NASA
Technical
Paper
2199

AVRADCOM
Technical
Report
83-C-4

1983

Computer Code for Off-Design Performance Analysis of Radial-Inflow Turbines With Rotor Blade Sweep

Peter L. Meitner
Propulsion Laboratory
AVRADCOM Research and Technology Laboratories Cleveland, Ohio

Arthur J. Glassman
Lewis Research Center
Cleveland, Ohio

N 15Ω

National Aeronautics and Space Administration
Scientific and Technical Information Branch

Summary

The analysis procedure of an existing computer program for predicting the off-design performance of radialinflow turbines was extensively modified to improve its accuracy and to extend its applicability. The rotor inlet slip factor correlation was replaced by one that includes rotor blade sweep. At the rotor exit a sector analysis was used in place of the original mean-line analysis to model the large radial variations occurring there. Disk friction, clearance, and vaneless space losses were added to the loss model, and the method of computing trailing-edge loss was changed. Finally, the entire analysis procedure was recoded.
The resulting computer program, called RTOD (Radial Turbine Off-Design), predicts the performance of a radial turbine (with or without rotor blade sweep) as a function of pressure ratio, speed, and stator setting. The program models the flow with stator viscous and trailingedge losses; a vaneless space loss between the stator and the rotor; and rotor incidence, viscous, trailing-edge, clearance, and disk friction losses. The stator and rotor viscous losses each represent the combined effects of profile, endwall, and secondary flow losses. The stator inlet and exit and rotor inlet flows are modeled by a mean-line analysis, but a sector analysis is used at the rotor exit. For a pivoting stator the leakage flow through the clearance gap is accounted for.
This report describes the program modeling changes and, for completeness, presents all analysis equations. The program input and output, including error messages, are also described and are illustrated with an example case.

Comparing calculated results with experimental data shows that the revised program predicts mass flow rate better than does the original program. Calculated results are also used to illustrate the potential improvement in off-design performance offered by rotor back-sweep for high-work-factor radial turbines.

Introduction

The radial turbine has been used extensively in automotive turbochargers and aircraft auxiliary power units and has recently been given serious consideration for primary powerplant application for both automobiles and rotorcraft. In automotive and rotorcraft applications the turbine operates over a wide range of power settings and requires accurate off-design performance prediction for a successful design.

A computer code for the off-design performance analysis of radial-inflow turbines is described in reference 1 , and additions to this program for variable-area stators are reported in reference 2. Although this program has
been used extensively, it still requires modifications to extend its accuracy and applicability. Current interest in highly loaded radial turbines has resulted in designs having rotor back-sweep, a feature that this program cannot accommodate. Also, the analysis model, as shown in reference 1 , predicts too low a value for mass flow in the region of rotor choke. In addition, the loss model does not include all of the losses present in the design program of reference 3, and the trailing-edge loss does not properly account for the effect of variable stator angle.

To overcome these deficiencies, extensive modifications were made to the analysis model. The rotor slip factor equation was replaced by one that includes rotor blade sweep. A sector analysis, similar to that of reference 3, was used at the rotor exit in place of the mean-line calculation. Disk friction, clearance, and vaneless space losses were added to the loss model, and the stator and rotor trailing-edge loss equations were changed. Finally, the entire procedure was recoded.

The resulting computer program, called RTOD (Radial Turbine Off-Design), which is described in this report, computes off-design performance of a radial turbine by modeling the flow with stator viscous and trailing-edge losses; with a vaneless space loss between the stator and the rotor; and with rotor incidence, viscous, clearance, trailing-edge, and disk friction losses. RTOD can analyze a variable stator, including the leakage flow in the clearance gap. Furthermore, RTOD determines the rotor exit flow variation from hub to tip and can account for the effect of swept rotor blading. The user must specify the stator and rotor viscous losses (which represent the combined effects of profile, endwall, and secondary flow loss) to match a reference performance point. RTOD then calculates the turbine performance over a specified operating range.

For the sake of completeness this report describes all of the modeling assumptions, but with emphasis on recent modifications, comprised in the computer program RTOD. The program input and output are described and the use of the program is illustrated by example problems. Results obtained from this program and from the program of reference 1 are compared with experimental data. RTOD can be obtained from the Computer Software Management Information Center (COSMIC), University of Georgia, Athens, Georgia 30602.

Analysis Modification

This section describes the changes that were made to the previous analysis method and loss model of references 1 and 2. The described losses are applied at or between the flow stations shown in figure 1. Station 0 is the station upstream of the stator, station 1 is just inside the stator trailing edge, and station 2 is immediately
downstream of the stator trailing edge. Station 3 is upstream of the rotor, station 4 is just inside the rotor trailing edge, and station 5 is immediately downstream of the rotor trailing edge.

Rotor Analysis

The rotor analysis was extended to include a slip factor correlation that can account for swept rotor blading. Also, at the rotor exit a sector analysis replaces the previous mean-line analysis. The details are as follows (all symbols defined in appendix A):
Slip factor. - In reference 1 the optimum rotor inlet tangential velocity is calculated from the Stanitz slip factor correlation
$V_{u, 3, \mathrm{opt}}=U_{3}\left(1-\frac{1.98}{N_{\mathrm{bl}}}\right)$
The Stanitz correlation is limited to radial blading only. RTOD uses the Wiesner slip factor correlation of reference 4 , which is a function of blading (sweep) angle. The correlation, when adapted to a turbine geometry, takes the form
obtained from the velocity diagram work by subtracting the losses due to disk friction and tip clearance. This means that the sector velocity diagrams are not consistent with the shaft output work.

Loss Model

In reference 1 the losses through the stator and the rotor are each modeled by a single overall loss. In RTOD a vaneless space loss (between stations 2 and 3) was added, as well as a rotor disk friction and tip clearance loss. Furthermore, the method of calculating trailingedge pressure drop was changed. These changes are discussed in this section.

Vaneless space loss. - The program of reference 1 assumes no pressure drop from the stator exit to the rotor inlet (between stations 2 and 3). In RTOD the total pressure drop is obtained from
$\Delta p^{\prime}=\frac{4 f l_{\rho} V^{2}}{2 D_{h} g_{c}}$
where f is the Fanning friction factor for parallel walls and l is a length based on an average flow angle between
$V_{u, 3 . \mathrm{opt}}=U_{3}\left(\frac{\left[1-\sqrt{\cos \alpha_{\mathrm{bl}}} /\left(N_{\mathrm{b}}\right)^{0.7}\right]\left[1-\left[\left(r_{4, \mathrm{av}} / r_{3}-\epsilon_{\mathrm{lim}}\right) /\left(1-\epsilon_{\mathrm{lim}}\right)\right]^{3}\right\}}{1-\tan \alpha_{\mathrm{bl}} / \tan \alpha_{3}}\right)$

For radial-bladed rotors (no blade sweep) the difference between the two correlations is quite small. For the example 1 turbine the Wiesner correlation predicts an optimum inlet tangential velocity 2.7 percent less than that predicted by the Stanitz correlation. The full incidence loss calculation procedure is shown by equations (B71) to (B82).
Exit sectors. - The program of reference 1 analyses the rotor exit at a mean radius only. In RTOD the rotor exit is divided into a specified number of sectors that are coupled by simple radial equilibrium
$\frac{d p}{d r}=\frac{\rho V_{u}^{2}}{r g_{c}}$
Temperature, pressure, and velocity are calculated for each sector (eqs. (B94) to (B106)), and overall values of mass flow and work are obtained by summing the individual sector values. These calculations take into account the viscous loss, since a viscous rotor loss coefficient is specified for each sector. The disk friction and tip clearance losses, however, are of an overall nature and do not reflect hub-to-tip variations. The shaft output work is
stator outlet and rotor inlet. The calculation procedure is given by equations (B45) to (B54).
Rotor disk friction loss. - The program of reference 1 does not calculate a separate disk friction loss but lumps all losses (viscous, disk friction, clearance, and trailing edge) into one overall loss coefficient. In RTOD the following expression from reference 3 is used for the disk friction loss (eq. (B129)):
$L_{\mathrm{df}}=\frac{0.02125 \rho_{3} U_{3}^{2} r_{3}^{2}}{g_{\mathrm{c}} J w_{\mathrm{tot}}\left(\rho_{3} U_{3} r_{3} / \mu\right)^{0.2}}$
Rotor tip clearance loss. - The following expression from reference 3 is used in RTOD to calculate the rotor tip clearance loss (eq. (B130):
$L_{\mathrm{cl}}=\frac{2 \Delta \bar{h}_{3-5}^{\prime}\left(h_{\mathrm{cl}} / 2 r_{4, \text { tip }}\right)}{\left(1-r_{4, \text { hub }} / r_{4, \text { tip }}\right)}$
The formulation assumes that the fractional loss due to clearance is equal to the ratio of clearance to passage height at the rotor exit.

Figure 1. - Radial turbine schematic and station identification.

Trailing-edge pressure drop. - Reference 1 assumes no loss in total pressure across the stator or rotor trailing edges (stations 1 to 2 and 4 to 5 , respectively). This is contrary to observed results, since it is known that a total pressure drop does occur, although it is usually small. Reference 2 assumes that static pressure remains constant across trailing edges. Although this assumption gives a drop in total pressure, the predicted total pressure drop decreases as the flow angle is increased. This is again contrary to observed results and will cause errors when analyzing a pivoting stator. The expressions for total pressure drop across the stator and rotor trailing edges used in RTOD were obtained from the expression for one-dimensional, compressible fluid flow with sudden area increase. The assumed expressions, although not based on rigorous analysis, predict the correct trend of total pressure loss with flow angle. Furthermore, the predicted levels of loss appear reasonable. For the stator the drop in total pressure is expressed by (eq. (B39))

$$
\Delta p^{\prime}=\left(1-\frac{V_{r, 2}}{V_{r, 1}}\right)^{2}\left(\frac{\rho_{1} V_{1}^{2}}{2 g_{c}}\right)
$$

and for the rotor it is (eq. (B113))
$\Delta p^{\prime}=\left(1-\frac{V_{5} \cos \alpha_{5}}{V_{x, 4}}\right)^{2}\left(\frac{\rho_{4} V_{4}^{2}}{2 g_{c}}\right)$

Program Input

The program input consists of a title card, the gas properties, the turbine geometry description, and the parameters that specify the desired calculation options. Except for the title card, all data input is in NAMELIST format. Data may be input in either SI or U.S. customary units.

