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INTRODUCTION

this report summarizes results of rrcunL geomeLrical Studies of

circular-cut s p iral bevel gear teeth. These studies have been stimu--

lated by interest in determining the effects of slight profile changes

on the kinematics, noise, stress analysis, wear, and life of spiral bevel

gears. This interest has been stimulated by a desire to improve operating

and maintenance procedures in high performance transmissions of helicop-

ters and other aircraft. References [1-6)* are examples of approaches

taken to develop a broader understanding of the geometrical character-

istics of spiral bevel and hypoid gears. It is believed that a quantita-

tive understanding of the geometrical characteristics is fundamental to

anelyses of the above mentioned physical phenomena of these gears.

Spiral bevei gears are used in high performance transmissions be-

cause their curved teeth provide for a smoother and quieter operation

than straight bevel gear teeth. Also, the curved teeth provide greater

bending resistance. Figure 1. contains a photo of a spiral bevel gear

and its pinion.

These gears are called "spiral" bevel gears since the theoretical

centerline of the gear tooth is a logarithmic spiral (7). A logarithmic

spiral has the advantage of providing equal angles between the tooth

centerline and radial lines at all points along the centerline. This

in turn provides for unifo-- ;t-cmetrical characteristics of the tooth

profile in the transverse planes of the gears--that is, the planes nor-

mal to the radial pitch lines of the gear. However, the disadvantages

of logarithmic spiral teeth are that they are difficult to fabricate

and the tooth surface itself is often considered to be too "flat" to

incorporate the advantages of curved teeth [8]. Therefore, most gear

manufacturers have been cutting spiral bevel gears with circular cutters.

* Numbers in brackets refer to References at the end of the report.



In feed, probably more than 90% or the spiral bevel gears current I ,., to

use have been made with a circular cutter.

The advantages of circular cutters is that they are relatively

easy to use in manufacturing processes and through varying the cutter

radius and the position of the cutter center, a varietv of toothforms

can be produced. Also, for a carefully chosen cutter setting and cutter

radius a circular arc can very nearl y approximate a logarithmic spiral (7J.

A disadvantage of circular cutters is that the uniform tooth profile in

the transverse plane is lost, leading to distortions along the centerline.

The analysis presented in this report concentrates or crown gears.

A crown gear (sometimes called a "crown rack 	 is a flat gear and is

analogous to a rack for spur gears. Many spiral bevel gears have tpex

angles which are nearly 900 and they are thus close to being crown gears

(See Figure 1.).

Figure 2. depicts a crown gear together with commonly used planes

associated with the giar surfaces. The pitch plane is the plane of the

gear itself. The axial planes, con_aining the axis of tae gear, are

perpendicular to the pitch plane. The transverse planes are perpen-

dicular to both the pitch and axial planes. The transverse plants are

thus perpendicular to the radial pitch lines. The normal planes, con-

tc,ining the cutter center, are perp-ndicular to the pitch plane as shown

in Figure 2.

A transverse plane is customarily used in the study of straight

tooth bevel gears, while a normal plane is often used in the study of

spiral bevel gears [9). A reason for this difference is that for smooth

spiral bevel tooth surfaces the contact forces between mating teeth are

tranEmitted in the normal planes. However, if friction is present the

re::ulting force vector is rotated out of the normal p lane and it becomes

more nearly parallel to the transverse plane. Therefore, a major portion

of Ca ar.;lysis of this report--particularly that dealing with pressure

angles--is developed in a transverse plane.

2
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The report itself is divided into five parts with the first part

providing some preliminary analysis useful in the sequel. The second

part discusses tooth profile changes in the transverse planes along

the tooth centerline. The cutter profile shape needed to obtain a

straight line tooth profile in the transverse plane is developed in the

third part. The fourth part of the report presents a procedure for find-

ing the radii of curvature of circular-cut crown gear teeth. The radii

of curvature are useful parameters in the study of contact stresses,

lubrication, wear, and life of the gears. Specific results are presented

for straight, involute, and hyperbolic cutter profiles. A discussion and

concluding remarks are presented in the final part.

S
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SYMBOLS

C Cutter center,	 curve defining a surface of 	 revolution.

e 1 (1-1,2) Surface base vectors.

g Determinant of gij.

gij (i,j-1,2) Metric tensor coefficients.

h 1 (1-1,2) Fundamental vector defined by Equation 	 (51).

h ij (i,j-1,2) Second	 fundamental	 tensor defined by Equation	 (52).

H,V Horizontal and vertical cutter settings.

i Mean curvature

k Cotangent of pressure angle.

K Gaussian curvature

n A unit vector normal to a surface.

n Radial unit vector.
-r

n x ,nv ,n z Unit vectors parallel to X,Y,Z.

n, Transverse unit vector.

N Normal	 line	 to a surface of	 revolution.

0 Gear center.

P Position vector to a typical point on a curve.

P Typical point on the gear centerline, or on the gear surface.

E
Pm Midpoint on tooth centerline.

r Radial coordinate from 0.

r Radial coordinate from C.

R Cutter radius.
C

R. Inner gear radius.
^	 1

R Mean radial distance.
m

i

Ro Outer gear radius.

