction
factors are possible only when the intercommunication factors can
be kept below 15-20%.

III. MATCHING THE SOFTWARE EQUATION MDDEL

Let us generalize the Putnam Software Equation as the fora

L . ck WP Tq

and let us define r - q/p, the exponent ratio. As in the previous
section, L is held constant with respect to effort -duration
tradeoff considerations. The value of p is assuredly positive:
it generally requires more work at a given T to increase L. If q
is positive, effort can be traded to decrease the schedule time
required to deliver a given L. The larger r is, the larger the
increase in effort required to shorten the schedule, and the
larger the team production inefficiency. If q is zero, than L is
a function of W alone, T is determined solely by the staffing
level, T-W/S, and no additional effort is required to reduce
schedule time (in the neighborhood in which the p and q-0 arej
valid). If q v . re ever to be negative, then an increase in W
would render an Increase in To a situation indicating overmanned
projects.

Substitution of T - W/S, differentiaticA with respect to S,
and normalization of the software equation pre 4aces the result

a^►

as

Let us now suppose that both the software equation and the
intercommunications overhead model agree at the point (L, W, T).
The two models can be equated by suitable choices of the
"technology constant," o k , and individual productivity. Pi.
Then, in addition, let us suppose that the derivatives of effort
with respect to staff level for both models also agree at this

R. Tausworthe
JPL
10 of 34

ORMINAL PAGE IS

OF POOR QUALITY

point. Such can only be attempted when r 1 0, because the
derivative in the intercommunication overhead model is always
positive. When this is the vase, the two models may be said to
agree in thv neighborhood of the point (L, W. T).

Thus, by equating the derivatives, we arrive at a
relationship between the parameters of the two models:

S t' (S)	 r
------------	 __---

[1-t(S)]	 I + r

or

q - S t' (S) (r + I) / r

Let us now examine this relationship for the two examples of the
interface overhead model:

Linear Intercommunication Overhead. Substitution of the
linear t(S) form into the neighborhood agreement condition yields

S	 2r-- 1r11+to 1
f- SO r/ (r+0.S)]

L I+ 2r J L	 2t0 J

This equation states that the staffing level is related to the
maximum effective staff point through the software exponent
ratio, r. At the Putnam value, r - 4, the staffing level is 89%
of the maximum effective level, and the team efficiency is

q - 0.55 (1 + t0) z 55-65%

m s 1 .8 / (1 + t0) z ! . 5-1 .8

As seen in Figure 2, projects having this high an w are at the
point that extra effort is very ineffective.

Exponentially Decaying Intercommunication Overhead. By
substituting the exponwntial form for t(S) into the neighborhood
agreement condition, we Ind

S - r / [t i (1 + r)] - SO r / (1 + r)

Again, we see than the staffing level is related to the maximum
effective staff via the exponent ratio. The Putnam value r - 4
produces

R. Tatiswolthe
J l'L
1 l of 34

ORIGINAL PAGE 13
OF POOR QUALOT

S - 0.8 So

q - exp[— (S-1)/SO I - ezp[—0.8 + tl I z 45% — 55%

w - 1/q - exp[0.8 — t l I - 1.8 — 2.2

Although this example indicates a somewhat more comfortable
margin below maximum effective staffing than did the linear
model, it nevertheless shows an alarmingly low cost inefficiency.

IV. EXAMPLES USING AVAILABLE DATA

Several data sets of project resource statistics published
in the literature readily show that Putnam's value of r -4 is not
universal. Specifically, Freburger and Basili [3I publisk data
which yield the following 3 —parameter best power—law fits:

LO - 1.24 p0.95 T -0.094	 (r - —0.1)

Ll - 0.22 1110.78 10.78	 (r - 1.0)

in which LO is kilo—lines of delivered code, and Ll is developed
delivered code. It is interesting, here to note that the former
relationship is nearly independent of T, whereas the latter shows
a definite beneficial N—T tradeoff characteristic. The negative
q in the former relationship indicates that, on a delivered 93"
basis, added resources in one of the projects would have extended
the schedule! An equivalence between the software equation and
the intercommunication overhead model cannot be established when
r is zero or negative.

This data set is not the only one to show a negative q:
Boehm [4I, in his Software EeonoN es book, has a data base used
to calibrate his C000MO software cost model. A 3 —parameter best
power—law fit to the adjusted data produces the relationship

L - 0.942 1YO.673 1x0.028	
0

(r	 —0.41)

Again, the tradeoff equation indicates that the projects in that
data base were perhaps overmanned.

Gaffney (5), on the other hand, did a 3 —parameter best
power—law fit of IBM data (Federal Systems Division, Manassas) to
arrive at the relationship

L - ck 110.63 10.56	 (r - 0.88)

This last value of r aligns more closely with the Freburger-
Basili value for developed delivered code.

R. Tausworthe
JPL
12 of 34

L._. _ ,A,

ORIGINAL PAQE I'S
OF POOR QUALITY

J

	

,I	 i	 i	 I	 1	 I	 I	 I	 1

	

o	 Lq
o

0S/S 'jje1S anilelaa

co

LO

CL

Q
u

0

C4) cr-

y
C

pCp
f^.
X
W

N

r

00

R. Tausworthe
JPL
13 of 34

Linear

0.9

z 0.8

v
c

w

0 0.7

0
CL`

E
d
1 0.6

' --t0=0

t0=0

ORIGINAL PAGE IS
OF POOR QUALITY

I

1.0
	

It

t	 0
0.5

t = 0

0.4 L
0
	

1	 2	 3	 4	 5
	

6
Exponent Ratio, r

R. Tausworthe
JPL
14 of 34

ORIGINAL PAGE tS
OF POOR QUALITY

V. CONCLUSION

This article has shown that when there is a positive
effort—duration tradeoff relationship in a software project, it
is possible to estimate the team production efficiency and
proximity to maximum effective staffing. These figures can be
used to advantage by software managurs who must, judge the

effectiveness of increasing resources in order to shorten

schedules. It points out the necessity of keeping accurate
records of software project statistics, so that the parameters in
the model can be estimated accurately.

Low values of r in an organization are a mark to be proud
of, showing efficiency in terms of structuring subtasks for clean
interfaces. High (or negative) values of r way be indicative of

overall task complezity, volatility of requirements,
organizational inefficiency, at any number of other traits that
tend to hinder progress. The value of r may thus be treated as a

figure of merit--a measurable statistic indicative of the
efficiency of a set of projects in performance of assigned tasks.

The ratio S/S0 is another

low, it indicates that adding
project in trouble. If close

adding resources way not help,
schedule, will incur expense

and, if applied often in other
to an organizational reputation

indicator for management. When

resources can potentially help a
r to unity, it is a warning that

will not appreciably shorten the
at a low return in productivity,

projects, will thereby contribute
for expensive software.

R. Tauswordic
JPL
15 of 34

REFERENCES

1. Brooks, F. P., lh! Mythical yin—M,Q&U, Addison— Wesley Pub.

Co.. Reading, MA, 1975.

2. Putnam, L. S., "Progress in modeling the software life
cycle in a phenomenological way to obtain engineering
quality estimates and dynamic control of the process,"

Blcond $oftwar• kUl Sy." yanasement Wgrksj , sponsored by
US Army Computer Systems Command and IEEE Computer Society,
Atlanta, GA, Aug. 1978.

3. Freburger, t., and basil i, V. R.,"The Software Engineering
Laboratory, Relationship Equations." Report TR-764,
University of Maryland Computer Science Center. College
Park, MD. May, 1979.

4. Boehm, B. W., Software Economics, Prentice —Ball Publishing
Co., Englewood Cliffs, NJ. 1982.

S. Gaffney, J. E., "An Approach to Software Cost and Schedule
Estimation." submitted to Journal gL Defense Systep2
Acquisition Management. (pendinS).

R. Tausworthe
JPL
16 of 34

THE VIEWGRAPH MATERIALS

for the

R. TAUSWORTHE PRESENTATION FOLLOW

a

R. Tausworthe
JPL
17 of 314

-.... " 00 ." •
cr-~
"'"> 1>0

IN 5
~ ~

c ..
S-
(11

STAFFING IMPLICATIONS
OF SOFTWARE PRODUCTIVITY MODELS

~
Robert C. Tausworthe

RCT-l
12-1-82

V
')

-
'

L&
J

0 0 :E

0 « L&
J

::c
0:::

z
L&

J
0

>

0
.-

V
')

«
z

::J

0
0

'
L&

J
.-

L&
J

«
a:::

u
« ~

Z

::J

U
.

:E

0
:E

V

')

0
:=:

u
«

0:::
Z

I=!

.-=>
z

c..

•
•

V
')

.-u L&
J

u
.

u
.

