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TECHNICAL PAPER

MODAL ANALYSIS OF A NONUNIFORM STRING WITH END MASS
AND VARIABLE TENSION

I. INTRODUCTION

Dynamic systems occasionally contain slender flexible elements which are commonly categorized
as strings, ropes, cables, tethers, etc. These elements share the common feature that their bending stiffness
can be neglected. The structural usefulness of these elements derives strictly from their being in axial
tension during operation. This tension provides the necessary restoring force against lateral loads. The
dynamic analysis of these systems usually incorporates partial differential equations for describing the
lateral motion of these elements. A drawback of such a dynamic analysis is that the numerical solution
can be quite complicated. Considerable simplification can often be achieved by using a modal synthesis
technique, which describes the lateral motion of these flexible elements by a superposition of appro-
priately chosen shape functions. This approach yields a set of ordinary differential equations which are
more amenable to numerical solution. The success of such a modal synthesis depends largely on the
proper choice of the shape functions. They are usually selected from the natural modes (eigenfunctions)
of the isolated structural elements using boundary conditions which are geometrically and dynamically
resembling the actual ones.

The following analysis describes an iterative algorithm of the Stodola type which furnishes the
natural modes and frequencies of a nonuniform string with one fixed end and the other having an
attached end mass. The tension is allowed to vary along the string. If desirable the algorithm can be
easily modified to accommodate other boundary conditions.

II. DIFFERENTIAL EQUATION OF THE LATERAL STRING VIBRATIONS

An element of a flexible string, as shown in Figure 1, with T(x) being the tension, p(x,t) an
external transverse load per unit length, and O(X) the mass per unit length at station x, is considered. If
the lateral displacement y(x,t) is assumed to be small, the equation of motion in the transverse direction
is obtained by applying Newton's law:

IT xl "_y(x,t) _2y(x,t) xl by(x,t) _2y(x,t)
+bT(X) d +--d -T(x)_+p(x,t)=p(x)dx (1)

(x) bx Ox Ox2 _x at2

This expression can be reduced to yield the differential equation:

_ IT OY(x't)l +p(x,t)=p(x)_2y(x't) (2)_---_- (x) _x _t2



y T(x)+ _)__T_Tdx
p (x,t) _x

_'--Z_._. yI (x) +yII (x)dx

I
.y i Ix)

i
• 1 !

! | j
X X+dx x

Figure 1. Differential element of a string.

Setting the external loading p(x,t) to zero, the differential equation for the free lateral vibra-
tions is obtained:

a IT aY(x't) l = p(x) a2y(x't) (3)a-_ (x) ax at2

This differential equation must be satisfied over the entire length of the string.

The boundary conditions associated with the differential equation depend on the particular
application. A very common situation is one in which one end is fixed and the other has an attached
mass M. This will be used in the following analysis.

If the string is fixed at x = 0,

y(0,t) = 0 (4)

must be satisfied. The boundary condition for the end x = £, where the mass is attached, is obtained
by Newton's law:

a2y(£,t) ay(_,t)
M-- T(£)_ (5)

at2 ax

The minus sign on the right-hand side can be explained by observing that the acceleration of the end
mass is caused by the string tension at x = _. Both boundary condition (4) and (5) are homogeneous.



II1. NATURAL MODESAND FREQUENCIES

To determine the natural modes, apply the customary separation of variables method according
to which the displacement is written in product form as:

y(x,t) = Y(x) F(t) , (6)

where Y(x) is a function of the station x and F(t) a function of time t only.

Assuming the time function to be a harmonic oscillation with frequency co, the partial differen-
tial equation (3) reduces to the eigenvalue problem

d [T(x) Y'(x)] co2 p(x) Y(x) , (7)dx

with the boundary conditions

Y(O) = 0 (8a)

co2 M Y(t_) = T(£) Y'(£) (8b)

The following numerical algorithm employs a "sweeping" technique which uses the orthogonality
property of the natural modes (eigenfunctions). To obtain this orthogonality property notice that the n
natural frequencies and the corresponding n eigenfunctions satisfy the differential equation (7) such that

d

d--£[T(x) Yn'(X)] = - con2 p(x) Yn(x) (9)

If the differential equation is now multiplied by the m-th eigenfunction Ym(X) and integrated by
parts, then

d - f T(x) Ym'(X) Yn'(X) dxYm(x) _xx [T(x) Yn'(X)] dx = Ym(x) [T(x) Yn'(X)] 1£O
O o

