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ABSTRACT

This investigation studies the possibility of improving the accu-
racy of geodetic results by use of simultaneously observed ranges to
Lageos, in a differencing mode, from pairs of stations. Despite their
complexity end expensive computational requirements, orbital models are

still not accurate enough to achieve geodetic parameter accuracies
comparable to those of laser measurements. Parameters of interest here

are the baseline lengths and the coordinates of the pole. Simulation
tests show that model errors can be effectively minimized by simultaneous
range-differencing (SRD) for a rather broad class of network-satellite
pass configurations. To generate the required quasi-simultaneous range
events, we compare the methods of least squares approximation with mono-
mials and Chebyshev polynomials and the cubic spline interpolation. The
latter seems preferable in the case of uniform and dense sets of data.

Analysis of three types of orbital biases (radial, along- and
across-track) shows that radial biases are the ones most efficiently min-
imized in the SRC mode. The de g ree to which the other two can be
minimized depends on the type of parameter under estimation and the

geometry of the problem. Sensitivity analyses of the SRD observation
show that for baseline length estimations the most useful data are those
collected in a direction parallel to the baseline and at a low elevation.
Estimating individual baseline lengths with respect to an assumed but

fixed orbit not only decreases the cost, but it further reduces the
effects of model biases on the results as opposed to a network solution.
Enforcing the simultaneity constraint ensures that the results are also

free of possible biases introduced by inconsistent coordinate systems in
which independent station determinations refer. Analogous results and
conclusions are obtained for the estimates of the coordinates of the
pole.

Iv



ACKNOWLEDGMENTS

It is undoubtedly true that it takes hard work to carry out a project

such as the one reported herein. The personal labor, however, would never

be enough, and it is hard to imagine a successful completion without the

guidance, help and encouragement of several people.

Of all most important is the support and patience of my family. Their

continuous sacrifices during these years leave me no choice as to my next

most important lifelong project: a full-time husband and father.

Of equal impurtance was the guidance, help, support and friendship

of my mentor, Professor Ivan I. Mueller. Working with him has been one of

the most educating and pleasing experiences. To him and to Professors

Richard H. Rapp and D.P. Hajela, a special thanks for pointing out the weak

points of the original manuscript rather than praising the good ones.

During my studies at 0!,io State University I have had the luck of

meeting and befriending a number of people from around the world. Their

friendship and constructive criticism have helped make my stay here more

enjoyable--above all, the esteemed members of the "500 Club": Dr. Kostas

Katsambalos, Dr. Christopher Jekeli, Dr. Oscar Colombo and Dr. John Hannah.

The long and often heated discussions with Dr. Yehuda Bock and Mr. Zhu

Sheng-Yuan will always be remembered for their contribution in clarifying

several issues on a variety of topics. Discussions on time with Dr. John

McK. Luck have been most interesting and most ti.nely! The help of Dr.

Lenny A. Krieg in acquainting myself with the Ohio State computer facility

is gratefully acknowledged.

v

I



My thanks go to the NASA/GSFC scientists Mr. Ron Kolenkiewicz, Ms.

Barbara Putney, and Mr. Chris Stephdnides for their support and their

cowiments, and special thanks to JPL scientists Dr. E. Myles Standish, Jr.,

Dr, Theodore Moyer, Dr. Fred Krogh, and Dr. Henry Fliegel for their prompt

responses to all my requests for data and information.

Thanks go also to NASA/Goddard Space Flight Center for the opportunity

to work on such an interesting and educational project and for providing

extensive financial support throu g h Contract No. NAS5-25888. The financial

support provided by The Ohio State University as a Graduate Teaching Associ-

ate is gratefully appreciated and so is the computer support of the instruc-

tion and Research Computer Center. Acknowledged also is the financial

support of the Wild-Heerbrugg Geodotic Fellowship (1980).

Last but not the least, my thanks to Mr. Irene Tesfai for her

excellent workmanship in typing and editing the final form of this report.

vi



TABLE OF CONTENTS

Page

	

DEDICATION..........................................................	 ii

	

PREFACE............................................................	 iii

	

ABSTRACT ........................................................... 	 iv
ACKNOWLEDGMENTS	 .................................................... 	 v

LIST OF FIGURES ..................................................... xii

LIST OF ABBREVIATIONS ............... 	 ............................... 	 xiv

Chapter

1. INTRODUCTION ....................................................	 1

l..I	 From Time Interval Measurement to Range Inference.......... 	 1
1.2	 Systems Accuracy; Some General Remarks .....................	 2

1.3	 Scope and Philosophy of the Investigation ... ..............	 3
1.4 Outline of the Proposed Simultaneous Laser Range-

	

Difference (SRD) Mode .................................... 	 5

2. THEORETICAL BACKGROUND .......................................... 	 12

2.1	 Reference Systems and Frames ............................... 	 12
2.2	 T he Lagoos Orbital Model ...................................	 17

2.2.1 Orbit Determination with the Method of Special

	

Perturbations ..................................... 	 20

	

