General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)

UNIVERSITY OF ILLINOIS URBANA

AERONOMY REPORT NO. 109

PHASE MODULATING THE URBANA RADAR

(NASA-CR-172993) PHASE MODULATING THE URBANA RADAR (Illinois Univ.) 170 p HC A08/MF A01 CSCL 17I N83-33015

Unclas G3/32 15051

by L. J. Herrington, Jr. S. A. Bowhill

March 1, 1983

Library of Congress ISSN 0568-0581

Aeronomy Laboratory Department of Electrical Engineering University of Illinois Urbana, Illinois

Supported by National Aeronautics and Space Administration

AERONOMY REPORT

N O. 109

PHASE MODULATING THE URBANA RADAR

by

L. J. Herrington, Jr. S. A. Bowhill

March 1, 1983

Supported by National Aeronautics and Space Administration Grant NSG 7506 Aeronomy Laboratory Department of Electrical Engineering University of Illinois Urbana, Illinois

.

ABSTRACT

The design and operation of a switched phase modulation system for the Urbana Radar System are discussed. The system is implemented and demonstrated using a simple procedure. The radar system and circuits are described and analyzed.

PRECEDING PAGE BLANK NOT FILMED

TABLE OF CONTENTS

	Pa	age
ABSTRACT	•	iii
TABLE OF CONTENTS	•	v
LIST OF TABLES	• v :	iii
LIST OF FIGURES	, .	ix
1. INTRODUCTION	•	1
1.1 The Mesosphere		1
1.2 Thompson Scatter Rødar	• •	2
1.3 Coherent Scatter Radar	• •	3
1.4 Meteor Radar	• •	4
1.5 Range Resolution and the Radar Equation	• •	4
1.6 Waveform Design	• •	7
1.7 Summary and Statement of the Problem	• •	8
2. PHASE CODING OF RADAR TRANSMITTERS	•••	9
2.1 The Purpose of Phase Coding	• •	9
2.2 Barker Coding	• •	10
2.3 Complementary Coding	••	14
2.4 Maximal Length Sequences	••	16
2.5 Summary	0 •	17
3. THE URBANA RADAR: A DESCRIPTION	••	20
3.1 Introduction	• •	20
3.2 The Phase Switch and Gated Amplifier	• •	20
3.3 The 814B Linear Amplifier	••	27
3.4 The 4CX5000A Intermediate Power Amplifier	••	33
3.5 Units 3 and 4: The Driver and PAs	• •	40
3.6 Driver Output Power Divider	• •	57

PRECEDING PAGE DI ANK NOT FILMED

v

		P	age
	3.7	Final Output Combiner Networks	60
	3.8	TR-ATR Switch	60
	3.9	High Voltage and Bias Supplies	62
	3.10	The Modulator	66
	3.11	Timing and Control	74
	3.12	The Receiving System	82
	3.13	Suggestions for Improvements	93
	3.14	Summary	97
4.	DESIG	N CONSIDERATIONS FOR THE URBANA RADAR	98
	4.1	Introduction	98
	4.2	Frequency Selection	98
	4.3	Bandwidth Criteria	99
	4.4	Pulse Length Considerations	101
	4.5	Code Selection	102
	4.6	Summary of Design	103
5.	RESUL	TS AND CONCLUSIONS	105
	5.1	Results	105
	5.2	Conclusions	105
APP	ENDIX	I WIDEBAND FERRITE TRANSFORMERS AND DEVICES	108
	I.1	Introduction	108
	I.2	Conventional Wideband Transformers	108
	I.3	Wideband Autotransformers	115
	1.4	Transmission Line Transformers	115
	I.5	RF Combiners and Dividers	117
	I.6	Summary	1 20
ልዎዎ	ENDIX	TT IMPEDANCE MATCHING OF NONLINEAR LOADS	121

vi

APPENDIX III	RIGID COAXIAL CABLE	126
APPENDIX IV	PROGRAM LISTINGS AND DESCRIPTIONS	134
REFERENCES .		154

Page

LIST OF TABLES

Table		Page
2.1	Sequences with small max $ c_j $	12
2.2	Some features of binary sequences with best possible auto-	
	correlation function	13
2.3	Number of shift register stages versus length of generated	
	sequence, number of possible sequences, and feedback stage	
	connections	19
3.1	Transmitter ratings	22
3.2	Continental Electronics 814B specifications	34
3.3	87 KVA plate supply taps	65
3.4	Modulator specifications	ଶ 8
3.5	T618 output connections	72
3.6	T617 internal connections	73
3.7	Characteristics of the preamplifier in the Urbana Radar	
	receiving system	92
111.1	Production test voltage versus outer conductor diamater	129

viii

LIST OF FIGURES

Figure		Page
2.1	Seven-, eleven- and thirteen-bit Barker codes and their	
	autocorrelation functions	11
2.2	Demonstration of the effect of limited system bandwidth	
	on a 13-bit Barker code	15
2.3	Shift register method of generation of maximal length	
	sequences	18
3.1	Block diagram of the Urbana Radar System	21
3.2	Block diagram of the phase switch and low level gated	
	amplifier and the associated circuitry	23
3.3	Phase switch circuit diagram	24
3.4	Phase switch driver circuit diagram	25
3.5	RF amplifier circuit diagram	27
3.6	Gate amplifier circuit diagram	28
3.7	Output detector diagram	29
3.8	RF output power meter circuit diagram	30
3.9	(a) RF amplifier shown mounted in equipment rack. The	
	amplifier is the light gray unit on the bottom. The output,	
	power meter is shown mounted just above the amplifier. The	
	next panel (black) is the mount for the 814B output power	
	meter discussed in Section 2 of this chapter	31
	(b) Chassis layout of the RF amplifier of unit 1	31
	(c) Internal construction of the RF detector unit	32
	(d) Component layout of the two circuit boards mounted in	
	the unit 1 chassis	32

j ...

....

Figure

þ

3.10	RF amplifier circuits of the Continental Electronics 814B	
	VHF transmitter	35
3.11	814B power supply block diagram	36
3.12	814B power supply circuit diagram	37
3.13	814B peak power meter and "RF on" detector circuit	
	diagram	38
3.14	4CX5000A (unit 2) RF amplifier schematic	39
3.15	Unit 2 bias supply	41
3.16	Unit 2 screen supply	42
3.17	Picture of units 1, 2, and 3, showing unit 2 on the right,	
	uait 1 in the center, and the 814B linear amplifier on	
	the left	43
3.18	Detail of the bias input portion of the 4CX5000A input	
	matching network	44
3.19	Simplified physical structure of the driver and power	
	amplifiers	45
3.20	Details of the input circuit of the driver and power	
	amplifiers, showing the 20 Ω transmission line, irrathane	
	"collar" capacitor C301 and the toroidal variable induc-	
	tor 1,301	46
3.21	Simplified schematic of the input match network	48
3.22	Model of the output match network	49
3.23	Typical passband of the ourput match network of units 3 or	
	4, as generated by the program named PA BANDWIDTH	51
3.24	Bias circuits of units 3 and 4	52
		-

х

Page

Figure

3.25	Anode voltage rating versus outer grid to anode spacing	
	from Doolittle (1964)	53
3.26	Picture of the driver (unit 3). Each of the four power	
	amplifiers has an identical appearance	56
3.27	Driver output (and PA input) match network	58
3.28	Bandpass of the asynchronous T-match network	59
3.29	Final output combiner networks	61
3.30	T/R switch diagram	63
3.31	25-kV power supply block diagram	64
3,32	25-kV power supply and bias supply for units 3 and 4	
	circuit diagrams	67
3.33	Modulation simplified schematic	69
3.34	Modulator power supplies (a) supply for V601; (b) supply	
	for V602, V603, and bias for V604; (c) bias supply for	
	V605, V606, and V607	70
3.35	Pulse shaper circuit diagram	75
3.36	Picture of V604, V605, V606 and V607	76
3.37	Modulator chassis layout	77
3.38	Radar timing diagram	78
3.39	Apple radar director block diagram	79
3.40	Interlock and high current adaptor circuit diagram	81
3.41	Logic and interlock module (a) transmitter output detector	
	(b) "814 OUTPUT ON" amplifier (c) pulse length control,	
	duty cycle exceeded tester, and TX output present tester	
	circuits and (d) RF gate pulse control	83

xi

Page

Figure		Page
3.42	Equivalent logic of Figure 3.41(c)	87
3.43	Pictures of the interlock and high current adaptor. (a)	
	front panel (b) chassis layout (c) logic board layout	88
3.44	Receive system block diagram	89
3.45	PIN diode blanker	90
ئ. 46	Drive and control circuitry for the PIN diode blanker	91
3.47	Phase detectors used by the coherent-scatter radar and	
	meteor radar	94
3.48	(a) and (b) Two methods to improve modulator efficiency	
	and rise time	95
4.1	Mathematical model of the modulator in the Urbana Radar	100
5.1	Block diagram of the verification system	106
5.2	(a) Picture of the coded RF pulse taken on a 100 MHz	
	oscilloscope connected to a dipole antenna. The effects	
	of phase coding are clearly visible on the envelope.	
	Taken at 5 µsec/cm	107
	(b) Coherently detected RF pulse with no phase coding	
	applied. Taken at 10 µsec/cm	107
	(c) Coherently detected RF pulse phase modulated with a	
	7-bit Barker code. Taken at 10 μ sec/cm. The effects of	
	limited system bandwidth are plainly visible	107
1,1	Schematic representations of the three types of wideband	
	ferrite transformers	109
I.2	Diagram of a commonly used model of a conventional wide-	
	hand transformer	110

xii

Page

I.3	Typical transmission loss versus frequency chart of a	
	wideband gransformer	110
I.4	Typical magnetic flux path in a BALUN type ferrite core	111
I.5	Core shapes, sizes, and form factors for Fair-Rite	
	Products Corp. cores	113
I.6	Two approaches to wideband hybrid combiners/splitters	118
I.7	A conventional wideband hybrid combiner/splitter	119
I.8	(a) method whereby two 180° transistor outputs may be com-	
	bined (b) method for winding a transmission line trans-	
	former which permits upright mounting	119
11.1	Applied voltage versus current waveforms for a nonlinear	
	load of the piecewise continuous type	122
11.2	Nonlinear load bypassed with a high Q tank circuit	123
II.3	Measurement method for input and output impedances	
	measured at high power	125
111.1	Average power limitations versus frequency for the cur-	
	rently used types of rigid transmission lines	127
111.2	Derating factor vs. frequency for rigid transmission	
	line	128
III.3	Variation of permissible average power vs. temperature	
	for rigid coaxial transmission line	128
111.4	Peak power limits vs. internal pressure for SF ₆ and dry	
	air or nitrogen	130
111.5	Attenuation vs. frequency for rigid coaxial transmission	
	line	130

	line	131
111.7	Attenuation vs. temperature for rigid coaxial transmission	
	line	2.52
TTT.8	Inner conductor ve. outer conductor temperature rise	133

Page

1. INTRODUCTION

1.1 The Mesosphere

The Earth's mesosphere is the region from about 50 to 85 km altitude; its composition and dynamics are currently the subject of a wide range of observational techniques, both direct and indirect. The composition of this region is known to be homogeneous and similar to the stratosphere below, differing only in having reduced density and pressure rather than the stratified composition of the thermosphere above. Eddy diffusion (turbulence) is the mechanism maintaining the homogeneity which extends to the turbopause. The region is heated primarily by ozone absorption of solar radiation; indeed the region was initially defined by its thermal properties: it is the region above the stratosphere which exhibits decreasing temperature with altitude.

The D region or mesosphere is lightly ionized when compared to the E and F layers. The primary ion source is photoionization of neutral molecules; the higher density leads to higher collision and recombination rates, thus fewer ions. One feature of the mesosphere is the steep decrease in ion density with altitude called the D-region ledge. Another is the rapid decrease in D-region ionization after sunset. Furthermore, due to the high collision rate all charged and neutral species in the mesosphere have nearly the same temperature.

The mesosphere's large-scale dynamics may be investigated using a plasma model. This plasma is perturbed by a variety of sources, e.g., tides, gravity waves etc.; in addition, thermal processes produce ion-acoustic waves. The scale limit of the latter process is the Debye length (D) which varies from less than 1 cm below 1000 km to 6 cm at 2000 km. It is not

possible to excite thermal irregularities in a plasma on a scale smaller than D.

A coherent wave motion on any length or time scale which becomes unstable generates turbulence, whereby the wave energy is ultimately converted to heat; occurring only below the turbopause, it is an inherently nonlinear dissipative process. The smallest scale of motion it contains is termed the "inner scale" of the turbulence.

Investigations into the mesosphere have traditionally proceeded by a variety of methods. Direct measurements through balloon-borne instrument packages have provided good data on pressure, temperature, and composition in the lower regions. Rocket-probe devices have provided additional data, though for short periods at relatively high cost; other methods used have been to "stain" the region with explosive devices or chemicals, or through the use of natural explosions like volcanic erupticas. Radar based examination, however, is provably the most cost-effective method for long-term, low-cost research.

1.2 Thompson Scatter Radar

The Thompson scatter principle as described by Evans (1968) was originally based on a medium which is quiescent, homogeneous, plasma having an effective radar cross section per unit volume of

$$\sigma = N \sigma_{\rho} \tag{1.1}$$

where N is the electron density per unit volume and σ_e is the effective cross section of a single electron:

$$\sigma_{e} = 4\pi (r_{e} \sin \chi)^{2} \approx 10^{-28} \sin^{2} \chi m^{2}$$
 (1.2)

Because the assumption of a quiescent medium is not accurate, Thompson scatter experiments as first noted by Bowles do not always produce the expected results. A more useful model envisions the medium as a plasma in

ORMINAL PACE LA

3

OF POON QUALITY which density fluctuations are brought about by longitudinal oscillations. Based on these assumptions the effective radar cross section per unit volume becomes

$$\sigma = \left| \frac{\Lambda \varepsilon_{o}}{\varepsilon_{o}} \right|^{2} \frac{4^{3}}{\lambda_{o}^{4}} \sin^{2} \chi P(\overline{K}_{2} - \overline{K}_{1})$$
(1.3)

where

σ

= the effective cross section/unit volume

- ε_{o} = the permittivity of free space
- $\Delta \epsilon_{o}$ = the variations in ϵ_{o}
- λ_{o} = the wavelength of the exploring frequency used
- \overline{K}_1 = the propagation vector of the incident wave

$$K_2$$
 = the propagation vector of the reflected wave

 χ = the polarization angle; the angle between K_2 and the incident electric field.

Within limits, though, the Thompson scatter technique has contributed a quantity of useful data concerning the mesosphere; ion density profiles, temperature, and composition have all been studied using Thompson scatter techniques and high powered radars.

1.3 Coherent Scatter Radar

Coherent scatter radar techniques make use of the turbulent mixing-ingradient which gives rise to the rapid temporal variations in received power described by Rastogi and Bowhill (1976b) and by Countryman and Bowhill (1979). Eddies of different scales are generated by the gradual dissipation of large scale eddies driven by the overall global circulation and superimposed planetary waves, tides, and gravity waves. The energy in this process is dissipated in viscous damping in the small-scale eddies. Since these processes may be viewed as variations in local permittivity, the radar cross section is the same as that given in Equation 1.3.

Since these processes in the mesosphere take place with a correlation time of approximately 1 second, coherent detection and pulse integration times of between 1/8 and 1/2 second provide data on the line-of-sight velocity, relative size, and relative altitude of different eddies. These in turn make it possible to investigate the internal coupling and energy dissipation mechanisms in the mesosphere, which occur in relatively small physical and temporal scales.

1.4 Meteor Radar

Large numbers of meteors burn up in the atmosphere every day, each leaving an ionized trail in its wake. These ionized trails provide excellent radar targets; they may be thought of as passive probes in the upper mesosphere, usually in the 80 to 120 km range.

Below heights of about 100 km the whole of the Earth's atmosphere participates in the planet's rotation. This motion, pressure, and gravity generate the geostrophic wind system (prevailing wind system) which is continually perturbed by gravity waves, tides and solar heating, together with hurricanes and other atmospheric events. All these perturbations generate waves which can be observed as fluctuations in the zonal mean wind.

The meteor radar system, then, uses echoes from meteor trails to collect data on the altitude, structure, and velocity of the prevailing winds in the mesosphere. It can do this inexpensively and for long periods of time. 1.5 Range Resolution and the Radar Equation

For a radar system employing coherent integration in the detection process the Radar Equation is, from Skolnik (1980):

OR	GINAL	Page 13	
OF	POOR	QUALITY	

5

R _{max} 4	•	$\frac{P_{av}GA_{e}FnE_{1}(n)}{(4\pi)^{2}KT_{o}F_{n}(B_{n}\tau)(S/N)_{1}f_{p}}$ (1.4)
R _{nia} x		the maximum range of the system
G	. 04 41	the transmit antenna gain
۸ _e	- 1-11	the effective area of the receiver antenna
r		the target cross-sectional area
n	:	the number of pulses integrated
К	с. С.	Boltzman's constant
то		absolute temperature, 290K
^F n	•	noise figures of the receiver system
^B n	-	noise bandwidth of the receiver system
τ		pulse length
fp	873 2	pulse repetition rate
(S/N) ₁	- 8 115 116	signal-to-noise ratio required for a given
		probability of detection
(S/N) _n	nine arti kun	signal-to-noise ratio required to give the
		same probability of detection when n pulses are integrated

$$E_{i(n)} = \frac{(S/N)_{1}}{n(S/N)_{n}}$$

and

where

^{n E}i(n) \doteq the integration improvement factor.

One of the primary considerations in the design of any radar system is the maximum range, given in 1.1 as an explicit function of average transmitted power. If the range is thus to be held constant, yet the resolution increased, the pulse length must be decreased and either the peak power or the pulse repetition rate increased. Both these approaches have difficulties associated with them, however, in many radars it is simply not practical to increase the peak power. On the other hand, increasing the PRF can lead to aliasing problems. In addition, short pulses require greater bandwidth in both the transmitter and receiver, which may in itself present significant problems.

The Urbana Radar System is an excellent example of the application of eq. 1.1, and of the limits of the expression. Having both peak and average power limitations, plus a fixed maximum bandwidth, gain, and noise figure leaves only three variables which can easily be controlled over a wide range f_p , τ , and n; and two over which only limited control is possible: B_n and P_{av} . As discussed in the previous paragraph, one cannot maintain the maximum range, yet increase resolution by decreasing τ and increasing f_p : aliasing results.

One of the techniques which has been developed to deal with this problem is that of return pulse integration, which can improve range resolution at the cost of increased processing. The echo received from any target can be thought of as consisting of signal plus noise. If the signal is coherent from pulse to pulse, it is consistently present in the returns at about the same magnitude and phase. Noise, on the other hand, is a random stationary process, and is incoherent from pulse to pulse. When the returns are summed over n pulses, then the signal adds coherently, while the noise adds incoherently. Hence the integrated signal return tends to rise above the noise floor, enhancing the range of the radar (i.e., enhancing the probability of detection of marginal targets). There is a limit to the rate at which pulses can be transmitted: namely, the point at which aliasing begins to be objectionable. Also, the number of pulses integrated must be kept below the correlation time of the returned signal.

ORIGINAL PAGE IS OF POOR QUALITY

1.6 Waveform Design

The radar equation of the preceding section is based on a transmitted waveform which consists of a single, repetitively transmitted pulse. This may not be an acceptable waveform for every application.

The output of any optimum receiver system is proportional to the cross correlation between the received signal, $y(t) = s(t - T_0) + n(t)$ and a stored replica of the transmitted waveform $s(t - T_0)$:

$$c(\Delta T_R) = \int y(t) s(t - T_R) dt \qquad (1.5)$$

where

1

Ļ

 $c(\Delta T_R) \equiv$ the cross correlation between signals

To == the travel time to the target and back

T_R = the estimate of actual travel time

 $\Lambda T_R \equiv T_o - T_R = error in time delay$

Please note that the above expression places no requirements in itself on the transmitted pulse waveform. The designer must, therefore, select a waveform which permits him to meet his objectives in terms of:

1. detection of the presence of targets

- 2. position and velocity measurements
- 3. reduced ambiguity
- resolution the ability to distinguish between closely spaced targets

Since the resolution of a rectangular transmitted pulse is $c\tau/2$ where

 $c \equiv$ velocity of light, 3 x 10P m/sec

 $\tau \equiv$ transmitted pulse length

one might surmise that an ideal waveform would be one which when autocorrelated would yield a single, very high, narrow pulse. This is indeed the case; as usual the requirements and available tradeoffs dictate waveform selection.

In Chapter 2 different waveforms are discussed; however, the emphasis will be on binary phase coding techniques, several of which permit the waveform designer an excellent approximation to the ideal.

1.7 Summary and Statement of the Problem

The Urbana Radar System is a multipurpose instrument used in researching atmospheric phenomena over central Illinois. Having a choice of antennas, pulsewidths, PRF, and peak output power gives the system considerable versatility in its ability to perform M.T.I. scattering research using both coherent and incoherent processing techniques; in addition the device can function as a Meteor Radar.

Like any instrument 25 years in age, this device has a requirement for maintenance, adaption, and improvement to keep up with recent advances in technology and the science it serves. The several purposes of this project are, therefore:

1. to evaluate and document the present state of the radar transmitter

2. to provide phase modulation capabilities to the transmitter

Chapter 2 describes the types of phase coding and attempts to evaluate their relative merits to the Urbana Radar System.

