General Disclaimer One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)

AERONOMY REPORT NO. 109

PHASE MODULATING THE URBANA RADAR

by
L. J. Herrington, Jr.
S. A. Bowhill

March 1, 1983

Library of Congress ISSN 0568-0581

Aeronomy Laboratory

AERONOMY REPORT
 N 0. 109

PHASE MODULATING THE URBANA RADAR

by
L. J. Herrington, Jr. S. A. Bowhill

March 1, 1983

ABSTRACT

The design and operation of a switched phase modulation system for the Urbana Radar System are discussed. The system is implemented and demonstrated using a simple procedure. The radar system and circuits are described and analyzed.

TABLE TF CONTENTS

Page
ABSTRACT iii
TABLE OF CONTENTS v
LIST OF TABLES viii
LIST OF FIGURES ix

1. INTRODUCTION 1
1.1 The Mesosphere 1
1.2 Thompson Scatter Radar 2
1.3 Coherent Scatter Radar 3
1.4 Meteor Radar 4
1.5 Range Resolution and the Radar Equation 4
1.6 Waveform Design 7
1.7 Summary and Statement of the Problem 8
2. PHASE CODING OF RADAR TRANSMITTERS 9
2.1 The Purpose of Phase Coding 9
2.2 Barker Coding 10
2.3 Complementary Coding 14
2.4 Maximal Length Sequences 16
2.5 Summary 17
3. THE URBANA RADAR: A DESCRIPTION 20
3.1 Introduction 20
3.2 The Phude Switch and Gated Amplifier 20
3.3 The 814B Linear Amplifier 27
3.4 The 4CX5000A Intermediate Power Amplifier 33
3.5 Units 3 and 4: The Driver and PAs 40
3.6 Driver Output Power Divider 57Page
3.7 Final Output Combiner Networks 60
3.8 TR-ATR Switch 60
3.9 High Voltage and Bias Supplies 62
3.10 The Modulator 66
3.11 Timing and Control 74
3.12 The Receiving System 82
3.13 Suggestions for Improvements 93
3.14 Summary 97
4. DESIGN CONSIDERATIONS FOR THE URBANA RADAR 98
4.1 Introduction 98
4.2 Frequency Selection 98
4.3 Bandwidth Criteria 99
4.4 Pulse Length Considerations 101
4.5 Code Selection 102
4.6 Summary of Design 103
5. RESULTS AND CONCLUSIONS 105
5.1 Results 105
5.2 Conclusions 105
APPENDIX I WIDEBAND FERRITE TRANSFORMERS AND DEVICES 108
I. 1 Introduction 108
I. 2 Conventional Wideband Transformers 108
I. 3 Wideband Autotransformers 115
I. 4 Transmission Line Transformers 115
I. 5 RF Combiners and Dividers 117
I. 6 Summary 120
APPENDIX II IMPEDANCE MATCHING OF NONLINEAR LOADS 121
Page
APPENDIX III RIGID COAXIAL CABLE 126
APPENDIX IV PROGRAM LISTINGS AND DESCRIPTIONS 134
REFERENCES 154

LIST OF TABLES

Table Page
2.1 Sequences with $\operatorname{small} \max \left|c_{j}\right|$ 12
2.2 Some features of binary sequences with best possible auto- correlation function 13
2.3 Number of shift register stages versus length of generated sequence, number of possible sequences, and feedback stage connections 19
3.1 Transmitter ratings 22
3.2 Continental Electronics 814 B specifications 34
3.3 87 KVA plate supply taps 65
3.4 Modulator specifications 68
3.5 T618 output connections 72
3.6 T617 internal connections 73
3.7 Characteristics of the preamplifier in the Urbana Radar receiving system 92
III. 1 Production test voltage versus outer conductor diamater 129

LIST OF FIGURES

Figure
Page
2.1 Seven-, eleven- and thirteen-bit Barker codes and their autocorrelation functions 11
2.2 Demonstration of the effect of limited system bandwidth on a 13 -bit Rarker code 15
2.3 Shift register method of generation of maximsl length sequences 18
3.1 Block diagram of the Urbana Radar Syatem 21
3.2 Block diagram of the phase switch and low level gated amplifier and the associated circuitry 23
3.3 Phase switch circuit diagram 24
3.4 Phase switch driver circuit diagram 25
3.5 RF amplifier circuit diagram 27
3.6 Gate amplifier circuit diagran 28
3.7 Output detector diagram 29
3.8 RF output power meter circuit diagram 30
3.9 (a) RF amplifier shown mounted in equipment rack. The amplifier is the light gray unit on the bottom. The output, power meter is shown mounted just above the amplifier. The next panel (black) is the mount for the 814 B output power meter discussed in Section 2 of this chapter 31
(b) Chassis layout of the RF amplifier of unit 1 31
(c) Intermal construction of the RF detector unit 32
(d) Component layout of the two circuit boards mounted in the unit 1 chassis 32
Figure Page
3.10 RF amplifier circuits of the Concinental Electronics 814B VHF transmitter 35
3.11 814B power supply block diagram 36
3.12 814B power supply circuit diagram 37
3.13 814B peak power meter and "RF on" detector circuit diagram 38
3.14 4CX5000A (unit 2) RF amplifier schematic 39
3.15 Unit 2 bias supply 41
3.16 Unit 2 screen supply 42
3.17 Picture of units 1,2 , and 3, showing unit 2 on the right, unit 1 in the center, and the 814 B linear amplifier on the left 43
3.18 Detail of the bias input portion of the 4 Cx 5000 A input matching network 44
3.19 Simplified physical structure of the driver and power amplifiers 45
3.20 Details of the input circuit of the driver and power amplifierss showing the 20Ω transmission line, irrathane "collar" capacitor c301 and the toroidal variable induc- tor 1,301 46
3.21 Simplified schematic of the input match network 48
3.22 Model of the output match network 49
3.23 Typical passband of the ourput match network of units 3 or 4, as generated by the programisamed PA BANDNIDTH 51
3.24 Bias circuits of units 3 and 4 52
Figure Page
3.25 Anode voltage rating versus outer grid to anode apecing from Doolittle (1964) 53
3.26 Picture of the driver (unit 3). Each of the four power amplifiers has an identical appearance 56
3.27 Driver output (and PA input) match network 58
3.28 Bandpass of the asynchrunous T-match network 59
3.29 Finai output combiner networks 61
$3.30 \mathrm{~T} / \mathrm{R}$ switch diagram 63
3.31
$25-\mathrm{kV}$ power supply block diagram 64
3,323.33Modulation simplified schematic69
3.34
Modulator power supplies (a) supply for V601; (b) supply for V602, V603, and bias for V604; (c) bias supply for V605, V606, and V607 70
3.35 Pulse shaper circuit diagram 75
3.36 Picture of V604, V605, V606 and V607 76
3.37 Modulator chassis layout 77
3.38 Radar timing diagram 78
3.39 Apple radar director block diagram 79
3.40 Interlock and high current adaptor circuit diagram 81
3.41
Logic and interlock module (a) transmicter output detector(b) "814 OUTPUT ON" amplifier (c) pulse length control,duty cycle exceeded tester, and TX output present testercircuitb and (d) RF gate pulse control 83
Figure Page
3.42 Equivalent logic of Figure 3.41 (c) 87
3.43 Pictures of the interlock and high current adaptor. (a) front panel (b) chassis layout (c) logic board layout 88
3.44 Receive system block diagram 89
3.45 PIN diode blanker 90
5.46 Drive and control circuitry fo: the PIN diode blanker 91
3.47 Phase detectors used by the coherent-scatter radar and meteor radar 94
3.48 (a) and (b) Two methods to improve modulator efficiency and rise time 95
4.1 Mathematical model of the modulator in the Urbana Radar. 100
5.1 Block diagram of the verification system 106
5.2 (a) Picture of the coded RF pulse taken on a 100 MHz oscilloscope connected to a dipole antenna. The effecto of phase coding are clearly visible on the envelope.
Taken at $5 \mu \mathrm{sec} / \mathrm{cm}$ 107
(b) Coherently detected RF pulse with no phase coding applied. Taken at $10 \mu \mathrm{sec} / \mathrm{cm}$ 107
(c) Coherently detected RF pulse phase modulated with a
7-bit Barker code. Taken at $10 \mu \mathrm{sec} / \mathrm{cm}$. The effects of
limited system bandwidth are plainly visible 107
I. 1 Schematic representations of the three types of wideband ferrite transformers 109
I. 2 Diagram of a commonly used model of a conventional wide- band transformer 110
Figure Page
I. 3 Typical transmission loss versus frequency chart of a wideband tansformer 110
I. 4 Typical magnetic flux path in a BALUN type ferrite core. 111
I. 5 Core shapes, sizes, and form factors for Fair-Rite Producte Corp. cores 113
I. 6 Two approaches to wideband hybrid combiners/splitters 118
I. 7 A conventional wideband hybrid combiner/aplitter 119
I. 8 (a) method whereby two 180° transistor outputis may be com- bined (b) method for winding a transmission line trang- former which pernits upright mounting 119
II. 1 Applied voltage versus current waveforms for a nonlinear load of the piecewise continuous type 122
II. 2 Nonlinear load bypassed with a high Q tank circuit 123
II. 3 Measurement method for input and output impedances measured at high power 125
III. 1 Average power limitations versus frequency for the cur- rently used types of rigid transmission lines 127
III. 2 Derating factor vs. frequency for rigid transmission line 128
III. 3 Variation of permissible average power vs. temperature for rigid coaxial transmission line 128
III. 4 Peak power limits vs. internal pressure for SF_{6} and dry air or nitrogen 130
III. 5 Attenuation vs. frequency for rigid coaxial transmission line 130
Figure Page
III. 6 Attenuation vs. VSWR for rigid coaxial transmission
line 131
III. 7 Attenuation vs. temperature for rigid coaxial transmission
line as.
III. 8 Inner conductor v, outer conductor temperature rise 133

1. INTRODUCTION

1.1 The Mesipsphere

The Earth's mesosphere is the region from about 50 to 85 km altitude; its composition and dynamics are currently the subject of a wide range of observational techniques, both direct and indirect. The composition of this region is known to be homogeneous and similar to the stratosphere below, differing only in having reduced density and pressure rather than the stratified composition of the thermosphere above. Eddy diffusion (turbulence) is the mechanism maintaining the honogeneity which extends to the turbopause. The region is heated primarily by ozone absorption of solar radiation; indeed the region was initially defined by its thermal properties: it is the region above the stratosphere which exhibits decreasing temperature with altitude.

The D region or mesosphere is lightly ionized when compared to the E and F layers. The primary ion source is photoionization of neutral molecules; the higher density leads to higher collision and recombination rates, thus fewer ions. One feature of the mesosphere is the steep decrease in ion density with altitude called the D-region ledge. Another is the rapid decrease in D-region ionization after sunset. Furthermore, due to the high collision rate all charged and neutral species in the mesosphere have nearly the same temperature.

The mesosphere's large-scale dynamics may be investigated using a plasma model. This plasma is perturbed by a variety of sources, e.g., tides, gravity waves etc.; in addition, thermal processes produce ion-acoustic waves. The scale limit of the latter process is the Debye length (D) which varies from less than 1 cm below 1000 km to 6 cm at 2000 km . It is not
possible to excite thermal irregularities in a plasma on a scale smaller than D .

A coherent wave motion on any length or time scale which becomes unstable generates turbulence, whereby the wave energy is ultimately converted to heat; occurring only below the turbopause, it is an inherently nonlinear dissipative process. The smallest scale of motion it contains is termed the "inner scale" of the turbulence.

Investigations into the mesosphere have traditionally proceeded by a variety of methods. Direct measurements through balloon-borne instrument packages have provided good data on pres sure, temperature, and composition in the lower regions. Rocket-probe devices have provided additional data, though for short periods at relatively high cost; other methods used have been to "stain" the region with explosive devices or chemicals, or through the use of natural explosions like volcanic erupticas. Radar based examination, however, is prowably the most cost-effective method for long-term, low-cost research.

1.2 Thompson Scatter Radar

The Thompson scatter principle as described by Evans (1968) was originally based on a medium which is quiescent, homogeneous, plasma having an effective radar cross section per unit volume of

$$
\begin{equation*}
\sigma=N \sigma_{e} \tag{1.1}
\end{equation*}
$$

where \mathbb{N} is the electron density per unit volume and σ_{e} is the effective cross section of a single electron:

$$
\begin{equation*}
\sigma_{e}=4 \pi\left(r_{e} \sin x\right)^{2} \approx 10^{-28} \operatorname{sinin}^{2} x \min ^{2} \tag{1.2}
\end{equation*}
$$

Because the assumption of a quiescent medium is not accurate, Thompson scatter experiments as first noted by Bowles do not always produce the expected results. A more useful model envisions the medium as a plasma in
which density fluctuations are brought about by longitudinal oscillations. Based on these assumptions the effective radar cross section per unit volume becomes

$$
\begin{aligned}
& \sigma=\left|\frac{\Delta \varepsilon_{0}}{\varepsilon_{0}}\right|_{\lambda_{0}^{4}}^{2} \sin ^{2} \times P\left(\bar{K}_{2}-\widetilde{K}_{1}\right) \\
& \text { Where } \sigma \text { the effective cross section/unit volume } \\
& \varepsilon_{0}=\text { the permittivity of free space } \\
& \Delta \varepsilon_{0}=\text { the variations in } \varepsilon_{0} \\
& \lambda_{0} \text { : the wavelength of the exploring frequency used } \\
& \overline{\mathrm{K}}_{1}=\text { the propagation vector of the incident wave } \\
& \mathrm{K}_{2} \text { w the propagation vector of the reflected wave } \\
& P(K)=\text { the three dimensional wave number spectrum of the density } \\
& \text { variation } \\
& X \text { the polarization angle; the angle between } K_{2} \text { anc the inci- } \\
& \text { dent electric field. }
\end{aligned}
$$

Within limits, though, the Thompson scatter technique has contributed a quantity of useful data concerning the mesosphere; ion density profiles, temperature, and composition have all been studied using Thompson scatter techniques and high powered radars.

1.3 Coherent Scatter Radar

Coherent scatter radar techniques make use of the turbulent mixing-ingradaent which gives rise to the rapid temporal variations in received power described by Rastogi and Bowhill (1976b) and by Countryman and Bowhill (1979). Eddies of different scales are generated by the gradual dissipation of large scale eddies driven by the overall global circulation and superimposed planetary waves, tides, and gravity waves. The energy in this procese is dissipated in viscous damping in the small-scale eddies. Since
these processes may be viewed as variations in local permittivity, the radar cross section is the same as that given in Equation 1.3.

Since these processes in the mesosphere take place with a correlation time of approximately 1 second, coherent detection and pulse integration times of between $1 / 8$ and $1 / 2$ second provide data on the line-of-sight velocity, relative size, and relative altitude of different eddies. These in turn make it possible to investigate the internal coupling and energy dissipation mechanisms in the mesobphere, which occur in relatively small physical and temporal scales.

1.4 Meteor Radar

Large numbers of meteors burn up in the atmosphere every day, each leaving an ionized trail in its wake. These ionized trails provide excellent radar targets; they may be thought of as passive probes in the upper mesosphere, usually in the 80 to 120 km range.

Below heights of about 100 km the whole of the Earth's atmosphere participates in the planet's rotation. This motion, pressure, and gravity generate the geostrophic wind system (prevailing wind system) which is continually perturbed by gravity waves, tides and solar heating, together with hurricanes and other atmospheric events. All these perturbations generate waves which can be observed as fluctuations in the zonal mean wind.

The meteor radar system, then, uses echoes from meteor trails to collect data on the altitude, structure, and velocity of the prevailing winds in the mesosphere. It can do this inexpensively and for long periods of time. 1.5 Range Resolution and the Radar Equation

For a radar system employing coherent integration in the detection process the Radar Equation is, from Skolnik (1980):
where

$$
\begin{aligned}
& R_{\text {nax }} \text { the maximum range of the system } \\
& \text { G the trangmit antenan gain } \\
& \text { Ae the effective area of the receiver antenna } \\
& \text { I the target crose-sectional area } \\
& n \text { : the number of pulses integrated } \\
& K \quad \text { Boltman's constant } \\
& \text { To } \quad \therefore \text { absolute temperature, } 290 \mathrm{~K} \\
& \mathrm{~F}_{\mathrm{n}} \text { : noise figures of the receiver system } \\
& B_{n} \quad \text { noise bandwidth of the receiver system } \\
& t \quad \therefore \text { pulse length } \\
& \mathrm{E}_{\mathrm{p}} \quad \% \text { pulse repetition rate } \\
& (S / N)_{1} \text { signal-tomoibe ratio required for a given } \\
& \text { probability of detection } \\
& (S / N)_{n} \quad \text { signal-to-noise ratio required to give the } \\
& \text { same probability of detection when } n \text { pulses are integrated } \\
& \mathrm{E}_{\mathrm{i}}(\mathrm{n})=\frac{(S / N)_{1}}{\mathrm{n}(S / N)_{n}}
\end{aligned}
$$

and
n $E_{i}(n) \doteq$ the integration improvement factor.
One of the primary considerations in the design of any radar system is the maximum range, given in 1.1 as an explicit function of average transmitted power. If the range is thus to be held constant, yet the resolution increased, the pulse length must be decreased and either the peak power or the pulse repetition rate increased. Both these approaches have difficulties associated with them, however, in many radars it is simply not
practical to increase the peak power. On the other hand, increasing the PRF can lead to aliasing problems. In addition, short pulses require greater bandwidth in both the transm'tter and receiver, which may in itself present significant problems.

The Urbana Radar System is an excellent example of the application of eq. 1.1, and of the limits of the expression. Having both peak and average power limitations, plus a fixed maximum bandwidth, gain, and noise figure leaves only three variables which can easily be controlled over a wide range f_{p}, τ, and n; and two over which only limited control is possible: B_{n} and $P_{a v}$. As discussed in the previous paragraph, one cannot maintain the maximum range, yet increase resolution by decreasing τ and increasing f_{p} : aliasing results.

One of the techniques which has been developed to deal with tifis problem is that of return pulse integration, which can improve range resolution at the cost of increased processing. The echo received from any target can be thought of as consisting of signal plus noise. If the signal is coherent from pulse to pulse, it is consistently present in the returns at about the same magnitude and phase . Noise, on the other hand, is a random stationary process, and is incoherent from pulse to pulse. When the returns are summed over n pulses, then the signal adds coherently, while the noise adds incoherently, Hence the integrated signal return tends to rise above the noise floor, enhancing the range of the radar (i.e., enhancing the probability of detection of marginal targets). There is a limit to the rate at which pulses can be transmitted: namely, the point at which aliasing begins to be objectionable. Also, the number of pulses integrated must be kept below the correlation time of the returned signal.
1.6 Waveform Design

The radar equation of the preceding section is based on a trarsmitted waveform which consists of a single, repetitively transmitted pulse. This may not be an acceptable waveform for every application.

The output of any optimum receiver system is proportional to the cross correlation between the received signal, $y(t)=s\left(t-T_{0}\right)+n(t)$ and a stored replica of the transmitted waveform $s\left(t-{ }^{\prime}-R\right)$:

$$
\begin{equation*}
c\left(\Delta T_{R}\right)=\int y(t) s\left(t-T_{R}\right) d t \tag{1.5}
\end{equation*}
$$

where
$c\left(\Delta T_{R}\right)$ the cross correlation between signals
$T_{0} \quad$ the travel time to the target and back
$\mathrm{T}_{\mathrm{R}} \quad$ Ethe estimate of actual travel time
$\Delta \mathrm{T}_{\mathrm{R}} \equiv \mathrm{T}_{\mathrm{o}}-\mathrm{T}_{\mathrm{R}}=$ error in time delay
Please note that the aboye expression places no requirements in itself on the transmitted pulse waveform. The designer must, therefore, select a waveform which permits him to meet his objectives in terms of:

1. detection of the presence of targets
2. position and velocity measurements
3. reduced ambiguity
4. resolution - the ability to distinguish between closely spaced targets

Since the resolution of a rectangular transmitted pulse is cr/2 where
c Evelocity of light, $3 \times 10 \mathrm{P} \mathrm{m} / \mathrm{sec}$
$\tau \equiv$ transmitted pulse length
one might surmise that an ideal waveform would be one which when autocorrelated would yield a single, very high, narrow pulse. This is indeed the case; as usual the requirements and available tradeoffs dictate waveform
selection.
In Chapter 2 different waveforms are discussed; however, the emphasis will be on binary phase coding techniques, several of which permit the waveform designer an excellent approximation to the ideal.

1.7 Summary and Statement of the Problem

The Urbana Radar System is a multipurpose instrument used in researching atmospheric phenomena over central Illinois. Having a choice of antennas, pulsewidths, PRF, and peak output power gives the system considerable versatility in its ability to perform M.T.I. scattering research using both coherent and incoherent processing techniques; in addition the device can function as a Meteor Radar.

Like any instrument 25 years in age, this device has a requirement for maintenance, adaption, ans improvement to keep up with recent advances in technology and the science it serves. The several purposes of this project are, therefore:

1. to evaluate and document the present state of the radar transmitter
2. to provide phase modulation capabilities to the transmitter

Chapter 2 describes the types of phase coding and attempts to evaluate their relative merits to the Urbana Radar System:

Chapter 3 describes the Urbana Radar System at various levels down to the component. Detailed schematics and descriptions are given.

Chapter 4 details design considerations for the Urbana Radar transmitter.

Chapter 5 presents the results and conclusions.

2. PHASE CODING OF RADAR TRANSMITTERS

2.1 The Purpose of Phase Coding

As was pointed out in Section 1.6 the ideal waveform is one in which the autocorrelation of the transmitted pulse yields a aingle, high-amplitude, narrow pulse, which permit improved detection, position and velocity measurements, reduced ambiguity, and improved resolution. This chapter examines some of these methods with emphasis on the techniques achievable with a phase-switching approach.

Linear $F M$ chirp radars employ a linear increase or decrease in frequency which may be demodulated with a matched filter to produce a waveform of the $\sin (x) / x$ type. Originally patented by R. H. Dicke in 1945 , this method of pulse compression has been used more than any other, in spite of its relatively poor peak-to-sidelobe ratio of 13.2 dB .

Othor types of pulse compression methods are 1) Nonlinear FM method, in which the frequency is varied in a nonlinear manner to achieve both optimum sensitivity and noise figure using a matched filter. For symetrical waveforms of this type the ambiguity function has a single peak rather than a ridge; 2) The discrete frequency shift method in which the transmit pulse is divided into subintervals and the carrier frequency varies inversely in proportion to the width of the subinterval. This method is good for large compression ratio and large time-bandwidth products; 3) Polyphase codes in which the phase is shifted over intervals smaller than π, yielding time sidelobes which are lower than those for binary-coded waveforms of similar length. Still other types of pulse compression are Barker coding, complementary coding, and maximal length sequence coding, each of which is practical for use in the Urbana Radar and which are each discussed in a
succeeding section.