= - con2 f 0(x)Ym(x) Yn(x) dx (10)
o
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Using the boundary conditions (8a) and (8b), the following relationship can be established:

ofT(x) Ym'(X) Yn'(X) dx = ¢On2 p(x) Ym(x) Yn(x) dx + M Ym'(£) Yn'(£ (11)

Reversing n and m in the above steps which lead to equation (11), equation (12) is obtained:

1ofT(x) Ym'(X) Yn'(X) dx = ¢Om2 p(x) Ym(x) Yn(x) dx + M Ym'(£) Yn'(£) . (12)

The desired orthogonality property is now obtained by subtracting equation (12) from equation (11)

and letting _m 2 _ Wn2 (distinct eigenvalues)

f T(x) Ym'(X) Yn'(X) dx = 0 , (13)
o

m=i=n

f p(x) Ym(x) Yn(x) dx + M Ym(£) Yn(_) = 0 (14)
o

If n = m is set in equation (11), an expression for the natural frequency known as Rayleigh's quotient
is obtained:

f T(x) Yn'2(x) dx

_On2= o (15)£

.fp(x) Yn2(X) dx + M Yn2(£)
o

This expression could also have been obtained by equating the maximum potential energy to the maxi-
mum kinetic energy of the system in harmonic motion.



IV. ITERATIVE ALGORITHM

The eigenvalue problem given by equations (7), (8a), and (8b) can be numerically solved in
various ways. In the following an iterative algorithm is used whose basic mechanism was first introduced
by Stodola [11.

The algorithm proceeds along the following steps:

Step I:

Selection of trial functions which resemble the mode functions to be expected. The exact shape
of these trial functions is, however, not very important, because the number of iteration steps necessary
for convergence is only slightly affected by the choice of these functions.

For the system being analyzed a suitable set of trial functions is

Ym(0)(x) = (-1) m+l sin (2m-l___._)rr x m = 1, 2, (16)2£ "'"

Step I1:

Starting with m = 1 insert a trial function on the right-hand side of equation (7) and integrate
to obtain the transverse force due to the inertial loading on the string. This yields

Qm*(X) = f p(x) Ym(x) dx + M Ym(£) (17)
x

The factor ¢o2 has been omitted because the mode functions have an arbitrary amplitude. The last term
of this equation represents the inertial load caused by the end mass M.

Step II1:

Calculate the slope of the mode function by dividing the transverse force by the tension in the
string according to equation (7):

Qm*(X)

Ym'*(x) - T(x) (18)

Step IV:

Obtain a new improved mode function by integrating the corresponding slope:

5



X

Ym*(X) = f Ym'(X) dx (19)
o

Step V:

To avoid convergence to the first mode function when higher modes are calculated, it is necessary
to introduce a "sweeping" procedure by which lower mode components are eliminated. Mathematically
this is achieved by making the mode function under consideration orthogonal to all lower mode functions
using the Gram-Schmidt orthogonalization process [2] with the orthogonality relation of equation (14).

Omitting the details the end result is

m-1

EYm(x) -- Ym*(X) - am,i Yi(x) , (20)
i=l

where Yi(x) are all the final lower mode functions obtained earlier.

The coefficients am, i are

of p(x) Ym*(X) Yi(x) dx + M Ym*(£) Yi(£)
am,i = £ (21)

of p(x) Yi2(x) dx + M Yi2(£)

StepVI:

It remains to normalize the new improved mode function, which has an arbitrary scale factor, by
a convenient normalization factor. Sometimes the generalized mass

Mi = fp(x)Yi2(x) dx + M Yi2(£) , (22)
o

is used as a normalization factor, i.e., the arbitrary scale factor is chosen to obtain a generalized mass of
unity. Another normalization procedure sets either the maximum deflection or the deflection at the free
end to unity. If the first procedure is used the present normalization step is



Yi(x) (23)
Yi(x)- Mi

Step VII:

At this point one iteration cycle is complete and a decision has to be made whether to repeat
another cycle or to terminate the process. This decision is usually based upon the accuracy requirements
demanded for the natural frequency as given by equation (15). That is, if two successive values of this
frequency are within the desired accuracy limits the iteration is stopped.