2.2.2 Gravitational Acceleration from N Point Masses...... 	 23
2.2.3 Gravitational Acceleration from Terrestrial

	

Nonsphericity .....................................	 27

	

2.2.4 Solar Radiation Pressure Acceleration ............... 	 30
2.2.5	 Tidal Acceleration ..................................	 34

	

2.2.6 Lageos Empirical Along--Track Acceleration........... 	 36

3. THE OBSERVABLE .................................................. 	 39

3.1	 Hardware Components ........................................ 	 39

'J -I 1



	

3.1.1	 Laser Ranging Instrumentation .......................	 39

	

3.1.2	 Laser Geodynamic Satellite (Lageos) .................	 41

	

3.2 Generation of Simultaneous Range-Differences ............... 	 43

3.2.1 Description of the Original Set of Range Data....... 44

3.2.2 Selection of Ranging Data on Siwultaneously

	

Observed Satellite Passes ......................... 	 48

3.2.3 Functional Representation of the Data Selected

	

for SRD Generation ................................ 	 50

3.2.3.1 Least Squares Approximation Using
Monomial ,. and Chebyshev Polynomials As
Base Functions ............................. 54

3.2.3.2 Interpolation with Cubic Spline Functions.. 62

3.2.3.3 Comparison of Least Squares Estimates and
Cubic Spline Interpolants for the Range

	

Function ...................................	 69

4. THE ESTIMATION PROCESS .......................................... 	 83
	 R

4.1	 Introduction ...............................................	 83

4.2 Differential Relations Between the Observable and the

	

Parameters............................................... 	 87

4.3	 Estimable Parameters ....................................... 	 92

4.3.1 Information Reouired for the Determination of the
Problem Parameters .......	 ..........................	 93

4.4 Minimization of Model Biases by Use of SRD Observations.... 99

4.4.1 Simulation Study for Bias Propagation

	

Characteristics ..................................... 	 102

	

4.4.2	 Analysis of the Simulation Results .................. 104

4.5 Sensitivity Analysis of SRD Observations.— 	 118

	

4.5.1	 Introduction ........................................ 	 118

	

4.5.2	 Optimal Desi gns for Baseline Estimation ............. 119

4.5.3 Optimal Design for the Estimation of the Motion

	

of the Pole ....................................... 	 123

4.6 Operational Approach for Parameter Estimation .............. 134

	

4.6.1	 Estimation of Baseline Lengths ...................... 134

4.6.2 Estimation of the Coordinates of the Pole........... 136

5. NUMERICAL EXPERIMENTS AND RESULTS ............................... 142

5.1	 Simulation Studies ......................................... 	 145

viii



40

5.1.1	 Simulations	 for	 an	 Existing	 SLR	 Network	 .......... 145

5.1.2	 Simulations	 for	 a	 Proposed	 SLR	 Network	 ........... 153

5.1.2.1	 Baseline	 Recovery	 ....................... 153

5.1.2.2	 Pclar Motion	 Parameter Recovery	 ......... 151

5.2 Experiments	 with	 Real	 Data	 .............................. 167

5.2.1	 Preliminary	 Adjustment	 for	 Data	 Editing	 .......... 167

5.2.2	 Estimation	 of	 the	 7943-7090	 Baseline	 ............. 175

6.	 CONCLUSIONS	 AND	 RECOMMENDATIONS	 .................. 	 ........... 182

6.1 Conclusions	 .........................................	 ... 132

6.2 Recommendations	 ......................................... 187

REFERENCES ....................................................... 189

f

APPENDIX A:	 Derivation of the Variational 	 Equation of State for

the	 Case	 of	 Tidal	 Accelerations	 ..................... 196

APPENDIX B:	 Systematic Corrections Applied to the Observations 	 .. 199

APPENDIX C:	 Further Development of	 the Differential	 Error

Equations ........................................... 205

APPENDIX D:	 Residual	 Summaries for Ten SLR Stations for the

August,	 1980,	 Lageos	 Data	 ........................... 209

i
ix



LIST OF TABLES

Table	 Page

1. Lageos	 Along-Track	 Acceleration	 Magnitude ................... 38

2. Lageos	 Nominal	 Orbital	 Elements ............................. 42

3. Comparison	 of	 Monomial	 Fits	 Using	 N	 and	 N ................... 71

4. Distribution	 of	 Ground	 Truth	 Points,	 Sparse	 Data............ 71

5. Distribution	 of	 Ground Truth	 Points,	 Dense	 Data ............. 73

6. Least Squares Approximation with Monomials, 	 Dense	 Data...... 74

7. Least Squares Approximation with Monomials, 	 Sparse Data..... 74

8. Least Squares Approximation with Chebyshev Polynomials,
DenseData .................................................. 75

9. Least Squares Approximation with Chebyshev Polynomials,

Sparse	 Data .........................	 ....................... 75

10. R-Ratio	 Test	 Results	 («	 =	 0.01) ............................. 77

11. Interpolation	 with	 Cubic	 Splines,	 Douse	 Data	 Sets........... 79

12. Interpolation	 with	 Cubic	 Splines,	 Sparse	 Data	 Set........... 79

13. Comparison of Recovery Errrors from Two Cubic Sp l ines for
the	 Complete	 and	 the	 Restricted	 Dense	 Data	 Sets ............. 81

