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SUMMARY

This work outlines an upwind, seccnd order accuracy,
coupled, conservative numerical scheme for solving a two dimen-
sional laminar or turbulent flow field. Mean vorticity, w, and
mean stream function, ¥, are used as the méan flow dependent
variables. The turbulent kinetic energy k and the turbulen:
energy decay rate, €, are used to define the turbulence state.

The rate of convergence of the coupled; conservative, mean field
system Y-w as well as the turbulence state system k-e, is twice
that realized when solving these equations separatelv. Although
the turbulence boundary conditions have a non-regular variation
near a solid wall, the turbulence model is reduced exactly to this
variation, keeping the conservative features.

The axisymmetric mixing of two confined jets with an internal
heat source is considered with this numcrical scheme. The inlet
boundary conditions have a limited effect if they are applied
far upstream of the end of the inner cylinder (~ 5 radii). The
fully developed flow conditions which apply at the exit section,
should be located far downstream to prevent an effective change

in the real flow Reynolds number. The parabolic conditions at

the exit section are found to be very good. A laminar recirculation

zone appears f r certain flow parameters whose length tends to
some asymptotic value as the Reynolds numnber increases. During
the variation of the Revnolds number, the recirculation mass
flux approaches a maximum. Thermal radiation from the heat

generating inner jet material is the leading mechanism of thermal
4
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energy generating transport. This transmort does not appear to
depend heavily on the turbulent diffusion coefficients. The
temperature field depends mainly on the radiative conductivity
coefficients and on the heat generation. The latter is the only
term that depends on the turbulence status through the species
concentrations. The conditions for obtaining stable turbulent

flow solutions are stated in this study, and are, almost always,

fulfilled.
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1. INTRODUCTION

Computational methods, as a tool to analvze ohysical phenomena
and to solve the related engineering problems, are becoming
even more popular today. This is mainly due to the rapid growth
in computer capability (in terms of direct access memorv and the
improvement in the CPU time per elementary action) and improve-
ments in the basic numerical schemes.

This report concentrates on developing computational method
with which to obtain a physical understanding of the turbulent
field of two coaxial jets entering an axisymmetric chamber, Even
the laminar field of this flow is quite complicated. This‘is
due to the many different domains which exist in the field
especially in the entrance region. Physically, three regions
may be identified: the wall region, the initial region near the
axis of symmetry and the mixing region. Advancing dcwnstream,
these regions change relative size with the ratio of the two
jets' mass fluxes as the main parameter. The turbulent field
of these flows is much more complicated due to the difference
in the effective transport coefficients and turbulence level
from region to region. However, being aware beforehand of the
complications and the different regions of this field, one can
adjust the appropriate turbulence model and numerical scheme to
treat the problem.

The objective of the present study is to describe numerically
the velocity, concentration and temperature fields in confined

coaxial turbulent flows with internal energy generation.

L e




S T —

Physically, the flow system considered has an inner flow which is
slower and heavier than the outer flow. The inner flow material
undergoes nuclear fission in the chamber cavity and generates
heat. This system is representative of a gas core nuclear reactor
where the inner gas is fissionable and the outer flow is some
lighter working fluid. The resultant flow is usually turbulent.
In applying a turbulent model to a flow one has to compromise
between choosing a high order of closure and paying in an
extremely complex code for computing the phenomena, and choosing
a very simple algebraic model and paying in a poor prediction

of the phenomena. In this study the "two equation" model of the

(1]

type k-¢ (k is the turbulence level and & is the turbulence

dissipation) was adopted, since, as has been stated in the

(2]

literature , it is the closest~-to-optimal model to predict

two dimensional elliptic fluid flows available today. Both

k and € are governed by convection-diffusion like equations.

Once k and € are known at every point in‘the field, the effective
transport coefficients can be calculated with models for the
turbulent Prandtl and Schmidt numbers. Since the rate of energy
generation in the core is very high, very high temperatures occur.
Therefore thermal radiation is the dominant mechanism of energy
transport (and the conductive transport is not negligible).

In such a case it is veryv convenient to apply the Rosseland energy

[3]

diffusion approximation. This approximation, which is wvalid
only fcr flows with high absorptivity results in a radiative
conductivity like term in the =2quations.
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The following variables define the two dimensional axi-

symmetric field:

e}

~ lH =

velocity components (u,v)
curbulent state variables (k,g)
temperature variable (T)
pressure variable (P)
concentration variable (C)

variables

These variables are controlled by the following governing

equations:

1

e e

continuity
momentum
turbulence model
energy

speciés

equations

In the present field, as well as in manv other fields it is very

convenient to choose the stream function (Y)-vorticity (w)

variables instead of the pressure (p)-velocity (u,v) variables,

because the number of equations and unknowns is then reduced

to six (6).

The numerical solution is performed on a non-uniform mesh

grid that is spread over the domain of interest. The finite

differences for all the terms are accurate to the second order,

and unlike some other schemes

[4,5] Ces s . ,
, no artificial viscosity

I T T e



is inserted and the flow is solved for the correct Reynolds
number. In order to improve the stabilitv, the equations are
solved with as much coupling as is possible. The flow field
equations (Y-w) are solved in a coupled manner, as well as the
turbulent variables (k-e£). The energy ecguation and the
concentration equation are solved separately. The algebraic
difference equations are solved iteratively by successive line

relaxation [or generally, by the successive block line relaxation].
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2., FORMULATION OF THE PROBLEM AND PHYSICAL ASSUMPTIONS
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The flow system under consideration is sketched in Fig. 1l.1l. 1
The system consists of two concentric cvlinders, with the outer ;

1

cylinder of diameter D, continuous to a distance L and the

2!

|

: inner cylinder of diameter Dy < D,, is continuous to a distance
t Ll < L2, and ends at the section A-A.
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Fig. 1.1. Schematic Fields of the Physical Problem.

Different flulids with different mass fluxes and densities move !

through the inner cylinder (denoted with lower index 1) and

=

through the annulus between the inner and the outer cylinder
(denoted with lower index 2). Despite the simplicity of the flow
system, complex physical processes take place, relating to the
detachment of the stream from the inner cylinder trailing edge,
contraction or expansion of the inner stream after the section A-A,

and resulting for some cases in a recirculation region downstream

-
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of the section A-A. Derending on the geometrical ratie D, /D,

1
the mass flux ratio Qlfo and the laminar Reynolds number
ratio, a recirculation zone can occur either on the axis of
symmetry or on the outer cylindrical wall. fThere is also some
weak d2pendence of this phenomenon on the upstream turbulent
properties ratio. In order to describe ‘e complexity of the
physical provesses occurring within the nozzle area in terms of
the governing equations, these should be of the elliptic type.
In the subsoeguent part of this report, a mathematical

model of the flow in this geometry will be presented. Let us

begin with the following assumptions:

(1) The fluids =ve incompressible and of constant density.

(ii) A fully developad turbulent flow exists at the
entrance to the computational region, a distance Ll
before the section A-A.

(1ii) The flow properties are isothermal.

(iv) The duct walls are impermeable.

These assumptions will lead to a mathematical model of the flow

field. wWith this model, described in the next section, it is

possible to determine the velocity distribution in the compu-
tational domain as well as approximate the temperature and

concentration distributions.

el
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3. MATHEMATICAL MODLL OF THE FLOW FIFLD

3.1 The Governiig Transport Equations of the Flow

Steady, axially-symmetric flow of a viscous and incompressible
gas with constant molecular transport coefficients is described
by the equations of continuous media motion, namely the momentum
equations coupled with the eguation of continuity. These Navier-

(6]

Stokes equations in cylindrical coordinates, r,z, are:

continuity:
Wl (xv) =0 (3.1)
zZ~momentum:
o S e v il = - B L5 ru GE )
+2 53 (iggp 59 (3.2)
r-momentum:
pta ST+ v D = - e 25 (r g D "Z“efff‘i
+ 57 Digge (G + 59 (3.3)

where u,v are the mean velocity components in the z and x
directions, p is the dgnsity and p is the mean pressure. The
quantity Haff appearing in the equations (3.2) and (3.3) is the
so-called effective viscosity, being t"e sum of the molecular
(laminar) viscosity u, and the turbulent viscosity Mo It
characterizes the turbulence status at a given point of the

flow field:




ity gp- 2oy
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A turbulent flow is thus treated like a laminar flow with a
variable viscosity coefficient, which is characterized by spacial
rations to the mean flow and other turbulence quantities. This

relation is the main result of the turbulence model.

3.2 The Turbulence Model

A broad review of turbulence models is presented by Launder
and Spalding.[7] The various models are classified according
to their complaexity and useability, which depend on the
particular physircal hypotheses emploved to describe different
turbulent fields. On the basis of physical analysis of the
phenomena taking place in the field of the two coaxial flows,
a "*wo equation" turbulence model is adopted as recommended in
s=ference [2]. This model consists of two dynamic equations for
two turbulence variables: the first equation is for the turbulent
kinetic energy (k); and the second equation is for the dissipation
(e) of the turbulent energy.