Figure 2 identifies the angle and the angle sign convention used in RTOD. At the stator and the rotor inlet, all angles are defined from a radial line; at the rotor exit, angles are defined from an axial line. Figure 3 is a graphic representation of the geometry input variables, and figure 4 shows the example 1 data input.

All input variables are listed in table I, along with the required units, the default values, and the type of variables needed (real or integer).

The user must specify the viscous stator and viscous rotor losses (PR10 or EBR3D for the stator and XKR for

Figure 2. - RTOD angle sign convention.

the rotor) such that the RTOD prediction matches two performance parameters (usually flow and work or flow and efficiency) at a particular pressure ratio. The parameters to be matched can either be design-point values obtained from a design-point program or test data.

Program Output

The program output is in either SI or U.S. customary units, corresponding to the chosen input units. The output consists of a printout of the title card, all input data, and one of three chosen levels of output as described in this section. The RTOD data printout corresponding to the input data of figure 4 is shown in figure 5 .

Short Output

The short output consists of a tabulation of 12 overall parameters for each calculated operating point. Figure 6 shows the short output corresponding to the input data of figure 4. Note that the rotor chokes and that the value of stator exit critical velocity ratio (V / V_{cr}) at rotor choke is
printed out. Also, the rotor limit load point is identified. The parameters in the short output are as follows (with the corresponding equations in parentheses):
(1) Equivalent flow (B148)
(2) Equivalent work (B150)
(3) Actual flow (B44)
(4) Actual work (B131)
(5) Equivalent power (B151)
(6) Equivalent torque (B152)
(7) Equivalent p_{0}^{\prime} / p_{5} (B153)
(8) Equivalent $p_{0}^{\prime} / p_{s}^{\prime}$ (B154)
(9) Blade-jet speed ratio (B162)
(10) Work factor (B161)
(11) Static efficiency (B134)
(12) Total efficiency (B135)

Medium Output

The medium-output option gives the same tabulation of overall parameters as the short output and also gives tabulated velocity, temperature, pressure, and flow angle information at stations 0 to 5 . At stations 3 to 5 the information is presented for both the absolute and relative frames of reference, and at stations 4 and 5 (rotor exit) the information is presented for the hub, mid, and
tip sectors only. If an even number of sectors is specified, the midpoint sector is taken to be the sector above the mean radius. The medium-output option also presents additional information for stations 1, 3, and 5. For the most part this information is self-explanatory, except for these items:

Station 1

EBR3D

P1T/P0T

CR AT MAX FLOW
three-dimensional kinetic energy loss coefficient, $e_{3 D}$, as specified; or, if total pressure ratio was specified, calculated from equation (B3)
total pressure ratio, $p_{1}^{\prime} / p_{0}^{\prime}$ (input parameter PR10), as specified; or if $e_{3 D}$ was specified, calculated from equation (B4)
critical velocity ratio $\left(V / V_{c r}\right)$, that produces maximum value of main-
stream flow $(\rho V)_{1}$ (equal to 1.0 if $p_{1}^{\prime} / p_{0}^{\prime}$ was specified; less than 1.0 if $\bar{e}_{3 \mathrm{D}}$ was specified).
BL1

Station 3

REL. T. PR. relative total pressure after incidence AFTER INCID. loss, a fictitious pressure that shows the LOSS effect of incidence U3 rotor inlet tip speed

Figure 7 shows the medium output for a $\left(V / V_{c r}\right)_{l}$ of 0.6 only (for the example input of fig. 4, except that OPT $=1$). The output shown is produced for every value of $\left(V / V_{\mathrm{cr}}\right)_{1}$ in its specified range.

Input parameter	Description and units	$\underset{\text { type }}{\text { Variable }}$	Default value
Overall input variables			
TITLE IUNTS TOT POT G R XMU OPT	Title card (up to 80 alphanumeric characters) Type of units (0 for U.S. customary, 1 for SI) Total temperature at station $0, K\left({ }^{\circ} R\right)$ Total pressure at station $0, \mathrm{~N} / \mathrm{cm}^{2}$ (psia) Specific heat ratio Gas constant, $3 / \mathrm{kg}-\mathrm{K}$ ($\mathrm{ft}-\mathrm{ibf} / 1 \mathrm{bm}-^{\circ} \mathrm{R}$) Gas viscosity, kg/m-s (lbm/ft-s) Output option: 0 - short output 1-medium output 2 - long output	I R 1 I	0 \qquad \qquad \qquad \qquad \qquad 0
Stator input variables			
NSTV	Number of stator vanes	R	------
CLFR1	Stator total clearance (hub and tip) as fraction of passage height at trailing edge		0.0
ALO	Flow inlet angle at station 0 , deg		------
ALI	Stator exit blade angle at station 1 , deg		------
Ro	Radius at station 0, cm (in.)		------
R1	Radius at station $1, \mathrm{~cm}$ (in.)		
HSO	Passage height (including clearance) at stator inlet, cm (in.)		..-----
HSI	Passage height (including clearance) at stator exit, cm (in.)		------
THI	Vane trailing-edge normal thickness, cm (in.)	\dagger	------
IOPTS	Option for stator loss calculation: 1 - user specifies $\rho_{1}^{\prime} / p_{0}^{\prime}$ 2 - user specifies \bar{e}_{30}	I	1
PR10	Specified ratio of $p_{1}^{\prime} / p_{0}^{\prime}$ (input only if IOPTS $=1$)	R	0.98
E8R3D	Specified value of $\bar{e}_{3 D}$ (input only if IOPTS $=2$)		0.055
VRSTRT	Initial value of ($V / V_{c r}$) at station 1 (must be subsonic)		-
VRSTOP	Final value of ($V / V_{c r}$) (must be greater than VRSIRT)		------
DELVR	Incremental change in ($V / V_{C r}$), between VRSTRT and VRSTOP	\downarrow	------

Input parameter	Description and units	$\begin{array}{\|} \text { Variable } \\ \text { type } \end{array}$	$\begin{gathered} \text { Default } \\ \text { value } \end{gathered}$
Rotor input variables			
NRBL	Number of full rotor blades extending from inlet to output	R	-
1 SPL	Splitter blades (0 for no splitters, 1 for splitters)	I	0
RPM	Rotative speed, rpm	R	------
ALR3	Rotor inducer sweep angle (0.0 for radial blade), deg		0.0
R3	Radius at station 3, cm (in.)		
RBWD	Rotor "0" width at station 3, cm (in.)		-
R4HUB	Rotor exit hub radius, cm (in.)		------
R4TIP	Rotor exit tip radius, cm (in.)		-
CL 4	Clearance height at rotor exit, cm (in.)	\dagger	--.-.-
NSCT4	Specified number of equal height sectors at rotor exit (25 max)	1	--
OPBTA4	Rotor exit blade angle distribution option 0 - user specifies exit blade angle for each sector 1 - program linearly interpolates for exit blade angle at each sector from input BTAHUB and BTATIP	I	1
BETA4	Rotor exit blade angle for each sector (hub to tip; input only if OPBTA4 = 0), deg	R	
BTAHUB	Rotor exit blade angle at hub (input only if OPBTA4 $=1$), deg	R	
BTATIP	Rotor exit blade angle at tip (input only if OPBTA4 $=1$), deg	R	
OPTH4	Rotor exit normal thickness distribution option: 0 - user specifies normal thickness for each sector 1 - program linearly interpolates for normal thickness at each sector from input TH4HU8 and TH4TIP	1	1
TH4	Rotor exit normal thickness for each sector (hub to tip; input only if OPTH4 = 0), cm (in.)	R	
TH4NUB	Rotor exit normal thickness at hub (input only if OPTH4 = 1), cm (in.)		
TH4TIP	Rotor exit normal thickness at tip (input only if 0PTH4 $=1$) , cm (in.)		
XKR	Rotor viscous loss coefficient for each sector (hub to tip)		
PNEGI	Power in incidence loss expression (for negative incidence)		2.50
PPOSI	Power in incidence loss expression (for positive incidence)		1.75
P4RDPC	Incremental percentage reduction in pressure at rotor exit after rotor choke	\dagger	10.0

${ }^{d}$ I denotes integer; R denotes real.
4.59 INEH RAIIAL TUFEINE IN AIF
\&IIAT T TOT $=518.7$, FOOT $=14.696, ~ G=1.4, R=53.35, \quad \mathrm{XHU}=1.216 \mathrm{E}-5$,
$\mathrm{NSTV}=14 ., \mathrm{AL} 0=45 ., \mathrm{AL} 1=72,0, \mathrm{~F} 0=2.88 \mathrm{~B}, \mathrm{~F} 1=2,345, \mathrm{HSO}=.5771, \mathrm{H} 51=.5771$,
 $N R E L=11, I S F L=1$, $\mathrm{FFM}=29550, \mathrm{~F} 3=2.295, \mathrm{FBWI}=.5771, \mathrm{~F} 4 \mathrm{HUE}=.572$, R4TIP=1.646,
 TH4HUB $=.077$, TH4TIF $=.03 \mathrm{E}, \mathrm{XKF}=11 *, 240,0 \mathrm{OT}=08 \mathrm{ENI}$

Figure 4. - Example l data input.

Long Output

The long output is similar to the medium output, except that for stations 4 and 5 the tabulated inputs are presented for each sector. Also, additional rotor loss information is presented. For the most part this information is again self-explanatory, except for the following items:
EQUIVALENT SPEED
SPECIFIC DIAM.

SPECIFIC SPEED

defined by equation (B149)
specific diameter; defined by equation (B160)
defined by equation (B159)

The long output also presents a further tabulation of the following items for each sector at stations 4 and 5:

Station 4

R4 radius associated with midpoint of sector
BL4 blockage for each sector; defined by ratio of free flow area at station 4 to free flow area at station 5
W/WCR AT value of $\left(W / W_{\text {cr }}\right)_{4}$ that produces

Figure 5. - RTOD data printout (corresponding to fig. 4 data input).