Chapter 3 describes the Urbana Radar System at various levels down to the component. Detailed schematics and descriptions are given.

Chapter 4 details design considerations for the Urbana Radar transmitter.

Chapter 5 presents the results and conclusions.

2. PHASE CODING OF RADAR TRANSMITTERS

2.1 The Purpose of Phase Coding

As was pointed out in Section 1.6 the ideal waveform is one in which the autocorrelation of the transmitted pulse yields a single, high-amplitude, narrow pulse, which permit improved detection, position and velocity measurements, reduced ambiguity, and improved resolution. This chapter examines some of these methods with emphasis on the techniques achievable with a phase-switching approach.

Linear FM chirp radars employ a linear increase or decrease in frequency which may be demodulated with a matched filter to produce a waveform of the sin(x)/x type. Originally patented by R. H. Dicke in 1945, this method of pulse compression has been used more than any other, in spite of its relatively poor peak-to-sidelobe ratio of 13.2 dB.

Other types of pulse compression methods are 1) Nonlinear FM method, in which the frequency is varied in a nonlinear manner to achieve both optimum sensitivity and noise figure using a matched filter. For symmetrical waveforms of this type the ambiguity function has a single peak rather than a ridge; 2) The discrete frequency shift method in which the transmit pulse is divided into subintervals and the carrier frequency varies inversely in proportion to the width of the subinterval. This method is good for large compression ratio and large time-bandwidth products; 3) Polyphase codes in which the phase is shifted over intervals smaller than π , yielding time sidelobes which are lower than those for binary-coded waveforms of similar length. Still other types of pulse compression are Barker coding, complementary coding, and maximal length sequence coding, each of which is practical for use in the Urbana Radar and which are each discussed in a

succeeding section.

2.2 Barker Coding

Barker coding is a method of pulse compression in which each transmitted pulse is phase-coded with codes chosen for the properties of their autocorrelation functions: each has a single sharp peak at zero lag and is a maximum of 1 elsewhere. The longest true Barker code known has a length of 13 bits. Diagrams of the codes and their autocorrelation functions for n -7, 11, and 13 are given in Figure 2.1.

If one desires a greater compression ratio one can Belect similar but longer codes; each of these, however, has the failing that the peak sidelobe level is greater than 1; hence their ambiguity properties do not continue to improve in proportion to code length. Much work has been done in this area, though. Turyn (1968) lists all the desirable codes from n = 14 to n = 34. These are presented in Table 2.1. Further, Lindner (1975) summarizes data on the codes with best possible autocorrelation functions up to n = 40. His results are presented in Table 2.2. Gray and Farley (1973) describe the theory of incoherent-scatter measurements using compressed pulses with consideration of both Barker codes and a longer 28-baud code with good autocorrelation properties. Ioannidis and Farley (1972) describe the actual use of compressed pulse techniques in observations at Arecibo.

In addition to selecting codes with low autocorrelation sidelobes investigations have taken place into various methods of processing the returned pulse to reduce the peak sidelobe levels. One typical example is the work of Key et al. (1959) in which a processing system consisting of weighted sums of a tapped delay line were used to decrease the sidelobes of a 13-bit Barker code. As in all these techniques, the resolution of the peak suffered, as well as a small loss in detection capability.

Original page is of poor quality

Autocorrelation of 7-Bit Barker Code

Autocorrelation of 11-Bit Barker Code

Autocorrelation of 13-Bit Barker Code

Figure 2.1 Seven-, eleven- and thirteen-bit Barker codes and their autocorrelation functions.

original page is of poor quality

	2	
n	Sequence	max cj
14 15	5 2 2 2 2 1 1 5 2 2 1 1 1 2 1	2
12	5 2 2 1 1 1 2 1 6 2 2 1 1 1 2	2
16	3 1 3 4 1 1 2 1 5 2 2 2 1 1 1 2	2
17	2 2 5 1 1 1 1 2 1 1	2
18	4 2 2 1 2 1 1 1 1 2 5 1 1 2 1 1 3 2 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
19	4 3 3 1 3 1 2 1 1	2
20	5 1 3 3 1 1 2 1 1 2	2
21	6 1 1 3 1 1 2 3 2 1	2
	5 1 1 3 1 1 2 3 2 2	2
	3 5 1 3 1 2 1 1 1 2 1	2
22	8 3 2 1 2 2 1 1 1 1	3
23	1 2 2 2 2 1 1 1 5 4 1 1	3
24	8 3 2 1 1 1 1 2 2 1 2	3
25 26	3 2 3 6 1 1 1 1 1 2 1 2 1	2
20	8 2 1 1 2 2 1 1 1 1 2 3 2 1 2 1 1 2 1 3 1 3 1 3 4 2	3
28	2 1 2 1 1 2 1 3 1 3 1 3 4 3	3 2
<i></i>	3 2 3 6 1 1 1 1 1 2 1 2 1 2 1	2
29	2 1 2 1 1 2 1 3 1 3 1 3 4 4	3
30	7 1 2 2 1 1 1 1 2 1 1 3 4 2 1	3
31	3 2 2 3 6 1 1 1 1 1 2 1 2 1 3	3
32	6 1 3 2 1 1 2 1 2 1 1 3 1 1 3 1	3
	6 1 3 2 1 3 3 1 1 2 1 2 1 1 3 1	3
33	6 3 1 2 3 2 1 1 3 2 1 1 2 2 1 1 1	3
	631222113241112	3
	6 3 1 2 1 1 1 2 1 2 2 3 1 1 1 3 1 1	3
34	7 4 2 1 1 2 1 1 2 2 2 2 1 1 1 1 1 1 1	3

Table 2.1 Sequences with small max $|c_j|$.

C ELCENAL	
of poor	QUINTY

144

Table 2.2 Some features of binary sequences with best possible autocorrelation function.

N	М	Number of sequence	Mean M1	R.M.S. <i>M</i> 2	Мъ	M_{4}
3	1	an to no ren een futuri ef. an We a	- 0.50	0.71	1	2
4	1	2	0.00	0.82	2	1
5 6	1	1	0.50	0.71	2 2 1	2
6	2	7	0.20	1.18		2 1 2 4 2 4 5 % 2 6 2 8 5
7	1	1		0.71	3 1 2 2 5 1	2
8	2 2 2	16	0.28	1.07	1	4
9 10	2	20	0.00 0.33	1.22 1.20	2	5
10	1	10 1	~ 0.50	0.71	5	7
12	2	32	0.18	0.95	5	6
13	Ĩ	32	0.50	0.71		1 2
14	2	18	0.08	1.21	6 3 4	ŝ
15	2	26	0.21	1.28	4	5
16	2	20	0.00	1.37	5	4
17	2	8	- 0.25	1.41	6	1
18	2	4	0.41	1.21	4	4
19	2	2	- 0.28	1.43	7	1
20	2	6	-0.10	1.41	7	4
21	2	6	0.19	1.30	6	3
22	3	756	-0.14	1.36	1	19
23	3	1021	0.05	1.46	1	16
24	3	1716	~ 0.17	1.25	1	19
25	2	2	0.00	1.35	8	3
26	3	484	0.20	1.34		21 20
27	3	774	-0.04	1.19		20
28 29	2	4	-0.22 - 0.07	1.36 1.49	2	16
29 30	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	561 172	0.10	1.49	1 2 9 2 2 3 2 2 2 3 3 4	15
31	3	502	- 0.10	1.49	1 3	16
32	2	844	0.06	1.52	2	13
33	1 7	278	-0.12	1.41	1 2	24
34	3	102	0.03	1.40	2	13
35	3	222	-0.15	1.54	3	16
36	3	322	0.00	1.64	3	19
37	3	110	-0.17	1.65	4	10
38	3	34	-0.03	1.53	4	9
39	3	60	0.13	1.77	6	10
40	3	114	-0.05	1.66	6	17

As a point for consideration it was decided to look at the effects of normal transmission and reception distortion due to bandwidth limitations. As a first approximation the 13-bit Barker code was modified as depicted in Figure 2.2, with the square edges replaced by sine functions in appropriate locations. A computer program called CORRELATION (Program 7, Appendix IV) was written to provide the form of the autocorrelation function, also shown in Figure 2.2. As can be seen, this method generated a waveform with a peakto-sidelobe ratio of about 20.4 dB, a loss of 1.9 dB when compared to the 13-bit Barker code shown in Figure 2.1.

2.3 Complementary Coding

Another coding scheme having excellent ambiguity functions is the "complementary series". This method requires more processing, but the results permit viable compression ratios in excess of 1000. Basically the idea is a simple one: two binary codes, known to be "complements" are transmitted alternately; each pulse is then autocorrelated and the results of the first pulse are then summed, point for point with the results of the second pulse cancelling all the sidelobes of both and leaving only a single peak. A typical example is given below.

Example 1. Given the pair on 4-bit complementary series $1 \ 1 \ -1$ and 1 1 - 1 1 we first autocorrelate each which results in -1 0 1 4 1 0 -1 for the first and 1 0 -1 4 -1 0 1 for the second. These are then summed element by element to yield

an ambiguity function having a single central spike.

Golay (1961) summarized the properties of complementary series as they

were then known and delineated six rules for generating new codes and demonstrated the existence of codes whose elements number 2^n and certain codes having $n \neq 2^n$.

The simplest complementary series are based on the kernel series pair 1 1 and 1 -1. Longer codes may be generated by the following algorithm:

1. Append the second code to the first. This creates the first element of the larger complementary pair.

2. Reverse the second code, <u>then</u> append it to the first. This generates the other series.

3. Repeat the above until the desired compression factor is reached. Note that any of Golay's six rules may be used to generate new codes from these at any point in the process.

Golay's work has been extended by several authors; however, Tseng and Liu (1971) have generalized these results by extending the concept of a complementary <u>pair</u> of sequences to a complementary <u>set</u> of sequences having the same properties as a complementary pair and permitting shorter codes for the same pulse compression ratio; but demanding of course that the correlation time of the reflecting body be greater than the period of the code cycle transmitted, and requiring still more processing before the data are accessible.

2.4 Maximal Length Sequences

Another valid form of pulse compression which has seen use is maximal length sequence type. Used only in bistatic CW radars, this method has the benefit of completely cancelling all sidelobes while using only a single code. The received waveforms must flow continuously through an autocorrelator, the output of which consists of a single high peak occurring at the zero lag point of each cycle. The method has the disadvantages of CW radar; since the transmitter is on all the time, separate transmit and receive antennas are required, and usually different transmit and receive sites as well.

One method used to continuously generate the maximal length sequence is whown in Figure 2.3. Which sequence is generated depends on the initial contents of the shift register and on the feedback connections chosen. Table 2.3 lists the data necessary to construct this generator.

2.5 Summary

Each type of pulse compression described has its own merits and weaknesses. All of them are capable of yielding more information than non-coded pulses, but they also require more processing to retrieve the information. In particular, all of the equipment necessary to the implementation of a phase switching technique are already present at the Urbana Radar site.

Barker coding is the simplest of these techniques; any of the Barker codes on the codes listed in Table 2.1 up to length 16 are easily within the capabilities of the Urbana transmitter; still, the Barker code of length 13 is the better choice from an ambiguity standpoint.

Requiring still more processing, the complementary sequence pairs and sets are another excellent approach, having only the additional limitation of cycle length time due to the correlation time of the mesosphere.

Maximal length sequence techniques require the reconfiguration of the radar for CW operation, and hence lower peak power, though the average power would only increase. This technique is more suited to real time processing and the bistatic arrangement would necessitate the operation of another site. Also, due to the extensive use of this technqiue elsewhere, the overall results would likely be unprofitable.

Shift Register

Figure 2.3 Shift register method of generation of maximal length sequences.

18

,

ORIGINAL Pred 13 OF POOR QUALITY

Table 2.3 Number of shift register stages versus length of generated sequence, number of possible sequences, and feedback stage connections.

Number of Stages	Length of Maximal Sequence Generated	Number of Sequences Possible	Feedback Stages Connected
2	3	1	2,1
3	7	2	3,2
4	15	2	4,3
5	31	6	5,3
6	63	6	6,5
7	127	18	7,6

ł

3. THE URBANA RADAR: A DESCRIPTION

3.1 Introduction

The Urbana Radar has been used as a research instrument for nearly twenty years, during which time it has been repeatedly modified. Unfortunately, not all the documentation recording these changes has survived, nor have the intentions of the various engineers and scientists who implemented them. This chapter is the result of an extensive analysis of the circuitry of the radar, and is intended as an explanation of the device and its idiosyncrasies, for the future users' information.

Figure 3.1 is a signal flow block diagram displaying signal paths between the major units of the radar, each of which will be described in the succeeding paragraphs. Table 3.1 shows the current transmitter ratings. 3.2 The Phase Switch and Gated Amplifier

Stage 1 of the transmitter consists of a phase switch followed by a gated RF amplifier. The block diagram of the stage is shown in Figure 3.2. The RF signal path is through the phase switch, through the amplifier, then through the power meter detector. The phase switch is diagrammed in Figure 3.3. The transformers are trifilar wound stacked (73 material) ferrite balun cores wound for the widest possible bandwidth. Using a matched set of IN 914 diodes, this device is capable of changing phase in less than 30 nanoseconds.

The switch driver circuit shown in Figure 3.4 consists of a 7413 Schmitt trigger followed by an emitter follower and two differential amplifier stages. The outputs are buffered by VN66AK VMOS devices. The whole device is designed around the need for converting a single control signal into a balanced, fast switch drive to change the phase of the RF drive ----- 40.92 MHz Transmit RF ----- Plate Puise Received Signal

E

Figure 3.1 Block diagram of the Urbana Radar System.

į.

1

Table 3.1 Transmitter ratings.

Output frequency	40.92 MHz
Peak power output	4 MW
Average power output	20 kW nominal
	40 kW maximum
Duty cycle	.004 nominal
Pulsewidth	3 - 100 nominal
Power supply requirement	230V 3 phase
Power source capacity recommended	200 kVA
Types of emission	Pulsed CW or
	phase modulated pulses
Output impedance	100 Ω balanced
Bandwidth	1 MHz side-to-side

ų,

Figure 3.3 Phase switch circuit diagram.

oriential page is of poor quality

Figure 3.4 Phase switch driver circuit diagram.

rapidly and cleanly.

The RF amplifier shown in Figure 3.5 consists of a pair of MOSFET DV2805W's operating class AB in push-pull. T1 and R1 together form a 180° hybrid power splitter, with R1 tending to maintain equal division regardless of moderately differing impedances presented by the MOSFETs. L1, C2, and L3 form one input matching network, with L2, C3, and L4 forming the other. C7, L5, and C5 match the output of one device; C8, L6, and C10 match the other. T2 and R5 comprise a hybrid output combiner.

This amplifier has worked quite well. The output power reaches 4 watts, with about a 5 MHz bandwidth and a 2 µsec turn on time.

The gate pulse amplifier shown in Figure 3.6 turns the RF amplifier on and off via bias control. Ql is a simple pulse amplifier, ICl is in a Schmitt trigger circuit configuration, with the trigger point set by R6, with Dl and D2 selected for the desired on and off bias.

The RF output power detector shown in Figure 3.7 is basically a modified wideband 20 dB dual directional coupler based on the design by McDonald (1982). The modifications consist entirely of two 51 Ω detectors built into the transmitted and reflected power lines, and voltage dividers to assist in calibrating the meter.

Figure 3.8 is the circuit diagram of the peak power meter circuit devised to assist in monitoring the performance of the RF amplifier. Built onto the back of an existing Micromatch average power meter, this device provides an indication of transmitted power, reflected power, and S.W.R. It does, of course, require a gate signal which is taken from existing lines.

Pictures of these devices and circuits are shown in Figures 3.9 a, b, c, and d.

Figure 3.5 RF amplifier circuit diagram.

Ś

ORICINAL PAGE **IS** OF POOR QUALITY

דנמנדה טוו לנוויניו להוהוונו לומצומו.

- Figure 3.9 (a) RF amplifier shown mounted in equipment rack. The amplifier is the light gray unit on the bottom. The output power meter is shown mounted just above the amplifier. The next panel (black) is the mount for the 814B output power meter discussed in Section 2 of this chapter.
 - (b) Chassis layout of the RF amplifier of unit 1.
 - (c) Internal construction of the RF detector unit.
 - (d) Component layout of the two circuit boards mounted in the unit 1 chassis.

(b)

(a)

Figure 3.9 Continued.

3.3 The 814B Linear Amplifier

The 814B linear amplifier is a two tube class ABL linear amplifier. Its basic specifications are summarized in Table 3.2.

Figure 3.10 shows the RF amplifier of the 814B. V101 and V102 are 4CX1000As operated in parallel. Greater stability is achieved by operating the screen at ground potential with the cathodes at -325V; the grids are biased 0 - 80V negative relative to the cathodes.

The dc power supply block diagram is given in Figure 3.11. The circuit diagram is shown in Figure 3.12.

The peak power meter and RF on detector circuit shown in Figure 3.13 performs two functions: it enables the output power meter of the 814B to measure peak power rather than average power, and it sends an "RF on" pulse to the logic and interlock module which enables the transmit pulse output for protection of the 4CX5000A stage. (Note: experience shows this amplifier is unstable if operated with a VSWR in excess of the rated maximum.) 3.4 The 4CX5000A Intermediate Power Amplifier

The schematic of the 4CX5000A intermediate power amplifier is shown in Figure 3.14. This device is operated class C. The input match network is a combination of a transmission line and conventional π network. The output match network is also a conventional π network. The tube and the output match network are located in a cylindrical pressurized container. Note that the plate voltage is derived from the modulator through a dropping resistor network and that if the RF input to the grid fails (hence no conduction) the entire modulator voltage will be impressed across the tube; arc damage is therefore possible, and special precautions are necessary to avoid this. The capacitor designated C213 is actually 8 each 1000-pF transmitter-type capacitors installed symmetrically around the socket; this is intended to improve the stability of the amplifier by providing superior screen byTable 3.2 Continental Electronics 814B specifications.

Peak power output	3 kW
RF input power	5-10 Watts Peak
Output impedance	51.5 Ω
Output SWR	2:1
Input impedance	51.5 Ω
Class operation	AB1
Plate voltage	+3 kV
Screen/cathode voltage	-325V
Plate current maximum	1.67 amps combined
Bandwidth	±573 kHz

RF amplifier circuits of the Continental Electronics 8148 VHF transmitter. Figure 3.10

35

 \sim

ONGINAL PACE IC. OF POOR QUALITY

Figure 3.11 814B power supply block diagram.

Figure 3.12 814B power supply circuit diagram.

Figure 3.14 4CX5000A (unit 2) RF amplifier schematic.

pass. The socket reactance is by no means negligible; it is equivalent to about .17 μ H in series and 50 pF in parallel with the tube input. Further, the output match has a fatal flaw when used in conjunction with the current match network at the drive input: it will match low resistance, high capacitance loads to high impedances as seen by the tube, thus tending to produce what looks like a match; (i.e., the plate current dips) but which limits the tube output power by presenting a high-impedance load to the plate.

Figure 3.15 is the schematic of the bias supply for the 4CX5000A. It is controlled through the use of a Variac in the ac supply.

Figure 3.16 shows the circuit of the screen supply; this is also variable using a Variac in the ac supply.

Figure 3.17 is a picture showing several major units of the transmitter. Closest to the camera and on the right in the picture is the unit 2 cabinet housing the 4CX5000A. Next is an equipment rack housing the gated RF amplifier (unit 1) in the top. The screen supply for unit 2 is shown installed in the bottom of the rack. Beyond the equipment rack is the Continental Electronics 814B transmitter used between units 1 and 2.

Figure 3.18 shows part of the transmission line match networks used in the input of unit 2.

3.5 Units 3 and 4: The Driver and PAs

Units 3 and 4 are the "work horses" of the radar. These two final stages boost the RF output to the 1 to 4 megawatt range. Since unit 3 is essentially identical to each of the four components of unit 4, only one model need be developed. Figure 3.19 is a simplified diagram of the physical structure of these devices. Note the single tube -- an ML-5682 -mounted plate-down inside the unit.

Figure 3.20 is an enlarged version of the upper portion of the unit,

Figure 3.15 Unit 2 bias supply.

ORIGINAL PAGE 10 OF POOR QUALITY

e'

13 4

-5

3

ORIGINAL PAGE IS OF POOR QUALITY

Figure 3.17 Picture of units 1, 2, and 3, showing unit 2 on the right, unit 1 in the center, and the 814B linear amplifier on the left.

ORIGINAL PAGE IS OF POOR QUALITY

Figure 3.18 Detail of the bias input portion of the 4CX5000A input matching network.

Figure 3.19 Simplified physical structure of the driver and power amplifiers.

ORIGINAL PAGE IS OF POOR QUALITY

Figure 3.20 Details of the input circuit of the driver and power amplifiers, showing the 20 Ω transmission line, irrathane "collar" capacitor C301 and the toroidal variable inductor L301.

which contains the input circuitry shown in Figure 3.21. This whole device is coaxial with the tube mounted on the axis. C301 is an 800 pF irrathane capacitor in the form of a collar which fills closely around the tube socket. C303 and C304 are mica rings mounted as part of the tube socket. L301 may be thought of as a high Q single turn toroidal inductor which may be varied with the input tuning controls. The tank circuit composed of L301 and C301 reduces distortion of the signal, which is conducted inward via a strip line of approximately 20 Ω characteristic impedance and 15" in length. C304 is another mica ring which keeps the grid at RF ground.