The turbulent kinetic energy is defined by the half mean

of the sum of the square of the turbulent velocity fluctuations:

s p——

u 2

-
i)
Do =

'
L

and the turbulent energy dissipation (or decay) is defined by

10
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where in both formulaﬁions there is a tensorial summation over

1 <1, 3 <3, and u, is the velocity fluctuation in the i direction.
It can be seen that k and ¢ are positive definite quantities.

A general form of the k-¢ model has been given by Launder and

(2]

Spalding. The transport equations for k and €, in cylindrical :

3 coordinates are of the following form: |

M
N

p H M
8k 3k, _ 3 Meff 3k, , 1 3 eff 3k |
plu g2 + Vv 37) = 33 (Ok 3z) T E3F (F o, or |
:
l
+ “eff G - pr (3.5) 1
u u g
38, g8y o0 Megg e, 13 Perr 3 |
P(u 5z TV ar) T 2z (0 Bz) T T (r o Br) ‘
|

€
g +t 5 (Cl Hegge G — Cy pe) (3.6)

where the generation term is:

2y, ?
0z

u 2 2 2

c=2049 + Y + D+ 2

1y
37 - (3.7)

knowing local values of k and € one may determine local values of

(8]

turbulent viscosity from the Prandtl and Kolmogorov formula:

2

- k '
My = Cup — (3.8)

The values of the constants appearing in equations (3.5), (3.6)

and (3.8) for the turbulence model are suggested by Launder

(2]

and Spalding as follows:

11
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l.44, Cc, =1.92, CU = 0.09

' O 1.0, O = 1.3 (3.9)

These values will be reviewed later on in this report,

3.3 The Energy and Species Equations

Since the flow field in the present study is incompressible,
the Eckert number is zero and therefore the substantial derivatives
of pressure may be ignored in the mean energy equation. In the
absence of body forces the following energy equation may be

considered:

) 0 S [y 3Ty 4R p 32T
pCp [55 (ruT) + 3T (rvT)] = o [;A z] + 3T [r A

3

+ ¢ + ST (3.10)

where A is the total thermal diffusivity, and ¢ is the dissipation

given by

2 2 2

= 2u A v Ju 9V
b = uepl2(57) #2050 + 2(0) + (57 + 55 ] (3.11)

and is equal to the generation term of the turbulence energy

given partially by eg. (3.7). Generally X is given by

X o= A, F A+ AL | (3.12)

where the first term on the right hand side of eq. (3.12) is

the laminar contribution and the second term is the turbulent

contribution to the thermal conductivity; Ar stands for contributions

”

12
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from other conduction-like processes. Sp in eq. (3.10) is the
energy generation rate term, representing an energy source

such as a chemical or nuclear reaction. In the present work we
are interested especially in the effects of nuclear fission on
the field's temperature. Regularly, the nuclear-reactive species
enter the field through the inner pipe with concentration C, and
the fission is carried out in the core of the field. The major
mode of transfer of the nuclear energy is by radiation processes.
According to some well defined physical models, like the

Rosseland diffusion approximation ’ which is a radiative

conductivity coefficient, can have only a4 positive non-zero

value, and the undimensionol source term will be of the form

S = - Arc [1 - 1

5 (2 - 1) 1 (3.13)

where A is a constant and L = Ll is the axial length of the

chamber. Thée formulz for Ar is

A_ =BT (3.14)

[3]

The values of the constants were taken to be

, Az 50.0 (3.15)

where T = 8, B = 400(°K) and the temperature T is measured in °K,
The equation of species continuity is taken similar in form

to that of the energy equation since both temperature and

concentration are scalar quantities. The difference is that

the quantity C is not generated in or lost from the system.

13
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This form of the species continuity equation is an approximation
which is only good for small variations in densitv. However
the simplification resulting from this assuvmption warrants its

use in this illustrative development. The governing eqguation

is then: |
3 2 ve) = 2— (D 285+ 2 (B 2S 5 |
= (ruc) + 37 (rve) = v (rD Z) + 3E (rD 3r) (3.16) :

where D is the total diffusion coefficient defined to be
+ D (3.17)

where Dz and Dt are the laminar and the turbulent diffusion

coefficients.

3.4 The Dimensionless Form of the Egquations
The parameters that control the flow field behavior can
be found by casting the equations in dimensionless form. The

velocities will be normalized with respect to the axial velocity

L T P

component on the center line at the entrance section, UO (see /
Fig. 3.1).
. U9 T=0
("._‘-L \ . s s r , - - 4
u=0,
// U0
\(.z'RA—\ S == :vﬁ
\ Tz
\\
\
\
(=0 K=l T=l
1] i
1 i
2Ly z:0 704

- Fig. 3.1. Illustration of the Computational Domain.

14
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The lengths are normalized with respect to the outer radius Rz.
Tho temperature is normalized with respect to AT = Tg~ Ty

where TO is the temperature at the centerline and T2 is the

outer cylinder wall temperature, both at the entrance section.

The turbulence kinetic energy and the turbulent dissipation

2

3 .
0 and UO/DZ respectively.

rate are normalized with respect to U

(The pressure is normalized by pU2 Therefore the flow field

O')
behavior is controlled by the following non-dimensional

numbers:
UODZ
Reynolds number: Re = -3
URCD
Laminar Prandtl number: Pr = T
9,
HtC
Turbulent Prandtl number: Prt = —T-E
"t
Hy,
Laminar Schmidt number: Sc = 5
‘ ')
He
Turbulent Schmidt number: Sct = 54
2 t
Yo
Eckert number: E = Cp AT

Radiation number: Rd = B_ (°K)
A

The following values for some of the above numbers will

be adopted:

Pr = 0.72, " 8c = 0.8
Prt = 1.0, Sct = 1.0
E << 1

15
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3.5 The Computation for an Incompressible Laminar Axisvmmetric Flow

For an incompressible, laminar flow of a Newtonian fluid with
constant viscosity in the absence of body forces, the axisymmetris
Navier Stokes equations and the continuity equation (3.1 - 3.3),

retaining the time term are:

2
Ju du ou _ 1l 3p 1 3" u d”u 1 du
AR T RN PRS- S M S d = (3.18a)
or 92
2 2
oV ov iR 1l ap 1 9"V 37V v v
am F Vet U = - 2= B (2 + + = == - —) (3.18b)
ot or 9z p or Re 8r2 azz r dr r2
= ev) ¢ xu) =0 (3.18¢)

These equations are referred to as the primitive variables
equations since they are written in terms of the basic variables
v, u and P. If the pressure is of primary imvortance in a
particular incompressible field, the ecuations in this form plus
the Poisson equation for pressure instead of the continuity
equation (3.18¢c) should be considered,[gl Experience in solving
these equations may also be useful if one is ultimately interested
in three dimensional flows. Solution procedures for solving the
primitive variable equations in both two- and three—dimensionalv
rectangular coordinates are discussed by many investigators.[lo’ll]
Since the pressure field is not of main interest in the present
study, the following stream-function-vorticity formulation will
be adopted.

By eliminating the pfessure tecrm in egs. (3.18a) and
(3.18b) by cross differentiation, applying eqg. (3.18c) to this

’
16
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result, and then using the definition of the vorticity w:

_3v _ 2w
W o= =T _ (3.19)

the following dynamic equation for the vorticity may be obtained:

2
W oW ow vw 1 9w 0w 1l dw _w
—t'+v?3-f+”~z' T ____é_[__i.-f-.___z..{._f_.f ..._..2) (3.20)

@
2]
@
N
B

This "vorticity transport" form of the two dimensional Navier-
Stokes equations can be modified by writing the conéinuity
equation (3.l18a) as:

9 au
T (rv) + w S = 0

o

w

|

H =
Qo

and adding it to the left hand side of eq. (3.20). Then the
so-called "conservative form" of the vorticity transport equation
is obtained:

2 82w
822

30
3t

9 ) — I w dw _ W
+ ’a—f (UJ'V) + —8—5 (UJU) = -RE (-—? -+ + 2) (3.21)

ar

Rl
(a}

Introducing the incompressible stream function y defined by

13y, 9 _ .
—Ear u g BZ— v (3.22)

B

into the continuity equation (3.18a) gives the following stream
function-vorticity relation

2 2

3%y o"y 1 3uw n
—5 + = = 5T + rw = 0 (3.23)
or 92

Because the magnitudes of the stresses are often very important

in the fluid field (they are, for example, responsible for
#

17
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generating the turbulence), the components of the stress tensor

for the incompressible axisymmetric flows studied here are of
interest. These stresses in dimensionless form and in terms of

velocity gradients and the laminar Reynolds number are:

T = - 2.3V [ = . 2V
rr Re Jr '/ 18 Re r
__ 2 du /1 du ., av
T2z = 7 Re 3z ' ‘vz © T Ra (ar + 5?0 (3.24)

Recent results for the two-dimensional driven-cavity problem
indicate that convergence was more rapid with the ¥-w formulation
than with the primitive formulation that includes the pressure.[12]
This study found that the accuracy of the primitive variable
solution was very sensitive to the convergence tolerance used
in solving for the pressure. Therefore the Yy-w equations are
used in this study to predict the flow field variables.