6



R	 R Maximum and minimum surface radii of	 curvature.
max ,	min

S A general	 surface.

t Transverse tooth thickness 	 in the pitch	 plane.

'	 T Tangent	 line	 to C,	 Tangent	 point.

U"	 u • Surface defining parameters.

x,v,Z Cartesian coordinates	 relative to the	 X,Y,Z,	 coordinate	 system.

x,y,Z Cartesian coordinates	 relative to the X,Y,Z	 coordinate system.

R

x,v,Z Cartesian coordinates relative to the X,Y,Z coordiante system.

X,Y,Z Coordinate axes with origin at 0 and with the X-Y plane

coincident with	 the pitch plane.

X,Y,Z Coordinate axes with origin at C and with the X-Y plane

coincident with	 the pitch plane.

I	 Cutcer inclination

y	 Angle OPC in Figure 4.

Transverse coordinate, Pressure angle.

Cotangent of the spiral angle.

Coordinate axes of Figure 11.

rr	 Transverse plane.

p	 Radius of curvature.

Transverse angle, Angle between W and the x-axis.

1

	

	
Mid-transverse angle.

m

Spiral angle, Inclination angle.

Mid-spiral angle.
M
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1. PRELIMINARY CONSIDERATIONS	
^iJ A IL IIY

1. Configuration

Figure 3. shows a top vie+ of some of the geometrical features of

a circular-cut crown ,ar, which will be useful in the segv-1 . Specif-

ically, 0 is the gear center or "gear apex" and C is the circular cutter

center with a cutter radius R c in the pitch (X-Y) plane. ."he spiral

angle : is the angle between a radial line through 0 and the tooth center-

line. The mid-spiral angle Wm shown in Figure 2., is the angle between

the tooth centerline and the radial line passing through the midpoint of

the tooth centerline (the X-axis). Finally, Figure 2. has two sets of

coordinate axes X,Y,Z ai:d X,Y,Z with origins at 0 and C respectively.

The coordinates are then related by the simple expressions:

x- x- H , y- y - V , i I z	 (1)

where h and 11 are the horizontal and vertical cutter center settings.

2• Spiral Angles

The spiral angle W varies along the centerline of the tooth. For

example, "Figure 4. shows a series of radial lines intersecting the tooth

centerline. It is easily seen that the spiral angles are all distinct,

that is,

it­ ] # W2 # ^ m # V 3 # Wb
	

(2)

Figure 4. also shows tranverse lines (edge views of transverse planes)

intersecting the tooth centerline a.id forming "transverse angles" C

which are complements of the spiral angles. The transverse angles are

also distinct, that is,

##	 # •'v,,'m
(3)
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Interestingly, it ttie tooth centerline is a logarithmic spiral, ttie

spiraI angles are all eq ual.	 That is,

ORIC11,!,11_ p,nCF ^S

OF POOH? ^.: t.,at_!TY	 (4)

Similarly, `ie transverse angles are also all equal for a logarithmic

spiral tooth centerline.	 That is,

m

i. Lo garithmic Sairal and Circular Arc

The property described b y Equations (4) and (3) is an at^ractive

feature of logarithmic spiral tooth centerlines. 	 Indeed, for such a

centerline the tooth profiles, obtained by the intersection of the

tooth surface and the transverse planes, are all similar.

A logarithmic spiral has an equation of the form

r = Rme `	(6)

where r and r are the radial and transverse (polar) coordinates of a

typical Faint P on the curve. For a logarithmic spiral tooth centerline,

Rnl is the distance from 0 to P m , the midpoint on the tooth centerline,

and K is the contingent of the spiral angle. That is,

r - cote
	 (7)

(Equation (7) follows from Equation (6) by noting that dr/d ,, = -r and

that when , - 0 the slope is:	 tan gy. = tanu,m = rd^-/dr.)

Buckingham [7) has shown that there is very little difference be-

tween a logarithmic spiral tooth centerline and a circular arc if the

radius R  of the circular arc, is the same as the radius of curvature,

at the midpoint P m , of the logarithmic spiral. It is easily seen (See

Section 1. of the APPENDIX) that the radius of curvature of a logarithmic

spiral of the form of Equation (6) is:

I1
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r( 1 + K)	 r/sln'^ 	 (8)

where the second equality follows from using Equation (7). Hence,

a nearly coincident circle is obtained b y letting R,, be:

R  - Rm/sinVm	(9)

From Figure 3. the horizontal and vertical cutter settings are then

seen to be:

H - Rm - Rcsinvm - 0	 (10)

and

V - R c cos , m - Rmcotym 	(11)

For a typical mid-spiral angle of 30 0 , Equations (9) and (10) show

that the cutter radius would be twice the mean gear radius and that the

cutter center wou.d be on the Y-axis. This is sometimes considered to

"ae impractical for .^abrication [7]. Moreover, the tooth shape iF often

deemed to be "too flat" [8]. Nevertheless, for a gear with a mean radius

of 7.0 in. (177.8 mm) Buckingham has shown (See also, Equation (14) below)

that the difference in spiral angles between the circular arc ,ind the

logarithmic spiral centerline at the heel and toe are less than one-

half of one degree. A computer plot comparing a circular arc with a

logarithmic spiral tooth centerline for a more realistic cutter setting

and radius is shown in Figure 5. In this figure the mean radius R m is

again 7.0 in. (177.8 mm) and the midspiral angle is 30 0 , but the cutter

radius is reduced to 6.0 in. (152.4 mm). Equations (10) and (11) then

give the horizontal and vertical cutter settings to be: H = 4.0 in.