Again referring to Figure 3.19 we note that the output match network may be modeled as segments of transmission line of differing lengths and characteristic impedances, with junction capacitances at the ends of each segment. The model used to evaluate this network is shown in Figure 3.22, and is described as follows: the plate of the ML-5682 is fitted into the center conductor of an 82 Ω transmission line. This line then connects to a 5.2 line, and has a junction capacitance of 20 pF at the connection. The 5.2 line ends in a junction with a 52 Ω line, having junction capacitance of 17 pF. Thereafter follow lengths of 56 Ω line, 40 Ω line, and a blocking capacitor and transmission line structure having a characteristic impedance of about 120 Ω . The junction capacitances of the last 5 sections of line have been evaluated, then ignored as negligible. The two shown have been evaluated from the formulas provided by Somlo (1967) based on the work of Whinnery (1944). The 85 pF of the grid-plate interelectrode capacitance completes the matching network. Please note that the whole tube plate must be included as part of the 82 Ω line. The program called CAPAUG (Program 2, Appendix IV) computes the load impedance seen at the outputs of units 3 and 4. Its results are used by the program called PA MATCH (Program

original page is of poor quality

Figure 3.21 Simplified schematic of the input match network.

1, Appendix IV), which was written to evaluate the possible range of loads seen by the tube. The program called PA BANDWIDTH (Program 3, Appendix IV) evaluates the bandpass of the match network for particular loads, using part of the data generated by PA MATCH for input and generating graphs of the transmission function, an example of which may be seen in Figure 3.23. Results from PA MATCH indicate that loads may be matched in the range from about 300 Ω to 850 Ω requiring that the ML-5682's load lines be kept in this range, which incidentally is also the range specified by the tube's manufacturer. Program descriptions and listings are included in Appendix IV. A simplified schematic of the bias circuit is shown in Figure 3.24. Note that the bias is part fixed and part grid-leak bias, and may be class AB, B, or C depending on the operating conditions. Most of the basic limitations of units 3 and 4 arise directly from the ML-5682 triode. Tubes are always rated conservatively, so one can usually expect to be able to exceed some of the limits some of the time. In point of fact the available peak plate voltage of the Urbana Radar greatly exceeds the manufacturer's specifications, but the point which has to arise is how much excess is tolerable? Killpatrick (1957) and Doolittle (1964) have demonstrated that these limits depend on the plate-grid spacing and the structure of the cathode. For the thoriumtungsten cathodes and 1.7 cm spacings of the ML-5682, the nomograph shown in Figure 3.25 taken from Doolittle (1964) suggests that a safe maximum for new ML-5682's is about 70 kV, twice the rated value. This ability to withstand high voltages is called high voltage stability; the Urbana Radar has no crowbar circuit in the modulator, having only some relay based (hence slow) protection circuits. Hence, once a flash arc occurs, it will continue until the power supply capacitors are discharged or until the tube is destroyed. Flash arc damage to a tube accumulates; i.e., a tube will always

ORIGINAL PLACE PA OF POOR QUILLIN

BIAS CIRCUITS OF UNITS 384

Figure 3.24 Bias circuits of units 3 and 4.

OF POOR QUALITY 1000 8 Plane Parallel Electrodes Experimental Data Kilpatrick R.S.I. Oct. '57 E Varies as d^{3/4} 6 4 E-ELECTRODE VOLTAGE (kV) For ThW Tubes With Wire Grid 2 For Oxide Cathode Tubes With Wire Grid 100 8 6 4 2 10L 4 6 8 1.0 2 4 6 8 10 2 ELECTRODE SPACING (cm)

ORIGHVAL PAGE IS

tend to arc over more easily the second time. Arc damage causes pits and catwhiskers on the cathode wires, increasing the voltage gradient and probability of arc. Note that the modulator of the Urbana Radar is capable of 50 kV pulses; during operation the peak plate voltage of an RF amplifier would exceed 90 kV, well beyond the limits of the ML-5682. Care must be taken to keep the modulator output within the tube's limits. Like any tube of its kind, the ML-5682 requires a special filament transformer, and not only to provide the normal operating current of 325 amps @ 16.5 V. When cold a filament often has less than 1/10 the resistance than it has when hot; during the initial inrush of current the enormous magnetic fields generated by high current can literally twist the filaments off their mounts. Hence the special rush limiting transformer which keeps the initial current low is required.

Several general concerns are described in succeeding paragraphs. The first of these is the past history of the irrathene (irradiated polyethylene) capacitor C301. The radar was initially run at the full power output of the modulator. It seems likely that the series of failures experienced with this component were in fact due to flash-arc damage through the tube. No failures have been experienced in recent history, during which time the modulator output has been run at 16 kV dc input, with 15 kV pulses out.

Another area meriting discussion is the physical weakness of the blocking capacitor assembly. This consists of an ll-inch long segment of 6-inch diameter rigid copper coaxial line whose center conductor has been replaced by 3 each 500 pF 15 kV ceramic capacitors in series. Though they are not individually delicate, the stress encountered in assembly and disassembly has broken these devices in the past.

The ML-5682 is a water cooled tube. The cooling water is in actual

physical contact with the plate at all times, and hence demands a certain level of purity. Care should be taken to monitor this and change the cooling water when required. Note that no filtration or deionization system is in use, the water being changed about every 6 months.

The operating conditions of tetrodes and triodes may be analyzed using Fourier analysis of the various tube currents and voltages. One practical approach to this makes use of the Machlett Power Tube Calculator which consists of a cosine scale and a work sheet for tabulating and computing the results. The work sheet was automated using the Apple computer; the program is called Machlett Power Tube Calculator. The user draws the desired load line and uses the cosine scale to measure grid and plate currents at preselected points. These are tabulated by the program and various predicted operating conditions are computed and printed. Certain general statements can be made from analysis of the ML-5682: 1) The input impedance of this circuit is highly dependent on the bias voltage and on the size of the grid resistors. 2) Certain operating conditions are possible which will not permit matching in the circuits as they now exist. 3) Operating conditions also are possible in which the output is matched but which produce large mismatches at the input. Since the input match network is constructed for a 20 Ω input impedance careful design of the operating conditions is mandatory to ensure proper operation of these units.

One more point which should be discussed is the problems caused by the interaction between the input and output circuits of these units. Since these are common grid triode circuits the condition of the output match is reflected to the input; hence when tuning one must always adjust both, input and output, using a rocking procedure to achieve optimum match at both ends.

A picture of unit 3 is shown in Figure 3.26. It is virtually identical

ORIGINAL PAGE IS OF POOR QUALITY

Figure 3.26 Picture of the driver (unit 3). Each of the four power amplifiers has an identical appearance.

in construction to all four parts of unit 4.

3.6 Driver Output Power Divider

The driver (unit 3) output must be equally divided 4 ways before it is applied to the PAs. Two of the inputs must also be phase shifted by 180°. The transmission line network which accomplishes this is shown in Figure 3.27. Parts of the system included on the diagram are the average power detector, the peak power detector, two hybrid dividers (standard "rat race" devices) and a coaxial t-splitter and match network. Power from the driver unit passes through the power detectors, through the 6" to 3" reducer, (in which both the inner and outer conductors taper identically, thus maintaining a constant 50 Ω characteristic impedance) to the 3" coaxial t, all arms of which are of 50 Ω characteristic impedance. Each of the two output arms then pass through a 62" length of 72 Ω impedance line to match to the 50 Ω line impedance following. One of these arms is routed to the hybrid divider serving units 4-1 and 4-2. The other is routed through an additional $\lambda/2$ length of 50 Ω transmission line to provide the required 180° additional phase shift, then to the output divider serving units 4-3 and 4-4. The outputs of these dividers are matched to the 20 Ω PA inputs VIA a $1/4\,\lambda$ 30 Ω transmission line section.

Computer analysis of the coaxial t-splitter and match network reveals that when each output end is terminated in 50 Ω , the reflected power is less than 1% between the frequencies of 32 and 70 MHz; these results are shown graphically in Figure 3.28.

One addition should be made to this network to improve the tunability of the radar. Phase and amplitude comparators should be placed at the junction of each $30 \Omega 1/4 \lambda$ transform to permit tuning this device. This would enable the operator to cope more readily with the interactions between the

ı

ŕ

)

Figure 3.28 Bandpass of the asynchronous T-match network.

various outputs. Note that the outputs are not isolated from each other here. Isolation only may occur if both output lines are terminated in 50 Ω . In addition, the T-match network should be refabricated using 3" line to avoid arcs caused by high moisture, high power, and the high VSWR encountered during tuning; arc damage has been observed in this area. Drains should be installed at the low points of the hybrid splitters to permit an easy test for standing water in the lines.

3.7 Final Output Combiner Networks

The final output combiner networks each combine the outputs from two power amplifiers. In addition they provide isolation between amplifiers. In normal operation the PA outputs are in phase and of the same magnitude, in which case no power is lost in the waster. When an imbalance in phase or magnitude occurs, however, that imbalance is "burned up" in the waster. From the research of Brown and Morrison (1949), we see that this device is typically better than 90% efficient with relative phases of less than 30°, if the magnitudes are equal. On the other hand, if one of the amplifiers fails completely, only 50% of the output of the remaining amplifier will reach the load. Both combiners are constructed of 6 1/8" rigid copper coaxial lines. The lengths and characteristic impedances of the lines are shown in Figure 3.29. The nominal bandwidth of these devices is about 7% for proper isolation.

3.8 TR-ATR Switch

The TR-ATR switch permits use of the same antenna and feed lines on both transmit and receive. It performs two functions: it keeps the high power transmit pulse off the receiver input during transmit and provides a Q = 100 tank circuit on the receive portion of the duty cycle.

Since the feeder line is of the balanced type, one T/R switch is

Figure 3.29 Final output combiner networks.

l

required for each line; since they are identical, only one is shown in Figure 3.30. Operation is as follows:

The TR tubes short the receive cavities during the transmit portion of the cycle. When shorted, each of the arms presents an effective open circuit to the transmitter; essentially all of the power, therefore, is conveyed to the antenna. When the TR tubes open (on receive) the arm closest to the antenna presents a tank-circuit-like appearance to the antenna; hence it is in effect a high Q filter. The other arm reflects a short to the junction where it connects to the feed line. This in turn reflects an open at the junction of the first arm, effectively isolating the transmitter from the antenna on receive, ensuring that all received signal is routed to the receiver. The TR-ATR switch assembly imposes two limits on the transmitterreceiver system: (1) The bandwidth of 400 kHz imposed on the received signal limits the minimum pulse length to about 6 µsec, (2) The TR tube recovery time of about 400-600 usec minimum limits the minimum range to about 40 miles (65 km). This could be shortened further by adding water vapor to the tube fill, but this will decrease TR tube life. For details of the design, construction and maintenance of the TR switch see Allman and Bowhill (1976).

3.9 High Voltage and Bias Supplies

The high voltage supply consists of the 4 major units shown in Figure 3.31: an 87 KVA primary supply transformer followed in turn by the high voltage rectifiers, a 10 Henry choke, and a capacitor bank.

The 87 FVA primary supply transformer has variable output voltages, changed by selecting a switch position and either a Y or Delta connection. The possible combinations of switch position, connection, and output voltage are tabulated in Table 3.3.

(One of Two)

,

ORIGINAL PAGE IS OF POOR QUALITY 64

\$

Primary Tap Position	Secondary Delta Connection Output	Secondary Y Connection Output
1	7,200 V	12,456 V
2	8,300 V '	14,359 V
3	9,170 V	15,864 V
4	10,000 V	17,320 V
5	10,900 V	18,850 V

Table 3.3 87 KVA plate supply taps.

The high voltage rectifier is rated at 4.0 amps. The circuit now in use is shown in Figure 3.32. The original rectifier tubes have been replaced by Westinghouse diode stacks, but the original ballast resistors are still in place.

The second second second second

The 3.5 amp rating of the 10 Henry choke is one of the primary factors limiting extension of the duty cycle.

The capacitor bank contains 20 large $1.5 \ \mu F$ capacitors in a large horizontally mounted box. For normal use only two are connected, but for long pulses more must be added. The switches involved in adding capacitors are spring loaded and function as fuses; if one capacitor shorts, overall operation should not be affected.

The high voltage supply delivers 16 - 25 KVDC at 3.5 amp to the modulator.

The bias supply for units 3 and 4 is located in the same cabinet with the high voltage rectifier, and is also shown in Figure 3.32. It provides rectified and filtered bias voltage to the grids of the ML-5682s. Unfortunately there is presently no way to bias unit 3 and unit 4 differently. 3.10 The Modulator

The modulator currently used in the Urbana Radar was originally designed (see Martin-Vegue, 1961) to deliver 16 MW pulses at a duty factor of .004, with output voltages selectable from 30-50 kV (specifications are given in Table 3.4). This is, one might suspect, a bit much for a radar transmitter rated at 4-6 MW peak power output. No significant changes have been made to the initial design of this unit.

A simplified schematic of the modulator is shown in Figure 3.33. V601 is a simple pulse amplifier circuit built around an 807 tetrode. This stage has its own plate and bias supply shown in Figure 3.34(a). V602 is also a

66

. 1915

original page is of poor quality

Table 3.4 Modulator specifications.

Peak output power	16 MW		
Pulse length	3 - 100 usec		
Duty cycle	.004 nominal		
Droop	10% maximum		
Input pulse	shaped +15V pulse		
	provided by V1101		
Output voltage	15 - 48 kV pulses		
DC supply	16-24 kV		
AC supply	220 VAC		
Rise time	3 μsec with T617B & T618B		
	8 µsec with T617A & T618A		

Figure 3.33 Modulation simplified schematic.

Griggial page 15 Of Poor Quality

pulse amplifier, designed around an Eimac 4-400A tetrode. This is the only stage which is normally conducting in the modulator. In addition one should point out that the rise time of the modulator is somewhat limited by the time constant of the plate circuit.

The third stage consists of a 4-400A in cathode-follower configuration. This choice was dictated by the input capacitance of the following stage. Note the direct connection between the cathode of V603 and the grid of V604. This is made possible by the power supply shown in Figure 3.34(b).

V604 is an ML-6696 Machlett pulse triode in a typical pulse amplifier circuit. The output of stage four is transformed by T617 and applied to the paralleled inputs of V605, V606, and V607, all ML-5682 8 MW pulse triodes. These inputs are bootstrapped to increase the input impedance and improve rise time. R546, R565, and R566 are parasitic supressors in the grid circuits. More supressors in the form of parallel R-L networks are present in each plate load. -1200V bias is supplied through T617 from the supply in Figure 3.34(c).

The output of the final stage is taken from the output pulse transformer T618, which has a tapped secondary for various output pulse voltages. T617 and T618 are actually each present in two versions; T617a and T618A are for long pulses -- 10 µsec to 100 µsec or longer. T617B and T618B are for short pulses -- 3 to 10 µsec. The output connections for various desired voltages are shown in Tables 3.5 and 3.6.

One difficulty which has arisen in the operation of T618 is the very large backlash present in the modulator. This has been alleviated somewhat through the use of a shaped pulse -- with short rise time and long fall time characteristics as the input to stage 1. The pulse shaper circuit is shown

7ì.

Table 3.5 T618 output connections.

Assume Primary Pulse = 21 kV

Secondary Voltage Desired Required Terminal Connection 3 to 10 45 kV 4 to 10 40 kV 5 to 10 5 to 10 5 kV 6 to 10 35 kV 6 to 10 7 to 10 20 kV 0 utput to 9 only

Primary Input Pulse Voltage	Internal Connection	Output Voltage
16 kV	3 to 7	3 kV
18 kV	4 to 7	3 kV
20 kV	5 to 7	3 kV

Table 3.6 T617 internal connections.

in Figure 3.35.

Figure 3.36 shows the three ML-5682 switch tubes used in the modulator output and the ML-6696 driver stage (the smaller tube in the back). Clearly shown are the parasitic suppressors and the large straps required for current distribution.

Figure 3.37 depicts the cabinet containing the first four modulator stages and their respective power supplies.

The ML-6696 and all the ML-5682 triodes are water cooled devices which receive their cooling water from a heat exchanger at 18 gal/min @ 40 psi. Interestingly enough, none of these devices are operated anywhere near their dissipation limits; a larger duty cycle could be achieved through use of a 25 kV power suppl, with more current output.

3.11 Timing and Control

The basic timing diagram of the Urbana Radar is shown in Figure 3.38. This describes the various functions which are controlled by the radar director. Currently, the radar director is either a FORTH program resident in an Apple II plus computer, or a hardware device documented in Hess and Geller (1976). However, the hardware device does not possess phase control capabilities. Since the thrust of this project involves phase coding the hardware director is not discussed here.

Figure 3.39 shows how the various commands generated by the FORTH program are transmitted. The commands generated in the Apple II plus computer are sent to the John Bell interface card, which is actually located in slot 7 of the Apple. It is shown as a separate unit here for emphasis and convenience. Port 2 of the John Bell card is connected through a 16 Pin Dip Header plus and ribbon cable to the interlock and high current adaptor.

The interlock and high current adaptor provides three functions:

ORIGINAL PAGE IS OF POOR QUALITY

:

Figure 3.35 Pulse shaper circuit diagram.

ORIGINAL PAGE IS OF POOR QUALITY

Figure 3.36 Picture of V604, V605, V606, and V607.

ORIGINAL PAGE IS OF POOR QUALITY

Figure 3.37 Modulator chassis layout.

ORIGINAL PROCE IT OF POOR QUALITY

A

Figure 3.38 Radar timing diagram.

ORIGINAL POST IT 50Ω TTL Outputs O O 0 Ô Interlock & High Current John Bell Apple Interface Computer Card Adapter 9999 Q Ó Q 50 Ω High Level Outputs

Figure 3.39 Apple radar director block diagram.

(1) it interlocks the blanker, gate and transmit control lines to protect the transmitter and receiver systems; (2) it provides a 50 Ω TTL compatible output for each control line capable of driving a large number of loads; and (3) it provides a +12V 50 Ω for each control line for driving high level lines into the high interference environment of the transmitter room. The schematic of this device is shown in Figure 3.40.

Referring again to Figure 3.38, we wish to describe the sequence of normal operations of the transmitter: First, the blanker is to protect the sensitive receiver system preamp during the transmit cycle.

Next, the gate pulse causes the RF signal to be generated, amplified, and applied to the grid of the 4CX5000A (unit 2). Please note that the 40.92 MHz signal is generated in a binary fashion such that it only exists during the gate pulse; this prevents the oscillator from interfering with the sensitive receiver system during the receive portion of the cycle.

Next the transmit pulse is generated and applied to the logic and interlock module. If transmitter conditions permit, the signal is the routed to the pulse shaper, and from there to the modulator where it energizes the three final stages of the transmitter and puts the RF pulse on the air. Note that the delay between the start of the gate pulse and the start of the transmit pulse protects the 4CX5000A stage from flash arc damage.

The phase control pulse will change the phase of the transmitter by 180° each time it changes state. Please note that the pattern of these changes and the overall length of the blanker, gate, transmit, and phase control pulses are functions of the program and are hence easily modified for different experiments.

The echo sample window and the sequence pulse control the analog to

oricinal page 13 of poor quality

Figure 3.40 Interlock and high current adaptor circuit diagram.

digital converter used to sample the data. The sequence pulse is used to select the channel and the echo sample window selects the various ranges sampled during the receive cycle.

Figure 3.41 is the circuit diagram of the logic and interlock module shown in block form in Figure 3.1. The rectified output of the transmitter is amplified by the circuit in (a), then applied to the pulse integrator in (c). The rectified output of the 814 amplifier is amplified by the circuit in (b) then added in (c) to permit an output. The logical functions of parts (a), (b), (c) and (d) are illustrated in the block diagram of Figure 3.42.

Figure 3.43 details the construction of the interlock and high current adaptor diagrammed in Figure 3.40. Part (a) shows the logic control board. Part (b) shows the mounting of the line driver transistors and the rest of the major units. Part (c) shows the front panel of the completed device. 3.12 The Receiving System

The receiving system is summarized in this section and key elements are described.

The block diagram of the receiving system is shown in Figure 3.44. A coaxial T-combiner network combines signals from both halves of the antenna and applies them to the blanker. The blanker has the function of re oving the transmit pulse RF and associated transients not removed by the T/R switch; it is constructed with PIN diodes shown in Figure 3.45, and its drive circuitry is shown in Figure 3.46. The output of the blanker is applied to the preamplifier, the specifications of which are given in Table 3.7. Essentially this is a wideband low noise device. The blanker and preamplifier are located in the same chassis and physically mounted in the T/R switch shed.

The important characteristics of the receiver are its IF bandwidth,

(c) pulse length control, duty cycle exceeded tester, and TX output present tester circuits and (d) RF gate pulse control. Logic and interlock module (a) transmitter output detector (b) "814 OUTPUT ON" amplifier Figure 3.41

e

Figure 3.41 Continued.

<u>(</u>

C

ORIGINAL PAGE D OF POOR QUALITY

Figure 3.41 Continued.

othernal family of poor quality

ORIGINAL PACE IS OF POOR QUALITY

Figure 3.42 Equivalent logic of Figure 3.41 (c).

87

(c)

Figure 3.43 Pictures of the interlock and high current adaptor. (a) front panel (b) chassis layout (c) logic board layout.

?

1

88

ORIGINAL PAGE IT OF POOR QUALITY

ŝ

ORIGINAL PAGE 19 OF POOR QUALITY

PIN DIODES ARE UNITRODE UM 9401 COILS ARE T30-6 CORES WITH \sim 40 TURNS # 34 WIRE (RESONANT AT 41 MHz)

Figure 3.45 PIN diode blanker.