By. substituting the vorticity given by eq. (3.23) into
eq. (3.20), a single equation in terms of the stream function
is obtained. This equation, called the "biharmonic equation",

is:

(p2y) - £ L~ _23b,2, 1 pd, (3.25)

where the operators D2 and D4 are defined to be

L

t,

FES (3.26a)

+
i
i

and

D) = D(Dy) (3.26Db)

18
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Although the biharmonic equation contains only one
unknown ¥, it is a fourth order nonlinear partial differential
equation and is usually more difficult to solve. In [11]
an efficient method of solving the steady planar biharmonic

equation has been suggested. However, this solution method has

poor convergence characteristics for a turbulent field,
the two equations for the y-w relations are considered
hereafter.

Another minor variation of eq. (3.21) has also been used

| together with eq. (3.23). These forms differ only by the

e

‘ manner in which the diffusion term is written. For example,

if in eq. (3.21) the

A
1
/
1
1

9 W
'é‘f(r“—)

1
r or

term is used instead of

2
w

Q

oW

—

r

+

Qo
J
sl

r
then, the following equivalent form is obtained:

dw 3 9 _ 1 19 AWy _ W 37w
— + 3T (wv) + oY (wu) = =— [r AT {r ar) 5 + ——51 (3.27)

t ReR r” - 9z

Really, there does not appear to be any significant advantage

in using one of these equations rather than the other, since
neither is truly in conservative form. The physical. inter-

pretation of the conservative form of the equations for fluid

t9,13]

dynamics has been discussed in the past. If, for example,

4
19
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the total flux of vorticity is conserved for a finite volume in
the region of interest, then the vorticity transport equation
is said to be in conservative form. Equations (3.21) and (3.23)
have previously been referred to, by inspection, as conservative
forms by several investigators. This misconception resuvlts from
the natural transfer of vast experience with the planar equations
to the much less frequently used axisymmetric equations. 1In
other words, the identical procedure of adding a modified version
of the continuity equation to the convection terms of the
vorticity dynamic equation is used in both planar and axisymmetric
cases. In both cases, this puts the convective terms into the
conservative form without affecting the diffusion terms. In the
planar case, this simple manipulation produces the conservative

form desired. In the axisymmetric case, however, this is not
L 3w
r or

proper form. This voint has only recently been discussed[l4]

true since the term in the diffusion part is not in the

for curvilinear coordinate systems.

3.6 The Mean Field Equations to be Solved

In the light of this discussion the following form of the
nondimensional system of equations will be considered in this
study because they have been found to have the best conservation

properties:

1 Ei) + 9 (l aw) + 0 = 0 (3.28)
r 9 r

2 3y
9z or
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3 B _1 5 .3 |
7z (ruQ) + r (rvil) = 'r-f {Bz (r T (v2) ]
3 33 ' .
+ 57 (r7 == (va)] + S,} (3.29)

where the new variable  is defined to be

e}
i
H{E

and S, is the source term of §# defined to be created only from

9)
the turbulent variables:

= ou vy ,97v 37V v _ 24y 3 v
; Sq = [(57 + 37) (== = =) + 2(5% z) 320%
? 02 or
| P A R S (kr)] 2-308
1 T 3¢ 3 9roz o i
and
L (3.30b)
| Re t |
2
_ k
o (3.30c)

The equations for the turbulence model's ¢uantities, k-e, are
given by egs. (3.5)-(3.8). The ccnservative form of these

equations is:

3 3 3 Ve o1, 8k, L D Ve 1,08k
Tz (ruk) + 5 (rvk) = Er) [I(E; + ﬁg) 3;] + o5y [I(E; + ﬁg)ar]
t t 3.31
§ ht Vt G - ( . )
‘ 3 (rue) + & (rve) = & [rot e Ly B8 4 2 ok, L2
F 32 X 92z oE Re VA ar -7 cE Re’ or
| € g2
+ Cl \)t X G - C2 . (3.32)
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where G is the generation of turbulence given in (1.7) as follows:

suggested values for the various constants

eq. (

eguat

where

2 2 2

= (Ju . 3v (3v vyT LY Av
G = (55 + Bz) + 4[(8r) * (r) T ar]
= (zé-‘-’-—rsz>2+4[<—3-‘—’>2+ (Y-)2+Y-9-!1 (3.33)
2 or r Y 9r ‘

3.9).

The final forms of the temperature

ions are:
2 2 _ 3 (g 2T
) (ruT) + 57 (rvT) = 57 (xA Bz) +
1
+ EEE G +
3 3 oy o A 3c
s (ruc) -+ 3 (rve) = A (rD az) +
! ‘e
>"'Repr (1+Rd) +Prt
b oo L Ve
ReSc Sct
= 1 4 .
ST = -A [l - 5 (2z - 1)1 (1-x)

22
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are given in

and the species transport

%F (ra %%)

ST (3.34)

= xp 29 (3.35)
(3.36)
(3.37)
(3.38)
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$. JUMERICAL PREDICTION OF THD FLOW FIELD

4.1 Finite Differance Approximations for tho Derivatives

Suppose that the finite two dimensicnal or axisymmetric
region is subdivided by two families of lines parallel to the
two coordinates z,r. For any point P = (zp,rp), eight
neighboring nodes are considered; they are located on the hori-
zontal and vertical lines around P, not necessarily egqually
spaced. The eight neighboring nedes are given compass
abbreviations, as seen in Fig. 4.1. Thus, SI gtands for the
point (zp%-hE, ré-hs), etc. Let $(NE), #(P), etc. denote the
£ $(z;r) at the points NE, P, etc.

Nw pl ,
ez s At o e st 3 Oa R i
i

W P Ej
: j | hs
’ i
O, SH
\"\ - \"\‘V - HE ?E,E
—Q‘ - “‘ZP““@ >

Fig. d4.1l. Node Abbreviations for a Non-Constant
Spaced Normal Grid Mesh.
An approximation to the £first derivative ¢z at the point P can
be obtained by considering the Taylor's series with a remainder

in the two points E and W.

_ 1 2 1 . 3
dg = dp t ey Bg tEobn, PR YR YuzelfE Mz (4.1)
P P
’ A Iy < 2z
P E E
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1 2 1 3
By = b = b N - =) n 2
"W ¢P +zP hw 2 *zzD W 6 bzzz(’w) hw (4.2)

Solving (4.1) and (4.2) for ¢z eliminating LI assuming that

P P
¢zzz is continuous, one can get:
h h_-h h
W E w B 2
2p hE(hE+hw) E hEhw P hw(hE+hw) w (4.3)

where h = max(hw, hE). Equation (4.3) has a truncation error OF

the first z derivative R(z) of the order h2 with the form of:

h_h
(z)_ E'w .
Rp'= - —¢ b (%) 2, £ % % 2p (4.4)

The analogous formula for ¢r is of similar form and obvious.

P
This formulation is from the centered differences for ¢z’ which
is far better than that from the forward differences which can

be obtained from eq. (4.1)

Da—¢
6, = ﬁ P (4.5)
P E
or from the backward differences which can be obtained from
eq. (4.2)
b=
b = (4.6)
Z h
P \4

These are only first order accurate.

The analogous second derivative may be obtained by similarx

Taylor expansions, like egs. (4.1), (4.2) carrying one term further.

-
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Solving for 4, 0 and eliminating the dovivative 5, , one can
unl‘ “]\

obtain the tollewing oxpressions

*zzp - hm(ﬁHIhQ) Ty b h&fﬁnlhw)'¢w - h;hw ! ﬁﬁﬂ (4. 7)
where the truncation orvor juas
Rﬁé cT pp:hWL)bannv R 13 (hS"hEhw 'hi) g O G4 8)
Yo N g
1L i obvious that l#?ﬂin not accurate te the second ordey,

Howover, i the arid spacing i desianod to bho o a smooth funetion
A}
ol ¢, then b, = h Oh”) and the seheme is socond order
I W
acvourate. When by, b, o oos. (LD and (4.8 vodueed te thoe
IR W
Known formg tor o unilorm arid:

‘:\I‘\ " "\

]
fa T PO (1.9)
“p B
{:‘l" ®a “)‘:\ \ } ‘,\ N
b, oy DN e am) (4.10)
*2 #3 b . l‘ L £}
I A (hm hw)

one may argue that Lor o smooth ardd spacing, og. (4.3) may be

vaduead to oqe (4.9) . Both approximations tor ¢ on a nonunilfomm

(1]

o
grid, (4.3) and (4.8 wore tostod (Rnnchvtlj]). Daguation (4. 3)

was Lound to give o belttor approximation for b, espocially in

€

the hiah agvadiont regions of the fiold.
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4.2 Pinite Difference Approximations to the Governing Equations

A quantitative description of the flow field under consi-
deration is obtained by replacing the various derivatives in the
governing equations with finite difference approximations and
solving the algebraic system of equations. Before doing this
the method of solving this system should be determined. It does
not mean that a choice between a direct solution method or an
iteration method has to be made first, but rather that the way
of coupling the different variables of the field should first
be considered since it will affect the form of the finite
difference approximation. The finite difference models of the
advection in the governing equations will be discussed first

followed by the method of solution.