L&
J

0 L&
J

z C
O

:E

0
u •

In

Z

0 V
')

::J

-
'

u z 0 u •

R. T
llusw

ortlll'
JPL
19 o

f 34

tv '" 0'" .
Ot""~
...., '"
W ~
~ ~

o ...
~

NOMENCLATURE

l = LINES OF DELIVERED SOURCE CODE (THOUSANDS)

W = WORK EFFORT (PERSON-MONTHS)

S = :AVERAGE FUll-TIME EQUIVALENT STAFF (PERSONS)

P = PRODUCTIVITY (KilO-LINES OF CODE/PERSON-MONTH)

R = TEAM PRODUCTION RATE (KilO-LINES/MONTH)

RC~-3
12-1-82

N :;a
-"tj.

ot-~
-, I»

W !;;
~ ~

o ...
ET
n

INTERCOMMU~\lCATION OVERHEAD MODEL

US) = (INTERCOMMUNICATION TIME)/(hrs/mo. WORKED)

P :: P.[l-t(S)]
I

P. = INDIVIDUAL PRODUCTIVITY DURING NON-INTERCOMMUNICATIONS
I

l = P. W [1 - t(S)]
I

R = P. S [1 - t(S)]
I

t(S) = 0 FOR S ~ 1

HS) INCREASES MONOTONICAllY FOR S > 1

RC"3-t
12-1-82

N ;:a
N"C:I.
or-'~, ..,
w !;l
~ ~

o ...
So
m

EFFORT - DURATION TRADEOFF
INTERCOMMUNICATION OVERHEAD MODEL

1
W - T) - - 0 W W._ o 1 - t(W

O
T

WHERE THE SINGLE-INDIVIDUAL-TASK WO' TO VALUES ARE

Wo = TO = lIPi

Wo IS lEAST EFFORT REQUIRED

TO IS LONGEST TIME REQUIRED

00
"'::0
"O~
02
0> =ar-
0."
C~
:t:-Q
r ..

~ii

RCT-5
12-1-8~

IV '-':a w'" .
ot"">-i
..., co

w ~
~ ~

o
:;.
~

• LINEAR INTERCOMMUNICATION OVERHEAD

US) = to (S-1) FOR S ~ 1

Tmin
TO

= 4L W_2<2
_"0-2 ~ 4ta AT Wo - 1 + ta

n + to)

• EXPONENTIAL DELAY INTERCOMMUNICATIONS OVERHEAD

US) = 1 - exp [-(S-lH]
1

T • W
min = t exp (1 - t) AT - = exp [1 - t] < e
TO 1 1 Wo 1

• So = STAFF SIZE AT T . IS THE "MAXIMUM EFFECTIVE STAFF" min

00
.... ::0

."e
02
OJ»
::0.-

.0;2
CIi)
~III
~.

ReT-6
12-1-82

a

a
0

0.3

0.2

ORIGINAL PAGE 18
OF POOR QUALITY

EFFORT TRADEOFF
DEAR OVERHEAD

-0.2

aev

0.9
0.8

0.7

0.6

0.5
^o

0.4
0

^ .0. 1

0.1
1	 2	 3

U

WORK EFFORT RAT I

%E - EFFORT TRADEOFF
KPONENTIAL OVERHEAD

C-

0.5

0 0.4

zo 0.3

Q
ce

fry

0.2

tl = 0.1

1.0
0.9
0.8

0.7
	

tl = 0.2

0.6

0.1L
1 2	 3	 4	 5	 6 7 8 9 10

WORK EFFORT RATIO WIW0

RCT -8

12-1-82

R. Tausworthc
JPL
25 of 34 1

R. Tausworthc
JPL
26 of 34

A

1

ORIGINAL PACE 19
OF POOR QUALITY

)DUCTION RATE

^	 UNENCUMBERED
RATE

INTERFACE
LOSS

EXPONENTIAL

LINEAR	 -t1 `0.1

U	 5	 10	 15	 20

STAFF S IZE, S

RCT 9
12-1-82

0

1-.) '-:;0
-.) ." .
ot""'~
-. ""
IN ~ ..,. ~

o ... -::r
~

SOFTWARE EQUATION

GENERAL FORM

L = c wP TQ
k

• DENOTE r = q/p

• PUTNAM's ORIGINAL EVALUATION

L = c WO.33 T1.33
k

• DEFINES TIME-EFFORT TRADEOFF

• PUTNAM's VALUE OF r = 4

RCT-l0
12-1-82

OJ
""1'; CJ

-0;]
02
O):ll
:::0 r-

.0-;:;
c:;:-.
.- '1;0
....... 411'

C ~J
--.oj ~-.
-<

NEIGHBORHOOD EQUIVALENCING

• ASSUME OVERHEAD MODELS DESCRIBE GLOBAL EFFECTS OF STAFF SIZE
ON PRODUCTIVITY FOR GIVEN L

• ASSUME SOFTWARE EQUATION EXPLAINS LOCALIZED BEHAVIOR IN
NEIGHBORHOOD OF A PARTICULAR (W, T) POINT FOR GIVEN L

• MAKE BOTH MODELS AGREE AT (W, T) AND HAVE SAME SLOPE AT THIS
POINT, FOR GIVEN L, BY PROPER CHOICE OF TECHNOLOGY CONSTANT,
c
k
' AND INDIVIDUAL PRODUCTIVITY, Pi

• NEIGHBORHOOD EQUIVALENCE CRITERION

S t l
(S) = r

1 - t(S) 1 + r

~ :;; '" RCT -11
or-;;, 12-1-82

-, -
W en
~ ~

o ...
~

C!1:GI!\!Al PAGE IS
OF POOR QUALITY

LOCAL BEHAVIOR, LINEAR OVERHEAD

1. 0 ..------.,.----..--'"t-.....,.,.--r--......-......-"....
0.9
0.8
0.7

0.6

0.5
.............

.... 0

i== 0.4 ..
0 -....
<
0::

~ -< 0::
;::)
c

0.3

SOFTWARE

0.2
EQUATION, r = 4

0.1~ ______ ~ ___ ~_~~_~~~~
1 2 3 4 5 6 7 8 9 10

WORK EFFORT RATIO, W/WO

RCT-12
12-1-82

R. Tausworthe
JPL
29 of 34

~'RIOtNAL PAGE IS
lIF POOR QUALITY

LOCAL BEHAVIOR, EXPONENTIAL OVERHEAD

..
~ 0.3

0.2 SOFTWARE
EQUATION, r = 4

O.l~ ________ ~ ____ ~ __ ~ __ ~~ __ ~~~
1 2

WORK EFFORT RATIO W/WO

RCT-13
12-1-82

R. Tausworthe
JPL
30 of 34

0 -.... <C
~

.... Z

Y
.I

Z

0 D
..

)
(

Y
.I

.."

>

L
I.

L
I.

e
(

.... .."

Y
.I

>

-.... e
(

... LI.I
~

0 .
.-4

a::
<

L.&.I
z

O
RIG

IN
A

L
PA

G
I! rs

O
F

PO
O

R

Q
U

A
LITY

.... <

-t-Z

~

0 Q
.

x L.&.I

U
"\ •

0

°5/5 '~~V1S 3"'lY
l3H

~
Q
.

c:r II

... o.

0
-C'I'\~ a::
t-Z

~
N

Q
.

X

L.&.I

-
.-4

0
0

R
. T

ausw
orthe

JPL
31

of 34

>-u Z

.....
-V

-~

~

.....
Z

0 -.... V

::;)
Q

0 ~
A

.

O
R'G

'NAL PAG
E IS

OF PO
O

R QUALITY

N

....
N

....

•
•

•
•

0
0

0
0

II
II

II
II

...P

...P

....
....

..,
..,

I I
0::::

I
<

I

~

I
-....I

I I
~

I

('t'\

-..... Z

~

N

0 Q
..

X

L.I.I

~
 _

_
_

_
 ~
 _

_
_

_
 ~
 _

_
_

_
_

_
 ~
 _

_
_

_
 ~
 _

_
_

_
_

_
 ~
 _

_
_

_
 ~
o

o
0

"-
0

0

.....
\C

•

..-4
•

o
•

o
•

o
•

o

u 'A~N]I~I~~] NOI!~nOOHd W
V

ll

L
t'\ •

o
~
 •

o

R
. T

ausw
orthe

JPL

32 of 34

~
;

I
...

t
-
I

W
~

~
 •

0 -<
 0::::

I
-Z

La.I

~

Q
..

X

La.I

W'-:;:tl
w"'C.
cr'o-j
-, c;:

W s;
~ :E

c ...
r.

EXPONENT RATIO DETERMINATIONS

• PUTNAM1s OR ~G INAL VALUE, r = 4

• FREBURGER-BAS III (U. OF MD)

r = 1.0 (DEVELOPED, DfliVERED CODE)

r = -D. 1 (DELIVERED CODE)

• GAFFNEY (I BM -MANAS SAS)

r = 0.88

G BOEHM (TRW)

r = -0.041 (ADJUSTED DATA)

r = 0.086 (RAW DATA)

RCT-16
12-1-82

w ~
~." .
ot"'"~
IN 5;
~ ~

o
;::.
go

CONCLUSIONS

• TIME AND EFFORT CAN BE TRADED ONLY SO FAR

• THE EXPONENTS OF THE SOFTWARE EQUATION ARE RELATED TO THE SISO
RATIO, AND THEREFORE ARE INDICATORS OF HOW NEAR A PROJECT
I S TO BE ING OVERSTAFFED

• WHEN S/SO IS NEAR UNITY, ADDITIONAL STAFFING Will NOT HELP A
PROJECT

• IT IS NE\lER EFFECTIVE TO APPLY MORE THAN TWICE THE S INGLE
INDIVIDUAL-EFFORT TO SHORTEN SCHEDULE TIME

• THERE IS A NEED FOR MORE STATISTICAL STUDY OF r AS A FUNCTION
OF OTHER PROJECT CHARACTERISTICS

RCT-17
12-1-82

r

pRtQ1NAL
For p00R QUALITY

Estimates of Software Size ► N 8 3
From State Machine Designs

32368

Robert N. Britcher
	

John E. Gaffney*
IBM, Federal Systems Division
	

National Weather S^rvice
Gaithersburg, Md. 	 Silver Spring, Md.

