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INTRODUCTION

[his report summarizes results of recent geometrical studies ot
circular-cut sviral bevel gear teeth. The:te studies have been stimu-
lated by interest in determining the effects of slight profile changes
on the kinematics, noise, stress analysis, wear, and life of spiral bevel
gears. This int2rest has been stimulated by a desire to improve operating
and maintenance procedures in high performance transmissions of helicop-
ters and other aircraft. References [l1-6]* are examples of approaches
taken to develop a broader understanding of the geometrical character-
istics of spiral bevel and hypoid gears. It is believed that a quantita-
tive understanding of the geometrical characteristics is fundamental to

anzlyses of the above mentioned physical phenomena of these gears.

Spiral bevel gears are used in high performance transmissions be-
cause their curved teeth provide for a smocther and quieter operation
than straight bevel gear teeth. Also, the curved teeth provide greater
bending resistance. Figure 1. contains a photo of a spiral bevel gear

and its pinion.

These gears are called ''spiral'" bevel gears since the theoretical
centerline of the gear tooth is a logarithmic spiral [7]. A logarithmic
spiral has the advantage of providing equal angles between the tooth
centerline and radial lines at all points along the centerline. This
in turn provides for uniform gecmetrical characteristics of the tooth
profile in the transverse planes of the gears--that is, the planes nor-
mal to the radial pitch lines of the gear. However, the disadvantages
of logarithmic spiral teeth are that they are difficult to fabricate
and the tooth surface itself is often considered to be too "flat" to
incorporate the advantages of curved teeth [8]. Therefore, most gear

manufacturers have been cucting spiral bevel gears with circular cutters.

* Numbers in brackets refer to References at the end of the report.




In leed, probably more than 90% ot the spiral bevel gears currently i(n

use have been made with a circular cutter.

The advantages of circular cutters is that they are relatively
easy to use in manufacturing processes and through varying the cutter
radius and the position of the cutter center, a variety of toothforms
can be produced. Also, for a carefully chosen cutter setting and cutter
radius a circular arc can very nearly approximate a logarithmic spiral [7].
A disadvantage of circular cutters is that the uniform tooth profile in

the transverse plane is lost, leading to distortions along the centerline.

The analysis presented in this report concentrates on crown gears.
A crown gear (sometimes called a 'crown rack'') is a flat gear and is
analogous to a rack for spur gears. Many spiral bevel gears have ipex
angles which are nearly 90° and they are thus close to being crown gears

(See Figure 1.).

Figure 2. depicts a crown gear together with commonly used planes
associated with the g:ar surfaces. The pitch plane is the plane of the
gear itself. The axial planes, con:aining the axis of tne gear, are
perpendicular to the pitch plane. The transverse planes are perpen-
dicular to both the pitch and axial planes. The transverse plancs are
thus perpendicular to the radial pitch lines. The normal planes, con-
taining the cutter center, are perp>ndicular to the pitch plane as shown

in Figure 2.

A transverse plane is customarily used in the study of straight
tooth bevel gears, while a normal plane is often used in the study of
spiral bevel gears [9]. A reason for this difterence is that for smooth
spiral bevel tooth surfaces the contact forces between mating teeth are
transmitted in the normal planes. However, if friction is present the
resulting force vector is rotated out of the normal plane and it becomes
more nearly parallel to the transverse plane. Therefore, a major portion
of t' 2 anzlysis of this report--particularly that dealing with pressure

angles--is developed in a transverse plane.
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The report itself is divided into five parts with the first part
providing some preliminary analysis useful in the sequel. The second
part discusses tooth profile changes in the transverse planes along
the tooth centerline. The cutter profile shape needed to obtain a
straight line tooth profile in the transverse plane is developed in the
third part. The fourth part of the report presents a procedure for find-
ing the radii of curvature of circular-cut crown gear teeth. The radii
of curvature are useful parameters in the study of contact stresses,
lubrication, wear, and life of the gears. Specific results are presented
for straight, involute, and hyperbolic cutter profiles. A discussion and

concluding remarks are presented in the final part.
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SYMBOLS

Cutter center, curve defining a surface of revolution.
Surface base vectors.

Determinant of B1j-

Metric tensor coefficients.

Fundamental vector defined by Equation (51).

Second fundamental tensor defined by Equation (52).
Horizontal and vertical cutter settings.

Mean curvature

Cotangent of pressure angle.

Gaussian curvature

A unit vector normal to a surface.

Radial unit vector.

Unit vectors parallel to X,Y,Z.

Transverse unit vector.

Normal line to a surface of revolution.

Gear center.

Position vector to a typical point on a curve.

Typical point on the gear centerline, or on the gear surface.

Midpoint on tooth centerline.
Radial coordinate from O.
Radial coordinate from C.
Cutter radius.

Inner gear radius.

Mean radial distance.

Outer gear radius.
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max’

min

Maximum and minimum suriace radii ot curvature.

A genfral surface.

Transverse tooth thickness in the pitch plane.