ORIGINAL PAGE IS OF POOR QUALITY

ìR,

Table 3.7 Characteristics of the preamplifier in the Urbana Radar receiving system.

Frequency range (MHz)	5-110
Noise figure max (dB)	1.7
Gain min (dB)	22
P min @ 1 dB comp (dBm)	÷9
Gain flatness (±dB)	0.5
Intercept point (dBm)	+22
VSWR max in unitless	2.0
VSWR max out unitless	2.0

which is about 250 kHz, its passband shape, which is approximately Gaussian, and its IF output of 5.5 MHz. This IF output is coherently detected by the device shown in Figure 3.47, the outputs of which are filtered (if required) and channeled to the analog-to-digital converter.

3.13 Suggestions for Improvements

The Urbana Radar Transmitter was never fully developed to its fullest capacity. This leaves many areas where refinement would be of great interest. Only a few of these are listed below.

1. Due to advancements in solid-state switch technology, the first three stages of the modulator could now be replaced with a single stage or perhaps two stages of power MOSFET devices. Two alternate versions are shown in Figure 3.48(a) and (b). This would permit two improvements: greater electrical efficiency and improved rise time.

2. Currently the modulator output is distributed to units 2, 3, and 4 via RG-17 coaxial lines. The resonance of these lines and the secondary of the modulator output transformer cause envelope distortion of the transmitted RF pulse. This could be reduced by going to a high impedance twin lead distribution system.

3. The 814 linear amplifier is now replaceable with a solid-state device having superior characteristics, specifically wider bandwidth. This would enhance reliability and resolution of the transmitter. At the time of writing, the 814 linear amplifier shows need of either a major overhaul or outright replacement of the tuning sections, both input and output. Difficulties have been encountered during tuning which result from intermittent operation of these circuits.

4. The control and monitoring console needs to have each monitoring function tested and overhauled or re-designed. The simple vacuum-tube

(a)

21-2-

Figure 3.48 (a) and (b) Two methods to improve modulator efficiency and rise time.

...l.i

À

96

.5

differential amplifiers and vacuum-diode sensing units should be replaced with more reliable and ecc. comical solid-state devices; a phase monitoring system should be added to facilitate tuning.

5. Arrangements should be made to permit operation of the 4CX5000A and driver into 50Ω loads to facilitate proper tuning. Currently there exists too much interaction between stages to permit the operator to ascertain proper tuning from the monitor console. Addition of this capability should control this problem.

3.14 Summary

This chapter has been an analysis of the Urbana Radar. The approach has been a stage-by-stage intended to provide enough understanding to facilitate its use by future engineers and scientists.

4. DESIGN CONSIDERATIONS FOR THE URBANA RADAR

4.1 Introduction

Of primary importance in the design of any instrument is the phenomena which it is intended to measure. In the case of a radar transmitter, the transmitted waveform is designed to optimize the expected return. Its period, frequency, waveshape, and modulation characteristics comprise a statement concerning the present state of knowledge of the target. The final choice of a waveform suggests how closely we can devise circuits and make wise compromises in the approach to an ideal in our search for increasing accuracy in measurement. In the first sections of this chapter, we deal with the general requirements for transmitting phase coded signals and in the latter discuss the limitations and compromises involved in actually transmitting them.

4.2 Frequency Selection

The earth's atmosphere has long been known to be comprised of several layers. Among these the E and F regions are frequently highly ionized and hence can reflect a large fraction of the energy below the plasma frequency. For HF communications it has long been a practice in propagation studies to measure or compute a MUF or maximum usable frequency based on the need for point-to-point communications. Below the MUF radio waves may be reflected back to earth very little attenuated. for study of the mesosphere, which is only lightly charged if at all, and to be able to sense the small changes in ε caused by turbulence one must therefore select a transmitter frequency conveniently above the MUF such that the E and F regions are transparent, and any energy not reflected from the mesosphere is conveniently "lost"; unable to return and confuse measurements. The 40.92 MHz transmitter

original Paul G OF POOR QUALITY

frequency assigned to the Urbana transmitter is above the MUF in the main lobe of the antenna; however, this is not always the case for hypothesical sidelobes, and observations substantiate this.

4.3 Bandwidth Criteria

A phase modulator similar to the one in the Urbana Radar may be modeled as shown in Figure 4.1, as a multiplier circuit. Since the phase modulator simply changes the phase of the carrier by $\pm \pi$, it is mathematically equivalent to the process of multiplication by ±1. Letting the modulating waveform be represented by m(t) and the carrier by c(t) we can then describe the output of the modulator by

$$s(t) = m(t) c(t)$$
 (4.1)

and from the theory of modulation one would expect the spectrum of s(t) to be

M(w) = the spectrum of m(t)

C(w) = the spectrum of c(z)

where S(w) would exhibit two sidebands but no carrier.

Since m(t), the modulating waveform, will be one of a number of Barker codes or complementary codes, it is not practical to compute the spectrum for each possible m(t). However, it is possible to compute an upper bound of sorts by assuming m(t) to be a square wave with a period of 12 µsec, 6 µsec being the minimum bit length available in the present configuration of the radar. We, therefore, can use Fourier analysis to write

$$m(t) = \frac{4}{\pi} \sum_{n=1}^{\infty} \frac{1}{2n-1} \sin[\frac{2\pi(2n-1)}{T} t]$$
(4.2)

where

where

T = the period of the square wave.

original page is of poor quality

Figure 4.1 Mathematical model of the modulator in the Urbana Radar.

All ALL

ORIGINAL PARE IS 101 OF POOR QUALLY

Now, assuming c(t) to be sinusoidal and of magnitude 1 we have

 $c(t) = sin(w_{o}t)$

where $w_0 =$ the angular frequency of the carrier

then

$$s(t) = m(t) c(t) = \frac{4}{\pi} \sum_{n=1}^{\infty} sin[\frac{2\pi(2n-1)}{T} t] sin(w_{o}t)$$
 (4.3)

$$= \frac{4}{\pi} \sum_{n=1}^{\infty} \frac{1}{2n-1} \cdot \left\{ \frac{1}{2} \cos\left[\left(w_{0} - \frac{2\pi(2n-1)}{T} \right) t \right] - \frac{1}{2} \cos\left[\left(w_{0} + \frac{2\pi(2n-1)}{T} \right) t \right] \right\}$$
(4.4)

Now 4.4 is in a recognizable form. Each element in the spectrum of s(t) is represented by a magnitude term

$$M(n) = \frac{2}{\pi} \cdot \frac{1}{2n-1}$$

and two frequency terms

$$W(n) = w_0 + \frac{2\pi(2n-1)}{T}$$
 and $w_0 - \frac{2\pi(2n-1)}{T}$

Evaluating the magnitude terms we have

$$M(1) = \frac{2}{\pi} \cdot \frac{1}{1} = \frac{2}{\pi} = .637$$
$$M(2) = .212$$
$$M(3) = .127$$
$$M(4) = .091$$

Hence the fundamental plus the first 3 harmonics of m(t) contain 95% of the available transmitted power in the signal. For $T = 12 \ \mu sec$ we then can state that if the transmitter bandwidth is 333 KHz or more it will transmit at least 95% of the power available from the modulator.

4.4 Pulse Length Considerations

2

In a phase coded system the range resolution is determined by the bit

R,

or baud length and equals $c\tau/2$ where c = the speed of light and $\tau =$ the baud length. For the case where $\tau = 6 \ \mu sec$, the minimum set by the equipment, the resolution corresponds to 900 meters.

Overall pulse length must be selected as a compromise involving the average transmitter power and the PRF, plus the desired compression ratio and the type of code being used. The maximum length is set by the equipment, though, and falls between 100 and 140 μ sec.

4.5 Code Selection

Code selection must be governed by several variables. Among these are (1) the desired compression ratio. (2) the maximum available duty cycle, (3) the processing capabilities present, (4) the correlation time of the mesosphere, (5) the amount of integration to be used, and (6) aliasing. Longer codes will require longer pulses, forcing lower PRFs to keep within average power limits. Also, for the more complex codes the cycle time, (that is, the period from the beginning of the sequence of codes until it begins again) can approach or exceed the correlation time of the mesosphere. One good compromise might be transmission of a pair of complementary 16-bit codes, or perhaps a set of 8, 8-bit codes. For the former, the cycle time is about .02 seconds and about .04 seconds for the latter. However, increased complexity is involved in processing the longer codes; this in itself can become prohibitive.

Shorter codes, with shorter cycle times, are more prone to aliasing problems than the longer codes. In fact, one of the prime characteristics of the complementary codes is that the cross-correlation between the individual sequences of the pairs or sets is small; hence by their nature they tend to reduce aliasing problems.

Phase coding and integration are complementary techniques; however, in

practical use the designer is faced with a choice of how much pulse compression and how much integration to use during processing. Use of pulse compression techniques tends to reduce the amount of integration for which an improvement in signal-to-noise ratio may be had.

4.6 Summary of Design

In equipment like the Urbana Radar, in which the required output is so high, the normal method of procedure is to amplify a signal through a series of amplifier stages, up to the desired power level. Here the Urbana Radar is no exception. In the interests of efficiency, therefore, the designer should carefully construct the matching networks between stages in such a manner that they provide good transfer of energy across the desired bandwidth. One point which is often not sufficiently stressed is the necessity for keeping the paths of circulating currents as short as possible. Perna (1979), in a set of articles published, demonstrated that points of low impedance and high current deserve special attention. Circuit losses in these conditions can approach (or exceed) 50%. High VSWR on transmission lines can exhibit an exactly similar pattern of unexplained losses.

Efficiency is the prime measurement of the effectiveness for a highpower amplifier. An amplifier which is properly designed, driven, and tuned exhibits a class-C conversion efficiency of 60-85%. Until these figures are reached, no class-C amplifier can be thought properly matched.

Bias is another consideration worthy of discussion here. In general, (and cextainly true for the Urbana Radar), is the fact that given more forward bias, a given amplifier produces more gain. No amplifier should be designed without careful attention to the effects of bias on the matching networks, gain, and efficiency of the device.

The power supply is an important element of an amplifier, and one serious impediment to improved operation of the Urbana Radar is the inadequacy of the present power supply, which limits both the duty cycle and the average power transmitted.

The modulator is the last basic equipment to be discussed here. The Urbana Radar modulator is of the hard-tube type, and is responsible for the wide selection of available pulse widths, output power, duty cycle, etc. Central to the modulator is the pulse transformer, T618, and the capacitor bank or coffin. The pulse transformer has wide bandwidth and a wide selection of output taps to choose from. The capacitor bank may be switched in as necessary to prevent excessive droop during long pulse operation.

5. RESULTS AND CONCLUSIONS

5.1 Results

Verification of the proper operation of the phase modulation system proved simple. The Apple radar director was used, including a FORTH program written by Dr. Sidney Bowhill which included the necessary controls for transmission of a 7-bit Barker code. Verification consisted of simply demodulating the transmitted signal and displaying the results on an oscilloscope as shown in Figure 5.1. Figure 5.2(a) displays the RF signal taken directly from a monopole antenna. Note that switch intervals occur in proper locations, as this pulse is phase coded. Figure 5.2(b) displays the receiver output with phase modulation turned off. This is the expected output for this situation. Figure 5.2(c) displays the receiver output with phase modulation turned on. The phase reversals plainly indicate the transmission of the 7-bit Barker code.

5.2 Conclusions

The Urbana Radar transmitter now has the capability for phase modulation. The work represented here has resulted in analysis of and documentation for the transmitter.

ORIGINAL PAGE IS OF POOR QUALITY

Figure 5.1 Block diagram of the verification system.

106

ìR,

ORIGINAL PAGE IS OF POOR QUALITY

Figure 5.2(a) Picture of the coded RF pulse taken on a 100 MHz oscilloscope connected to a dipole antenna. The effects of phase coding are clearly visible on the envelope. Taken at 5 µsec/cm.

Figure 5.2(b) Coherently detected RF pulse with no phase coding applied. Taken at 10 µsec/cm.

Figure 5.2(c) Coherently detected RF pulse phase modulated with a 7-bit Barker code. Taken at 10 µsec/cm. The effects of limited system bandwidth are plainly visible.

APPENDIX I. WIDEBAND FERRITE TRANSFORMERS AND DEVICES

I.1 Introduction

Wideband transformers are ferrite-and-wire devices of three distinct types: (1) the conventional transformer with its primary-and-secondary structure which provides impedance transformation and D.C. isolation between input and output; (2) the autotransformer which provides impedance matching but no D.C. isolation; and (3) the transmission line transformer which provides impedance matching and an exceptionally wide bandpass characteristic. Each type is illustrated in Figure I.1.

These devices and the more complex structures one may make from them comprise a simple, economical means of coupling, matching, combining, and dividing in wideband (.1 - 1000 MHz) radio frequency circuits.

I.2 Conventional Wideband Transformers

A commonly used model for a conventional wideband transformer is shown in Figure I.2. R_p and L_p represent the primary loss and primary inductance respectively. Both decrease with frequency and are hence the primary factors determining the low frequency cutoff, shown as f_1 in Figure I.3. L_{χ} and C_d represent the leakage inductance and winding capacitance of the finished transformer. Between them they determine the high frequency cutoff shown as f_2 in Figure I.3.

Figure I.4 shows flux lines in a typical ferrite core, passing inside and around the winding which excites them. Magnetic circuit cheory assures us that the core's reluctance will decrease as the effective area available to pass flux (called A_e) increases, and will increase as the effective magnetic path length (called l_e) increases. Applying this to the transformer in Figure I.2, if A_e increases, so will R_p and L_p ; if l_e increases,

A CORAL HAS LUMIS LY

(a) Conventionai Transformer

(b) Autotransformer

1

(c) Transmission Line Transformer

Figure I.1 Schematic representations of the three types of wideband ferrite transformers.

1.00 - 1.1

Figure I.3 Typical transmission loss versus frequency chart of a wideband transformer.

¥. 1

.

Figure I.4 Typical magnetic flux path in a BALUN type ferrite core.

 R_p and L_p will decrease. A_e and ℓ_e are sometimes (Snelling, 1969) combined in one constant called the "core factor", Cl, where

$$C1 = \ell_e / \Lambda_e$$

Knowledge of the core's Cl, its size, and the magnetic characteristics of the core material give one a basis for estimating the low frequency response of the core.

For a particular core, one would expect the leakage inductance, $L_{g}^{}$, and the winding capacitance, $C_{d}^{}$, to increase with the number of turns one uses. In other words, $L_{g}^{}$ and $C_{d}^{}$ increase with the length of the winding, and for a particular core, the longer the winding required to provide the necessary low frequency response, the lower the high frequency cutoff will be. If $\ell_{w}^{}$ is defined as the length of wire required for one turn on the core, one would then expect $f_{2}^{}$ to depend on $\ell_{w}^{}$.

For a wideband response we therefore desire a core with a small Cl and a short ℓ_{W} . FAIR-RITE Products Corp. (1977) has combined these two concepts in a single geometry-dependent expression called the Form Factor:

$F.F. = \ell_V C1$

The Form Factor is used to express the wideband capabilities of cores (the smaller the Form Factor the wider the bandwidth). A table of various core shapes and the Form Factors thereof are provided in Figure I.5. The cores are all part of the "Joule Box" the company provides at a nominal cost.

Other manufacturers provide similar data on their products, but usually in a different form. They often provide the user with A_e , ℓ_e and the physical dimensions - hence one can easily compute the Form Factor for comparison between sources.

Note that in Figure I.2 we do not include a term describing the series resistance of the windings. The observed fact is that for transformers of

ORIGHNAL MARKET J OF POOR GALLEY

List	of	Ferrite	Core	Shapes	in	Wide	Band	Transformer	Sample	Kit	
------	----	---------	------	--------	----	------	------	-------------	--------	-----	--

ltem	Det A. Number	Core		Form				
	Part Number	Shape	A	В	С	D	E	Factor
I	28000302	Type i	.525	.295	.407	.225	.150	13.0
2	28002402	Туре !	.277	. 160	.244	.114	.071	14.3
3	28002302	Type I	.136	.079	.093	.057	.034	14.0
4	28001802	Type 3	.250		.242	.100	.050	9.5
5	28001702	Туре З	.250		.471	.100	.050	8.8
6	28000902	Type 4	.284		.218	.104	.052	8.8
7	28002802	Туре З	.220		.250	.090	.035	7.8
8	26002402	Type 5	.380		.190		. 197	29.0

Figure I.5 Core shapes, sizes, and form factors for Fair-Rite Products Corp. cores.

ł

the type discussed here, using a good core and below a few hundred megahertz both the skin effect and D.C. resistance are negligible when compared to the core losses.

The loss target, $\tan(8/\mu)$, is another method of representing the core losses (previously call R_p). This method (Ferronics 77) expresses the core losses in the form $\tan(8/\mu) = \frac{1}{\mu Q} = R/\mu 2\pi fL$ where R and L are in series, not in parallel as in R_p and L_p of Figure I.2. Another method simply plots the Q as a function of frequency. Both methods may be easily converted to the more useful parallel form of Figure I.2.

Ferrite is a heat sensitive material. It may crack or be destroyed by excessive power dissipation. The limits suggested in Ferronics (77) are that 100-600 mW/cm³ will produce a 40°C rise in core temperature. Since most cores are small, one would expect to use them in relatively low power applications.

The following is a list of general construction tips for conventional wideband transformers:

- Use a low Form Factor core. (Toroids are definitely not the lowest Form Factor cores, but can be used, of course).
- 2. Choose the smallest low F.F. core acceptable from low frequency response, saturation, and dissipation considerations.
- 3. Twist the primary and secondary windings together for tighter coupling and reduced self-winding capacitance, using multifilar windings to extend the transformation ratios where necessary.
- 4. Keep the windings as short as possible and still meet the required low frequency response. Granberg (1975) suggests the minimum primary inductance is: $L = 4R/2\pi f$ where L = primary inductance in μH

- R = load impedance in ohms to the input
- f = lowest frequency in megahertz.
- 5. Use the largest wire which can be comfortably and tightly wound on the core.

Snelling (1969) Chapter 7 offers an extensive discussion of wideband transformers.

I.3 Wideband Autotransformers

Wideband autotransformers permit a good range of impedance match ratios and an extended frequency response. Nagle (1976) discusses their advantages and details simple construction methods. His work is extended by Burwasser (1981) in a 2 part article. Burwasser demonstrated the construction of monofilar autotransformers having transformation ratios of 1:15, 1:2, 1:3, 1:4, 1:5, 1:6.25, 1:7.5, 1:9, and 1:16. With the single exception of the 1:16 device, the 1 dB points of all these transformers are below 1 MHz and above 200 MHz. The results demonstrate that for frequencies between 1 and 100 MHz or more, the monofilar autotransformer has lower transmission loss than comparable types of either conventional or transmission line devices.

The rules for the construction of monofilar autotransformers are the same as those for conventional devices except that monofilar wire is used and "pig tailed" at desired tap points.

I.4 Transmission Line Transformers

Transmission line devices operate differently than conventional transformers, using the ferrite not to increase the coupling between turns, but instead to increase the line-to-line coupling of a 2-conductor transmission line wound in close proximity to it. This usage results in a device which does not have the fundamental upper frequency limit of the conventional transformer. Ruthroff (1959) in a classic article reports devices with bandwidth ratios as high as 20,000 to 1. There are problems, though, arising from the new mode of operation; as one might expect, these arise out of the problems inherent in the construction of transmission lines suitable to the purpose. Several different types of transmission lines can be used; the most common one, however, the twisted pair (bifilar) line is well covered in the literature. Lefferson (1971) applies transmission line principles to simplify the construction of the twisted pair magnet wire transmission lines used in the manufacturing of many transmission line devices. The effects of variations of line lengths and of variations of characteristic impedance are discussed by Pitzalis and Couse (1968).

Successful devices have also been constructed using coaxial lines and, for low impedance lines, pairs of flat conductors separated by a dielectric.

Although transmission line devices have the widest frequency response of the devices discussed here, they have some drawbacks which limit their use: (1) They are limited to the "squares" ratios of impedance transformation: 1:1, 1:4, 1:9 ..., and often require more than one core to realize these; (2) They often have higher losses than comparable conventional transformers or autotransformers. They do have the advantage that they can be made physically larger and hence handle more power. Granberg (1975) reports devices capable of handling in excess of 400 w.

The following is a list of construction tips for transmission line devices:

- Choose a core material having low losses over the whole frequency range of interest.
- 2. The low frequency response may be calculated exactly as in conventional devices. The core must be such that the total line length is less than one tenth of the wavelength of the highest frequency

116

of interest. If not, a new core material or geometry may be appropriate.

- 3. Keep the windings as short as possible. The longer the windings are, the more problems arise out of winding irregularities etc.
- 4. Twist bifilar windings by machine when possible. Hand twisted windings are not as uniform.

1.5 RF Combiners and Dividers

Each circuit by its nature is different from the next. The combiners and dividers presented here are by no means a complete selection. Any designer dealing with this frequency range must select devices to fit the requirements of his circuit. Some of the considerations involved in designing are: (1) bandwidth; (2) power level; (3) dc isolation requirements; (4) matching requirements; (5) size requirements, etc.

Figure I.6 demonstrates two versions of a hybrid combiner/splitter constructed of transmission line transformers. The version (a) can be wound on a single core. It has a balanced input and output and no dc isolation. Note that the transmission lines have characteristic impedances of R in both windings. The device in (b) has similar properties except that the addition of an unbalanced port places the whole device at dc ground potential, and requires an extra core with a different characteristic impedance winding.