4.2.1 The Convective Terms
It is known that central difference approximations of the
convective terms may giwve rise to instabilitiesﬁBs] These can be

eliminated by employing one-sided difference schemes which

assure that the flow numerical information is consistent with

" the physical flow. This improvement was introduced in 1953 and

(9,11,13]  pis idea was incor-

is discussed by some authors.
porated[lG] in the definition of the "transportive property"
which states, "A finite difference formulation of a flow equation
possesses the transportive property if the effect of a pertur-
bation in a transport property is advected only in the direction
of the velocity." The finite-difference expressions of the
convective terms which satisfy this property are called upwind

-
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or upstream differences and depend upcn the direction of the
velocity component at each point. Two methods for carrving out
this idea were formulated. In the first method, backwrard
differencing for the advection terms is used if all the
velocities in the neighborhood of a typical point P are positive,
and forward differencing if all the velocities at this point

F are negative, that is:

, n . .n_ 1n.n ; n
. up bp = u, ¢ }/h,  if  ug >0
' o (ue) " = (4.11)
(u? 2 - w2 ¢21/h,  if u, < O
E "E P P B P
i'
Lhoon o onon ,
) n vp #p = vg bgl/hg  3E vy 20
pre (vg)™ = (4.12)

i} n .n n .n . .
vy oy ~ Vp ¢pl/hy  if vy <0
A similar formulation may be obtained by using the control volume
approach which provides a conservative and transportive differenc-
ing method to handle these equations. Unfortunately, the increase
in stability gained by upstream differencing is at the cost of

accuracy. The truncation error of the convective terms is

increased\to the first order, reducing the formal accuracy of

T TV TN e TR

the method to first order. Upstream differencing has gained
popularity in spite of this criticism, and it has been found,
from a practical point of view, to recover almost the same order
of accuracy as central differencing. The upstream differéncing

was found[l7] (by comparing about six different explicit methods)
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to be the best compromise between accuracy and computing time.
It was also found[lB] that the upstream diirerencing of con~
servative forms yielded results which were as accurate as those
from the second order difference eguations.

Another upwind differencing method is known as the "donar
cell" method. This techniquc[lgl is similar to the above upwind
technigque, with the added advantage of retaining the property
of second-order-like accuracy of centered space derivatives.
However, it can be shown that in axisymmetric form the accuracy is

0"
still reduced to the first order. The K-R technique[“O]for differenc-

ing the convective terms is known to be secbnd-order accurate
in the converging state, and unconditionally stable during the
course of iterations. This is because it is an upwind
differencing technigque with a correction to recover the second
order accuracy which is treated explicitly from the previous

iteration (or time step). For example, the z convection of

the quantity ¢ will be differenced as:

no,n_.non n . .n_ . nn
L (up) ® = “g *g 7% 'p + (1= ) Up ¥p T Uy fy
()Z 2 1'11: Z h‘q
h
b L=y -y, = ot (4.13)
Z z h 2
E
wherce
h h
= E - Y
Py = i, et © R Sty (1) vpdy] (4.14)

and

28




IR & . st 4

ol

PRI R A
LT

OF POGR QUIs

.<
il
o
*-l.
th
(o
v
o

Yy, =1 if u_ < 0 (4.15)

Similar expressions are used for %? (vd) , with a parameter Y.
instead of Y, in egqs. (4.13)-(4.15). The upper indices n and n-1
refer to the appropriate time levels. 1In the steady state

(convergence state) ¢n = ¢n+L’ and eq. (4.13) reoresents a

0

7 (up) of second

finite difference for the first derivative

order accuracy.

4.2.2 Modeling of Non~Linearities and Coupling

One of the main differences between the approach using the
primitive variables and the approach using the vorticity-stream
function variables to obtain numerical solutions of the two
dimensional flow egquations is in the treatment of the advection.
In the primitive éariables approach the convection is non-linear
since producfs of the variables and their derivatives
appear. In the regular y-w (or P-Q) approach the velocities appear
only as cqefficients of the vorticity derivatives and the ¥ and w
variables appear in a sort of guasi-linear form.

(4,9]

As has been stated in many works the Y- solution method
has to be under-relaxed in order for it to converce (élso with
upwind differencing) and this is due to the instabilities that
the boundary condition for the vorticity introduce into the field.
Since the boundary conditions for w consist of linear relations

between Yy and w [see Section 4.3.2] it is reasonable to assume

that the coupled solution of the two equations for ¢ and w will
#
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result in suppreséion and possibly elimination of the instabilities.
A simple way of coupling the y-w equations is to leave their
finite difference forms as in the separate case, where the
coupling between § and w is done only on the boundaries. A more
intensive way of doing it is by coupling the ¢ and w variables at
every point of the field.[21] In this case the following second
order approximation for the nonlinearities of the convection in

the non~conservation form is considered:

a_
X

n n-1

3 - 3 ,.n n n-1, ~ n-13 , n-1
usz (Wl =u A% (W)t u ) u )

(w ox (w

(4.16)
where n is again the time (or iteration) level. Applying the
continuity equation (3.1) and the stream function definition
(3.22), the following equation can be obtained for the planar

(91

vorticity convection.

n n-1

AW 9w 9 n-1 n 9 00w _ 3 n-1 n-1
[u-.g~}-{-+v—5—§] —-'a"}'g(U. w>+8y (¢ (Bx) ] N (u w )
I 1T ITIiIX
-1
P n-1 n 3 n, 3w d n-1 n-1
+ ”8"5/: (v W) 3% (v (W) ] "'5'5/: (v w )
Iv \Y VI
(4.17)

In the above equation, terms III and VI are source terms known
explicitly from the previous time step. Terms I and IV represent

the convection of the vorticity and may be treated by the K-R
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method presented in eqg. (4.13). Terms II and IV are new

terms which represent the convection of the stream function in
the vorticity equation. It can be easily shown that the

diagonal dominance of the coupled system as well as the stability
conditions will not be affected if the terms II and V will be

central differenced or upwind differenced.

4.2.3 The Governing Equations

As was mentioned in section 3.6, the quantity O defined by

Q::

siE

has "better" conservation properties than the worticity w
itself. The V-0 relation is given in eq. (3.28) and the dynamic
equation for § is given by eq. (3.2a), or by the following

equation in the non-conservative form

2 2 S
o o0 _ 9 ] 39 Q
u 3z + v A - T (uQ) + 7 (u) + T 37 (uQ) + T (4.18)
972 or
where y = Ho +oHg is the total viscosity coefficient.. Let

us define the following grid parameters at the noint P:

o
i
1

N

1
(hy+h ), h, =5 (hgthg)

(4.19)

Q
i

hE/hw ! I hN/hS

The finite difference form of the stream~function vorticity

relation, eqg. (3.28), will be
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i fl r l l ’ l 4
by 73l — + = (1L - =5)]1}
N he 0'2 lN 2 (1‘2
r r l+-f-" M
P
02
1 1 - X Y
+ ws {h2 {Gr(l+0r) I 5 (1 U2,]}
r l—FE— r
P
1 l+0’z
i
T Vg {gf [26 1}
2 Z
1+0
1 Z
2
1 1 Ur 1 1 2 1 (l'*‘dz)z 1{
-"J'P {——2- {(l+0r)( = + I.)"-2"(C‘r"fc'§—*) I+ = [ 55 ] |
| hr ai(l-+—§0 14'~§ x hz z
| *p P
? 2, _
E + QP {rp} = 0 (4.20)

This equation is taken always to be at the new time level,
say, n.

The finite difference form of the vorticity dynamic equation
(3.29) will be:

. An--l
b Tgpm =]
N 2hr or

g n-1
gl 5pm Ag T

PO . S
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a
147, 1
20 2
A hz
l-i-oZ l‘_..}
2 h2
z
91 _ 3 11,
26,2 2, N T,
r
l+cr 1 + 3 un—l g}
2 h2 211r ]
r
(140 )2 (140 )2 3Pt
o ’]:'2'+ T l’?]" sh ’%’")}
h h 1y r r
r z
l+dz n-1 l'mz n-1 n-1
s 1 > 0 -
if u=2>0 P(Zh rou, ) + 2 ( 55 rpu )+Dz ()
+
140, L1 140 . 2"1(9)
! < —
i if w< 0 Rp(- g rpup ) +HOp(m 5 Tplp ) =3
{f‘ Z Z z
|
140 l+o0
r n-1, _ r n- n-1
if v>0 QP(Zhr oV ) + Qg 25, rgVg ) +D (Q)
+ n-l(
140 l+0 Q)
. r n-1 n-l, "r
i v <0 R,(- e rpvp )ty Ty ) TS
rr r'r r
. Rn-l - 0 (4.21)
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where
1 e 1
= kBB ) - e
A =5 3 Iyt O, By (4.22a)
z VA z
1 sE 1
By = mi— [558 - 0 0g + (0, - 5-) 2] (4.22b)
z 2z z
1 g 1
A = oo [-2 = 0 0 + (0 - =) 0] (4.22¢)
P~ Zh, 'T_ o, P
1 QNE 1
B, = si— [—= - 0. Q. + (0_ - =) Q] (4.228)
B Zhr O'r r SE Ur B
1 1
B = = [N 50 4+ (0_ - =) Q] (4.22e)
w 2hr Ur r SW r Ur w
1y 1
B = wiee [— ~ 0 8. 4+ (0 - =) Q_] (4.22F)
P 2hr 0. r S x . p
Tp
DZ(Q) = -é‘ﬁ—; [UEQE-‘ (l+OZ) UPQP + Ozuwﬂw] ) (4.23a)
Q) = ko -
Dr(Q) = 2hr [vaNQN (l+cr) rPVPQP + UrrsvSQS] (4.23b)
r u_f
= « { P EE _ 1
R-= {Zh ( o % uwa + (Uz o ) uPQP]
z Z z
r. v, 0
1 NUN'N 1
+ 2hr [ G OrrsVst + (0r 3;) erPQP]} (4.24)