14. Lageos	 Data	 Selection	 Summary ............................... 145

15. Overlapping	 Data	 Distribution	 for	 Eight	 Station	 Pairs....... 147

16. Polar Motion Component Recovery Error Summary ............... 152

17. Baseline	 Recovery	 Error	 Summary ............................. 152

18. Coordinates	 for	 the	 Stations	 Used	 in	 the Simulations........ 154

19. Distribution	 of	 Ranges	 and	 SRD's	 for	 Each	 Baseline.......... 154

20. Baselines	 Recovered	 from	 Network Adjustments ................ 156

21. Baselines	 Recovered	 from	 Independent Adjustments............ 158

22. Sunw -y Statistics	 for Baseline	 Recovery	 Errors ............. 161

23. Polar Motion	 Component	 Values Used	 in	 the	 Simulations....... 163

24. Polar Motion Component Recovery Results, Complete Data
Set	 Solution ................................................ 164

25. Statistics for the Recovered Polar Motion Components
Obtained	 from	 the	 Complete	 Data	 Set ......................... 164

X



Table	 Page

26. Polar Motion Component Recovery Results, 	 Restricted

Data	 Set	 Solution	 .......................................... 165

27. Statistics for the Polar Motion Components As Obtained

from	 the	 Restricted	 Data	 Set	 ............................... 165

28. Numerical	 Values	 of	 Constants	 Used	 by	 GEOSPP	 ............... 168

29. Numerical	 Orbit	 Integration	 Information	 for	 GEOSPP	 ......... 169

30. A	 Priori	 CTS	 Station	 Coordinates	 ........................... 170

31. Residual	 Summary for the Complete Lageos Range Data Set

Adjustment	 by	 GEOSPP	 ....................................... 170

32. Station Coordinates and Standard Deviations Estimated by

GEOSPP ..................................................... 172

33. Initial	 State Vector for Lageos As Obtained by GFOSPP
from the Complete Lageos	 Range Data	 Set Adjustment	 ......... 172

34. Baseline Lengths and Standard Deviations Estimated by
GEOSPP ..................................................... 173

35. Observation Summary for Range Data 	 from Station	 7943	 ....... 175

36. Observation Summary for Range Data 	 from Station 7090	 ....... 176

37. Station Coordinates and Baseline Length Estimates and

Statistics Obtained	 from	 the	 Range Data Adjustment 	 ......... 177

38. Station Coordinates and Baseline Length Estimates and
Statistics	 Obtained	 from	 the	 SRD	 Data	 Adjustment	 ........... 177

39. Pass-by-Pass Residual 	 Summary for Adjusted Range Data
from	 Station	 7090	 .......................................... 180

40. Pass-by-Pass Residual 	 Summary for Adjusted Range Data
from	 Station	 790	 .......................................... 180

41. Pass-by-Pass Residual 	 Summary for Adjusted SRD Data	 from
the	 7090-7943	 Station	 Pair	 ................................. 181

42. Residual	 Summary	 for	 Station	 7063	 .......................... 210

43. Residual	 Summary	 for	 Station	 7090	 .......................... 210

44. Residual	 Summary	 for	 Station	 7091	 ...................... 211

45. Residual	 Summary	 for	 Station	 70 0 2	 .......................... 211

46. Residual	 Summary	 for	 Station	 7096	 .......................... 211

47. Residual	 Summary	 for	 Station	 7114	 .......................... 211

48. Residual	 Swfnary	 f or	 Station	 7115	 .......................... 212

49. Residual	 Summary	 for	 Station	 7120	 ........... '

50. Residual	 Summary	 for	 Station	 007	 .....•.......•............ 212

51. Residual	 Summary	 for	 Station	 7943	 .......................... 213

x 



LIST OF FIGURES

Fig.	 Page

1. Simultaneous range-differencing 	 .............................. 9

2. Relative geometry of barycentric and geocentric coordinate
systems....................... ............................... 26

3. Cylindrical shadow	 geometry	 ......................	 ........... 33

4. Range versus time graph for the sparse data	 set from

station 7943 ................................................. 52

5. Range versus time graph for the dense data set from station

7115	 .......................... ............................... 53

6. Geometric	 interpretation of the best	 linear approximation	 ..... 56

7. Range bias	 surfaces for	 the	 fixed	 station	 1	 .................. 108

8. Radial	 bias surfaces for ranges from the four	 locations of

station2	 ..................... ............................... 109

9. Latitudinal bias surfaces for ranges from the four locations

ofstation 2 ................................................. 110

10. Longitudinal bias surfaces for ranges from the four locations

of station 2 ................................................. 111

11. Radial	 bias surfaces for SRD's from four 2000 km Ga;elines 	 ... 112

12. Radial	 bias surfaces	 for SRD's from four	 200 km baselines	 .... 113

13. Latitudinal bias surfaces for SRD's from four 2000 km
baselines..................... ............................... 114