(U/UCE) 1	$\begin{aligned} & \text { ERUIV. } \\ & \text { FLOW } \\ & \text { (LEMA/ } \end{aligned}$	```Equiv. WORK (BTU/```	ACTUAL FLOW (LEM/	ACTUAL WORK (ETU)	$\begin{aligned} & \text { EQUIV. } \\ & \text { FOWER } \\ & \text { (HF) } \end{aligned}$	Equiv. torque (FT*LEF)	$\begin{aligned} & \text { ERUIV, } \\ & \text { FOT/FS } \end{aligned}$	Equiv. FOTFFST	flatie-jet SFEEII fitiol	$\begin{aligned} & \text { WORK } \\ & \text { FACTOF } \end{aligned}$	$\begin{aligned} & \text { STATIC } \\ & \text { EFFIC. } \end{aligned}$	$\begin{aligned} & \text { TOTAL } \\ & \text { EFFIC. } \end{aligned}$
	SEC)	LEM)	SEC)	LEM)								
0.3000	0.3769	4.6418	0.3769	4.6421	2.4756	0.4400	1.2412	1.2099	0.9689	0.3425	0.6230	0.7041
0.3500	0.4337	6.1643	0.4337	6.1646	3.7830	0.6724	1.2874	1.2571	0.8983	0.4520	0.7112	0.7827
0.4000	0.4878	7.6727	0.4878	7.6732	5.2982	0.9414	1.3395	1.3085	0.8375	0.5606	0.7695	0.8338
0.4500	0.5389	9.1776	0.5388	9.1782	6.9979	1.2438	1.3998	1.3660	0.7832	0.6692	0.8049	0.8649
0.5000	0.5865	10.6883	0.5885	10.6890	8.8703	1.5766	1.4712	1.4320	0.7336	0.7783	0.8223	0.8808
0.5500	0.6306	12.2155	0.6305	12.2162	10.8994	1.9373	1.5575	1.5090	0.6875	0.8886	0.8255	0.8850
0.6000	0.6707	13.7671	0.6706	13.7679	13.0643	2.3221	1.6623	1.5989	0.6448	1.0008	0.8185	0.8815
0.6500	0.7066	15.3593	0.7068	15.3602	15.3556	2.7293	1.7930	1.7058	0.6048	1.1180	0.8032	0.8721
12.7000	0.7381	17.0213	0.7381	17.0223	17.7751	3.1594	1.9637	1.8373	0.5661	1.2362	0.7799	0.8573
0.7500	0.7851	18.8252	0.7651	19.8263	20.3776	3.6219	2.2084	2.0099	0.5257	1.3668	0.7467	0.8365
0.8000	0.7873	21.1710	0.7873	21.1723	23.5866	4.1923	2.7154	2.3076	0.4757	1.5366	0.6851	0.8004
0.8062	0.7898	21.9757	0.7897	21.9769	24.5496	4.3635	$\underline{3.0194}$	2.4488	0.4556	1.5747	0.6522	0.7821
koto	\% has cho	Eil at ylu	$1=0.8062$	00	¢ 4 IT	Rations)						
may	P4(1) FOF	CHOXEI FO	$\mathrm{F}=0.4182$	01	A 14 IT	Fitions						
0.8062	0.7898	22.3802	0.7897	22.3814	25.0014	4.4438	3.2415	2.5359	0.4438	1.6242	0.6301	0.7691
0.8062	0.7898	22.7041	0.7897	22.7055	25.3634	4.5081	3.4313	2.6337	0.4330	1.6477	0.6095	0.7548
0.8062	0.7898	22.9340	0.7897	22.9353	25.6201	4.5538	5.7395	2.7322	0.4231	1.6644	0.5869	0.7382
0.9062	0.7898	22.9930	0.7897	22.9943	25.6860	4.5655	3.8505	2.7747	0.4193	1.6586	0.5779	0.7305

ROTOR LIMIT LOAIING ACHIEVEI AT F'4(1)=0.2919E OI FSIA (13 ITERATIONS)

Figure 6. - RTOD short output for figure 4 data input.

Figure 7. - RTOD medium output at $\left(V / V_{C r}\right)_{1}=0.6$ for figure 4 data input.

MAX FLOW maximum (choking) value of $(\rho W)_{4}$ (always less than 1.0)
U4 rotor sector speed

Station 5

AEROD. ETA	sector aerodynamic static efficiency; defined by equation (B127)
AEROD. ETAT	sector aerodynamic total efficiency; defined by equation (B128)
WM(K)/WMTOT	fraction of total weight flow passed by each sector

Figure 8 shows the long output for a $\left(V / V_{\mathrm{cr}}\right)_{1}$ of 0.6 only (for the example input of fig. 4 , except that $\mathrm{OPT}=2$).

The long output shown is produced for every value of ($\left.V / V_{\mathrm{cr}}\right)_{\mathrm{t}}$ in its specified range.

Figure 8. - RTOD long oulput at $\left.\operatorname{VV} V_{C r}\right)_{1}=0.6$ lor figure 4 data input.

Main Program

The user can specify geometries and operating conditions that have no flow solutions. For low flow rates (small specified values of V / V_{cr} at station 1) it may not be possible to pass the flow at station 4 while maintaining radial equilibrium. In a real turbine the flow would be passed but with separated or reversed flow in portions of the rotor exit. However, RTOD cannot account for that situation, and if it occurs, the following error message is printed out:

STATION 4 HAS NOT CONVERGED IN 25 ITERATIONS FOR (V/VCR) $1=x . x x x x x \pm x x$

ROTOR WEIGHT FLOW $=x x x x x x \pm x x$, STATOR WEIGHT FLOW $=x \cdot x x x x x \pm x x$

After this message, program execution starts over with
the next specified value of stator exit critical velocity ratio.

Subroutine MAXVAL

Subroutine MAXVAL calculates the maximum value of density times velocity ρV and the associated critical velocity ratio at the stator and rotor exits (stations 1 and 4). The input points must define a curve that shows a maximum somewhere in the specified interval (other than at the end points). If unrealistically large values of stator or rotor loss are specified, the shape of the generated curve may not exhibit the required characteristic. If this happens, the following error message is printed out:

WARNING--THE CURVE TO BE MAXIMIZED
IN SUBROUTINE MAXVAL IS NOT OF THE
PROPER FORM
TATION 1
TATION 1
PFIMARY WEIGHT FLOW = 0.6706E 00 (LEM/S)
PFIMARY WEIGHT FLOW = 0.6706E 00 (LEM/S)
CLEAFANCE WEIGHT FLOW = 0.0000 (LEM/S)
CLEAFANCE WEIGHT FLOW = 0.0000 (LEM/S)
TOTAL WEIGHT FLOW = 0.6706E 00 (LEM/5)
TOTAL WEIGHT FLOW = 0.6706E 00 (LEM/5)
ERR3IT =0.5523E-01
ERR3IT =0.5523E-01
FIT/FOT = 0.9870E 00
FIT/FOT = 0.9870E 00
STATION 3
OFTIMUA RETA $=-.2060 E 02$ (IIEG)
$\begin{array}{rll}\text { DFTIMUA RETA } & =-.2060 E \text { O2 } & \text { (IIEG) } \\ \text { INCIDENCE ANGLE } & =0.2137 E \text { O2 } & \text { (DEG) }\end{array}$
STATION 5
MASS AUERAGEI $T 5=0.4553 E 03$ (F)
HASS AUERAGET TST $=0.4604 E 03$ (F)
FS AT THE HUE $=0.8918 \mathrm{E} 01$ (F'SIA)
FSS AT THE SHFOUI $=0.8801 E$ OL (FSIA)
AVERAGE FS $=0.8860 E 01$ (FSIA)
AVERAGE FST $=0.9211 E 01$ (FSIA)
IIELHT ACROSS FOTOR $=0.1400 \mathrm{E} 02$ (BTU/LEM)
ACTUAL UELHT $=0.1377 E 02$ (ETU/LEM)
HISK FRICTION LOSS $=0.4306 E-01$ (BTU/LEM)
ACTUAL TOKAUE $=0.2322 E 01$
IIF CLEAFANCE LDGS $=0.1890 \mathrm{E} 00$ (BTU/LEM)
EQUIVALENT SFEEII $=0.2955 E$ O5 (RPM)
SFECIFIC SFEEA $=0.7071 E 00$
SPECIFIC DIAM. $=0.2677 E$ OI
$\begin{array}{lllll}\text { MASS AUG. DELHT (STA. } 0 \text { TO } 5 \text {) }=0.1582 E \text { O2 } & \text { (ETU/LEM) }\end{array}$
HASS AUG, FOWER (STA. 0 TO 5) $=0.1482 E 02$ (ETU
MASS AUG. TORQUE (STA. 0 TO 5) $=0.2634 \mathrm{E} \mathrm{O1}$ (FT*LBF)
CIFIEII FRIMARY FLOW ANGLE $=0.7200 \mathrm{E} 02$ (UEG)
ACTUAL FRIMAKY FLOW ANGLE $=0.7200 \mathrm{E}$ O2 (UEG)
ACTUAL FRIMAKY FLOW ANGLE $=0.7200 \mathrm{E} 02$ (LIEG)
CLEAKANCE FLOW ANGLE $=0.0000$ (IIEG)
V/UCF AT MAX FLOW $=0.1000 \mathrm{E} 01$
$\mathrm{ELL}=0.7051 \mathrm{E}-0$
REL. T. FR, AFTEK INCI[I, LOSS $=0.1177 E 02$ (FSIA)
KEL. T. FR, AFTEK INCIL, LOSS $\begin{aligned} & =0.1177 E 02 \quad \text { (FSIA) } \\ U 3 & =0.5918 E 03 \quad(F T / S)\end{aligned}$
F)

Program execution continues after this message. The value of ρV used is the greater of the two at the interval end points. The program user should reexamine and change the specified stator or rotor losses if this error message occurs.

Example Problems

A radial turbine that was tested in air at pressure ratios higher than choking is analyzed in this section, and the results are compared with experimental data, together with the results from the program of reference 1. Also, the same turbine is analyzed for various values of rotor back-sweep to illustrate the potential off-design performance improvements in high-work-factor turbines.

Example 1 -Comparison with Test Data and Reference 1 Code Prediction

Figure 9 shows a comparison of calculated versus experimental mass flow at 100 - and 60 -percent design speeds for the $11.66-\mathrm{cm}$ ($4.59-\mathrm{in}$.) diameter turbine of reference 5 . The test data are previously unpublished air data that were used because they covered a wider range of pressure ratio (beyond rotor choke) than the published argon data. Both the RTOD and reference 1 code predictions were matched with data at the design equivalent total-to-static pressure ratio of 1.54 . The RTOD results more closely predict the experimental mass flow rates at high pressure ratios. At both 100 - and 60 -percent design speeds, RTOD predicts an approximately 1 percent greater mass flow ratio than the reference 1 code. The improved mass flow prediction is attributed to the more

Figure 9. - Mass flow rate comparison.

