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INTRODUCTION 

The concept of using birefringent fiber-reinforced materials as a 

tool for the stress analysis of composites has been discussed by various 

investigators [1-5]. The hoop stresses around an elliptical hole in a 

tensile strip were studied by Prabhakaran and Dally [6] using the bire-

fringent fiber-reinforced materials. Residual stresses in filament­

wound rings were studied by Knight [7]. Prabhakaran [8] used the phe-

nomenon to investigate stresses on the inner and outer boundaries of an 

orthotropic ring. Several other problems which have been examined with 

the technique were discussed by Daniel [9]. The shear difference method 

was introduced by Knight and Pih [10] as a way to separate the stresses 

in a tensile strip with a central circular hole. They studied the 

stresses at the net section and at several other locations and found 

good agreement with finite element results. Stresses in an individual 

lamina in a [±30J s tensile strip were measured by Voloshin [llJ using a 

reflective coating between lamina. Recently, the isochromatic fringe 

patterns and the shear-out stresses in a pin-loaded connector made of 

birefringent fiber-reinforced material were presented by Prabhakaran 

[12]. 

This paper presents further photoelastic results regarding the 

stresses in a pin-loaded fiber-reinforced connector. The connector is a 

birefringent fiber-reinforced composite with a lay-up of 

[04/+454/-454/904]s' a quasi-isotropic configuration. This paper dis­

cusses the details of the connector and how it was loaded. The contact 

stresses between the pin and the hole edge, as well as the hoop stres-

ses, net-section stresses, and other pertinent stresses, were computed 

using an overdetermined finite-difference representation of the plane-



stress equilibrium equations. This method of stress separation is dis­

cussed and experimentally computed stresses presented. The results are 

compared with the results of other investigators. 

The work reported herein was financially supported by the Struc­

tures Laboratory USARTL (AVRADCOM). The grant monitor was Donald J. 

Baker, Structures Laboratory, USARTL (AVRADCOM). 

MODEL AND LOADING 

Figure 1 shows the ~imensions of the connector and the method of 

transferring loads into it. The connector was 203 mm (8.00 in.) wide 

and was made from a flat sheet of material fabricated by IITRI [13]. 

The material was glass-epoxy and was 2.29 mm (0.090 in.) thick. The fi­

ber volume fraction of the material was approximately 50 percent. A 

complete description of the fiber and epoxy constituents, and the fabri­

cation technique can be found in [13]. The fibers in the quasi-isotrop­

ic lay-up were aligned with the long direction of the connector, the 

width direction, and at ±45° with these directions. The pin loading the 

hole was steel and was 50.8 mm (2.00 in.) in diameter. The pin was a 

clearance fit, requiring a slight amount of finger pressure to push it 

into the hole. It was felt this large a diameter was necessary if the 

fringes, and thus the stresses, around the hole were to be resolved ac­

curately. With the geometry shown, the connector-width to hole-diameter 

ratio, WID, was 4 and the end-distance to hole-diameter ratio, elD, was 

2. 

The prime purpose of the model was to determine stresses at the net 

section and around the lower portions of the hole. No attempts were 

made to react the pin load and still have a full field view of the con-
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nector. The steel yoke and crossbar were 6.35 mm (0.25 in.) thick and 

were joined together with pins. The system was loaded by a deadweight 

load, P, applied through pins at the far ends of the fixture. All pins 

in the loading mechanism were 9.84 mm (0.388 in.) in diameter. Aluminum 

doubler plates 3.17 mm (0.125 in.) thick were used to evenly distribute 

the concentrated load into the connector. The doublers transferred the 

load to the glass-epoxy through 10 small-diameter bolts. 

The glass-epoxy material was cut to size using a diamond blade on a 

circular saw. The large hole in the connector was drilled using an ul­

trasonic core drill. Both the cutting and drilling operations used a 

liquid coolant. Fortunately, neither operation took much time and so 

there was no apparent degradation of the epoxy from the water-based 

coolants. 

Disks, tensile strips, and four-point bend specimens cut from the 

material indicated the material was optically isotropic with a stress­

optic constant, f, of 92.9 kPa/fringe/m (530 psi/fringe/in.). There was 

no evidence of residual birefringence. Young's modulus of the material 

was 23 GPa (3.4 x 106 psi). The ratio of pin modulus to connector modu­

lus was 8.8 : 1, therefore the pin was considered to be rigid. 