This equation is solved at the n time level where all the coeffi-

cients u, u and the source terms D,, Dy and R are taken in the

n-1 time level.
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4,2.4 The k-¢ Bguations

The solution of the k-¢

equations, (3.31-3.32), is obtained

in this study in a coupled manner, based on a known flow field

mean velocity distribution.

The nonlinear terms are quasi-

linearized with respect to the time level (or iteration index) n:

n n n-1
€ £ £ n £
(7)) = — + - k- —_ (4.25a)
k kn 1 (kz)n 1 kn 1
2 n-1 2. n~1 2 n-1
L L A = \ (4.25b)
k (k™)
2 n-1 2 n-1 2 (n-1)
k™ _ 2k kB 4 (E_) el - 2(5_) "~ (4.25¢)
e er--l E2 £

The finite difference approximation of the k equation (3.31)

is:

—k l+oZ i~]

P 'E 20 h2
zZ

Z

140

l+g
r
N N 20r h2

2
_(_1:02) 1i7-20 K" l}
20 h2 u En"l
z
(continued)
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k2 n-1
*+ e {~2cusp(-€-§) + 1}
1+0 l+o
7 n-1 z n-1 n-1
if w20 kplgg rpup ) +k (= 53— rpy, y+ D, " (k)
o+ A 2
-1 .
1+0 1+0 DT (k)
i . -1 2z n-1 Z ‘
if 0 <0 Kkyl= st roul )tk (5m—a— roun ) - |
} P Zoh, PP E'20,h, "PE v, |
E h
1+0 l+0 3
n-1 r n-1 n-1 4
;,1f v 20 k(g rpvp T) +k( ZH, r Vg 7) + D, (k) |
+o ) 1 3
' 1+0 1+0 D27+ (k) 4
; . - r -1 r n-1, “x |
| ?.lf v <0 kP( 55 - TpVp )+kN(§3~H— raVn )= 3 |
E rr r 1
; |
+ Rg = 0 (4.26)

and the finite difference approximation of the € equation (3.32)

is:

- l+cz 1
+En[~r Vv, 5= =3]
E P E Zoz h2
2
1+o
- z 1
'+€w[ Ty Yy 2 g?l
Z 4l
| l+o
-£ r l
+eyl-ry vy 3757 3!
r n
E r
i l+o
f -€ r 1 .
? +egl-rg Vg =3 1'17] |
| 1
; r
" . (1402 (140 ) (n-1)
F + €5 {rP Vo [20 2 + o 2 1 + 2¢C, (T) }
rr z2z
(continued)
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I P
T bnd
*n >

T T — gl s

(4.

(4.

(4.

(4.

(4,

27)

28a)

28b)

29a)

29b)

Lol TY
e 2 (n-1)
£ n=
+ kp { ClC“Gp+'C2(E) ]
;
' 1+g 1+0
i , . N z n-l, . . ,_ z n-1
(£ w20 °p (th *plp )'bhw( 2h, Tpty )
?é *
‘ 1+¢ 1+
Vo 4 n-1 2z n~-1
if u<o EP( 2‘jzhz rPuP )} + EE(EB—ZT;; rpuE )
! l+o LA
' : x n-1 Lo ) n-1
| glf v2o E:I’(Zh TpVp )+ t‘s( 2h . TsVs )
? + ; L '
) +a 1+a
(. - n=1 T n-1
if v <0 epf 26 h_ “p'p )+ EN(Zorhr yVy )
+ R = 0
P
where:
- u
W = (gt 25 /e
k
u
- _ t
v (g + 0~>/o
e
2 (n-1)
k £
Rp = ~'ZCUGP(}?“)
2 (n-1)
&€ _ k
Rp = 2C, ()
The operators D, and D_ are defined in egs. (4.23), and the

generation term, G, is defined in eq.

from the last time level , n-1.

wipamanm

oL
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The finite difference approximations for the temperature
and species equations (3.35-~3,36) may be obtained in a manner
similar to that used for the above equations. The equations are

linear and may be solved in an uncoupled manner.

4.3 The Boundary Conditions

The system of equations governing the flow field, (3.28-
3.38), are of an elliptic nature and therefore boundary
conditions for all the variables should be specified on all the
boundaries. Four boundaries confine the present field: the
outer cylinder wall, the axis of symmetry and the inlet and
outlet cross-sectional planes. Although the main purpose of
this study is to solve the turbulent flow, the program was
checked with some laminar test cases and therefore the laminar
boundary conditions will be also mentioned. Let us begin with

the symmetry axis conditions.

4.3.1 The Axis of Symmetry
Along the symmetry axis the stream function has a constant

value and it is convenient to choose it as zero:
Pp(r = 0) =0 (4.30)

so that § simulates the mass flux contained between r and 0.
The values of @ can be obtained from its dynamic eguation (3.29)

assuming syminetry, i.e.:
v =0 (4.31)
on this line. Therefore in the limit as r =+ 0 that equation

will assume the following form:
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ar

with the restriction:

RV Y

AU A ¢

9r ar

at r = 0.

(4.32)

(4.33)

It is important to note that other Formulne[dl for s (r=0)

can bue obtained
in oa. (1032) a

we oan got that

where the value

(3,28) with

S ~
3 (£ 7 0)

since the limit

u = lim
r=+0

2l Eau

by assuming above ca. (4.33) thot the ¢ dorivatives

. o . an?
re neagliaible, and therotore with 3E 0

const «= C

of C can be evaluated from the ¢-8 cquation

for the centerline u velocity definition

" o
J e i A ) i
Ar y

exists.

P oand &

1l

are

the present approach, both equations forx

solved exactly on the axis of syvmmetry. Since

ar ar dx the
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on this line may be derived from equations (3.31), (3.32),

on the axis of symmetry the dynamic equations for k, €, T and C

(3.34), (3.35) giving the foliow.ng set:
! o (uk) = 3 [(})-E i—-) 25]%-(23 + l-) ﬁi& + VvV, G - E (4.38a)
9z T 2z CH Re’ 2dz o Re 2 t - Jca
1 k or
)
1 v V 2
: S e, 1y ee, Ye 1 8% e _
3z (ue) = 0z [(0 Re) Bz]+'(0 * Re) ' x (Clth CZE)
£ £ or
, (4.38b)
| 2
2 _2 8my, %,
E« 35 (WT) = == (A =)+ A 2 * Rew G+ 8, (4.38c)
|
:
| 3 3 3 32
| — 9 _.’C_ @]
: 57 (uc) = 5 (D az) + D N (4.384)
Z
2
G = 6(2% (4.38e)

4.3.2 50l1lid Wall - Laminar Case

The stream function is constant on the wall since the mass

flux of the flow does not change during its passace through the

system. Concerning the laminar vorticity on the walls, with the

classic approach the dynamic equation for Q is not solved on the

2Ly .

relation (3.28). By using the no-slip condit’ons, T =

w

[ . i

by expanding ¥ and Q@ in a Taylor series about the wall point w:

rigid wall surface, but rather the values of QW are taken from the -0

by -
Br) 0

w

the following second order accurate values for Qw may be obtained

[22]
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gw 4 E“£ %T?;-l_‘m ;,,‘,l = i hid 15 7 (1.39) j
w YRy T hors (-5 A 1

lw

w W

for r==rw==const as shown in Fia. 4.2,

1
A j
- h |
Y -0t .

i

LI C
Qe Ak w— e g e s s
A ) e

Fig. 4.2: Grid Near a Cvlindrical ¥all

B A e ke A

and, for z = const as shown in Fie. 4.3:
|
LY 4

< h > f

Fig. 4.3: Grid lieavr a Vertical Wall

3(t]1w- W
0.+ =5 nl I R m (4.40)
X

where 1 is one point away from the wall point, w, into the field and

h is the distance between the points 1 and w.
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A different appi'cach to get Qw on a r = const., = r, wall is to

impose the no slip condition (4.39) in the y-Q relations to get

which gives:

2 _ . 2
ry h

For a z = const. wall one can use the no slip condition to get

oy
(32

|
(o]

w

And since ¥ is constant along this wall an equation the same

as (4.41) holds true.