14. Latitudinal bias surfaces for SRD's from four 200 km

baselines	 ..................... ............................... 115

15. Longitudinal bias surfaces for SRD's from four 2000 km
baselines..................... ............................... 116

16. Longitudinal bias surfaces for SRD's from four 200 km
baselines	 ..................... ............................... 117

17. Satellite	 pass - baseline yeometry for simultaneous range
differences .................................................. 121

18. Sensitivity surfaces for the coordinates of 	 the pole	 in
the case of a	 station	 at	 A	 =	 0",	 1	 =	 40 .	..................... 126

19. Sensitivity surfaces for the coordinates if the pole	 in
the case of a	 station	 at	 {	 =	 -90",	 ^	 =	 40` .	 .	 .......	 ......... 127

L

x i i



Fig. Page

20. Sensitivity surfaces for the x-coordinate of the pole
for	 the	 three	 1000	 km	 haselines	 near	 X	 =	 0 0	................. 129

21. Sensitivity surfaces for the y-coordinate of the pj:e
for	 three	 1000	 km	 baselines	 near	 a	 =	 0 0	..................... 130

22. Sensitivity surfaces for the x-coordinate of the pole for

three	 100u	 km	 baselines	 near	 A	 =	 -90°	 ....................... 131

23. Sensitivity surfaces for the y-coordinate of the pole for
three	 1000	 km	 baselines	 near	 A	 =	 -90°	 ....................... 132

24. The effect of nonuniform observing schedules in the
estimation	 of	 the	 coordinates	 of	 the	 pole	 ................... 140

25. Unbalanced data distribution effects	 in the estimation of
time-dependent	 averages	 ..................................... 141

26. Lageos groundtrac:ks	 for the AG80	 simulated data	 set	 ......... 149

27. Network solution results,	 recovery errors versus baseline

length ...................................................... 157

28. Independent solution results, 	 recovery errors versus
baseline	 length	 ............................................. 160

29. Baseline	 network	 for,	polar motion	 monitoring	 ................ 162

30. Lageos SRD Event Distribution for the Data Used in
Determining	 the	 7090-7943	 Baseline	 .......................... 178

W

x i i i

1



LIST OF ABBREVIATIONS

AU	 Astronomical Unit

CCR	 Corner Cube Reflector

CES	 Celestial Ephemeris System

CIS	 Conventional Inertial System

CLRS	 Compact Laser Ranging System

CPU	 Central Processing Unit

CSTG	 Commission on International Coordination of Space Techniques

for Geodesy and Geodynamics

CTS	 Conventional Terrestrial System

DE114	 Development Ephemeris 114

DOC	 Differential Orbit Correction

EDM	 Electromagnetic Distance Measuring

EIH	 Einstein-Infeld-Hoffman

Eq. E	 Equation of Equinox

CPS	 Global Positioning System

GSFC	 Goddard Space Flight Center

IAU	 International Astronomical Unit

JPL	 Jet Propulsion Laboratory

Lageos	 Laser Geodynamic Satellite

LE58	 Lunar Ephemeris 58

LLR	 Lunar Laser Ranging

NASA	 National Aeronautics and Space Administration

NSSDC	 National Space Science Data Center

rms	 Root Mean Square

SAO	 Smithsonian Astrophysical Observatory

SECOR	 Sequential Collation of Ranges

SF	 Spline Fur,cti on

SGRS	 Spaceborne Geodynamic Ranging System

SLR	 Satellite Laser Ranging

xiv

f



SRD	 Simultaneous Range-Differencing

TAI	 International Atomic Time

TDB	 Barycentric Dynamical Time

TLRS	 Transportable Laser Ranging System

UTC	 Universal Time Coordinated

VLBI	 Very Long Baseline Interferometry

a

Xv
	 4

S-
A



1. INTRODUCTION

1.1 From Time Interval Me,.surement to Range Inference

The laser systems which are deployed in satellite ranging are

generally categorized as one type of electromagnetic distance measur-

ing device (EDM).	 In a wider sense though, one can think of them as

being cne type of communications system. Arcer all, ire order to infer

the distance defined by the instrument and the satellite, the trans- 	 R.

mitted signal must travel to the satellite and upon reflection return

to the receiving system of the instrument. Assuming the velocity of

the signal is known, the length of the signal path can then be computed,

if the elapsed time is measured. The concept is remarkably simple;

however, stringent accuracy requirements for the inferred distance

demand that a great deal of calibration of internal errors and correct-

ing for other systEmatic effects (e.g., atmosphere, retroreflector

array biases, etc.) has to be done before the accuracy reaches accept-

able levels. What this implies is that careful monitoring of the per-

formance of every component of the instrument is required un a short

as well as a long time basis, detailed recording of parameters descrip-

tive of the environment, and, finally, tedious calculations to compute

and apply the corrections. At times, much to the dismay of the scien-

tist, even after all these corrections have been applied, the r,-:suits

do not reach the expected accuracy level. Human errors not excluded,

the reason most of the time is the fact that the applied corrections

1



are in error themselves. Since none of the physical processes

involved is known perfectly, we have to rely on laws and models based

on observation in computing their effects on the observable.