2.2 Barker Coding

Barker coding is a method of pulse compression in which each transmitted pulse is phase-coded with codes chosen for the properties of their autocorrelation functions: each has a single sharp peak at zero lag and is a maximum of 1 elsewhere. The longest true Barker code known has a length of 13 bits. Diagrams of the codes and their autocorrelation functions for n 7, 11, and 13 are given in Figure 2.1.

If one desires a greater compression ratio one can select similar but longer codes; each of these, however, has the failing that the peak sidelobe level is greater than 1 ; hence their ambiguity properties do not continue to improve in proportion to code length. Much work has been done in this area, though. Turyn (1968) lists all the desirable codes from $n=14$ to $n=34$. These are presented in Table 2.1. Further, Lindner (1975) summarizes data on the codes with best possible autocorrelation functions up to $n=40$. His results are presented in Table 2.2. Gray and Farley (1973) describe the theory of incoherent-scatter measurements using compressed pulses with consideration of both Barker codes and a longer 28 -baud code with good autocorrelation properties. Ioannidis and Farley (1972) describe the actual use of compressed pulse techniques in observations at Arecibo.

In addition to selecting codes with low autocorrelation sidelobes investigations have taken place into various methods of processing the returned pulse to reduce the peak sidelobe levels. One typical example is the work of Key et al. (1959) in which a processing system consisting of weighted sums of a tapped delay line were used to decrease the sidelobes of a 13-bit Barker code. As in all these techniques, the resolution of the peak suffered, as well as a small loss in detection capability.

ORICHAL PAEA IS
OF POOR OUALITY

Autocorrelation of 11 -Bif Barker Code

Autocorpetation of 13-Bit Barker Code

Figure 2.1 Seven-, eleven- and thirteen-bit Barker codes and their autocorrelation functions.

Table 2.1 Sequences wich small $\underset{j}{\max }\left|c_{j}\right|$.

Sequence

$5222: 11$
52211121
$\begin{array}{lllllll}6 & 2 & 2 & 1 & 1\end{array}$
$\begin{array}{lllllll}3 & 1 & 3 & 41 & 1\end{array}$
52221112
$\begin{array}{llllllllll}2 & 2 & 5 & 1 & 1 & 1 & 1 & 2 & 1 & 1\end{array}$
$\begin{array}{lllllllll}4 & 2 & 2 & 1 & 2 & 1 & 1 & 1 & 2\end{array}$
$\begin{array}{llllllll}5 & 1 & 1 & 1 & 1 & 2\end{array}$
433113121112
$\begin{array}{llllllllll}5 & 1 & 3 & 3 & 1 & 1 & 2 & 1 & 1 & 2\end{array}$ 2
$\begin{array}{lllllllllll}6 & 1 & 1 & 3 & 1 & 1 & 2 & 3 & 2 & 1 & 2\end{array}$
$\begin{array}{llllllll}5 & 1 & 1 & 3 & 1 & 2 & 2 & 2\end{array}$ 2
$\begin{array}{llllllllllll} & 5 & 1 & 3 & 1 & 2 & 1 & 1 & 2 & 1\end{array}$
8321221111 3

1222211154111
83211112212
$\begin{array}{lllllllllllll}3 & 2 & 3 & 6 & 1 & 1 & 1 & 1 & 1 & 2 & 1 & 2 & 1\end{array}$
2
821122111112303
$\begin{array}{lllllllllllllll} & 1 & 2 & 1 & 1 & 2 & 1 & 3 & 1 & 3 & 1 & 3 & 4 & 2\end{array}$
$\begin{array}{llllllllllllll} & 1 & 2 & 1 & 2 & 1 & 3 & 1 & 1 & 3 & 2\end{array}$
$\begin{array}{lllllllllllllllll}3 & 2 & 3 & 6 & 1 & 1 & 1 & 1 & 1 & 2 & 1 & 2 & 1 & 2 & 1 & 2\end{array}$
$\begin{array}{lllllllllllllll} & 1 & 2 & 1 & 1 & 1 & 1 & 3 & 1 & 3 & 4 & 3\end{array}$
$\begin{array}{lllllllllllllllll}7 & 1 & 2 & 1 & 1 & 1 & 2 & 1 & 1 & 4 & 2 & 1 & 3\end{array}$
$\begin{array}{llllllllllllllllllll} & 2 & 2 & 3 & 6 & 1 & 1 & 1 & 1 & 1 & 2 & 1 & 2 & 1 & 3\end{array}$

$\begin{array}{llllllllllllllllll}6 & 1 & 3 & 2 & 1 & 3 & 3 & 1 & 1 & 2 & 1 & 2 & 1 & 1 & 3 & 1 & 3\end{array}$
631232113211221111
63122211132411122
$\begin{array}{llllllllllllllllllllll}6 & 3 & 1 & 2 & 1 & 1 & 1 & 2 & 1 & 2 & 2 & 3 & 1 & 1 & 1 & 3 & 1 & 1 & 3\end{array}$
7421121122221111111

3

Table 2.2 Some features of binary sequences with best possible autocorrelation function.

1	A	Number of sequence	Mean M_{1}	$\begin{gathered} \text { R.M.S. } \\ M_{2} \end{gathered}$	M3	M_{4}
3	1	1	$\therefore 0.50$	0.71	1	2
4	1	2	0.00	0.82	2	1
5	1	1	0.50	0.71	2	2
6	2	7	-0.20	1.18	1	4
7	1	1	~ 0.50	0.71	3	2
8	2	16	-0.28	1.07	1	4
9	2	20	0.00	1.22	2	5
10	2	10	0.33	1.20	2	6
11	1	1	-0.50	0.71	5	2
12	2	32	0.18	0.95	1	6
13	1	1	0.50	0.71	6	2
14	2	18	0.08	1.21	3	8
15	2	26	-0.21	1.28	4	5
16	2	20	0.00	1.37	5	4
17	2	8	-0.25	1.41	6	1
18	2	4	-0.41	1.21	4	4
19	2	2	-0.78	1.43	7	1
20	2	6	-0.10	1.41	7	4
21	2	6	0.10	1.30	6	3
22	3	756	-0.j4	1.36	1	19
23	3	1021	0.05	1.46	J	16
24	3	1716	-0.17	1.25	1	19
25	2	2	0.00	1.35	8	3
26	3	484	0.20	1.34	1	21
27	3	774	-0.04	1.19	2	20
28	2	4	-0.22	1.36	9	4
29	3	561	-0.07	1.49	2	16
30	3	172	0.10	1.43	2	15
31	3	502	-0.10	1.49	3	16
32	3	844	0.06	1.52	2	13
33	3	278	-0.12	1.41	2	24
34	3	102	0.03	1.40	2	13
35	3	222	-0.15	1.54	3	16
36	3	322	0.00	1.64	3	19
37	3	110	-0.17	1.65	4	10
38	3	34	-0.03	1.53	4	9
39	3	60	0.13	1.77	6	10
40	3	114	-0.05	1.66	6	17

As a point for consideration it was decided to look at the effects of normal trensmission and reception distortion due so bandwidth limitations. As a first approrimation the 13 -bit Barker code was modified as depicted in Figure 2.2, with the square edges replaced by sine functions in appropriate locations. A computer program called CORRELATION (Program 7, Appendix IV) was written to provide the form of the autocorrelation function, also shown in Figure 2.2. As can be seen, this method generated a waveform with a peak-to-sidelobe ratio of about 20.4 dB , a loss of 1.9 dB when compared to the 13-bit Barker code shown in Figure 2.1.

2.3 Complementary Coding

Another coding scheme having excellent ambiguity functions is the "complementary series". This method requires more processing, but the results permit viable compression ratios in excess of 1000 . Basically the idea is a simple one: two binary codes, known to be "complements" are transmitted alternately; each puise is then autocorrelated and the results of the first pulse are then summed, point for point with the resultz of the second pulse cancelling all the sidelobes of both and leaving only a single peak. A typical example is given below.

Example 1. Given the pair of 4 -bit complementary series $111-1$ and 11.-11 we first autocorrelate each which results in -1 01410 -1 for the first and $10-14-101$ for the second. These are then summed element by element to yield

$$
\begin{aligned}
& -101410-1 \\
& 10-14-101 \\
& 0008000
\end{aligned}
$$

an ambiguity function having a single central spike.
Golay (1961) summarized the properties of complementary series as they
of boone y

were then known and delineated six rules for generating new codes and demonstrated the existence of codes whose elements number 2^{n} and certain codes having $\mathrm{n} \neq \mathrm{2n}^{\mathrm{n}}$.

The simplest complementary series are based on the kernel series pair 11 and $1-1$. Longer codes may be generated by the following algorithm:

1. Append the second code to the first. This creates the first element of the larger complementary pair.
2. Reverse the second code, then append it to the first. This generates the other series.
3. Repeat the above until the desired compression factor is reached. Note that any of Golay's six rules may be used to generate new codes from these at any point in the process.

Golay's work has been extended by several authors; however, Tseng and Liu (1971) have generalized these results by extending the concept of a complementary pair of sequences to a complementary set of sequences having the same properties as a complementary pair and permitting shorter codes for the same pulse compression ratio; but demanding of course that the correlation time of the reflecting body be greater than the period of the code cycle transmitted, and requiring still more processing before the data are accessible.

2.4 Maximal Length Sequences

Another valid form of pulse compression which has seen use is maximal length sequence type. Used only in bistatic CW radars, this method has the benefit of completely cancelling all sidelobes while using only a single code. The received waveforms must flow continuously through an autocorrelator, the output of which consists of a single high peak occurring at the zero lag point of each cycle. The method has the disadvantages of CW
radar; since the transmitter is on all the time, separate transmit and receive antennas are required, and usually different transmit and receive sites as well.

One method used to continuously generate the maximal length sequence is thown in Figure 2.3. Which sequence is generated depends on the initial contents of the shift register and on the feedback connections chosen. Table 2.3 lists the data necessary to construct this generator.

2.5 Summary

Each type of pulse compression described has its own merits and weaknesses. All of them are capable of yielding more information than non-coded pulses, but they also require more processing to retrieve the information. In particular, all of the equipment necessary to the implementation of a phase switching technique are already present at the Urbana Radar site.

Barker coding is the simplest of these techniques; any of the Barker codes on the codes listed in Table 2.1 up to length 16 are easily within the capabilities of the Urbana transmitter; still, the Barker code of length 13 is the better choice from an ambiguity standpoint.

Requiring still more processing, the complementary sequence pairs and sets are another excellent approach, having only the additional limitation of cycle length time due to the correlation time of the mesosphere.

Maximal length sequence techniques require the reconfiguration of the xadar for $C W$ operation, and hence lower peak power, though the average power would only increase. This technique is more suited to real time processing and the bistatic arrangement would necessitate the operation of another site. Also, due to the extensive use of this technqiue elsewhere, the overall results would likely be unprofitable.

 OR POOR QUALTY

Figure 2.3 Shift register method of generation of maximal length sequences.

 OF POOR QuALTY

Table 2.3 Number of shift register stages versus length of generated sequence, number of possible sequences, and feedback stage connections.

Number of Stages	Length of Maximal Sequence Generated	Number of Sequences Possible	Feedback Stages Connected
2	3	1	2,1
3	7	2	3,2
4	15	2	4,3
5	31	6	5,3
7	63	6	6,5

3. THE URBANA RADAR: A DESCRIPTION

3.1 Introduction

The Urbana Radar has been used as a research instrument for nearly twenty years, during which time it has been repeatedly modified. Unfortunately, not all the documentation recording these changes has survived, nor have the intentions of the various engineers and scientiste who implemented them. This chapter is the result of an extensive analysis of the circuitry of the radar, and is intended as an explamation of the device and its idiosyncrasies, for the future users' information.

Figure 3.1 is a signal flow block diagram displaying ajgnal paths between the major units of the radar, each of which will be described in the succeeding paragraphs. Table 3.1 shows the current transmitter ratings.

3.2 The Phase Switch and Gated Amplifier

Stage 1 of the transmitter consists of a phase switch followed by a gated RF amplifier. The block diagram of the stage is shown in Figure 3.2. The RF signal path is through the phase switch, through the amplifier, then through the power meter detector. The phase switch is diagrammed in Figure 3.3. The transformers are trifilar wound stacked (73 material) ferrite balun cores wound for the widest possible bandwidth. Using a matched set of IN 914 diodes, this device is capable of changing phase in less than 30 nanoseconds.

The switch driver circuit shown in Figure 3.4 consists of a 7413 Schmitt trigger followed by an emitter follower and two differential amplifier stages. The outputs are buffered by VNG6AK VMOS devices. The whole device is designed around the need for converting a single control signal into a balanced, fast switch drive to change the phase of the RF drive
———. 40.92 MHz Tronsmit RF
Plate Fulse
......... Recaived Signal

Figure 3.1 Block diagram of the Urbana Radar System.

Table 3.1 Transmitter ratings.

Output frequency	40.92 MHz
Peak power output	4 MW
Average power output	20 kW nominal
	40 kW maximum
Duty cycle	.004 nominal
Pulsewidth	$3-100$ nominal
Power supply requirement	230 V 3 phase
Power source capacity recommended	200 kVA
Types of emission	Pulsed CW or
Output impedance	100Ω balanced
Bandwidth	1 MHz side-to-side

Figure 3.2 Block diagram of the phase switch and low level gated amplifier and the associated circuitry.

Figure 3.3 Phase switch circuit diagram.

Figure 3.4 Phase switch driver circuit diagram.
rapidly and cleanly.
The RF amplifier shown in Figure 3.5 consists of a pair of MOSFET DV2805 W^{\prime} s operating class $A B$ in push-pull. $T 1$ and Rl together form a 180° hybrid power splitter, with R1 tending to maintain equal division regardless of moderately differing impedances presented by the MOSFETs. L1, C2, and L3 form one input matching network, with L2, C3, and L4 forming the other. C7, L5, and C5 match the output of one device; C8, L6, and C10 match the other. T2 and R5 comprise a hybrid output combiner.

This amplifier has worked quite well. The output power reaches 4 watts, with about a 5 MHz bandwidth and a 2 psec turn on time.

The gate pulse amplifier shown in Figure 3.6 turns the RF amplifier on and off via bias control. Ql is a simple pulse amplifier, ICl is in a Schmitt trigger circuit configuration, with the trigger point set by R , with D1 and D2 selected for the desired on and off bias.

The RF output power detector shown in Figure 3.7 is basically a modified wideband 20 dB dual directional coupler based on the design by McDonald (1982). The modifications consist entirely of two 51Ω detectors built into the transmitted and reflected power lines, and voltage dividers to assist in calibrating the meter.

Figure 3.8 is the circuit diagram of the peak power meter circuit devised to assist in monitoring the performance of the RF amplifier. Built onto the back of an existing Micromatch average power meter, this device provides an indication of transmitted power, reflected power, and S.W.R. It does, of course, require a gate signal which is taken from existing lines.

Pictures of these devices and circuits are shown in Figures $3.9 \mathrm{a}, \mathrm{b}$, c, and d.

Figure 3.5 RF amplifier circuit diagram.

Figure 3.6 Gate amplifier circuit diagram.

IHWONAL PRGE IS of roor guality

Figure 3.8 RF output power meter circuit diagram.

ORIGHNAL PAGE IS
of POOR QUALITY

(c)

Figure 3.9 Continued.

3.3 The 814B Linear Amplifier

The 814 B linear amplifier is a two tube class ABl linear amplifier. Its basic specifications are summarized in Table 3.2.

Figure 3.10 shows the RF amplifier of the 814 B . V101 and V102 are 4CX1000As operated in parallel. Greater stability is achieved by operating the screen at ground potential with the cathodes at $-325 V$; the grids are biased $0-80 \mathrm{~V}$ negative relative to the cathodes.

The dc power supply block diagram is given in Figure 3.11. The circuit diagram is shown in Figure 3.12.

The peak power meter and RF on detector cixcuit shown in Figure 3.13 performs two functions: it enables the output power meter of the 814 B to measure peak power rather than average power, and it sends an "RF on" pulse to the logic and interlock module which enables the transmit pulse output for protection of the $4 C X 5000 \mathrm{~A}$ stage. (Note: experience shows this amplifier is unstable if operated with a VSWR in excess of the rated maximum.)
3.4 The 4CX5000A Intermediate Power Amplifier

The schematic of the 4CX5000A intemediate power amplifier is shown in Figure 3.14. This device is operated class C. The input match network is a combination of a transmission line and conventional π network. The output match network is also a conventional re network. The tube and the output match network are located in a cylindrical pressurized container. Note that the plate voltage is derived from the modulator through a dropping resistor network and that if the $R F$ input to the grid fails (hence no conduction) the entire modulator voltage will be impressed across the tube; arc damage is therefore possible, and special precautions are necessary to avoid this. The capacitor designated C 213 is actually 8 each $1000-\mathrm{pF}$ transmitter-type capacitors installed symmetrically around the socket; this is intended to improve the stability of the amplifier by providing superior screen by-

Table 3.2 Continental Electronics 814B specifications.

Peak power output	3 kW
RF input power	$5-10$ Watts Peak
Output impedance	51.5Ω
Output SWR	$2: 1$
Input impedance	51.5Ω
Class operation	$\mathrm{AB1}$
Plate voltage	+3 kV
Screen/cathode voltage	-325 V
Plate current maximum	1.67 amps combined
Bandwidth	$\pm 573 \mathrm{kHz}$

or roon quakir

Figure 3.10 PF amplifier circuits of the Continentel Enectromics 814 E ME transutter.

Figure $3.11814 B$ power supply block diagram.

Figure 3.12 814B power supply circuit diagram.
omeman pros fo
of POOR Quarity

Figure 3.13 814B peak power meter and "RF on" detector

Figure 3.14 4CX5000A (unit 2) RF amplifier schematic.
pass. The socket reactance i s by means negligible; it is equivalent to about . $17 \mu \mathrm{H}$ in series and 50 pF in parallel with the tube input. Further, the output match has a fatal flaw when used in conjunction with the current match network at the drive input: it will match low resistance, high capacitance loads to high impedances as seen by the tube, thus tending to produce what looks like a match; (i.e., the plate current dips) but which limits the tube output power by presenting a high-impedance load to the plate.

Figure 3.15 is the schematic of the bias supply for the 4CX5000A. It is controlled through the use of a Variac in the ac supply.

Figure 3.16 shows the circuit of the screen supply; this is also variable using a Variac in the ac supply.

Figure 3.17 is a picture showing several major units of the transmitter. Closest to the camera and on the right in the picture is the unit 2 cabinet housing the 4 CX 5000 A . Next is an equipment rack housing the gated RF amplifier (unit 1) in the top. The screen supply for unit 2 is shown installed in the battom of the rack. Beyond the equipment rack is the Continental Electronics $814 B$ transmitter used between units 1 and 2.

Figure 3.18 shows pari of the transmission line match networks used in the input of unit 2 .

3.5 Units 3 and 4: The Driver and PAs

Units 3 and 4 are the "work horses" of the radar. These two final stages boost the RF output to the 1 to 4 megawatt range. Since unit 3 is essentially identical to each of the four components of unit 4 , only one model need be developed. Figure 3.19 is a simplified diagram of the physical structure of these devices. Note the single tube -- an ML-5682 - mounted plate-down inside the unit.

Figure 3.20 is an enlarged version of the upper portion of the unit,

OF BOER gigetry

Figure 3.15 Unit 2 bias supply.

ORIGNAL PAEE 10 OF POOR QUALITY

Figure 3.16 Unit 2 screen supply.

ORIGINAL PAGE IS
OF POOR QUALITY

Figure 3.17 Picture of units 1,2 , and 3 , showing unit 2 on the right, unit 1 in the center, and the 814 B linear amplifier on the left.

ORIGINAL PAGE IS OF POOR QUALIT

Figure 3.18 Detail of the bias input portion of the 4 CX5000A input matching network.

Figure 3.19 Simplified physical structure of the driver and power amplifiers.

ORIGINAL PAGE IS
OF POOR QUALITY

Figure 3.20 Details of the input circuit of the driver and power amplifiers, showing the 20Ω transmission line, irrathane "collar" capacitor C301 and the toroidal variable inductor L 301 .
which contains the input circuitry shown in Figure 3.21. This whole device is coaxial with the tube mounted on the axis. C 301 is an 800 pF irrathane capacitor in the form of a collar which firs closely around the tube socket. C303 and C304 are mica rings mounted as part of the tube socket. L 301 may be thought of as a high Q single turn toroidal inductor which may be varied with the input tuning controls. The tank circuit composed of L301 and C301 reduces distortion of the signal, which is conducted inward via a strip line of approximately 20Ω characteristic impedance and 15 " in length. C304 is another mica ring which keeps the grid at RF ground.

Again referring to Figure 3.19 we note that the output match network may be modeled as segments of transmission line of differing lengths and characteristic impedances, with junction capacitances at the ends of each segment. The model used to evaluate this network is shown in Figure 3.22, and is described as follows: the plate of the ML-5682 is fitted into the center conductor of an 82Ω transmission line. This line then connects to a 5.2 line, and has a junction capacitance of 20 pF at the connection. The 5.2 line ends in a junction with a 52Ω line, having junction capacitance of 17 pF . Thereafter follow lengths of 56Ω line, 40Ω line, and a blocking capacitor and transmission line structure having a characteristic impedance of about 120Ω. The junction capacitances of the last 5 sections of line have been evaluated, then ignored as negligible. The two shown have been evaluated from the formulas provided by $\mathrm{S} \cap \mathrm{ml} 10$ (1967) based on the work of Whinnery (1944). The 85 pF of the grid-plate interelectrode capacitance completes the matching network. PJease note that the whole tube plate must be included as part of the 82Ω line. The program called CAPAUG (Program 2, Appendix IV) computes the load impedance seen at the outputs of units 3 and 4. Its results are used by the program called PA MATCH (Program

ORICMAR PAPE TE OF POOR QUALITY

Figure 3.21 Simplified schematic of the input match network.