(101.6 mm) and V - 3v3 in. (132.98 mm). 	 In this case, the spiral angles

differ by approximately 6 0 at the heel and toe.

4. Variation of the Spiral Angle Along a Circular-Cut Tooth Centerline

It is helpful to develop an expression for the change in the spiral

angle along a circular arc tooth centerline. Such an expression is

easily obtained from Figure 6. which shows an enlarged (but not to scale)

view of the circular arc tooth. Then, using the law of cosines with

14



(12)

n .

C)

OF Fuvfz

triangle OPC leads immediately to the expression:

(5C) 2 - (FP) - 	(EP)` - 2(OP)(7P)cosY

By recognizing that: cosY - sinW , (7)C) = - H2 + V^ , (OP) 2 - r`	 and

that (CP) ` - RI, Equation (12) may be rewritten in the form:

H2 + V` - r2 + R` - 2rR s imp
c	 c

or as

sing - ( r2 + R' - H2 - V2 ) / (2rR )	 (13)
c	 c

Finally, by noting in Figure 6. that H - Rm - R c siny and that V - RccosW'

(See Equations (10) and (11)), Equation (13) becomes*:

sintp - (r 2 - Rm	m c+ 2RRsinW, )/(2rR`) (13)

*This expression is seen to be identical to that recorded by Baxter [9].

15
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II. ANALYSIS OF TOOTH PROFILE CHANGES BETWEEN TRANSVERSE: PLANES

I. Ana'.vtical Development

C onsider again the pitch plane of Figure 3. and 6. R, is the "mean

cutter radius." That is, R c is the distance from C to the tooth surface

in the pitch plane. The cutter radius r for other points on the tooth

surface is a function of the elevation z of those points above or below

the pitch plane. For example, for an % nsi,e" tooth surface r might be

expressed as:

i a R c + F(z)
	

(15)

where F(z) describes the cutter geometry. In addiiton to X,Y and X,Y,

let X,Y be a third coordinate system with origin at the cutter center C

and with X parallel to OP as shown in Figure 7., where P is a typical

point along the tooth centerline. Then the angle between X,Y and X,Y

is L, the small angle between OP and the X axis.

Equation (15) provides a relationship between the cutter radius r

and the elevation z of a point on the tooth surface. B y solving for z

the relationship may be expressed in the form:

z = f(r)
	

(16)

The cutter profile, described by the function F(z) of Equation (15), is

thus also described by the function f(r) in Equation (16). However, in

Equation (16) the ensuing tooth surface is readily seen to be a surface

of revolution. Also, Equation (16) may be viewed as providing as a des-

cription of the tooth profile in the normal plaice.

UHI(afi\NL F
OF POOR QUALITY
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the cutter radius r ma y be expressed in terms of the coordinates x,,:

and x,y in the form:

r	 ( x` + V')	 _ ( x- ' + V"
	

( 17)

Hence, by comparing Equations (16) and (17) z may be considered to be a

function of x and V or of x and v.	 If x, or x, has a constant value,

Enuarion (16) provides a description of the tooth profile in a transverse

plane. For example, if x - R c sinWm the tooth profile in the mid-

transverse plane is

Z - f([R- sin`W + Y ` 	 g(y, W )
c	 m 

	 (18)

That is the elevation of a point on the tooth surface in the mid-trans-

verse plane depends upor Y. For a general transverse plane, Equation (18)

may be expressed as:

z = f([R^sin 2 Wm + y 2 1 1, = g ( y , Wm )
	

(19)

thus, the tooth profile in a general transverse plane depends upon the

spiral angle W which in turn is a function of the radial distance r,

through Equation (14).

Equation (19) can be used to study tooth profile changes between the
R

transverse planes. For example, a comparison of g(y,W) with g(y,,, m) pro-

vides a measure of the modification of the transverse profile from the

profile in the mid-transverse plane. Equation (19) is also useful for

determining the pressure angle changes between the transverse planes.

To see this, consider the profile in the transverse plane de p icted in

Figure 8. Let d be the pressure angle and let "c be its complement. Then,

for the inside tooth surface tan ,̂ c is:

tand c = 3z /v(-y) = -(dz/dr)(ar/3y)

or

tan-,c = -f'(r)y/r'

18
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But since tan t? c - cot e , the pressure angle - (in the transverse plane) is

b	 -tan	 r/f'(r)y	 (22)

Equation (22) may he viewed as an algorithm which provides the pres-

sure angle as a function of the radial distance r from the gea7- center.

Moreover, it is a valid algorithm for any cutter profile.