Figure I.7 shows the conventional equivalent of Figure I.6(a). Grounding one side of the input makes it unbalanced, equivalent to I.6(b). This device does have dc isolation but can have the narrower bandpass associated with a conventional device. For a more complete discussion see Sartori (1968).

Figure I.8 demonstrates a practical hybrid constructed from different device types. Tl is a transmission line device which supplies collector current to the two transistors; it is wound as shown in (b), enabling it to

(a) Symmetrical Hybrid

(b) Unbalanced Symmetrical Hybrid

t to be described and the second

Figure I.7 A conventional wideband hybrid combiner/splitter.

α.

Figure I.8 (a) Method whereby two 180° transistor outputs may be combined (b) Method for winding a transmission line transformer which permits upright mounting.

be mounted upright on a printed circuit board. Note that the collector currents pass through Tl in opposite directions in effect cancelling and avoiding saturation effects. The radio frequency choke provides a low impedance path for dc but a very high impedance to R.F.; thus any imbalance in the RF outputs of the two transistors tends to be dissipated in Rl. The autotransformer T2 provides an impedance match. It might as easily have been a conventional transformer or a transmission line device; the choice depends on circuit requirements.

I.6 Summary

Careful design of wideband RF transformers using Ferrite cores provides simple, economical methods for matching, isolation, and the construction of hybrid combiners and dividers. Small cores yield high frequency devices. Larger cores produce higher power devices. ٩.

ORIGINAL PAGE IS OF POOR QUALITY

APPENDIX II. IMPEDANCE MATCHING OF NONLINEAR LOADS

A nonlinear load is any load in which the magnitude of the current wave form is not directly proportional to the voltage waveform. Common examples of concern are transistor and vacuum tube inputs. For nonlinear loads, the matching network design depends on the power to be applied. If this power is to vary in the course of the normal operation of the device, the engineer is faced with the necessity of constructing a network capable of being adjusted to match an entire range of impedances. If we assume that the applied current waveform is a periodic waveform, with a fundamental angular frequency ω_0 then we can write

 $i(t) = I_{o} + \sum_{n=-\infty}^{\infty} i_{n} e^{-jn\omega_{o}t}$

Since the problem of matching a nonlinear load at an infinite number of frequencies becomes rather large we make a simplifying assumption: we assume that the nonlinear element is bypassed with an LC circuit with a large enough Q such that v(t) in Figure II.2 is approximately cosinusoidal. When this is applied to a nonlinear load with a voltage-current characteristic such as the one shown in Figure II.1 we can write an expression for the current through the load as:

$$i(t) = I' + \sum_{\substack{n \\ n \\ n = -\infty}}^{\infty} i' e^{jn\omega} o^{t}$$

Note that our assumption of a high Q "tank" circuit having very low impedance except at ω_0 causes the dc component and any harmonics of the input waveform to be "shorted" to ground; hence, only the fundamental frequency of the input current has much effect. To a good approximation, then, we can write

$$\frac{v_1 e^{j\omega_0 t}}{i_1 e^{j\omega_0 t}} = \frac{v_1}{i_1} = Z[v(t)]$$

Hence: 1) if we know the current/voltage characteristics of the nonlinear load; 2) if we assume an applied sinusiodal voltage we can solve for Z[v(t)]

Figure II.1 Applied voltage versus current waveforms for a nonlinear load of the piecewise continuous type.

ORIGINAL PAGE IS OF POOR QUALITY

ni,

Figure II.2 Nonlinear load bypassed with a high Q tank circuit.

R.

either analytically or graphically. We can then design our matching network for this impedance. If we insure that the Q of the match network is high enough to meet our initial assumption, then we have sufficient justification for this technique. In many cases a network Q of 10 to 20 is quite sufficient. If the input waveform is sinusiodal in the first place it eases this requirement somewhat.

Several techniques are available for the above analysis. The Machlett Power Tube Calculator is a graphical technique based on Fourier analysis of the current waveforms of the power tube in question. It permits the user to evaluate within 10% the operating conditions of a power tube using a particular load line. An excellent source for a mathematical approach to several types of nonlinearities is Clarke and Hess (1971). Finally, a more direct approach is the physical measurement of the S-parameters of a device using a method similar to the one shown in Figure II.3.

The direct measurement technique is applicable even when the device power level is higher than would ordinarily be permitted by most test equipment. 1) The system is set up as shown. 2) The input is adjusted for zero reflected power at a predetermined input power level. 3) The output is then adjusted for maximum power output. 4) Steps 2 and 3 are repeated until no further improvement occurs. 5) The device under test is then removed from the test setup. 6) The vector impedance of the input match network looking back toward the generator is measured using a vector impedance meter or network analyzer. 7) The vector impedance of the output match network is similarly measured. Note that steps 6 and 7 can be accomplished with low power equipment, since at this point no high-power levels are present. 8) The desired input and output impedances are simply the complex conjugates of the values measured in steps 6 and 7.

÷....

7

ЗR,

١.

æ

1

original page 11 of poor quality

APPENDIX III. RIGID COAXIAL CABLE.

The rigid copper coaxial transmission lines of which so much of the Urbana Radar transmitter is constructed is meant to withstand the high voltages and currents associated with RF power transmission. Observed damage and a desire for completeness lend the reasoning behind this documentation of the limits of these transmission lines. The following nomographs have been taken from the 1973 Andrew Corp. Catalog. Figure III.1 gives the average power limitations for each size of the 50 Ω coax currently in use. Currently the Urbana Radar is near none of these limits. The derating factor for the average power with respect to load VSWR is

$$D.F. = \frac{VSWR^2 + 1}{2VSWR} + F'(\frac{VSWR^2 - 1}{2VSWR})$$

where F' may be determined from Figure III.2. Figure III.3 shows the variation of permissible average power with the ambient temperature.

Of more concern to the Urbana Radar are the peak power limitations rather than average power limitations. The following formula may be used:

$$P_{pk} = \frac{(E_{rF})^2}{200 \cdot VSWR}$$
 watts

where $E_{rF} = .247 E_p$, where E_p is the dc production test voltage given in Table III.1. Figure III.4 gives the variation in peak power with respect to the effects of pressurization. As a note of caution, please observe that the peak power limitation at VSWR = 1 for 3 1/8" lines is listed as 400 kw (unpressurized). These limits are easily exceeded in the Urbana Radar under high VSWR conditions, and arcover has been observed during tuning.

Figure III.5, III.6 and III.7 describe the line attenuation versus length, the effect of load VSWR on line attenuation, and the variation of

ЗR.

ORIGINAL PACE IS OF POOR GUALITY

FREQUENCY (MHz)

7 m 🖬

Figure III.1 Average power limitations versus frequency for the currently used types of rigid transmission lines.

ŝ

127

)GR,

R,

ORIGINAL PAGE DE OF POOR QUALITY

Table III.1 Production test voltage versus outer conductor diameter.

Outer Conductor OD, inches	7/8	1-5/8	3	3-1/8	5	6-1/8	8
Ep volts	6,000	11,000	16,000	19,000	25,000	35,000	35,000

originial pace is of poor quality

Figure III.4 Peak power limits vs. internal pressure for ${\rm SF}_6$ and dry air or nitrogen.

Figure III.5 Attenuation vs. frequency for rigid coaxial transmission line.

....

ORIGINAL PAGE 13 OF POOR QUALITY

Figure III.6 Attenuation vs. VSWR for rigid coaxial transmission line.

h

, 16° - • ' , ~

Figure III.7 Attenuation vs. temperature for rigid coaxial transmission line.

131

R,

attenuation with temperature respectively.

No.

Figure III.8 gives the inner conductor versus outer conductor temperature rise.

A few further comments are appropriate here, based on observations of past damage to the coaxial lines.

1. The lines should be periodically checked for accumulation of moisture. On one occasion the author removed two pints of water from the output network of unit 3.

2. Once arcover occurs in a line, the pits and catwhisker damage caused will permit it more easily the next time.

3. Parts of these coax lines are unpressurized. These parts should be evaluated and pressurized if needed.

In summary we simply note that the coaxial lines of the Urbana Radar are important to its operation; they deserve care and careful periodic maintenance.

ORIGINAL PACE IS OF POOR QUALITY

Figure III.8 Inner conductor vs. outer conductor temperature rise.

î

original page is of poor quality

APPENDIX IV. PROGRAM LISTINGS AND DESCRIPTIONS

Program 1. "PA MATCH"

Description: This program generates data on the impedance matching capabilities of units 3 and 4. It contains a model of the three variablelength transmission line segments which form the output tuning networks of these units. For input it requires the load impedance seen by the final segment. These data are produced by the program "CAPAUG" which is listed hereafter. Further data on the tuned bandwidth of these units are provided graphically by the program "PA BANDWIDTH", also listed hereafter, using selected data from "PA MATCH" to compute from.

1 REM PA MATCH BY L.J.HERRINGTON 10 REM THIS PROGRAM IS INTENDED TO PROVIDE DATA FOR THE CONSTRUCTION 20 REM OF A TUNING NOMOGRAPH FOR UNITS 3 AND 4 OF THE URBANA RADAR 30 REM IT USES THE BRUTE FORCE APPROACH TO COMBINE T-LINE EQUATIONS 40 REM AND THE EFFECT OF ABRUPT JUNCTION CAPACITANCES TO COMPUTE POSSIBLE 50 REM REAL LOAD IMPEDANCES AS SEEN BY THE ML5682 TUBES. 60 REM IT SEARCHES FOR REAL IMPEDA NCES BY HOLDING L2 CONSTANT AND VARYING L1 80 INPUT "ENTER THE REAL PART OF THE LOAD IMPEDANCE."; V 90 INPUT "ENTER THE IMAGINARY PART OF THE LOAD IMPEDANCE."; 100 DIM L1(22), L2(22), R(22), X(22) 110 FOR I = 1 TO 22 120 L2 = .044 + I*.002 L1 = 0130 DLTA = .005 GOSUB 380 140 150 ROUT = RXOUT = X GOSUB 380 160 IF SGN (XOUT) < > SGN (X) 170 GOTO 210 180 L1 = L1 + DLTA

190 IF L1 > .085 GOTO 350 200 GOTO 150 L1 = L1 - DLTA210 DLTA = DLTA / 10220 IF ABS (X) < 1 GOTO 250 230 240 GOTO 140 250 L1(I) = .201 - (L1 + L2)L2(1) = L2260 R(I) = RX(I) = X270 280 290 PRINT R 300 NEXT I 310 FOR I = 1 TO 22PRINT "L1="; L1(I), "L2="; L2(I), "R="; R(I), "X="; 320 X(I) 330 NEXT I 340 END 350 PRINT "NO MATCH AT L2="; L2 360EXT I 370 GOTO 310 380 RL = V 390 XL = W $400 \ Z0 = 52$ $410 A = L1 \pm 60.2832$ 420 GOSUB 590 430 GOSUB 630 440 B = B + 4.37E - 3450 GOSUB 680 $460 \ Z0 = 5.2$: RL = R: XL = X 470 A = L2 * 60.2832480 GOSUB 590 490 GOSUB 630 500 B = B + 5.14E - 3

 \mathbf{T}

ORIGINAL PACE IS OF POOR OUALITY

510 GOSUB 680 520 Z0 = 82 : RL = R : XL = X 530 A = 6.2832*(.201 - (L1 + L2))540 GOSUB 590 550 GOSUB 630 560 B = B + 2.18E - 2 570 GOSUB 630 580 RETURN 590 D = (1 - XL / Z0* TAN (A))*2 + (RL / Z0* TAN (A))*2 600 R = RL*(1 + TAN (A)*2) / D 610 X = $(XL*(1 - TAN (A)^{\circ}2) + 20*$ TAN (A)*(1 - (RL / Z0)^{\circ}2) - (XL / Z0)^{\circ}2)) / D 620 RETURN 630 BETA = - ATN (X / R) 640 MAG = SQR (X^{\circ}2 + R^{\circ}2) 650 G = 1 / MAG* COS (BETA) 660 B = 1 / MAG* SIN (BETA) 670 RETURN 680 BETA = - ATN (B / G) 690 MAG = SQR (G^{\circ}2 + B^{\circ}2) 700 R = 1 / MAG* COS (BETA) 710 X = 1 / MAG* SIN (BETA) 720 RETURN

1

1

Program 2. "CAPAUG"

Description: This program computes the load impedance seen by the tuning elements in units 3 and 4. It assumes a 50 Ω load. It requires as input the effective characteristic impedance of the blocking capacitor segments of units 3 and 4.

1 REM CAPAUG BY L.J.HERRINGTON 10 INPUT "ENTER ZO"; Z $20 \ Z0 = Z$ 100 FOR F = 3E7 TO 5E7 STEP 1E6 110 WAVL = 3E10 / F A = 29.25 / WAVL 120 1.30 RL = 50 135 XL = 0140 GOSUB 900 150 RL = RXL = X - 3.183E8 / FA = 58.5 / WAVL 160 170 180 GOSUB 900 190 RL = RXL = X - 3.183E8 / F200 A = 58.5 / WAVL 210 220 GOSUB 900 230 RL = RXL = X - 3.183E8 / F240 A = 29.25 / WAVL 250 GOSUB 900 260 270 RL = R 280 XL = X

法に

A = 299.2 / WAVL 290 ZO = 40 300 GOSUB 900 310 320 RL = RXL = X330 A = 267.3 / WAVL 340 350 20 = 56360 GOSUB 900 370 20 = 2PRINT "F="; F PRINT "R="; R, "X="; X 375 380 385 PRINT 390 NEXT 400 END $900 D = (1 - XL / ZO^{\times} TAN (A))^{\circ}2$ + (RL / ZO* TAN (A))*2 $1000 R = RL*(1 + TAN (A)^{\circ}2) / D$ $1100 X = (XL*(1 - TAN (A)^{\circ}2) + ZO*$ TAN (A)*(1 - (RL / Z0)*2 - (XL / Z0)*2)) / D 1200 RETURN

135

ORIGINAL PAGE 13 OF POOR QUALITY

Program 3. "PA BANDWIDTH"

PA BANDWIDTH is a modeling program providing data to evaluate the bandwidth of the output matching networks of units 3 and 4. It requires as inputs the lengths of the tuning element of units 3 and 4, the resistance being matched, and the effective characteristic impedance of the blocking capacitor structures. Further it requires access to two binary files on floppy disk: "BANDWIDTH" which is essentially the blank graph paper on which the data will be graphed, and "SHAPE TABLE" which contains the + mark plotted at each data point. The program assumes a current source whose resistance is matched by the network. The transmission coefficient is plotted as a function of frequency. For typical results see Chapter 3.

1 REM PA BANDWIDTH BY L.J.HERRING TON 10 INPUT "ENTER ZO"; Z 20 INPUT "ENTER L1"; L1 30 INPUT "ENTER L2"; L2 32 INPUT "ENTER TUBE LOAD"; TL 35 B1 = 25: Al = 17 : XN = 3.6E7: YN = 0YI = .1 : XI = 1E640 HGR : POKE - 16302, 0 50 LET D\$ = CHR\$ (4) : REM CTRL-D 60 HCOLOR= 3 : HPLOT 0, 179 CALL 62454 70 ECOLOR= 0 : SCALE= 1 : ROT= 0 80 PRINT D\$"BLOAD BANDWIDTH, A\$2000" 95 PRINT D\$"BLOAD SHAPE TABLE, A\$400 0" 96 POKE 232, 0 : POKE 233, 64 $100 \ Z0 = Z$ 110 FOR F = 3.6E7 TO 4.6E7 STEP 2E5 WAVL = 3E10 / F120 A = 29.25 / WAVL 130 RL = 50 140 XL = 0150 160 GOSUB 2000 170 RL = R XL = X - 3.183E8 / F180 A = 58.5 / WAVL190 GOSUB 2000 200

210 RL = RXL = X - 3.183E8 / F220 A = 58.5 / WAVL 230 240 GOSUB 2000 250 RL = R260 XL = X - 3.183E8 / F270 A = 29.25 / WAVL 280 GOSUB 2000 290 RL = R 300 XL = XA = 299.2 / WAVL310 320 20 = 40330 GOSUB 2000 340 RL = R 350 XL = X360 A = 267.3 / WAVL 370 20 = 56380 GOSUB 2000 410 RL = R420 XL = X430 A = (.201 - L1 - L2) * 733.1/ HAVL 440 ZO = 52 GOSUB 2000 450 470 GOSUB 2090 480 B = B + 1.07E - 10 * FGOSUB 2040 490 500 RL = R510 XL = X520 z0 = 5.2530 A = L2*6.2832*733.1 / WAVL 540 GOSUB 2000 560 GOSUB 2090 B = B + 1.26E - 10*F570 580 GOSUB 2040 590 RL = R $\begin{array}{l} XL = X \\ ZO = 82 \end{array}$ 600 610

REM A IS ANGLE IN RADIANS 620 REM WAVL IS WAVELENGTH IN 630 CM. A = L1*6.2832*733.1 / WAVL 640 GOSUB 2000 650 660 GOSUB 2090 B = B + 5."4E - 10*F 670 GOSUB 2040 680 PRINT R, X 690 700 20 = 2 $RHO = SQR ((R - TL)^{\circ}2 + X^{\circ}2)$ 710 / SQR ((R + TL)[•]2 + X[•]2) XC = F 720 730 YC = 1 - RHO*2 760 X9 = 29 + INT ((XC - XN) * B1/ XI + .5) 770 Y9 = 174 - INT ((YC - YN) * A1/ YI + .5) 7.80 DRAW 15 AT X9, Y9 785 NEXT 790 TEXT 800 INPUT "SAVE UNDER WHAT NAME?";

```
ORIGINAL PAGE D
OF PEUR QUALITY
                     SN$
          810 PRINT D$"BSAVE"SN$",A$2000,L$200
                   0"
          820 END
         2000 D = (1 - XL / ZO* TAN (A))^{2}
                   + (RL / ZO* TAN (A))*2
         2010 R = RL*(1 + TAN (A)*2) / D
2020 X = (XL*(1 - TAN (A)*2) + 20*
                  TAN (A)*(1 - (RL / ZO)*2
                   - (XL / ZO)*2)) / D
         2030 RETURN
         2040 BETA = - ATN (B / G)
         2050 MAG = SQR (G°2 + B°2)
2060 R = 1 / MAG* COS (BETA)
2070 X = 1 / MAG* SIN (BETA)
         2080 RETURN
         2090 BETA - - ATN (X / R)
         2100 MAG = SQR (R^{\circ}2 + X^{\circ}2)
         2110 G = 1 / MAG* COS (BETA)
2120 B = 1 / MAG* SIN (BETA)
         2130 RETURN
```

137

),

Ł

Program 4. "PA INPUT"

This program computes the input impedance and VSWR of the input match network in units 3 and 4. The load RL assumed in step 60 must be changed to correspond with the operating conditions of the ML-5682.

1

δL

2

÷

10 REM PA INPUT BY L.J.HERRING2ON 20 PR# 1 30 FOR L = 3.3 TO 5.7 STEP .1 : REM DERIVED FROM WORK BY JAY GOOCH. ZO = 20 40 REM VERIFIED VIA TIME DOMAIN : REFLECTOMETER 50 A = .3267 REM VERIFIED VIA T.D.R. 60 RL = 20 REM RL IN 60 DEPENDS ON 70 TUBE OPERATING CONDITIONS XL = 1 / (.26157468 - 1 / L)80 G = 1 / RLB = 1 / XL90 100 GOSUB 390 110 RL = RXL = X ; 120 GOSUB 300 130 PRINT Z0 = 31140 150 A = 1.615 RL = R160 XL = X GOSUB 300 170 PRINT "L= "; L 180 $MAG = SQR ((R - 50)^{\circ}2 + X^{\circ}2)$ 190 / SQR ((R + 50)*2 + X*2) 200 ANG = (ATN (X / (R - 50))

· I

- ATN (X / (R + 50)))*57.3 210 PRINT "THE REAL PART IS "; R PRINT "THE IMAGINARY PART 220 IS "; X PRINT "RHO= "; MAG, "ANG-230 "; ANG VSWR = (1 + MAG) / (1 - MAG) 240 PRINT "VSWR= "; VSWR 250 260 FRINT 270 NEXT 280 PR# 0 290 END 300 D = (1 - XL / ZO* TAN (A))*2+ (RL / 20* TAN (A))•2 310 R = RL*(1 + TAN (A)*2) / D $\begin{array}{l} 320 \ X = (XL*(1 - TAN \ (A)^{\circ}2) + 20*\\ TAN \ (A)*(1 - (RL \ / \ 20)^{\circ}2 \end{array}$ - (XL / 20)*2)) / D 330 RETURN 340 BETA = - ATN (X / R) $\begin{array}{l} 350 \text{ MAG} = \text{SQR} (\textbf{X}^{\bullet}2 + \textbf{R}^{\bullet}2) \\ 360 \text{ G} = 1 / \text{MAG} \text{ COS} (\text{BETA}) \\ 370 \text{ B} = 1 / \text{MAG} \text{ SIN} (\text{BETA}) \end{array}$ 380 RETURN 390 BETA = - ATN (B / G) 400 MAG = SQR (G⁰2 + B⁰2) 410 R = 1 / MAG* COS (BETA) 420 X = 1 / MAG* SIN (BETA) 430 RETURN

1

enantemente de la característica de la composición de la comp

Program 5. "T-LINE CALCULATOR"

This is a utility program used to compute the input impedance of a transmission line with a complex load. It was frequently used and often modified for use in larger programs.