Figure 10. - Total efficiency comparison.
accurate geometry and flow modeling at the rotor trailing edge. Both the RTOD and reference 1 code total efficiency predictions agree closely with test data as shown in figure 10.

Although the RTOD mass flow predictions are an improvement over the reference 1 code predictions, they still underpredict choking weight flow. At 100 -percent design speed the RTOD prediction is 1.63 percent below test results; while at 60 -percent speed it is 2.28 percent low. This discrepancy could be caused by the basic rotor loss modeling scheme. Rotor viscous loss is taken to be a function of rotor relative inlet and exit velocities squared (eq. (B87)), multiplied by a loss coefficient (input parameter XKR) that is assumed to remain constant. This assumption forces the calculated maximum mass flow rate per unit area to occur at low values of rotor exit relative critical velocity ratio ($\left(W / W_{\text {cr }}\right)_{4}=0.87$ in example 1). Proper variation of the rotor loss coefficient with relative flow velocity might improve the choking mass flow prediction.

Example 2-Effects of Rotor Back-Sweep

To illustrate the effects of rotor back-sweep, the example 1 turbine was analyzed with assumed backsweep angles of 15° and 30°. The predicted total efficiencies are shown in figure 11. For high values of work factor (the region where modern radial turbines are likely to operate) the falloff in efficiency is less with backsweep than for a radial-bladed rotor (because the incidence is lower).

National Aeronautics and Space Administration Lewis Research Center
Cleveland, Ohio, March 25, 1983.

Figure 11. - Effect of rotor back-sweep on calculated total efficiency for example 1 turbine.

Appendix A
 Symbols

A	area, m^{2} (ft^{2})
BL4	ratio of blocked area at station 4 to free flow area at station 5
CLFRI	ratio of total clearance area to total passage area at station 1
D_{h}	hydraulic diameter, m (ft); defined by eq. (B46)
D_{s}	specific diameter; defined by eq. (B160)
$e_{3 D}$	three-dimensional kinetic energy loss coefficient; defined by eq. (B3)
f	friction factor
g_{c}	force-mass conversion constant, 1 (32.174 ($\mathrm{lbm}-\mathrm{ft}$)/($\mathrm{lbf}-\mathrm{s}^{2}$))
h	height, m (ft); or enthalpy, J / kg (Btu/lbm)
J	dimensional constant, 1 ($778 \mathrm{ft}-\mathrm{lbf} / \mathrm{Btu}$)
K	rotor viscous loss coefficient
k	sector number
L	kinetic energy loss, J / kg (Btu/lbm)
1	length, m (ft)
M	Mach number
N	number of sectors at station 4
$N_{\text {bl }}$	number of rotor blades (including splitters)
N_{s}	specific speed; defined by eq. (B159)
n	incidence exponent
P	power, W (hp)
p	pressure, $\mathrm{N} / \mathrm{m}^{2}$ (psia)
Q	parameter defined by eq. (B166)
R	gas constant, J/kg-K (ft-lbf/lbm- ${ }^{\circ} \mathrm{R}$)
Re	Reynolds number; defined by eq. (B47)
r	radius, m (ft)
T	temperature, $\mathrm{K}\left({ }^{\circ} \mathrm{R}\right)$
TRQ	torque, N -m (ft-lbf)
U	tangential velocity, m / s (ft / s)
V	velocity in absolute reference frame, m / s (ft/s)
W	velocity in relative reference frame, $\mathrm{m} / \mathrm{s}(\mathrm{ft} / \mathrm{s}$)
WRK	work, J / kg ($\mathrm{Btu} / \mathrm{lbm}$)
w	flow rate, kg / s ($\mathrm{lbm} / \mathrm{s}$)
α	fluid flow angle in absolute frame of reference; or blading angle, deg
β	fluid flow angle in relative frame of reference; or blading angle, deg
γ	ratio of specific heats
δ	parameter defined by eq. (B156)

ϵ
$\epsilon_{\text {lim }}$
η
$\theta_{\text {cr }}$
μ
ν
ψ
Ω

Subscripts:

act	actual
aed	aerodynamic
av	average
bl	blading
ck	choked
cl	clearance
cr	critical
df	disk fraction
equ	equivalent
f	friction
hub	hub
i	incidence
id	ideal
mx	maximum
opt	optimum
p	primary
r	radial component
ref	reference
shr	shroud
std	standard
tip	tip
tot	total
u	tangential component
x	axial component
$0,1,2$,	station numbers defined by fig. 1
$3,4,5$	

Superscripts:
()' total conditions in absolute reference frame
()$^{\prime \prime}$ total conditions in relative reference frame
($)$ mass averaged

Appendix B
 Equations

Main Program (MAINP)

The analysis of the flow through the turbine starts at the stator exit (station 1) for each specified value of $\left(V / V_{\mathrm{cr}}\right)$. Flow conditions are then calculated at station 0 and at stations 2 to 5 . The procedure is described in this appendix.

Station 1 -primary flow. - Total temperature at station 1 is assumed to be equal to that at station 0 . Thus
$T_{1, p}^{\prime}=T_{0, p}^{\prime}$
The maximum value of primary flow per unit area $\left[(\rho V)_{1, p, \mathrm{mx}}\right]$ and the value of $\left(V / V_{\mathrm{cr}}\right)_{1}$ where that maximum occurs $\left[\left(V / V_{c r}\right)_{1, p, m x}\right]$ are calculated by subroutine MAXVAL. If the total pressure drop through the stator (station 0 to station 1) is modeled by specifying the total pressure ratio $p_{1}^{\prime} / p_{0}^{\prime},(\rho V)_{1, p, \mathrm{mx}}$ occurs at $\left(V / V_{\mathrm{cr}}\right)_{1, p, \mathrm{mx}}=1.0$. If the total pressure drop is modeled by specifying $\bar{e}_{3 \mathrm{D}}$, it occurs at $\left(V / V_{\mathrm{cr}}\right)_{1, p, \mathrm{mx}}<1.0$. If $p_{1}^{\prime} / p_{0}^{\prime}$ is specified, total pressure at station 1 is calculated from
$p_{1, p}^{\prime}=\left(\frac{p_{1}^{\prime}}{p_{0}^{\prime}}\right) p_{0, p}^{\prime}$
and the three-dimensional kinetic energy loss coefficient $\bar{e}_{3 D}$ is obtained from
$\bar{e}_{3 \mathrm{D}}=\frac{\left(\frac{p_{1}^{\prime}}{p_{0}^{\prime}}\right)^{\frac{(\gamma-1)}{\gamma}}\left[1-\frac{\gamma-1}{\gamma+1}\left(\frac{V}{V_{\mathrm{cr}}}\right)_{1}^{2}\right]+\frac{\gamma-1}{\gamma+1}\left(\frac{V}{V_{\mathrm{cr}}}\right)_{1}^{2}-1}{\left(\frac{p_{1}^{\prime}}{p_{0}^{\prime}}\right)^{\frac{(\gamma-1)}{\gamma}}\left[1-\frac{\gamma-1}{\gamma+1}\left(\frac{V}{V_{\mathrm{cr}}}\right)_{1}^{2}\right]-1}$

If $\bar{e}_{3 \mathrm{D}}$ is specified,
$p_{1, p}^{\prime}=p_{0, p}^{\prime}\left\{\frac{1-\bar{e}_{3 \mathrm{D}}-\frac{\gamma-1}{\gamma+1}\left(\frac{V}{V_{\mathrm{ct}}}\right)_{1, p}^{2}}{\left(1-\bar{e}_{3 \mathrm{D}}\right)\left[1-\frac{\gamma-1}{\gamma+1}\left(\frac{V}{V_{\mathrm{cr}}}\right)_{1, p}^{2}\right]}\right\}^{\gamma /(\gamma-1)}$

Both methods of calculating the total pressure drop are equivalent to specifying an overall viscous loss that takes into account the vane profile, endwall, and secondary flow losses.

From the isentropic relationships
$p_{1, p}=p_{1, p}^{\prime}\left\{1-\frac{\gamma-1}{\gamma+1}\left(\frac{V}{V_{\mathrm{cr}}}\right)_{1, p}^{2}\right\}^{\gamma /(\gamma-1)}$
$T_{1, p}=T_{1, p}^{\prime}\left\{1-\frac{\gamma-1}{\gamma+1}\left(\frac{V}{V_{\mathrm{cr}}}\right)_{1, p}^{2}\right\}$
and
$\rho_{1, p}=\frac{p_{1, p}}{R T_{1, p}}$
$V_{1, p}=\left(\frac{V}{V_{\mathrm{cr}}}\right)_{1, p}\left(\frac{2 \gamma g_{c} R T_{1, p}^{\prime}}{\gamma+1}\right)^{1 / 2}$

For values of $\left(V / V_{\mathrm{cr}}\right)_{1, p}$ less than $\left(V / V_{\mathrm{cr}}\right)_{1, p, \mathrm{mx}}$ the primary flow exits at the specified stator exit blade angle α_{1}. Thus
$w_{1, p}=\rho_{1, p} V_{1, p} A_{1}(1-$ CLFR1 $) \cos \alpha_{1, p}$
For values of $\left(V / V_{\mathrm{cr}}\right)_{1, p}$ greater than $\left(V / V_{\mathrm{cr}}\right)_{1, p, \mathrm{mx}}$ (choked flow) the exit angle is decreased to maintain maximum primary flow rate. The choked-flow exit angle is
$\alpha_{1, p, \mathrm{ck}}=\cos ^{-1}\left\{\frac{w_{p, \mathrm{mx}}}{\rho_{1, p} V_{1, p} A_{1}(1-\mathrm{CLFR} 1)}\right\}$

The radial and axial components of the primary flow are then defined by
$V_{u, 1, p}=V_{1, p} \sin \alpha_{1, p}$
$V_{r, 1, p}=V_{1, p} \cos \alpha_{1, p}$

Mach number is calculated from
$M_{1, p}=\left[\frac{\frac{2}{\gamma+1}\left(\frac{V}{V_{\mathrm{cr}}}\right)_{1, p}^{2}}{1-\frac{\gamma-1}{\gamma+1}\left(\frac{V}{V_{\mathrm{cr}}}\right)_{1, p}^{2}}\right]^{1 / 2}$

If the radial component of Mach number ($M_{1} \cos \alpha_{1, p}$) is greater than 1.0, the specified ($\left.V / V_{\mathrm{cr}}\right)_{1, \rho}$ is reduced until $M_{1, p} \cos \alpha_{1, p}=1.0$ (defined as limit loading).