2. Examales

Equation (22) was used to study the pi:^ssure angle changes through

the transverse planes along the inside tooth surface, for three cutter

profile shapes:	 1) a straight line profile, 2) a circular profile, and

3) an involute profile.

1) Straight Line Cutter Profile. Figure 9. depicts a straight line

tooth profile in the normal plane. In this case Equation (16) takes the

form:

z - f(r) - ltana)(r - Rc )
	

(23)

where R is the mean cutter radius and z is the cutter inclination. By
c

substituting into Equation (22) we obtain the transverse plane pressure

angie:

9 - tan 	 (cota) I + (Rc /y) ` sin 2 ^y	 (24)

•,here we have replaced r by (R .-sin`W + y`)' as in Equation (18). The

spiral angle ;.) may be expressed in terms of the radial distance r by

either Equation (13) or (14). Hence, 9 is a function of r.

Figure 12. shows a computer drawn graph of a at the pitch plane

level (that is, with y - -Rc cosW) for R c = 6.0 in. (15.24 cm), R. =

7.0 in. (17.78 cm), y m - 700 , and a - 70.

21
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2) Cir , .i-lar Cutt er Profile.	 Figure 10. depicts a circular tooth pro-

file in the nori:al plane.	 In this case the equation of she profile may

be expressed as:

(z - b)` + (r - a)`	 o 	 (25)

where a, b, and o are the circle center coordinates and the circle

radius as shown in Figure 10. 	 If a is the cutter inclination at the

mean cutter radius, then a anO b ma y he expressed as:

a - R + osina	 and	 b - -ocosa	 (26)
c

Hen--e, Equation (16) may he expressed in the form:

z	 f(r) - - . .cosa +	 (p 2 - (r - R - o9ina)` ) 	 (: 7)c

Then by substituting; i 	 -, Equation (22), we obtain the transverse plane

pressure angle:

((R'sin` + y 2 )	 - R - sina]2)(R^sin	 + v`)
7	

c	 c
[an

_ 1
	—

((R^sin`W	

c

+ y`) - R` - csinu]y

(2R)

where, as before, we have replaced r by (R' sin`'. + '.)^.

Figure 12. .also shows a graph of Equation (28) for R
c 

= 6.0 in.

(15.24 cm), Rm = 7.0 in. (17.78 cm), c - 1.0 in. (2.54 cm),
m	

300,

u - 700 , and y = -RccosW.

3) Involute Profile.	 Figure 11. depicts an involute tooth profile in

the normal plane, together -..iith the generating circle of the involute.

In terms of the ;,n coordinate system, the coordinates of a typical

point P on the involute curve ma y be expressed as:

(sin? - 15cos^)

and

?1 ° ' (COQ'; T 6sin7)

(29)

( 30)

22
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1. 
F • ^^.^I^	 t-.	

^	
^'.^0  P,, ;f,	 1;Y

where . is the radius of the generating circle and ' is the pressure

angle in the normal plane. 	 Equation3 (29) and (3J) are parametri

equations of the profile with	 being the parameter.	 In the z,r

coordinate s ystem these equations may be written as:

z	 -	 + .(Cos 	 + -Sill-)

and

r = R
c - 

, I + . (sin	 - - cos,')

where rp and n ) are the -slues of ; and • when	 - (-/2)-A (that is,

and nr, are the coordinates of the intersection of the profile and the

r-axis).

In this case, the parametric Equ; > cions (31) and (32) replace

Equation (16).	 In Equation (22), f'(r) becomes

f'(r)^ da'/dr a (dZ/dA)/(dr/dt*	 = cot"	 till

Hence, the pressure angle in the transverse plane is:

6	 tan-' [tanF(r sing + y'' )/Y)
	

(34)
c

who're, as before, we have replaced r by (R
c
sin': + v')	 and where in

this case, v is related to	 through Equation (32) leading to the

expression:

i

y-t ( Rc - F  + o(sin6 - ^cos ,,)1' - R c sin'^}^	 (35)

Finally, Figure 12. also shows a graph of Equation (34) for R =

6.0 in. (15.24 cm), Rm = 7.0 in. (17.78 cm), 	 = 7.0 in. (17.78 cm),

`m
= 30,	 = 200 , and y given by Equation (35).

( 31 )

( j2)
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III. D E;ERMINATIUN OF CUTTER PROFILE FOR A STRAIGHT LINE TOOTH

PROFILE IN THE TRANSVERSE PLANE

1.	 Analvsis

If a crown 4ear - g as a straight line profile in the transverse

plane, then it is analogous to the involute rack of spur gears. Such

a gear is sometimes called a "crown rack" [7]. 	 Figure 13. shows the

pitch plane of a crown gear together with a typical tooth centerline and

the coordinate axes. Imagine a transverse plane cutting the tooth sur-

face and passing through the midpoint of the tooth centerline as shown.

Then, if the crown gear is to simulate a crown rack at its midpoint,

the tooth profile in the mid-transverse plane might appear as shown in

Figure 14.

The equations of the left and right sides of the tooth surface in

this mid-transverse plane are then of the form:

z - k(y + t^/2)	 (36)

and

z = -k(y - to/2)	 (37)

where c- is the transverse tooth thickn?ss in the pitch plane, and k is

the cotangent of the pressure angle 	 that is,

k = cot ,.
	