Tangent line to C, Tangent point.

Surface defining parameters.

Cartesian coordinates relative to the X,Y,Z, coordinate system.
Cartesian coordinates relative to the k.?.z coordinate system.

Cartesian coordinates relative to the i.§.2 coordiante system,

Coordinate axes with origin at 0 and with the X-Y plane

coincident with the pitch plane.

Coordinate axes with origin at C and with the X-Y plane
coincident with the pitch plane.

Cutcer inclination

Angle OPC in Figure 4.

Transverse coordinate, Pressure angle.

Cotangent of the spiral angle.

Coordinate axes of Figure 11.
Transverse plane.

Radius cf curvature.

Transverse angle, Angle between N and the x-axis.
Mid-transverse angle.

Spiral angle, Inclination angle.

Mid-spiral angle.
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I. PRELIMINARY CONSIDERATIONS FOOR QUALITY

1. Configuration

Figure 3. shows a top viev of some of the geometrical features of
a circular-cut crown -2ar, which will be useful in the sequel. Specif-
ically, 0 is the gear center or ''gear apex'" and C is the circular cutter
center with a cutter radius R, in the pitch (X-Y) plane. 7he spiral
angle v is the angle between a radial line through 0O and the tooth center-
line. The mid-spiral angle Yy shown in Figure 2., is the angle between
the tooth centerline and the radial line passing through the midpoint of
the tooth centerline (the X-axis). Finally, Figure 2. has two sets of
coordinate axes X,Y,Z aud i,?,i with origins at O and C respectively.
The coordianates are then related by the simple expressions:

x=x-H, y=y-V, 2=2 (1)
where H and V are the horizontal and vertical cutter center settings.

2. Spiral Angles

The spiral angle y varies along the centerline of the tooth. For
example, Figure 4. shows a series of radial lines intersecting the tooth

centerline. It is easily seen that the spiral angles are all distinct,

that is,
vi#dv A Fust o (2)

Figure 4. also shows tranverse lines (edge views of transverse planes)

intersecting the tooth centerline aud forming ''transverse angles' ¢

v

which are complements of the spiral angles. The transverse angles are

also distinct, that is,

b1 * o2

i 4

# -Zm + $3 . Py (3)
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Figure 4 . A Tooth Centerline, Radial Line, and Spiral Angles.
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Interestingly, if the tooth centerline is a logarithmic spiral, the

spiral angles are all equal. That 1is,

ORICINAL PACE |
~ FAGE |S
OF POOP CUALITY (4)

Similarly, t%e transverse angles ar2 also all equal ftor a logaritnmic

spiral tootn centerline. That is,

1 = ¢ = ¢ = ¢y = @, (D)

3. Logarithmic Spiral and Circular Arc

The property described by Equations (4) and (3) is an attractive
feature of logarithmic spiral tooth centerlines. Indeed, for such a
centerline the tooth profiles, obtained by the intersection of the
tooth surface and the transverse planes, are all similar.

A logarithmic spiral has an equation of the form

ol

r = Rme‘ (6)

where r and # are the radial and transverse (polar) coordinates of a
typical pecint P on the curve. For a logarithmic spiral tooth centerline,
R, is the distance from O to Pm, the midpoint on the tooth centerline,

and « is the contangent of the spiral angle. That is,
« = coty (7

(Equation (7) follows from Equation (6) by noting that dr/ds = «r ard
that when ? = 0 the slope is: tanv = tany_ = rdé/dr.)

Buckingham (7] has shown that there is very little difference be-
tween a logarithmic spiral tooth centerline and a circular arc if the
racdius Rc of the circular arc, is the same as the radius of curvature,
at the midpoint P, of the logarithmic spiral. It is easily seen (See
Section 1. of the APPENDIX) that the radius of curvature of a logarithmic

spiral of the form of Equation (6) is:

«l
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g = 7(l +x)
where the second equality follows from using Equation (7). Hence,

a nearly coincident circle is obtained by letting R, be:
R, ® Rm/sinwm (9)

From Figure 3. the horizontal and vertical cutter settings are then

seen to be:

He R, - Rcsinwm = 0 (10)
and

V = R.cosyp = Rmcotwm (11)

For a typical mid-spiral angle of 30°, Equations (9) and (10) show
that the cutter radius would be twice the mean gear radius and that the
cutter center wou.d be on the Y-axis. This is sometimes considered to
be impractical for “abrication [7]. Moreover, the tooth shape is often
deemed to be '"too flat" [8). Nevertheless, for a gear with a mean radius
of 7.0 in. (177.8 mm) Buckingham has shown (See also, Equation (l4) below)
that the difference in spiral angles between the circular arc and the
logarithmic spiral centerline at the heel and toe are less than one-
half of one degree. A computer plot comparing a circular arc with a
logarithmic spiral tooth centerline for a more realistic cutter setting
and radius is shown in Figure 5. In this figure the mean radius R is
again 7.0 in. (177.8 mm) and the midspiral angle is 30°, but the cutter
radius is reduced to 6.0 in. (152.4 mm). Equations (10) and (ll) then
give the horizontal and verf.ical cutter settings to be: H = 4.0 in.
(101.6 mm) and V - 3V/3 in. (132.98 mm). In this case, the spiral angles
differ by approximately 6° at the heel and toe.