* On leave from IBM Corporation, Federal Systems Division

J. Gaffney
IBM
1 of 26

ik_

There is a greatly evident need for improving the estimates of the amount of
function to be provided by a software system.	 State Machine models (1,2) are
being employed to record software designs as they evolve. So, it appears
natural to attempt to derive estimates of the amount of code that will
ultimately result from these designs by using quantities directly available

from them as they are created. This paper demonstrates that the length, or
size (in number of Source Lines of Code) of programs represented as state
machines can be reliably estimated in terms of the number of internal state
machine variables. Variables, here, are defined as the unique data required
by a state machine's transition function, not the data retained in the state
machine's memory. They are equivalent to Halstead's (3) operands. Data
collected from the SACDIN project (4) was used to develop software size
estimating formulas for a software system from which the state machine
representation is available at various levels of abstraction. Hence, the
methodology presented should be employable at successive stages of the
development process to provide estimates (with, hopefully) increasing accuracy.

An important aspect of developing softw-ire is the derivation of estimates of
the amount of function (typically presented as a SLOC count) the system is to
provide. This paper presents code size estimation formulas that can be
successively applied as the design for a software system evolves. The
estimation of software size and development cost (assuming certain rates) in
terms of man months per thousand lines of code (see reference 5) can be made
relatively early in design and refined as the design effort proceeds. The
code size estimation formulas can be applied to a state machine
conceptualization of a software system at the highest level and individual
procedures at the lowest.

A program can be regarded, and hence estimated, evaluated, and/or compared
with another program in a number of different ways. Here, we are concerned
with two principal ways, the linguistic and the structural. From the
linguistic point of view, a program can be regarded as a string of tokens or
symbols. Halstead (3), who did pioneering work using the linguistic approach,
demonstrated a fundamental relationship between the size of the operand and
operator vocabulary and the length of the program text, steted in terms of the
number of tokeno or symbols constituting it. This relationship is:

N = 1? 1'092171 + 77 2 1og 2r?2 , where N - number
of tokens,i7 l = operator vocabulary size, and772
operand vocabulary size.

In assembly code, the "operator" correspond,-4 to the op. code symbol, and the
"operand" corresponds to the "address" or operand field of tkt: 'Instruction.
Also, "I", the number of instructions is proportional to "N", tle number of
tokens; or I - aN. In fact, I - b.n21o82n2, approximately, ,,,;. shown by
Gaffney for the case of AN ,UY K-7 assembly code (9). Christeusen et al. have

also observed that "program size is determined by the data that must be
processed by the program (10)". We assert that the "varies le count", obtained
from the state machine design, at the "procedure level" (as described more
fully below) corresponds to "n2", the operand vocabulary size in Halstead's

J. Gaffney
IBM
2 of 26

formulas. It is of interest to note that relationships similar to those
developed by Halstead and others for software, part of the material that may
be termed "software linguistics", have been noted between text length and
vocabulary size in natural languages by Herdan (6).

From the structural point of view, a program can be considered principally in
terms of data flow or in terms of function. In the former, the amount of
function, stated in terms of the number of lines of code, is related to the
data flow into and out of each module (see Kafura and Henry (7)) or into and
out of a program as a whole (see Albrecht (8)). In the function approach, the
number cf unique inplits and outputs for a procedure, a module, or a program as
a whole is implied by the size of the function in that software element.
Whereas, here, we assert the equivalence between the Halstead approach and the
function approach, by relating the number of variables in a state machine
procedure to the number of source lines of code: the variables are equivalent
to the operands in Halstead's formulas.

A program, or a subdivision of one, such as a module, can be represented as a
"state machine", as depicted in Figure 1. The "State Machine" consists of two
principal parts, the "transition function" and the "state data". The former
gives rise to the actual code. The latter is the "memory" of the program.
The transition function, call it "T" is a function whose elements are ordered
pairs of ordered pairs (2), to wit:

T - [(present state, input), (new state, output)] .

Thus, "T" really symbolizes the combinational logic of the program, not
different in principle from a program without memory. The state machlae
characterization of a program is an adaptation of the "Mealy-Moore" model of
sequential machines originally developed to represent automation in general and
telephone switching circuitry in particular (11).

As described by Britcher and Moore (4), the SACDIN Dialog Manager was designed
using the state machine model. Some 8000 lines of code (Sj370 assembly plus
some macros, including comments), were written, based on a state machine
decomposition consisting of 20 machines, comprising 74 transitions, or
procedures. We derived several formulas (by regression). One of them was:

S - 8.825 x V°.ogeV, where S - estimated number of SLOC,
including comments (about 40%).

(The statistics of the fit,to the data from which it was derived)is given in
the table below:

Relative Error (1)

(S - S)
S

Size Estimating	 Avg. by	 Std. Deviation
Formula	 Procedure by Procedure	 Avg. Overall

S - 8.825 x V1ogeV	 .027	 .564	 -.0097

S - 21.3282xV	 .222	 .518	 .0845	
J. Gaffney
IBM
3 of 26

i

ORIGINAL. PAdE f.I

OF POOR QUALITY

FIGURE 1

State Machine Representation of a Program

T = [(p. state, input); (n. state, output))

J. Gaffney
IBM
4 of 26

Note: (1) S - estimated SLOC's (w/comments); S - actual SLOC's (w/comments)

The variable V is the "variable count" obtained from the state machine
design. It corresponds to 712, the number "operands" in Halstead's formulas.

The software code size formula, S - 8.825xV1ogeV, was verified using the
data from another major SACDIN software component, "Crypto". The relative
error, indicative of the degree of fit of the estimating formula to the Crypto
data, is tabulated below, and compared with the corresponding figures
representing the degree of fit to the Dialog Manager.

Relative Error	 Dialog Manager	 Crypto

Overall	 -.0096
	

-.0474
Average by Procedure	 .027
	

-.1056

Standard Deviation by	 .564	 .8917

The relatively good fit of the size estimating formula derived from the Dialog
Manager program and applied to the Crypto program supports our contention that
the formula is a general one, applicable provided that proper design
decomposition rules are followed.

The data suggests that there are relationships between the counts of variables
in state machine representations of software designs and the amount of code
produced from the design. These relationships can be used to estimate code
size based on designs implemented using the state machine technology. The
data also suggests a connection between the state machine and Halstead
software models.

','he formula for the number of SLOG, given above, can be converted Co one
representing the number of assembly language SLOC, without comments. Tire
expansion ratio of the language in which the SACDIN programs were written is
about 1.2, and these programs had about 40% comments. Therefore, S, assembly,
without comments is:

S - 8.825 x 1.2 x .6 x V1og eV - 6.354 V1ogeV

Any software system should be decomposable into 6 "levels", ranging from level
0, the initial program specification, through level 5, the code. The levels
are depicted in Figure 2. The formulas presented above were derived for
application at level 4, the procedure level. From this point of view of
levels, the design and code are essentially more detailed statements of the
requirements (the later ones addressed 'o the machine, while the earlier or
higher levels are addressed to people).

Since any software system should have the same number of decomposition or
specification levels, a system having more code should have proportionally
more "boxes"at each level. Hence, one should be able to produce an estimate
based on the number of boxes at a certain level, recognizing that, on the
average, about the same amount of function (and hence code count, for a
language at a certain level, e.g., assembly) should be resident in a"box" ata
given level in the specification hierarchy. A similar notion is used by Biome

J. Gaffney
IBM
5 of 26

^Id	 ENURE 2

of pO OR
QU,^,1^1Ty

Levels of Specification

Overall Software
System	 Level

0

3vr	 rtv.. te Product Level

rrt Decomposition of	 Level

the State Sr,ace)	 r

(CPCI Level)

Integration Level

(8 .5 Spec., CPC, or 	 Level
CPPS Level ► 	 2

Module Level

(Final Decomposition 	 Level

CPDS or	 of the State Space)	 3

C . 5 Spee
Level

Procedure Level 	 I

	

te•^

	
I('—'T

Source Code
	

Procedure I

Procedure 2

Lev e l 5

Procedure N

J. Gaffney
IBM
6 of 26

hardware estimators. Based on experience, a hardware estimator might
estimate, for example, that a certain amount of function might require "about
1/2 type x box", where he is familiar with a "type X" box which is an element
of an existant system.

Based on the SACDIN data, we note that each level 4 procedure machine has an
average of 6 variables, and hence has an average of 68 SLOC (assembly). Also,
there is an average of 4 level 4 machines per level 3 machine. Hence, there
Is an average of 273 SLOC per level 3 machine. Finally, there is an average
of 20 level 3 machines per level 2 machine, suggesting an average of 5460 SLOC

(assembly) per level 2 machine.

Acknowledgement

The authors express their thanks for the support provided by Mr. Don Zarefoss
of IBM, FSD, Gaithersburg, Maryland during the course of the developments
described here.

J. Gaffney
IBM
7 of ?6

RF.FRRRNrVQ

1. Linger, R. C., Mills, H. D., and Witt, B. I., "Structured Programming
Theory and Practice," Addison-Wesley, 1979, pg. 32.

2. Ferrantino, A. B., and Mills, H. D., "State Machines and Their Semantics
in Software Engineering, "IEEE COMSAC, Chicago, Fall, 1977.

3. Halstead, M. H., "Elements of Software Science", Elsevier, 1977.

4. Britcher, R. N., and Moore, A. R., "Increased Productivity Through the Use

of Software Engineering in an Industrial Environment", "IEEE Computer
Society Fifth International Computer Software and Applications
Conference"; November, 1981, IEEE Catalog No. 81CH1698-0; pg. 73%

5. Cruickshank, R. D., and Lesser, M., "An Approach to Estimating and
Controlling Software Development Costs", in "Tile Economics of
Information Processing", Vol. 2; pg. 139; Springer-Verlag, 1982.