4,3.3 Solid Wall - Turbulent Case
The main difficulty in imposing the turbulent boundary condi-
tions on an impermeable wall is the matching between the
turbulence model and the boundary condition formulaticn. Let
us first discuss generally the nature of turbulence near a wall.
The above recommended k-e model was developed based on certain
assumptions concerning isotropy of £ and the relations between the

Reynolds stress and the turbulent kinetic enerxrgv k, among
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other assumptions. Those assumptions are not valid near a wall
which has the following contradictory features:

(i) sharp flow propverties variation.

(ii) the turbulent viscosity begins to affect the various
turbulent processes due to the low turbulent energy
level (or low turbulent Reynolds numbers).

(iii) the presence of the wall destroys any isotrony
feature that is carried to it from the main stream.
There are two commonly employed wavs of accountinag for the
turbulent phenomena in the wall region: (i) the wall function
method and (ii) the method of modelling low turbulent Reynolds
number phenomena. It is very common to divide the turbulent
boundary layer with thickness §, into two main parts: the
inner layer, 0 < % < 0.2, and the outer layer, 0.2 £ % < 1.0.
The inner layer is dominated by the wall effects and the outer
layer by the flow effects. Since the k-e¢ model was designed
to account for the outer layer properties, the inner layer
determines the turbulent boundary conditions. The influence

of the inner laver depends on the relative size of the terms on

the right hand side of the wall shear stress

T =} 5= - p u'v' (4.42)

where u', v' are the turbulent fluctuations in the longitudinal

and lateral directions, and - p u'v' is the non-negligible

Reynolds stress in the boundary layer. It is very convenient to
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use the U and y formulation in the inner layer as follows:

+ +
U =}_J;_; vy o= Y\)V (4.43a,b)

where v* is the shear velocity defined as

w (4.43c)

Three regions may be distinguished in the inner layer:

(i) The laminar sublayer: 0 < y+ < 5., This is the

innermost part where

- u'v' << q %% , and (4.44a)

(4.44Db)

(ii) The logarithmic¢ law region: 40 < y+ < 0.268%,

This is the outermost part where the only contribution

to the stress is ~-p u'v', and
ut = % in y+ + C , k = 0.41 and C = 5.1
1 +
= = ¢n (By ) , E 2 9.025 (4.45)

(iii) The buffer region: 5 < y+ < 40. This is the inter-
mediate part between the sublayer region and the
logarithmic region.

In the "wall function" approach, the first grid point is

located away from the wall, and the goal is to locate it in the

. . . . . +
logarithmic region. In this region T and k are constants, and
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the generation balances the dissipation in the k eguation (3.31):

*
v’ o= ci/4 k172 (4.46a)
C3/4 k3/2
£ “—=—'—E-—i,———"—-’ (4.46}3)
_ ~l/4
M = € vk x y

where y is measured from the wall, and k¥ i1s the Von-Karman coeffi-
cient (= 0.41).

From the balance between the £ generation and dissipation in
eq. (3.32) one can get:

c, - C, = ~—53177 (for y& »> 1) (4.47)
O Cu

This equation is the only condition which assures that the k-¢

model also holds in the logarithmic zone. Generally Cl and C,

as well as Cu are constants found from the experimental data of

one-dimensional turbulent grid flows.[Z] It can be seen that the

constants appearing in eq. (3.9) do not fulfill eq. (4.47).

In [7] another set is recommended:

Cu =1 ; Cl = 1.47 ; C2 = 0.18 ; 0y = 1 o, = 1.3 (4.48)

This set of constants is not in agreement with the one that was
suggested for obtainiﬁg a good approximation to € in the main stream
field. Analyzing the turbulent quantitiess in the sublayer region,
one might conclude that

k+ ~'(y+)2 ’ €+ = constant . (4.49)

Egqs. (4.49) leads to the following relationship between the model

- coefficients

4

. (acy/ecy) =y (4.50)
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Therefore some papers[l’23] suggzst a dependence of the model coef-
ficients on the local turbulent Reynolds number R, defined by
=
R = = (4.51)
t c k2
u
+

or on the y normal distance. Such a variation can be obtained by

(1]

adjusting the constants using some experimental data:

w4

C2 = C2°° [L - 0.3 exp(~ 0.125 v )] (4.52a)
= - 125

C, = Chw &xp [~ 5551 (4.52b)

t

It can be seen that these variations doe not resolve the above
zonflict since in the logarithmic zone the Reynolds number is
highly turbulent. The above functions do allow us to locate the
first grid point in the sublayer region, however.

The following set of constants was adopted in the present
study to get good agreement with the axisymmetric experimental
results:

C1 = 1.5 ; sz = 2.0 ; Cum = 0,09 ; Ce = 1,12 (4.53)

With the "wall function" approach the first grid point is
not locvated on the wall but at a distance y away from the wall,

as is illustrated in Fig. 4.4.

o
P A |, A t,
Cilmeye: - L 5 YY)
e .

&C‘j

QT? S CD, ¥
U P

OF PO (4

Fig. 4.4: Grid Near the Wall for a Turbulent Flow.
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For this point p, located in the logarithmic region where

+
Yo is the sublayer edge, the following relations exist:

ey g uw=% =@y (4.54a,b,c)
v
y+
+ _ 1 4+ _ L+ + .1 _ Yo +
V=5 y, - g Y, Un(E y ) -1] -5 [An(E v ) 1]
=yt ot - 2.5) - 38.5 (4.54d)
R (4.54e)
Ky Y
k" = K; = 3.15 (4.54 )
3/4 _+3/2
c3/t y
¥ _ Cu 1 2.24
£ 7 = T (4.54g)
y y
E = 9.0 (4.54h)

If the first grid point happens to be in the viscous sublayer,
then:

u+ = y+ ; 0" = - 1 w* = % Yy (4.55a,b,c)

K = 0.1y ; e = 0.2 (4.554d,e)

If the first grid point csnnot be kept in the sublaver or
logarithmic regions during the iterations, the aponroach

of continuous wall functions can be adopted. 1In this case

the first grid point may be located on the wall and the following
boundary conditions have to be considered for the first grid

point away from the wall:
’
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“UR. 2.5 5
w = ~-[1+ (l~e ) (== - 1)] (4.56b) |
v |
|
- R 2
kP = 0.1yt o+ (L-e 5)(3.15 - 0.1y ) (4.56¢) |
—uR n oag
et =024 (L-e B2 0.2 (4.564) |
y |
where
v o= 2.5 (4.360)

. + .
was chosen to match the experimental u orofiles.

In recent years

(24]

some carefully measurements of scalar

quantities in the wall region have been carried out. The profiles

+ . . . .
of 8 in the logarithmic region was found to satisfy the

correlation
st = &~
S
with

+ o, . . .
where 8  is the dimensionless scalar (temperature or species)

defined to be

iy o+ F (4.57a)

(4.57h)
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For the case of the gspecies S = C, the boundary condition is

= 0 (4.58a)

Sc. = §~ = 0.885 (4.8b)

The turbulent Prandtl number was found to vary through the

boundary layer region. The first suggestion[ZS] which was
based on some measurements[26’27] was:
z 2 |
Pr, = 0.9 - 0.4 (6) (4.59a)
and was updated later[zs] to
2
Pr, = 0.95 - 0.45 () (4.59b)

Since the adiabatic wall is not of interest in this study, the

following temperature continuous wall function will be adopted:

T= T -aR
W =yt + (1-e H2.15 en(12 vH - v (4.60a)

T
23 y)w

2
Pr, = 0.95 - 0.4 (%) (4.60b)

and for the species equations (4.58a,h).

49



+

OF Powse e o 0

4,3,4 Inlet Conditions

In most problems the flow velocity temperature and the

various concentrations are known in the inlet section i. Usually

a fully developed U, velocity profile is given from which ¢ and Q

may be deduced:

=
il
O

Y ui(y) dy

ou,
1
ar

0
i
i

For the laminar case ui 15 taken as

and for the turbulent case the velocity defect law is
for highly turbulent Revnolds numbers:

+ -aR -0 R

+ + _ 1 R _ + + +
Uy = u = (K Ln ;;)(1 e ) +y e

for low turbulent Reynolds numbers:

+

+)l/7

OC: [!3
+

..—..(y

(4.61a)

(4.61b)

adopted:

(4.62Db)

(4.62c)

For the turbulent energy and the turbulent dissipation, we

assume that we have the profiles that are described in eguations

(4.56c,d).
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In ordexr teo have a close form of the system at the inlet,

we have to specify the ratio

v*
o}
For laminar flow it can be shown that
= J 2

and we shall assume similar B for the turbulent flow. In any
event the inlet conditions have very little effect on the inner
field solution, especially if the inlet section is taken to be

far from the regions of high gradients.

4.3.5 Exit Conditions
At the outlet boundary we assume that the longitudinal

diffusion is negligible, that is

2
d { all the }

8z2 variables

0 (4.65)

and the flow is basically parabolic near the exit section.