The stress-optic laws in a form useful for computing the stresses 

are: 

(1) 

"12 =.q sin(2e) • (2) 

The stresses a1 and a2 are normal stresses in some orthogonal coordinate 

system in the plane of the connector and "12 is the shear stress in that 
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system. In eqs. 1 and 2, neither the 1 axis nor the 2 axis are intended 

to be aligned with any particular direction on the connector. Later the 

1 axis and 2 axis will be aligned with the x and y axes of fig. 1 and a 

polar coordinate system around the hole. The variable N is the isochro­

matic fringe number and e is the optical isocline. The value of e is 

measured positive from the +1 axis. Since the material was optita1ly 

isotropic, and since there was no residual birefringence, the optical 

isocline is the principal stress direction relative to the +1 axis. 

SEPARATION OF STRESSES 

Equations 1 and 2 do not provide enough information to uniquely de­

termine the stresses at each pOint in the connector. Separation of 

stresses was accomplished here by using the plane-stress equilibrium 

equations, in finite-difference form, as auxiliary conditions the stres~ 

ses aI' a2 and ~12 had to satisfy. Since there are two equilibrium 

equations, the finite-difference representation of the equilibrium con­

ditions and eqs. 1 and 2 resulted in four algebraic equations from which 

to compute the three stresses at a point. In addition, there were boun­

dary conditions to impose on the stresses. The result was an overdeter­

mined set of equations from which to determine the streses. Berghau5 

[14J addressed such a problem and his solution technique is used here. 

Voloshin [11J used a similar technique but incorporated the compatibili~ 

ty equations into the scheme as additional equations to be satisfied. 

Chandrashekhara and Jacob [15J used only the compatibility equations, 

and the appropriate boundary conditions, for stress separation. 

In addition to the overdetermined approach, another approach waS 

incorporated in the separation of stresses. This was to separate the 
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stresses in a zone-by~zone fashion over the area of the model. This 

approach is shown in figs. 2 and 3. These figures -show the grids used 

for the finite-difference representation of the equilibrium equations. 

One grid system was a rectangular system and the other grid system was 

polar. Each grid system was broken into zones, the zones being numbered 

1-11. The value of Nand e for use in eqs. 1 and 2 were measured exper­

imentally at each grid point location and ultimately three stresses at 

each grid point were calculated. With this finite-difference scheme, 

the stresses were calculated in zone 1 first, then zone 2, etc. until 

stresses were finally calculated in zone 11. 

For zone 1, the boundary conditions enforced were the traction-free 

conditions along the right edge and the bottom edge. For zone 2 the 

boundary conditions were the traction free conditions along the right 

edge and the stresses along the boundary between zones 1 and 2 as deter­

mined from the zone 1 calculations. This interfacing of zones continued 

up to zone 9. For polar zone 10, conditions along the outer circumfer­

ential boundary were determined by interpolation from zones 3, 5 and 6 

calculations. Finally, zone 11 ~alculations used interpolated data on 

the outer circumferential boundary and zone 10 data along the radial in­

terface with that zone. 

The accuracy of the finite-difference scheme was checked before it 

was used with actual experimental data. This allowed for an assessment 

of the fineness of the mesh required. The check on the scheme was as 

follows: Bickley [16] presented the elasticity solution for an infinite 

isotropic plate loaded through a hole. The hole loading was a known ra­

dial traction felt to represent the effects of a pin in the hole. With 

the solution, the stresses in the infinite plate could be determined. 
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In the work here a rectangular area around the hole, of the size of the· 

connector being studied, was isolated from the infinite plate. The 

proper tractions were applied at the edges of this rectangular area so 

the region of the infinite plate outside this rectangular area could be 

eliminated. The stress-optic laws were used in conjunction with 

Bickley's elasticity solution to compute a value of Nand e at each grid 

point on the grids of figs. 2 and 3. These values of Nand e were used 

as 'experimental datal in the overdetermined finite-difference scheme. 

Instead of traction-free boundary conditions, the normal and shear edge 

tractions necessary for isolating the rectangular area were used as 

boundary conditions for the finite-difference solution. The stresses 

from the finite-difference calculations ·were compared with the elastici-

ty solution stresses. After several refinements of mesh size, the 

largest difference between the exact elasticity solution stresses and 

the finite-difference calculations was 3.5%. This occurred at the net-

section hole edge. Thus the stress separation scheme was considered 

valid. 