6. Herdan, G., "The Theory of Language as Choice and Change",
Springer-Verlag; 1966, pg. 86 and other pages.

7. Henry, S., and Kafura. D. H., "Software Structure Metrics Based on
Information Flow", IEEE Transactions on Software Engineering Volume
SE-7; Number 5, September, 1981, pg. 510.

8. Albrecht, A. J., "Measuring Application Development Productivity",
Proceedings IBM Applications Development Symposium, Monterey,
California; October 14-17, 1979; GUIDE International and SHARE, Inc.,
IBM Corporation, pg. 83.

9. Gaffney, J.E., "Software Metrics: A key to Improved Software Development
Management"; presented March, 1981, Pittsburgh, at the conference,
"Computer Science and Statistics; 13th Symposium on the Interface";
also proceedings published by Springer-Verlag, 1981.

10. Christensen, K., Fitsos, G. P., and Smith, C.P., "A Perspective on
Software Science, "IBM Systems Journal; Vol. 20, No. 4, 1981,
pg. 372-387.

11. Savage, J. E., "The Complexity of Computing"; Wiley, 1976, No. 11.

J. Gaffney
IBM
8 of 26

THE VIEWGRAPH MATERIALS

for the

R. BRITCHFR/J. GAFFNEY PRESENTATION FOLLOW

J. Gaffney
IBM
9 of 26

ESTIMATES OF SOFTWARE SIZE

FROM

STATE MACHINE DESIGNS

R. N. SRITCHER
	

J. E. GAFFNEY, .JR . *

IBM, FEDERAL SYSTEMS DIVISION,
	

NATIONAL WEATHER SERVICE

GAITHERSBURG, MD.
	

SILVER SPRING, MD.

PRESENTATION AT

SEVENTH ANNUAL SOFTWARE ENGINEERING WORKSHOP

NASA, GODDARD SPACE FLIGHT CENTER

DECEMBER 1 1 1082

* ON LEAVE FROM IBM, FEDERAL SYSTEMS DIVISION

J. Gaffney

IBM
10 of 26

L_	 _ ..,

SOFTWARE DEVELOPMENT WORK EFFORT ESTIMATION

THE STATE MACHINE MODEL

SOFTWARE SCIENCE/LINGUISTICS BACKGROUND

STATE MACHINE/SOFTWARE LINGUISTICS EQUIVALENCE

J. Gaffney

IBM
11 of 26

MOTIVATION

ESTIMATION OF AMOUNT OF FUNCTION PROBABLY MORE

DIFFICULT THAN ESTIMATION OF WORK RATES,

MORE HAS BEEN DONE ON ESTIMATING WORK RATES THAN

SOFTWARE SIZE,

NEED TO QUANTIFY REQUIREMENTS IV TERMS OF LIKELY

AMOUNT OF CODE IMPLIED BY THEM,

SUCCESSIVE REFINEMENT FROM REQUIREMENTS TO CODE

SHOULD BE MATCHET; BY ESTIMATION PROCESS,

J. Gaffney
IBM
12 of 26

4

SOFTWARE DEVELOPMENT

WORK EFFORT

ESTIMATION METHODOLOGY

WORK HOURS = WORK RATE * AMOUNT OF SOFTWARE FUNCTION

SOME MEASURES OF SOFTWARE FUNCTION

I SOURCE LINES OF CODE

i OPERANDS

I STATE MACHINE VARIABLES

---I

.1. Gaffney

IBM

13 of 26

J U:^tliu^^

1
14 tit

 tint

I I (T, l	 I ;; l 1 X iA i t

l :;1 1 P1,^^ 1 l	 ^1`1t^li;v 1 (11	 Sol 11, 1ARI	 "I UNC I I tlN

I	 I S i lMAIi Ifl , "k I I I OR

SOFTWARE FUNCTION MFASURFS

L!NGUISTIC: REPRESENTS A PROGRAM AS A SEQUENCE OF SYMBOLS,

EQUIVALENT TO DISCOURSE

SOFTWARE SCIENCE

OPERANDS

I STATE MACHINE: REPRESENTS A PROGRAM AS A FUNCTION WITH

MEMORY

MATHEMATICAL CONCEPT

SEQUENTIAL LOGIC

. 'ARIABLES

J. Gaffney.

IBM
1 5 of 26

ORIGINAL PAGE IS
OF POOR QUALITY

STAGES OF REFINErENT OF

SOFTWARE PEFMITIOq

REOU IWENTS	 NPUTWOUTPUTS

REFINE DETAIL

REFINE ESTIMATE
	

DES I GN	 -IDESIGN LAN.GUAGE

CODE	 S L 0 C

-"1

I!

J. Gaffney
IBM
16 of 26

6r,.: _	 _

ORIGINAL PAGE IS
OF POOR QUALITY

FUNCTION nECOMFO51T10N

OVENALL
FUNCTION

I -1	 1 1 7
Sun-FUNCTION	 SUO-f UNCTION	 SUY-FUNCTION
.1	 .I	 w^

ELEMENTI	 I	 EI EMENT

.. I	l 	 q
ELENIENT
nn

LNf_QrI AI AJA QN Fyq .N %QH!S UFELEME Na

J. Gaffney
IBM
17 of 26

ORIGINAL PAGE 15

OF POOR QUALITY

HALSTEAD SOFT l,,lARE SCIENCE/LiNGUISTICS

MODEL OF A PROGRAM

O

v

PERAND VOCABULARY SIZE

i
N = r. 11-OGi7l + 772L 0 Gn ? = K

No, OF	 OPERATOR VOCABULARY	 OF SLOC

TOKENS	 SIZE

EXAMPLE:

	

LA
	

X

OPERATOR (OP, CODE)
	

OPERAND (ADDRESS)

N -:-: A 'n2LOCn2

B,71 * LOG?j *2	 2

77 * -) =No, OF INPUTS/OUTPUTS AT ALGORITHM

LEVEL

J. Gaffney
IBM
18 of 26

ORIGINAL PAGE IS
OF POOR QUALITY

STATE MACH11F MOnE'L

APPL I FS TO PROGRAMS AT VARIOUS E_EVE'E..S (1F ABSTRACTION

OVE' RAE_E..--+t I ND I V I PUAE PROCEPURF

APPL I CAE}LL AT SL'CCE SS I V E.[VE	 EE S OF REFINEMENT

BASED Wi TH=. MEALY-MOORED MODEL OF SEQUENTIAL MALH I NLS

DfV LOPED 25 YFARS AGO

MAPS GENERALIZATION OF "INPUT" (PRF'SE N1 PLUS PAST) TO

"OUTPUT „ (PRE-'SE NT)

J. Gaffney
IBM
19 of 26

ORIGINAL PAGE IS
OF POOR QUALITY

State Machine Representation of a Program

Input	 Output

(External)	 Transition	 (External)
Function

Present State	 New State

State Data	 -.j

State Machine

T = [(p. state, input); (n. state, output))

J. Gaffney
IBM
20 of 26

AL - .--A

Level
3

Level
a

I..

Module Level
(Final Decomposition

CPAS or	 of the State Space)
C•5 Spec
Level

Procedure Level

Levels of Specification

J. Gaffney
IBM
21 of 26

ORIGINAL PAGE IS
OF POOR QUALITY

Overall Software
System	 Level

0

Baseline /Softwar• Product Level
IFitst Decomposition of 	 r Level	

• • •
the State Space)	 t

(CPCI Level)

Int"ration Level

18 . 5 Spec., CPC, or
CPPS Level)

Level2	 • • •

Source Code
	 Procedure 1

Procedure 2
Level 5

Procedure N

4, AVERAGE

ORIGINAL PAGE W
OF POOR QUALITY

FAN-OUT OF MACHINES

AT SUCCESSIVE LEVELS OF REFINEMENT OF DETAIL

LEVEL 2

(INTEGRATION

LEVEL 3

(MODULE)

LEVEL 4

(PROCEDURE)

J. Gaffney
IBM
22 of 26

ORIGINAL PAS:.. `
OF KIOR QUAL ITtr

ESTIMATION METHODOLOGY

THERE ARE THE SAME NUMBER OF LEVELS, REGARDLESS OF AMOUNT

OF CODE

EARLIER ESTIMATES:

DECOMPOSE OVERALL REQUIREMENT INTO SUCCESSIVELY

DETAILED STRUCTURE OF "BOXES" AT DIFFERENT "LEVELS"

COUNT NUMBER OF BOXES AT LOWEST "LEVF!" OF DETAILING,

MULTIPLY BY "AVERAGE" NUMBER OF INSTRUCTIONS,

METHOD ANALOGOUS TO HARDWARE "FUNCTION" ESTIMATION

BY BOX COUNT, THEN MULTIPLYING BY "AVERAGE" COST OF

BOX.