V. APPLICATIONS

A. Uniform String in a Constant Gravity Field, No End Mass(M = 0)

A uniform string of length _ and mass per unit length p is suspended by one end in a constant
gravitational force field. The free end has no end mass. To simplify the ensuing differential equation,
the fixed end is at x = _ and the free end at x -- 0 (Fig. 2). In this case the tension is not constant,
but equal to the weight of the string below a general point x. Therefore the tension is

X

T(x) =g f p dx =pgx (24)
o

Substituting this tension equation in equation (7) leads to

x Y"(x) + Y'(x) + X2 Y(x) = 0 , (25)

where X2 = co2/g .

This is a Bessel-type differential equation whose solution is [3]

Y(x) = C1 Jo (2 Xx/_ + C2 Yo (2 XW/X) (26)

The corresponding boundary conditions are taken from equation (8a) and (8b). For the fixed end obtain
(remember: 0 and _ are reversed):

Y(£) = 0 (27)
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For the free end the mass M and the tension in the string are both zero. Consequently there are no
restrictions on the deflection and the slope at the free end; only that the deflection must be finite.

Because the function Yo(2 X Vrx) becomes infinite for x = 0, it is obvious that the coefficient C2 must
be zero. For the fixed end the deflection is zero. That means:

Jo (2 Xvr_) = 0 (28)

This equation determines the natural frequencies of the string in the uniform gravity field. There are
many roots to equation (28) because they are the zeroes of the Bessel function of the first kind of order
zero. Using the appropriate mathematical tables of Reference 3 the first six natural frequencies are
obtained as:

co1 = 1.2024 V_ w 2 = 2.7600

603 = 4.3268 X/_ ¢°4 = 5.8958 V_ (29)

co5 = 7.4655 V_ co6 = 9.0355 X/_

The associated mode functions are shown in Figure 2 for a length t_= 1 m.

It is interesting to note that the string behaves in its first mode dynamically almost like a rigid
slender rod, whose frequency is

co = 1.2247 X/_ , (30)

and whose mode function is a straight line. Because the string is less stiff than the rod it is not surprising
that its first mode frequency is smaller than the frequency of the rind rod.

To validate the iterative algorithm outlined in the preceding paragraph a computer program was
written and a numerical solution obtained for the above example'. Using a simple trapezoidal integration
procedure with 500 integration points resulted in an accuracy of 0.4 percent for the 6th natural fre-
quency. An increase to 1000 integration points reduced the error of the 6th natural frequency to 0.1
percent. Since the error increases with the mode number the above given error is smaller for the lower
modes. Table 1 shows a comparison between the exact natural frequencies of equation (29) and the
frequencies from the Stodola method using 1000 integration points for the first six modes. (The units
are in radians per second).

Figure 2 depicts the first six mode functions obtained by the iterative algorithm (solid curves)
and for the purpose of comparison the corresponding exact mode functions, which are given by the
Bessel functions of equation (26) (dashed curves). It is seen that with increasing mode number the
accuracy erodes more rapidly for the mode functions than for the natural frequencies. It must be



TABLE 1. COMPARISON OF NATURAL FREQUENCIES
(CONSTANT GRAVITY FIELD)

Stodola Exact

co1 3.765 3.766

co2 8.644 8.645

co3 13.553 13.552

co4 18.470 18.466

co5 23.396 23.383

co6 28.324 28.300

remembered, however, that the present algorithm uses the very simple trapezoidal rule for integration
and that substantial improvement in accuracy would result by using a more precise quadrature rule.

B. UniformString in a ConstantGravityField With EndMass

This case cannot be solved in closed form. Numerical solutions are presented for two end masses,
one in which the end mass is equal to the string mass (M = m), the other in which the end mass is twice
the string mass (M = 2m). The first six mode functions and associated natural frequencies are shown in
Figure 3 and Figure 4. It is interesting to note that the mode functions do not change much with
increasing end mass and quickly approach those of a fixed string under constant tension. With increasing
mass the free end becomes almost a nodal point with the exception of the first mode. The first mode
becomes more and more a straight line, that is, the dynamic behavior is very close to that of a rigid
rod with an attached end mass. For end mass M = m the rigid rod has a natural frequency of co = 3.322

s-1 which is slightly higher than the first mode frequency of col = 3.308 s"1 in Figure 3. This is con-

sistent with the observation made above for the case of no end mass. The rigid rod being stiffer than
the flexible string has to exhibit a higher frequency. For end mass M = 2 m the rigid rod has a natural

frequency of co = 3.242 s"1. For comparison with the first natural frequency col = 3.236 s"1 of Figure 4,

it is again seen that the rigid body frequency is higher, but that the difference has become much smaller
because of the increased end mass.