ORLDMAL PRES IS
OF FOOR QUALITY

1, Appendix IV), which was written to evaluate the possible range of loads seen by the tube. The program called PA BANDWIDTH (Program 3, Appendix IV) evaluates the bandpass of the match network for particular loads, using part of the data generated by PA MATCH for input and generating graphs of the transmission function, an example of which may be seen in Figure 3.23. Results from PA lATCH indicate that loads may be matched in the range from about 300Ω to 850Ω requiring that the $M-5682$'s load lines be kept in this range, which incidentally is also the range specified by the tube' ${ }^{1}$ manufacturer. Program descriptions and listings are included in Appendix IV. A simplified schematic of the bias circuit is shown in figure 3.24. Note that the bias is part fixed and part grid-leak bias, and may be class $A B, B$, or C depending on the operating conditions. Most of the basic limitations of units 3 and 4 arise directly from the $M L-5682$ triode. Tubes are always rated conservatively, so one can usually expect to be able to exceed some of the limits some of the time. In point of fact the available peak plate voltage of the Urbana Radar greatly exceeds the manufacturer's specifications, but the point which has to arise is how much excess is tolerable? Killpatrick (1957) and Doolittle (1964) have demonstrated that these limits depend on the plate-grid spacing and the structure of the cathode. For the thoriumtungsten cathodes and 1.7 cm spacings of the $M L-5682$, the nomograph shown in Figure 3.25 taken from Doolittle (1964) suggests that a safe maximum for new ML-5682's is about 70 kV , twice the rated value. This ability to withstand high voltages is called high voltage stability; the Urbana Radar has no crowbar circuit in the modulator, having only some relay based (hence slow) protection circuits. Hence, once a flash arc occurs, it will continue until the power supply capacitors are discharged or until the tube is destroyed. Flash arc damage to a tube accumulates; i.e., a tube will always

BIAS CIRCUITS OF UNITS $3 \& 4$

Figure 3.24 Bias circuits of units 3 and 4.

ORIONVAL: PAGE IS OF POOR QUALITY

Figure 3.25 Anode voltage rating versus outer grid to anode spacing from Doolittle (1964).
tend to arc over more easily the second time. Arc damage causes pits and catwhiskers on the cathode wires, increasing the voltage gradient and probability of arc. Note that the modulator of the Urbana Radar is capable of 50 kV pulses; during operation the peak plate voltage of an RF amplifier would exceed 90 kV , well beyond the limits of the ML-5682. Care must be taken to keep the modulator output within the tube's limits. Like any tube of its kind, the ML-5682 requires a special filament transformer, and not only to provide the normal operating current of $325 \mathrm{amps} @ 16.5 \mathrm{~V}$. When cold a filament often has less than $1 / 10$ the resistance than it has when hot; during the initial inrush of current the enormous magnetic fields generated by high current can literally twist the filaments off their mounts. Hence the special rush limiting transformer which keeps the initial current low is required.

Several general concerns are described in succeeding paragraphs. The first of these is the past history of the irrathene (irradiated polyethylene) capacitor c301. The radar was initially run at the full power output of the modulator. It seems likely that the series of failures experienced with this component were in fact due to flash-arc damage through the tube. No failures have been experienced in recent history, during which time the modulator output has been run at 16 kV dc input, with 15 kV pulses out.

Another area meriting discussion is the physical weakness of the blocking capacitor assembly. This consists of an 11-inch long segment of 6-inch diameter rigid copper coaxial line whose center conductor has been replaced by 3 each 500 pF 15 kV ceramic capacitors in seri.es. Though they are not individually delicate, the stress encountered in assembly and disassembly has broken these devices in the past.

The ML-5682 is a water cooled tube. The cooling water is in actual
physical contact with the plate at all times, and hence demands a certain level of purity, Care should be taken to monitor this and change the cooling water when required. Note that no filtration or deionization system is in use, the water being changed about every 6 months.

The operating conditions of tetrodes and triodes may be analyzed using Fourier analysis of the various tube currents and voltages. One practical approach to this makes use of the Machlett Power Tube Calculator which consists of a cosine scale and a work sheet for tabulating and computing the results. The work sheet was automated using the Apple computer; the program is called Machlett Power Tube Calculator. The user draws the desired load line and ubes the cosiñe fale to measure grid and plate currents at preselected points. These are tabulated by the program and various predicted operating conditions are computed and printed. Certain general statements can be made from analysis of the M-5682: 1) The input impedance of this circuit is highly dependent on the bias voltage and on the size of the grid resistors. 2) Certain operating conditions are possible which will not permit matching in the circuits as they now exist. 3) Operating conditions also are possible in which the output is matched but which produce large mismatches at the input. Since the input match network is constructed for a 20Ω input impedance careful design of the operating conditions is mandatory to ensure proper operation of these units.

One more point which should be discussed is the problems caused by the interaction between the input and output circuits of these units. Since these are common grid triode circuits the condition of the output match is reflected to the input; hence when tuning one must always adjust both, input and output, using a rocking procedure to achieve optimum match at both ends. A picture of unit 3 is shown in Figure 3.26. It is virtually identical

ORIOHIAL: PAGE IS
OF POOR QUALITY

Figure 3.26 Picture of the driver (unit 3). Each of the four power amplifiers has an identical appearance.
in construction to all four parts of unit 4.

3.6 Driver Output Power Divider

The driver (unit 3) output must be equally divided 4 ways before it is applied to the PAs. Two of the inputs must also be phese shifted by 180°. The transmission line network which accomplishes this is shown in Figure 3.27. Parts of the system included on the diagram are the average power detector, the peak power detector, two hybrid dividers (standard "rat race" devices) and a coaxial t-splitter and match network. Power from the driver unit passes through the power detectors, through the $6^{\prime \prime}$ to $3^{\prime \prime}$ reducer, (in which both the inner and outer conductors taper identically, thus maintaining a constant 50Ω characteristic impedance) to the $3^{\prime \prime}$ coaxial t, all arms of which are of 50Ω characteristic impedance. Each of the two output arms then pass through a $62^{\prime \prime}$ length of 72Ω impedance line to match to the 50Ω line impedance following. One of these arms is routed to the hybrid divider serving units $4-1$ and $4-2$. The other is routed through an additional $\lambda / 2$ length of 50Ω transmission line to provide the required 180° additional phase shift, then to the output divider serving units $4-3$ and $4-4$. The outputs of these dividers are matched to the 20Ω PA inputs VIA a $1 / 4 \lambda 30 \Omega$ transmission line section.

Computer analysis of the coaxial t-splitter and match network reveals that when each output end is terminated in 50Ω, the reflected power is less than 1% between the frequencies of 32 and 70 MHz ; these results are shown graphically in Figure 3. 28.

One addition should be made to this network to improve the tunability of the radar. Phase and amplitude comparators should be placed at the junction of each $30 \Omega 1 / 4 \lambda$ transform to permit tuning this device. This would enable the operator to cope more readily with the interactions between the

Figure 3.28 Bandpass of the asynchronous T-match network.
various outputs. Note that the outputs are not isolated from each other here. Isolation only may uccur if both output lines are terminated in 50Ω. In addition, the I -match network should be refabricated using $3^{\prime \prime}$ line to avoid arcs caused by high moisture, high power, and the high VSWR encountered during tuning; arc damage has been observed in this area. Drains should be installed at the low points of the hybrid splitters to permit an easy test for standing water in the lines.

3.7 Final Output Combiner Networks

The final output combiner networks each combine the outputs from twu fower amplifiers. In addition they provide isolation between amplifiers. In normal operation the PA outputs are in phase and of the same magnitude, in which case no power is lost in the waster. When an imbalance in phase or magnitude occurs, however, that imbalance is "burned up" in the waster. From the research of Brown and Morrison (1949), we see that this device is typically betcer than 90% efficient with relative phases of less than 30°, if the magnitudes are equal. On the other hand, if one of the amplifiers fails completely, only 50% of the output of the remaining amplifier wi.ll reach the load. Both combiners are constructed of $61 / 8^{\prime \prime}$ rigid copper coaxial lines. The lengths and characteristic impedances of the lines are shown in Figure 3.29. The nominal bandwidth of these devices is about 7% for proper isolation.
3.8 TR-ATR Switch

The TR-ATR switch permits use of the same antenna and feed lines on both transmit and receive, It performs two functions: it keeps the high power transmit pulse off the receiver input during transmit and provides a $२=100$ tank circuit on the receive portion of the duty cycle.

Since the feeder line is of the balanced type, one T/R. switch is

required for each line; since they are identical, only one is shown in Figure 3.30. Operation is as follows:

The TR tubes shori the receive cavities during the transmit portion of the cycle. When shorted, each of the arms presents an effective open circuit to the transmitter; essentially all of the power, therefore, is conveyed to the antenna. When the $T R$ tubes open (on receive) the arm closest to the antenna presents a tank-circuit-1ike appearance to the antenna; hence it is in effect a high Q filter. The other arm reflects a short to the junction where it connects to the feed line. This in turn reflects an open at the junction of the first arm, effectively isolating the transmitter from the antenna on receive, ensuring that all received signal is routed to the receiver. The TR-ATR switch assembly imposes two limits on the transmitterreceiver system: (1) The bandwidth of 400 kHz imposed on the received signal limits the minimum pulse length to about 6 usec, (2) The TR tube recovery time of about 400-600 $\mu s e c$ minimum limits the minimum range to about 40 miles (65 km). This could be shortened further by adding water vapor to the tube fill, but this will decrease $T R$ tube life. For details of the design, construction and maintenance of the $T R$ switch see Allman and Bowhill (1976).

3.9 High Voltage and Bias Supplies

The high voltage supply consists of the 4 major units shown in figure 3.31: an 87 KVA primary supply transformer followed in turn by the high voltage rectifiers, a 10 Henry choke, and a capacitor bank.

The 87 VA primary supply transformer has variable output voltages, changed by selecting a switch position and either a Y or Delta connection. The possible combinations of switch position, connection, and output voltage axe tabulated in Table 3.3.
ORICMEAR PCRT
OF POOR Qunemy
(One of Two)

orvand brect y OF POOR Qunt

Figure 3.31 25-kV power supply block diagram.

Table 3.387 KVA plate supply taps.

Primary Tap Position	Secondary Delta Connection Output	Secondary Y Connection Outpur
1	$7,200 \mathrm{~V}$	$12,456 \mathrm{~V}$
2	$8,300 \mathrm{~V}$	$14,359 \mathrm{~V}$
3	$9,170 \mathrm{~V}$	$15,864 \mathrm{~V}$
4	$10,000 \mathrm{~V}$	$17,320 \mathrm{~V}$
5	$10,900 \mathrm{~V}$	$18,850 \mathrm{~V}$

The high voltage rectifier is rated at 4.0 amps. The circuit now in use is shown in Figure 3.32. The original rectifier tubes have been replaced by Westinghouse diode stacks, but the original ballast resistors are still in place.

The 3.5 amp rating of the 10 Henry choke is one of the primary factors limiting extension of the duty cycle.

The capacitor bank contains 20 large $1.5 \mu \mathrm{~F}$ capacitors in a large horizontally mounted box. For normal use only two are connected, but for long pulses more must be added. The switches involved in adding capacitors are spring loaded and function as fuses; if one capacitor shorts, overall operation should not be affected.

The high voltage supply delivers $16-25 \mathrm{KVDC}$ at 3.5 amp to the modulator.

The bias supply for units 3 and 4 is located in the same cabinet with the high voltage rectifier, and is also shown in Figure 3.32. It provides rectified and filtered bias voltage to the grids of the ML-5682s. Unfortunately there is presently no way to bias unit 3 and unit 4 differently. 3.10 The Modulator

The modulator currently uged in the Urbana Radar was orisinally designed (see Martin-Vegue, 1961) to deliver 16 MW pulses at a duty factor of . 004, with output voltages selectable from $30-50 \mathrm{kV}$ (specifications are given in Table 3.4). This is, one might euspect; a bit much for a radar transmitter rated at 4-6 NW peak power output. No significant changes have been made to the initial design of this unit.

A simplified schematic of the modulator is shown in Figure 3.33. V601 is a simple pulse amplifier circuit built around an 807 tetrode. This stage has its own plate and bias supply shown in Figure 3.34(a). V602 is also a

CRUGNAL RNCE S
of peor gunemy

Table 3.4 Modulator specifications.

Peak output power	16 MW
Pulse length	$3-100 \mathrm{usec}$
Duty cycle	.004 nominal
Droop	10% maximum
Input pulse	shaped +15 V pulse
	provided by V1101
Output voltage	$15-48 \mathrm{kV}$ pulses
DC supply	$16-24 \mathrm{kV}$
AC supply	220 VAC
Rise time	$3 \mu \mathrm{sec}$ with T617B \& T618B
	$8 \mu \mathrm{sec}$ with T617A \& T618A

OF POOR QuMLITR

(a)
pulse amplifier, designed around an Eimac 4-400A tetrode. This is the only stage which is normally conducting in the modulator. In addition one should point out that the rise time of the modulator is somewhat limited by the time constant of the plate circuit.

The third stage consists of a $4-400 \mathrm{~A}$ in cathode-follower configuration. This choice was dictated by the input capacitance of the following stage, Note the direct connection between the cathode of V603 and the grid of V604. This is made possible by the power supply shown in Figure 3.34 (b).

V604 is an ML-6696 Machlett pulse triode in a typical pulse amplifier circuit. The output of stage four is transformed by $T 617$ and applied to the paralleled inputs of V605, V606, and V607, all ML-5682 8 MW pulse triodes. These inputs are bootstrapped to increase the input impedance and improve rise time. R 546 , R565, and R 566 are parasitic supressors in the grid circuits. More supressors in the form of parallel $R-L$ networks are present in each plate load. -1200 V bias is supplied through T617 from the supply in Figure 3.34(c).

The output of the final stage is taken frow the output pulse transformer T618, which has a tapped secondary for various output pulse voltages. T617 and T618 are actually each present in two versions; T617a ald T618A are for long pulses -- 10 رsec to 100 usec or longer. T617B and T618B are for short pulses -- 3 to $10 \mu s e c$. The output connections for various desired voltages are shown in Tables 3.5 and 3.6 .

One difficulty which has arisen in the operation of $T 618$ is the very large backlash present in the modulator. This has been alleviated somewhat through the use of a shaped pulse -- with short rise time and long fall time characteristics as the input to stage 1 . The pulse shaper circuit is shown

Table 3.5 T618 output connections.

Assume Primary Pulse $=21 \mathrm{kV}$

Secondary Voltage
Desired

50 kV
45 kV
40 kV
35 kV
30 kV

20 kV

Required Terminal Connection

3 to 10
4 to 10
5 to 10
6 to 10
7 to 10
output to 9 only

Table 3.6 T617 internal connections.

Primary Input
Pulse VoltageInterna 1Connection
OutputVoltage
16 kV 3 to 7 3 kV
18 kV 4 to 7 3 kV
20 kV 5 to 7 3 kV
in Figure 3.35.
Figure 3.36 shows the three $M-5682$ switch tubes used in the modulator output and the ML-6696 driver stage (the smaller tube in the back). Clearly shown are the parasitic suppressors and the large straps required for current distribution.

Figure 3.37 depicts the cabinet containing the first four modulator stages and their respective power supplies.

The $M L-6696$ and all the $M L-5682$ triodes are water cooled devices which receive their cooling water from a heat exchanger at $18 \mathrm{gal} / \mathrm{min} @ 40 \mathrm{psi}$. Interestingly enough, none of these devices are operated anywhere near their dissipation limits; a larger duty cycle could be achieved through use of a 25 kV power suppl. with more current output.
3.11 Timing and Control

The basic timing diagram of the Urbana Radar is shown in Figure 3.38. This describes the various functions which are controlled by the radar director. Currently, the radar director is either a FORTH program resident in an Apple II plus computer, or a hardware device documented in Hess and Geller (1976) . However, the hardware device does not possess phase control capabilities. Since the thrust of this project involves phase coding the hardware director is not discussed here.

Figure 3.39 shows how the various commands generated by the FORTH program are transmitted. The commands generated in the Apple II plus computer are sent to the John Bell interface card, which is actually located in slot 7 of the Apple. It is shown as a separate unit here for enphasis and convenience. Port 2 of the John Bell card is connected through a 16 Pin Dip Header plus and ribbon cable to the interlock and high current adaptor.

The interlock and high current adaptor provides three functions:

ORIGINAL PAGE IS
OF POOR QUALITY

Figure 3.35 Pulse shaper circuit diagram.

ORIGINAL PACE IS OF POOR QUALITY

Figure 3.36 Picture of V604, V605, V606, and V607.

Figure 3.37 Modulator chassis layout.
 OP POOR QUALUV

Figare 3.38 Radar timing diagram.

Figure 3.39 Apple radar director block diagram.
(1) it interlocks the blanker, gate and trantmit control lines to protect the transmitter and receiver systems; (2) it provides a 50Ω TTL compatible output for each control line capable of driving a large number of loads; and (3) it provides a $+12 \mathrm{~V} 50 \Omega$ for each control line for dyiving high level lines into the high interference environment of the transmitter room. The schematic of this device is shown in Figure 3. 4,0.

Referring again to Figure 3.38 , we wish to describe the sequence of normal operations of the transmitter: First, the blanker is to protect the sensitive receiver system preamp during the transmit cycle.
aiext, the gate pulse causes the RF signal. to be generated, amplified, and applied to the grid of the 4CX5000A (unit 2). Please note that the 40.92 Mlz signal is generated in a binary fashion such that it only exists during the gate pulse; this prevents the oscillator from interfering with the sensitive receiver system during the receive portion of the cycle.

Next the transmit pulse is generated and applied to the logic and interlock module. If transmitter conditions permit, the signal is the routed to the pulse shaper, and from ther to the modulator where it energizes the three final stages of the tronsmitter and puts the RF pulse on the air. Note that the delay between the start of the gate pulse and the start of the transmit pulse protects the 4 CX 5000 A stage from flash arc damage.

The phase control pulse will change the phase of the transmitter by 180° each time it changes state. Please note that the pattern of these changes and the overall length of the blanker, gate, cransmit, and phase control pulses are functions of the program and are hence easily modified for different experiments.

The echo sample window and the sequence pulse control the analog to
digital converter used to sample the data. The sequence pulse is used to select the channel and the echo sample window selects the various ranges sempled during the receive cycle.

Figure 3.41 is the circuit diagram of the logic and interlock module shown in block form in Figure 3.1. The rectified output of the transmitter is amplified by the circuit in (a), then applied to the pulse integrator in (c). The rectified output of the 814 amplifier is amplified by the circuit in (b) then added in (c) to permit an output. The logical functions of parts (a), (b), (c) and (d) are illustrated in the block diagram of Figure 3.42.

Figure 3.43 details the construction of the interlock and high current adaptor diagrammed in Figure 3.40. Part (a) shows the logic control board, Part (b) shows the mounting of the line driver transistors and the rest of the major units. Part (c) shows the front panel of the completed device. 3.12 The Receiving System

The receiving system is summarized in this section and key elements are described.

The block diagram of the receiving system is shown in Figure 3.44. A coaxial T -combiner network combines signals from both halves of the antenra and applies them to the blanker. The blanker has the function of re oving the transmit pulse $R E$ and associated transients not removed by the T/R switch; it is constructed with PIN diodes shown in Figure 3.45, and its drive circuitry is show in Figure 3.46. The output of the blanker is applied to the preamplifier, the specifications of which are given in Table 3.7. Eakentially this is a wideband low noise device. The blanker and preamplifier are located in che same chassis and physically mounted in the T / R switch shed.

The important characteristics of the receiver are its IF bandwidth,

Figure 3.41 Logic and interlock module (a) transmitter output detector (b) "814 OUTPUT ON" amplifier and (d) RF gate pulse control.

orionvar mas in
OF POOR QUALITY

 OF POOR QuARMTY

ORIGINAR PAGS IS OF POOR QUALITY

Figure 3.42 Equivalent logic of Figure 3.41 (c).

©

๔

ลิ
ORPCNNAL PAGE US
OF POOR QUALITY

omerna poge m or poor quatiy

PIN DIODES ARE UNITRODE UM 9401
COILS ARE T30-6 CORES WITH ~ 40 TURNS $\# 34$ WIRE (RESONANT AT 41 MHz)

Figure 3.45 PIN diode blanker.

ORIGTNAL PAEG BS OF POOR QUALITY

Figure 3.46 Drive and control circuitry for the PIN diode blanker.

Table 3.7 Characteristics of the preamplifier in the Urbana Radar receiving system.

Frequency range (MHz) 5-110
Noise figure max (dB) 1.7
Gain min (dB) 22
P min @ 1 dB comp (dBm) $+9$
Gain Elatness ($\pm \mathrm{dB}$) 0.5
Intercept point (dBm) +22
VSWR max in unitless 2.0
VSWR max out unitless 2.0
which is about 250 kHz , its passband shape, which is approximately Gaussian, and its IF output of 5.5 MHz . Tihis IF output is coherently detected by the device shown in Figure 3.47, the outputs of which are filtered (if required) and channeled to the analog-to-digital converter.

3.13 Suggestions for Improvements

The Urbana Radar Transmitter was never fully developed to its fullest capacity. This leaves many areas where refinement would be of great interest. Only a few of the se are listed below.

1. Due to advancements in solid-state switch technology, the first three stages of the modulator could now be replaced with a single stage or perhaps two stages of power risFet devices. Two alternate versions are shown in Figure 3.48(a) and (b). This would permit two improvements: greater electrical efficiency and improved rise time.
2. Currently the modulator output is distributed to units 2, 3, and 4 via RG-17 coaxial lines. The resonance of these lines and the secondary of the modulator output transformer cause envelope distortion of the transmitted RF pulse. This could be reduced by going to a high impedance twin lead distribution system.
3. The 814 linear amplifier is now replaceable with a solid-state device having superior characteristics, specifically wider bandwidth. This would enhance reliability and resolution of the transmitter. At the time of writing, the 814 linear amplifier shows need of either a major overhaul or outright replacement of the tuning sections, both input and output. Difficulties have been encountered during tuning which result from intermittent operation of these circuits.
4. The control and monitoring console needs to have each monitoring function tested and overhauled or re-designed. The simple vacuum-tube

(a)

Figure 3.48 (a) and (b) Two methods to improve modulator efficiency and rise time.

Figure 3.48 Continued.
differential amplifiers and vacuum-diode sensing units should be replaced with more reliable and ecc oumical solid-state devices; a phase monitoring system should be added to sacilitate tuning.
5. Arrangements shoulif be made to permit operation of the 4 CX 5000 A and driver into 50Ω loads to facilitate proper tuning, Currently there exists too much interaction between stages to permit the operator to ascertain proper tuning from the monitor console. Addition of this cayability should control this problen.
3.14 Summary

This chapter has been an analysis of the Urbana Radar. The approach has been a stage-by-stage intended to provide enough understanding to facilitate its use by future engineers and scientists.