LATER ESTIMATES:

COUNT NUMBER OF VARIABLES PER PROCEDURE

APPLY FORMULA FOR EACH PROCEDURE TO GET SIZE ESTIMATE

J. Gaffney
IBM
23 of 26

ORIGINAL PAGL IS

OF NOR QUALITY

STATE MACHINE MODEL ESTIMATING FORMULAS

FOR

LEVEL NO. +	 LEVEL NAME	 ESTIMATING FORMULA

(ASSEMBLY CODE)

4	 PROCEDURE	 6.354 VLOGpV	 (68)

r	 3	 !	 MODULE	 +	 25,416 VLOGrV (213)

2	 INTEGRATION	 '	 (5460)

WHERE; V = THE STATE MACHINE "VARIABLE COUNT" (AT THE PROCEDURE

LEVEL); IT CORRESPONDS TO HALSTEAD'S n 21 THE "OPERAND''

VOCABULARY SIZE$

J. Gaffney
IBM
14 of 26

	

ib.P..	 ¢ I' i4:J^,	 cal

OF POOR QlJoAL1W

DEGREE OF FIT OF ESTIMATING FORMULA

RELATIVE ERROR 	 DEFINING SYSTEM	 VERIFICATION SYSTEM

OVERALL	 —.0096	 -.0474

`AVERAGE, BY PRO -

CEDURE	 .027	 —.1056

STANDARD DEVIATION

BY PROCEDURE	 P564	 .8917

J. Gaffney

IBM
25 of 26

r

1

"THE CRUCIAL INGREDIENT OF SCIENCE, THIS IS

THE HABIT OF MIND THAT LINKS CURIOSITY WITH

DISCIPLINED, RIGOROUS, SUSTAINED INVESTIGATION

TO EXPAND THE LIMITS OF KNOWLEDGE',

U;,rrlNA'. PAG2 IS

► 1'1'FNI)ANCF IIS`I' 1)FCFMBFR 1, 1982
	 OF POOR QUALITY

------ m ------------ m ----- ft - • - - w

h; n 3 AKw:''^
d^R^w
! n nar'A"10V
T A7,,1^I,n

11 Tr' AVEPS

\	 l,r
Nn^-v nAQigrS

nAlrts

A c II 1
ar n 4 V

10SE O H .ATSut]o

rH r RV1, 4T1'Tw''R
nE91 0 PAt' n,JFN"+-nAVlq

rprK hn,`n
nAVIn n'.^^v
P A 11 L ^n^.'1'^+ n^Vt)
00AE"^ I' A nRnCw0WF

Rl^hAk ►` nRrf)rsnly

a. Ral^^;c
VRFp 90jQST
CYNTHIA BROWNvl i4oij1dn,

110 "1 Nn AtJ("KT,A'l%D
RRTAM P,)^^;rR
TOM Q11 0 4-,
' TURE o rl 311k"(1"1

.71m r VTN T,4r
^A li t. C^R^
Jo w N C e R+
r,LnYm (-a7prNlTFa
,10PN CARc,01

,tErF Cuo V

c T F'VF rM c'MrI)NT
101 1 j0 rH "',IOA
Vjr rH1,RMN

PAttl, Cv,F"E:^1Tc
t,APY CnATS
TEn "nrH7Al'r•
9. CnRTt7

A q 1'`1 ^ ^T"S^AQCu

ti ,; C T V *G ,Srt2VTrf:
w°;+ c'A°C W & n A T 4 ,SYS
,1"' IV nF Nitr,
AP j"1(' R-;' SrARC' y ")AV

VpI
t'cC
(:cFr,

G c F'r
Gu'il
G°C
CcC
iv L
CcC

G
NSA
ITT01
NAsa/NQ

;c Fr
Iia&c
1„^c

^I n1 j V n l- ,N, n
,ICA

cqc
t r l ,, cV A IJ F1 E'r'1'pIr'
(: r ,J r K n I, ET,F r T p T^
,•ISA
Clc
H -E L"I 04T F'RTAT Sll lDp tjk T nF't+ICE
N rprRP I,, .1 1 'DTCAL CF'vTFR
ITr01
Hitt)

cqc
CTA

GSFC
rcFr
Rrltrr p rO,,tSt%Tp%,1'rQ

'f r XaS IMSTR'111ArNTS
M T'r p E; CnRp
1)AI)4

ORIGINAL PAGE 13
OF POOR QUALITY

*O g E Q 'i' i' 0 0 T C K S 4 A"K	 lc,Nl

RAY rU*U m y	 ,cA

RIT L,	 WrCvr'v lSc
n UNCAN	 ') "J,.uA;'tf N Q E:T r) 04Z,)1

CH A R T -E, c 	^IrKcLini IICI)n

tUt'Nl	 nTr rK uA"'ti
nAvin	 nlcMTV ^,^,ac^lc	 n0f-N.A'.1
,TI M 	 n'.)n.AT\c IrlM
nVINT-S	 0.	 r)" Af%C TN^.	 AZ' p 1lSr'ACV 	r0MPl,vY

r' A o L 	 U^E')F T I" I G r R it"'Iv	 nH	 44n
%'IrKFY	 0"N TH 11 \.cA

TU M 	' U %- N 1 0 .5

M A V E E.!'K u A n0T TR
g ETSY FO"'A00C
l. • Ar,TwR h'1 [,TS
r U „1 7rE P.,vo
MARY A NT "r rCJ 4NMJART
culrLr,Em ..81,I"("WR
rUg T p FrurQa^nUF'

C lei c

l a ,^
,;cFr
r;cwr

rqc
i. n " f Ta ;r T v t'l) SYS

WIT,LTA" c'rA Pk	 ,'c,vr

MAQCTA	 C'V's I)Wry CMR:.l
rATHv FRA", K	 ^'qvf-

YU o Y F Q ^:"K t'f:	 CcC
nAni	 I,Ihl ly nF Mn

,10 N N G A F 9r,vrY
R I r HAR n .1. GALL
r;ARY GA Rn
PA T RTC K '"APY
rARUT, rIAM"10
KETT" r;111

AMOIT r.OcL

, 1 09F. n H GnGlIEV
%!AhtCv r'0m0%+Ani

A . .l. "RACF'
ART r RPE ”,

W D GRE;t11411UaG
,10r nRvGnR

MATT.IhIAf. YVftTtJFP gV.O VTCT"
T O T - T A l. 1^M"Tr^F

.^II(^0^.)IIl.NS CORP
uc^ r
h,-A /Cr l'r
(:cC.
6YRACIISF llhlTv
SOT
CcFr
Y°M
cqc
,l'' T,
vqA

nI r K	 HAM T L'"O RT HFUT,	 VARODA"'IJQIFS
JU R N	 HASUMALT, Rt'St'APCH	 ti M A T A SYS
CI LLErM	 N E QRTNI (4;Fr
n0lIG	 HTLT,M r R crgl;Uq	 qlioFnll
TU M M C) n (; q Ov M rTOE'
AAPBARA	 u 0T MFS (:5C
AORI n N H m 0w ipu

0 poop, QUALITY

RAV WUUGuTrN
nAm M0WAQT'{

WILVAM 4 UMP4PrY
n AVIM MUTC40S

NO R M A IJ InE t.,snd

RON ,TAALcCKI
JEMa v ,TAr0t1F;M
I-ViLTAN • T A M I L 8M(4
MAVIn ,TOPSTVIG
r H R iS , tq•,TE;4
RORE V T J1 1 0M-E:

DE ►`► NTS KAK ►► RR
MWFN KARMA'*ZKE
M ET H KAT7.
FRANrEA KA7LAURKT
MI R A"► N P KIMGgTmk
RE P NAR M a, Kt,ETN

RIrH KT , IAIK7L
,TOMN KA► I(",NT
RI rHARn KNMX
JUNN KnG11T

NVI CY KRAMPR
17EFF K ►► H^►

rNPIRTA r,AVF.

RO R E P T LAR90M
MAWTCV TWISTNTHAL
KAREM r,EBD'rR
PVT .Tr 1,E%-
GER T R UnE LFE
RAYMnNn t,EPEARU ► 1E ►► R

KARL L%"VTTT
OAV T,1F6rpjTT7

AN T H ^NV MATOME
pEWtRV MAT,Er

NASE FMA MAPOnF
JERKV MARSH
THnmAS MASTERS
J. E. MATH°'WR
TOM MARTTN
ANM MARIr "CARE
W. L. "Croy
PRANK MCmARRY
M AR Y ANN MrGARRY
11O N N Mf pt'Er

NATTOMAT, AUREAU Or ATANnAPDA
DADA
WITT
uNIV n F Mn

ITTRI

UnD
1;4Fr
GAFr
SFNMIX
ITTRI
IMM

VRI
GsFr
U^t IV nF M n
NAVnAr
USDA
IPM/FAD
F^R^ AEROSPACE'
VIV n F VA
CSC
RFS R ARCH A n A'*A S.YS
GSF'r
sAs

IaM
usciA
GcFn
ITTRI
GSC
nnTV A,; grir
GSFr
Sol
r4► U

G.SFr
ITT
GSFr
ITTRI
WSA
SE'N n IV
NSA
i? tt R R O ► 7 G m s CnRO
FAA
GgFr
ITTRI
O W PT n F CnMMF;RCF

ORIGINAL PAGE: IS

OF POOR QUALITY

Trp MFDFIROS CSC
PER MEFSM" CPA
PHTL MFRWAPTN GIFT'
RA l► In vIt-HaUl FT-EFT	 ;.!ATFRTAT,	 vtj t p rR T	 nFrlrE
TSAO MTYAM M T M UMHr
KA Q E M MOr (',SFr
S. MnHANTY OROKT TNC
JO O N M TT SA AFLT	 GARS

MATT4EW VVET,MAN	 CRC
CH O IS MADJ116	 nIS4
BERNIE NARROW	 GSFC
ROA M E T 'sn n	 r,SFr
R O A E Q T NTTCHMAN	 FtErT MATPRTAT, AIMPMRT MPrV E
ROPFRT NMO %TAN	 C('LT.FnE Uc u ► IT,L,TAM k MACY

M H A RLER nEATERFI r H F R	 MTTOE CnRO
P A n L ONDRUR	 GSFr.
TOM n$TRANn	 SOFORY /fINTVAC
THnMAS 0 ► TS TERInG v 	U S S rC O ET SEQVTCF

JERR v PARE
BERRY RAQCMVFR
RAYMMNn PATTL
T,E M NTE PFNVY
WAL M PFNMY
K ARL PFTv!RS
JOHN PTETRAS
M IrHA'", PLFTT
PIT-L pnSTHTTMA
JEPRY PRFNTICE
nO1IGLARS PnTvAM