4, Variation of the Spiral Angle Along a Circular-Cut Tooth Centerline

It is helpful to develop an expression for the change in the spiral
angle along a circular arc tooth centerline. Such an expression is
easily obtained from Figure 6. which shows an enlarged (but not to scale)
view of the circular arc tooth. Then, using the law of cosines with

14
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triangle OPC leads immediately to the expression:
(0C)2 = (OP)® + (CP)2 - 2(0OP)(CP)cosy (12)

By recognizing that: cosy = siny , (0C)? = H® + V¢, (OP)? = r< , and
that (CP)? = Rg. Equation (12) may be rewritten in the form:

B + V2 = 2 + R - 2rR siny
or as

siny = (r¢ + Ri - K - VZ)/(ZrRC) (13)

Finally, by noting in Figure 6. that H = Rm - Rcsinwm and that V = Rccoswm
(See Equations (10) and (11)), Equation (13) becomes*:

o (2 - B2
siny (r Rm + 2RmRCsinwm)/(2ch) (13)

*This expression is seen to be identical to that recorded by Baxter [9].

15



I1. ANALYSIS OF TOCTH PROFILE CHANGES BETWEEN TRANSVERSE PLANES

l. Ana'ytical Development

fonsider again the pitch plane of Figure 3. and 6. R, is the "'mean
cutter radius." That is, R. is the distance from C to the tooth surface
in the pitch plane. The cutter radius r for other points on the tooth
surface is a function of the elevation z of those points above or below

the pitch plane. For example, for an "insi .e" tooth surface r might be

expressed as:
£ =R, + F(2) (15)
where F(z) describes the cutter geometrvy. In addiiton to X,Y and i,?.

let i,? be a third ccordinate system with origin at the cutter center C

and with X parallel to OP as shown in Figure7., where P is a typical

»

point along the tooth centerline. Then the angle between X,? and i,?

is £, the small angle between OP and the X axis.

Equation (15) provides a relationship between the cutter radius r
and the elevation z of a point on the tooth surface. By solving for z

the relationship may be expressed in the form:
z = f(r) (16)

The cutter profile, described by the function F(z) of Equation (15), is
thus also Jescribed by the function f(r) in Equation (16). However, in
Equation (1l6) the ensuing tooth surface is readily seen to be a surface
of revolution. Also, Equation (16) may be viewed as providing as a des-

cription of the tooth profile in the normal plane.

ORIGINAL PAGE 18

16



Figure 7.

Coordinate Systems in the Pitch Plane
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The cutter radius r may be expressed in terms ot the coordinates x,&
and x,vy in the form:

Li " 1

ro= (xF 4 y) e (x4 y)? (17)
Hence, by comparing Equations (16) and (17) z may be considered to be a
function of x and v or of x and ;. 4 i, or x, has a constant value,
Eauation (16) provides a description of the tooth profile in a transverse
plane. For example, if x = R.siny, the tooth profile in the mid-
transverse plane is

z = £([R2stny_ + §21%) = g(3, ¥_) (18)

c m BLYy ¥

That is the elevation of a point on the tooth surface in the mid-trans-
verse plane depends upor y. For a general transverse plane, Equation (18)

may be expressed as:
26102 821% :
z = f([Risin®y  + y°]%) = g(y, ) (19)

Thus, the tooth profile in a general transverse plane depends upon the
spiral angle ¥ which in turn is a function of the radial distance r,
through Equation (14).

Equation (19) can be used to study tooth profile changes between the
transverse planes. For example, a comparison of g(;,w) with g(§,vm) pro-
vides a measure of the modification of the transverse profile from the
profile in the mid-transverse plane. Equation (19) is also useful for
determining the pressure angle changes between the transverse planes.

To see this, consider the profile in the transverse plane depicted in

Figure 8. Let & be the pressure angle and let 6_ be its complement. Then,

c
for the inside tooth surface tanf,. is:

tans, = 3z/5(-y) = -(dz/dr) (5t/3y) (20)
or

tans = -f'(r)y/r (21)

18
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Figure 9.

Straight-Line Tooth Profile in the Normal Plane
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Figure 10. Circular Tooth Profile in the Normal Plane
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But since tan®, = cot”, the pressure angle “ (in the transverse plane) is

h = ~tan * r/f'(r)y (22)

.

Equation (22) may be viewed as an algorithm which provides the pres-
sure angle as a function of the radial distance r from the gear center.

Moreover, it is a valid algorithm for any cutter profile.

2. Examples

Equation (22) was used to study the pre2ssure angle changes through
the transverse planes along the inside tooth surface, for three cutter

profile shapes: 1) a straight line profile, 2) a circular profile, and

3) an involute profile.