Station I-clearance flow. - The clearance flow is assumed to have the same total and static conditions of temperature and pressure as the primary flow:
$T_{1, \mathrm{cl}}^{\prime}=T_{1, p}^{\prime}$
$T_{1, \mathrm{cl}}=T_{1, p}$
$p_{1, \mathrm{cl}}^{\prime}=p_{\mathrm{l}, p}^{\prime}$
$p_{1, \mathrm{cl}}=p_{1, p}$
This implies that
$V_{1, \mathrm{cl}, \mathrm{cr}}=V_{1, p, \mathrm{cr}}$
$V_{1, \mathrm{cl}}=V_{1, p}$
$\left(\frac{V}{V_{\mathrm{cr}}}\right)_{1, \mathrm{cl}}=\left(\frac{V}{V_{\mathrm{cr}}}\right)_{1, p}$
$\left(\frac{V}{V_{\mathrm{cr}}}\right)_{1, \mathrm{cl}, \mathrm{mx}}=\left(\frac{V}{V_{\mathrm{cr}}}\right)_{1, p, \mathrm{mx}}$
$\rho_{1, \mathrm{cl}}=\rho_{1, p}$
The flow angle $\alpha_{1, \mathrm{cl}}$ and the flow rate $w_{1, \mathrm{cl}}$ are determined iteratively from conservation of moment of tangential momentum between stations 0 and 1 . The tangential component of velocity is obtained from

$$
\begin{equation*}
V_{u, 1, \mathrm{cl}}=\frac{r_{0} V_{u, 0}}{r_{1}} \tag{B23}
\end{equation*}
$$

The clearance flow angle and flow rate thus are
$\alpha_{1, \mathrm{cl}}=\sin -1\left(\frac{V_{u, 1, \mathrm{cl}}}{V_{\mathrm{l}, \mathrm{cl}}}\right)$
$w_{1, \mathrm{cl}}=\rho_{1, \mathrm{cl}} V_{1, \mathrm{ct}} A_{1}$ CLFRI $\cos \alpha_{1, \mathrm{cl}}$

Since $\alpha_{1, c l}$ is uniquely defined by equation (B24), it cannot be changed to maintain the maximum clearance weight flow at values of $\left(V / V_{c r}\right)_{1, c l}$ greater than $\left(V / V_{\mathrm{cr}}\right)_{1, \mathrm{cl}, \mathrm{mx}}$. Clearance weight flow therefore decreases above $\left(V / V_{c r}\right)_{1, c, m x}$.

From here on, all conditions at station 1 that are the same for both the primary and clearance flows (T, T^{\prime}, p, $p^{\prime}, V, V_{\mathrm{cr}}$, and ρ) will have the subscripts p or cl deleted and will be identified only by the subscript 1 .

Station 0. - Conditions at station 0 are evaluated from the specified geometry, inlet angle, and gas total conditions and by using mass continuity between stations 0 and 1 . The ratio $\left(V / V_{\mathrm{cr}}\right)_{0}$ is determined iteratively from

$$
\left(\frac{V}{V_{\mathrm{cr}}}\right)_{0}=\frac{\left(w_{1, p}+w_{1, \mathrm{c}}\right) R T_{0}^{\prime}}{A_{0} \cos \alpha_{0} p_{0}^{\prime} V_{0, \mathrm{cr}}\left[1-\frac{\gamma-1}{\gamma+1}\left(\frac{V}{V_{\mathrm{cr}}}\right)_{0}^{2}\right]^{1 /(\gamma-1)}}
$$

Also

$$
\begin{align*}
& p_{0}=p_{0}^{\prime}\left[1-\frac{\gamma-1}{\gamma+1}\left(\frac{V}{V_{\mathrm{cr}}}\right)_{0}^{2}\right]^{\gamma /(\gamma-1)} \tag{B27}\\
& T_{0}=T_{0}^{\prime}\left\{1-\frac{\gamma-1}{\gamma+1}\left(\frac{V}{V_{\mathrm{cr}}}\right)_{0}^{2}\right\} \\
& \rho_{0}=\frac{p_{0}}{R T_{0}} \tag{B29}\\
& V_{0}=\left(\frac{V}{V_{\mathrm{cr}}}\right)_{0}\left(\frac{2 \gamma R g_{c} T_{0}^{\prime}}{\gamma+1}\right)^{1 / 2} \tag{B30}
\end{align*}
$$

$V_{u, 0}=V_{0} \sin \alpha_{0}$
$\boldsymbol{V}_{r, 0}=\boldsymbol{V}_{0} \cos \alpha_{0}$
Station 2. - The total temperature at station 2 is assumed to equal that at station 1

$$
\begin{equation*}
T_{2}^{\prime}=T_{1}^{\prime} \tag{B33}
\end{equation*}
$$

and tangential momentum is conserved between stations 1 and 2 . The tangential velocity is a mass-averaged value of the primary and clearance flows at station 1:
$V_{u, 2}=\frac{V_{1}}{w_{1, p}+w_{1, \mathrm{cl}}}\left(w_{1, p} \sin \alpha_{1, p}+w_{1, \mathrm{cl}} \sin \alpha_{1, \mathrm{cl}}\right)$

For no clearance flow this reduces to
$V_{u, 2}=V_{1} \sin \alpha_{1, p}=V_{u, 1}$
By using an initial guess for $V_{r, 2}$, the conditions at station 2 are evaluated iteratively as follows:

$$
\begin{align*}
& V_{2}=\left(V_{r, 2}^{2}+V_{u, 2}^{2}\right)^{1 / 2} \tag{B36}\\
& \left(\frac{V}{V_{\mathrm{cr}}}\right)_{2}=\frac{V_{2}}{\left(\frac{2 \gamma R g_{\mathrm{c}} T_{2}^{\prime}}{\gamma+1}\right)^{1 / 2}} \tag{B37}\\
& T_{2}=T_{2}^{\prime}\left[1-\frac{\gamma-1}{\gamma+1}\left(\frac{V}{V_{\mathrm{cr}}}\right)_{2}^{2}\right] \tag{B38}\\
& p_{2}^{\prime}=p_{1}^{\prime}-\left(1-\frac{V_{r, 2}}{V_{r, 1}}\right)^{2}\left(\frac{0.5 \rho_{1} V_{1}^{2}}{g_{c}}\right) \tag{B39}\\
& p_{2}=p_{2}^{\prime}\left[1-\frac{\gamma-1}{\gamma+1}\left(\frac{V}{V_{\mathrm{cr}}}\right)_{2}^{2}\right]^{\gamma /(\gamma-1)} \tag{B40}\\
& \rho_{2}=\frac{p_{2}}{R T_{2}} \tag{B41}\\
& \alpha_{2}=\cos -1\left(\frac{V_{r, 2}}{V_{2}}\right) \tag{B42}\\
& w_{2}=\rho_{2} V_{2} A_{2} \cos \alpha_{2} \tag{B43}
\end{align*}
$$

The assumed $V_{r, 2}$ is updated until continuity is satisfied; that is,
$w_{2}=w_{1, p}+w_{1, \mathrm{cl}}$
Station 3. - The total pressure drop between stations 2 and 3 is obtained from the laminar and turbulent equation for flow between parallel plates by using an average flow angle between stations 2 and 3 . Furthermore, moment of tangential momentum is conserved $\left(r_{2} V_{u, 2}=r_{3} V_{u, 3}\right)$. From an initial guess of α_{3} an average turning angle, a hydraulic diameter, a Reynolds number, and a flow path length are calculated:
$\alpha_{2-3}=\frac{\alpha_{2}+\alpha_{3}}{2}$
$D_{h}=2 h_{1} \cos \alpha_{2-3}$
(B46)

$$
\begin{equation*}
\operatorname{Re}_{2}=\frac{\rho_{2} V_{2} D_{h}}{\mu} \tag{B47}
\end{equation*}
$$

$$
\begin{equation*}
l_{2-3}=\frac{r_{1}-r_{3}}{\cos \alpha_{2-3}} \tag{B48}
\end{equation*}
$$

Friction factor f is defined as follows:

$$
\begin{equation*}
f=0.24 \quad \text { for } \mathrm{Re}_{2}<100 \tag{B49}
\end{equation*}
$$

$f=\frac{24}{\operatorname{Re}_{2}} \quad$ for $100 \leq \operatorname{Re}_{2}<3000$
$f=3.3368 \times 10^{-7} \mathrm{Re}_{2}^{1.2596}$ for $3000 \leq \mathrm{Re}_{2}<3700$
$f=0.0014+\frac{0.125}{\operatorname{Re}_{2}^{0.32}} \quad$ for $3700 \leq \operatorname{Re}_{2}$

The change in total pressure and the total pressure at station 3 are obtained from
$\Delta p^{\prime}=\frac{4 f l_{2-3} \rho_{2} V_{2}^{2}}{2 D_{h} g_{c}}$
$p_{3}^{\prime}=p_{2}^{\prime}-\Delta p^{\prime}$
Assuming that
$T_{3}^{\prime}=T_{2}^{\prime}$
$r_{2}=r_{1}$
and

$$
\begin{equation*}
V_{u, 3}=\frac{r_{2} / r_{3}}{V_{u, 2}} \tag{B57}
\end{equation*}
$$

all other conditions at station 3 are evaluated from

$$
\begin{equation*}
V_{3}=\frac{V_{u, 3}}{\sin \alpha_{3}} \tag{B58}
\end{equation*}
$$

$$
\begin{equation*}
T_{3}=T_{3}^{\prime}-V_{3}^{2}\left(\frac{\gamma-1}{2 \gamma R g_{c}}\right) \tag{B59}
\end{equation*}
$$

$p_{3}=p_{3}^{\prime}\left(\frac{T_{3}}{T_{3}^{\prime}}\right)^{\gamma /(\gamma-1)}$

$$
\begin{equation*}
\rho_{3}=\frac{p_{3}}{R T_{3}} \tag{B61}
\end{equation*}
$$

$V_{r, 3}=\frac{V_{r, 2} \rho_{2} A_{2}}{\rho_{3} A_{3}}$

Finally, a new exit angle
$\alpha_{3}=\tan ^{-1}\left(\frac{V_{u, 3}}{V_{r, 3}}\right)$
is calculated and compared with the previously used value. This procedure is repeated until successive values of α_{3} are within a specified tolerance.