CqC

HffD
NATTOhIAT aUPFACT WEAP M Me, CF%fTFR
U'R U A
Ur-DA
GRFr
ITTPE

CRC
GAFe*
Ht ► D
011VIT S/W MrM'*

JIM P A M S°'Y U""Il► 	 ^F	 MT)
CH W AYA RAO GFNFRAL ET,FrTPIr
r.E n Rr-E R A T T E UROA
r-ERA T, DTN F D I77AR^I AFDRC/SE'S
SAM REnWTN r '•ITTPP
RALL Y Q I r H M O M D C''C
Mo" RDRBTN% NSA
MIMI R M B F R T SM N ITTRI
JIM RO R I N S M N NRA
WI T,LTA M Q O R I M SnN SACKS/FQEPMAN AASnC
JO H N R nCr A O 0 H ► 'RRpTTr,W5	 CnRQ
MI rHAEL 0 0"L r D F R CRC
JO R GF TUTS RnM W U ITTRI
KYLE R M RF I0,14
T,ESLTE RTISWBROMK IRM/FRIG
PONT PU T L F Dr-F DnT/TSC

.70UN SAPo
Q A TT L SMHWFVO.'Q
Rut-cc ;C"o f Trim

Tocr qc"U"ArHl"Tt
Q IrO h R n g0l.dv
PA' t L SrHRFTN
TEVE9A 6wKrfA
cY1,VT4 6 4 4PP' do

MAQ rY f Hn0'RA"t

nAt ► In c E M K'r JS
r.e ll L Su,LT-i
M 141 S"ITH
KATHWRM C+4TTvl
.JEQRY gNni)nRaSc
r:Lr. v"t c,d v)4 R
c Lj T, l m T SnaT 13JAV
lu u,v Sns

MgEOH PTA'7Zn,J'

Rg4EQ r jT EPHt: ,d C

T. STEvF"tS
TKORY q r'W TL"H
ST F'V v q Q r) T lJ

V A TTL VUT,t.",Swl

ORIGINAL PAGE IS
OF POOR QUALITY

6nrTWARP A k r
MA R'"I M "ARIr'rTA
.} n ;.TN I% AE009P A CV

ll`.1It' nF Mn

GSFr

d Y. 00T YTH;1"HMIrAT

15 ;: r
,,^5•yr

;^'IJF'R q L 7V,uA4TCC
CqC
PALM "Try
Wt F ^

Cn vTF t, Tt J F () SYS
0 o ti;
4ASA/NGl
gC;1)r
(aF' NF'R AL, u vej A ,4 T (C

cSC
n Q A p ^^ T,n+^

T,JSTTT

KEJI TASAKI
p pAE;Q'f f11Ulc,vnKT4;r,
WAYNF TAVLMH
.lA"'Eg TTot-s^TT

KE "TNw"fN '"1311
AETSV TUQVn

PW I L L"T'r K V A N WI R "A"T
M . VTbbRnO
SU't A"' VOT,;T

Q R IT CF 'ifAn[)TUrTflN
,lArK t+i' JVRTCW
SHARnN WALTGnR
CNA R T ,F a WAT,LACc'
n0 yjUcwt WAT,bACF
PARRY '44T811a

ROTC 'JET-KS
npt► In 'sir t,ga
F•LhT ME; WPYTTK7R
VI T? GTfV T A 'WTLT,IQN,S
PATttj WILT-IA
AL%F '4U^TG

GSFC

10L
ClqC

JqA
A P I"C RPSF'A QCN rORP
CCC

1 .10 m
R r 8 r A Q C_P C nA m A SYS
NASA-1-01M.KV

WIRPf' VI U S CnRD
^,^T

rc("

RAYTH VIII'T ,g EPVTCF' rU
NA'rT0"T QIJRE;AU nv STWIARDA
ITT'Qt
;in n
!).S. "'A IT ATi p F-9 EAW4 H LAB

Cn U U A M 'r IMSTI"'

OF f"
P n LYT rC4NT CAL IMSTITUTE
OnT

ORIGINAL PAGE IS
OF POOR QUALITY

RgYMnNn YEW
HbRT,EM Y011 AN

V R R NrOTblr VOIISSEIrT

SA II L ZAVrLrA
M. MKOWITZ

URIV np' Mn

C rY E"'TTRORTSPS
UuIV mr Mn

Al'UIMC
U N I V nF Mn

BIBLIOGRAPHY OF SEL LITERATURE

The technical papers, memorandums, and documents listed in

this bibliography are organized into two groups. The first

group is composed of documents issued by the Software Engi-

neering Laboratory (SEL) during its research and development

activities. The second group includes materials that were

published elsewhere but pertain to SEL activities.

SEL-Ori.ainated Documents

SEL-76-001, Proceedings From the First Summer Software
Engineering Workshop, August 1976

SEL-77-001, The Software Engineering Laboratory,
V. R. Basili, M. V. 2elkowitz, F. E. McGarry, et al., May
1977

SEL-77-002, Proceedings From the Second Summer Software
Engineering Workshop, September 1977

SEL-77-003, Structured FORTRAN Preprocessor WORT), B. Chu
and D. S. Wilson, September 1977

SEL-77 -004, GSFC NAVPAK Design Specifications Languag_s
Study, P. A. Scheffer and C. E. Velez, October 1977

SEL-78-001, FORTRAN Static Source Code Analyzer (S
Design and Module Descriptions, E. M. O'Neill,
S. R. Wal gore, and C. E. Goorevich, February 1978

tSEL-78-002, FORTRAN Static Source Code Analyzer (SAP)
User's Guide, E. M. O'Neill, S. R. Waligora, and
C. E. Goorevich, February 1978

SEL-78-102, FORTRAN Static Source Code Analyzer Prog_r
(SAP) User's Guide (Revision 1), W. J. Decker and
W. A. Taylor, September 1982

SEL-78-003, Evaluation of Draper NAVPAK Software Design,
K. Tasaki and F. E. McGarry, June 1978

i-This document superseded by revised document.

B-1

SEL-78-004, Structured FORTRAN Preprocessor SPORT
PDP-11/70_User's Gue, D. S. Wilson and B. C u, eptember

SEL-7S-005, Proceedings From the Third Summer Software En i_
neering Workshop, September 1978

SEL-78-006, GSFC Software Engineering Research Requirements
Analysis Study, P. A. Scheffer and C. E. Velez, November 1978

SEL-78-007, Applicability of the Rayleigh Curve to the SE L
Environment, T. E. Mapp, December 1978

SEL-79-001, SIMPL-D Data Base Reference Manual,
M. V. Zelkowitz, July 1979

SEL-79-002, The Software Engineering Laboratory: Rela-
tionship Equations, K. Freburger and V. R. Basili, May 1979

SEL-79-003, Common Software Module Repository (CSMR) System
Description and User's Guide, C. E. Goorevich, A. L. Gr; ► en,
and S. R. Waligora, August 1979

SEL-79-004, Evaluation of the Caine, Farber, and Gordon
Pro ram Desi n Lan ua a (PDL) in the Goddard Space Fri- ht
Center(GSM Code _580Software Design Env ronment,
C. E. Goorevich, A. L. Green, and W. J. Decker, September
1979

SEL-79-005, Proceedings From the Fourth Summer Software
Engineering Workshop, November 1979

SEL-80-001, Functional Requirements/Specifications for
Code 580 Configuration Analysis Tool (CAT), F. K. Banks,
A. L. Green, and C. E. Goorevich, February 1980

SEL-80-002, Multi-Level Ex ression Design Lan ua e-
Requirement Level (MEDL-R) System Evaluation, W. J. Decker
and C. E. Goorevich, May 1980

SEL-80-003, Multimission Modular Spacecraft Ground Support
Software System (MMS/GSSS) State-of-the-Art Computer
Systems/Compatibility Study, T. Welden, M. McClellan, and
P. Liebertz, May 1980

SEL-80-004, System Description and User's Guide for
Configuration Analysis Tool (CAT) , F. K. Banks,
W. J. Decker, J. G. Garrahan, et al., October 1980

SEL-80-005, A Study of the Musa Reliability Model,
A. M. Miller, November 1980

B-2

SEL-80-006, Proceedin g s From the Fifth Annual Software
Engineering Workshop, November

SEL-80-007, An Appraisal of Selected Cost/Resource Estimat
Models for Software Systems, T. F. Cook and F. E. McGarry,
December 1980

tFEL-81-001, Guide to Data Collection, V. E. Church,
D. N. Card, F. E. McGarry, et al., September 1981

SEL-81-101, Guide to Data Collection, V. E. Church,
D. N. Card, F. E. McGarry, et al., August 1982

SEL-81-002, Software Engineering Laborator (SEL) Data Es
Organization and User's Guide, D. C. Wycko^, G. Page, a
F. E. McGarry, September 1981

SEL-81-003, Software Engineering Laboratory (SEL) Data B
aintenance - stem oswM users uuiae ano a stem ue-
cr ption, D. N. Card, D. C. Wyckoff, and G. Page, September

tSEL-81-004, The Software Engineering Laboratory,
D. N. Card, F. E. McGarry, G. Page, et al., September 1981

SEL-81-104, The Software Engineering Laboratory, D. N. Card,
F. E. McGarry, G. Page, et al., February 1982

tSEL-81-005, Standard Approach to Software Development,
V. E. Church, F. E. McGarry, G. Page, et al., September 1981

SEL-81-105, Recommended Approach to Software Development,
S. Esl inger, F. E. McGarry, and G. Page, May 198 2