1) Straight Line Cutter Profile. Figure 9. depicts a straight line

tooth profile in the normal plane. In this case Equation (16) takes the

form:
z = f(r) - (tana)(r - R.) (23)

where Rc is the mean cutter radius and a is the cutter inclination. By

substituting into Equation (22) we obtain the transverse plane pressure

angle:
- R.9 ‘1
5 = tan™! (cota) 1 + (R./y)?sin?y (24)

where we have replaced r by (Risinzw + ;2)% as in Equation (18). The
spiral angle v may be expressed in terms of the radial distance r by
either Equation (13) or (1l4). Hence, 6 is a function of r.

Figure 12. shows a computer drawn graph of 8 at the pitch plane
level (that is, with y = -R.cosy) for R, = 6.0 in. (15.24 cm), Ry =
7.0 in. (17.78 cm), Yy = 70°, and o = 70.

21
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2) Circuvlar Cutter Profile. Figure 10. depicts a circular tooth pro-

file in the norwal plane. In this case the equation of the profile may

be expressed as:

(z = b) + (r - a)- = p* (25)
where a, b, and p are the circle center coordinates and the circle
radius as shown in Figure 10. If a {s the cutter inclination at the
mean cutter radius, then a and b may be expressed as:

a = RC + psina and b = -pcosa (26)
Hence, Equation (16) may he expressed in the form:

z = f(r) = -pcosa + [p?- (r - Rc - csina)ilg 7N

Then by substituting 11’0 Equation (22), we obtain the transverse plane

pressure angle:

o R - ¢rsina)?}(R%sin“y + ;2 L
c c
P

- R - csina]§
c

(02 - [(Ristn?y + y?)
5 = tan™!

[(Risin®y + v)

(28)

by

where, as before, we have replaced r by (Résinzu + ;3) 5
Figure 12. u4lso shows a graph of Equation (28) for Rc = 6.0 in.
(15.24 cm), Ry = 7.0 in. (17.78 cm), o = 1.0 in. (2.54 cm), b, 309,

a=70° and y = —Rccosw.

3) Involute Profile. Figure 1l. depicts an involute tooth profile in

the normal plane, together with the generating circle of the involute.
In terms of the £,n coordinate system, the coordinates of a typical
pcint P on the involute curve may be expressed as:

£ = o(sin® - Scos?) (29)
and

n = p(coe? + 8sinh) (30)
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Figure ll. Involute Tootnh Profile in the Normal Plane Together
with the Involute Generating Circle
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where . 1s the radius of the generating circle and = is the pressure
angle in the normal plane. Equations (29) and (30) are parametri-
equations of the prorile with " being the parameter. In the z,r

coordinate system these equations may be written as:

zZ = =ng + o(cost + =ginw) (31)
and

r= R, = @p + o(sint - tcost) (32)
where ,; and n) are the ‘alues of 7 and n when oo (r/2)-a (that is,
o and np are the coordinates of the intersection of the profile and the
r-axis).

In this case, the parametric Equacions (31) and (32) replace

Equation (16). In Equation (22), f'(r) becomes

£'(r)= dz/dr = (dz/d8)/(dr/d%) = cot® (3%)
Hence, the pressure anj;le in the transverse plane is:
H o= tan'l[tane(rzsin‘y 4 }‘)%/91 (34)

b

where, as before, we have replaced r by (Résin;y + ;:) , and where in

this case, v is related to = through Equation (32) leading to the

expression:

A . - . « 24
| y = --1[RC - £p + p(sinf - Hcosu)) - Rcsin‘v}1 (35)

Finally, Figure 12. also shows a graph of Equation (34) for R =
C

6.0 in. (15.24 cm), Ry = 7.0 in. (17.78 cm), = 7.0 in. (17.78 cm),
b 30, = = 20°, and ; given by Equation (35).

24
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11I. DETERMINATION OF CUTTER PROFILE FOR A STRAIGHT LINE TOOTH
PROFILE IN THE TRANSVERSE PLANE

l. Analysis

If a crown gear has a straight line profile in the transverse
plane, then it is analogous to the involute rack of spur gears. Such
a gear is sometimes called a "crown rack" [7]. Figure 13. shows the
pitch plane of a crown gear together with a typical tooth centerline and
the coordinate axes. Imagine a transverse plane cutting the tooth sur-
face and passing through the midpoint of the tooth centerline as shown.
Then, if the crown gear is to simulate a crown rack at its midpoint,
the tooth profile in the mid-transverse plane might appear as shown in
Figure 14.