Relative conditions at station 3 are calculated from the following equations:
$W_{u, 3}=V_{14,3}-U_{3}$
$W_{r, 3}=V_{r, 3}$
$W_{3}=\left(W_{u, 3}^{2}+W_{r .3}^{2}\right)^{1 / 2}$
$T_{3}^{\prime \prime}=T_{3}^{\prime}-\frac{\gamma-1}{2 \gamma R g_{C}}\left(V_{3}^{2}-W_{3}^{2}\right)$
$p_{3}^{\prime \prime}=p_{3}^{\prime}\left(\frac{T_{3}^{\prime \prime}}{T_{3}^{\prime}}\right)^{\gamma /(\gamma-1)}$
$\beta_{3}=\sin -1\left(\frac{W_{u, 3}}{W_{3}}\right)$
$\boldsymbol{W}_{\mathrm{cr}, 3}=\left(\frac{2 \gamma R g_{c} T_{3}^{\prime \prime}}{\gamma+1}\right)^{1 / 2}$

The rotor incidence angle (from optimum) is calculated as follows: the optimum $V_{u, 3}$ is obtained from the Wiesner slip factor correlation (ref. 4), which, when adapted to a turbine geometry, takes the form
where

$$
\begin{align*}
& r_{4, \mathrm{av}}=\frac{r_{4, \mathrm{hub}}+r_{4, \mathrm{tip}}}{2} \tag{B72}\\
& \epsilon_{\mathrm{lim}}=\frac{1}{e^{\left(8.16 \cos \alpha_{\mathrm{b} 1} / N_{\mathrm{bl}}\right)}} \tag{B73}
\end{align*}
$$

The last term in the numerator of equation (B71) is a correction factor that is applied only if the ratio $r_{4, a v} / r_{3}$ is greater than $\epsilon_{\text {lim }}$. Then
$W_{u, 3, \mathrm{opt}}=V_{u, 3, \mathrm{opt}}-U_{3}$
$\beta_{3, \mathrm{opt}}=\tan ^{-1}\left(\frac{W_{u, 3, \mathrm{opt}}}{V_{r, 3}}\right)$
$\alpha_{3, i}=\beta_{3}-\beta_{3, \mathrm{opt}}$
The loss in total pressure due to incidence is calculated as follows: the incidence loss is modeled as in reference 2 by
$L_{i}=\frac{W_{3}^{2}\left(1-\cos ^{n} \alpha_{3, i}\right)}{2 g_{c} J}$
where the exponent n is given by the input parameters PNEGI and PPOSI for negative and positive incidence, respectively. The loss due to incidence can also be expressed as a difference between ideal and actual velocity:
$W_{3}^{2}-W_{3, i}^{2}=W_{3}^{2}\left(1-\cos ^{n} \alpha_{3, i}\right)$
Solving for $W_{3, i}^{2}$ gives
$W_{3, i}^{2}=W_{3}^{2} \cos ^{n} \alpha_{3, i}$
The relationship
$V_{u, 3, \mathrm{opt}}=U_{3}\left(\frac{\left[1-\sqrt{\cos \alpha_{\mathrm{bl}}} /\left(N_{\mathrm{bl}}\right)^{0.7}\right]\left\{1-\left[\left(r_{4, \mathrm{av}} / r_{3}-\epsilon_{\mathrm{lim}}\right) /\left(1-\epsilon_{\mathrm{lim}}\right)\right]^{3}\right\}}{1-\tan \alpha_{\mathrm{bb}} / \tan \alpha_{3}}\right)$

$$
\begin{equation*}
W_{3, i}^{2}=\frac{2 \gamma g_{c} R T_{3}^{\prime \prime}}{\gamma-1}\left[1-\left(\frac{p_{3}}{p_{3, i}^{\prime \prime}}\right)^{(\gamma-1) / \gamma}\right] \tag{B80}
\end{equation*}
$$

implies that
$p_{3, i}^{\prime \prime}=\frac{p_{3}}{\left[1-\frac{(\gamma-1) W_{3, i}^{2}}{2 \gamma g_{c} R T_{3}^{\prime \prime}}\right]^{\gamma /(\gamma-1)}}$
Substituting equation (B 79) for $W_{3, i}^{2}$ then gives
$p_{3, i}^{\prime \prime}=\frac{p_{3}}{\left[1-\frac{(\gamma-1) W_{3}^{2} \cos ^{n} \alpha_{3, i}}{2 \gamma g_{\mathrm{c}} R T_{3}^{\prime \prime}}\right]^{\gamma /(\gamma-1)}}$

Station 4. - Flow conditions at station 4 are calculated by considering the effects of radius change, incidence, and viscous loss. By assuming an initial value of static pressure at the hub sector the pressure at each successive sector is obtained from simple radial equilibrium. The total mass flow of all sectors is then compared with the mass flow at station 1, and the next guess of hub-sector static pressure is changed accordingly. This is repeated until mass flow has converged within a given tolerance. The procedure is given here (with calculations performed for each sector at the midpoint radius).

The changes in total temperature, critical velocity, and ideal relative total pressure due to radius change are calculated from
$T_{4}^{\prime \prime}=T_{3}^{\prime \prime}+\frac{\gamma-1}{2 \gamma R g_{c}}\left(U_{4}^{2}-U_{3}^{2}\right)$
$W_{\mathrm{cr}, 4}=W_{\mathrm{cr}, 3}\left(\frac{T_{4}^{\prime \prime}}{T_{3}^{\prime \prime}}\right)^{1 / 2}$
$p_{4, \mathrm{id}}^{\prime \prime}=p_{3}^{\prime \prime}\left(\frac{T_{4}^{\prime \prime}}{T_{3}^{\prime \prime}}\right)^{\gamma^{\prime}(\gamma-1)}$

Note that the ideal relative total pressure at station 4 is based on the relative total pressure at station 3 and not on the relative total pressure due to incidence loss $p_{3, i}^{\prime \prime}$. At station $3, p_{3, i}^{\prime \prime}$ was calculated for information purposes only. As will be shown, the relative total pressure at
station $4 p_{4}^{\prime \prime}$ is obtained from $p_{4, \text { id }}^{\prime \prime}$ by considering the combined effects of incidence and rotor viscous loss.

The value of maximum flow rate per unit area $(\rho W)_{4, m x}$, as well as the value of $\left(W / W_{\text {cr }}\right)_{4}$ where it occurs $\left\lceil\left(W / W_{\mathrm{cr}}\right)_{4, \mathrm{mx}}\right\rceil$, is calculated by subroutine MAXVAL. The total relative pressure at station 4 is formulated as follows: the incidence loss is modeled by (see previous section)
$L_{i}=\frac{W_{3}^{2}\left(1-\cos ^{n} \alpha_{3, i}\right)}{2 g_{c} J}$
and the loss due to viscous friction in the rotor (rotor blade profile, endwall, and secondary flow losses) is modeled as in reference 1 by
$L_{f}=\frac{K\left(W_{3}^{2} \cos ^{2} \alpha_{3, i}+W_{4}^{2}\right)}{2 g_{c} J}$
where K is the specified rotor viscous loss coefficient (input parameter XKR). The sum of these two losses is expressed as the difference between the squares of an ideal and an actual velocity to give

$$
\begin{align*}
& W_{4, \mathrm{id}}^{2}-W_{4}^{2}=W_{3}^{2}\left(1-\cos ^{n} \alpha_{3, i}\right) \\
& \tag{B88}\\
& \quad+K\left(W_{3}^{2} \cos ^{2} \alpha_{3, i}+W_{4}^{2}\right)
\end{align*}
$$

This equation can be solved for W_{4}

$$
\begin{equation*}
W_{4}=\left[\frac{W_{4, \mathrm{id}}^{2}-W_{3}\left(1-\cos ^{n} \alpha_{3, i}\right)-K W_{3}^{2} \cos ^{2} \alpha_{3, i}}{1+K}\right]^{1 / 2} \tag{B89}
\end{equation*}
$$

with $W_{4, \text { id }}^{2}$ obtained from the relationship

$$
\begin{equation*}
W_{4, \mathrm{id}}^{2}=\frac{W_{\mathrm{cr}, 4}^{2}(\gamma+1)}{\gamma-1}\left[1-\left(\frac{p_{4}}{p_{4, \mathrm{id}}^{\prime \prime}}\right)^{(\gamma-1) / \gamma}\right] \tag{B90}
\end{equation*}
$$

For a given value of static pressure the relative velocity is thus calculated by equation (B89). Also,
$T_{4}=T_{4}^{\prime \prime}-\frac{(\gamma-1) W_{4}^{2}}{2 \gamma R g_{c}}$
$\rho_{4}=\frac{p_{4}}{R T_{4}}$
$p_{4}^{\prime \prime}=p_{4}\left(\frac{T_{4}^{\prime \prime}}{T_{4}}\right)^{\gamma /(\gamma-1)}$

The static pressure at each radial sector above the hub sector is obtained from

$$
\begin{equation*}
\frac{d p}{d r}=\frac{\rho_{4}(k-1)\left\{\left[V(k-1)_{u, 4}+V(k)_{u, 4}\right] / 2\right\}^{2}}{g_{c} r(k-1)_{4}} \tag{B94}
\end{equation*}
$$

$p_{4}(k)=p_{4}(k-1)+\frac{d p}{d r} \Delta r$
where k designates the given sector and $(k-1)$ designates the sector immediately below it.

For $\left(W / W_{\text {cr }}\right)_{4}$ less than $\left(W / W_{\text {cr }}\right)_{4, m x}$ the flow follows the specified exit angle β_{4}; for $\left(W / W_{\text {cr }}\right)_{4}$ greater than ($\left.W / W_{\text {cr }}\right)_{4 . \mathrm{mx}}$ the exit angle is decreased to maintain the maximum flow rate. The reduced exit angle is calculated from
$\beta_{4}=\cos ^{-1}\left[\frac{(\rho W)_{4, \mathrm{mx}}}{\rho_{4} W_{4} A_{5}(1-\mathrm{BL4})}\right]$
where BL4 is the ratio of the blocked area at station 4 to the free flow area at station 5 . Weight flow and velocity components are calculated from
$w_{4}=\rho_{4} W_{4} A_{5}(1-\mathrm{BL} 4) \cos \beta_{4}$
$W_{u, 4}=W_{4} \sin \beta_{4}$
$W_{x, 4}=W_{4} \cos \beta_{4}$
If the rotor is fully choked (all sectors), the program solves for that value of stator $\left(V / V_{\mathrm{cr}}\right)_{1}$ where rotor choke occurred. Also, the maximum value of station 4 hubsector static pressure for rotor choke is calculated and printed out. Once the rotor has fully choked, the hubsector static pressure is incrementally decreased by a specified amount (input parameter P4RDPC) until limit loading is achieved (axial Mach number equal to 1.0). The axial component of Mach number is calculated from
$M_{x, 4}=\left[\frac{\left(\frac{2}{\gamma+1}\right)\left(\frac{W}{W_{\mathrm{cr}}}\right)_{4}^{2}}{1-\left(\frac{\gamma-1}{\gamma+1}\right)\left(\frac{W}{W_{\mathrm{cr}}}\right)_{4}^{2}}\right]^{1 / 2} \cos \beta_{4}$
(B100)

It is not allowed to exceed 1.0. If it does, the value of hub-sector static pressure is adjusted until $M_{x, 4}$ equals 1.0. That value of hub-sector static pressure is also printed out.