SEL-81-006, Software Engineering Laborat̂tor^,..,^S(EL) Document
Library , (DOCLIB) System Descrpt _on andUser s Guide ,
W. Taylor and W. J. Decker, December 198

tSEL-81-O0l, Software Engineering Laboratory (SEL) Com-
p endium of Tools, W. J. Decker, E. J. Smith, A. L. Green,
et al., February 1981

SEL-81-107, _Software Engineering Laboratory (SEL) Compendiu m
of Tools, W. J. Decker, W. A. Taylor, and E. J. Smith,
February 1982

.3
'This document superseded by revised document.

fir°

B-3

SEL-81-008, Cost and Reliability Estimation Models CAREN
User's Guide, J. F. Cook and E. E war s, Fe ruary

SEL-81-009, Software Eng ineering Laboratory Programmer
Workbench Phase	 va uat on, W. J. Decker and
F. E. McGarry, March 1981

SEL-81-010, Performance and Evaluation of an Independent
Software Verification and Inte rat on Process, G. Page and
F. E. McGarry, May 1981

SEL-81-011, Evaluating Software Devf_-opment by Analysis of
Change Data, D. M. Weiss, November 1981

SEL-81-012, The Raylei g h Curve As a Model for Effort
Distribution ver t e Life of Medium Scale Software S stemsl
G. 0. Picasso, Decem or

SEL-81-013, Proceedin gs From the Sixth Annual Software Engi::
nearing Workshop, December 1981

SEL-81-014, Automated Collection of Software Engineering
Data in the Software Engineering Laboratory (SEL)_,
A. L. Green, W. J. Decker, and F. E. McGarry, September 1981

SEL-82-001, Svaluation of Management Measures of Software
Development, G. Page, D. N. Card, and F. E. McGarry,
September 1982, vole. 1 and 2

SEL-82-002, FORTRAN Static Source Code Analyzer Program
er,

SEL-82-003, Software Engineering r.aborator 	 SEL) Data Base
Reporting So tware User's Guide an .+ stem Description,
P. Lo, September 1982

SEL-82-004, Collected Software Engineering Papers:
Volume 1, July 1982

SEL-82-005, Glossary of Software Engineering Laboratory
Terms, M. G. Rohleder, December 1982

SEL-82-006, Annotated Bibliography of Software Engineering
Laboratory (SEL) Literature, D. N. Card, November 1982

SEL-82-007, Proceedings From the Seventh Annual Software
Engineering Workshop, December 1982

SEL-82-008, Evaluating Software Development by Analysis of
Changes: The Data From the Software Engineering Laboratory,
V. R. Basili and D. M. Weiss, Decem er

B-4

Basili, V. R., and B. T. Perricone, Sof

S EL-Related Literature

('Bailey, J. W., and V,, R. Basili, "A Meta-Model for Soft-
ware Development Resource Expenditures," Proceedings of
the Fifth International Conference on Software Engineering.

rK: computer societies Press,

Banks, F. K., "Configuration Analysis Tool (CAT) Design,"
Computer Sciences Corporation, Technical Memorandum, March
1980

r 'Basili, V. R., "Models and Metrics for Software Management
and Engineering," ASME Advances in Computer Technology,
January 1980, vol. 1

Basili, V. R., "SEL Relationships for Programming Measure-
ment and Estimation," University of Maryland, Technical
Memorandum, October 1979

Basili, V. R., Tutorial on Models and Metrics for Software
Management and Engineering. New York: Computer Societies
Press, 1980 (also designated SEL-80-008)

ttBasili, V. R., and J. Beane, "Can the Parr Curve Help With
Manpower Distribution and Resource Estimation Problem0",
Journal of Systems and Software, February 1981, vol. 2,
no. 1

ttBasili, V. R., and K. Freburger, "Prc:-ramming Measurement
and Estimation in the Software Engineering Laboratory,"
Journal of Systems and Software, February 1981, vol. 2,
no. 1

ttBasili, V. R., and T. Phillips, "Evaluating and Comparing
Software Metrics in the Software Engineering Laboratory,"
Proceedings of the ACM SIGMETRICS Symposium/Workshop:
Quality Metrics, March 19

ttThis article also appears in SEL-82-004 1 Collected Software
Engineering Papers: Volume 1, July 1982.

B-5

Basili, V. R „ R. W. Selby, and T. Phillips, Metric Analysis
and Data Validation Across FORTRAN Projects, Univers ty of
Maryland, Techn cal Report, November 1982

Basili, V. R., and R. Reiter, "Evaluating Automatable Meas-

Basili, V.R., and D. M. Weiss, A Methodology for Col)ecting
Valid Software Engineering Data,U— niversity of Maryland,
Technical Report TR-1235, December 1982

Basili, V. R., a.nd M. V. Zelkowitz, "Designing a Software
Measurement Experiment," Proceedings of the Software Life
Cycle Management Workshop, September 1977

tteasili, V. R., and M. V. Zelkowitz, "Operation of the Soft-
ware Engineering Laboratory," Proceedings of the Second
Software Life Cycle Management Workshop, August 1978

ttBasili, V. R., and M. V. Zelkowitz, "Measuring Software
Development Characteristics in the Local Environment,"
Computers and Structures, August 1978, vol. 10

Basili, V. R., and M. V. Zelkowitz, "Analyzing Medium Scale
Software Development," Proceedings of the Third Interna-
tional Conference on Software Eng Weer A. New York:
Computer Societies Press, 1978

ttBasili, V. R., and M. V. Zelkowitz, "The Software
Engineering Laboratory: Objectives," Proceedings of the
Fifteenth Annual Conference on Computer Personnel Research,
August 1977
Card, D. N., "Early Estimation of Resource Expenditures and
Program Size," Computer Sciences Corporation, Technical
Memorandum, June 1982

Card, D. N., "Comparison of Regression Modeling Techniques
for Resource Estimation," Computer Sciences Corporation,
Technical Memorandum, November 1982

Card, D. N., and M. G. Rohleder, "Report of Data Expansion
Efforts," Computer Sciences Corporation, Technical Memo-
randum, September 1982

ttThis article also appears in SEL-82-004, Collected Software
Engineering Papers: Volume 1, Jtily 1982.

B-6

E

ttChen, E., and M. V. Zelkowitz, "Use of Cluster Analysis To
Evaluate Software Engineering Methodologies," Proceedings
of the Fifth International Conference on Software En veer_
in . New York: Computer Societies Press,

Freburger, K., "A Model of the Software Life Cycle" (paper
prepared for the University of Maryland, December 1976)

Higher Order Software, Inc., TR-9, A Demonstration of AXES
for NAVPAK, M. Hamilton and S. Zeldin, September 1977 (also
Zesignated SEL-77-005)

Hislop, G., "Some Tests of Halstead Measures" (paper pre-
pared for the University of Maryland, December 1978)

Lange, S. F., "A Child's Garden of Complexity Measures"
(paper prepared for the University of Maryland, December
1978)

Miller, A. M., "A Survey of Several Reliability Models"
;paper prepared for the University of Maryland, December
1978)

National Aeronautics and Space Administration (NASA), NASA
Software Research Technology Workshop (proceedings), March
980

Page, G., "Software Engineering Course Evaluation," Computer
Sciences Corporation, Technical Memorandum, December 1977

Parr, F., and D. Weiss, "Concepts Use-4 in the Change Report
Form," NASA, Goddard Space Flight. Center, Technical Memoran-
dum, May 1978

Reiter, R. W., "The Nature, Organization, Measurement, and
Management of Software Complexity" (paper prepared for the
University of Maryland, December '976)

Scheffer, P. A., and C. E. Velez, "GSFC NAVPAK Design Higher
Order Languages Study: Addendum," Martin Marietta Corpora-
tion, Technical Memorandum, September 1977

Turner, C., and G. Caron, A Comparison of RADC and NASA SEL
Software Development Data, Data and Analysis Center oar
Software, Special Publication, May 1981

ttThis article also appears in SEL-82-004, Collectec, ."oftware
Engineering Papers: Volume 1, July 1982.

B-7

I

Turner, C., G. Caron, and G. Brement, NASA/SEL Data Compen-
dium, Data and Analysis Center for Software, Special Publf-
cation, April 1981

Weiss, D. M., "Error and Change Analysis," Naval Research
Laboratory, Technical Memorandum, December 1977

Williamson, I. M., "Resource Model Testing and Information,"
Naval Research Laboratory, Technical Memorandum, July 1979

ttZelkowitz, M. V., "Resource
Software Projects," Proceeding
the Interface of Stattiis ti an
Computer Societies Press, 1979

Estimation for Medium Scale
s of the Twelfth Conference

e. New YorK:

Zelkowitz, M. V., "Dat;. Collection and Evaluation for Ex-
perimental Computer Science Research," Empirical Foundations
for Computer and Information Science (proceedings), November
9 2

Zelkowitz, M. V., and V. R. Basili, "Operational Aspects of
a Software Measurement Facility,"Proceedin gs of the Soft-
ware Life Cycle Management Workshop, September 1977

ttThis article also appears in SEL-82-004, Collected Software
Engineering Papers: Volume 1, July 1982.