The equations of the left and right sides of the tooth surface in

this mid-transverse plane are then of the form:

z = k(y + tg/2) (36)
and

z = -k(y - tg/2) (37)

where ty is the transverse tooth thickness in the pitch plane, and k is

the cotangent of the pressure angle %, that is,
k = cotw (38)

The equation of the tooth surface of revolution generated by the

circular cutter can be expressed in the torm:
z = f(r) (39)
where f, the radial distance from the cutter center C, is

r= (x° + 93)* (40)

26
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Mid-Transverse P.ane

Figure 13. Pitch Plane of Circular Cut Crown Gear.
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Figure l4. Tooth Profile of Crown Rack in the Mid Transverse Plane.
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The equation of the mid-transverse cutting plane as shown in Figure

13. 1is simple:
x = R sinv (41)
c m

When x has the value Rcsinwm, f(r) as determined by Equations (40) and
(41), has the form of Equations (36) or (37) for a straight line profile
in the mid-transverse plane. By substituting from Equation (41) into
(40) and by solving for y leads to:

s _ a3 2 . 2. 1M
y (r Rcsin wm) (42)

where the negative root is taken since y is negative (See Figure 14.).

Hence, from Equations (1), (36), (37), (38), (39), f(r) takes the form:

£(r) = [V + (tg/2) - (r? - Résinzwm)%]cote (43)
or
f(r) = [V + (tg/2) + (r¢ - Rgsinzwm);’]coce (44)

where Equation (43) corresponds to the left or "outside" tooth sur-
face and Equation (44) corresponds to the right or 'inside" tooth sur-
face. It is easily shown that these surfaces of revolution are hyper-

boloids. (See Section 2. of the Appendix.)

2. Numerical Results

In Equation (43) and (44), if x = Rcsinwm in r, then f(r) becomes
[V + (tg/2) + ylcots or [-V + (tg/2) - ylcot6 depending upon whether
f(r) describes an '"outside'" or "inside' tooth surface. As expected,
these expressions match those of the straight line profiles in the mid-
transverse plane.) If however, in Equations (43) and (44), X = R.siny,
that is, if y # Yms then the transverse tooth profiles are no longer

straight but instead they are described by the expressions:

29



z= V4 (t0/2) - (R°sin“v + vy - R<sin"y ) *Jcot# (45)
c C m

and

: i 1
z = [-V + (tg/2) + (R;sin‘ Y + y© = R;‘-Siu'\vn)alcot’f (46)

Equations (45) and (46) may be used to obtain a numerical analysis
of the transverse tooth profile change along the centerline. That is,
by using Equation (13) or Equation (14) the variation of z with §
(transverse distance) and with r (radial distance) is determined if the
cutter settings and cutter radius are known.

Such numerical calculations were performed for a crown gear with a
cutter radius R, of 6.0 in. (152.4 mm) horizontal and vertical cutter
settings, H and V of 4.0 in. (101.6 mm) and 3V3 in. (131.98 mm), and
mid-spiral angle Y%, of 30°, and a pressure angle Ym at the mid transverse
plane of 20°., Also, the inner and outer gear radii were taken as 6.0 in.
(152.4 mm) and 8.0 in. (203.2 mm). (The data are also the same as those
used in the gear depicted in Figure 5.)

These calculations were performed for the left or "outside" tooth
surface. The results are siown in Figures 15. to 18. where the pressure
angle is plotted as a function of the radial distance, the vertical

coordinate, and the transverse coordinate.
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[V. RADII OF CURVATURE OF CIRCULAR-CUT TCOTH SURFACES OF POOR QUALITY

Knowledge of the principal radii of curvature of a gear tooth
surface is a point of departure for the study of contact stresses, lub-
rication, wear, fatigue, and life. In the following paragraphs proce-
dures for finding these radii of curvature are provided for circular-

cut spiral bevel crown gears.

l. Differential Geometry Formulae

Since the principal radii of curvature of a gear tooth surface at
a point are among the major factors affecting the lubrication, surface
fatigue, contact stress, wear and life of the gear, it is helpful to
summarize the basic formulae from elementary differential geometry which
may be used to determine thse radii of curvature.

1 and u?

Suppose a surface S is defined by a pair of parameters u
through the vector parametric equation P = E(ul;u*) where P is the position
vector of a typical point P on S. Then base vectors gi(i = ],2) tangent

to S at P are given by

ey = J?/Oui (47)
A surface metric tensor gij(i,j - 1,2) may then be defined as

Biy T €1 " € (48
Let g be the determinant of Jij’ Then it is easily shown that

g = le1 x ez (49)

Hence, a unit vector n normal to S is then

n=e; xeg (50)

Let the fundamental vector hy(i = 1,2) be defined as

h, = n/3ut (51)

w
N



Then, the second fundamental tensor hij(i.J = |,2) is defined as
hij - -bi . ej (52)

Letting h be the determinant of hij’ the Gaussian curvature K is detfined as

K = h/g (53)
Let kij(i,j = ],2) be defined as

L el
kij Biahoy (54)

where gI; is the inverse of 814- (Regarding notation, repeated indices

represent a sum (that is, from 1 to 2) over that index.) The mean

curvature J is then defined as

Jek,, (55)

Finally, maximum and minimum radii of curvature Rmax and Rmin are then

easily calculated in terms of J and K as:

& 2 2 _ '
R oo Ro=2/(0% & (3% - 4K)7) (56)