4. DESIGN CONSIDERATIONS FOR THE URBANA RAḊAR

4.1 Introduction

Of primary importance in the desigr of any instrument is the phenomena which it is intended to neasure. In the case of a radar transmitter, the transmitted waveform is designed to optimize the expected return. Its period, frequency, waveshape, and modulation characteristics comprise a statement concerning the present state of knowledge of the target. The final choice of a waveform suggests how closely we can devise circuits and make wise compromises in the approach to an ideal in our search for increasing accuracy in measurement. In the first sections of this chapter, we deal with the general requirements for transmitting phas, coded signals and in the latter discuss the limitations and compromises involved in actually transmitting them.

4.2 Frequency Salection

The eaxth's atmosphers has long been known to be comprised of several layers. Among these the E and F regions are frequently highly ionized and hence can reflect a large fraction of the energy below the plasma frequency. For HF commuications it has long been a practice in propagation studies to measure or compute a MUF or maximum usable frequency based on the need for point-to-point communications. Below the MUF radio waves may be reflected back to earth very little attenuated. s'or study of the mesosphere, which is only lightly charged if at all, and to be able to sense the small changes in ε caused by turbulence one must therefore select a transmitter frequency conveniently above the MUF such that the E and F regions are transparent, and any energy not reflected frnm the mesosphere is conveniently "lost"; unable to return and confuse measurements. The 40.92 MHz transmitter
frequency assigned to the Urbana transmitter is above the MUF in the main lobe of the antenna; however, this is not always the case for hypothes cal sidelobes, and observations substantiate this.

4.3 Bandwidth Criteria

A phase modulator similar to the one in the Urbana Radar may be modeled as shown in Figure 4,1 , as a multiplier circuit. Since the phase modulator simply changes the phase of the carrier by $\pm \pi$, it is mathematically equivalent to the process of multiplication by ± 1. Letting the modulating waveform be represented by $m(t)$ and the carrier by $c(t)$ we can then describe the output of the modulator by

$$
\begin{equation*}
s(t)=m(t) c(t) \tag{4.1}
\end{equation*}
$$

and from the theory of modulation one wouid expect the spectrum of $s(t)$ to be

$$
S(w)=M(w) * C(w)
$$

where $S(w)=$ the spectrum of $s(t)$
$M(w)=$ the spectrum of $m(t)$
$C(w)=$ the spectrum or $c($.
where $S(w)$ would exhibit two sidebands but no carrier.
Since $m(t)$, the modulating waveform, will be one of a number of Barker codes or complementary codes, it is not practical to compute the spectrum for each possible $m(t)$. However, it.is possible to compute an upper bound of sorts by assuming $m(t)$ to be a square wave with a period of $12 \mu \mathrm{sec}$, 6μ sec being the minimum bit length available in the present configuration of the radar. We, therefore, can use Fourier analysis to write

$$
\begin{equation*}
m(t)=\frac{4}{\pi} \sum_{n=1}^{\infty} \frac{1}{2 n-1} \sin \left[\frac{2 \pi(2 n-1)}{T} t\right] \tag{4.2}
\end{equation*}
$$

where $\quad T=$ the period of the square wave.

Cowrgar. mate TS OF POOR QUARHY

Carrier

Figure 4.1 Mathematical model of the modulator in the Urbana Radar.

Now, assuming $c(t)$ to be sinusoidal and of magnitude 1 we have

$$
c(t)=\sin \left(w_{0} t\right)
$$

where $\quad W_{0}=$ the angular frequency of the carrier
then

$$
\begin{align*}
& s(t)=m(t) c(t)=\frac{4}{\pi} \sum_{n=1}^{\infty} \sin \left[\frac{2 \pi(2 n-1)}{T} t\right] \sin \left(w_{0} t\right) \tag{4.3}\\
& =\frac{4}{\pi} \sum_{n=1}^{\infty} \frac{1}{2 n-1} \cdot\left\{\frac{1}{2} \cos \left[\left(w_{0}-\frac{2 \pi(2 n-1)}{T}\right) t\right]-\frac{1}{2} \cos \left[\left(w_{0}+\frac{2 \pi(2 n-1)}{T}\right) t\right]\right\} \tag{4.4}
\end{align*}
$$

Now 4.4 is in a recognizable form. Each element in the spectrum of $s(t)$ is represented by a magnitude term

$$
M(n)=\frac{2}{\pi} \cdot \frac{1}{2 n-1}
$$

and two frequency terms

$$
W(n)=w_{0}+\frac{2 \pi(2 n-1)}{T} \text { and } w_{0}-\frac{2 \pi(2 n-1)}{T}
$$

Evaluating the magnitude terms we have

$$
\begin{aligned}
& M(1)=\frac{2}{\pi} \cdot \frac{1}{1}=\frac{2}{\pi}=.637 \\
& M(2)=.212 \\
& M(3)=.127 \\
& M(4)=.091
\end{aligned}
$$

Hence the fundamental plus the first 3 harmonics of $m(t)$ contain 95% of the available transmitted power in the signal. For $T=12 \mu \mathrm{sec}$ we then can state that if the transmitter bandwidth is 333 KHz or more it will transmit at least 95% of the power available from the modulator.

4.4 Pulse Length Considerations

In a phase coded system the range resolution is determined by the bit
or baud length and equals $c \tau / 2$ where $c=$ the speed of light and $\tau=$ the baud length. For the case where $\tau=6 \mu \mathrm{sec}$, the minimum set by the equipment, the resolution corresponds to 900 meters.

Overall pulse length must be selected as a compromise involving the average transmitter power and the PRF, plus the desired compression ratio and the type of code being used. The maximum length is set by the equipment, though, and falls between 100 and $140 \mu \mathrm{sec}$.

4.5 Code Selection

Code selection must be governed by several variables. Among these are
(1) the desired compression ratio. (2) the maximum available duty cycle, (3) the processing capabilities present, (4) the correlation time of the mesosphere, (5) the amount of integration to be used, and (6) aliasing. Longer codes will require longer pulses, forcing lower PRFs to keep within average power limits. Also, for the more complex codes the cycle time, (that is, the period from the beginning of the sequence of codes until it begins again) can approach or exceed the correlation time of the mesosphere. One good compromise might be transmission of a pair of complementary 16-bit codes, or perhaps a set of 8,8 -bit codes. For the former, the cycle time is about . 02 seconds and about .04 seconds for the latter. However, increased complexity is involved in processing the longer codes; this in itself can become prohibitive.

Shorter codes, with shorter cycle times, are more prone to aliasing problems than the longer codes. In fact, one of the prime characteristics of the complementary codes is that the cross-correlation between the individual sequences of the pairs or sets is small; hence by their nature they tend to reduce aliasing problems.

Phase coding and integration are complementary techniques; however, in
practical use the designer is faced with a choice of how much pulse cordpression and how much integration to use during processing, Use of pulse compression techniques tends to reduce the amount of integration for which an improvement in signal-to-noise ratio may be had.

4.6 Summary of Design

In equipment like the Urbana Radar, in which the required output is so high, the normal method of procedure is to amplify a signal through a series of amplifier stages, up to the desired power level. Here the Urbana Radar is no exception. In the interests of efficiency, therefore, the designer should carefully construct the matching networks between stages in such a mannex that they provide good transfer of energy across the desired bandwidth. One point which is often not sufficiently stressed is the necessity for keeping the paths of circulating currents as short as possible, Perna (1979), in a set of articles published, demonstrated that points of low impedance and high current deserve special attention. Circuit losses in these conditions can approach (or exceed) 50%. High VSWR on transmission lines can exhibit an exactly similar pattern of unexplained losses.

Efficiency is the prime measurement of the effectiveness for a highpower amplifier. An amplifier which is properly designed, driven, and tuned exhibits a class-C conversion efficiency of $60-85 \%$. Until these figures are reached, no class-C amplifier can be thought properly matched.

Bias is another consideration worthy of discussion here. In general, (and certainly true for the Urbana Radar), is the fact that given more forward bias, a given amplifier produces more gain. No amplifier should be designed without careful attention to the effects of bias on the matching networks, gain, and efficiency of the device.

The power supply is an important element of an amplifier, and one serious impediment to improved operation of the Urbana Radar is the inadequacy of the present power supply, which limits both the duty cycle and the average power transmitted.

The modulator is the last basic equipment to be discussed here. The Urbana Radar modulator is of the hard-tube type, and is responsible for the wide selection of available pulse widths, output power, dučy cycle, etc. Central to the modulator is the pulse transformer, $T 618$, and the capacitor bank or coffin. The pulse transformer has wide bandwidth and a wide selection of output taps to choose from. The capacitor bank may be switched in as necessary to prevent excessive droop during long pulse operation.

5. RESULTS AND CONCLUSIONS

5.1 Results

Verification of the proper operation of the phase modulation syatem proved simple. The Apple radar director was used, including a FORTH program written by Dr. Sidney Bowhill which included the nesessary controls for tranemission of a 7-bit Barker code, Verification consisted of simply demodulating the transmitted signal and displaying the results on an oscilloscope as shown in Figure 5.1. Figure 5.2(a) displays the RF signal taken directly from a monopole antenna. Note that switch intervals occur in proper locations, as this pulse is phase coded. Figure 5.2(b) displays the receiver output with phase modulation turned off, This is the expected output for this situation. Figure $5.2(c)$ displays the receiver output with phase modulation turned on. The phase reversals plainly indicate the transmission of the 7-bit Barker code.

5.2 Conclusions

The Urbana Radar transmitter now has the capability for phase modulation. The work represented here has resulted in analysis of and documentation for the transmitter.

onternal pact ic OF POOR QUALIEY

iR. 1

Figure 5.1 Block diagram of the verification system.

Figure 5.2(a) Picture of the coded RF pulse taken on a 100 MHz oscilloscope connected to a dipole antenna. The effects of phase coding are clearly visible on the envelope. Taken at $5 \mu \mathrm{sec} / \mathrm{cm}$.

Figure 5.2(b) Coherently detected RF pulse with no phase coding applied. Taken at $10 \mu \mathrm{sec} / \mathrm{cm}$.

Figure 5.2(c) Coherently detected RF pulse phase modulated with a 7-bit Barker code. Taken at $10 \mu \mathrm{sec} / \mathrm{cm}$. The effects of limited system bandwidth are plainly visible.

APPENDIX I. WIDEBAND FERRITE TRANSFORMERS AND DEVICES

I. 1 Introduction

Wideband transformers are ferrite-and-wire devices of three distinct types: (1) the conventional transformer with its primary-and-secondary structure which provides impedance transformation and D.C. isolation between input and output; (2) the autotransformer which provides impedance matching but no D.C. isolation; and (3) the transmission line transformer which provides impedanee matching and an exceptionally wide bandpass characteristic. Each type is illustrated in Figure I. 1.

These devices and the more complex structures one may make from them comprise a simple, economical means of coupling, matching, combining, and dividing in wideband (.1-1000 MHz) radio frequency circuits.

I. 2 Conventional Wideband Transformers

A commonly used model for a conventional wideband transformer is shown in Figure 1.2. R_{p} and L_{p} represent the primary loss and primary inductance respectively. Both decrease with frequency and are hence the primary factors determinitg the low frequency cutoff, bhown as f_{1} in Figure I.3. I_{ℓ} and C_{d} represent the leakage inductance and winding capacitance of the finished transformer. Between them they determine the high frequency cutoff shown as f_{2} in Figure I.3.

Figure 1.4 shows flux lines in a typical ferrite core, passing inside and around the winding which excites them. Magnetic circuit cheory assures us that the core's reluctance will decrease as the effective area available to pass flux (called A_{e}) increases, and will increase as the effective magnetic path length (called ℓ_{e}) increases. Applying this to the transformer in Figure I.2, if A_{e} increases, so will R_{p} and L_{p}; if ℓ_{e} increases,

(a) Conventionai Transformer

(b) Autotransformer

(c) Transmission Line Transformer

Figure I. 1 Schematic representations of the three types of wideband ferrite transformers.

ORIGINAL PACZ W Of POOR guality

Figure I. 2 Diagram of a commonly used model of a conventional wideband transformer.

Figure I. 3 Typical transmission loss versus frequency chart of a wideband transformer.

ORYMNR PDNE B3 of poor gualivy

Figure 1.4 Typical magnetic flux path in a BALUN type ferrite core.
R_{p} and L_{p} will decrease. A_{e} and ℓ_{e} are sometimes (Snelling, 1969) combined in one constant called the "core factor", Cl, where

$$
C 1=\ell_{e} / A_{e}
$$

Knowledge of the core's Cl , its size, and the magnetic characteristics of the core material give one a basis for estimating the low frequency response of the core.

For a particular core, one would expect the leakage inductance, L_{ℓ}, anc the winding capacitance, C_{d}, to increase with the number of turns one uses. In other words, L_{ℓ} and C_{d} incresse with the length of the winding, and for a particular core, the longer the winding required to provide the necessary low frequency response, the lower the tigh frequency cutoff will be. If ℓ_{w} is defined as the length of wire required for one turn on the core, one would then expect f_{2} to depend on ℓ_{w}.

For a wideband response we therefore desire a core with a small Cl and a short ℓ_{w}. FAIR-RITE Products Corp. (1977) has combined these two concepts in a single geometry-dependent expression called the Form Factor:

$$
\text { F.F. }=\ell_{W} C 1
$$

The Form Factor is used to express the wideband capabilities of cores (the smaller the Form Factor the wider the bandwidth). A table of various core shapes and the Form Factors thereof are provided in Figure 1.5. The cores are all part of the "Joule Box" the company provides at a nominal cost.

Other manufacturers provide similar data on their products, but usually in a different form. They often provide the user with A_{e}, ℓ_{e} and the physical dimensions - hence one can easily compute the Form Factor for comparison between sources.

Note that in Figure 1.2 we do not include a term describing the series resistance of the windings. The observed fact is that for transformers of

List of Ferrite Core Shapes in Wide Band Transformer Sample Kit

Item	Part Number	Core Shape	Nominal Dimensions					Form Factor
			A	B	C	D	E	
1	28_-000302	Type	. 525	. 295	. 407	. 225	. 150	13.0
2	28_-002402	Type	. 277	. 160	. 244	. 114	. 071	14.3
3	28_-002302	Type	. 136	. 079	. 093	. 057	. 034	14.0
4	28_-.001802	Type	. 250	-	. 242	. 100	. 050	9.5
5	28_001702	Type	. 250	-	. 471	. 100	. 050	8.8
6	28__000902	Type 4	. 284	-	. 218	. 104	. 052	8.8
7	28--002802	Type 3	. 220	-	. 250	. 090	. 035	7.8
8	26--002402	Type 5	. 380	-	. 190	-	. 197	29.0

Figure I. 5 Core shapes, sizes, and form factors for Fair-Rite Products Corp. cores.
the type discussed here, using a good core and below a few hundred megahertz both the skin efrect and D.C. resistance are negligible when compared to the core losses.

The loss target, tan $(8 / \mu)$, is another method of representing the core losses (previously call R_{p}). This method (Ferronics 77) expresses the core losses in the form $\tan (8 / \mu)=\frac{1}{\mu Q}=R / \mu 2 \pi f L$ where R and L are in series, not in parallel as in R_{p} and L_{p} of Figure I.2. Another method simply plots the Q as a function of frequency. Both methods may be easily converted to the more useful parallel form of Figure I. 2.

Ferrite is a heat sensitive material. It may crack or be destroyed by excessive power dissipation. The limits suggested in Ferronics (77) are that $100-600 \mathrm{~mW} / \mathrm{cm}^{3}$ will produce a $40^{\circ} \mathrm{C}$ rise in core temperature. Since most cores are small, one would expect to use them in relatively low power applications.

The following is a list of general construction tips for conventional wideband transformers:

1. Use a low Form Factor core. (Toroids are definitely not the lowest Form Factor cores, but can be used, of course).
2. Choose the smallest low F.F. core acceptable from low frequency response, saturation, and dissipation considerations.
3. Twist the primary and secondary windings together for tighter coupling and reduced self-winding capacitance, using multifilar windings to extend the transformation ratios where necessary.
4. Keep the windings as short as possible and still meet the required low frequency response. Granberg (1975) suggests the minimum primary inductance is: $L=4 R / 2 \pi f$ where $L=$ primary inductance in $\mu \mathrm{H}$
$R=$ load impedance in ohms to the input
$\mathrm{f}=$ lowest frequency in megahertz.
5. Use the largest wire which can be comfortably and tightly wound on the core.

Snelling (1969) Chapter 7 offers an extensive discussion of wideband transformers.

I. 3 Wideband Autotransformers

Wideband autotransformers permit a good range of impedance match ratios and an extended frequency response. Nagle (1976) discusses their advantages and details simple construction methods. His work is extended by Burwasser (1981) in a 2 part article. Burwasser demonstrated the construction of monofilar autotransformers having transformation ratios of $1: 15$, 1:2, $1: 3,1: 4,1: 5,1: 6.25,1: 7.5,1: 9$, and $1: 16$. With the single exception of the $1: 16$ device, the 1 dB points of all these transformers are below 1 MHz and above 200 MHz . The results demonstrate that for frequencies between 1 and 100 MHz or more, the monofilar autotransformer has lower transmission loss than comparable types of either conventional or transmission line devices.

The rules for the construction of monofilar autotransformers are the same as those for conventional devices except that monofilar wire is used and "pig tailed" at desired tap points.
I. 4 Transmission Line Transformers

Transmission line devices operate differently than conventional transformers, using the ferrite not to increase the coupling between turns, but instead to increase the line-to-line coupling of a 2-conductor transmission line wound in close proximity to it. This usage results in a device which does not have the fundamental upper frequency limit of the conventional
transformer. Ruthroff (1959) in a classic article reports devices with bandwidth ratios as high as 20,000 to 1 . There are problems, though, arising from the new mode of operation; as one might expect, these arise out of the problems inherent in the construction of transmission lines suitable to the purpose. Several different types of transmission lines can be used; the most common one, however, the twisted pair (bifilar) line is well covered in the literature. Lefferson (1971) applies transmission line principles to simplify the construction of the twisted pair magnet wire tronsmission lines used in the manufacturing of many transmission line devices. The effects of variations of line lengths and of variations of characteristic impedance are discussed by Pitzalis and Couse (1968).

Successful devices have also beer constructed using coaxial lines and, for low impedance lines, pairs of flat conductors separated by a dielectric. Although transmission line devices have the widest frequency response of the devices discussed here, they have some drawbacks which limit their use: (1) They are limited to the "squares" ratios of impedance transformation: $1: 1,1: 4,1: 9 \ldots$ and often require more than one core to realize these; (2) They often have higher losses than comparable conventional transformers or autotransformers. They do have the advantage that they can be made physically larger and hence handle more power. Granberg (1975) reports devices capable of handing in excess of 400 w .

The following is a list of construction tips for transmission line devices:

1. Choose a core material having low losses over the whole frequency range of interest.
2. The low frequency response may be calculated exactly as in conventional devices. The core must be such that the total line length is less than one tenth of the wavelength of the highest frequency
of interest. If not, a new core material or geometry may be appropriate.
3. Keep the windings as short as possible. The longer the windings are, the more problems arise out of winding irregularities etc.
4. Twist bifilar windings by machine when possible. Hand twisted windings are not as uniform.

I. 5 RF Combiners and Dividers

Each circuit by its nature is different from the next. The combiners and dividers presented here are by no means a complete selection. Any designer dealing with this frequency range must select devices to fit the requirements of his circuit. Some of the considerations involved in designing are: (1) bandwidth; (2) power level; (3) dc isolation requixemeñ́s; (4) matching requirements; (5) size requirements, etc.

Figure I. 6 demonstrates two versions of a hybrid combiner/splitter constructed of transmission line transformers. The version (a) can be wound on a single core. It has a balanced input and output and no dc isolation. Note that the transmission lines have characteristic impedances of R in both windings. The device in (b) has similar properties except that the addition of an unbalanced port places the whole device at de ground potential, and requires an extra core with a different characteristic impedance winding.

Figure I. 7 shows the conventional equivalent of Figure I.6(a). Grounding one side of the input makes it unbalanced, equivalent to I.6(b). This device does have dc isolation but can have the narrower bandpass associated with a conventional device. For a more complete discussion see Sartori (1968).

Figure I. 8 demonstrates a practical hybrid constructed from different device types. $T 1$ is a transmission line device which supplies collector current to the two transistors; it is wound as shown in (b), enabling it to

ORIGINAL PAGE IS OF POOR QUALITY

(a) Symmetrical Hybrid

(b) Unbalanced Symmetrical Hybrid

Figure I. 6 Two approaches to wideband hybrid combiners/splitters.

Figure I. 7 A conventional wideband hybrid combiner/splitter.

a.
b.

Figure 1.8 (a) Method whereby two 180° transistor outputs may be combined (b) Method for winding a transmission line transformer which permits upright mounting.
be mounted upright on a printed circuit board, Note that the collector currents pass through Tl in opposite directions in effect cancelling and avoiding saturation effects. The radio frequency choke provides a low impedance path for dc but a very high impedance to R.F.; thus any imbalance in the RF outputs of the two transistors tends to be dissipated in RI. The autotransformer T2 provides an impedance match. It might as easily have been a conventionel transformer or a transmission line device; the choice depends on circuit requirements.
I. 6 Summary

Careful design of wideband RF transformers using Ferrite cores provides simple, economical methods for matching, isolation, and the construction of hybrid combiners and dividers. Small cores yield high frequeñey devices. Larger cores produce higher power devices.

APPENDIX II. IMPEDANCE MATCHING OF NONLINEAR LOADS

A nonlinear load is any load in which the magnitude of the current wave form is not directly proportional to the voltage waveform. Common examples of concern are transistor and vacuum tube inputs. For nonlinear loads, the matching network design depends on the power to be applied. If this power is to vary in the course of the normal operation of the device, the engineer is faced with the necessity of constructing a network capable of being adjusted to match an entire range of impedances. If we assume that the applied current waveform is a periodic waveform, with a fundamental angular frequency ω_{0} then we can write

$$
i(t)=I_{0}+\sum_{n=-\infty}^{\infty} i_{n} e^{-j n \omega_{0} t}
$$

Since the problem of matching a nonlinear load at an infinite number of frequencies becomes rather large we make a simplifying assumption: we assume that the nonlinear element is bypassed with an LC circuit with a large enough Q such that $v(t)$ in Figure II. 2 is approximately cosinusoidal. When this is applied to a nonlinear load with a voltage-current characteristic such as the one shown in Figure II. 1 we can write an expression for the current through the load as:

$$
i(t)=I_{0}^{\prime}+\sum_{n=-\infty}^{\infty} i_{n}^{\prime} e^{j n \omega_{o} t}
$$

Note that our assumption of a high Q "tank" circuit having very low impedance except at ω_{0} causes the dc component and any harmonics of the input waveform to be "shorted" to ground; hence, only the fundamental frequency of the input current has much effect. To a good approximation, then, we can write

$$
\frac{v_{1} e^{j \omega_{0} t}}{i_{1} e^{j \omega_{0} t}}=\frac{v_{1}}{i_{1}}=2[v(t)]
$$

Hence: 1) if we know the current/voltage characteristics of the nonlinear load; 2) if we assume an applied sinusiodal voltage we can solve for $Z[v(t)]$

Figure II. 1 Applied voltage versus current waveforms for a nonlinear load of the piecewise continuous type.