( 38)

The equation of the tooth surface of revolution generated by the

circular cutter can be expressed in the corm:

z = f(e)	 (39)

where r, the radial distance from the cutter center C, is

r = (x= + y ` )^	 (40)
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Figure 13. Pitch Plane of Circular Cut Crown Gear.
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Figure 14. Tooth Profile of Crown Rack in the Mid Transverse Plane.
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The equation of the mid-transverse cutting plane as shown in 'Figure

13. is simple:

x - R sin,	 (41)
m

When x has t!,e value Rc sinym , f(r) as determined by Equations (40) and

(41), has the form of Equations (36) or (37) for a straight line profile

in the mid-transverse plane. By substituting from Equation (41) into

(40) and by solving for y leads to:

y - -(r l - Rlsin 2 4,	 (42)

where the negative root is taken since y is negative (See Figure 14.).

hence, from Equations (1), (36), (37), (38), (39), f(r) takes the form:

f(r) - [V + (to/2) - (r 2 - R`sin`,W, )]cote	 (43)

or

f(r) - [-V + (to/2) + (r` - 1(2sin ` ^ym ]cote	 (44)

where Equation (43) corresponds to the left or "outside" tooth sur-

face and Equation (44) corresponds to the right or "inside" tooth sur-

face. It is easily shown that these surfaces of revoluti)n are hyper-

holoids.	 (See Section 2. of the Appendix.)

2. Numerical Results

In Equation (43) and (44), if x 	 R c sinWm in r, then f(r) becomes

[V + (to/2) + y]cotd or [-V + (to/2) - y]cot6 depending upon whether

f(r) describes an "outside" or "inside" tooth surface. As expected,

these expressions match those of the straight line profiles in the mid-

transverse plane.) If however, in Equations (43) and (44), x - RcsinW,

.	 that is, if W 0 gym , then the transverse tooth profiles are no longer

straight but instead they are described by the expressions:

29



z -	 1 + (t . 12) - (R-sin	 + v` - R' Sin'	 ) ' )cot~	 (45)
c	 c	 m

and
i

Z - (-V + (t	 2) + (R's in , . + y` - R`siu' ym )^)Cot`;	 (46)

Equations (45) and (46) may be used to obtain a numerical analysis

of the transverse tooth profile change along the centerline. That is,

b y using Equation (13) or Equation '14) the variation of z with y

(transverse distance) and with r (radial distance) is determined if the

cutter settings and cutter radius are known.

Such numerical calculations were performed for a crown gear with a

cutter radius R  of 6.0 in. (152.4 mm) horizontal and vertical cutter

settings, H and V of 4.0 in. (101.6 mm) and 3V 73_ in. (131.98 mm), and

mid-spiral angle 1ym
 of 300 , and a pressure angle 

ym 
at the mid transverse

plane of 20 0 . Also, the inner and outer gear radii were taken as 6.0 in.

(151.4 mm) and 8.0 in. (203.2 mm). 	 (The data are also the same as those

used in the gear depicted in Figure 5.)

These calculations were performed for the left or "outside" tooth

surface. The results are s,,own in Figures 15. to 18, where the pressure

angle is plotted as a function of the radial distance, the vertical

coordinate, and the transverse coordinate.
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IV. RADII OF CURVAT'U'RE OF CIRCULAR-CUT TOOTH SURFACES	
OF POUR QU.i^ITY

Knowledge of the , p rincipal radii of curvature of a gear tooth

surface is a point of departure for the studv of contact stresses, lub-

rication, wear, fatigue, and life. 	 In the following paragraphs proce-

dures for tinding these radii of curvature are provided for circular-

cut spiral bevel crown Rears.

1. Differential Geometry Formulae

Since the principal radii of curvature of a gear tooth surface at

a point are among the major factors affecting the lubrication, surface

fatigue, contact stress, wear and life of the Rear, it is helpful to

summarize the basic formulae from elementary differential geometr y which

ma y be used to determine thse radii of curvature.

Suppose a surface S is defined b y a pair of parameters u l and u-

through the vector parametric equation P - P(u l ,u`) where P is the position

vector of a typical point P on S. Then base vectors e i (i - 1,2) tangent

to 5 at P are Riven by

e i - )P/3u i 	(47)

A surface metric tensor g il (i,j - 1,2) ma y then be defined as

gij - e i • e j	 (48)

Let g be the determinant of ^. ij . Then it is easily shown that

g = jel x e2j	 (49)

Hence, a unit vector n normal to S is then

n = e l x e-/g	 (50)

Let the fundamental vector h i (i = 1,2) be defined as

h i = in/ = u 1	 (51)
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Then, the second fundamental tensor h iI (i,I - 1,2) is defined as

-h i • e l	t52)

Letting h be the determinant of h ij , the Gaussian curvat ure K is defined as

K - h/g	 (53)

Let k ij (i,j - 1,2) be defined as

1

k 	 (54)

where 
xij 

is the inverse of g ij .	 (Regarding notation, repeated indices

represent a sum (that is, from 1 to 2) over that index.) The mean

curvature J is then defined as

s kzz	 (55)