2. Surface of Revolution

The tooth surface of a circular cut spiral bevel crown gear is a
"surface of revolution." That is, it can be developed by rotating a
curve in the shape of the cutter profile, about a fixed axis. Consider,
for example, the curve C shown in Figure 19. 1If C is rotated about the
Z-axis, it generates a surface of revolution S, a portion of which can be
considered as the surface of a circular cut spiral bevel crown gear. Let

C be defined by the expression:
RGINAL PAGE iS5
C UALITY
z = £(r) OF POOR Q (57)
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Figure 19. A Surface of Revolution About the Z-Axis

37



ORIGINAL FAGE 19
OF POOR QUALITY
where r is the distance from the Z-axis to a typical point P on C,
Let 9 be the angle between the Z-axis and the normal line N of S at P,

Then r and ¢ are dependent upon each other. That is,
r = r(¢) (58)

Let y be the inclination angle of the tangent line T to C at P as shown

in Figure 19. Then ¥, ¢, and the slope of T are related as follows:
dz/dr = df/dr = tany = tan(m - y) = -tany (59)

Consider a top view of S as shown in Figure 20. 1In this view P
is seen to lie on a circle of radius r, and on a radial line R which
makes an angle # with the X-axis. Then the position vector P of P rel-

ative to 0, a fixed point on the Z-axis (See Figure 19.) is:
= + = 4
P=zp +rn =rn + f()n, (60)
where n

r and n, are unit vectors parallel to R and the Z-axis. Hence,

in terms »f n

0o Dy, and n,, unit vectors parallel to the X, Y, and Z axes,

P becomes:

Yo
[}
~

cosé n_ + r sinf ny + f(r)gz (61)

Since r = r(¢9), P is a function of ¢ and ¢ . Therefore, it is conven-
ient to let ¢ and 8 be the parameters ul and u? defining S in the para-

metric representation P = ?(ul, u?) of the foregoing differential geometry

formulae.

From Equation (47), the surface base vectors e; and e; become:

Nl (dr/d¢)cosf n_ + (dr/d$)sin8 n, + (df/dr)(dr/d@)gz (62)
and -

e; = e, = -r sinf n + r cos® n, (63)
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Figure 20,

Top View of a Surface of Revolution,
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Then, trom Equation (48) the metric tensor components become:
%y, = 8,, = (dr/do) secs

81“ = g:l = g:'" e g‘:‘/:\ = U

and

r

B22 " Bgg " T
where Equation (59) has been used to simplify the expressions.
from Equation (58) the unit vector n normal to S becomes:

n = sin¢ cosé . * sin¢ siné ny + cos¢ n,

The fundamental vectors hi(i = ¢,5) and the second fundamental
hij(i'J = ¢,6, are then:
h) = b@ = 5n/5¢ = cosy cosv n

+ cos¢ sind n

X y

h = ha = 3n/35 = -sind sinb n + sin¢ cosH n,

hy; = h@ﬂ = -(dr/d9)secd

h1‘ - h;} - h. - hﬁ = (

and

(66)

Hence,

(67)

tensor

- sin¢ n, (68)

(69)

(70)

(72)

From Equations (53) . nd (55) the Gaussian curvature and the mean

curvacure become:

K = (sin¢ cosd)/r(d¢/dr)
and

J = -[(cos9)/(dr/do) - (sin¢)/r)

(73)

(74)
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Finally, using Equation (56) the principal surface radii of curvature
become:
= | | 7

Rmax | (dr/ddo)/cosd| (75)
and

Rmin - :r/uA11®| (76)

These expressions may be expressed in terms of f by using Equation (59).

That is, since

¢ = tan~!(df/dr) (77)
then (d¢/dr) becomes

do/dr = =(d?f/dr<)/[1 + (df/dr)?] (78)

and hence, R and R become:
max n

mi
R = '{1 + (df/dr)°]/ [(d“f/dr‘)cos(tan™'(df/dr))]| (79)
and
R i, = |r/sin(tan™!(df/dr))] (80)
3. Example

1) An Involute Cutter Profile. Perhaps the most fundamental and

theoretically satisfying of all the gear tooth shapes is that generated
by an involute curve. Although it may not be practical to generate a
spiral bevel gear tooth surface with a rotating cutter in the shape of
an involute curve, it is nevertheless informative, as a first illustra-
tion, to examine the surface of revolution formed by an involut curve.
Consider the involu:.e curve C as shown in Figure 21. It is con-

venient to think of C as being generated by "unwrapping' the tangent

to the circle. Then the radius of curvature p of C at a typical point

P is simply the length TP. It is easily seen that p is one of the prin-
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cipal radii of curvature of the surface of revolution which is obtained
by revolving C about the Z-axis in Figure 3.