1 REM T-LINE CALCULATOR BY L.J.HE OF THE LOAD IMPEDANCE"; RRINGTON XL 10 PRINT "THIS PROGRAM WILL COMPUTE 80 GOSUB 120 THE INPUT IMPEDANCE OF A 90 PRINT "THE REAL PART OF THE TRANSMISSION" INPUT IMPEDANCE IS 20 PRINT "LINE WITH A COMPLEX LOAD" R 100 PRINT "THE IMAGINARY PART OF 30 INPUT " ENTER THE LENGTH OF THE LINE IN WAVELENGTHS"; THE INPUT IMPEDANCE IS "; X LA 110 END 40 A = LA*6.2832 $120 D = (1 - XL / ZO + TAN (A))^{\circ}2$ 50 INPUT "ENTER THE CHARACTERISTIC + (RL / ZO* TAN (A))*2 $\begin{array}{rcl} 130 & R &= RL*(1 + TAN (A)^{+}2) & / D \\ 140 & X &= (XL*(1 - TAN (A)^{+}2) + Z0* \\ & TAN (A)*(1 - (RL / Z0)^{+}2) \end{array}$ IMPEDANCE OF THE LINE"; 20 60 INPUT "ENTER THE REAL PART OF THE LOAD IMPEDANCE"; RL - (XL / Z0)*2)) / D 70 INPUT "ENTER THE IMAGINARY PART 150 RETURN

Program 6. "T-MATCH"

F ;

The output of unit 3 includes a coaxial Tee as part of the power splitter used to drive unit 4. This program evaluates that match by computing and printing the reflection coefficient "seen" by unit 3.

1

1	REM T-MATCH BY L.J.HERRINGTON	+ $(1 - (R1 / 50)^{\circ}2 - (X1$
10	REM THIS PROGRAM IS FOR EVALUAT	/ 50)•2)* TAN (B)) / D
	ION OF THE T-MATCH	100 R0 = R2 / 2
20	FOR $F = 10E6$ TO 80E6 STEP 1E6	110 X0 = X2 / 2
30	A = 3.3E - 8 # F	120 HAG = SQR ((R0 - 50) $^{\circ}2$ + X0 $^{\circ}2$)
40	RI = 50*(1 + (TAN (A) [•] 2))	$/ SQR ((RO + 50)^{\circ}2 + X0^{\circ}2)$
	/ (.69444* TAN (A)) [•] 2	130 ANG = $(ATN (XO / (RO - 50))$
50	X1 = .5177* TAN (A) / (.69444*	- ATN (XO / (RO + 50)))*57.
	TAN (A))*2	3
60	B = 4.5E - 9*F	140 PRINT "F="; F; "MAG="; MAG;
70	D = (1 - (X1 / 50)* TAN (B))*2	"ANG="; ANG
	+ ((R1 / 50)* TAN (B))*2	145 FRINT "RO="; RO; "XO="; XO
80	$R2 = R1 * (1 + (TAN (B))^{\bullet}2)$	150 NEXT
	/ D	160 END
90	X2 = (X1*(1 - (TAN (B))))	
		1

ŝ.

";

Programs 7 and 8. "CORRELATION" and "CORRESHORT"

The next two programs may be used to cross correlate binary codes, "CORRELATION" evaluates 8 times per interval while "CORRESHORT" evaluates only once. Further comments and instructions are contained in the remarks sections of the programs.

TO PROVIDE CORRELATION CAPAB ILITIES FOR FINITE LENGTH BINARY CODES" 20 PRINT "IT DOES SIMPLE NUMERICAL CORRELATION BY FORMING ARRAY S. THEN CORRELATING THEM" 30 PRINT " ... 40 PRINT "TO BEGIN, ENTER THE FIRST FUNCTION. LABLE IT A AND USE N AS THE INDEPENDENT VARIABLE, BEGIN AT 1000 AND END WITH RETURN." 50 PRINT " NEXT, ENTER THE SECOND FUNCTION THE SAME WAY, EXCEPT LABLE IT B AND USE M AS THE INDEPENDENT VARIABLE." 60 PRINT "THE PROGRAM CALLS THESE AS SUBROUTINES. TO RESTART THE PROGRAM ENTER RUN20." 70 EN D 80 INPUT "ENTER THE LENGTH OF THE FIRST FUNCTION IN UNITS ---- "; Ll 90 INPUT "ENTER THE LENGTH OF THE SECOND FUNCTION IN UNITS ---- "; L2 $100 \ Q = (L1 + L2) * 8$ 110 DIM A(Q) 120 REM A IS THE NAME GIVEN TO THE FIRST ARRAY 130 DIM B(Q) 140 REM B IS THE NAME GIVEN TO THE SECOND ARRAY 150 DIM C(Q) 160 REM C IS THE NAME GIVEN TO THE OUTPUT ARRAY 170 FOR N = .0625 TO L1 - .0625 STEP .125 180 GOSUB 1000 190 A(INT (N*8 + .5)) = A 200 N5XT 210 FOR M = .0625 TO L2 - .0625 STEP .125 GOSUB 2000 B(INT (M*8 + .5) + L1*8) = B 220 230 240 NEXT 250 FOR J = 0 TO Q FOR K = 0 TO J 260 A = A(K) + B(Q - J + K)270 280 ACC = ACC + A NEXT K C(J) = ACC 2 90 300 310 PRINT J / 8, C(J) / 8 ACC = 0 320 330 NEXT J 340 END 1000 IF N = 0 THEN A = 1 1010 IF N > 0 AND N < 5 THEN A = 1

a trans is the state

10 PRINT "THIS PROGRAM IS INTENDED

1020 IF N > = 5 AND N < 7 THEN A 1030 IF N > = 7 AND N < 9 THEN A = 1 1040 IF N > = 9 AND N < 10 THEN A × _ 1050 IF N > = 10 AND N < 11 THEN A = 1 1060 IF N > - 11 AND N < 12 THEN A 1070 IF N > = 12 AND N < 13 THEN A = 1 1080 RETURN 2000 B = A(INT (M*8 + .5)) 2010 RETURN 2015 IF H = 5 THEN B = 0 2020 IF H > 5 AND H < 7 THEN B = - 1 2025 IF M = 7 THEN B = 0 2030 IF M > 7 AND M < 9 THEN B = 12035 IF M = 9 THEN B = 32040 IF M > 9 AND M < 30 THEN B = 2045 IF H = 10 THEN B = 0 2050 IF M > 10 AND M < 11 THEN B 2055 IF M = 11 THEM B = 0 2060 IF M > 11 AND M < 12 THEN B = - 1 2065 IF M = 12 THEN B = 0 2070 IF M > 12 AND H < 13 THEN B × 1 2080 RETURN 1

 REM CORRESHORT BY L.J.HERRINGTO N
 PRINT "THIS PROGRAM IS INTENDED TO PROVIDE CORRELATION CAPAB ILLITIES FOR FINITE LENGTH BINARY CODES"
 PRINT "I DOES SIMPLE NUMERICAL CORRELATION BY FORMING ARRAY S,THEN CORRELATING THEM"
 PRINT ""
 40 FRINT "TO BEGIN,ENTER THE FIRST FUNCTION.LABLE IT A AND USE N AS THE INDEPENDENT

VARIABLE. BEGIN AT 1000 AND

٢.

ORIGINAL PAGE IS OF POOR QUALITY

END WITH RETURN." 50 PRINT " NEXT, ENTER THE SECOND FUNCTION THE SAME WAY, EXCEPT LABLE IT B AND USE M AS THE INDEPENDENT VARIABLE." 60 PRINT "THE PROGRAM CALLS THESE AS SUBROUTINES. TO RESTART THE PROGRAM ENTER RUN2C." 70 END 80 INPUT "ENTER THE LENGTH OF THE FIRST FUNCTION IN UNITS ---- "; Ll 90 INPUT "ENTER THE LENGTH OF THE SECOND FUNCTION IN UNITS ---- "; L2 100 Q = L1 + L2110 DIM A(Q) 120 REM A IS THE NAME GIVEN TO THE FIRST ARRAY 130 DIM B(Q) 140 APM B IS THE NAME GIVEN TO THE SECOND ARRAY 150 DIM C(Q) 160 REM C IS THE NAME GIVEN TO THE OUTPUT ARRAY 170 FOR N = .5 TO L1 - .5 180 GOSUB 1000 A(N) = A1 90 200 NEXT 210 FOR M = .5 TO L2 - .5 GOSUB 2000 220

```
230 B(M + L1) = B
 240 NEXT
  250 FOR J = 0 TO Q
 260
     FOR K = 0 TO J
         A = A(K) * B(Q - J + K)
 270
         ACC = ACC + A
 280
 290 NEXT K
 300
       C(J) = ACC
 310
       ACC = 0
 320 NEXT J
 330 FOR T = 0 TO Q
 340 PRINT T, C(T)
 350 NEXT
 360 END
 1000 IF N > = 0 AND N < 3 THEN A
           m 1
1010 IF N > = 3 AND N < 6 THEN A
           n - 1
1020 IF N > = 6 AND N < 7 THEN A
          # 1
1030 IF N > = 7 AND N < 9 THEN A
          = - 1
1040 IF N > = 9 AND N < 10 THEN A
          = 1
1050 IF N > = 10 AND N < 11 THEN A
          = - 1
1060 RETURN
2000 B = A(M)
2010 RETURN
1
```

Program 9. "MACHLETT POWER TUBE CALCULATOR"

This program automates the worksheet of the Machlett Power Tube Calculator. It requires an operator who already knows how to use the "calculator" to input the data on power tube operating conditions and to enter the data read from the cosine scale. The program then does the routine calculations and prints the results or stores to floppy disk if requested for later printing.

33

 REM MACHLETT POWER TUBE CALCULA TOR BY L.J.HERRINGTON
 PRINT "THIS PROGRAM AUTOMATES THE WORKSHEET"
 PRINT "OF THE MACHLETT POWER TUBE CALCULATOR"
 PRINT
 PRINT
 O RNT
 OR N)"
 INPUT A\$
 IF ASC (A\$) = 89 THEN GOSUB 1670

- 28° 7

i.i.i

70 DIM IB(6), G1(6), G2(6)
80 PRINT
90 PRINT "IS THIS A COMMON CATHODE OR COMMON GRID"
200 INPUT "CIRCUIT (CC OK CG)"; A\$
110 PRINT A\$
120 PRINT
130 INPUT "TETRODE OR TRIODE?"; B\$
140 IF BS = "TETRODE" OR B\$ = "TRIOD

÷

ORIGINAL PACE IJ OF POOR QUALITY

E" THEN 180 150 PRINT 160 PRINT "HUST BE A TETRODE OR A TRIODE." 170 GOTO 1470 180 PRINT 190 INPUT "ENTER THE DC PLATE VOLTAG E "; EB 200 PRINT 210 INPUT "ENTER THE MINIMUM PLATE VOLTAGE"; EM 220 PRINT 230 INPUT "ENTER THE DC BLAS VOLTAGE "; BIAS 240 PRINT 250 INPUT "ENTER THE PEAK GRID VOLTA GE"; EP 260 PRINT 270 IF B\$ = "TRIODE" THEN 290 280 INPUT "ENTER THE SCREEN VOLTAGE" ; E2 290 PRINT 300 FOR I = 0 TO 90 STEP 15 310 PRINT "ENTER THE INSTANTANEOUS PLATE CURRENT" PRINT "AT "; I; "DAGREES" INFUT IB(I / 15) PRINT 320 330 340 PRINT "ENTER THE INSTANTANEOUS 350 GRID CURRENT" 360 FRINT "AT "I" DEGREES" 370 INFUT G1(I / 15) 380 FRINT 390 IF B\$ = "TRIODE" THEN 430 PRINT "ENTER THE INSTANTANEOUS 400 SCREEN CURRENT" PRINT "AT "; I; " DEGREES" INFUT G2(I / 15) 410 420 430 NEXT 440 PRINT 450 INPUT "DO YOU WANT TO CHANGE ANY OF THE INSTAN-TANEOUS VALUES? (Y OR N)"; L\$ 460 IF L\$ = "Y" THEN 1520 470 AVIB = (IB(0) / 2 + IB(1) + IB(2))) + IB(3) + IB(4) + IB(5))/ 12 $480 \text{ FIB} = (\text{IB}(0) + \text{IB}(1) \times 1.93 + \text{IB}(2)$)*1.73 + IB(3)*1.41 + IB(4) $\begin{array}{r} + 18(5) * .52 \end{pmatrix} / 12 \\ 490 \text{ A1} = (G1(0) / 2 + G1(1) + G1(2) \\ + G1(3) + G1(4) + G1(5)) \end{array}$ / 12 500 FG1 = (G1(0) + G1(1)*1.92 + G1(2))*1.73 + G1(3)*1.41 + G1(4) $\begin{array}{r} + G1(5) * .52 \ / \ 12 \\ 510 \ \text{IF B} \$ \cong \text{``TRIODE'' THEN 530} \\ 520 \ \text{A2} = (G2(0) \ / \ 2 \ \ 52(1) \ + \ G2(2) \\ + \ G2(13) \ + \ G2(4) \ + \ G2(5)) \end{array}$ / 12 530 IF AS - "CG" THEN 580 540 PO = (EB -> EM)*FIB / 2 550 PD = (EP - BIAS) * FG1 / 2560 RL = (EB - EM) / FIB 570 GOTO 610 580 PO = (EB - EM + EP - BIAS)*FIB/ 2 590 PD = (EP - BIAS)*(FG1 + FIB)12

600 RL = (EB - EM + EP - BIAS) / FIB610 PIN = EB*AVIB 620 PP = PIN - 20 630 EFF = PO / PIN 640 GAIN = PO / PD 650 PC = - BIAS*A1 660 P1 = PD - PC 670 PRINT 680 INPUT "IS PROTECTIVE BIAS USED? (Y OR N)"; G\$ 690 IF G\$ = "Y" THEN 730 700 PRIMT 710 RC = - BIAS / A1 720 GOLD 770 730 PRINT 740 INPUT "ENTER THE PROTECTIVE BLAS VOLTAGE"; ECC 750 PRINT 760 RC = (ABS (BIAS) - ABS (ECC)) / A1 770 IF B\$ = "TRIODE" THEN 790 780 P2 = E2*A2 790 INPUT "IS A PRINTER IN USE? (Y OR N)"; H\$ 800 IF H\$ = "N" GOTO 1240 810 PRINT : INVERSE 820 PRINT "ALIGN THE PAGE IN THE PRINTER." 830 NORMAL 840 PRINT 850 INPUT 'WANT A FULL PRINTOUT OR A SHORT ONE? (F OR S)"; J\$ 860 IF JS = "F" TERS 500 870 PR# 1 880 PRINT 890 GOTO 1240 900 IF J\$ = "S" THEN 1240 : PRINT 910 INFUT "WHAT TUBE TYPE?"; GS 920 PRINT 930 INPUT "WHAT IS THE DATE?"; DS 940 PRINT 950 INPUT "WHAT CLASS OF SERVICE?"; EŚ 960 PRINT 970 INPUT "PERSON PERFORMING ANALYSI S?"; F\$ 980 PRINT 990 PR# 1 1000 PRINT 1010 PRINT "TUBE TYPE"; TAB(20); CS 1020 PRINT 1030 PRINT "DATE"; TAB(25); D\$ 1040 PRINT 1050 PRINT "CLASS OF SERVICE"; TAB(13); E\$ 1060 PRINT 1070 FRINT "BY"; TAB(27); F\$ 1080 PRINT 1090 FRINT "EB = "; EB, "EC1 = "; BIAS, "EC2 = "; E2 1100 PRINT 1110 PRINT "EM = "; EM, "EPG = "; EP

í.

141

2

۰.

ORIGINAL PAGE IS OF POOR QUALITY

1120 PRINT " 1130 PRINT "EP = "; (EB - EM), "EG = "; (EP - PIAS) 1140 PRINT 1150 HTAB (10) : PRINT "PLATE": : HTAB (20) : FRINT "GRID"; : HTAB (30) : PRINT "SCREEN" 1160 HTAE (10) : PRINT "CURRENT"; : HTAB (20) : PRINT "CURRENT"; : HTAB (30) : PRINT "CURRENT" 1170 PRINT 1180 PRINT "ANGLE" 1190 FOR I = 0 TO 6 1200 PRINT I*15; HTAB (10) : PRINT INT (IB(I)*10 + .5) : / 10; HTAB (20) : PRINT INT (G1(1)*10 + .5): / 10; HTAB (30) : PRINT INT (G2(1)*10 + .5) : / 10 1200 PRINT 1220 NEXT 1230 PRINT : PRINT 1240 PRINT 1260 PRINT " IB = "; INT (AVIB*10 + .5) / 10; : HTAB (14) : PRINT "IC1 = "; INT (A1*180 + .5) / 100; : HTAB (26) : PRINT "IC2 = "; INT (A2*180 + .5) / 100 1270 PRINT 1280 PRINT " IP = "; INT (FIB*10 + .5) / 10; : HTAB (14) : PRINT "IG1 = " INT (FG1*180 + .5) / 100 1290 PRINT : PRINT 1300 PRINT " PO = "; INT (PO / 100 + .5) / 10; "KW"; : HTAB (20) : PRINT "PD = "; INT (PD*10 + .5) / 10 1310 PRINT 1320 PRINT " PIN = "; INT (PIN / 100 + .5) / 10; "KW"; : HTAB (20) : PRINT "PC = "; INT (PC*10 + .5) / 10 1330 PRINT 1340 PRINT " PP = "; INT (PP / 100 + .5) / 10; "KW"; : HTAB (19) : PRINT "PG1 = "; INT (P1*10 + .5) / 10 1350 FRINT 1360 PRINT " RL = "; INT (RL*10

+ .5) / 10; : HTAB (20) : PRINT "RC = "; INT (RC*10 + .5) / 10 137C PRINT 1386 PRINT " EFF = "; INT (PO / PIN*1 00 + .5) / 100; : HTAB (19) : PRINT "PG2 = "; INT (P2*10 + .5) / 10 1390 PRINT 1400 PRINT "GAIN = "; INT (GAIN*10 + .5) / 10; ; HTAB (19) : PRINT "ECC = "; ECC 1410 PRINT : PRINT : PRINT : PRINT : PRINT 1420 HTAB (18) ; PRINT "DONE" 1430 PR# 0 1435 INPUT "DO YOU WANT TO WRITE TO DISK FOR LATER PRINTING? (Y OR N) "; P1\$ 1440 IF P1\$ = "Y" THEN GOSUB 1750 1450 IF H\$ = "N" THEN 1510 1460 PRINT 1470 INPUT "WANT ANOTHER COPY?": KŞ 1480 IF KS = "N" THEN 1510 1490 IF K\$ = "Y" AND J\$ = "F" THEN 99 Ô 1500 PR# 1: GOTO 1240 1510 END 1520 INPUT 'WANT TO CHANGE PLATE, GRID, OR SCREEN VALUES? (P, G, OR S)"; M\$ 1530 PRINT 1540 IMPUT "WHAT ANGLE IN DEGREES?"; X 1550 PRINT 1560 INPUT "WHAT IS THE NEW VALUE?"; Y 1570 IF M\$ = "P" THEN 1610 1580 IF M\$ = "G" THEN 1630 1590 IF M\$ = "S' THEN 1650 1600 GOTO 440 1610 IB(X / 15) = Y1620 GOTO 440 $1630 \ G1(X / 15) = Y$ 1640 GOTO 440 1650 G2(X / 15) = Y 1660 GOTO 440 1679 PRINT "THIS PROGRAM INTERACTS WITH AN OPERATOR TO ANALIZE THE PERFORMANCE OF TRIODES AND TETRCIDES IN COMMON CATHO DE AND COMMON GRID CONFIGURAT IONS." 1680 PRINT 1690 PRINT "THE OPERATOR MUST FIRST HAVE A COSINE SCALE AND THE TUBE'S CONSTANT CURRENT CHARACTERISTICS IN HIS/HER POSESSION AND KNOW HOW TO USE THEM." 1700 PRINT 1710 PRINT "TO OBTAIN THIS INFORMATIO

T

N THE USER IS REFERRED TO THE ARTICLE: THE MACHLETT POWER TUBE CALCULATOR: FOUND IN THE MACHLETT CATHODE PRESS VOL.22,NO. 4,1965;SIMI LAR DATA MAY BE FOUND IN :REFERENCE DATA FOR RADIO ENGINEERS:" 1720 PRINT 1730 PRINT "THE OPERATOR MUST DRAW HIS OWN LOAD LINE AND PROVID E THE REQUESTED INFORMATION. THE PROGRAM THEN DOES THE ANALYSIS AND PRINTS THE RESULTS ." 1740 END 1750 INPUT "WHAT TUBE TYPE?"; C\$ 1760 PRINT 1770 INPUT "WHAT IS THE DATE?"; D\$ 1780 PRINT 17 90 INFUT "WHAT CLASS OF SERVICE?"; ΕŞ 1800 PRINT 1810 INPUT "PERSON PERFORMING ANALYSI 5?"; F\$ 1820 PRINT 1830 GOTO 1840 1840 REM MAKE POWER TUBE DATA 1850 T\$ = "[D]" : REM C711-D 1860 INPUT "WHICH FILE NUMBER?"; 1870 PRINT TS; "OPEN POWER TUBE DATA" ; J 1880 PRINT T\$; "WRITE POWER TUBE DATA"; J 1890 PRINT A\$: PRINT B\$

Maria Mirade 13 OF POOR QUALITY : PRINT CŞ : PRINT D\$ 1900 PRINT ES : PRINT F\$: PRINT G\$ 1910 PRINT EB : PRINT EM : PRINT BLAS : PRINT EP 1920 PRINT E2 1930 FOR I = 0 TO 61940 PRINT IB(1) : PRINT G1(1) : PRINT G2(1) 1950 NEXT I 1960 PRINT AVIB : PRINT FIB 1970 PRINT AL : PRINT FG1 1980 PRINT A2 1990 PRINT PO : PRINT PD : PRINT RL 2000 PRINT PIN : PRINT PP : PRINT EFF 2010 PRINT GAIN : PRINT PC : PRINT P1 2020 PRINT RC : PRINT ECC : PRINT P2 2030 PRINT T\$; "CLOSE POWER TUBE DATA"; J 2040 PRINT 2050 FRINT "DONE" 2060 RETURN

Program 10. "MACHPRINT"

4

This program will print the data stored on disk when that option is used in Program 9.