4.3.6 Inner Tube Trailing Edge Conditions

The inner cylinder is fadicated by the point p in Fig. 4.5.

.”q(pll S —
Wu { ' P T
s a) ~E o
TR WZU—m? T O

] ,
!

doe @8y

Fig. 4.5: End Wall Computational Region.
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One approach[4‘ that is easy to use and most common to consider
that the dividing stream line, wp' has no curvature between
point p and point E, satisfying, at the end wall,

The approach that will be used in this study is based on the
physical fact that @ has two different values at the point p,
depending on whether the %% derivative is calculated from values
above the wall (to give Qg) or from points below the wall (to
give Qﬁ). Those two valu;s are opposite in sign. Solving the

Q equa;ion at the point N, Q; will be used. Solving at the
point S, the oL will be used. When solving the eguation at

the point E, € _ = 0 will be used since wp is a separation line.
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5. METHCD OF SOLUTION

The solution to the set of six finite difference equations
is obtained in this study in an iterative manner since it is
impossible to invert the entire system directly. We use the
term, one global iteration of the flow field, here to mean that
the following two piece chain is completed:

(i) For a given k-¢ field the mean field quantities,

i.e., y~Q, are obtained to a certain convergence
tolerance, including the velocity fields.

(ii) For these velocity fields the k—s*tﬁrbulent variables

are obtained iteratively to a certain tolerance.
After the global iteration set converges, it is possible to
solve the concentration field, C, and after convergence of
this field it is possible to solve the temperature field. This

iteration process may be sketched as follows:

¥
Solve for Y~Q

¥

Solve for k-¢

b

N < Have the velocities:>
O 1
converged

Solve for T

“ End
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5.1 Solution Technigue

The solutions of the scalar fields C and T are obtained by
the successive line relaxation (SLR) technique. With this
technique the scalar variable is solved implicitly for all the
rows and then for all the columns in the field, replacing
successively the old values by the current new values. The
solution of the coupled systems, like ¥-Q and k—~e, are obtained
by the successive block line relaxation (SELPR), which is the same
as the SLR technique but expressed in terms of blocks instead

of scalars.

5.2 Stability Analysis

The basic blocked system that is solved here may be described

by the following equation

[B] ¢ + [w] 4+ [N] ¢y + [S] ¢g + [P] ¢p + R = 0. (5.1)

where [E], [w], [Nl1, [S8] and [P] are the coefficient matrices
(in the present study 2x 2), R is the source term vector and
¢ is the variable vector. The SBLR along the field columns may

be written as

n-1 ,n-1 n-1l .n n-1 ,n n-1 .n n-1 n
E (bE + w (bw + N rbN + 8 (bs + Pl d)P
+ (R4 pg'l o2y = ¢ (5.2)
P
where it 1is understood that E is a matrix and P is a vector.
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The coefficient matrix [P] of the middle point is split

into two matrices

(p] = [Py] + [P,)

where [Pl] contaiﬁs the total diffusion effect and the convection
in the implicit direction [which is r in eq. (5.2)] and [PZ]
contains the effect of the convection in the other direction.
Treating the [Pl] contribution implicitly and the [P,] contribution
explicitly has been found to be the best way of s»litting of [P]
for turbulent flow. For laminar flow, it is found to be best to
set [P2]‘= 0. This is due to the special boundary condition near
the wall used with turbulent flows. The stabilityv requirement

is expressed in the diagonal dominance ineguality:

o lwl o+ el
lPll 3{ and (5.3)
|s| + |n| ‘

where strict inaquality has to be maintained at least in one

point of the field.

5.2.1 Stability of the Y- System

Let us check first the stability in the z-direction of the

P-Q system, eq. (4.20-4.21):

2 r 1 .

r (l+cz) Ve St v, fuh, if u >0 ‘
|lE| + |w| = 1 0l : 2 )
2%z Vg IuElh |
= + v+ = Z  ifu<o0

=Tz w z

4
55

N T o S




R A

| AR A A R b S i it s

.
SRHEMPRORT ey
CRIGHIAL 1000 |y

OF POOR QU.ALITY

2
1+o 1 O (147,) 1 1,2
[— (2 ¢t =)t b2 - s (o= 5 7]
h N s 20 2h r
r Or(l+1_:—) l+r 2z r
P D
2 2
v.r 1+g l+o
{PP[( r) .l__.+( Z) i 3 (o '-'-];—)]
2 o] 2 o} 2 2h r ¢
r h 7 r'p r
r z
l+o u if u>0
+ x -
2h, p lu_| /o if u<o
P
5 1), e !
+ 2 [h (Or -5t h (Oz - 5—)]
r r Z Z
1+0 h 2 o]
. r VA 1 r
+ uh, 2 we, &) ot Rl
o (14— 1+ —
r Iy Iy
+ |uE| h < up h7 if u>0
ag Z - + }J
z IUPIAZ/OZ if u<o
V
E Ly h, 2 140 1
o, v +4(l+o ) (B0 +
T Tr hr 20r 2 Ty
ol (1 + =)
r r
Gr 1 | P
+ L ] vP + (E; + 1) Vp
l+—;—
- P -
(5.4)
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It is reasonable to assume that V. and g, are analytic

- , . . 1 2
functions of r and z such that G-E-= 0(h”) and therefore may

be neglected in the stability analysis. It can be seen from

eq. (5.4) that this scheme is unconditionally stable and it is
(91

more stable than in the case where § and Q@ are solved separately.
It can be shown, also, by checking the spectral radius of the

Y- system, that the rate of convergence of the coupled svstem

*

RC is greater than that of the separate system RS:

K
C . 1 2
ﬁg x 1 + oz(l+cr) . + (h7) (5.5)
m ("'—2— + ZGr) (Rec + D)
r A o
o
where ReC is the averaged cell Rewvnolds number
Rec = (uP hZ + VP hr) Re (5.6)
3 EAY

D is a positive function of the Q derivatives 37 and T and
is O(hz). Therefore, it may be concluded that the maig
improvement in the rate of convergence (and also in
stability) of the coupled system results from treating the Q

in the y-Q relations as an unknown rather than as a source term.

* Rg was taken to be the rate of convergence in the case that
for every ) solution, an @ solution is obtained. 1In that
case 1t may be proved that Ré ] Rw . RQ where R$ and R_,2

are the rate of convergence of the Y equation and of the
Q equation respectively.
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Treating the vonvection by splittinq it between ¥ and & and in

&

eg. (4.17) has second onder (h ) ceffects on the rate of convergence.

But since it is hard toe evaluate the coefficient of this
fect, this split is used to obtain the results of this effect.

No extensive study of this effect has been done but by using

=

this technigque a higher rate of convercence can bhe achieved.
Generally, computer results have shown that the actual rate of
convergence is highor than is proedicted by ea. (5.5), since the

beundary conditions are based only on the ¢-30 relations.

§.2.0 Stability of the k- Bystem

The stability cendition for the k-¢ system can be derived
in a manner similar to that of the v- system. It turns out
that tho upstream influence makes the system more stable. We
consider first the zera velocity case. In this case the

matrices B and W are positive definate, and therefore if P

1
is also positive definate we have:
- e e
r. o VN (L)
. I - - [y “
m{cu ( l.“‘\‘ ) -~ ord ‘a‘j‘ + \lk \) N — \\ @ \\‘ .. ' b
4}14 b o wow PR ad -
# "
l+L “ [
. ~**~w~—l~ B e, 2 - 85 )+, 5 - ac? g KT
- “ P 2K BT oe p 2,2 a1t e
G:hz F Kk
- c,,(m,,-cl) G (5,7)
M -

It may result that the vessible critical points in the field
for which this conditions should be chacked, are the points in the

s

logarithmic zone. Substituting the lowarithmic relations, taking

. S8

P .
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into account onlyv the leading terms (of y powers), the following

equations can be derived in terms of the "+" system, with

Q3/4 L 41/2

L I ~ 2.85 ' (5.8)

where R is the outer cylinder radius and hz is the distance of
the second point away from the wall. This condition always holds,

since we usually have more than four points in the r direction.

If the convection is not negligible, then the condition (5.8)
j would be less severe. Taking into account the convection in
the logarithmic region it can be shown that
2.85 + fn(Eh))

> ¥
z 1 + ¢n(E hz)

'J“?U

(5.9)

The ratio of the rate of convergence of the coupled to the non-

i coupled k-e system can be shown to be approximately, for

oz = Or = 1,
+
RC 2.85 + 4n(E hz)
B S = (5.10)
S ec

.+
——4—-— + 21.8 ,Q,n(E flz) + 9

which is about 1.15 : 1.18 for practical soluticns.