ORIGINAL PACE IS of POOR QUALITY

$R . \quad 1$

Figure II. 2 Nonlinear load bypassed with a high Q tank circuit.
either analytically or graphically. We can then design our matching network for this impedance. If we insure that the Q of the match network is high enough to meet our initial assumption, then we have sufficient justification for this technique. In many cases a network Q of 10 to 20 is quite sufficient. If the input waveform is sinusiodal in the first place it eases this requirement somewhat.

Severs techniques are available for the above analysis. The Machlett Power Tube Calculator is a graphical technique based on Fourier analysis of the current waveforms of the power tube in question. It permits the user to evaluate within 10% the operating conditions of a power tube using a particular load line. An excellent source for a mathematical approach to several types of nonlinearities is Clarke and Hess (1971). Finally, a more direct approach is the physical measurement of the s-parameters of a device using a method similar to the one shown in Figure II.3.

The direct measurement technique is applicable even when the device power level is higher than would ordinarily be permitted by most test equipment. 1) The system is set up as shown. 2) The input is adjusted for zero reflected power at a predetermined input power level. 3) The output is then adjusted for maximum power output. 4) Steps 2 and 3 are repeated until no further improvement occurs. 5) The device under test is then removed from the test setup. 6) The vector impedance of the input match network looking back toward the generator is measured using a vector impedance meter or network analyzer. 7) The vector impedance of the output match network is similarly measured. Note that steps 6 and 7 can be accomplished with low power equipment, since at this point no high-power levels are present.
8) The desired input and output impedances are simply the complex conjugates of the values measured in steps 6 and 7 .

3R. 1

APPENDIX III. RIGID COAXIAL CABLE.

The rigid copper coaxial transmission lines of which so much of the Urbana Radar transmitter is constructed is meant to withstand the high voltages and currents associated with RF power transmission. Observed damage and a desire for completeness lend the reasoning behind this documentation of the limits of these transmission lines. The following nomographs have been taken from the 1973 Andrew Corp. Catalog. Figure III. 1 gives the average power limitations for each size of the 50Ω coax currently in use. Currently the Urbana Radar is near none of these limits. The derating faecor for the average power with respect to load VSWR is

$$
\text { D.F. }=\frac{V S W R^{2}+1}{2 V S W R}+F^{\prime}\left(\frac{V S W R^{2}-1}{2 V S W R}\right)
$$

where F^{\prime} may be determined from Figure III. 2 . Figure III. 3 shows the variation of permissible average power with the ambient temperature.

Of more concern to the Urbana Radar are the peak power limitations rather than average power limitations. The following formula may be used:

$$
P_{\mathrm{pk}}=\frac{\left(\mathrm{E}_{\mathrm{rF}}\right)^{2}}{200 \cdot \mathrm{VSWR}} \text { watts }
$$

where $E_{r F}=.247 E_{p}$, where E_{p} is the dc production test voltage given in Table III.1. Figure III. 4 gives the variation in peak power with respect to the effects of pressurization. As a note of caution, please observe that the peak power limitation at $V S W R=1$ for $31 / 8^{\prime \prime}$ lines is listed as 400 kW (unpressurized). These limits are easily exceeded in the Urbana Radar under high VSWR conditions, and arcover has been observed during tuning.

Figure III.5, III. 6 and III. 7 describe the line attenuation versus length, the effect of load VSWR on line attenuation, and the variation of

ORIGINAL PAEE : OF POOR GIIATM

Figure III. 1 Average power limitations versus frequency for the currently used types of rigid transmission lines.

Figure III. 2 Derating factor vs. frequency for rigid transmission line.

Figure III. 3 Variation of permissible average power vs. temperature for rigid coaxial transmission line.

```
ORCmRAA MDRE F
OF POOR GODNy
```

Table III. 1 Production test voltage versus outer conductor diameter.

Outer Conductor OD, inches	$7 / 8$	$1-5 / 8$	3	$3-1 / 8$	5	$6-1 / 8$	8
Ep volts	6,000	11,000	16,000	19,000	25,000	35,000	35,000

ORICNAL PMEE E or pook quality

Figure III. 4 Peak power limits vs. internal pressure for SF_{6} and dry air or nitrogen.

Figure III. 5 Attenuation vs. Erequency for rigid coaxial transmission line.

Figure III. 6 Attenuation vs. VSWR for rigid coaxial transmission line.

Figure III. 7 Attenuation vs. temperature for rigid coaxial transmission line.
attenuation with temperature respectively.
Figure III. 8 gives the inner conductor versus outer conductor temperature rise.

A few further comments are appropriate here, based on observations of past damage to the coaxial lines.

1. The lines should be periodically checked for accumulation of moisture. On one occasion the author removed two pints of water from the output network of unit 3 .
2. Once arcover occurs in a line, the pits and catwhisker damage caused will permit it more easily the next time.
3. Parts of these coax lines are unpressurized. These parts should be evaluated and pressurized if needed.

In summary we simply note that the coaxial lines of the Urbana Radar are important to its operation; they deserve care and careful periodic maintenance.

ORGMNA BRCE EG
OF PCOR Qumity

Figure III. 8 Inner conductor vs. outer conductor temperature rise.

APPENDIX IV. PROGRAM LISTINGS AND DESCRIPTIONS

Program 1. "PA MATCH"

Description: This program generates data on the impedance matching capabilities of units 3 and 4. It contains a model of the three variablelength transmission line segments which form the output tuning networks of these units. For input it requires the load impedance seen by the final segment. These data are produced by the program "CAPAUG" which is listed hereafter. Further data on the tuned bandwidth of these units are provided graphically by the program "PA BANDWIDTH", also listed hereafter, using selected data from "PA MATCH" to compute from.

```
    1 REM PA MATCH BY L.J.HERRINGTON
10 REM THIS PROGRAM IS INTENDED
    TO PROVIDE DATA FOR THE
    CONSTRUCTION
20 REM OF A TUNING NOMOGRAPH FOR
    UNITS 3 AND 4 OF THE URBANA
    radar
30 REM IT USES THE BRUTE FORCE
    APPROACH TO COMBINE T-LINE
    gqUATIONS
40 RRM AND THE EFFECT OF ABRUPT
    JUNGTION CAPACITARCES TO
    COMPUTE POSSIBLE
50 REM REAL LOAD IMPEDANGES AS
    SEEN BY THE ML5682 TUBES.
60 REM IT SEABCHES FOR RRAL IMPEDA
    NCES BY HOLDING L2 CONSTANT
    AND YARYING Ll
80 INPUT "ENTER THE REAL PART OF
    THE LOAD IMPEDANCE."; V
90 INPIT "ENTER THE IMAGINARY PART
    OF THE LOAD IMPEDANCE.";
        W
100 DIM L1(22), L2(22), R(22), X(22)
```

120	
130	$\mathrm{LI}=0$
:	DLTA $=.005$
140	GOSUB 380
150	ROUT $=$ R
:	XOUT - X
160	GOSUB 380
170	IF SGN (XODT) $\langle>$ SGN (X) GOTO 210
180	LI = LI + DLTA

40 RUM ANDTIONS THE EFFECT OF ABRUPT JUNGTION CAPACITARCES TO COMPUTE POSSIBLE
50 REM REAL LOAD IAPEDANGES AS SEEN BY THE ML5682 TUBES.
60 REM IT SEABCHES FOR RRAL IMPEDA NCES BY HOLDING L2 CONSTANT
$=\mathrm{LI}+\mathrm{DLTA}$
190 IF LL > . 085 GOTO 350
GOTO 150
210 Ll = L1 - DLTA
220 DLTA = DLTA / 10
IF ABS (X) < 1 GOTO 250
240 GOTO 140
$250-6010140$ 201-(I1 +
$250 \mathrm{LI}(\mathrm{I})=.201-(\mathrm{LL}+\mathrm{LL})$
$L 2(I)=12$
$270 \quad R(I)=R$
$R(I)=R$
$280 \quad X(I)=X$
290 PRINT R
300 NEXT I
310 FOR I = 1 TO 22
320 PRINT " $L 1$ " "; $L 1(I)$, " $L 2=1$ ";
L2(I), "R="; R(I), "X=";
X(I)
330 NEXT I
340 END

340 END
350 PRINT 'NO MATCH AT L2 $\mathbf{w n}^{\text {H }}$; L2
36aEXT I
370 GOTO 310
380 即 $=\nabla$
$390 \mathrm{XL}=\mathrm{W}$
$40020=52$
$410 \mathrm{~A}=\mathrm{LI}$ * 60.2832
420 GOSUB 590
430 GOSUB 630
$440 B=B+4.37 E-3$
450 GOSUB 680
$46020=5.2$
: RL $=R$
: XIm X
$470 \mathrm{~A}=\mathrm{L2}$ * 60.2832
480 GOSUB 590
490 GOSUB 630
$500 \mathrm{~B}=\mathrm{B}+5.14 \mathrm{E}-3$
190 IF L1 >. 085 GOTO 350
200 GOTO 150
LI = Ll - DLTA
220 DLTA $=$ DLTA / 10
230 IFABS (X) < 1 GOTO 250
$250 \mathrm{LI}(\mathrm{I})=.201-(\mathrm{LL}+\mathrm{LL})$
$260 \quad 12(I)=12$
270 R(I) $=R$
$280 \quad X(I)=X$
300 NEXT I
320 PRINT "L1 ="; L1 (I), "L2="; L2(I), "R="; R(I), 'X="; X(I)

```
```

510 COSNB 680

```
```

510 COSNB 680
52020 - 82
52020 - 82
: RL=R
: RL=R
$: x L=X$
$530 A=6.2832 *(.201-(L 1+12))$
$: x L=X$
$530 A=6.2832 *(.201-(L 1+12))$
$: x L=X$
$530 A=6.2832 \star(.201-(L 1+L 2))$
$: x L=X$
$530 A=6.2832 \star(.201-(L 1+L 2))$
540 GOSUB 590
540 GOSUB 590
550 GOSUB 630
550 GOSUB 630
$560 B=B+2.18 E-2$
$560 B=B+2.18 E-2$
570 GOSUB C30
570 GOSUB C30
580 RETURN
580 RETURN
$590 \mathrm{D}=(1-\mathrm{XL} / \mathrm{ZO*} \operatorname{TAN}(\mathrm{~A}))^{*} 2$
$590 \mathrm{D}=(1-\mathrm{XL} / \mathrm{ZO*} \operatorname{TAN}(\mathrm{~A}))^{*} 2$
$+\left(\mathrm{RL} / 20^{*} \operatorname{TAN}(\mathrm{~A})\right)^{\circ} 2$
$+\left(\mathrm{RL} / 20^{*} \operatorname{TAN}(\mathrm{~A})\right)^{\circ} 2$
$600 \mathrm{~A}=\mathrm{BL} *\left(1+\operatorname{TAN}(\mathrm{A})^{*} 2\right) / \mathrm{D}$

```
\(600 \mathrm{~A}=\mathrm{BL} *\left(1+\operatorname{TAN}(\mathrm{A})^{*} 2\right) / \mathrm{D}\)
```

```
570 GOSUB C80
```

```
570 GOSUB C80
```

```
610 X = (XL* (1 - TAN (A)*2) + 20*
    TAN (A)*(1-(RL/20)*2
    -(xL / z0)*2)) / D
    6 2 0 ~ R E T U R N ~
    630 BETA = - ATN (X / R)
    640 MAG = SQR (X`2 + R`2)
    650 G = 1/ MAG* COS (BETA)
    660 B = 1/ MAG* SIN (BETA)
    670 RETURN
    680 BETA = - ATN (B / G)
    690 MAG = SQR (G*2 + B'2)
    700 R = 1 / MAG* COS (BETA)
    710 X = 1 / MAG* SIN (BETA)
    720 RETURN
```

1

Program 2．＂Capaug＂
Description：This program computes the load impedance seen by the tuning elements in units 3 and 4．It assumes a 50Ω load．It requires as input the effective characteristic impedance of the blocking capacitor segments of units 3 and 4 ．

	rem capajg by l．j．herrington	290	A $=299.2 /$ HAVL
10	input＂enter 20＂； 2	300	$z 0=40$
20	z0－2	310	gosub 900
100	FOR $\mathrm{F}=3 \mathrm{ET}$ T0 587 STEP 1E6	320	$\mathrm{RL}=\mathrm{R}$
110	MAVL $=3 \mathrm{ElO} / \mathrm{F}$	330	XLI $=8$
120	$A=29.25 / \mathrm{WAVL}$	340	$A=267.3 /$ navi
130	RL－50	350	$z 0=56$
135	$\mathrm{XL}=0$	360	GOSOB 900
140	coses 900	370	$z 0=2$.
150	昛＝日	375	PRINT＂ $\mathrm{P}=$＂； P
160	$\mathrm{XI}=\mathrm{X}-3.183 \mathrm{~EB} / \mathrm{F}$	380	PRINT＂R＂＇； Q ，＂X＝＂；X
170	$\mathrm{A}=58.5 / \mathrm{LAVL}$	385	PRINT
180	GOSUB 900	390	NEXT
10	昛＝R	400	END
200	KL $=\mathrm{X}-3.183 \mathrm{Es} / \mathrm{F}$	900	
210	$\mathrm{A}=58.5 / \mathrm{havL}$		＋（RL／20＊TAN（A）${ }^{\circ} \mathrm{C}$
220	GOSUB 900	1000	$\mathrm{R}=\mathrm{LL} *\left(1+\operatorname{TAN}(\mathrm{A})^{\circ} 2\right) / \mathrm{d}$
230	$\mathrm{RL}=\mathrm{R}$	1100	
240	$\mathrm{XI}=\mathrm{X}-3.183 \mathrm{E} 8 / \mathrm{F}$		TAN（A）＊（1－（RL／zo）＊2
250	$A=29.25 / \mathrm{haVL}$		－（ $\left.\mathrm{XL} / \mathrm{zo})^{\circ} \mathrm{2}\right)$ ）／D
260	GOSUB 900	1200	retura
270 280	$\begin{aligned} & \mathrm{RL}=\mathrm{R} \\ & \mathrm{XI}=\mathrm{X} \end{aligned}$		

Program 3. "PA BANDWIDTH"
PA BANDWIDTH is a modeling program providing data to evaluate the bandwidth of the output matching networks of units 3 and 4. It requires as inputs the lengths of the tuning element of units 3 and 4 , the resistance being matched, and the effective characteristic impedance of the blocking capacitor structures. Further it requires access to two binary files on floppy disk: "BANDWIDTH" which is essentially the blank graph paper on which the data will be graphed, and "SHAPE TABLE" which contains the + mark plotted at each data point. The program assumes a current source whose resistance is matched by the network. The transmission coefficient is plotted as a function of frequency. For typical results see Chapter 3.

```
l REM RA BANDNIDTE BY L.J. HERRING 
L REM RA BANDRIDTH BY L.J.HERRING
L REM RA BANDNIDTH BY L.J.GERRING
L REM RA BANDRIDTH BY L.J.HERRING
L REM RA BANDNIDTH BY L.J.GERRING
L REM RA BANDRIDTH BY L.J.HERRING
L REM RA BANDRIDTH BY L.J.HERRING
L REM RA BANDRIDTH BY L.J.HERRING
```


ONICNAN: PACG
 OB POMR Quabiny

620	beg a is angle in radians
630	REM WAVL IS MAVELENGTH IN
640	A - LI*6.2832*733.1 / havL
650	cosus 2000
660	COSUB 2090
670	
680	gosub 2040
690	PRINT R, X
700	$20=2$
710	$\begin{gathered} \text { RHO }=\operatorname{SQR}\left((R-T L)^{\bullet} 2+X^{\bullet} 2\right) \\ / \operatorname{SQR}\left((R+T R)^{\bullet} 2+X^{\bullet} 2\right) \end{gathered}$
720	$\mathrm{Xc}=\mathrm{F}$
730	YC - 1 - RHO*2
760	$\begin{aligned} & \mathrm{X9}=29+\mathrm{INT}^{2}\left((\mathrm{XC}-\mathrm{XN}) *_{\mathrm{B} 1}\right. \\ & \hline / \mathrm{XI}+.5) \end{aligned}$
770	$\mathrm{Y}=174-\mathrm{INT}((\mathrm{YC}-\mathrm{YN}) * \mathrm{AI}$
780	DRAH 15 AT X9, y9
785	next
790	text
800	maput "Saye under heat make?

Program 4. "PA INPUT"

This program computes the input impedance and VSWR of the input match network in units 3 and 4. The load RL assumed in step 60 must be changed to correspond with the operating conditions of the ML-5682.
\&L

	rem pa input by l.j.herringion
20	PR\# 1
30	FOR L $=3.3$ To 5.7 STEP .1
:	rem derived from work by JAY GOOCH.
40	$20=20$
:	REM VERIFIED VIA TIMR DOMAIS
50	$A=.3267$
:	Rem terified via t.d.r.
60	RL $=20$
70	REM RL IN 60 DEPENDS ON tube operating conditions
80	$x \mathrm{~L}=1 /(.26157468-1 / \mathrm{L})$
90	$\mathrm{G}=1 / \mathrm{RL}$
:	m $=1 / \mathrm{xL}$
100	cosub 390
110	$\mathrm{RL}=\mathrm{R}$
:	$\mathrm{XL}=\mathrm{X}$
12	GOSUB 300
130	PRINT
140	z0 $=31$
150	$\mathrm{A}=1.615$
160	RL $=\mathrm{R}$
:	X $=$ x
170	GOSUB 300
180	PRINT "L= "; L
190	$\begin{gathered} \text { MAG }=\operatorname{SQR}\left((R-50){ }^{\circ} 2+X^{\bullet} 2\right) \\ / \operatorname{SQR}\left((R+50)^{\circ} 2+X^{\bullet} 2\right) \end{gathered}$
200	ANG $=$ (ATR ($\mathrm{X} / \mathrm{l}(\mathrm{R}-50)$)

- ATN ($\mathrm{X} /(\mathrm{B}+50) \mathrm{O}$) 57.3	
210	print "the real part is ";
220	PRINT 'rite inhginary part Is "; X
230	PRLNT "RHO= "; MAG, "ANG=
240	VSWR = ($1+\mathrm{MAG}$) / ($1-\mathrm{MAG}$)
250	PRINT "VSWR" "; VSKR
260	PRINT
270	NEXT
280	PR\# 0
290	END
300	$\begin{aligned} D= & \left(1-X L / 20^{*} \operatorname{TAN}(A)\right){ }^{*} 2 \\ & +\left(B L / 20^{*} \operatorname{TAN}(A)\right)^{*} 2 \end{aligned}$
310	$\mathrm{R}=\mathrm{RL} *\left(1+\mathrm{TAN}(\mathrm{A})^{-2} 2\right) / \mathrm{D}$
320	$X=\left(X L *\left(1-\mathrm{TAN}(A){ }^{*} 2\right)+20 *\right.$
330	RETURN
340	BETA $=-\operatorname{ATN}(X / R)$
350	KAG = SQR ($\left.\mathrm{X}^{*} 2+\mathrm{B}^{\bullet} 2\right)$
360	G = $1 /$ MAG* COS (BELA)
370	B = $1 /$ MAG* SIN (bELA)
380	RETUR
390	BETA $=-$ ATN ($\mathrm{B}^{\text {/ G }}$)
400	MAG $=\operatorname{SQR}\left(\mathrm{G}^{*} 2+\mathrm{B}^{\bullet} 2\right)$
410	$\mathrm{E}=1 / \mathrm{MAG*} \cos$ (BETA)
420	$X=1 /$ MAG* SIN (BETA)
430	RETURN

ORIGINAL PMEE IS
 OF POOR QSABITY

Program 5. "T-LINE CALCULATOR"

This is a utility program used to compute the input impedance of a transmission line with a complex load. It was frequently used ana often modified for use in larger programs.

```
1 REM T-LINE CALCULATOR BY L,J.HE
    RRINGTON
10 PRINT "THIS PROGBAM WILL COMPUTE
        THE INPUT THPLDANCE OF A
        TRANSMLSSION"
20 PRING "LINE HITH A COHPLEX LOAD"
30 Input " enter tar leagti OF
    the line dn havelengTES";
        LA
40 A=LA*6.2832
50 INPUT 'TENTRR THE CHARACTERISTIC
    IMPEDANCE OF THE LINE";
        20
6 0 ~ I N P U T ~ ' E N T E R ~ T H E ~ R E A L ~ P A R T ~ O F ~
    TYE LOAD LMPEDANCE'4: EL
70 INPUT "ENTEE THE IMAGINARY PART
```

```
                                    of the load mpgedance";
```

 of the load mpgedance";
 XL
 XL
 80 GOSyB 120
80 GOSyB 120
90 pRIMT "THE reas pART OF the
90 pRIMT "THE reas pART OF the
INPJT IMPEDANCE IS ";
INPJT IMPEDANCE IS ";
100 pRLNT "the magcmarz part of
100 pRLNT "the magcmarz part of
THE INPUT IMPEDANCE IS
THE INPUT IMPEDANCE IS
"; x
"; x
110 END
110 END
120 D = {1 - XL / 20* TAN (A))*2
120 D = {1 - XL / 20* TAN (A))*2
+(RL / 20* TAN (A))*2
+(RL / 20* TAN (A))*2
130 R = RL*(1 + TAN (A)*2)/D
130 R = RL*(1 + TAN (A)*2)/D
140 X = (XI*(1 - TAN (A)c2) + 20*
140 X = (XI*(1 - TAN (A)c2) + 20*
TAN (A)*(1 - (RI / 20)*2
TAN (A)*(1 - (RI / 20)*2
- (xL/ 20)*2)) / D
- (xL/ 20)*2)) / D
150 REXURN

```
150 REXURN
```

Program 6. "T-MATCH"
The output of unit 3 includes a coaxial Tee as part of the power splitter used to drive unit 4. This program evaluates that match by computing and printing the reflection coefficient "seen" by unit 3 .

```
1 REM T-MATCH BY L.J.HERRINGTON
10 RBM this program is for evaluat
    ION OF THE T-MATCH
20 FOR F = 10E6 T0 80E6 STEP 1E6
    A=3.3E-8*F
40 R1 = 50*(1 + (TAN (A)*2))
        / (.69444* TAN (A))*2
50 x1 =.5177* TAN (A) / (.69444*
        TAN (A))=2
60 B = 4.5E-9*g
70 D = (1-(X1 / 50)* TAN (B))*2
        +((RI/50)* TAN (B))-2
80 R2 = R1*(1 + (TAN (B))*2)
        / D
90 X2=(X1*(1 - (TAN (B))*2)
```

```
        +(1-(\mathbb{L / 50)*2 - (XI}
```

 +(1-(\mathbb{L / 50)*2 - (XI}
 / 50)*2)* TAN(B)) / D
 / 50)*2)* TAN(B)) / D
 RO = R2 / 2
 RO = R2 / 2
 110 }\textrm{X0}=\textrm{X2}/
110 }\textrm{X0}=\textrm{X2}/
120 MAG = SQR ((RO-50)\bullet2 +X0^2)
120 MAG = SQR ((RO-50)\bullet2 +X0^2)
/ SQR ((RO + 50)* 2 + X O* 2)
/ SQR ((RO + 50)* 2 + X O* 2)
ANG = (ATM (XO / (RO - 50))
ANG = (ATM (XO / (RO - 50))
- ATM (XO/(RO + 50)))*57.
- ATM (XO/(RO + 50)))*57.
3
3
PRINT "F="; F; "MAG="; MAG;
PRINT "F="; F; "MAG="; MAG;
"ANG""; ANG
"ANG""; ANG
PRINT "RO="; 助; "XO="; XO
PRINT "RO="; 助; "XO="; XO
150 NEXT
150 NEXT
160 END
160 END

Programs 7 and 8. "CORRELATION" and "CORRESHORT"
The next two programs may be used to cross correlate binary codes, "CORRELATION" evaluates 8 times per interyal while "CORRESHORT" evaluates only once. Further comments and instructions are contained in the remarks sections of the programs.