The absolute conditions are calculated from the relative conditions by
$V_{u, 4}=W_{u, 4}+U_{4}$
$V_{x, 4}=W_{x, 4}$
$V_{4}=\left(V_{u, 4}^{2}+V_{x, 4}^{2}\right)^{1 / 2}$
$\alpha_{4}=\tan ^{-1}\left(\frac{V_{u, 4}}{V_{x, 4}}\right)$
$T_{4}^{\prime}=T_{4}^{\prime \prime}+\frac{(\gamma-1)\left(V_{4}^{2}-W_{4}^{2}\right)}{2 \gamma R g_{c}}$
$p_{4}^{\prime}=\frac{p_{4}^{\prime \prime}}{\left(T_{4}^{\prime \prime} / T_{4}^{\prime}\right)^{\gamma /(\gamma-1)}}$
Station 5. - At station 5 the flow area is divided into the same sectors as at station 4. All calculations shown below are performed for each sector at the midpoint radius. The total temperature and tangential momentum at station 5 are assumed to be equal to those at station 4:

$$
\begin{align*}
& T_{5}^{\prime}=T_{4}^{\prime} \tag{B107}\\
& V_{u, 5}=V_{u, 4} \tag{B108}
\end{align*}
$$

Equation (B107) implies that

$$
\begin{equation*}
V_{\mathrm{cr}, 5}=V_{\mathrm{cr}, 4} \tag{B109}
\end{equation*}
$$

From an initial guess of α_{5} the flow conditions are established iteratively as follows:
$V_{5}=\frac{V_{u, 5}}{\sin \alpha_{5}}$
$\left(\frac{V}{V_{\mathrm{cr}}}\right)_{5}=\frac{V_{5}}{V_{\mathrm{cr}, 5}}$
$T_{5}=T_{5}^{\prime}-(\gamma-1) \frac{V_{5}^{2}}{2 \gamma R g_{c}}$
$p_{5}^{\prime}=p_{4}^{\prime}-\left(1-\frac{V_{5} \cos \alpha_{5}}{V_{x, 4}}\right)^{2}\left(\frac{0.5 \rho_{4} V_{4}^{2}}{g_{c}}\right)$

$$
\begin{align*}
& p_{5}=p_{5}^{\prime}\left[1-\left(\frac{\gamma-1}{\gamma+1}\right)\left(\frac{V}{V_{\mathrm{cr}}}\right)_{5}^{2}\right]^{\gamma /(\gamma-1)} \tag{B114}\\
& \rho_{5}=\frac{p_{5}}{R T_{5}} \tag{B115}\\
& V_{x, 5}=\frac{V_{x, 4} \rho_{4} A_{5}(1-\mathrm{BL} 4)}{\rho_{5} A_{5}}
\end{align*}
$$

A new exit angle is then calculated and compared with the previous value.

$$
\begin{equation*}
\alpha_{5}=\tan ^{-1}\left(\frac{V_{u, 5}}{V_{x, 5}}\right) \tag{B117}
\end{equation*}
$$

The procedure is repeated until successive values of α_{5} are within a specified tolerance.

Performance parameters. - The performance parameters are calculated as follows: for each sector the static and total ideal enthalpy change from station 0 to station 5 is calculated from

$$
\begin{align*}
& \Delta h_{0-5}=\frac{\gamma R T_{0}^{\prime}}{(\gamma-1) J}\left[1-\left(\frac{p_{5}}{p_{0}^{\prime}}\right)^{(\gamma-1) / \gamma}\right] \tag{B118}\\
& \Delta h_{0-5}^{\prime}=\frac{\gamma R T_{0}^{\prime}}{(\gamma-1) J}\left[1-\left(\frac{p_{5}^{\prime}}{p_{0}^{\prime}}\right)^{(\gamma-1) / \gamma}\right]
\end{align*}
$$

Mass-averaged values of ideal enthalpy change, power, and torque are established from
$w_{\mathrm{tot}}=\sum_{k=1}^{N} w(k)$
$\Delta \bar{h}_{0-5}=\frac{\sum_{k=1}^{N} \Delta h(k)_{0-5} w(k)}{w_{\mathrm{tot}}}$
$\bar{h}_{0-5}^{\prime}=\frac{\sum_{k=1}^{N} \Delta h^{\prime}(k)_{0-5} w(k)}{w_{\text {tot }}}$
$P=\frac{w_{\mathrm{tot}} J \Delta \bar{h}_{\hat{0}-5}^{\prime}}{550}$
$\mathrm{TRQ}=\frac{w_{\mathrm{tot}} J \Delta \bar{h}_{0-5}^{\prime}(60)}{2 \pi \Omega}$

The change in total enthalpy across the rotor (station 3 to station 5) for each sector is calculated from
$\Delta h_{3-5}^{\prime}=\frac{U_{3} V_{u, 3}-U_{4} V_{u, 4}}{J g_{c}}$
and its mass-averaged value, from
$\Delta \bar{h}_{3-5}^{\prime}=\frac{\sum_{k=1}^{N} \Delta h^{\prime}(k)_{3-5} w(k)}{w_{\mathrm{tot}}}$

The aerodynamic efficiencies for each sector are calculated from
$\eta_{\text {aed }}=\frac{\Delta h_{3-5}}{\Delta h_{0-5}}$
$\eta_{\text {aed }}^{\prime}=\frac{\Delta h_{3-5}^{\prime}}{\Delta h_{0-5}^{\prime}}$

Disk friction and exit tip clearance loss per unit mass flow are obtained from (ref. 3)

$$
\begin{equation*}
L_{\mathrm{df}}=\frac{0.02125 \rho_{3} U_{3}^{3} r_{3}^{2}}{g_{c} J w_{\mathrm{tot}}\left(\frac{\rho_{3} U_{3} r_{3}}{\mu}\right)^{0.20}} \tag{B129}
\end{equation*}
$$

$L_{\mathrm{cl}}=\frac{2 \Delta h_{3-5}^{\prime}\left(\frac{h_{\mathrm{cl}}}{2 r_{4, \text { tip }}}\right)}{1-\frac{r_{4, \text { hub }}}{r_{4, \text { tip }}}}$

Actual total enthalpy, actual power, and actual torque across the rotor are

$$
\begin{align*}
& \Delta h_{\mathrm{act}}^{\prime}=h_{3-5}^{\prime}-L_{\mathrm{df}}-L_{\mathrm{cl}} \tag{B131}\\
& P_{\mathrm{act}}=\frac{w_{\mathrm{tot}} J \Delta h_{\mathrm{act}}^{\prime}}{550} \tag{B132}
\end{align*}
$$

$\mathrm{TRQ}_{\mathrm{act}}=\frac{60 w_{\mathrm{tor}} J \Delta h_{\mathrm{act}}^{\prime}}{2 \pi \Omega}$
and actual overall efficiencies are
$\eta=\frac{\Delta h_{\mathrm{act}}^{\prime}}{\Delta h_{0-5}}$
(B134)
$\eta^{\prime}=\frac{\Delta h_{\text {act }}^{\prime}}{\Delta h_{0-5}^{\prime}}$
(B135)

Mass-averaged static and total temperatures are calculated by
$T_{5}=\frac{\sum_{k=1}^{N} T(k)_{5} w(k)}{w_{\text {tot }}}$
(B136)
$T_{5}^{\prime}=\frac{\sum_{k=1}^{N} T^{\prime}(k)_{5} w(k)}{w_{\mathrm{tot}}}$
(B137)

Static pressures at the hub and shroud and average static and total pressures are obtained from
$\left(\frac{d p}{d r}\right)_{\text {hub }}=\frac{\rho(1)_{5} V^{2}(1)_{u .5}}{g_{c} r(1)_{4}}$
$\left(\frac{d p}{d r}\right)_{\mathrm{shr}}=\frac{\rho(N)_{5} V^{2}(N)_{u, 5}}{g_{c} r(N)_{4}}$
(B139)
$p_{5, \text { hub }}=p(1)_{5}-\left(\frac{d p}{d r}\right)_{\text {hub }} \frac{\Delta r}{2}$
$p_{5, \mathrm{shr}}=p(N)_{5}+\left(\frac{d p}{d r}\right)_{\mathrm{shr}} \frac{\Delta r}{2}$
$p_{5, \mathrm{av}}=\frac{p_{5, \mathrm{hub}}+p_{5, \mathrm{hh}}}{2}$
$p_{5, \mathrm{av}}^{\prime}=p_{5, \mathrm{av}}\left(\frac{\bar{T}_{5}^{\prime}}{\bar{T}_{5}}\right)^{\gamma /(\gamma-1)}$

Equivalent parameters are calculated on the basis of the following standard conditions:
$T_{\text {std }}^{\prime}=288.2 \mathrm{~K}\left(518.7^{\circ} \mathrm{R}\right)$
$p_{\mathrm{std}}^{\prime}=101325 \mathrm{~N} / \mathrm{m}^{2}\left(2116.22 \mathrm{lbf} / \mathrm{ft}^{2}\right)$
$R_{\mathrm{std}}=287.05 \mathrm{~J} /(\mathrm{kg}-\mathrm{K})\left(53.35 \mathrm{ft}-\mathrm{lbf} / \mathrm{lbm}-{ }^{\circ} \mathrm{R}\right)$
$\gamma_{\mathrm{std}}=1.40$
The equivalent parameters (flow, speed, work, power, torque, total-to-static pressure ratio, and total-to-total pressure ratio) are

$$
\begin{equation*}
w_{\mathrm{equ}}=\frac{w_{\mathrm{tot}} \sqrt{\theta_{\mathrm{cr}} \epsilon}}{\delta} \tag{B148}
\end{equation*}
$$

$$
\begin{equation*}
N_{\mathrm{equ}}=\frac{\Omega}{\sqrt{\theta_{\mathrm{cr}}}} \tag{B149}
\end{equation*}
$$