Naturally, the errors inherent in these models will propagate

into our computations. In addition to this, the parameters needed to

evaluate these models are also obtained from observation (e.g., tem-

perature, pressure, clock offsets, clock rates, etc.) and therefore

carry their own uncertainties due to observational errors. Even with-

out having to go into a detailed description of the various steps

involved in computing the final value for the station-satellite dis-

tance, it should be by now obvious that an enormous number of factors

have introduced uncertainties of different levels during this process.

What is then provided to the analyst as an "observed range" is no more

than a number cut of some computer software package along with a rather

subjective estimate for its accuracy.

1.2 Systems Accuracy; Some General Remarks

It is common practice to implicitly assume that the error spaces

of the various factors affecting a system are nearly orthogonal and

that the interactions between, them are therefore negligible. Although

V	 our present experience has not yet made a strong case against such

practice, most statisticians [Scheffe, 1959] and metrologists [Eisen-

hart, 1963] maintain that a system is best calibrated as a whole while

in normal operation rather than in a piecemeal fashion or ideal condi-

tions. We must clarify here that their r'efinition of a system is the

entity which consists of hardware and software components as well as

operators and analysts. It is thus clear that quotations such as "our

2



present ranging capabilities

unless they are supplemented

system we are referring to.

important component, and eve

same, changing the satellite

the system accuracy.

to satellites" are rather meaningless

with an explanation of the particular

Naturally, the satellite itself is a very

n if everything else were to remain the

can lead to order of magnitude changes in

1.3 Scope and Philosophy of the Investigation

The scientist who is interested in a particular subsQt of param-

eters will usually blame the inadequate hardware if the expected level

of accuracy is not finally achieved. To a certain extent r.his may be

true; however, hardware improvements are hard to come by and in most

cases are very expensive. One then has to reassess the accuracy re-

quirements and seek alternative solutions as well. The areas where we

can look for improvements are the instrument design, the experiments or

..fission design, and the method of analysis of the collected data.

This study addresses the third problem in connection with the

estimation of interstation distances and variations in the coordinates

of the pole from a geodetic satellite ranging system dedicated to geo-

dynamics research: the Lageos system. As tur as instrument design

improvements are concerned, it is unlikely that a geodesist can contrib-

ute directly to any significant extent.	 It is important, however, that

the geodesist has an understanding of a little more than its very basic

principles since it is only thus that problem areas can be pointed out

and subsequently looked at by the specialists. This knowledge will

also help in communicating and exchanging information and ideas among

the various science disciplines involved.	 If nothing else, it makes

3



it easier to foresee the miracles that the electronic gadgetry can

or cannot achieve.

The design of the experiment is an area where the geodesist will

contribute more than anyone else involved. It is also the area where

the most disappointment will be suffered. Even when the proposed

design is a truly optimal one for the particular problem, what is final-

ly implemented rarely bears more than a vague resemblance to what was

originally conceived. Geographical, economical, political and other

similar factors will usually reshape the design at the expense of op-

timality. There is very little that one can do about this other than

accept what is made available.

Finally, the data analysis is the area where the geodesist can

really experiment and innovate with practically no other than economi-

cal limitations. The issue that this study addresses in that respect

is whether a new method of analysis can be formulated which will mini-

mize, if not completely eliminate, the effect the biases (inherent or

introduced in the supplied data) have on the final results for the

estimated parameters. The method proposed and investigated here is

based on a linear transformation of the range data to range-difference

data. The range-differencing here refers to observations made simul-

taneously from two ground stations to one satellite point as opposed to

classical range-differencing of observations made from a single station

to two consecutive satellite positions. To avoid confusion the pro-

posed method will be hereinafter referred to as "simultaneous range-

differencing" (SRD).

4



To summarize what has been said to this point, the scope of this

investigation is the search for a new approach in analyzing range ob-

servations which can be less expensive and time consuming while it will

still provide estimates for the parameters that are of a higher or at

least comparable level of accuracy to those obtained otherwise. The

philosophy of the investigation can probably be best summarized in the

cliche "The more expensive is not necessarily the better."

1.4 Outline of the Proposed Simultaneous Laser Range-Difference
(SRD) Mode	 R

Laser systems currently dep'oyed in satellite tracking have

recently been upgraded to accuracy levels where biases from systeiiatic

unmodeled effects prohibit us from extracting the full amount of infor-

mation contained in the observations. Considering that the instrumen-

tation quality improves at a faster pace compared to the available

physical models, one can foresee that in the near , future (when, for

instance, NASA replaces all its lasers with third-generation models)

the limiting factor for estimate accuracies will be the aforementioned

biases.	 In light of these advances in the technological sector, it

is only natural to look for new methods for the reduction of the obser-

vations in ways that the effect of the biases can be kept well below

the noise level.