To see this, consider using Equations (75) and (76) of the fore-
going analysis. These equations require knowledge of the radial dis-
tance r as a function of the angle (See Figure 3.). To obtain r(})
let O be that point on the Z-axis which is at the same elevation as 0

the center of the circle generating C. Then r may be expressed as:
= o (
¥ o, )P (81)
The vector OP may be written as (See Figure 21.):
OP + 00, + O.T + TP (82)

OP = bn_ + an_ - a$ n (83)
Y L B n

CvE

where b is the distance OOC, a 1s the circle radius and ¢. 1s the

complement of ¢. In terms of p, and p,, OP may be written as:

(84)

Hence, from Equation (81) r and dr/d¢ become:

r =b - a cos¢ + a(n/2 -$)sind (85)
and

dr/d¢ = a(n/2 -9) cos¢ (86)
Therefore, from Equations (75) and (76) the principal radii of curva-
ture of the generated surface of revolution are:

R . = b csce = a coty + a(n/2 -¢) (87)
and

R ™ a(mr/2 =¢) (88)

OP = b - acose +a(7/2 - ¢)sind np + 4 sino + a(7/2 -¢)cos¢ n,




e
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An examination of Figure 21. shows that these expressions can be

interpreted simply as:

R = |QP| (89)
and

R = |TP| (90)

Finally, it is interesting to observe that if the same analysis is
carried out for an involute curve generated in the opposite direction as
in Figure 22. the corresponding surface of revolution has the principal

radii of curvature:

- |
R = |QP| (91)

and
= |TP |
Rmin II ' (92)
These results are, of course, identical to Equations (89) and (90).
However, in this case, tilie centers of curvature are on opposite sides of

the surface.

2) Straight Line Cutter Profile. Consider next a rotating gear tooth

cutter with a straight line profile which forms a gear tooth surface with
a straight line profile in the normal plane as shown in Figures 23. and
24, Viewed as a surface of revolution, this is a cone. Its defining

equation may be expressed as:

z = (r - Rc) coth (93)
where ¢ is the pressure angle as shown in Figure 24, and Rc is the cutter
radius at the base of the tooth. From this expression dz/dr and d?z/dr?

are readily obtained as:

dz/dr = cotf = tan¢ (94)



-4
C //n
p :
nZ
r P
n
-r
0 b
Base Circle
)
Q
Figure 21. An Involute Curve as a Generator for a Surface of Revolution.
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Figure 22.

A Second Involute Curve
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Tooth Curvature
Normal Plane

0

.

Gear Center

Crown Gear

Transverse Plane

o

Cutter Center

Figure 23. Gear and Cutter Centers and Edge View of Normal and

Transverse Planes.
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Tooth

Figure 24. True View of Normal Plane Showing Crown Tooth Profile.
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and

d“z/dr- = 0 (95)

where ? is the complement of % as shown in Figure 24. Hence, Equations

(79) and (80) give the maximum and minimum surface radii of curvature as:

Rmax Y (96)
and

= | { Q97
_e | r/cosb | (97)
These results might also have been obtained by recalling that a cone is
generated by straight line elements (hence, infinite radius of curvature)

and that the minimum radius of curvature is the distance QP as shown in
Figure 24.

3) Hyperbolic Cutter Profile. Finally, consider a rotating cutter which

generates, for a crown gear, a straight line meshing profile. Spec-
ifically, consider Figure 25. which shows the base plane of a crown gear
where 0 is the gear center and C (with X, Y coordinates H, V) 1is the
center of the rotating cutter. Let Pm be the midpoint at the base of the
gear tooth surface and let y be the spiral angle.

[magine the transverse plane 7 normal to the X-axis at P_. Since
0 is the gear center, the X-axis is a radial line and the intersection
of 7 and the gear tooth surface defines the transverse meshing profile
shown in Figure 26. 1If 6 is the pressure angle, the equation of the

inclined tooth profile is simply
z =y cott = ky (98)

where z and y refer to coordinates along the Z and Y axis and k is defined
as cot%., Relative to the i, Y, 7 axes of Figure 25. Equation (98)

becomes
z=2=k(y +V) (99)
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Normal Plane
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Transverse Plzne n

Gear Center

Figure 25.

Crown Gear Base Plane.
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Figure 26.

View of Transverse Plane m
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In terms of k, &, and i, the profile of the cutter radius can be
expressed in general as:

z = f(r) = f([x* + &5]5)

(100)

The form of f, which defines the tooth surface of revolution, mav be

determined by observing that the intersection of 7 and the revolution
surface of the cutter, must coincide with the tooth profile of Figure 26,

If RC is the distance between C and Pm’ then the X coordinate of Pm is
simply Rcsinv.

Hence, by letting X = Rcsinv and by matching Equations (99)
and (100), the following relation is obtained

EC[RZ sin?y + 3211 = k(y + V)

(101)
Let r be defined as
- 2 2 ~21%
r = [Rc sin“y + y<] (102)
Then in terms of r, y becomes
y = [r® - Ré sin2w15 (103)
Hence, by Equation (101) f is determined as:
a ~9 ) ’) %
f(r) = KV - [rc - RS sin<y] ) (104)

The maximum and minimum radii of curvature may now be determined

directly by substitution into Equations (79) and (80), or alternatively,
into Equations (75) and (76).