1

 REM MACHPRINT BY L.J.HERRINGTON
 REM THIS PROGRAM WILL PRINT THE DATA RECORD CREATED BY MACHLETT CALC/DISC STORAG E
 INVERSE
 PRINT "ALIGN THE PAGE IN THE FRINTER"
 NORMAL
 PRINT
 PRINT
 PRINT "HIT ANY KEY TO CONTINUE" 60 FRINT 70 GET Z\$ 80 GOTO 660 90 FRINT 100 FR≢ 1 110 FRINT 120 FRINT "TUBE 1YPE"; TAB(20); C\$ 130 FRINT 140 FRINT "DATE"; TAB(25); D\$ 150 FRINT 160 FRINT "CLASS OF SERVICE"; TAB(13)); E\$

ORIGINAL PACE V OF POOR QUALIN.

170 PRINT 180 PRINT "BY"; TAB(27); F\$ 190 PRINT 200 PRINT "EB = "; EB, "EC1 = "; BIAS, "EC2 = "; E2 210 PRINT 220 PRINT "EM = "; EM, "EPG = "; EP 230 PRINT " 240 PRINT "EP = "; (EB - EM), "EG = "; (EP - BIAS) 250 PRINT 260 HTAB (10) : PRINT "PLATE"; : HTAB (20) : PRINT "GRID"; : HTAE (30) : PRINT "SCREEN" 270 HTAB (10) : FRINT "CURRENT": : HTAB (20) : PRINT "CURRENT"; : HTAB (30) : PRINT "CURRENT" 280 PRINT 290 PRINT "ANGLE" 300 FOR I = 0 TO 6310 PRINT 1*15; HTAB (10) : PRINT INT (IB(I)*10 + .5) : / 10; : HTAB (20) PRINT INT (G1(1)*10 + .5) : / 10; HTAB (30) : PRINT INT (G2(I)*10 + .5) : / 10 320 PRINT 330 NEXT 340 PRINT : PRINT 350 PRINT 360 PRINT " IB = "; INT (AVIB*10 + .5) / 10; : HTAB (14) : PRINT "IC1 = "; INT (A1*10 + .5) / 100; : HTAB (26) : PRINT "IC2 = "; INT (A2*10 + .5) / 100 370 PRINT 380 PRINT " IP = "; INT (FIB*10 + .5) / 10; : HTAB (14) : PRINT "IG1 = " INT (FG1*10 + .5) / 100 390 PRINT : PRINT 400 PRINT " PO = "; INT (PO / 100 + .5) / 10; "KW"; : HTAB (20) : PRINT "PD = "; INT (PD*10 + .5) / 10 410 PRINT 420 PRINT " PIN = "; INT (PIN / 100 + .5) / 10; "KW"; : HTAB (20) : PRINT "PC = "; INT (PC*10 + .5) / 10 430 PRINT

ł

+ .5) / 10; "KW"; ; HTAB (19) : PRINT "PG1 = "; INT (P1*10 + .5) / 10 450 PRINT 460 PRINT " RL = "; INT (RL*10 + .5) / 10; : HTAB (20) : PRINT "RC = "; INT (RC*10 + .5) / 10 470 PRINT 480 PRINT " EFF = "; INT (PO / PIN*1 0 + .5) / 100; : HTAB (19) : PRINT "PG2 = "; INT (P2*10 + .5) / 10 490 PRINT 500 PRINT "GAIN = "; INT (GAIN*10 + .5) / 10; : HTAB (19) : PRINT "ECC = "; ECC 510 PRINT : PRINT : FRINT : PRINT : PRINT 520 HTAB (18) : PRINT "DONE" 530 PR# 0 540 IF H\$ = "N" THEN 610 550 PRINT 560 INPUT "WANT ANOTHER COPY?"; K\$ 570 IF K\$ = "N" THEN 610 580 IF K\$ = "Y" THEN 100 590 PR# 1: GOTO 350 600 PRINT 610 INPUT "DO YOU WANT, TO DELETE THE FILE JUST PRINTED? (Y OR N)"; Q\$ 620 IF Q\$ = "Y" THEN 640 630 END 640 PRINT T\$; "DELETE POWER TUBE DATA"; J 650 END 660 REM PRINT POWER TUBE DATA 670 T\$ = "[D]" : REM CTRL-D 680 INPUT "WHICH FILE NUMBER?"; J 690 PRINT T\$; "OPEN POWER TUBE DATA" ;J 700 PRINT T\$; "READ POWER TUBE DATA" ; J 710 INPUT AŞ : INPUT 73 : INFUT C\$: INPUT D\$ 720 INPUT ES : INPUT F\$: INPUT GS 7:0 INPUT EB : INPUT EM : INPUT BIAS : INPUT EP 740 INPUT E2 750 FOR I = 0 TO 6 760 INPUT IB(I) INPUT G1(I) : : INPUT G2(I)

المتوسطين الرواحي والمتحمون وال

440 PRINT " PP = "; INT (PP / 100

770 NEXT I 780 INPUT AVIB : INPUT FIB 790 INPUT A1 : INPUT FG1 800 INPUT A2 810 INPUT P0 : INPUT PD : INPUT RL 820 INPUT PIN : INPUT PP : INPUT EFF 830 INPUT GAIN : INPUT PC : INPUT P1 840 INPUT RC : INPUT ECC : INPUT E22 850 FRINT T\$; "CLOSE POWER TUBE DATA"; J 860 FRINT 870 GOTO 90

Program 11. "GRAPH MAKER"

This program interacts with the user to create graphs. It will plot either linear or log scale along either axis. The user may enter any header and limits desired for either axis. The program will then create and label the desired graph. The user is practically limited to about 15 divisions vertically and 20 horizontally in linear mode, or 3 decades vertically and 4 horizontally in the logarithmic mode.

ORIGINAL PLACE IS OF POOR QUALITY

The program requires access to two binary files: "ALPHANUMERICS" in which character information is stored for the headers, and "SHAPE TABLE" which is a shape table of the numerals and plotting symbols used.

After the graph is created the user has 3 options: 1) store it to disk for use elsewhere, 2) plot points on it manually by entering the coordinates desired, or 3) print the graph using a Silentype printer.

An additional note is required concerning "ALPHANUMERICS". This compact labeling system used in the headers is not based on the shape table functions of the Apple Computer, but is instead based on the byte structure of the graphics memory as deciphered by Professor Gernot Metze.

150

ЗR,

ORIGINAL PAGE IS OF POOR OWLINY

I REM GRAPH MAKER BY L.J.HERRINGT 0N 10 LOMEM: 18432 20 PRINT 30 INPUT "LEFT LIMIT ON X AXIS? "; XN PRINT 40 INPUT "RIGHT LIMIT ON X AXIS? "; XM : PRINT 50 INPUT "DO YOU WANT A LINEAR OR A LOG PLOT ALONG THE X AXIS? (LIN OR LOG) "; HL\$: PRINT 60 IF HLS = "LIN" THEN 90 70 IF HLS = "LOG" THEN 130 80 GOTO 50 90 INPUT "HORIZONTAL INTERVAL? "; XI : PRINT 100 B = (XM - XN) / XI110 IF B < = 25 GOTO 130 120 PRINT "DECREASE THE SEPARATION BETWEEN XMAX AND XMIN OR INCREASE THE INTERVAL" : PRINT : GOTO 30 130 INPUT "X AXIS HEADER?"; XA\$: PRINT $140 \times 1 = LEN (XAS)$ 150 IF X1 > 39 THEN PRINT "TOO LONG" PRINT : GOTO 130 : 160 INPUT "LOWER LIMIT ON Y AXIS? "; YN : PRINT 170 INPUT "UPPER LIMIT ON Y AXIS? "; YM : PRINT 180 INPUT "DO YOU WANT A LINEAR OR A LOG PLOT ALONG 'THE Y AXIS? (LIN OR LOG) "; VL\$: PRINT 190 IF VL\$ = "LIN" THEN 220 200 IF VLS = "LOG" THEN 260 210 GOTO 180 220 INPUT "VERTICAL INTERVAL? "; YI : PRINT 230 A = (YM - YN) / YI 240 IF A < = 20 GOTO 260 250 PRINT "DECREASE THE SEPARATION BETWEEN YMAX AND YMIN OR INCREASE THE INTERVAL" : PRINT : GOTO 160 260 INPUT "Y AXIS HEADER?"; YA\$: PRINT 270 Y1 = LEN (YA\$) 280 IF Y1 > 31 THEN PRINT "TOO LONG" : PRINT GOTO 260 290 INPUT "LINE DENSITY? "; LD : PRINT 300 HCOLOR= 3 : SCALE= 1 : HGR

: POKE - 16302, 0 : HPLOT 20, 180 : CALL 62454 : HCOLOR= 0 310 D\$ = "[D]" : REM CTRL-D 320 PRINT D\$"BLOAD ALPHANUMERICS, A\$4 000" 330 X4 = INT ((40 - X1) / 2)340 FOR LINE = 1 TO 7 350 FOR I = 1 TO X1 360 X1\$ = RIGHT\$ (XA\$, X1 - I + 1) X2 = (ASC (X1\$) - 32)*7370 + 16687 380 ADR = 9168 4 LINE*1024 + X4 + I X3 = PEEK (X2 + LINE)3 90 POKE ADR, X3 400 NEXT I 410 420 NEXT LINE 430 YU = 95 - INT (Y1*3) 440 FOR I = 1 TO Y1 450 Y1\$ = RIGHT\$ (YA\$, Y1 + 1 - I) 460 Y2 = (ASC (Y1\$) - 32)*5 + 16384 FOR J = 1 TO 5 470 Y3 = PEEK (Y2 + J - 1) Y4 = YU + I*6 + J4.80 490 K1 = INT (Y4 / 64)500 JI = INT ((Y4 - K1 + 64) / 8): $I1 = Y4 - K1 \neq 64 - J1 \neq 8$ $N = 8192 + 1024 \times 11 + 128 \times J1$ 510 + 40*K1 POKE N, Y3 520 530 NEXT J 540 NEXT I 550 PRINT D\$; "BLOAD SHAPE TABLE, A\$4 000" 560 POKE 232, 0 : POKE 233, 64 : ROT= 0 : SCALE= 1 570 IF HL\$ = "LOG" THEN GOSUB 1000 580 IF HL\$ = "LIN" THEN GOSUB 3000 590 IF VL\$ = "LOG" THEN GOSUB 2000 600 IF VL\$ = "LIN" THEN GOSUB 3500 610 FOR I = 1 TO 4000 : NEXT : REM PAUSE 620 TEXT 630 INPUT "WANT TO PLOT SOME POINTS? (Y OR N) "; PL\$: PRINT 640 IF PLS = "Y" THEN GOSUB 5010 650 INPUT "WANT TO PRINT GRAPH ON SILENTYPE? (Y OR N) "; PGS : PRINT 660 PH\$ = "[Q]" : REM CTRL-Q:PI\$=":REM CTRL-H 670 IF PG\$ = "Y" THEN PRINT POKE - 12529, 255 POKE - 12528, 7 : : FOKE - 12527, 18 : PR# 1 PRINT PH\$ 680 PR# 0 690 PRINT WANT TO SAVE GRAPH ON DISK? (Y OR N)"

and a second second

-

146

2

Ł

ORIGINAL FACT LJ OF POOR QUALITY

: PRINT 700 INPUT SG\$ 710 IF SG\$ = "N" THEN 770 720 INPUT "NAME OF GRAPH?"; GNS : PRINT 730 PRINT D\$"BSAVE"; GN\$; ",A\$2000,L \$2000" 740 HTAB (12) : PRINT "GRAPH NOW ON DISK" : PRINT 770 END 1000 UO = LOG (10) : LN = LOG (XN) / UO: LM = LOG (XH) / UO: UI = INT (IN): U2 = INT (LM)1010 IF U2 < > LM THEN U8 = 0 GOTO 1030 : 1020 U8 = 1 1030 HIN = INT (250 / (LM - LN)) 1040 FOR X = U1 TO U2 + U8U3 = 29 + INT ((X - LN) + HIN)1050 + .5) U4 = INT (EXP (U0*X)*1000 1060 + .5) / 1000 1070 U6 = U3 IF X < LN GOTO 1110 1080 IF X > LM GOTO 1210 1090 1100 GOSUB 1290 IF X + .30103 < INT (LN*1E8 1110 H + .5) / 1E8 GOTO 1160
IF X + .30103 > LM GOTO 1210
U4 = INT (EXP (U0*(X + .30103)
)*1000 + .5) / 1000 1120 1130 1140 U6 = U3 + INT ((.30103*HIN) + .5) GO3UB 1290 1150 1160 IF X + .69897 < INT (LN*1E8 + .5) / 1E8 GOTO 1210 IF X + .69897 > LM GOTO 1210 1170 U4 = INT (EXP (U0*(X + .69897))1180)*1000 + .5) / 1000 U6 = U3 + INT ((.69897*HIN) 1190 + .5) GOSUB 1290 1200 1210 NEXT X 1220 U4 = XN1230 U6 = 29 1240 GOSUB 1290 1250 U4 = XM $1260 \text{ U6} = 29 + \text{HIN} \times (\text{LM} - \text{LN})$ 1270 GOSUB 1290 1280 RETURN 1290 FOR I = 0 TO 174 STEP LD HPLOT UG, I : : NEXT 1300 IF U6 > 268 THEN RETURN $1310 \ S\$ = STR\$ (U4)$ 1320 AN = U41330 IF U4 > = 1000 THEN GOSUB 4500 1340 IF U4 < = .001 THEN GOSUB 4500 1350 S3 = LEN (S\$) 1360 S2 = 183 1370 FOR J = 1 TO S3 $1380 \quad S1 = U6 - (S3 - 1)*2 + (J - 1)*4$ 1390 GOSUB 4000 1400 NEXT J 1410 RETURN 2000 U0 = LOG (10) : LN = LOG (YN) / U0 : LM = LOG (YM) / UO

> (1) And the second sec second sec

1

i.

: UI = INT (LN): U2 = INT (LM)2010 IF U2 < > LM THEN U8 = 0 GOTO 2030 : 2020 U8 = 12030 VIN = INT (174 / (LM - LN)) 2040 FOR Y = U1 TO U2 + U8U3 = 174 - INT ((Y - LN)*VIN 2050 + .5) 2060 U4 = INT (EXP (U0*Y)*10000+ .5) / 10000 U6 = U3 2070 2080 IF Y < LN GOTO 2110 2090 IF Y > LM GOTO 2210 2100 GOSUB 2290 IF Y + .30103 < INT (LN*1E8 + .5) / 1E8 GOTO 2160 IF Y + .30103 > LM GOTO 2210 2110 2120 U4 = INT (EXP (U0*(Y + .30103))*10000 + .5) / 10000 U6 = U3 - INT ((.30103*VIN) 2130 2140 + .5) 2150 GOSUB 2290 IF Y + .69897 < INT (LN*1E8 + .5) / 1E8 GOTO 2210 2160 2170 IF Y + .69897 > LM GOTO 2210 U4 = INT (EXP (U0*(Y + .69897) 2180)*10000 + .5) / 10000 2190 U6 = U3 - INT ((.69897*VIN) + .5) GOSUB 2290 2200 2210 NEXT Y 2220 U4 = YN2230 06 = 174 2240 GOSUB 2290 2250 U4 = YM 2260 U6 = 174 - VIN*(LM - LN) 2270 GOSUB 2290 2280 RETURN 2290 FOR I = 29 TO 279 STEP LD : HPLOT I, U6 : NEXT 2300 IF U6 < 8 GOTO 2410 2310 S\$ = STR\$ (U4) 2320 AN = U4 2330 IF AN > = 1000 THEN GOSUB 4500 2340 IF AN < = .001 THEN GOSUB 4500 $2350 \ S3 = LEN (S$)$ 2360 FOR J = 1 TO S3 2370 S1 = 15 - (S3 - 1)*2 + (J- 1)*4 S2 = U6 COSUB 4000 2380 23 90 2400 NEXT J 2410 RETURN 3000 B1 = INT (250 / B)3010 FOR X = 0 TO 250 / B1 STEP SGN (B1) FOR I = 0 TO 174 STEP LD 3020 : HPLOT 29 + B1*X, I NEXT I IF 29 + X*B1 > 260 GOTO 3120 3030 AN = XN + X XI3040 3050 S = STR (AN) IF AN = 0 THEN GOTO 3060 3051 3052 IF AN < = .001 THEN GOSUB 4500 3054 IF AN > = 1000 THEN GOSUB 4500 3060 S3 = LEN (S\$)3070 FOR J = 1 TO S3

ORIGINAL PACE IN OF POOR QUALITY

S1 = 29 + X*B1 + (J - 1)*43080 -(S3 - 1)*23090 S2 = 183GOSUB 4000 3100 3110 NEXT J 3120 NEXT X 3130 RETURN 3500 A1 = INT (174 / A)3510 FOR Y = 0 TO 174 / A1 STEP SGN (A1) FOR I = 29 TO 279 STEP LD 3520 HPLOT I, 174 - A1*Y ; NEXT : 3530 AN = YN + Y*YI3540 S = STR (AN) IF AN = 0 THEN GOTO 3550 3542 3544 IF AN < = .001 THEN GOSUB 4500 IF AN > = 1000 THEN GOSUB 4500 3546 S3 = LEN (S\$) 3550 FOR J = 1 TO S3 3560 S1 = 15 + J*4 - S3*2S2 = 174 - A1*Y3570 3580 3590 GOSUB 4000 3600 NEXT J 3610 NEXT Y 3620 RETURN 4000 REM THIS SBR NUMBERS LINES 4010 S1\$ = RIGHT\$ (LEFT\$ (S\$, J), 1) 4020 IF S1\$ = "." THEN DRAW 11 AT S1, S2 GOTO 4070 : 4030 IF S1\$ = "0" THEN DRAW 10 AT S1, S2 : GOTO 4070 4040 IF S1\$ = "E" THEN DRAW 13 AT S1, S2 : GOTO 4070 4050 IF S1\$ = "-" THEN DRAW 14 AT S1, S2 GOTO 4070 4060 DRAW VAL (S1\$) AT S1, S2 4070 RETURN 4500 REM THIS SBR CONVERTS TO EXP NOTATION 4510 = LOG (AN) / LOG (10)4520 E1 = INT (E) $4530 \text{ AM} = \text{INT} (\text{AN} / 10^{\circ}(\text{E1} - 2) + .5)$

/ 100 4540 S\$ = LEFT\$ (STR\$ (AM), 4) + "E" + STR\$ (E1) 4550 RETURN 5000 REM THIS SBR PROVIDES MANUAL GRAPH CAPABILITIES 5010 INPUT "HOW MANY POINTS?"; PN : PRINT 5020 POKE - 16301, 0 : POKE - 16304, 0 5030 IF HL\$ = "LOG" THEN XO = LOG (XN) / UO 5040 IF VL\$ = "LOG" THEN YO = LOG (YN) / UO 5050 FOR I = 1 TO PN 5060 PRINT "ENTER X,Y COORDS OF POINT #"; I : PRINT INPUT XC, YC IF HL\$ = "LOG" THEN X9 = 29 5070 5080 + INT ((LOG (XC) / UO - X0)*HIN + .5) GOTO 5100 5090 X9 = 29 + INT ((XC - XN)*B1 / XI + .5) IF VL\$ = "LOG" THEN Y9 = 1745100 - INT ((LOG (YC) / UO - YO)*VIN + .5) : GOTO 5160 Y9 = 174 - INT ((YC - YN)*A1 5110 / YI + .5) IF X9 < 29 THEN PRINT "X COORD 5120 TOO SMALL" GOTO 5060 5130 IF X9 > 279 THEN PRINT "X COORD TOO LARGE" GOTO 5060 5140 IF Y9 < 0 THEN PRINT "Y COORD TOO LARGE" GOTO 5060 IF Y9 > 174 THEN PRINT "Y 5150 COORD TOO SMALL" GOTO 5060 5160 DRAW 15 AT X9, Y9 5170 NEXT I 5180 POKE - 16302, 0 : FOR I = 1 TO 4000 : NEXT 5190 TEXT 5200 RETURN

Program 12. "GRAPH DISPLAYER"

1

No.

This short program permits the user to view any graph previously stored to disk.