The spectrum of geodetic satellite positioning techniques has

been vastly enriched in the rather short quarter century lire of this

discipline. It has though remained polarized between two basic con-

cept c : the geometrical positioning and the dynamical positioning.

Over the years a number of hybrid techniques have also appeared to fill

5
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the gap between the two dominant constituents of the spectrum. In the

early days, simult a neous direction observations to satellites were suc-

cessfully utilized to determine interstation directions [Veis, 1967;

Aardoom et al., 1967; Schmid, 19741 using the formalism of geometric

satellite geodesy and camera observations to balloon satellites such as

Echo, Pageos, etc. Ranging systems never really participated in these

solutions except for SECUR and C-band radar [Mueller et al., 1973] with

rather poor quality observations. Apart from the fact that laser- sys-

tems were not as developed as they are today, the stringent requirement 	 I
of the geometric solution for simultaneous observations from at least

four and preferably more ground stations made the inclusion of laser

ranging observaticns impossible. Still, geometric solutions are the

only ones that do not rely on the dynam i cs of the satellite orbit and

therefore the only ones which are not affected by their imperfections.

Despite their large number of solve-for parameters and severe data dis-

tribution requirement to avoid critical configurations and ill-

conditioning [Blaha, 1971; Tsimis, 1973], their contribution to geodesy

i s vast and important.

As models for the orbit dynamics improved, attention shifted

rapidly to dynamic solutions and the geometric solution sustained a

period of hibernation, only to be recently revived due to the develop-

ment of the airborne laser ranging system by NASA [SIRS Workshop, 1979].

Full-fledged dynamic solutions are very expensive and involve thousands

of unknowns with observations spanning several yeirs and a 	 number

of satellites. Necessity, therefore, and the fact that the shorter

the orbit the less time the orbital biases have to build up and corrupt

6



the solution, gave birtr to hybrid semi-dynamical solutions (short-arc,

translocation, etc.). These techniques have been extensively applied

in the case of Doppler satellite tracking observations which is natural

if one takes into account how popular Doppler equipment has become in

the scientific as well as the commercial sector [Brown, 1976; Kouba,

1979].

In the case of laser observations, the equipment has been limited

and mostly of observatory tyre, difficult to relocate and for most uses

too far apart to allow for significant amounts of simultaneously ob-

served satellite passes. Furthermore, truly simultaneous events would

be impossible to obtain since there is always an unknown synchronization

difference between the clocks of the various stations. The launch of

Lageos, however, has improved tremendously the geometry of the problem,

since due to its high altitude (-5900 km) it is now possible that even

intercontinental stations can co-observe th 4 ; satellite. As for the

station mobility, the advent of TLRS I and the recent deployment of

CLRS/TLRS II, as well as the international trend towards highly mobile

and self-contained "observatories on whee;s/wings," will soon allow

for rapid deployment of instruments in almost any area that calls for

it. Finally, when satellite time transfer becomes operational, it is

hoped that global laser networks will be synchronized to better than

100 ns	 compared to today's -1 iis. Still, though, the use of laser

ranging in a truly geometrical mode is highly unlikely due to its abso-

lute dependence on weather conditions, a factor which is beyond our

control (at least for the foreseeable future). That, however, has not

stopped scientists from seeking alternate ways to improve the quality

7
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of results obtained from the analysis of laser ranges to

satellites.

One of the most notable attempts to take advantage of geometry to

improve the estimation of interstation distances from satellite laser

ranging observations is summarized in [Latimer and Gaposchkin, 1977].

Their method, scalar translocation, takes advantage of coobserved satel-

lite passes over the baseline under estimation. With rather poor data

they have reported results that tend to be almost an order of magnitude

better in accuracy and compare very favorably to independent estimates

of the same baselines. Their success prompted us to undertake the

investigation of using not only the coobserved part of the satellite

pass, but, in addition, of converting the ranges to range-differences

in hopes that they will be less affected by biases in the orbital model,

the reference system, and in the observations themselves. Since there

are not data taken specifically for this type of reduction technique, we

had to select passes which had been coobserved by chance and then gener-

ate simultaneous ranges from an interpolation of the recorded range ob-

servations. Using then the generated simultaneous ranges from the end

,p oints of each station pair, we determine the simultaneous range differ-

ence (see Fig. 1). These quasi-observables are then analyzed to obtain

the riiinimum variance estimate of the baseline length.

It is noteworthy that after this proposed investigation had been

accepted by NASA, scientists at the Goddard Geodynamics Branch

studied through an error analysis the advantages of using coobserved

satellite passes in baseline determinations [Christodoulidis and Smith,

19811, and their conclusions are in favor of this concept. Their

8
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Fig. 1	 Simultaneous range-differencing.
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study indicates that even with the currently available instrumentation

and physical models, a short arc of only five days with just six to

eight passes coobserved by the baseline end stations can yield a 2c

accuracy of better than one part in 2 x 10' for baseline lengths ranging

from 200 to 500 km.