The fringes in orthotropic photoelastic materials are not generally 

as sharp and distinct as they are in commonly available isotropic photo­

elastic materials. Iri the actual experiment the fringes are recorded 

photographically using a high contrast negative film. The Nand e val-

ues at each grid point are determined from enlarged projections of these 

high contrast negatives. This method proved quite effective for an ac­

curate determination of the isoclines around the hole. Actually the 

zones extended over the entire lower half of the model, not just the 

right hand portion, as implied by figs. 2 and 3. Slight asymmetries or 

differences in the isochromatic and isoclinic fringe patterns between 
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the left and right halves of the model prompted a stress analysis of 

both halves. Why the differences in the fringe patterns existed was not 

clear but slight inhomogeneities in the material were probably to blame. 

The loading fixture was checked for slight misalignments but none were 

found. The stress results presented are the average of the left and 

right side stresses. 

The zone scheme was adapted originally to keep the number of alge-

braic equations in the overdetermined scheme to a reasonable number. 

However, it proved to be a convenient method for refining the mesh size 

from location to location on the model and for checking data reduction 

for consistency in a methodical, step-by-step fashion. An example of 

this is as follows. Referring to fig. 2, for any horizontal line across 

the width of the specimen below the hole, 

+W/2 

J oydx = O. (3) 

x=-W/2 

This particular integral of the stress is zero because the hole reacts 

all the pin load. There is no net reaction between the hole and the 

free end of the connector. The stresses were computed in zone 1 and the 

condition of eq. 3 was checked. If eq. 3 was not satisfied to within a 

certain tolerance, experimental data were checked for errors. When eq. 

3 was satisfied, calculations proceded to zone 2. Of course, above the 

net section, W/2 

t J oydx = P, 
x=-W/2 

where t is the connector thickness. In the next section, numerical 

values of these integrals are reported. 
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EXPERIMENTAL RESULTS 

Figure 4 shows a whole field view of the isochromatic fringe pat­

terns in the connector. The applied load is 7700 N (1730 lb.). Figure 

5 shows the 20° isocline near the hole. Figure 4 was taken using normal 

film while fig. 5 was taken using high contrast film. 

The radial compressive stresses, ar, around the hole edge are shown 

in fig. 6. The stresses have been nondimensionalized by the bearing 

stress, 5, which is defined to be 

(5) 

All stresses shown in these and future figures were computed with a 

load, P, of 7700 N (1730 lb.) applied to the model. These and other re-

sults are the average of the left and right sides of the connector 

stresses. The results of several other investigators are superposed on 

the figure. The geometries of the connectors studied by the other inves­

tigators were not identical to the geometry studied here. The geome­

tries of the various studies are noted on the figure. 

Nisida, et ale [17] measured the stresses around a pin-loaded iso­

tropic connector using a combination of photoelasticity and interferome-

try. Their measurements were purely experimental, requiring no auxili-

ary numerical condition. Crews et ale [18] assumed an elastic friction­

less pin in his finite element analysis of" a quasi-isotropic connector. 

De Jong [19] used an elasticity solution, assuming a rigid frictionless 

pin for his analysis of an infinite quasi-isotropic plate. The i cos 9 
1t 

radial contact stresses distribution was assumed by Bickley and subse-

quently by many other workers. The simple i cos 9 radial stresss 
1t 
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distribution is quite close to all others, be they experimental, numeri-

cal, or analytical. Figure 7 shows the circumferential or hoop stress, 

ae' at the hole edge. In addition, the results of other investigators 

are indicated on the figure. The stresses from ref. 16 are generated by 

the ! cos e radial distribution on an infinite plate. 

Figure 8 shows the net-section ay stresses. As can be seen, for 

this particular model geometry, the stress concentration factor, based 

on bearing stress, is 1.11. There is not much data for the net-section 

stresses, either numerical or experimental. De Jong [20] used a super­

position of solutions to correct infinite plate solutions for finite 

width effects. These results are shown in fig. 8. Crews et al. compu­

ted a stress concentration factor at the hole edge of 1.25. Figure 9 

shows the variation of the so-called shear-out stress. The shear-out 

stress is the shear stress ~xy below the hole along the line from the 

net-section hole edge to the bottom free edge. Crews, et al. calculated 

this shear stress in their study and the results are shown in fig. 9. 