10 PRINT 'THIS PROGRAK IS INTEIDED
TO PROVIDE CORRELATION CAPAB
ILITIES FOR EINITE LENGXH BIMARY CODES"
20 PRINT "IT DOES SIMPLE NUHERICAL
CORRELATION BY FORHING ARRAY
S,THEN CORRELATING THEY"
30 PRINT"
40 PRINT "TO BEGIN, ENTER THE FIRST
ELUCTION.LABLE IT A AND
USE N AS THE INDEEENDENT
USE N AS THE INDEFENDENT
VAR TABLE. BEGIN AT 1000 AND END HITH RETURN."
50 RRINT " NEXT, ENTER THE SECOND
FUNCTION THE SAKR HAY,EXCEPT
LABLE IT B AND USE M AS
THE INDEPENDENT VARIABLE."
60 PRINT "THE PROGRAM CALLS THESE
AS SUBROUTINES, TO RESTART
THE PROGRAM ENTER RUN2O."
70 END
80 thfut "entrig taz langtia op the first fugction in units - ${ }^{\prime} ;{ }_{11}$

90 ineot "entze the length of the SECOAD HUNCTION IN UNITS

$100 \mathrm{Q}=(\mathrm{L} 1+\mathrm{L} 2) * 8$
110 DIM A(Q)
120 REM A IS THE NAKE GIVEN TO tre first array
130 DIM B(Q)
140 REM B IS THE NAKE GIVEN TO the second array
150 DIM C(Q)
160 RES C IS THE NAKE GIVEN TO THE OUTPUT ARRAY
170 FOR $N=.0625$ TO LI - . 0625
STEP . 125
180 gosub 1000
$190 \mathrm{~A}\left(\right.$ INT $\left.\left(\mathrm{N}^{* 8}+.5\right)\right)=A$
200 NEXT
210 FOR M $=.0625$ TV L2 - . 0625
STEP . 125
220 gosub 2000
$230 \mathrm{~B}(\mathrm{INT}(\mathrm{M} * 8+.5)+\mathrm{L} * 8)=\mathrm{B}$
240 NEXT
50 FOR J $=0$ TO Q
260 FOR K - 0 TO J
$270 \quad A=A(X) *_{B}(Q-J+K)$
$A C C=A C C+A$
280 ACC =
$300 \mathrm{C}(\mathrm{J})=\mathrm{ACC}$
310 PRINT J/8, C(J) / 8
320 ACC $=0$
330 NEXI J
340 END
1000 IF $\mathrm{N}=0$ THER $\mathrm{A}=1$
$1010 \mathrm{IF} N>0$ AND $N<5$ THEN $A=1$

1020 IF $N>=5$ AHD $N<7$ THES A
1030 If $N>-7$ AND $N<9$ THESA A
$=1$
1040 IF $\mathrm{N} \geqslant=9$ AND $\mathrm{N}<10$ THEN A $=-1$
1050 IF N > - 10 AND N < 11 THEN A
1060 IF $N>=11$ AND $N \leqslant 12$ miza A
 -1
1080 RETURA
$2000 \mathrm{~B}=\mathrm{A}(\mathrm{INT}(\mathrm{H} * 8+.5))$
2010 RETURN
2015 IF M = 5 THEN B = 0
2020 IF $M>5$ AND $M<7$ THEN B =
2025 If $M=7$ Thas $B=0$
2030 IF $M>7$ AND $M<9$ THEN B $=1$
2035 IF M 99 THEN B 3 4

2040 IF M - 1
2045 If $M=10$ 2med $B=0$
2050 IF $\mathrm{M}>10$ AND $\mathrm{M}<11$ THEN B
2055 IF $M=11$ THDN $3=0$
2060 IF M > 11 AND M < 12 THEN B
= $\quad=-1$
2065 IF $M=12$ THEN $B=0$
2070 IF M > 12 AND $M<13$ THEN B
2080 RETUR
]

1 REM CORRESHORT BY L.J. HERRINGTO N
10 PRINT "THIS PROGRAM IS INTENDED
TO FROVIDE CORRELATION CAPAB
ILITIES FOR FINITE LENGTH binary codes"
20 PRINT "IT DOES SIMPLE NUMERICAL CORRELATION BY FOBMING ARRAY
S,THEN CORBELATING THEM"
30 PRINT"
40 PRINT "TO BEGIN, ENTER THE FIRST
FUNGTION. LABLE IT A AND USE N AS THE INDEPENDEAT VARIABLE. BEGIN AT 1000 AND

```
        END WITG RETURN."
50 RRINT " NEXT, ENTER THE SECOND
        FONCTION TAE SANE HAY,EXCEPI
        LHBLLE IT B AND USE M AS
        THE INDEPENDENT VARIABLE."
60 PRINT "THE PROGRAM CALLS THESE
        AS SDBROUTINES.'O RESTAET
        THE PROGRAM ENTER RUNN2C."
70 END
80 INPUT "ENTTR THE LENGTH OF THE
    FIRST FUNCTION IN UNITS
    -- "; Ll
O INPUT "ENTER THE LENGTH OF the
    SECOND FUNCTION IN UNITS
    --- "; L2
100Q=L1 + L2
110 DLM A(Q)
120 REM a IS the name given to
        THE FIRST ARRAY
130 DIM B(Q)
140 AEM B IS THE NAME GIVEN TO
        TAE SECOND ARRAY
150 DIM C(Q)
160 REM C IS THE NAME GIVEN TO
        THE OUTPUT ARRAY
170 FOR N = .5 TO Ll - .5
180 GOSUB 1000
190 A(N) = A
200 NEXT
210 FOR M = . 5 TO L2 - . 5
220 GOSUB 2000
```

```
\(230 B(M+L)=B\)
```

$230 B(M+L)=B$
240 NEXT
240 NEXT
250 FOR $J=0$ TO Q
250 FOR $J=0$ TO Q
260 FORK = 0 TO J
260 FORK = 0 TO J
$270 \quad A=A(K) \star_{B}(Q-J+K)$
$270 \quad A=A(K) \star_{B}(Q-J+K)$
$280 \quad$ ACC $=A C C+A$
$280 \quad$ ACC $=A C C+A$
290 NEXT K
290 NEXT K
300 C(J) - ACC
300 C(J) - ACC
310 ACG $=0$
310 ACG $=0$
320 NEXT J
320 NEXT J
330 FOR T = 0 TO Q
330 FOR T = 0 TO Q
340 PRINT $T, C(T)$
340 PRINT $T, C(T)$
350 NEXT
350 NEXT
360 END
360 END
$1000 \mathrm{IF} N>=0$ AND $N<3$ TEEN A
$1000 \mathrm{IF} N>=0$ AND $N<3$ TEEN A
-1
-1
1010 IF $N>3$ AND $N<6$ THEN A
1010 IF $N>3$ AND $N<6$ THEN A
-1
-1
1020 IF $N>=6$ AND $N<7$ THEN A
1020 IF $N>=6$ AND $N<7$ THEN A
$=1$
$=1$
2030 IF N > 7 AND $N<9$ TREX A
2030 IF N > 7 AND $N<9$ TREX A
-1
-1
1040 IF $N>=9$ AND $N<10$ TEEN A
1040 IF $N>=9$ AND $N<10$ TEEN A
1050 IF $N>10$ AND $N<11$ TEEN A
1050 IF $N>10$ AND $N<11$ TEEN A
1060 RETV -
1060 RETV -
1060 RETURN
1060 RETURN
$2000 B=A(M)$
$2000 B=A(M)$
2010 RETURN

```
2010 RETURN
```

]

Program 9. "MACHLETT POWER TUBE CALCULATOR"

This program automates the worksheet of the Machlett Power Tube Calculator. It requires an operator who already knows how to use the "calculator" to input the data on power tube operating conditions and to enter the data read from the cosine scale. The program then does the routine calculations and prints the results or stores to floppy disk if requested for later printing.

```
1 REM MACHLETT POWER TUBE CALCULA
    TOR BY L.J.HERRINGTON
10 FRINT "THIS PROGRAM AJTOMATES
    THE WORKSEEET"
20 PRINT "OE THE MACHLETT ROWER
    TUBE CALCULATOR"
30 ERINT
40 PRI%T "DO YOU WANT HELP? (Y
    OR N)"
```

50 IAPUT AS
60 IF ASC (AS) $=89$ THEN GOSUB 1670
$70 \mathrm{DIM} \operatorname{IB}(6), \mathrm{GI}(6), \mathrm{G} 2(6)$
80 PRINT
90 PRINT "IS tHIS A COMHON CATEODE
OR COMMOU GRID"
100 InPUT "circoit (CC OR CG)"; AS
110 PRINT AS
120 PRINT
130 INPUT "TETRODE OR TEIODE?";
B\$
140 IF BS m "ITRTROMF" OR B\$ = "TRIOD

E" THan 180
150 PRINT
160 PRINT "HUST BE A TETRODE OR A TRIODE."
170 GOTO 1470
180 PRINT
190 INPUT "enter the dC plate voltag E "; EB
200 PRINT
210 InPUT "ENTER TEE MLNLMUM PLATE VOLTAGE"; EH
220 RRINT
230 INPUT "ENTER TEE DC BLAS VOLTAGE BIAS
240 PRINT
250 INPUT "ENTER THE REAK GRID VOLTA GE"; EP
260 PEINT
270 IP B\$ = "TBIODE" THEN 290
280 Inedt "enter the scaeen voltage" ; E2
290 RRINT
300 FOR I $=0$ TO 90 STEP 15
310 PRINT "Enter the instantaneotis FLate Current"
320 Pazht "at "; I; " DRgRees"
330 THEUT IB(I / 15)
340 PETITT
350 ERINT "BNTRR TEE TNSMANTANEOUS GRID CURRERT"
350 FRINT "at "I" dEgREES"
370 INPUT GI(I/15)
380 PRINT
390 IF B\$ = "TRIODE" THEN 430
400 PRINT "ENTER THE INSTANTANEOUS SCREEN GTRREPTT"
410 PRINT "AT "; I; " DEGREES"
420 IMPUT G2(I / 15)
430 NEXT
$440^{\circ} \mathrm{PRINT}$
450 INPUT "DO YOU HANT TO CEANGE ANY OF THE INSTAN-TANEOUS VALUES? (Y OR N)"; LS
460 IF LS $=$ "Y" THEN 1520
$470 \mathrm{AVIB}=(\operatorname{IB}(0) / 2+I B(1)+\operatorname{IB}(2$ $)+I B(3)+I B(4)+I B(5))$ 112
$480 \mathrm{FIB}=(I B(0)+I B(1) * 1.93+\mathrm{IB}(2$ $) * 1.73+I B(3) * 1.41+I B(4)$
$+\operatorname{IB}(5) * .52) / 12$
$490 \mathrm{Al}=(\mathrm{Gl}(0) / 2+\mathrm{Gl}(1)+\mathrm{GI}(2)$
$+\mathrm{Gl}(3)+\mathrm{Gl}(4)+\mathrm{Gl}(5) j$
/ 12
$500 \mathrm{FGI}=(\mathrm{Gl}(0)+\mathrm{Gl}\{1) * 1$. 荡 $2+\mathrm{GL}(2$ $) * 1.73+\mathrm{Gl}(3) * 1.41+\mathrm{Gl}(4)$ $+61(5) * .52) / 12$
510 IF BS = "TRIODE" THEN 530
$520 \mathrm{~A} 2=(\mathrm{G2}(0) / 2 \mathrm{~B} \mathrm{C}(1)+\mathrm{G} 2(2)$ $+G 21(3)+G 2(4)+G 2(5))$ 112
530 IF AS = "CG" THEN 580
$540 \mathrm{PO}=(E B-E M) * E I B / 2$
550 PD $=(E P-B L A S) * T G 1 / 2$
$560 \mathrm{RL}=(\mathrm{EB}-\mathrm{EM}) / \mathrm{FIB}$
570 G0TO 610
$580 P 0=(E B-E M+E P-B L A S) * E I B$ 12
$590 \mathrm{PD}=($
$600 \mathrm{RL}=(\mathrm{EB}-E M+\mathrm{EP}-\mathrm{BIAS}) / \mathrm{FIB}$
610 PIN = EBAAVIB
620 PR = PIN - 50
630 EFF - PO / PIH
640 GADN = PO / PD
650 PC = - BLAS*AL
660 P1 = PD - PC
670 PR2TT
680 IHPUT "IS PROTECTIVE BLAS USED? (Y ORN $)^{\prime \prime}$; $G \$$
690 IF GS = "Y" THEN 730
700 PRDKT
$710 \mathrm{RC}=-\mathrm{bLAS} / \mathrm{Al}$
720 GOM 770
730 PRINT
740 INPLT "ENTER THE PROTECTIVE BLAS VOLTAGE"; ECC
750 PRINT
$760 \mathrm{RC}=(\mathrm{ABS}(B I A S)-A B S(E C C))$ / A1
770 IF BS = "TRIODE" TEEN 790
$780 \mathrm{P} 2=\mathrm{E} 2 * \mathrm{~A} 2$
790 INPUT "IS A PRIHTER IN USE? (Y OR N)"; H\$
800 IE HS - "N" GOTO 1240
810 PRINT
INVERSE
B20 PRINT "ALIGN tiE PAGE IN TAE PRINTER."
B30 NORMAL
840 PRINT
850 LNPOT "WANT A FULL FRINTOUT OR A SHORT ONE? (F OR S)"; J\$
860 Iz Js merpr Thte 00
870 PR +1
880 PRINT
890 GOTO 1240
900 IF J\$ = "s" THEN 1240
PRINT
910 InPGT "halat tube type?"; c\$
97.0 PKINT

930 Infut "what is the date?"; D\$
940 PRINT
950 Input "hibat class of service?"; E\$
960 PRINT
970 INPOT "PRRGON PRRFORMING ANALYSI S?"; F \$
980 PRINT
900 PR +1
1000 PRINT
1010 PRINT "TUBE TYPE"; TAB(20); C
1020 PRTNT
1030 PRINT "DATE"; TAB(25); D\$
1040 PRINT
1050 PRENT "CLASS OF SERVICE"; TAB(13); E $\$$
1050 PRINT
1070 PRINT "BY"; TAB(27); E\$
1080 PRINT
1090 PRINT "EB = "; EB, "EC1 $=$ ";
BIAS, "EC2 = "; E2
1100 PRINT
1110 PRINT "EM = "; EM, "EPG = ";

```
1120 PRINT '
1130 PRINT "EP = "; (EB - EM), "RG
    . "; (EP - RIAS)
140 PRINT
1150 ETAB (10)
        PRIMT "RLATE";
        atab (20)
        ERINT "GRID";
        HTAS (30)
        PEINT "SCRREN"
1160 htad (10)
        prinm "CurRenT";
        HTAB (20)
        PRINT "CURRENT";
        htab (30)
        PRINT "CURRENT"
170 PRINT
1180 PRINT "ANGLE"
1190 FOR I = 0 TO 6
1200 PRINT I*15;
        HTAB (10)
        PRINT INT(IB(I)*10 + .5)
        / 10;
        mTAB (20)
        PRINT INT (Gl(I)*10 + .5)
        / 10;
        atab (30)
        PRINT IRT (G2(I)*10 + .5)
        / 10
1210 PRINT
1220 NEXT
1230 PRINT
    : pRymT
1240 PRINT
1260 PRINT " Ib = "; INT (AVIB*10
        +.5)/ 10;
        HTAB (14)
    : FRINT "ICl = "; INT (A1*180
        +.5)/ 100;
    HTAB (26)
    PRINT "IC2 = "; INT (A2*180
        +.5)/100
1270 PRINT
1280 PRINT " IP = "; INT (FIB*10
        +.5)/10;
        ETAB (14)
    : PRINT "IG1 = " INT (FG1*180
        +.5)/100
1290 PRINT
    : PRINT
1300 PRINT " PO = "; INT (PO / 100
        + .5) / 10; "KW";
    : 体AB (20)
    ; PRINT "RD = "; INT (PD*10 + .5)
        /10
1310 PRINT
1320 PRIN' " PIN = "; INT (PIN / 100
        + .5) / 10; "xW";
    : HTAB (20)
    : PRINT "PC = "; INT (PC*10 + .5)
        /10
1330 PRIN:
1340 PRINT " PP = "; INT (PP / 100
        + .5) / 10; "KW";
    HTAB (19)
    : PRINT "PG1 = "; INT (P1*10 + .5)
        / 10
1350 PRINT
1360 PRINT " RL = "; INT (RI*10
```

	+ .5) / 10;
;	PRINT "RC = "; $\mathrm{INT}(\mathrm{RC} \times 10$ + .5)
137 C PRINT ${ }^{10}$	
1386	PELNT " RPF $=$ "; INT (PO / PIN*1 $00+.5) / 100 ;$
:	atab (19)
:	$\begin{aligned} & \text { PRINT "PG2 }=" ; \text { INT }(P 2 * 10+.5) \\ & 10 \end{aligned}$
1390	Print
1400	print "gain = "; int (gain*10 $\pm .5) / 10 ;$
:	htab (19)
:	PRINT "ECC = "; ECC
	PRINT
	PRINT
:	PRINT
:	PRINT
:	print
1420	htab (18)
;	PRINT "DONE"
1430	PR ${ }^{\text {P }} 0$
1435	ghput "do you hant to hrite TO DISK FOR LATER PRINTING?
	(Y OR N) "; P1\$
1440	If PlS = "Y" tamen gosub 1750
1450	
	PRINT
1470	INPUT "WANT hinotaek COPY?"; KS
1480	If kS - "N" Then 1510
1490	IE K\$ = "Y" AND J\$ - "F" TGEN 99
$\begin{aligned} & 1500 \\ & 1510 \end{aligned}$	PR\# I: GOTO 1240
	END
152	input "Want to change plate, grid, or scgeen values? (P ; G, OR S)"; MS
153154	Print
	imput "heat angle in degrees?";
156	print
	input "what is the new value?";
	if MS = "P" then 1610
158	IF MS = "G" THEN 1630
1591600	If MS = "F'tam 1650
	GOT0 440
160	IB $(X / 15)=Y$
161	GOTO 440
162	
163	G010 440
1670	PRINT "TEIS PROGBA" INT TRACTS with an opebator to analize
	tae perforzance of triodes
	and tetrides in comyon catho
	de and cothon grid conrigurat
	IONS."
16	Print
	frint "ize operator hust first
	have a cosins scale and
	the tube's constayt curbint
	characteristics in his/her
	posession and Rnow how to
	USE THEM."
1700	Print
1710	print "to obtain teis informatio

 PRINT "RC = "; INT (RC*10 + .5)
 110
 137 C PRINT
1386 PEINT " EPR = "; INT (PO / PIN*1
$00+$.5) / 100;
: PRINT "PG2 = "; INT (P2*10 + .5)
110
1390 PRINT

$+.5) / 10 ;$
htab (19)
: PRINT "ECC = "; ECC
1410 PRINT
PRINT
PRINT
pRINT
PRINT
1420 нтав (18)
; PRINT "DONE"
1430 RR $\# 0$
1435 gnput "do you hant to hrite
TO DISK FOR LATER PRINTING?

1440 TF Pl\$ = "Y" THEN GOSUB 1750
1450 IF 日S = "N" THE 1510
1460 PRINT
1470 Infot "Want hiotank COPY?";
KS
1480 IF K $\$$
1500 PR\# 1: GOTO 1240
1510 END
1520 InPut "Want to change plate,
grid, or scagen values?
(P ; G, OR S)"; MS
1530 PRINT
1540 imput "huat angle in degrees?";
1550 PRINT
1560 input "what is the new value?";
1570 IF MS = "P" THEN 1610
1580 IF MS = "G" THEN 1630
1590 IF MS = "S ' teen 1650
1600 GOT0 440
$1610 \operatorname{IB}(X / 15)=Y$
1620 GOTO 440
$1630 \operatorname{GL}\left(\mathrm{X} / \mathrm{K}^{2} 5\right)=\mathrm{y}$
1640 GOTO 440
1650 G2 (X / 15) $=\mathbf{Y}$
1660 GOTO 440
1670 PRINT "THIS PROGBAi ImTERACTS
with an opepator to analize
WITE AN OPRBATOR TO ANALIZE
TEE PERFOBZANCE OF TRIODRS
and tetrcides in comyon catho
de and cotann grid configurat
IONS."
1680 PRIMT
16\% fRint "the operator hust first
have a cosing scale and
the tube's constant curbent
characteristics in his/her
posession and rnow how to
USE THEM."
1700 PRINT
1710 Print "to obtain teis informatio

```
    N THE USER IS REGERRED TO
        TEE ARTICLE:THE MACHLEIT
        POHER TUBE CALCULATOR: FOUND
        IN THE HACHLETT CATHODR
        PRESS VOL.22,NO. 4,1965;SIMI
    LAR DATA HAY &E FOUND IN
    :gEFERENCE DATA FOR BADIO
    ENG INEERS:"
1720 PRINT
1730 PRINT MTHE OPERATOR MUST DRAW
    GIS ONN LOAD LINE AND PROVID
    E tHE REqUESTED INFORMATION.
        THE PROGRAM THEN DOES TEE
        ANALISIS AND FRINTS THE
        RESULTS.""
1740 END
1750 INPUT 'WHAT TUBE TYPE?"; C$
1760 PRINT
1770 INPUT 'HHAST IS THE DATE?"; DS
1780 PRINT
1790 INPOT "WHAT CLASS OF SERVICE?';
                E$
1800 PRINT
1810 LNPUT "PERSON PERFORMING ANALYSI
        S3'1; F$
1820 PRINT
1830 GOTD 1840
1840 REM MARE POWER TUBE DATA
1850 T$ = "[D]"
    ; REM GTILMD
1860 INPOT "FRICH FILE NUMBER?";
    J
1870 作INT T$; "OFEN POHER TUBE DATA"
        ; J
1880 PRINT T$; "WRITE POWER TUBE
        DATA"; J
1890 PRINT AS
    O prini as
    : PRINT BS
```


Program 10. "MACHPRINT"

This program will print the data stored on disk when that option is used in Program 9.