Finall y , maximum and minimum radii of curvature Rmax and Rmin are then

easily calculated in terms of J and K as:

R 
max' min

R	 - 2/ (J` t ( J = - 4K)^^]

2	 Surface of Revolution

The tooth surface of a circular cut spiral bevel crown gear is a

if
	 of revolution." That is, it can be developed by rotating a

curve in the shape of the cutter profile, about a fixed axis. Consider,

for example, the curve C shown in Figure 19. If C is rotated about the

Z-axis, it generates a surface of revolution S, a portion of which can be

considered as the surface of a circular cut spiral bevel crown gear. Let

C be defined b y the expression:

z = f(r)	 OF POOR QUAL1 Y	
(57)

36
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Figure 19. A Surface of Revolution About the Z-Axis

37



ORIGINAL FA(-;I: 13
OF POOR QUALITY

where r is the distance from the Z-axis to a typical point P on C..

Let : be the angle between the Z-axis and the normal line N of S at 1'.

Then r and y are dependent upon each ether. That is,

r - r(it )
	

( 58)

Let , be the inclination angle of the tangent iine T to C at P as shown

in Figure 19. Then v, :, and the slope of T are related as follows:

dz/dr - df/dr - tang - tan(+ ► - 'y) - -tangy	 (59)

Consider a top view of S as shown in Figure 2U. In this view P

is seen to lie on a circle of radius r. and on a radial line R which

makes an angle e with the X-axis. Then the position vector P of P rel-

ative to 0, a fixed point on the Z-axis (See Figure 19.) is:

P - zn + rn - rn + f(r)n
	

(60)
-z	 -r	 -r	 -z

where n r and n z are unit vectors parallel to R and the Z-axis. Hence,

in terms -)f n x , n v , and n z , unit vectors parallel to the X, Y, and Z axes,

P becomes:

P = r cosH n + r sin6 n y + f(r)n

	

x	 z	 (61)

Since r = r(^), P is a function of ^ and ^, . Therefore, it is conver:-

ient to let m and e be the parameters u l and u` defining S in the para-

metric representation P = P(u l , u`) of the foregoing differential geometry

formulae.

From Equation (47), the surface base vectors e l and e- become:

el	 e = (dr/dp)cos5 n  + (dr/d0)sin6 n  + (df/dr)(dr/d ©)n z (62)

and

-r sins n  + r cos y n `,	 (63)
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Figure 20. Top View of a Surface of Revolution.
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I'hen, trom Equation (48) the metric tensor components become:

g
I .
, - K	 - (dr /d^)- sec' ,

22

81	 K	 Ky.	 Kr.,;	 t)

and

r`

where Equation (59) has been used to simplify the expressions. Hence,

from Equation (58) the unit vector n normal to S becomes:

n - sin3 cos y n x + sing sin e nY + cosy n i	(67)

the fundamental vectors h i (i - y,6) and the second fundamental tensor

h i j (i, j - ^,fi; are then:

ill - h^ - 3n/ -+^ - coso cos ,1 n x + coso sind nv - sin© n 	 (68)

h - h, - on/d6 - -sine sin6 n x + sine cos9 nv	 (69)

h:l	 h,; 
S- 
a -(dr/d^)sec y	(70)

h l. - h	 h	 - h	 - 0

and

h	 h	 = -r sino	 (72)

From Equations (53) nd (55) the Gaussian curvature and the mean

curvacure become:

K - (sing cost)/r(d(D/dr) 	 (73)

and

J = -((cosy) /(dr/do) - (sinWr)	 (74)

(64)

(65)

(66)
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Finall y , using Equation (56) the principal surface radii of curvature

become:

R 
max 

a ! (dr/d(Wcos©j	 (75)

and

Rmi n - ; r/...1:D1	 (76)

These expressions may be expressed in terms of f b y using Equation (59).

That is, since

,D - tan -l (df/dr)	 (77)

t`ien (d^/dr) becomes

d^P/dr - - (u2f/dr-)/[1 + (df/dr)`]	 (78)

and hence, 
Rmax 

and Rmin become:

`max - '[1 + (df/dr)-]/ [(d`f/dr`)cos(tan-'(df/dr))], 	 (79)

and

Rmin = jr/sin(tan - '(df/dr))j	 (80)

3_ Examp le

1) An Involute Cutter Profile. Perhaps the rrw:)st fundamental and

theoretically satisfying of all the Rear tooth shapes is that generated

b y an involute curve. Although it ma y not he practical to generate a

spiral bevel gear tooth surface with a rotating cutter in the shape of

an involute curve, it is nevertheless informative, as a first illustra-

tion, to examine the surface of revolution formed by an involut curve.

Consider the involu_e curve C as shown in Figure 21. It is con-

venient to think of C as being generated by "unwrapping" the tangent

to the circle. Then the radius of curvature o of C at a t ypical point

P is simple the length TP. It is easily seen that o is one of the prin-
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cipal radii of curvature of the surface of revolution which is obtained

by revolving C about the Z-axis in Figure 3.