C. Uniform Stringin a GravityGradientForceField,No End Mass(M = 0)

In recent years a number of space missions have been proposed which incorporate tether-mediated
orbital maneuvers. The dynamic analysis of such systems via a modal synthesis technique requires a set
of suitable shape functions for describing the lateral tether deflections. The next two paragraphs are,
therefore, dedicated to calculating the lateral mode functions and natural frequencies of a string in orbit.
It is assumed that the string is in a circular orbit and aligned with the local vertical in its undeformed
state. The tension in the string is determined by the combined effect of the centrifugal force and the
first-order gravity gradient force term of a spherically symmetric gravity field. For a uniform string
without an end mass the tension in the string is then for a fixed end at x -- O:

10



FIRSTMODE w • 3.308 SECOND MODE w • 12,7BE

20 20-

D D
E E
F F
L 0- L @-E E

T T
I I
0 0H
M -10 -10

-20 -20

0.0 0,2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 ,0

LEHGTH - METER LEHGTH - METER

THIRD MODE w • 24,233 FOURTHMODE w • 35,945

E@ ....... 20

10- --_---_.-_- .... 10- /_\

E E
F F
L 0- ' L 0

c O

T Ti I
0 0
H -10- i ...... N -10

-20 , I , { , .... 20 -

0.0 0.2 0.4 0,6 _.8 1.0 0.0 e.E 0.4 0.6 0.8 1.0

LEMGTH - METER LEHGTH - METER

Figure 3. Mode functions for constant gravity field (M = m), length = 1 m.

ll



FIRST MODE w • 3.236 SECONDMODE w - 16.144

40 40

20 20

D D
E E

F F IL 0 L O-
E E
C C _ -/
T T
I I
0 0

N -20 N -20

-40- -40

0.O 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0,6 e,8 1.0

LENGTH- METER LENGTH- METER

THIRD MODE w • 31.300 FOURTHMODE w - 46.666

40 40

EO 2O-

/\
E E
F F
L e" L 0-

H -Ee - N -E0-

-40- -40-

0,0 0.2 0.4 0.6 0.8 1.0 0.0 0._ 0.4 0.6 0.8 1.0

LENGTH- METER LENGTH- METER

FIFTH MODE w -62_085 SIXTH MODE w m 77.482

40 - 40

D " D
E E
F F
L 0- L @.........

c e
T T
I I
0 O
M -EO - N -EO"

o

-40" -40
e.8 0.2 e.4 e.6 e.8 I.e e.e e.a e.4 e.6 e.s :.e

LENGTH- METER LEHGTH- METER

Figure 4. Mode functions for constant gravity field (M = 2m), length = 1 m.

12



3
T(x) = _ COc2P (£2 _ x2) (31)

where

coc = orbital angular velocity

p = m/£ = mass per unit length

If only first-order gravity gradient terms are used, the tension is the same for a string hanging
"down" or hanging "up."

Substituting equation (31) in equation (7) yields the eigenvalue problem:

d 2 co2
- _ Y(x) = 0 (32)

dx [(£2 _ x2) Y'(x)] + 3 COc2

or with z = x/£

d2 Y(z) d Y(z)
(1 - z2) 2z _ + n(n+l) Y(z) = 0 , (33)

dz2 dz

where

2 w 2
n(n+ 1) = - _ , n = integer

3 COc2

This equation is known as Legendre's differential equation and its solution as Legendre polynomials.
The general solution is given by

N

Yn(z) = Z (-1) k (2n-k)! zn_2k (34)
k=0 2nk! (n-k)! (n-2k)!

with

13



N=n/2 ifniseven 0<z< 1

N = n-l/2 if n is odd

It is readily seen that only the odd polynomials satisfy the boundary condition at x = 0. Their associated
natural frequencies are obtained from equation (33) as:

co = _ n(n+l) coc n = 1, 3, 5, ... (35)