50 PRINT
70 GET $2 \$$
80 GOTO 660
90 ERINT
100 杋 1
110 2RINT
120 FRINT "TUBE ITTPE"; TAB(20);
130 PRINT
140 PRINT "DATE"; TAB(25); D\$
150 PRINT
160 PRINT "Class of SERVICE"; tab(13
) ; E\$

```
170 PRINT
180 PRINT "BY"; TAB(27); F$
190 PRINT
200 PRINT "EB = "; EB, "RCI = ";
    BIAS, "EC2 = "; E2
210 PRINT
220 PRINT "Em = "; EM, "EPG = ";
    EP
230 PRINT "
```

\qquad

``` "
240 PRINT "EP = "; (EB - EM), "EG
    - "; (EP - bIAS)
250 PRINT
260 ATAB (10)
    : PRINT "plate";
    : HTAB (20)
    : PRINT "GRID";
```



```
    : print "screm"
270 нTAB (10)
    : PRINT "CURRENT";
    : HTAB (20)
    : PRINT "CJRRENT";
    : 纴AB (30)
    ; PRINT "CURRENT"
280 FRINT
290 PRINT "ANGLE"
300 FOR I = 0 TO 6
310 PRINT I*15;
    HIAB (10)
        PRINT INT (IB(I)*10 + .5)
            / 10;
        atab (20)
        PRINT INT (Gl(I)*10 + .5)
            / 10;
        atab (30)
        PRINT INT (G2(I)*10 + .5)
            / 10
320 PrinT
330 NEXI
340 PRINT
    : PRINT
350 PRINT
360 PRINT " IB = "; INT (AVIB*10
        + .5)/ 10;
    htab (14)
    : PRINT "TC1 = "; INT (Al*10 + .5)
        / 100;
    : 䅅AB (26)
    : PRINT "IC2 = "; INT (A2*10 + .5)
        /100
370 PRINT
380 PRINT " IP = "; INT (FIB*10
        + .5) / 10;
    HTAB (14)
    PRINT "IG1 = " INT (FG1*10 + .5)
        /100
390 PRINT
: PRINT
400 PRINT " PO = "; INT (PO / 100
        + .5)/10; "Кн";
    : HTAB (20)
    : PRINT "RD = "; INT (PD*10 + .5)
        /10
4 1 0 ~ P R I N T ~
420 PRENTM" PIN = "; INT (PIN / 100
        +.5)/10; "KN";
    : HTAB (20)
    : PRINT "PC m "; INT (PC*10 + .5)
        /10
430 PRINT
```

```
440 PRINT " PP = "; IAT (PP / 100
                + .5) / 10; "सी";
    : HTAB (19)
    : PRINT "PG1 = "; INT (PL*10 + .5)
        \(1: 10\)
450 PRINT
460 PRINT " RL = "; INT (RL*10
        + .5) / 10;
    : HTAB (20)
    \(:\) PRINT "RC \(=\) "; INT (RC*10 + .5)
        \(/ 10\)
470 PRINT
480 PRINT " REF = "; INT (PO / PIN*1
        \(0+.5) / 100 ;\)
    : Htab (19)
    : PRINT "PG2 = "; INT (P2*10 + .5)
        \(/ 10\)
490 PRINT
500 PRINT "GAIN = "; INT (GALN* 0
        .5) / 10 ;
    нitab (19)
    : PRINT "ECC = "; ECC
510 RRINT
    : PRINT
    PRINT
    : PRINT
    : PRINT
520 hitab (18)
    : PRINT "DONE"
530 PR \({ }^{2} 0\)
540 IF HS a "N"
550 PRINT
560 infut "Mant anotier copy?";
        K\$
    570 If k\$ = "N" tem 610
580 If kS = "Y" teen 100
590 PRF 1: GOTO 350
600 PRINT
610 INPUT "DO YOU hant TO DELETE
        tee file Jisi printed? ( \(y\)
        OR N)"; Q
620 IF QS = "Y" TEEN 640
630 END
640 PRINT T\$; "DELETE POWER TUBE
        DATA"; J
650 END
660 REM PRINT PONER tUbE DATA
670 TS = "[D]"
    : REM CTRL-D
680 INPUT "FHicR fILE NUMBER?";
690 Print t\$; "Open poner tube data"
        ; J
700 print ts; "read power tube data"
        ; J
710 INPUT As
    INPUT \({ }^{5} 5\)
    INPUT ©
    INPUT D\$
720 InPut es
    : INPUT \(\mathrm{E} \$\)
    : INPUT GS
7:0 INPOT EB
    INPUT EM
    input bias
    INPUT EP
740 INPOT E2
\(750 \mathrm{FOR} \mathrm{I}=0\) TO 6
760 INPUT IB(I)
        INPUT GI(I)
        INPOT G1(I)
INPUT G2(I)
```


or poon puraty

770	NEXT I
780	INPUT AVIB
:	INPUT PIB
790	INPUT Al
:	INPUT FGL
800	INPUT A2
810	INPUT PO
:	INPUT ED
;	INPOT R
820	INPUT PIN
:	INPUT PP

Program 11. "GRAPH MAKER"

This program interacts with the user to create graphs. It will plot either linear or \log scale along either axis. The user may enter any header and limits desired for either axis. The program will then create and label the desired graph. The user is practically limited to about 15 divisions vertically and 20 horizontally in linear mode, or 3 decades vertically and 4 horizontally in the logarithmic mode.

The program requires access to two binary files: "ALPHANUEERICS" in which character information is stored for the headers, and "SHAPE TABLE" which is a shape table of the numerals and plotting symbols used.

After the graph is created the user has 3 options: 1) atore it to disk for use elsewhere, 2) plot points on it manually by entering the coordinates desired, or 3) print the graph using a Silentype printer.

An additional note is required concerning "ALPHANUMERICS". This compact labeling system used in the headers is not based on the shape table functions of the Apple Computer, but is instead based on the byte structure of the graphics memory as deciphered by Professor Gernot Metze.

1 REM GRAPH MARER BY L.J. HERRINGT
ON
10 LOMEM: 18432
20 PRINT
30 INPUT 'KEFT LIMIT ON X AXIS? "; XR
: PRINT
40 INPUT 'RIGHT limit on X AXLS? "; XM
: PRINT
50 INPUT "DO YOU WANT A LINEAR or a log plot along the XAXIS? (LLN OR LOG) "; HL\$
PRINT
60 IF HLS = "LIN" THEN 90
70 IF HLS = "LOG" THEN 130
80 GOTO 50
90 INPUT 'HORIZONTAL INTERVAL? "; XI
: PRINT
$100 \mathrm{~B}=(\mathrm{XM}-\mathrm{XN}) / \mathrm{XI}$
110 IF B < = 25 GOTO 130
120 PRINT "DECREASE THE SEPARATION BETWEEN XMAX AND XMIN OR INCREASE THE INTERVAL"
: PRINT
: GOTO 30
130 INPUT "X AXIS HEADER?"; XAS
: PRINT
140 XI = LEN (XAS)
150 IF X1 > 39 THEN PRINT "TOO LONG"
$:$
PRINT
\vdots
GOTO 130
160 INPUT '1LOWER LIMIT ON Y AXIS? "; YN
: PRINT
170 INPUT "UPPER LIMIT ON Y AXIS? "; YM
: PRINT
180 INPUT "DO YOU WANT A LINEAR
or a log plot along the Y AXIS? (LIN OR LOG) "; VL\$
: PRINT
190 IF VLS = "LIN" THEN 220
200 IF VL\$ $=$ "LOG" THEN 260
210 GOTO 180
220 InPUT "VERTICAL INTERVAL? "; YI
: PRINT
$230 \mathrm{~A}=(\mathrm{M}-\mathrm{YN}) / \mathrm{YI}$
240 IF A $<=20$ GOTO 260
250 PRINT "DECREASE THE SEPARATION BETNEEN YMAX AND YMIN OR INCREASE THE INTERVAL"
: PRINT
: GOTO 160
260 INPUT "Y AXIS HEADER?"; YAS
: PRINT
$270 \mathrm{Yl}=\mathrm{LEN}$ (YAS)
280 IF Y1 > 31 THEN PRINT "TOO LONG"

PRINT

GOTO 260
290 INPUT "LINE DENSITY? ${ }^{*}$; LD
: PRINT
300 HCOLOR 3
SCALEa 1
: HGR

POKE - 16302, 0
HPLOT 20,180
CALL 62454
HCOLOR 0
310 D\$ " $[\mathrm{D}]$ "
REM CTRL-D
320 FRINT D\$"BLOAD ALP PGANUMERICS,AS4
000"
X4 $=\operatorname{INT}((40-X 1) / 2)$
HOR LINE = 1 TO 7
FOR I = 1 TO XI
XIS = RIGHTS (XAS, XI -I +1)
$X 2=($ ASC (X1S) - 32)*7 $+16687$
$A D R=9168+2 I N E * 1024+X 4$
$+I$
$X 3=$ PEEK ($\mathrm{X} 2+$ LINE)
POKE ADR, X 3
NEXT I
NEXT LINE
YU $=95$ - INT (Y1*3)
FOR I = 1 TO YI
YIS = RIGETS (YAS, YL +1

- I)
$Y 2=(A S C(Y 1 \$)-32) * 5+1638$
4
FOR J - 1 TO 5
Y3 $=\operatorname{PEER}(Y 2+J-1)$
$\mathrm{Y} 4=Y \mathrm{Y}+I * 6+\mathrm{J}$
KI = INT ($\mathrm{Y} 4 / 64$)
$J I=L N T((Y 4-K 1 * 64) / 8)$
 $\mathrm{N}=8192+1024^{\star} \mathrm{II}+128^{\star} \mathrm{J} \mathrm{I}$ $+40 * 21$
POKE N, Y3
NEXT J
NEXI I
550 PRINT D\$; "BLOAD SHAPE TABLE,AS4 000"
560 POKE 232, 0
POKE 233, 64
ROT= 0
SCALE= 1
570 IF HLS $=$ "LOG" THEN GOSUB 1000
580 IF HLS $=$ "LIN" THEN GOSUB 3000
590 IF VL\$ = "LOG" THEN GOSUB 2000
600 IF VLS = "LIN" taEn GOSUB 3500
610 FOR I = 1 T0 4000
NEXT
REP padSE
20 TEXT
630 INPUT "WANT TO PLOT SOME POINTS? (Y OR N) "; PL\$
PRINT
640 IF PLS $=$ "Y゙" THEN GOSUB 5010
650 INPUT "HANT TO PRINT GRAPH ON SILENTYPE? (Y OR N) "; PG $\$$
PRINT
660 PHS = "[Q]"
REM CTRL-Q:PI $\$=^{=1}:$ REM CTRL-H
70 IF PG\$ = "Y" THEN PRINT
POKE - 12529, 255
POKE - 12528, 7
FOKE - 12527, 18
PR\# 1
PRINT PES
80 PR華 0
690 PRINT "WANT TO SAVE GRAPH ON DISK? (Y OR N)"

：	PRINT
700	INPUT SG\＄
710	IF SG\＄$=$＂ N ＂THEN 770
720	InPut＂NAME OF GRAPH？＂；GNS
：	PRINT
730	PRINT DS＂BSAVE＂；GNS；＂，A\＄2000，L
740	HTAB（12）
：	PRINT＂GRAPH NOW ON DLSK＂
：	PRINT
770	END
1000	VO $=100{ }^{\text {（ }} 10$ ）
：	$L N=L O G(X N) / V 0$
：	$L M=L O G(X M) / V O$
：	U1＝INT（LN）
：	U2＝INT（LM）
1010	IF U2＜$>$ LM THEN U8 $=0$ goto 1030
1020	U8－1
1030	HIN＝INT（ $250 /(\mathrm{LM}-\mathrm{LN})$ ）
1040	FOR X＝U1 TO U2＋U8
1050	$\begin{aligned} \mathrm{U} 3 & =29+\text { INT }((X-L N) * H I N \\ & +.5) \end{aligned}$
1060	$\begin{aligned} U 4 & =\text { INT }(\operatorname{EXP}(U 0 * X) * 1000 \\ & +.5) / 1000 \end{aligned}$
1070	U6＝U3
1080	IF X＜LN GOTO 1110
1090	IF X＞LM GOTO 1210
1100	COSUB 1290
1110	$\begin{aligned} \text { IF X } & +.30103<\operatorname{INT}(\text { LN*1E8 } \\ & +.5) / 1 E 8 \text { GOTO } 1160 \end{aligned}$
1120	IF $\mathrm{X}+.30103>$ LK GOTO 1210
1130	
1140	$\begin{aligned} \mathrm{U} 6 & -\mathrm{U3}+\mathrm{INT}((.30103 * ⿴ 囗 十 \text { IN }) \\ & +.5) \end{aligned}$
1150	GOMEB 1290
1160	$\begin{aligned} & \text { IF } X+.69897<I N T(L N * 1 E 8 \\ &+.5) / 1 E 8 \text { GOTO } 1210 \end{aligned}$
1170	IF $\mathrm{X}+.69897>$ LM GOTO 1210
1180	$\begin{aligned} & \text { U4 }=\operatorname{INT}(\text { EXP (U0* }(\mathrm{X}+.69897) \\ &) \star 1000+.5) / 1000 \end{aligned}$
1190	$\begin{aligned} \text { U6 } & =\mathrm{U3}+\text { INT }((.69897 * ⿴ I N) \\ & +.5) \end{aligned}$
1200	GOSUB 1290
1210	NEXT X
1220	U4 $=\mathrm{XN}$
1230	U6＝ 29
1240	GOSJB 1290
1250	$\mathrm{U4}=\mathrm{xM}$
1260	U6＝ $29+\mathrm{HIN}$（ $(\mathrm{LM}-\mathrm{LN})$
1270	GOSUB 1290
1280	RETURN
1290	FOR I＝ 0 TO 174 STEP LD
：	HPLOT U6，I
：	NEXT
1300	IF $06>268$ THEN RETURN
1310	S $\$=\operatorname{STR}$ \＄（U4）
1320	AN＝U4
1330	IF U4＞＝ 1000 THEN GOSUB 4500
1340	IF U4＜＝．001 THEN GOSDB 4500
1350	S3＝LEN（S\＄）
1360	S2－183
1370	FOR J 1 TO S3
1380	$\begin{aligned} S 1 & =06-(S 3-1) \star 2 *(J \\ & -1) * 4 \end{aligned}$
1390	GOSUS 4000
1400	NEXT J
： 410	RETURN
2000	UO＝LOG（10）
：	LN＝LOG（YN）／UO
：	$L M=L O G(M M) /$ UO

$01=$ INT（LN）
$02=$ INT（LM）
2010 IF U2 $<>$ LM TREN U8 $=0$ GOTO 2030
2020 08＝ 1
2030 VIN＝INT（ $174 /$（LM－LN $)$ ）
2040 FOR Y＝U1 TO U2＋U8
2050 U3＝ 174 －INT（（Y－LN ）＊VIN $+.5)$
2060 U4＝INT（EXP（UO＊Y）＊10000 ＋．5）／ 10000
$2070 \quad \mathrm{U6}=\mathrm{U} 3$
2080 IF Y＜LH GOTO 2110
2090 IF Y＞LM GOTO 2210
2100 GOSUB 2290
2110 IF Y＋． 30103 ＜LNT（LN＊IE8 + ．5）／1E8 GOTO 2160
2120 IF Y＋． $30103>$ LM GOTO 2210
2130 U4 $=$ INT（EXP（UO＊（Y＋．30103） $) * 10000+.5) / 10000$
U6＝U3－INT（（．30103＊VIN） $+.5)$
2150 GOSUB 2290
2160 IF Y＋． 69897 ＜INT（LN＊1E8 $+.5) / 188$ GOTO 2210
2170 IF Y＋． $69897>$ LM GOTO 2210
2180 U4 $=$ INT（EXP（VO＊ $\mathbf{~ Y ~ + ~ . 6 9 8 9 7) ~}$ $) * 10000+.5) / 10000$
2190 U6－U3－INT（（．69897＊VIN） $+.5)$
2200 GOSUB 2290
2210 NEXT X
2220 U4＝YN
2230 U6－ 174
2240 GOSUB 2290
$2250 \mathrm{U4}=\mathrm{VM}$
2260 UG $=174-\operatorname{VIN} *(L M-L N)$
2270 GOSUB 2290
2280 RETURN
2290 FOR I＝ 29 TO 279 STEP LD HPLOT I ，U6
NEXT
2300 IF U6＜ 8 GOTO 2410
2310 S\＄＝STR \＄（04）
2320 AN＝U4
2330 IF AN $>=1000$ THEN GOSUB 4500
2340 IF AN $<=.001$ TREN GOSUB 4500
2350 S3＝LEN（S $\$$ ）
2360 FOR J＝ 1 TO S3
$2370 \mathrm{Sl}=15-(53-1) * 2+(\mathrm{J}$
$2380 \quad \mathrm{~S} 2=\mathrm{J6}$
2390 CNEJB 4000
2400 NEXT J
2410 RETURN
3000 B1 $=$ INT（ $250 / B$ B）
3010 FOR $X=0$ TO $250 / \mathrm{BL} \mathrm{STEP}$ SGN（BI）
3020 FOR I $=0$ TO 174 STEP LD HPLOT 29 ＋BL＊X，I
NEXT I
3030 IF $29+\mathrm{X} * \mathrm{Bl}>260$ GOTO 3120
3040 AN $=X N+X * X I$
3050 S\＄＝STR\＄（AN）
3051 IF AN $=0$ THEN GOTO 3060
3052 IF AN $<=.001$ then gosub 4500
3054 IF AN $>=1000$ THEN GOSUB 4500
3060 S3＝LEN（S $\$$
3070 FOR J $=1$ TO S3

3080	$\begin{aligned} \text { S1 } & =29+X * \text { B1 }+(J-1) \star 4 \\ & =(S 3-1) \star 2 \end{aligned}$
3090	S2 = 183
3100	cosus 4000
3110	NEXT J
3120	NEXT X
3130	RETUR
3500	$\mathrm{Al}-\mathrm{INT}(174 / \mathrm{A})$
3510	FOR $Y=0$ TO 174 / AI STEP SGM (A1)
3520	FOR I = 29 TO 279 STEP LD
:	hplot r, 174-Al*y
:	NEXT
3530	$\mathrm{AN}=\mathrm{YN}+\mathrm{Y} * \mathrm{YI}$
3540	SS = STR ($\mathrm{AN}^{\text {) }}$
3542	if an $=0$ then goto 3550
3544	IF AN < = . 001 then Gosub 4500
3546	IF AN > = 1000 THEN GOSUB 4500
3550	S3 = LEN (SS)
3560	FOR J - 1 TO S3
3570	
3580	S2 $=174-\mathrm{Al}$ *Y
3590	gosub 4000
3600	NEXI J
3610	NEXT Y
3620	RETUR
4000	REM this sbe numbers lines
4010	S1\$ = RIGHT\$ (LEFT\$ (S\$, J), 1)
4020	if $\operatorname{sis}=" .0$ THEN DRAW 11 at S1,
	GOTO 4070
4030	
4040	if Sls = "E" then draw 13 at si, S2
	G0TO 4070
4050	IF S1\$ $=$ " 2 " THEN DRAW 14 AT SL,
4060	draw val (S1\$) AT S1, S2
4070	RETURN
4500	REM THIS SBR CONVERTS TO EXP NOTATION
4510	$\mathrm{E}=\mathrm{LOG}$ (AN) / LOG (10)
4520	El $=$ INT (E)
4530	AM $=$ INT (AN / 100 ${ }^{\circ} \mathrm{El}-2$) + .5)

$\begin{aligned} 4540 \text { S } \$ & =\operatorname{LEFT} \$(S T R \$(A M), 4)+" \mathrm{~L} \\| \\ & +\operatorname{STR}(E 1) \end{aligned}$		
4550 RETURN		
5000	REM THIS SBR PROVIDES MANUAL GRAPK CAPABILITIES	
5010 INPUT 'HOW MANY POINTS?'; PN		
: PRINT		
5020 POKE - 163		
:	POKE - 16304, 0	
$5030 \mathrm{IF} \text { HL\$ = "LOG" THEN XO = LOG (XN }$		
$5040 \text { LF VL\$ }=\text { "LOG" THEN YO }=\text { LOG (YN }$		
5050 FOR I $=1$ TO PN		
5060	PRINT 'ENTER X,Y COORDS OF POINT *"; I	
:	PRINT	
5070 INPUT XC, YC		
5080	$\begin{gathered} \text { IF 日LS }=\text { "LOG" THEN X9 }=29 \\ + \text { INT }((\operatorname{LOG}(X C) / U 0 \\ \quad-X 0) * H I N+.5) \end{gathered}$	
$\begin{gathered} : \\ 5090 \end{gathered}$	GOTO 5100	
	$\begin{gathered} X 9=29+I N T((X C-X N) * B 1 \\ / X I+.5) \end{gathered}$	
5100	IF VLS = "LOG" THEN Y9 = 174 - INT ((LOG (YC) / UO - YO)*VIN + . 5)	
$\begin{gathered} : \\ 5110 \end{gathered}$	GOTO 5160	
	$\begin{gathered} Y 9=174-I N T((Y C-Y N) * A I ~ \\ / Y I+.5) \end{gathered}$	
51.20	IF X9 < 29 THEN PRINT ' X COORD TOO SMALI"	
:	GOTO 5060	
5130	$\begin{aligned} & \text { IF } X 9>279 \text { THEN PRINT " } \mathrm{X} \\ & \text { COORD TOO LARGE" }\end{aligned}$	
:	GOTO 5060	
5140	IF Y9 < 0 THEN PRINT ITY COORD TOO LARGE"	
:	GOTO 5060	
5150	IF Y9 > 174 THEN PRINT "Y COORD TOO SMALL"	
:	GOTO 5060	
5160	DRAH 15 AT X9, Y9	
5170	NEXT I	
5180	POKE - 16302, 0	
:	FOR I $=1$ TO 4000	
:	NEXT	
5190	TEXI	
5200	RETURN	

1100 + STR \$ (ED)
4550 RETURN
5000 REM THIS SBR PROVIDES MANUAL GRAPK CAPABILITIES
010 INPUT "HOW MANY POINTS ?"; PN PRINT

POKE - 16301, 0
5030 IF HLS = "LOG" THEN XO = LOG (XN
) : vo
5040 LF VLS = "LOG" THEN YO = LOG (YN
050 FOR I = 1 TO PN
5060 PRINT 'ENTER X,Y COORDS OF POINT \#"; I
: PRINT
5070 INPUT XC, YC
5080 IF 日LS = "LOG" THEN X9 = 29

+ INT ((LOG (XC) / UO
$-\mathrm{X0}$) * $\mathrm{HIN}+.5$

5090 X9 = $29+$ INT ($(X C-X N)$ *B1
(XI + . .5)
IF VL\$ * "LOG" THEN Y9 = 174

- INT ((LOG (YC) / UO

GOTO 5160
(YI + .5)
5120 IF X9 < 29 THEN PRINT 'X COORD
GOTO 5060
IF X9 > 279 THEN PRINT 'X GOTO 5060
IF Y9 < 0 THEN PRINT ITY COORD
GOTO 5060
5150 IF Y9 > 174 THEN PRINT "Y
GOTO 5060
5160 DRAH 15 AT X9, Y9
170 NEXI I
5180 POKE - 16302, 0
= 1 T0 4000
5190 TEXT
5200 RETURN
]

Program 12. "GRAPH DISPLAYER"
This short program permits' the user to view any graph previously stored to disk.