As mentioned previously, eqs. 3 and 4 were used to gage the consis­

tency and accuracy of the photoelastic stress calculations. Operation­

ally, eqs. 3 and 4 were evaluated using Simpson's rule. Table 1 indi­

cates the numerical value of the integrals for the horizontal locations 

A-A, B-B, C-C, and D-D shown in fig. 2. To form a measure of error, the 

numerical values of the integrals were divided by the load, P, applied 

to the model when the stresses were computed. This quotient, when 

compared to the ideal, was felt to be a measure of accuracy and relia­

bility. As can be seen from Table 1, the integrals were within 3.6% of 

the ideal case. 
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Table 1 
Value of Stress Integrals 

horizontal ideal value actual value actual value 
location 

p 

A-A 0 123 N (27.7 1b) 0.016 
B-B 0 84 N (19.0 1b) 0.011 
C-C 0 60.6 N ( 269 1b) 0.035 
D-D 7700 N (1730 1b) 7975 N (1793 1b) 1.036 

DISCUSSION 

The experimental data presented here are somewhat unique. For the 

particular problem studied, very little experimental data exist. The 

vast majority of the work has been numerical or analytical. These data 

provide a comparison for numerical investigations. In addition, ortho­

tropic photoelastic materials have not been used to any great extent to 

solve a problem of practical importance. The pin-loaded connector is a 

problem of importance in composite material mechanics and the applica­

tion of the material to the problem studied here emphasizes the poten­

tial of the material. 

The stresses presented herein are considered to be quite 

accurate. The numbers in Table 1 confirm that the stresses computed are 

at least globally consistent. The only difficulty encountered in the 

experiments was at the net section. Even without much load on the 

connector, small cracks formed in the 90 0 p1ys. The cracks were radial 

and coincident with the net section. These cracks did not appear to 

affect light transmission. However, there was a small amount of 

residual birefringence in the vicinity of the net section. Careful 

scrutiny around the remainder of the hole circumference indicated there 

was no residual birefringence elsewhere. This residual birefringence 

undoubtedly affected the value of Nand s. No adjustments were made for 
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this residual birefringence at the net section and this could be 

responsible for what appears to be, a slight radial compressive stress 

at the net-section and above (see fig. 6). 

One other comment regarding residual effects is in order. In pre-

vious studies [21] with a unidirectional material, residual birefringent 

effects did exist throughout the material. This was due presumably to 

the differences in the thermoelastic properties of the constituents, 

coupled with the slightly elevated temperature cure of the material. 

The quasi-isotropic material used here exhibited no residual 

birefringence in the material as a whole. It is hypothesised that the 

four fiber orientations, 0°, 90°, 45°, and -45° effectively eliminated 

residual effects. There were residual effects but they did not lead to 

net birefringence by the time the light had passed through all ply 

orientations. 

CONCLUSIONS 

From the work reported here several general and specific 

conclusions can be drawn. It can be concluded that: 

1) the photoelastic response of transparent glass-epoxy material 

in a quasi-isotropic configuration can be used successfully to 

determine the stresses in complex problems; 

2) the overdetermined finite-difference representation of the 

equilibrium equations, coupled with the zone-by-zone scheme, is 
~ 

an effective way to separate stresses; and, . 
3). fri nge sharpeni ng and enl argement by photographi c methods hel ps 

considerably in resolving fringes in glass-epoxy. 
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For the specific problem studied it can be concluded that: 

1) the numerical and analytical resuults of previous investigators 

compares favorably with experimental findings; 

2) the net-section stress concentration factor, based on bearing 

stress, is about 1.1; and, 

3) the! cos e distribution often used to represent the radial 

contact stresses is a good approximation for quasi-isotropic 

materi al s. 
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Fig. 4 Oarkfield isochromatic fringe pattern, 
load = 7700 N (1730 lb.). 
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Fig. 5 Isoclinic fringe pattern t e = 20° 
load = 7700 N (1730 lb.). 
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Fig. 6 Radial stresses around hole edge. 

19 

I 
j 

! 
I 

f 

I 



o 

LO -+---! 

• present study, W/D=4,e/D=2 

<> ref. I?, W/D=10,e/D=2.5 
o ref. 18, W/D=20,e/D=2 
o refl6, oriS = 4Jrrrcos e, W/D=ro re/O=ro 

\l ref. 19, W/D=ro , e/D = ro 
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