With such encouraging results when only implicit use of the geom-

etry was made (only coobservation of the same portion, of the orbit wa:,

required), it seems that our effort to make explicit use of it (simul-

taneity--the same satellite position must be coobserved) is well justi-

fied. Aside from this fundamental difference in the use of geometry,

this investigation goes beyond baseline estimation and addresses the

equally important subject of pular motion estimation from the same type

of observables.

As is well known and also discussed in this investigation, one can-

not determine all station positions (and baselines therefrom) and the

coordinates of the pole on the basis of the same satellite laser range

data. To determine either of these types of parameters, the other should

be known.	 The systematic errors in. the latter do, of course, affect

the estimation of the former. The choices here are rather limited. We

could either fit some arbitrary functions to reduce the error growth--

,admittedly not a very attractive soluticn--or we can use the proposed

simultaneous data reduction technique to minimize the effect cf those

uninodelled errors on the estimated parameters.

The presentation of the inateridl fc!lows the natural sequence in

which the questions arise and the results are presented, interpreted and

discussed in the final chapters. The second chapter summarizes the

10



theoretical foundations required in this study. It discusses the refer-

ence systems and trames as they are later used in the investigation and

the orbital model for the satellite on which this study focuses most

(Lageos). The third chapter is devoted to the observable, with a brief

discussion on the instrumentation and an extensive investigation of tech-

niques for generating quasi-simultanenus range-differences when lacking

simultaneous ranging events. The fourth chapter deals with the estima-

tion process and related topics such as the estimability of the param-

eters, the sensitivity of the observable in those parameters and the

optimal network configurations for their estimation,.

The fifth chapter is a summary presentation of numerical experi-

ments performed during the course of study of the proposed technique,

using mainly simulated data and some real data which were available.

The report of the investigation concludes with a chapter summarizing

our conclusions and listing our recommendations for future research in

I-	 this area.
1.
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2. THEORETICAL BACKGROUND

2.1 Reference Systems and Frames

One of the basic tasks in designing and carrying out an experi-

ment is the collection of a set of rules which will properly describe

the space in which the experiment takes place. We call this set of

rules the reference system.

In almost all cases the se rules are abstract in nature and pre-

sent no means by which one could materialize the system in practice.

that is, however, the ultimate goal, to be able to realize the concepts

contained in tine rules. The means by which we achieve this constitute

the reference frame.

The various refe re nce systems and the reference frames bear a

relationship much like that between two volumes of an encyclopedia.

Although the covers are the same, the content is quite different. In

our case the same reference system can be realized in different ways,

each one being a distinct reference frame. The distinction derives

from th;: different means by which the system is realized (stellar cata-

log, planetary ephemerides, quasar source catalog, etc.) as well as

from the different numerical values adopted in each case. Even though

the concept of a reference system may imply some sort of uniqueness,

the realization in practice may ha%' ,:i infinitely many variants. To

remind ourselves of this arbitrariness we adopt the qualifier "conven-

tional" reference systems and frames. We finally note that certain

12



assumptions and approximations made in the course of defining a sys-

tem may render its validity as only an approximation of the ideal sys-

tem and therefore in some cases the additional qualifier "quasi" needs

to be used to indicate this.

The nomenclature adopted here follows closely that proposed in

[Kovalevsky and Mueller, 1981] since that is the most complete, self-

consistent and internationally a:cepted one today.

Although from the theoretical point of view one reference system

would be sufficient for the description of the experiments, from a

practical point of view we traditionally distinguish between space-
..

fixed and earth-fixed systems. Both systems describe the same space

continuum, though from a different point of view. The issue here is

not the variety or number of systems to be involved, but rather the for-

malism from which the rules defining these systems will be drawn.

Should we follow the classical Newtonian formalism or should we follow

Einstein's geometro-dynamics (general theory of relativity).

Moritz [1979] suggests that a midcourse be sought. For all geo-

detic purposes, the classical formalism amended with small corrections

to account for relativistic effects can serve as a sufficient approxi-

mation. It is acknowledged, however, that one place where the classi-

cal formalism will fail is the fourth coordinate of the continuum:

time. The reason is twofold: Einstein's curved space-time has defi-

nitely discarded the (Newtonian) notion of a "universal" time, and,

since time measurements today are the most accurate of all (less than

one {part in 10 13 ), there is no room for compromise or approximation.

Each reference system has to have its own time scale associated with

13



it. This should come as no surprise, since as Minkowski [1908] him-

self put it, "Henceforth space by itself, and time by itself, are

doomed to fade away into mere shadows, and only a kind of union of the

two will preserve an inn=pendent reality." For these reasons we have

chosen to follow the theory of geometrodynamics in the operational

definition of the required Conventional (quasi-) Inertial System (CiS).

The corresponding Conventional Terrestrial System (CTS) is also defined

in a consistentway, the former through the geodesic equations (or equa-

tions of motion) of the satellite in the field generated by the surround-

ing bodies (Sun, Earth, Moon), and the latter by an adopted set of dis-

tances between a globally distributed set of stations--the CTS poly-

hedron. Since working with these distances is quite cumbersome,a set

of coordinates for these terrestrial stations is used, consistent with

the distances within the error of measurement [Bock, 1983].