To see this, consider using Equations (15) and (76) of the fore-

going analysis. These equations require knowledge of the radial dis-

tance r as a function of the angle (See Figure 3.). 	 To obtain r(:)

let O be that point on the Z-axis which is at the same elevation as 0 
the center of the circle generating C. Then r ma y be expressed as:

r - n	 OP	 (81)r

The vector OP may be written as (See Figure 21.):

OP + OO c + 0 T + TP	 (82)

OP - bn r + an c - a^ c n t 	(83)

where 5 is the distance OO c , a is the circle radius and p c is the

complement of	 In terms of Or and Li z , OP may be written as:

OP	 b - a cos. + a(7 /2 - C)sin^ n r + a sine + a(7/2 -(,)cos(, n 

(84)

Hence, from Equation (81) r and dr/d(, become:

r = b - a cos(, + a(7/2 -:)sin,;

and

dr/d(, - a(7/2 -(,) cos(,

Therefore, from Equations (75) and (76) the principal radii of curva-

ture of the generated surface of revolution are:

R
ma x 

= b csc;; - a cot(, + a(s/2	 (87)

and

Rmin	
a(n/2 -(,)	 (88)

(85)

(86)
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An examination of Figure 21. show y that these expressions can he

interpreted simply as:

R
ma x 

M N P1	 (89)

and

R
min 

= I TP I 	 (90)

Finally, it is interesting to observe that if the same analysis is

carried out for an involute curve generated in the opposite direction as

in Figure 22. the corresponding surface of revolution has the principal

radii of curvature:

R	 M ^QPj(91)
ma x

and

Rmin t JTP j	 (92)

These results are, of course, identical to Equations (89) and (90).

However, in this case, tlie centers of curvature are on opposite sides of

the surface.

2) Straight Line Cutter Profile. Consider next a rotating gear tooth

cutter with a straight line profile which forms a gear tooth surface with

a straight line pro f ile in the normal plane as shown in Figures 23. and

24. Viewed as a surtace of revolution, this is a cone. Its defining

equation inav be expressed as:

z = (r - R ) cot9	 (93)
c

where is the pressure angle as shown in Figure 24.and R C is the cutter

radius at the base of the tooth. From this expression dz/dr and d`'z/dr--

are readil y obtained as:

dz/dr = cote = tamp
	

(94)

I
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Figure 21. An Involute Curve as a Generator for a Surface of Revolution.
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Figure 22. A Second Involute Curve as a Generator for a Surface of Revolution.
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Figure 23. Gear and Cutter Centers and Edge View of Normal and

Transverse Planes.
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Figure 24. True View of Normal Plane Showing Crown Tooth Profile.
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and

d-z/dr- - 0
	

(45)

where : is the complement of • as shown in Figure -4. Hence, Equations

(79) and (80) give the maximum and minimum surface radii of curvature as:

R	 -	 (96)
max

and

Rmin - jr/cosdj	 (97)

These results might also have been obtained b y recalling that a cone is

generated by straight line elements (hence, infinite radius of curvature)

and that the minimum radius of curvature is the distance QP as shown in

Figure 24.

3) Hyperbolic Cutter Profile. Finallv. consider a rntating cutter whilch

generates, for a crown gear, a straight line meshing profile. Spec-

ifically, consider Figure 25. which shows the base plane of a crown gear

where 0 is the gear center and C (with X, Y coordinates H, V) is the

center of the rotating cutter. Let Pm be the midpoint at the base of the

gear tooth surface .tnd let	 be the spiral angle.

Imagine the transverse plane T normal to the X-axis at P m . Since

0 is the gear center, the X-axis is a radial line and the intersection

of -- and the gear tooth surface defines the transverse meshing profile

shown in Figure 26. If 6 is the pressure angle, the equation of the

inclined tooth profile is simply

z = v cot- = kv
	

(98)

where z and y refer to coordinates along the Z and Y axis and k is defined

as cot:. Relative to the X, Y, 2 axes of Figure 25. Equation (98)

becomes

z = z = k(y + V)
	

(99)
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Figure 25. Crown Gear Base Plane.
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Figure 26. View of Transverse Plane n Showing Crown Tooth Profile.
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In terms of x, v, and z, the profile of the cutter radius can be

expressed in general as:

z - f (r) - f([x' + v` ])	 (1i10)

The form of f, which defines the tooth surface of revolution, may be

determined by observing that the intersection of n and the revolution

surface of the cutter, must coincide with the tooth profile of Figure 26

If R  is the distance between C and P m , then the X coordinate of I' m is

simply R,c sinW. Hence, by letting x - R c sin. and b y matching Equations (99)

and (100), the following relation is obtained

f([R` sin 	 + y Z ] 1') - k(y + V)	 (101)
c

Let r be defined as

r - [R' s in 2,y +1021 )Y` ]	 ( 

Then in terms of r, y becomes

y - [r` - R2 sin2 v]	 ( 103)

Hence, by Equation (101) f is determined as:

f (r) - k k V - (r" - R2 sin` ,, ))] )	 ( 104)