In contrast to the string in a constant gravity field, the natural frequencies are independent of
the length of the string. They are directly proportional to the orbital angular velocity. The first six
natural frequencies are then:

col = X/_coc = 1.7321 coc

002 = x/_ coc = 4.2426 coc

003 = v/_ coc = 6.7082 coc

(36)
034 =v ''_ coc = 9.1652 coc

035 = 1_ coc = 11.6190 coc

036= 1_ coc = 14.0712 coc

The first six mode functions of equation (34) are (normalized to unity at z ; 1):

Y1 (z) = z

1

Y2(z)=_(5 z3-3 z)

1

Y3(z)=g(63 z5-70z 3+ 15 z) (37)

14



1 _ z5 z3
Y4(z)=_(429z 7 693 +315 -35 z)

1

Y5(z) = _ (12155 z9 - 25740 z7 + 18018 z5 - 4620 z3 + 315 z)

1

Y6(z) = 2-_ (88179 z11 - 230945 z9 + 218790 z7 - 90090 z5 + 15015 z3 - 693 z)

(37)
(concluded)

Plots of these mode functions are shown in Figure 5 for a length £ = 100 km.

It is interesting to note that the gravity gradient string behaves in its first mode dynamically
exactly like a rigid slender rod. This is even true for a string with arbitrary mass density as can be verified
by setting Y(x) = x in equation (7) and the tension T(x)

T(X) = 3 Wc2 [ p(x) xdx (38)
J
X

The natural frequency is, of course, 0)1 = V_ Wc" Table 2 shows a comparison between the exact
natural frequencies as calculated from equation (36) and the ones obtained from the Stodola method.
The altitude of the circular orbit above the Earth surface was set at h = 200 km which yields an orbital

rate 0)c = 1.1847 x 10-3 rad/sec. The Stodola method for this case was set up to sweep out the straight
line first mode before starting the iteration cycle. The frequency units are again in radians per second.

TABLE 2. COMPARISON OF NATURAL FREQUENCIES
(GRAVITY-GRADIENT FIELD)

Stodola Exact

0)1 2.0520 x 10-3 2.0520 x 10-3

0)2 5.0264 x 10-3 5.0263 x 10-3

0)3 7.9503 x 10-3 7.9472 x 10-3

0)4 1.0858 x 10-3 1.0858 x 10-3

0)5 1.3775 x 10-2 1.3765 x 10-3

0)6 1.6680 x 10-2 1.6670 x 10-3

15
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The error is smaller than 0.1 percent for the 6th natural frequency. Comparison of the exact and
the numerical mode functions in Figure 5 again reveals the increasing degradation of mode function
accuracy with increasing mode number.

D. Uniform String in a Gravity.Gradient Force Field With End Mass

This case cannot be solved in closed form. Again, numerical solutions are presented for two end
masses. In one case the end mass is equal to the string mass (M = m), in the other the end mass is twice
the string mass (M = 2m). The tension in the string is:

The first six mode functions and the associated natural frequencies are shown in Figure 6 and
Figure 7. Comparing these mode functions with the ones of the uniform gravity field shown in Figures 4
and 5, it is seen that they are very similar.

It can be concluded from this that differences in the tension profile along the string have a small
effect on the basic character of the mode functions. The dynamic response of the string/end mass system
is essentially determined by the mean tension level and its inertial properties. It is again noticed that with
increasing end mass the mode functions rapidly approach those of a fixed string under constant tension.
Another point of interest is the fact that the first mode frequency remains the same regardless of the
end mass value. This is in concord with the statement made in the preceding paragraph that the first
mode frequency is independent of the mass distribution of the string. The argument given there is still
valid for a nonzero end mass if the integral of equation (38) is looked upon as a Stieltjes integral.

VI. CONCLUSION

The Stodola method provides an effective means for calculating mode functions and frequencies
of a string with an attached end mass and nonuniform tension. The "sweeping" technique allows the
computation of higher modes but with progressing numerical effort and decreasing accuracy. However,
it is quite feasible to calculate at least 10 modes, especially if a more accurate integration procedure is
chosen rather than the simple trapezoidal rule used in the present algorithm.

Differences in the tension profile along the string have only a small effect on the mode functions,
whose basic character is essentially determined by the mean tension level and the inertial property of the
string/end mass system. For increasing end mass the mode functions rapidly approach those of a fixed
string under constant tension.

End conditions different from the ones investigated can be easily accommodated. The FORTRAN
computer code used for the above examples is available upon request.

17
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Figure 6. Mode functions for gravity gradient field (M = m), length = 1O0 km.
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