1

1 REM GRAPH DISPLAYER BY L.J.HERR INGTON 10 INPUT "WHICH DISPLAY?"; A\$ 20 HGR : POKE - 16302, 0 30 D\$ = "[D]" : REM GTRL-D 40 HCOLOR= 3 : HPLOT 0, 179 : CALL 62454 50 HCOLOR= 0 60 PRINT D\$; "BLOAD"A\$; ",A\$2C00" 70 END

ORIEIN/U.	12.2.3 19	
of pocr		

Program 13. "SHAPE DISPLAYER"

This program permits the user to examine the shapes on file in the shape table.

1 REM SHAPE DISPLAYER BY L.J.HERR INGTON 10 SCALE= 1 20 ROT= 0 30 HCOLOR= 3 40 D\$ = "[D]" ; REM CTRL-D 50 PRINT D\$; "BLOAD SHAPE TABLE, A\$4 000" 60 POKE 232, 00 : POKE 233, 64 70 HGR 80 FOR I = 1 TO PEEK (16384) STEP 1 0 85 FOR J = 0 TO 9 IF I + J > PEEK (16384) 89 THEN GOTO 95 DRAW I + J AT J*27, I + 20 90 95 NEXT J 100 NEXT I 110 END

Program 14. "MEMORY EXAMINER"

1

This program uses the Spinwriter and prints the HEX version of the contents of a range of memory as seen through use of the Apple monitor. It was written because for some unexplained reason it was not possible to use the regular monitor commands to dump onto the Spinwriter.

1	REM MEMORY EXAMINER BY L.J.HERR	130	IF A1 ~ 10 THEN PRINT "A";
	INGTON		
10	INPUT "ADDRESSES IN HEX OR DECIM	:	GOTO 200
	AL? "; A\$	140	IF A1 = 11 THEN PRINT "B";
:	PRINT	2.0	
	IF AS = "HEX" THEN GOTO 400		antto 200
			GOTO 200
30	INPUT "STARTING ADDRESS? ";	150	IF A1 = 12 THEN PRINT "C";
	ST		
40	INPUT "ENDING ADDRESS? "; SP	:	GOTO 200
50	PR# 1	160	IF A1 = 13 THEN PRINT "D";
	PRINT		
	FOR I = ST TO 8 + SP STEP 8	:	GOTO 200
80	IF A\$ = "HEX" THEN GOTO 330	170	IF A1 = 14 THEN PRINT "E";
90	PRINT I;		
:	HTAB (10)	:	GOTO 200
100	FOR $J = 0$ TO 7	180	IF A1 = 15 THEN PRINT "F":
110	A1 = INT (PEEK (I + J) / 16)	100	
			COTO 200
			GOTO 200
120	A2 = PEEK (I + J) - A1 * 16	÷ 01,	PRINT Al;

IF A2 = 10 THEN PRINT "A"; 200 GOTO 270 210 IF A2 = 11 THEN PRINT "B"; GOTO 270 IF A2 = 12 THEN PRINT "C"; 220 GOTO 270 IF A2 = 13 THEN PRINT "D"; 230 GOTO 270 IF A2 = 14 THEN PRINT "E"; 240 GOTO 270 250 IF A2 = 15 THEN PRINT "F"; GOTO 270 PRINT A2; PRINT " "; 260 270 280 NEAT J : PRINT 290 PRINT 300 NEXT I : PRINT 310 PR# 0 320 END 330 B1 = INT (I / 4096)340 B2 = INT ((I - B1*4096) / 256) 350 B3 = INT ((I - B1*4096 - B2*256) / 15) 360 B4 = INT (I - B1*4096 - B2*256 - B3*16) 370 GOTO 710 380 PRINT B1\$; B2\$; B3\$; B4\$; : HTAB (10) 390 GOTO 100 400 INPUT "ENTER HEX STARTING ADDRES S "; STŞ 410 PRINT 420 INPUT "ENTER HEX END ADDRESS "; SP\$ 430 PRINT 440 H1\$ = ST\$: GOSUB 490 450 ST = G6460 H1\$ = SP\$: GOSUB 490 470 SP = G6480 GOTO 50 490 H2\$ = RIGHT\$ (LEFT\$ (H1\$, 1), 1) 500 H3S = RIGHTS (LEFTS (H1S. 2). 1) 510 H4\$ = RIGHT\$ (LEFT\$ (H1\$, 3), 1)

520 H5\$ = RIGHT\$ (LEFT\$ (H1\$, 4), 1) 530 G\$ = H2\$: GOSUB 630 540 G2 = G*4096 550 G\$ = H3\$: GOSUB G30 560 G3 = G*256570 G\$ = H4\$: GOSUB 630 580 G4 = G*16 590 G\$ = H5\$: GOSUB 630 $600 \ \text{G5} = \text{G}$ $610 \ G6 = G2 + G3 + G4 + G5$ 620 RETURN 630 IF GS = "A" THEN G = 10 : RETURN 640 IF G\$ = "B" THEN G = 11 . RETURN 650 IF G\$ = "C" THEN G = 12 : RETURN 660 IF G\$ = "D" THEN G = 13 RETURN 670 IF G\$ = "E" THEN G = 14 RETURN 680 IF G = "F" THEN G = 15 RETURN : 690 G = VAL (G\$) 700 RETURN 710 B1\$ = STR\$ (B1) 720 B2 = STR\$ (B2) 730 B3 = STR\$ (B3) 740 B4\$ = STR\$ (B4) 750 C\$ = B1\$: GOSUB 840 760 B1\$ = C\$ 770 C\$ = B2\$: GOSUB 840 780 B2\$ = C\$ 790 C\$ = B3\$: GOSUB 840 800 B3\$ = C\$810 C\$ = B4\$: GOSUB 840 820 B4\$ = C\$ 830 GOTO 380 840 IF C\$ = "10" THEN C\$ = "A" 850 IF C\$ = "11" THEN C\$ = "B" 860 IF C\$ = "12" THEN C\$ = "C" 870 IF C\$ = "13" THEN C\$ = "C" 880 IF C\$ = "14" THEN C\$ = "D" 890 IF C\$ = "15" THEN C\$ = "F" 900 RETURN 1

Program 15. "SPINPLOTTER"

ł

This program was written by Professor Gernot Metze and is included here for completeness. It permits the literal transcription of page 1 of the Apple graphic memory using the Spinwriter. Hence the user can load a

ĩ

OF POUR CLARIF

151

ł

.

graphics display using "GRAPH DISPLAYER", then run "SPINPLOTTER" to make a hard copy.

10 REM SPINPLOTTER BY G.A.METZE 20 LOMEH: 16384 30 DIM R\$(127) 40 PR# 1 50 PRINT CHR\$ (13); CHR\$ (27); CHR\$ (30); CHR\$ (3); CHR\$ (2 7); CHR\$ (31); CHR\$ (6); 60 FOR A = 0 TO 1 FOR B = 0 TO 1 : FOR C = 0 TO 1 : FOR D = 0 TO 1 : FOR E = 0 TC 1 : : FOR F = 0 TO 1 FOR G = 0 TO 1 : R\$(64*A + 32*B 70 + 16*C + 8*D + 4*E + 2*F + G) = CHR\$ (46)- 14*G) + CHR\$ (46 - 14*F) + CHR\$ (46 - 14=E) + CHR\$ (46 - 14*D) + CHR\$ (46 - 14*C) + CHR\$ (46 - 14*B

) + CHR\$ (46 - 14*A) NEXT 80 : NEXT NEXT : NEXT : NEXT : : NEXT : NEXT 90 FOR K = 0 TO 2 FOR J = 0 TO 7 100 FOR I = 0 TO 7 110 N = 8192 + 1024*I + 128*J120 + 40*K FOR L = 0 TO 39 B = FEEK (N + L) 130 140 IF B > 127 THEN B = B - 128 150 PRINT R\$(B); 160 170 NEXT PRINT 180 190 NEXT 200 NEXT 210 NEXT 220 PR 0 230 PRINT CHR\$ (7); CHR\$ (7); CHR\$ (7); 240 END]

ý.

Program 16. "SHAPE TABLE"

· • . .

This is a binary listed shape table in the standard Apple format for such. It contains the numerics plus plotting shapes for use in "GRAPH MAKER".

16384	OF 00 20 00 28 00 30 00	16456 2D 24 F7 24 2C 3D 00 00
16392	38 00 40 00 48 00 50 00	16464 21 64 3C 27 00 00 00 00
16400	58 00 62 00 69 00 70 00	16472 24 24 2D 36 3F 2D 36 3F
16408	73 00 78 00 80 00 88 00	16480 05 00 09 24 24 3F 36 2D
16416	50 50 24 24 06 00 00 00	16488 00 2D 24 24 3F 36 36 00
16424	2D DC 2C 25 3C 2F 00 00	16496 05 00 00 2A 38 00 00 00
16432	2D 24 2F 24 3F 05 00 00	16504 2D 3F 64 FD 24 2D 96 00
16440	09 24 24 1F 36 2D 00 00	16512 C8 28 2D 07 00 00 00 00
16448	2D 24 3F 24 2D 07 00 00	16520 OC 16 1F OC 1C OE 00 FF

Program 17. "ALPHANUMERICS"

This binary file contains two coded versions of all the ASC characters. The characters for the vertical header are listed first with 5 bytes per character. Then the characters for the horizontal header are listed with 7 bytes per character. The total, 12 bytes/character,still represents a considerable savings over a shape table of similar content, but cannot be easily plotted anywhere on the graph except in the header locations.

16384	FF	FF	FF	FF	FF	FF	FF	82	16584	80	F7	F7	F7	80	FF	BE	80
16392	FF	FF	FF	8F	FF	8F	FF	EB	16592	BE	FF	FD	FE	FE	FE	Cl	80
16400	80	EB	80	EB	ED	D5	80	D5	16600	F7	EB	DB	BE	80	FE	FE	FE
16408	DB	9 D	9B	F7	EC	DC	C9	B6	16608	FE	80	DF	E7	DF	80	80	EF
16416	CA	FD	FA	FF	FF	8 F	FF	FF	16616	F7	FB	80	Cl	BE	BE	BE	Cl
16424	FF	E3	DD	BE	FF	FF	BE	DD	16624	80	в7	B7	в7	CF	C1	BE	BA
16432	E3	FF	DD	EB	80	EB	DD	F7	16632	BD	C2	80	B7	B3	B5	CE	CD
16440	F7	C1	F7	F7	FF	FE	FD	FF	16640	вб	B6	BG	D9	BF	BF	80	BF
16448	FF	F7	F7	F7	F7	F7	FF	FF	16648	BF	81	FE	FE	FE	81	83	FD
16456	FE	FF	FF	FD	FB	F7	EF	DF	16656	FE	FD	83	80	FD	F3	FD	80
16464	C1	BA	B6	AE	Cl	FF	DE	80	16664	9C	EB	F7	EB	9C	9 F	EF	FÛ
16472	FE	FF	DC	BA	B6	B6	CE	BD	16672	EF	9F	BC	BA	B6	AE	9 E	00
16480	BE	B6	AG	99	F3	EB	DB	80	16680	00	00	00	00	FF	FF	FF	FF
16488	FB	8D	AE	AE	AE	B1	E1	D6	16688	FF	FF	FF	FF	FF	FF	FF	F7
16496	B6	B6	B9	BF	в8	B7	AF	9F	16696	F7	57	F7	F7	FF	F7	EB	EB
16504	C9	B6	B6	B6	C9	CE	B6	B6	16704	EB	FF	FF	FF	FF	EB	EB	Cl
16512	B5	C3	FF	FF	EB	FF	FF	FF	16712	EB	Cl	EB	EB	F7	C3	F5	E3
16520	FE	E9	FF	FF	F7	EB	DD	BE	16720	D7	El	F7	FC	DC	EF	F7	FB
16528	FF	EB	EB	EB	EB	EB	FF	BE	16728	CD	CF	FB	F5	F5	FB	D5	ED
16536	DD	EB	F7	DF	BF	B2	AF	DF	16736	D3	F7	F7	F7	FF	FF	FF	FF
16544	Cl	BE	A2	F2	C5	E0	DB	BB	16744	DF	EF	F7	F7	F7	EF	DF	FD
16552	DB	E0	80	B6	B6	B6	C9	Cl	16752	FB	F7	F7	F7	FB	FD	F7	D5
16560	BE	BE	BE	CD	80	BE	BE	BE	16760	E3	F7	E3	D5	F7	FF	F7	F7
16568	Cl	80	B6	B6	B6	BE	80	В7	16768	Cl	F7	F7	FF	FF	FF	FF	FF
16576	B7	B7	BF	Cl	BE	BE	BA	B8	16776	FF	F7	FB	FF	FF	FF	C1	FF

iR,

original page 13 of poor quaity

16784 FF FF FF FF FF FF FF FF 16792 F7 FF DF EF P7 FB FD FF 16800 E3 DD CD D5 D9 DD E3 F7 16808 F3 F7 F7 F7 F7 E3 DD 16816 DF E7 FB FD C1 C1 DF EF 16824 E7 DF DD E3 EF E7 EB ED 16832 C1 EF EF C1 FD E1 DF DF DD E3 C7 FB FD E1 DD DD 16840 16848 E3 C1 DF EF F7 FB FB FB 16856 E3 DD DD E3 DD DD E3 E3 16864 DD DD C3 DF EF F1 FF FF 16872 F7 FF F7 FF FF FF F7 16880 FF F7 F7 FB DF EF F7 FB 16888 F7 EF DF FF FF C1 FF C1 16896 FF FF FD FB F7 EF F7 FB 16904 FD E3 DD EF F7 F7 FF F7 16912 E3 DD D5 C5 E5 FD C3 F7 16920 EB DD DD C1 DD DD E1 DD 16928 DD E1 DD DD E1 E3 DD DD 16936 FD FD DD E3 E1 DD DD DD 16944 DD DD EL CL FD FD EL FD 16952 FD C1 C1 FD FD E1 FD FD FD C3 FD FD FD CD DD C3 16960 16968 DD DD DD C1 DD DD DD E3 F7 F7 F7 F7 F7 E3 DF DF 16976 DF DF DF DD E3 DD ED F5 16984 F9 F5 ED DD FD FD FD FD 16992 17000 FD FD C1 DD C9 D5 D5 DD DD DD DD DD D9 D5 CD DD 17008 DD E3 DD DD DD DD DD E3 17016 E1 DD DD E1 FD FD FD E3 17024 DD DD DD D5 ED D3 E1 DD 17032 DD E1 F5 ED DD E3 DD FD 17040 E3 DF DD E3 C1 F7 F7 F7 17048 F7 F7 F7 DD DD DD DD DD 17056 DD E3 DD DD DD DD DD EB 17064 F7 DD DD DD D5 D5 C9 DD 17072 DD DD EB F7 EB DO DD DD 17080 17088 DD EB F7 F7 F7 F7 C1 DF 17096 EF F7 FB FD C1 00 00 FF 17104 FF FF FF FF FF FF FF FF

REFERENCES

Allman, M. E. and S. A. Bowhill (1976), Feed system design for the Urbana incoherent-scatter radar antenna, <u>Aeron. Rep. No. 71</u>, Aeron. Lab., Dept. Elec. Eng., Univ. of Ill., Urbana-Champaign.

Andrew General Issue Catalog, August 1973

- Bloodgood, Peter (1965), The Machlett power tube calculator, <u>Machlett</u> <u>Cathode Press, 22</u>, 30-37.
- Brown, G. H. and H. C. Morrison (1949), Method of multiple operation of transmitter tubes particularly adapted for television, <u>RCA Review</u>, June 1949, 161-172.
- Bruene, W. B. (1956), Linear power amplifier design, Proc. of IRE, 1754-1759.
- Burwasser, A. J. (1981), Wideband monofilar autotransformers Part 1, <u>R.F.</u> <u>Design</u>, January/February 1981, 38-44.
- Burwasser, A. J. (1981), Wideband monofilar autotransformers Part 2, <u>R.F.</u> <u>Design</u>, March/April 1981, 20-29.
- Clarke, K. K. and D. T. Hess (1971), <u>Communication Circuits: Analysis and</u> <u>Design</u>, (Addison Wesley).
- Countryman, I. D. and S. A. Bowhill (1979), Wind and wave observations in the mesosphere using coherent-scatter radar, <u>Aeron. Rep. 68</u>, Aeron. Lab., Dept. Elec. Eng., Univ. of Ill., Urbana-Champaign.
- Davis, A. W. and P. J. Kahn (1971), Coaxial bandpass filter design, <u>IEEE</u> <u>Trans. Micro. Theory and Tech., MTT-19</u>, 373-380.
- Dicke, R. H., Object Detection System, U.S. Patent No. 2,624,876 issued January 6, 1953.

₹.

Doolittle, H. D. (1964), Vacuum power tubes for pulse modulation, <u>Machlett</u> <u>Pulse Tubes</u>, Machlett Laboratories Inc.

Evans, J. V. (1969), Theory and practice of ionosphere study by Thompson scatter radar, Proc.IEEE, 57 #4, 496-530.

Fair-Rite Products Corp (1977), Use of ferrites for wideband transformers, <u>Fair-Rite Ferrite Cores and Assemblies for the Electronics Industry</u>, Wallkill, New York.

- Frey, G. D. (1977), VMOS power emplifiers this broadband circuit outputs 8W with a 15 dB gain, <u>EDN</u>, Sept. 5, 1977, 83-85.
- Golay, Marcel J. E. (1961) Complementary series, <u>IRE Trans. Inform. Theory,</u> <u>IT-7</u>, 82-87.
- Gray, R. W. and D. T. Farley (1973), Theory of incoherent-scatter measurements using compressed pulses, <u>Radio Sci., 8</u>, 123-131.
- Granberg, H. (1975), Broadband transformers and power combining techniques for RF, <u>Motorola Application Note, AN-749</u>.

Hess, G. C. and M. A. Geller (1976), The Urbana meteor-radar system: design, development and first observations, <u>Aeron. Rep. No. 74</u>, Aeron. Lab., Dept. Elec. Eng., Univ. of Ill., Urbana-Champaign.

Ioannidis, G. and D. T. Farley (1972), Incoherent scatter observations at Arecibo using compressed pulses, <u>Radio Sci., 7</u>, 763-766.

Key, E. L., E. N. Fowle and R. D. Haggarty (1959), A method of sidelobe suppression in phase coded pulse compression systems, <u>Tech. Rep. No.</u> <u>209</u>, Lincoln Laboratory, Mass. Inst. of Technology, Lexington, Mass.

Killpatrick, W. K. (1957), Criterion for vacuum sparking designed to include both RF and dc, <u>Rev. Sci. Inst.</u>, 824-826.

Lefferson, P. (1971), Twisted magnet wire transmission line, <u>IEEE Trans.</u> on Parts, Hybr., and Pack., PHP-7, No. 4, 148-154. Leighton, L. and E. Oxner (1980), HF power amplifier design using VMOS power FETs, <u>R.F. Design</u>, January 1980, 32-37.

Lindner, J. (1975), Binary sequences up to length 40 with best possible autocorrelation function, <u>Electronic Letters</u>, 11, 507.

Machlett Laboratories, Inc. (1964), Machlett Power Tubes.

Martin-Vegue, C. A. (1961), A 16 megawatt 100 microsecond pulse modulator, <u>Machlett Cathode Press, 18, No. 1</u>, 16-19.

McDonald, R. S. (1982), Low cost wideband dual directional coupler, <u>R.F.</u> <u>Design, 5 #3</u>, 34-36.

Motorola Semiconductor Products Inc. (1972), Mounting stripline-opposedemitter (SOE) transistors, <u>Motorola Application Note, AN-555</u>.

Nagle, J. (1976), Use wideband autotransformers in RF systems, <u>Electronic</u> <u>Design, 3</u>, February 2, 1976, 64-70.

Oxner, E. (1976), Try MOSPOWER FETs in your next broadband driver,

Siliconix, Inc., Tech. Article, TA76-1.

Perna, Vincent F, Jr. (1979), <u>The RF Capacitor Handbook</u>, American Tech. Ceramics, Inc., Huntington Stacion, New York.

Pitzalis, O., Jr. and T. P. M. Couse (1968), Broadband transformer design for RF power amplifiers, <u>Proc., 1968 Elec. Comp. Conf.</u>, 207-216.

- Rastogi, P. K. and S. A. Bowhill (1976b), Scattering of radio waves from the mesosphere-2. Evidence for intermittent mesospheric turbulence, <u>J.</u> <u>Atmos. Terr. Phys., 38</u>, 449-462.
- Ruthroff, C. L. (1959), Some broadband transformers, <u>Proc. of IRE</u>, Aug., 1959, 1337-1342.
- Sartori, E. F. (1968), Hybrid transformers, <u>IEEE Trans. on Parts, Material,</u> <u>and Packaging, PMP-4, 59-66.</u>

Skolnik, M. I. (1980), Introduction to Radar Systems, 2nd ed.

Snelling, E. C. (1969), Soft Ferrites, Chemical Rubber Company.

Somlo, P. I. (1967), The computation of coaxial line step capacitances,

IEEE Trans. Micro. Theory and Tech., MTT-15, 48-53.

Tseng, C. C. and C. H. Liu (1972), Complementary sets of sequences, <u>IEEE</u> <u>Trans. Infor. Theory, IT-18, No. 5</u>, 644-652.

Turyn, R. (1968), Sequences with small correlation, <u>Error Correcting</u> <u>Codes</u>, ed. H. Mann, Wiley, New York, 195-228.

Whinnery, J. R. and H. W. Jamieson (1944), Equivalent circuits for discontinuities in transmission lines, <u>Proc. of IRE, 33</u>, 98-114.