5.3 Application of the Turbulent Wall Boundary Conditions

The wall boundary conditions for the turbulent field
solutions are not applied implicitly in the computational
procedure. After every iteration the near-wall values are

updated as follows:
o~
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At point 1, which is a distance h away from the wall
(see Fig. 4.2 or 4.4), the new values of all the field quantities
are known after the nth iteration. Then the following steps
are taken:
(1) solution of the non-~linear equation for v*/Re from
eg. (4.53a),
(ii) obtaining w+(y=0) from (4.53b) and replacing the
old Q on the wall by the new w/rw,
(iii) solving eq. (4.53c,d) for k" and £ and replacing
€ €y and kl
Similar steps are taken for evaluating the temperature gradients
on the wall for every iteration of the energy equation. The
above explicit treatment of the turbulent boundary conditions
may be shown to be stable by plotting on a curve of‘(~w+) Vs, w+
some of these explicit iterations as in Fig. 6.9. Since this
curve exhibits convergence (the limit w+ + o exists), and since
the system of equations demands increasing w+ values for

. . + , .
increasing w values, this procedure is stable.
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6. COMPUTATIONAL RESULTS AND COMPARISON WITH PREVIOUS WORK

6.1 Grid Development

A variable spacing grid was chosen to allow for more grid

points in the regions of large gradients which are located

as part of the solution process in order to obtain an accurate
solution with a small total number of points. Since the large
gradients of velocity, as well as those of turbulence quantities
occur near the solid walls, more points will be located in the

wall regions. An analytic distribution is preferred in order

|
|
|
!
$
|

to minimize the effect of the (o - %) coefficient in the finite
difference forms in Chapter 4. Since we are mostly interested
in turbulent flows, a geometrié variation of the grid spacing
‘might be a good choice since the mean flow velocities are almost
linear on the geometric transformation coordinates.

Figure 6.1 illustrates the grid in the r direction. The
inner cylinder is located at j = Ny where the total number of

points in the r direction are N. The radius of the point Q

distance from the inner cylinder wall. The geometrical coefficients

has the value of % (l+r2), with the integer point j. It is !
E i
; assumed that
i

h =agq 0 < ky 2N, - 1 for 3J <N,

. K (6.1)
i _ 2 _ - . —
E{ hr =aq, 0 < k2 < N2 1 for Nl < J < Nl-i—N2 1
i (see Fig. 6.1). The points Nl+-l and Nl-l both are the same
I
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dy and d, should fulfill the following relations

a 1 '
71 = ger 4 o b
. Nz (6.2)
rl-i- 1l =2 a;:-i' (q2 ~ 1)

For a given "a", equations (6.2) will give qq and qy- Usually
"a" is determined beforehand, i.e., to give the number of
points we desire to be located in the boundary layer region,
or to guarantee that this point is in the logarithmic

region.

Although this non-constant spacing grid is an attempt to
raise the efficiency of the calculation (by using a smaller
number of grid points) it is still far from the optimal grid.
This is because in the core region far downstream from the
inner cylinder trailing edge, there are many more grid points
than are necessary to trace the fairly smooth variation of the
variables. This is however, possibly the best transformation
that can be applied to this field without using much more
complicated curvilinear coordinate transformations obtained from
differential mappings. A sample of the coordinate system
around the trailing edge of the inner cylinder is given in
Fig. 6.2. Here q, = 1.38 and q, = 1.3 for r, = 0.362, and the

geometric series factor in the z direction is 1.8.
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6.2 The Laminar Field e it

A program for obtaining solutions for the mixing of a
confined coaxial flow was developed, based on the numerical
methods presented. The validity of the numerical procedure
was checked by comparison with other results in the literature.
It was found that the present procedure yields results for an

entrance region flow with an initial plug profile entering a
(29]

pipe that varies by 0.1% from analytical results.

It is convenient to define the ratio of the mean velocity
of the outer jet to the mean velocity of the inner jet as a

parameter

2 227 % 1 (6.3)
STz /2 '
1 l-r r
1 1
as well as the mean Reynolds number

| Re = ¥,°Re (6.4) |

Another check was made for confined jet mixing using the same

field parameters as others:[30] f
U2 «j
= =1.17 ; Re =496 ; 1r; = 0.5 |
U, m 1 “:

The maximum discrepancy from the analytical results was about 1%.
Here a 41 x 31 grid was used with Ql = 5 and 22 = 15, The
second order accuracy of the scheme was verified with £, = 6

chosen as the outlet section to impose the parabolic conditions.
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Predictions of the intensity of the reverse flow, -4 m

min
for ry = 0.5 and UZ/Ul = 20, are described in Fig. 6.3 for
fully develapwed inlet profiles. There is not much difference
between the 2y = 3 and the 2, = 5 results. The results were
not stable above Rem = 3200. In the range of 3200 < Re < 4200
the error in the iteration procedure did not grow, but it did
not decrease either. Above a mean Reynolds number of ~5000

the iteration procedure blows up. The zone of separation is

a function of Rem and UZ/Ul' In Fig. 6.4 the locations of the
separation and the reattachment points as functions of Re

are described. These results give the impression that perhaps

there is an asymptotic bubble length as Rem tends to infinity.

2000, the laminar stream function is

For ry = 0.5 and Re
m

described in Fig. 6.5 for two cases: U2/Ul = 50 and UZ/Ul = 0.02.

In Fig. 6.6, the temperature field is described. The

temperature difference between the inner and outer jet was

the reference temperature. The temperatures rise on the axis

of symmetry is of the order of A/10 in eq. (3.13)., The

maximum rise in the temperature is near the end cof flow field

where the region of maximum heat generation is located.

6.3 The Turbulent Field

Calculations of the turbulent flow fields were carried out

using experimental data for the inlet flow profiles. Unlike

[31] the vorticity source term (3.30a) is not

other work
neglected since for U2/Ul < 0.1, Vzv is important in the high

shear domains, especially near the dividing streamline and near

o
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the walls in the viscous sub-layer zone where Vzv e n2 (n is
the normal to the shear layer direction). Similar to other

(32,33]

works the present study was done with r, = 0.5,

Re = 72,000, and a pipe length, L2 = 20. Predictions of the
stream function and the turbulent kinetic energy for UZ/Ul = 40
are described in Fig. 6.7. The temperature field of the present
problem is shown in Fig. 6.8 for the constant A = 30. The
effect of turbulent diffusion can be seen by the over-heating
near the axis of symmetry at z * 5. That is due to the relative

high v Due to a lack of experimental results for this field,

.
the only check of the calculated results that was made ig the
global conservation of the variables. Mass was conserved

to a 0.1% tolerance, while momentum and mean energy was conserved
to a tolerance of 0;5%. The fact that the turbulent boundary
conditions are, essentially, treated explicitly, reduces the

rate of convergence. In Fig. 6.9, some of these explicit
iterations are shown for a wall point at z = 3. Figure 6.10
demonstratés the difference in the convergence rate between a
field where the point ahead of the outer cylindrical wall is

located in the viscous sublayer, and a field where this point

is located in the logarithmic region.
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7. CONCLUSIONS AND SUMMARY

This work is an attempt to solve numerically for the field
of a two dimensional turbulent flow using a "two equation" type
model for the turbulence. Since the flow field considered in
this study is the incompressible confined turbulent mixing of
two coaxial jets with internal heat generation, the mean stream
functibn and mean vorticity were chosen as the flow variables.
The turbulence effects were represented with the k-t model.

A conservative coupled-variable finite-difference scheme was
employed. The finite-difference algebraic equations were
solved iteratively by successive block line relaxation.
Conditions for obtaining stable turbulent solutions were
formulated. The double value of the vorticity and the poorly
defined variation of the turbulent variables at a sharp corner
were treated through the generation terms. .

Although the coupling between P~ equations and k-
equations tend to increase the convergence 6f the solution,
the explicit form of the boundary conditions tend to decrease
the rate of convergence compared to that of the laminar field.
Since the gradients of all the variables in the logarithmic
region near a wall is much smaller than they are in the sublayer
region, the rate of convergence there is much faster. The
downstream face boundary condition, 82/322 = 0, 1s the correct 4
one to be applied for the so-called "fully-developed turbulent

flow" condition since applying a 3/%z = 0 condition contradicts
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the boundary conditions on the wall. Applying such a boundary
condition to a turbulent flow field can cause erroneously
large turbulent diffusion coefficients in the field. There is
no effect of the inlet conditions if they are applied far
enough upstream from the trailing edge of the inner

cylinder (~ 3 to 5 R).
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NOMENCLATURE

concentration function

k-e model coefficients
partial differential operator defined in eq.
mass diffusion coefficient
turbulent energy production
turbulent energy

typical axial length
pressure

temperature Prandtl number
mass £flux

radial direction and coordinate
radius

rate of convergence
radiation number

Reynolds number -

mean Reynolds number
truncation error

source term

Schmidt number.

heat generation rate
temperature

axial velocity

radial velocity

axial direction and coordinate
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Indexes

the thermal radiative diffusivity

integer to choose the right differencing direction
turbulent energy dissipation

thermal conductivity

laminar viscosity coefficient

turbulent viscosity coefficient

the effective viscosity coefficient
kinematic viscosity coefficient
turbulent energy Prandtl number
dissipation Prandtl number

stress tensor

stream function

maximum stream function

vorticity

w/xr

inner cylinder
outer cylinder
effective
tensorial indices -
laminar

radiation

ﬁurbulent
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