To co this note that df/dr is

df /dr = -tan¢ = -kr/[r¢ - Ré sinzw]Lﬁ

(105)

ol
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Then r and dr/d¢ become

r = R.siny tan¢/[tan“¢ - k;]s

and
: 3/
dr/d¢ = -k“Rcsinv sec ¢/ [tan“¢ - k<] “
Hence, Rmax and Rmin become
™ 3 2 21°/2 |
i = (kR siny sec”¢/[tan“¢ - k*]
max c
and
Rmin = iRcsinw sece /[tan“¢ - kLIH}

These expressions may be written in more convenient form by

expressing ¢ in terms of z. That is, by identifying z with f in

Equation (104), it is readil seen that
r¢ = RS sin“y + [(kV - 2)/k]*
Then, by Equation (105) sec’y becomes
sec“y = 1 + tan“¢ = 1 + k- + [k/(kV - z)]zszé sin‘y

Hence, Rmax and Rmin may be written as

y 2 2 22 2.,1°/2
R N {[(kV = 2)/k]“(]1 +k¢) + k Rc sin<y} /chsinu
and

> 2 2 2n2 2,1
Rmin 1+ k<)[(kV - z)/k]- + k Rc sin“y}*/k

52
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V. DISCUSSION

Perhaps the most interesting of the results are the curves of
Figure 12. showing the pressure angle variation in the transverse planes
for the different cutter profile shapes. In each case the variation is
similar resulting in a pressure angle change of approximately i© or 15%
from heel to toe. For conical gears this change in pressure angle wculd
be enhanced by the factor (1/sina) where a is the half-cone angle [l].

The effects of this pressure angle change on the gear kinematics,
stress, &nd wear are unknown, but they could be significant.

The question arises as to whether it would be possible to adjust
the cutter profile f(r) so that the transverse plane pressure angle would
be independent or r, the radial position on the gear. An examination of
Equation (22) shows that f is not an explicit function of ; nor ;.

This means it is not possible to adjust f to make t/€£'(f)y a constant.
Therefore, the pressure angle changes exibited in Figure 12. will be
similar for all circular cut gears regardless of the cutter profile.

The expressions for the radii of cu-vature of a surface of revolu-
tion (Equations (75), (76), (77), and (/8)) are applicable with circular
cut crown gear surfaces of any profile. The involute profile was used as
an example because of {its simplicity and because of its interesting
resuits. Also, the straight line crown profile in the transverse plane,
when considered in the radial plane of the cutter, that is, the normal
plane, generates a hyperboloid. Although this is a surface of revolution,
it is also a '"'ruled surface' since it can be considered as generated by
a one parameter family of lines. Equations (112) and (99) show that the
maximum radii of curvature occurs when z = kv or when y = 0, that is,
at the pitch surface. Similarly, Equation (113) shows that the minimum
radii of curvature occurs at the greatest elevation above the pitch sur-
face. The implications of these results in stress, lubrication, and wear
as well as the comparison with theoretical gears needs further investiga-

tion.
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APPENDIX OF POOR QUI\LITY

1. Radius of Curvature of a Logarithmic Spiral

The radius of curvature of a curve can be expressed in the form [10]

|

o = ldn/d%| */| (dp/d®) (d“p/db-) | (Al)

where p is the position vector to a typical point on the curve and = is
a parameter defining the locus of the points on the curve. For the plane
tooth centerline in the form of the logarithmic spiral of Equation (7),

p may be expressed as

K €
B B (
p = ro, Rme o, (A2)

where n, is a radial unit vector. If n_ is a transverse unit vector, it

is easily seen that ([10]:
dgr/dr = n, and dn,/¢ -0, (A3)

Then, by substituting from Equation (A2) into (Al) and by using Equation

(A3), © becomes:
.. 2 ?/‘ D ” ) 2
p = [r% + (dr/de)¢] "< /[2(dr/d8)< + rc - rd“r/d6<] (A4)
: k6
Finally, by lettinz r by Rme and by simplifying, © becomes:
b5

o = r(l +x2) (A4)

2. Hynerboloid--A Surface of Revolution

An hvperboloid is a '"ruled" surface of revolution [11]. (That is,
it can be developed by straight line elements.) The equation of an
hyperboloid is:

~ >
z¢ = r- -1 or z = £(r< - 1) (A5)

where z is the axial coordinate and r is the radial coordinate.
a0



Equations (43, and (44) may be put into the form of Equation (AS5)

by the following substitution: Let
= r/R siny
¢ m

k1 = [V + (Ty/2)]cots

x
[}

5 [=V + (Tg/2)]cots

(A6)

vy
"

R siny coté6
c m

z) = (z - x1)/¢
z; = (z - x3)/¢

Then, by substituting the parameters defined by Equation (A6), Equations
(43) and (44) take the form:

b

zZ) = ~-(E€° - 1) (A7)
and

N 1.
z, = (82 - 1* (A8)
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