$\mathrm{WRK}_{\text {equ }}=\frac{\Delta \ddot{h}_{\mathrm{act}}^{\prime}}{\theta_{\mathrm{cr}}}$
$P_{\mathrm{equ}}=\frac{P_{\mathrm{act}} \epsilon}{\delta \sqrt{\theta_{\mathrm{cr}}}}$
$T R Q_{\text {equ }}=\frac{T R Q_{\text {act }} \epsilon}{\delta}$

$$
\left(\frac{p_{0}^{\prime}}{p_{5}}\right)_{\mathrm{equ}}=\left[1-\frac{\left(\gamma_{\mathrm{std}}-1\right) J \Delta \bar{h}_{0-5}}{\theta_{\mathrm{cr}} \gamma_{\mathrm{std}} R_{\mathrm{std}} T_{\mathrm{std}}}\right]^{-\gamma_{\mathrm{std}} /\left(\gamma_{\mathrm{std}}-1\right)}
$$

(B153)

$$
\left(\frac{p_{0}^{\prime}}{p_{5}^{\prime}}\right)_{\mathrm{equ}}=\left[1-\frac{\left(\gamma_{\mathrm{std}}-1\right) J \Delta \bar{h}_{0}^{\prime}-5}{\theta_{\mathrm{cr}} \gamma_{\mathrm{std}} R_{\mathrm{std}} T_{\mathrm{std}}}\right]^{-\gamma_{\mathrm{std}} /\left(\gamma_{\mathrm{std}}-1\right)}
$$

where
$\theta_{\mathrm{cr}}=\frac{\left(\frac{\gamma}{\gamma+1}\right) R T_{0}^{\prime}}{\left(\frac{\gamma_{\mathrm{std}}}{\gamma_{\mathrm{std}}+1}\right) R_{\mathrm{std}} T_{\mathrm{std}}^{\prime}}$
$\delta=\frac{p_{0}^{\prime}}{p_{\text {std }}^{\prime}}$

$$
\begin{equation*}
\epsilon=\frac{\gamma_{\mathrm{std}}\left(\frac{2}{\gamma_{\mathrm{std}}+1}\right)^{\gamma_{\mathrm{std}} /\left(\gamma_{\mathrm{std}}-1\right)}}{\gamma\left(\frac{2}{\gamma+1}\right)^{\gamma /(\gamma-1)}} \tag{B157}
\end{equation*}
$$

The overall dimensionless parameters of specific speed, specific diameter, work factor, and loading coefficient (blade-jet speed ratio) are defined as follows:

$$
\begin{align*}
& \rho_{5, \mathrm{av}}=\frac{p_{5, \mathrm{av}}}{R T_{5, \mathrm{av}}} \tag{B158}\\
& N_{s}=\frac{\left(\frac{2 \pi \Omega}{60}\right)\left(\frac{w_{\mathrm{tot}}}{\rho_{5, \mathrm{av}}}\right)^{1 / 2}}{\left(g_{C} J \Delta \bar{h}_{0-5}^{\prime}\right)^{0.75}} \tag{B159}
\end{align*}
$$

$D_{s}=\frac{2 r_{3}\left(g_{d} J \Delta \bar{h}_{0}^{\prime}-5\right)^{0.25}}{\left(w_{\mathrm{tot}} / \rho_{5, \mathrm{av}}\right)^{1 / 2}}$
$\psi=\frac{g_{J} J \Delta h_{j-5}^{\prime}}{U_{3}^{2}}$

$$
\begin{equation*}
\nu=\frac{U_{3}}{\left(2 g_{\mathrm{c}} J \Delta h_{0-5}\right)^{1 / 2}} \tag{B162}
\end{equation*}
$$

Subroutine MAXVAL

Subroutine MAXVAL finds the maximum value of a function over an interval. The chosen function must be of a form such that a maximum exists within the interval (other than at the end points). MAXVAL is used to calculate the maximum values of flow rate per unit area at the stator exit $(\rho V)_{1}$ and rotor exit $(\rho W)_{4}$ sectors. The actual mass flow calculations are performed by the called subroutines ROVST and ROVROT for the stator and rotor, respectively. Given the interval, the function to be maximized, and an initial number of divisions of the interval, MAXVAL determines the function's maximum value and its location in the interval.

Subroutine ROVST

Subroutine ROVST calculates the value of density times velocity at the stator exit (station 1) for the assumed stator loss model and a specified $\left(V / V_{\mathrm{cr}}\right)_{1}$. The formulation is as follows:

$$
\begin{align*}
& V_{\mathrm{cr}, \mathrm{l}}=\left(\frac{2 \gamma R g_{\mathrm{c}} T_{1}^{\prime}}{\gamma+1}\right)^{1 / 2} \tag{B163}\\
& V_{\mathrm{I}}=\left(\frac{V}{V_{\mathrm{cr}}}\right)_{1} V_{\mathrm{cr}, \mathrm{l}} \tag{B164}
\end{align*}
$$

$T_{1}=T_{\mathrm{i}}^{\prime}\left[1-\left(\frac{\gamma-1}{\gamma+1}\right)\left(\frac{V}{V_{\mathrm{cr}}}\right)_{1}^{2}\right]$
(B165)
$Q=\left(\frac{\gamma-1}{\gamma+1}\right)\left(\frac{V}{V_{\mathrm{cr}}}\right)_{1}^{2}$

If the total pressure at station 1 is calculated by specifying IOPTS $=1$ (specifying the pressure ratio $p_{1}^{\prime} / p_{0}^{\prime}$),

$$
\begin{equation*}
p_{1}^{\prime}=\left(\frac{p_{1}^{\prime}}{p_{0}^{\prime}}\right) p_{0}^{\prime} \tag{B167}
\end{equation*}
$$

If the total pressure at station 1 is calculated by specifying IOPTS $=2$ (specifying $e_{3 \mathrm{D}}$),
$p_{1}^{\prime}=p_{0}^{\prime}\left[\frac{1-e_{3 \mathrm{D}}-Q}{\left(1-e_{3 \mathrm{D}}\right)(1-Q)}\right]^{\gamma /(\gamma-1)}$

Finally,
$p_{1}=p_{1}^{\prime}\left[1-\left(\frac{\gamma-1}{\gamma+1}\right)\left(\frac{V}{V_{\mathrm{cr}}}\right)_{1}^{2}\right]^{\gamma /(\gamma-1)}$
$\rho_{1}=\frac{p_{1}}{R T_{1}}$
$\rho V=\rho_{1} V_{1}$

Subroutine ROVROT

Subroutine ROVROT calculates the value of density times velocity at the rotor exit sectors (station 4) for the assumed rotor loss model and a specified $\left(W / W_{\text {cr }}\right)_{4}$. The equations used are as follows:
$W_{4}=\left(\frac{W}{W_{\mathrm{cr}}}\right)_{4} W_{\mathrm{cr}, 4}$
$T_{4}=T_{4}^{\prime \prime}-\frac{(\gamma-1) W_{4}^{2}}{2 \gamma g_{c} R}$

The static pressure is calculated from equation (B88), which expresses the sum of the two rotor losses (incidence and viscous friction) as the difference between the squares of an ideal and an actual velocity

$$
\begin{array}{lll}
W_{4, \mathrm{id}}^{2}-W_{4}^{2}=W_{3}^{2}\left(1-\cos ^{n} \alpha_{3, \mathrm{i}}\right) & \text { Then } \\
& +K\left(W_{3}^{2} \cos ^{2} \alpha_{3, \mathrm{i}}+W_{4}^{2}\right) & \text { (B174) }
\end{array} \quad p_{4}=p_{4}^{\prime \prime}\left[1-\left(\frac{\gamma-1}{\gamma+1}\right)\left(\frac{W}{W_{\mathrm{cr}}}\right)_{4}^{2}\right]^{\gamma /(\gamma-1)}
$$

$$
\begin{array}{ll}
W_{4, \mathrm{id}}^{2}=\left(\frac{\gamma+1}{\gamma-1}\right) W_{\mathrm{cr}, 4}^{2}\left[1-\left(\frac{p_{4}}{p_{4, \mathrm{id}}^{\prime \prime}}\right)^{(\gamma-1) / \gamma}\right] & \text { (B175) }
\end{array} \rho_{4}=\frac{p_{4}}{R T_{4}}
$$

equation (B174) can be rewritten as
$p_{4}^{\prime \prime}=p_{4, \mathrm{dd}}^{\prime \prime}\left[\frac{\left(\frac{\gamma+1}{\gamma-1}\right)-\left(\frac{W_{4}}{W_{4, \mathrm{cr}}}\right)^{2}(1+K)-K\left(\frac{W_{3}}{W_{4, \mathrm{cr}}}\right)^{2} \cos ^{2} \alpha_{3, i}-\left(\frac{W_{3}}{W_{4, \mathrm{cr}}}\right)^{2}\left(1-\cos ^{n} \alpha_{3, i}\right)}{\left(\frac{\gamma+1}{\gamma-1}\right)-\left(\frac{W_{4}}{W_{\mathrm{cr}, 4}}\right)^{2}}\right]^{\gamma /(\gamma}$

References

1. Wasserbauer, C. A.; and Glassman, A. J.: FORTRAN Program for Predicting Off-Design Performance of Radial-Inflow Turbines. NASA TN D-8063, 1975.
2. Meitner, P. L.; and Glassman, A. J.: Off-Design Performance Loss Model for Radial Turbines with Pivoting, Variable-Area Stators. NASA TP-1708, 1980.
3. Glassman, A. J.: Computer Program for Design Analysis of Radial-

Inflow Turbines. NASA TN D-8164, 1976.
4. Wiesner, F. J.: A Review of Slip Factors in Centrifugal Impellers. J. Eng. Power, vol. 89, no. 4, Oct. 1967, pp. 558-572.
5. Wasserbauer, C. A.; Nusbaum, W. J.; and Kofskey, M. G.: Cold Performance Evaluation of a 4.59 -Inch Radial-Inflow Turbine Designed for a Brayton-Cycle Space Power System. NASA TN D-3260, 1966.

For sale by the National Technical Information Service, Springfield, Virginia 22161