1 REM GRAPH DISPLAYER BY L.J.HERR INGTON
10 INPUT "WEICH DISPLAY?"; AS
20 HGR : POKE - 16302, 0
$30 \mathrm{DS}=$ " $[\mathrm{D}]$ "
: REM CTRL-D
40 HCOLOR= 3
: HPLOT 0, 179
: CALL 62454
50 HCOLOR= 0
60 PRINT D\$; "BLOAD"AS; ",A\$2C00"
70 END

This program permits the user to examine the shapes on file in the shape table.

```
                    1 REM SHAPE DISPLAYER BY L.J.uERR
                        INGTON
    10 SCALE-1
    20 ROT= 0
    30 HCOLOR= 3
    40 D$ = "[D]"
    : REm CTRL-D
    SO grint dS; "bload shape table,as4
        000"
    60 POKE 232,00
    POKR 233,64
    70 HGR
    80 FOR I = 1 TO PEER (16384) STEP 1
        O
        FOR J=0 TO 9
        IF I + J > PEEX (16384)
                THEN GOTO 95
            DRAW I + J AT J*27, I + 20
        NEXT J
    100 NEXT I
    110 END
]
```

Program 14. "MEMORY EXAMINER"
This program uses the Spinwriter and prints the HEX version of the contents of a range of memory as seen through use of the Apple monitor. It was written because for some unexplained reason it was not possible to ase the regular monitor commands to dump onto the Spinwriter.

	REM MEMORY EXAMINER BY L.J. HERR	130	IF Al $=10$ then	PRINT "A";
10	input "Addresses in bex or decim		GOTO 200	
	AL? "; A\$	140	if AI = 11 max	PRINT "B";
	Print			
20	If AS = "Bex" then coto 400		GOTO 200	
30	input "starting address? ";	150	If Al $=12$ thex	PRIAT "C";
	ST			
40	Input "ending address? "; SP	:	GOTO 200	
50	PR\% 1	160	If Al $=13$ tere	PRINT "D";
60	PRINT			
70	POR $\mathrm{I}=$ ST $208+\mathrm{SP}$ STEP 8	:	GOTO 200	
80	tr as = "EEx" thex coto 330	170	IF AI = 14 TEEN	Print "E";
90	Prist I;			
:	atab (10)	:	COTO 200	
100	FOR J = 0707	180	If Al $=15$ tera	PRINT "r";
110	Al = INT (PEEK ($\mathrm{I}+\mathrm{J}$) / 16)			
		$\therefore 0 i^{2}$	G010 200	
120	$\Delta 2=\operatorname{PrEx}(\mathrm{I}+\mathrm{J})-\mathrm{A}^{*} \times 16$; 0	PRINT Al;	

200	If A2 = 10 then PRINT "A";
;	coto 270
210	IF A2 = 11 TEEN PRINT "B";
:	GOTO 270
220	IF A2 - 12 THEN PRINT "C";
:	GOTO 270
230	IP A2 = 13 THEN PRINT "D";
:	G0T0 270
240	If A2-14 TEES PRINT "E";
:	GOTO 270
250	IF A2 = 15 THEN PRINT "F";
:	GOTO 270
260	PRINT A2;
270	PRINT " ";
280	NERT J
:	PRINT
290	PRINT
300	NEXT I
;	PRINT
310	PR $\ddagger 0$
320	END
330	BI = INT ($1 / 4096$)
340	B2 $=$ InT ($(\mathrm{I}-\mathrm{Bl}$ * 4096) / 256)
350	$B 3=\operatorname{INT}_{16}((I-B 1 * 4096-B 2 * 256)$
360	$\begin{aligned} B 4 & =I N T(I-B 1 * 4096-B 2 * 256 \\ & -B 3 * 16) \end{aligned}$
370	GOTO 710
$\begin{gathered} 380 \\ : \end{gathered}$	PRINT B1\$; B2\$; B3\$; B4\$; htab (10)
390	GOTO 100
400	INPUT "ENTER HEX STARTING ADDRES S "; STS
410	PRINT
420	INPUT "ENTER HEX END ADDRESS "; SPS
430	PRINT
440	H1\$ = ST\$
:	GOSUB 490
450	$\mathbf{S T}=\mathbf{G 6}$
460	H1\$ $=$ SP\$
:	GOSUB 490
470	SP = G6
480	GOTO 50
490	盺 = RIGHT\$ (LEET§ (HI\$, 1), 1)
500	H3 \$ = RIGET\$ (LEETS (H1\$, 2), 1)
510	H4\$ = RIGET\$ (LEFT\$ (HI\$, 3), 1)

```
520 H5$ = RIGET$ (LEFT$ (HI$, 4),
    1)
530 G$ m H2$
    : GOSUD 630
540 G2 = G*4096
550 G$ = H3$
    : GOSUB 630
560 G3 = G*256
570 G$ = H4$
    : GOSUB 630
    580 G4 m G*16
590 G$ = H5$
    : GOSDB 630
    600 G5 = G
610G6-G2+G3+G4+G5
6 2 0 ~ R E T U E N ~
630 IF G$ = "A" TEEN G = 10
: RETURN
640 LF G$ = "B" THEN G=11
    RETURN
650 IF G$ = "C" tHEN G = 12
    : RETURN
660 IF G$ = "D" THEN G = 13
    : RETURN
670 IF G$ = "E" THEN G = 14
    : RETURN
680 IF G$ = "R" THEN G = 15
    : RETURN
690G = VAL (G$)
700 RETURN
710 B1$ = STR$ (B1)
720 B2$ = STR$ (B2)
730 B3$ = STR $ (B3)
740 B4$ = STR$ (B4)
750 C$ = Bl$
    ; GOSUB 840
760 B1S = C$
770 c$ = B2$
    : GOSUB 840
780 B2$ = C$
790 CS = B3$
    : GOSUB 840
800 B3$ = C$
810 C$ m B $ $
    : GOSUB 840
820 B4$ = C$
830 GOTO 380
840 IF C$ = "10" THEN CS = "A"
850 IF C$ = "11" THEN CS = "B"
860 IF CS = "12" THEN C$ = "C"
870 IF CS = "13" THEN CS = "D"
880 IF CS = "14" THEN C$ = "E"
890 IF C$= "15" THEN C$ = "F"
900 RETURN
l
```

Program 15. "SPINPLOTTER"
This program was written by Professor Gernot Metze and is included here for completeness. It permits the literal transcription of page 1 of the Apple graphic memory using the Spinwriter. Hence the user can load a
graphics display using "GRAPH DISPLAYER", then run "SPINPLOTTER" to make a hard copy.

10 REM SPINPLOTTER BY G.A.METZE
20 LOMEM: 16384
30 DIM RS(127)
40 ERF1
50 PRINT CURS (13); CHR $\$(27)$;
CHR $\$(30)$; CHR $\$(3) ;$ CHR $\$(2$
7): CHR\$ (31); CZK\$ (6);

60 FOR A - 0 TO 1

FOR B = 0 TO 1
FOR C $=0$ TO 1
FOR D $=0$ TO 1
FOR E M OTC 1 FOR $F=0$ TO 1

FOR G $=0$ TO
R $\$(64 * \mathrm{~A}+32 * \mathrm{~B}$ $+16 * \mathrm{C}+8 * \mathrm{D}$
$+4 * E+2 * E$
$+G)=$ CHRS (46

- 14*G) +
) + CuR $\$(46$
-14 ² $^{\circ}$) CHR\$ (46-14*D) + CAR $\$(46$ $-14 * C)+$ CER\$ (46-14*B
]

```
                                    ) + CRR$(46
```

) + CRR$(46
 - 14*A)
 - 14*A)
 NEXI
 NEXI
 NEXT
 NEXT
 NEXT
 NEXT
 NEXT
 NEXT
 NEXT
 NEXT
 NEXT
 NEXT
 NEXT
NEXT
FOR K m O TO 2
FOR K m O TO 2
FOR J = 0 to 7
FOR J = 0 to 7
FOR I = 0 TO 7
FOR I = 0 TO 7
N=8192 + 1024*I + 128*J
N=8192 + 1024*I + 128*J
+40*K
+40*K
FOR L = 0 TO 39
FOR L = 0 TO 39
B = PEER (N + L)
B = PEER (N + L)
IF B > 127 THEA B = B
IF B > 127 THEA B = B
-128
-128
PRINT E$(B);
 PRINT E$(B);
MEXT
MEXT
PRINT
PRINT
NEXT
NEXT
NEXT
NEXT
210 NEXT
210 NEXT
22!) PR\ O
22!) PR\ O
230 PRINT CRR\$ (7); CHR\$ (7); CHR\$ (
230 PRINT CRR\$ (7); CHR\$ (7); CHR\$ (
7);
7);
240 END

```
    240 END
```

Program 16. "SHAFE TABLE"
This is a binary listed shape table in the standard Apple format for such. It contains the numerics plus plotting shapes for use in "GRAPH MAKER".

16384	OF 00200028003000	16456	2D $24 \mathrm{F7} 242 \mathrm{C}$ 3D 0000
16392	3800400048005000	16464	21643 C 2700000000
16400	5800620069007000	16472	24242 D 3635 FD 363 F
16408	7300780080008800	16480	05000924243 F 362 d
16416	5050242406000000	16488	002 D 24243 F 363600
16424	2D DC 2C 25 3C 2F 0000	16496	0500002438000000
16432	2D $242 \mathrm{2F} 243 \mathrm{~F} 050000$	16504	2D 3F 64 FD 24209600
16440	092424 1F 36200000	16512	C8 28 20 0700000000
16448	2D 24 3F 242 D 070000	16520	OC $1617 \mathrm{OC} \mathrm{1C} \mathrm{OE} 00 \mathrm{FF}$

Program 17. "ALPHANUMERICS"

This binary file contains two coded versions of all the ASC characters. The characters for the vertical header are listed first with 5 bytes per character. Then the characters for the horizontal header are listed with 7 bytes per character. The total, 12 bytes/character, still represents a considerable savings over a shape table of similar content, but cannot be easily plotted anywhere on the graph except in the header locations.

16384		16584	80 F7 F7 F7 80 FF BE 80
16392		16592	BE FFFD FE FE FECI 80
16400	80 EB 80 EB ED D5 80 D5	16600	F7 EB DB BE 80 FE FE FE
16408	DB 9D 9B F7 EC DC C9 B6	16608	FE $80 \mathrm{DF} E 7 \mathrm{DF} 8080 \mathrm{EF}$
16416	CA FD FA FF FF 8F EF FF	16616	F7 FB 80 Cl BE BE BE Cl
16424	FFE3 DD BEFFFFBEDD	16624	$80 \mathrm{B7}$ B7 B7 CF Cl BE BA
16432	E3 FF DD EB 80 EB DD F7	16632	
16440	F7 Cl F7 F7 FF FE FD FF	16640	B6 B6 B6 D9 BF BF 80 BF
16448	FF F7 F7 F7 F7 F7 FF FF	16648	BF 81 FEFE FE 8183 FD
16456	FE FF FF FD FB F7 EF DF	16656	FE ED 8380 ED F3 FD 80
16464	Cl BA B6 AE Cl FF DE 60	16664	9C Eb F7 EB 9C 9F Ef F0
16472	FE FF DC BA B6 B6 CE BD	16672	EF 9F bC BA B6 AE 9E 00
16480	BE B6 A6 99 F3 EB DB 80	16680	00000000 FF FF FF FF
16488	. $F B$ 8D AE AE AE Bl El d6	16688	
1649\%	B6 B6 B9 BF B8 B7 AF 9F	16696	F7 57 F7 F7 FF F7 EB EB
16504	C9 B6 B6 B6 C9 CE B6 B6	16704	EB FF FF FF FF EB Eb Cl
16512	B5 C3 FF FF EB FF FF FF	16712	EB Cl Eb EB F7 C3 F5 E3
16520	FE EG FF FF F7 EB DD BE	16720	D7 El F7 FC DC EF E7 FB
16528	FE EB EBEB EB EB FF be	16728	CD CF FB F5 F5 FB D5 ED
16536	DD Eb F 7 dF bF b2 AF DF	16736	D3 E7 F7 F7 FF FF FF FF
16544	C1 BE A2 F2 C5 EO DB BB	16744	DF EF F7 F7 F7 EF DF FD
16552		16752	FB F7 F7 F7 FB FD F7 D5
16560	BE BE BE CD 80 be be be	16760	E3 F7 E3 D5 F7 FF F7 F7
16568		16768	C1 F7 F7 FF FF FFfefer
16576	B7 B7 BE Cl BE be ba b8	16776	FF F7 Fb FF Fefe Cl ff

16784		16952	FDCl Cl FD FD El ED FD
16792	E7 FF DF EF P7 FB PD PF	16960	PD C3 FD PD FD CD DD C3
16800	E3 DD CD D5 D9 DD E3 F7	16968	DD DD DD Cl DD DD DD E3
16808	F3 F7 E7 E7 F7 E? E3 DD	16976	F7 F7 E7 E7 F7 E3 DF DF
16816	DF E7 Fb FD Cl Cl dFem	16964	DF DF DF DD E3 DD ED F5
16824	E7 DF DD E3 EF E7 Eb Ed	16992	F9 F5 ED DD PD FD FD FD
16832	Cl EF EF Cl FD El dF DF	17000	FD FD Cl DD C9 D5 DS DD
16840	DD E3 C7 FB FD El DD DD	17008	DD DD DD DD D9 D5 CD DD
16848	E3 C1 DF EF Fy Fb FB FB	17016	DD E3 DD DD DD DD DD E3
16856	E3 DD DD E3 DD DD E3 E3	17024	E1 DD DD El FD FD FD E3
16864		17032	DD DD DD D5 ED D3 E1 DD
16872	F7 FF F7 FF FF FF FF F7	17040	DD El 55 ED DD E3 DD FD
16880	FF F7 F7 Fb de Ef F7 FB	27048	E3 DF DD E3 Cl E7 E7 E7
16888	F7 EF DF fe fr Cl fr Cl	17056	F7 F7 F7 DD DD DD DD DD
16896	FF FF FD Fb E7 EF F7 EB	17064	DD E3 DD DD DD DD DD EB
16904	FD E3 DD EF F7 F7 FF E7	17072	F7 DD DD DD D5 D5 C9 DD
16912	E3 DD D5 C5 E5 FD C3 F7	27080	DD DD Eb F7 EB D' DD DD
16920	EB DD DD Cl DD DD El DD	17088	DD EB F7 F7 F7 F7 Cl DF
16928	DD El DD DD El E3 DD DD	17096	EF F7 Fb FD Cl 0000 FF
16936	FD FD DD E3 EI DD DD DD	17104	

REFERENCES

Allman, M. E. and S. A. Bowhill (1976), Feed system design for the Urbana incoherent-scatter radar antenna, Aeron. Rep. No. 7l, Aeron. Lab., Dept. Elec. Eng., Univ, of I11., Urbana-Champaign.

Andrew General Isque Catalog, August 1973
Bloodgood, Peter (1965), The Machlett power tube calculator, Machlett Cathode Press, 22, 30-37.

Brown, G. H. and H. C. Morrison (1949), Method of multiple operation of transmitter tubes particularly adapted for television, RCA Review, June 1949, 161-172,

Bruene, W. B. (1956), Linear power amplifier design; proc. of InE, 17541759.

Burwasser, A. J. (1981), Wideband monofilar autotransformers Part 1, R. Fs: Design, January/February 1981, 38-44.

Burwasser, A. J. (1981), Wideband monofilar autotransformers Part 2, R.E. Design, March/April 1981, 20-29.

Clarke, K. K. and D. T. Hess (1971), Communication Circuits: Analysis and Design, (Addison Wesley).

Countryman, I. D. and S. A. Bowhill (1979), Wind and wave observations in the mesosphere using coherent-scatter radar, Aeron. Rep. 68, Aeron. Lab., Dept. Elec. Eng., Univ. of Ill., Urbana-Champaign.

Davis, A. W. and P. J. Kahn (1971), Coaxial bandpass filter design, IEEE Trans. Micro. Theory and Tech., MTT-19, 373-380.

Dicke, R. H., Object Detection System, U.S. Patent No. $2,624,876$ issued January 6, 1953.

Doolittle, H. D. (1964), Vacuum power tubes for pulse modulation, Machlett Pulse Tubes, Machlett Laboratories Inc.

Evans, 3. V. (1969), Theory and practice of ionosphere study by Thompson scatter radar, Proc. IEEE, 57 非, 496-530.

Fair-Rite Products Corp (1977), Use of ferrites for wideband transformers, Fair-Rite Ferrite Cores and Assemblies for the Electronics Industry, Wallkill, New York.

Frey, G. D. (1977), VMOS power emplifiers - this broadband circuit outputs 8W with a 15 dB gain, EDN, Sept. 5, 1977, 83-85.

Golay, Marcel J. E. (1961) Complementary series, IRE Trans. Inform. Theory, IT-7, 82-87.

Gray, R. W. and D. T. Farley (1973), Theory of incoherent-scatter measurements using compressed pulses, Radio Sci., 8, 123-131.

Granberg, H. (1975), Broadband transformers and power combining techniques for RF, Motorola Application Note, AN-749.

Hess, G. C. and M. A. Geller (1976), The Urbana meteor-radar system: design, development and first observations, Aeron. Rep. No. 74, Aeron. Lab., Dept. Elec. Eng., Üniv. of Ill., Urbana-Champaign.

Ioannidis, G. and D. T. Farley (1972), Incoherent scatter observations at Arecibo using compressed pulses, Radio Sci,s 7, 763-766.

Key, E. L., E. N. Fowle and R. D. Haggarty (1959), A method of sidelobe suppression in phase coded pulse compression systems, Tech. Rep. No. 209, Lincoln Laboratory, Mass. Inst. of Technology, Lexington, Mass. Killpatrick, W. K. (1957), Criterion for vacuum sparking designed to include both RF and dc, Rev. Sci. Inst., 824-826.

Lefferson, P. (1971), Twisted magnet wire transmission line, IEEE Trans. on Parts, Hybr., and Pack., PHP-7, No. 4, 148-154.

Leighton, L. and E. Oxner (1980), HF power amplifier design using VMOS power FETs, R.F. Design, January 1980 , 32-37.

Lindner, J. (1975), Binary sequences up to length 40 with best possible autocorrelation function, Electronic Letters, $11,50 \%$.

Machiett Laboratories, Inc. (1964), Machlett Power Tubes.
Martin-Vegue, C. A. (1961), A 16 megawatt 100 microsecond pulse modulator, Machlett Cathode Press, 18, No. 1, 16-19.

McDonald, R. S. (1982), Low cost wideband dual directional coupler, R.F. Design, 5 非3, 34-36.

Motorola Semiconductor Products Inc. (1972), Mounting stripline-opposedemitter (SOE) transistors, Motorola Application Note, AN-555.

Nagle, J. (1976), Use wideband autotransformers in RF systems, Electronic Design, 3, February 2, 1976, 64-70.

Oxner, E. (1976), Try MOSPOWER EETs in your next broadband driver, Siliconix, Inc., Tech. Article, TA76-1.

Perna, Vincent F, Jr. (1979), The RF Capacitor Handbook, American Tech. Ceramics, Inc., Huntington Stacion, New York.

Pitzalis, 0., Jr. and T. P. M. Couse (1968), Broadband transformer design for RF power amplifiers, Proc., 1968 Elec. Comp. Conf., 207-216.

Rastogi, P. K. and S. A. Bowhill (1976b), Scattering of radio waves from the mesusphere-2. Evidence for intermittent mesospheric turbulence, J. Atmos. Terr. Phys., 38, 449-462.

Ruthroff. C. L. (1959), Some broadband transformers, Proc. of IRE, Aug., 1959, 1337-1342.

Sartori, E. F. (1968), Hybrid transformers, IEEE Trans, on Parts, Material, and Packaging, PMP-4, 59-66.

Skolnik, M. I. (1980), InLroduction to Radar Systems, 2nd ed.
Snelling, E. C. (1969), Soft Ferrites, Chemical Rubber Company.
Somlo, P. I. (1967), The computation of coaxial line step capacitances, IEEE Trans. Micro. Theory and Tech., MTT-15, 48-53.

Tseng, C. C. and C. H. Liu (1972), Complementary sets of sequences, IEEE Trans. Infor. Theory, IT-18, No. 5, 644-652.

Turyn, R. (1968), Sequences with small correlation, Error Correcting Codes, ed. H. Mann, Wiley, New York, 195-228.

Whinnery, J. R. and H. W. Jamieson (1944), Equivalent circuits for discontinuities in transmission lines, proc. of IRE, 33, 98-114.