B-8

* U.S. GOVERNMENT PRINTING OFFICE: 1983-381-791:267

	GeneralDisclaimer.pdf
	0010A02.pdf
	0010A03.pdf
	0010A04.pdf
	0010A05.pdf
	0010A06.pdf
	0010A07.pdf
	0010A08.pdf
	0010A09.pdf
	0010A10.pdf
	0010A11.pdf
	0010A12.pdf
	0010A13.pdf
	0010A14.pdf
	0010B01.pdf
	0010B02.pdf
	0010B03.pdf
	0010B04.pdf
	0010B05.pdf
	0010B06.pdf
	0010B07.pdf
	0010B08.pdf
	0010B09.pdf
	0010B10.pdf
	0010B11.pdf
	0010B13.pdf
	0010B14.pdf
	0010C01.pdf
	0010C02.pdf
	0010C03.pdf
	0010C04.pdf
	0010C05.pdf
	0010C06.pdf
	0010C07.pdf
	0010C08.pdf
	0010C09.pdf
	0010C10.pdf
	0010C11.pdf
	0010C12.pdf
	0010C13.pdf
	0010C14.pdf
	0010D01.pdf
	0010D02.pdf
	0010D03.pdf
	0010D04.pdf
	0010D05.pdf
	0010D06.pdf
	0010D07.pdf
	0010D08.pdf
	0010D09.pdf
	0010D10.pdf
	0010D11.pdf
	0010D12.pdf
	0010D13.pdf
	0010D14.pdf
	0010E01.pdf
	0010E02.pdf
	0010E03.pdf
	0010E04.pdf
	0010E05.pdf
	0010E07.pdf
	0010E08.pdf
	0010E09.pdf
	0010E10.pdf
	0010E11.pdf
	0010E12.pdf
	0010E13.pdf
	0010E14.pdf
	0010F01.pdf
	0010F02.pdf
	0010F03.pdf
	0010F04.pdf
	0010F05.pdf
	0010F06.pdf
	0010F07.pdf
	0010F08.pdf
	0010F09.pdf
	0010F10.pdf
	0010F11.pdf
	0010F12.pdf
	0010F13.pdf
	0010F14.pdf
	0010G01.pdf
	0010G02.pdf
	0010G03.pdf
	0010G04.pdf
	0010G05.pdf
	0010G06.pdf
	0010G07.pdf
	0010G08.pdf
	0010G09.pdf
	0010G10.pdf
	0010G11.pdf
	0010G12.pdf
	0010G13.pdf
	0010G14.pdf
	0011A02.pdf
	0011A03.pdf
	0011A04.pdf
	0011A05.pdf
	0011A06.pdf
	0011A07.pdf
	0011A08.pdf
	0011A09.pdf
	0011A10.pdf
	0011A11.pdf
	0011A12.pdf
	0011A13.pdf
	0011A14.pdf
	0011B02.pdf
	0011B03.pdf
	0011B04.pdf
	0011B05.pdf
	0011B06.pdf
	0011B07.pdf
	0011B08.pdf
	0011B09.pdf
	0011B10.pdf
	0011B11.pdf
	0011B12.pdf
	0011B13.pdf
	0011B14.pdf
	0011C01.pdf
	0011C02.pdf
	0011C03.pdf
	0011C04.pdf
	0011C05.pdf
	0011C06.pdf
	0011C07.pdf
	0011C08.pdf
	0011C09.pdf
	0011C10.pdf
	0011C11.pdf
	0011C12.pdf
	0011C13.pdf
	0011C14.pdf
	0011D01.pdf
	0011D02.pdf
	0011D03.pdf
	0011D04.pdf
	0011D05.pdf
	0011D06.pdf
	0011D07.pdf
	0011D08.pdf
	0011D09.pdf
	0011D11.pdf
	0011D12.pdf
	0011D13.pdf
	0011D14.pdf
	0011E01.pdf
	0011E02.pdf
	0011E03.pdf
	0011E04.pdf
	0011E05.pdf
	0011E06.pdf
	0011E07.pdf
	0011E08.pdf
	0011E09.pdf
	0011E10.pdf
	0011E11.pdf
	0011E12.pdf
	0011E13.pdf
	0011E14.pdf
	0011F01.pdf
	0011F02.pdf
	0011F03.pdf
	0011F04.pdf
	0011F06.pdf
	0011F07.pdf
	0011F08.pdf
	0011F09.pdf
	0011F10.pdf
	0011F11.pdf
	0011F12.pdf
	0011F13.pdf
	0011F14.pdf
	0011G01.pdf
	0011G02.pdf
	0011G03.pdf
	0011G04.pdf
	0011G05.pdf
	0011G06.pdf
	0011G07.pdf
	0011G08.pdf
	0011G09.pdf
	0011G10.pdf
	0011G11.pdf
	0011G12.pdf
	0011G13.pdf
	0011G14.pdf
	0012A02.pdf
	0012A04.pdf
	0012A05.pdf
	0012A06.pdf
	0012A07.pdf
	0012A08.pdf
	0012A09.pdf
	0012A10.pdf
	0012A11.pdf
	0012A12.pdf
	0012A13.pdf
	0012A14.pdf
	0012B01.pdf
	0012B03.pdf
	0012B04.pdf
	0012B05.pdf
	0012B06.pdf
	0012B07.pdf
	0012B08.pdf
	0012B09.pdf
	0012B10.pdf
	0012B11.pdf
	0012B12.pdf
	0012B13.pdf
	0012B14.pdf
	0012C01.pdf
	0012C02.pdf
	0012C03.pdf
	0012C04.pdf
	0012C05.pdf
	0012C06.pdf
	0012C07.pdf
	0012C08.pdf
	0012C10.pdf
	0012C11.pdf
	0012C12.pdf
	0012C13.pdf
	0012C14.pdf
	0012D01.pdf
	0012D02.pdf
	0012D03.pdf
	0012D04.pdf
	0012D05.pdf
	0012D06.pdf
	0012D07.pdf
	0012D08.pdf
	0012D09.pdf
	0012D10.pdf
	0012D11.pdf
	0012D12.pdf
	0012D13.pdf
	0012D14.pdf
	0012E01.pdf
	0012E02.pdf
	0012E03.pdf
	0012E04.pdf
	0012E05.pdf
	0012E06.pdf
	0012E07.pdf
	0012E08.pdf
	0012E09.pdf
	0012E10.pdf
	0012E11.pdf
	0012E12.pdf
	0012E13.pdf
	0012E14.pdf
	0012F01.pdf
	0012F03.pdf
	0012F04.pdf
	0012F05.pdf
	0012F06.pdf
	0012F07.pdf
	0012F08.pdf
	0012F09.pdf
	0012F10.pdf
	0012F11.pdf
	0012F12.pdf
	0012F13.pdf
	0012F14.pdf
	0012G01.pdf
	0012G02.pdf
	0012G03.pdf
	0012G04.pdf
	0012G05.pdf
	0012G06.pdf
	0012G08.pdf
	0012G09.pdf
	0012G10.pdf
	0012G11.pdf
	0012G12.pdf
	0012G13.pdf
	0012G14.pdf
	0013A02.pdf
	0013A03.pdf
	0013A04.pdf
	0013A05.pdf
	0013A06.pdf
	0013A07.pdf
	0013A08.pdf
	0013A09.pdf
	0013A10.pdf
	0013A11.pdf
	0013A12.pdf
	0013A13.pdf
	0013A14.pdf
	0013B01.pdf
	0013B02.pdf
	0013B03.pdf
	0013B04.pdf
	0013B05.pdf
	0013B06.pdf
	0013B07.pdf
	0013B08.pdf
	0013B09.pdf
	0013B11.pdf
	0013B12.pdf
	0013B13.pdf
	0013B14.pdf
	0013C01.pdf
	0013C02.pdf
	0013C03.pdf
	0013C04.pdf
	0013C05.pdf
	0013C06.pdf
	0013C07.pdf
	0013C08.pdf
	0013C09.pdf
	0013C10.pdf
	0013C11.pdf
	0013C12.pdf
	0013C13.pdf
	0013C14.pdf
	0013D01.pdf
	0013D02.pdf
	0013D03.pdf
	0013D04.pdf
	0013D05.pdf
	0013D06.pdf
	0013D07.pdf
	0013D08.pdf
	0013D09.pdf
	0013D10.pdf
	0013D11.pdf
	0013D12.pdf
	0013D13.pdf
	0013D14.pdf
	0013E01.pdf
	0013E02.pdf
	0013E03.pdf
	0013E04.pdf
	0013E05.pdf
	0013E06.pdf
	0013E07.pdf
	0013E08.pdf
	0013E09.pdf
	0013E10.pdf
	0013E11.pdf
	0013E12.pdf
	0013E13.pdf
	0013E14.pdf
	0013F01.pdf
	0013F02.pdf
	0013F03.pdf
	0013F04.pdf
	0013F05.pdf
	0013F06.pdf
	0013F07.pdf
	0013F08.pdf
	0013F09.pdf
	0013F10.pdf
	0013F11.pdf
	0013F12.pdf
	0013F13.pdf
	0013F14.pdf
	0013G01.pdf
	0013G02.pdf
	0013G04.pdf
	0013G05.pdf
	0013G06.pdf
	0013G07.pdf
	0013G08.pdf
	0013G09.pdf
	0013G10.pdf
	0013G11.pdf
	0013G12.pdf
	0013G13.pdf
	0013G14.pdf
	0014A02.pdf
	0014A03.pdf
	0014A04.pdf
	0014A05.pdf
	0014A06.pdf
	0014A07.pdf
	0014A08.pdf
	0014A09.pdf
	0014A10.pdf
	0014A11.pdf
	0014A12.pdf
	0014A13.pdf
	0014A14.pdf
	0014B01.pdf
	0014B02.pdf
	0014B03.pdf
	0014B04.pdf
	0014B05.pdf
	0014B06.pdf
	0014B07.pdf
	0014B08.pdf
	0014B09.pdf
	0014B10.pdf
	0014B11.pdf
	0014B12.pdf
	0014B13.pdf
	0014B14.pdf
	0014C01.pdf
	0014C02.pdf