The maximum and minimum radii of curvature may now be determined

directl y b y substitution into Equations (79) and (80), or alternatively,

into Equations (75) and (76). To :o this note that df/dr is

df/dr - -tan,D = -kr/ [r` - R, sin` 4)] 	 ( 105)

51
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Then r and dr/dW become

r - R c sin., tanO (tan` : - k' 1 1 '	 (luh)

and

dr/d2 - -k' R sin. sec' :/ (tan' 2 - k-1	 ( 10; )
C

Hence, Rmax and 
Rmin 

become

R	 -	 k'R sine sec 3 ,*/ (tan`	 - k' ] ^'	 ! 108)
and x	 c

and

Rmin - ; R
c siny sec,: / ( tan' : - k` ] ^i	 ( 109 )

These expressions may be written in more convenient form by

expressing 2 in terms of z. That is, by identifvinR z with f in

Equation (104), it is readil seen that

r` - `Z` y in'	 + ( (kV - z) /k]'
	

(110)
c

Then, by Equation (105) sec 2 C becomes

sec'	 1 + tan`W - 1 + k- + [k/(kV - z)]`k`R- sin ` W	 (111)
c

Hence, Rmax and Rmin 
may be written as

K	 = i((kV - z)/k] (1 +k-) + k-R , sin-,i 3/`' /kR sinW	 (112)
max	 c	 c

and

Rmin	
l + k-)((kV - z)/k]` + k`R, sin`'W}^/k 	 (113)
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V.	 1)1SCUSSION

Perhaps the most interesting of the results are the curves of

Figure 12. showing the pressure angle variation in the transverse planes

for the different cutter profile shapes. 	 In each case the variation is

similar resulting in a pressure angle change of approximately )o or 15

from heel to toe. For conical gears this change in pressure angle wculd

be enhanced by the factor (1/sina) where a is the half-cone angle (1).

Tile effects of this pressure angle change on the gear kinematics,

stress, snd wear are unknown, but they could be significant.

The question arises as to whether it would be possible to adjust

the cutter profile f(r) so that the transverse plane pressure angle would 	 r

be independent or r, the radial position on the gear. An examination of

Equation (22) shows that f is not an explicit function of x nor y.

This means it is not possible to adjust f to make r/''(r)v a cun^;tant.

Therefore, the pressure angle changes exibited in Figure 12. will be

similar for all circular cut gears regardless of the cutter profile.

The expressions for the radii of ct,-vature of a surface of revolu-

tion (Equations (75), (76), (77), and 08)) are applicable with circular

cut crown gear surfaces of any profile. '''he involute profile was used as

an example because of its simplicity and because of its interesting

results. Also, the straight line crown profile in the transverse plane,

when considered in the radial plane of the cutter, that is, the normal

plane, generates a hyperboloid. Although thi,, is a surface of revolution,

it is also a "ruled surface" since it can be considered as generated by

a one parameter family of lines. Equations (112) and (99) show that the

maximum radii of curvature occurs when z a kv or when y = 0, that is,

at the pitch surface. Similarly, Equation (113) shows that the minimum

radii of curvature occurs at the greatest elevation above the pitch sur-

face. The implications of these results in stress, lubrication, and wear

as well as the comparison with theoretical gears needs further investiga-

tion.
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APPEND I X	 OF FOOk QUALITY

1.	 Radius of Curvature of a Logatithmic Spiral

The radius of curvature of a curve can be expressed in the form (10]

s	 do/d" i / (dp/d,,)(d'p/d"')	 (A1)

where p is the position vector to a typical point on the curve and 	 is

a parameter defining the locus of the points on the curve. For the plan

tooth centerline in the form of the logarithmic spiral of Equation (7),

p may be expressed as

e - rn - RmeK 
ene	

(A2)
Y

where n is a radial unit vector.	 If n,. is a transverse unit vector, it
r	 7

is easily seer, that (1v]:

cin r /dr - Li c;	 and	 dp;4/c'	 -nr	 (A3)

:hen, by substituting from Equation (A2) into (Al) and by using Equation

(M),	 becomes:

G	 [r= + (dr/d9) 2 1 112 / [2(dr/d O) + r2 - rd`r/d A2 ]	 (A4)

Finally, by letting r by R
m 
ek6 and by simplifying, o becomes:

- r( 1 + K `)^	 (A4)

hvperboloid--A Surface of Revolution

	Aa hvperboloid is a "ruled" surface of revolution [11].	 (That is,

it can be developed by straight line elements.) The equation of an

hvperboloid is:

z`' = r 2 - I. 	 z = t(r`	 ;11

	

- 1) 	 (A5)

where z is the axial coordinate and r is the radial coordinate.
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Equations (431 and 04) may be put into the form of Equation (A5)
b y the following substitution: Let

= r/R sine
c	 m

K:1 - [V + (TO/2)]cute

K` - [-V + (TO/2)]cote

(A6)
C	 Rcsinwmcotd

Z 1 - ( Z - K1)/^

Z, - (Z - K2)1;

Then, by substituting the parameters defined by Equation (A6), Equations

(43) and (44) take the form:

zi

and
W)

(A8)
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