If our experiments were confined to events and processes well

defined within the frame of the CTS, then we would not need to discuss

it further. But we do refer to processes and events occurring outside

the CTS, and we therefore need to ascertain that the above definition

provides for accurate connection with other frames. With the origins

of the two systems coinciding at the center of mass of the earth, the

problem to be solved is that of the orientation of the axes of the

crust-fixed CTS with respect to another frame which is observable with

respect to the available observations. For reasons explained in

[Mueller, 19801 and investigated in [Leick, 1978], we feel that the

appropriate system is the Celestial Ephemeris System (CES). The third

axis of this system is called the Celestial Ephemeris Pole or simply

14



the Celestial Pole (C). The defining principle for C is that it should

have "no periodic diurnal motion relative to the crust (not the mantle!)

or the CIS" [Mueller, 1980]. The adoption of this axis and the geocen-

ter constrains the remaining two axes to a plane that is perpendicular

to C and contains the geocenter • . The motion of C with respect to the

CTS third axis is described by the (observationally determined) coordi-

nates of the pole (x p , y p ) and the connection between the two is accom-

plished through two well-established orthogonal rotations [Mueller,

1969]. A remaining third rotation accounts for the earth's (i.e, poly-

hedron's) sidereal rotation. This angle is modeled by a polynomial in

time based on Simon Newcomb's expression for the right ascension of the

fictitious mean Sun [Newcomb, 1898] and a linear-in-time component

based on the mean sidereal spin rate of the earth. The true angle is

obtained by correcting for the nutation in right ascension, known as

the Equation of the Equinox (Eq. E) [Mueller, 1969]. A small correc-

tion must also be added (determined observationally again) to account

for irregularities in the earth's spin rate. The resulting angle

determines the instantaneous angular separation, of two corresponding

meridians of the CTS and the Celestial System, for example, the angle

between their first axes.

The relative motions of these t,-ames are relatively well known

in theory [Mueller, 19691. The numerical models, though, are incom-

plete and subject to continuous improvement as more observations be-

come available and as their accuracies increase. 	 In dealing with real

data we have used the latest numerical models adopted by the IAU for

use from 1984 onward [Kaplan, 1981].	 In brief, the precession

15



formulation is that published in [Lieske, 1979], the nutation series

are those derived by Wahr [1981], and the relationship defining the

angular separation between the first axes of the CES and CTS (commonly

known as the "Greenwich Apparent Sidereal Time") is taken from [Kaplan,

19811. The CIS-referenced orbits of the major perturbing bodies con-

sidered in this investigation are taken from the JPL Development Ephem-

eris 114 (DE114) and the corresponding Lunar Ephemeris 58 (LE58)

[Standish, 1981, private communication].

The time scales used in this investigation are the Universpl

Time Coordinated(UTC) [Mueller, 19691 for data tagging purposes and the

Barycentric Dynamical Time (TDB) [Kaplan, 1981] for the integration of

the orbit. Both time scales are related to the International Atomic

Time (TAI) scale, and therefore the relationship between the two is

also known [Moyer, 1981a; 1981b].

16



2.2 The Lageos Orbital Model

The orbital model for a satellite consists of a set of formulas

that determine the accelerations the satellite experiences within the

frame of reference. As such, all the accelerations in our case will be

referred to the CIS. For the particular case of Lageos, the accelera-

tions which will be included are the terrestrial, lunar and solar point-

mass effects, the terrestrial nonsphericity effects, the effects due to

solid earth tides, the solar radiation pressure effects and an along-

track acceleration of well-established magnitude but of as yet undeter-

mined cause [Smith et al., 1982]. Atmospheric drag effects are not in-

cluded due to the high altitude of Lageos (-5900 km) and its very small

cross-sectional area-to-mass ratio. All of the accelerations but the

one due to the earth's nons p hericity are computed directly in the CIS

frame. This deviation is due to the fact that the spherical harmonics

that describe the earth's departures from a perfect point-mass body are

given with respect to a body-fixed frame rather than an inertial one.

To obtain an inertial expansion would mean to make those harmonics de--

pend on time since they actually describe the anisotropic distribution

of mass-density within the earth, which changes with time in an inertial

frame due to the earth's rotational motions. For this particular accel-

eration then, the determination results from a two-ste p procedure where

first we determine the inertial acceleration in the CTS and then we ro-

tate it into the CIS to make it consistent with the rest of the model.

This particular acceleration is the only one involving the transforma-

tion between the CIS and CTS frames.

17
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The point-mass effects of the massive bodies in the solar system

are determined partly on the basis of the geometrodynamical equations

of motion, the Einstein-Infeld-Hoffman (EIH) formulation [Moyer, 1971],

and partly on the basis of Newtonian theory. The former is used for the

case of the solar, lunar and terrestrial effects, while the latter is

reserved for the rest of the bodies in the solar system since their

relativistic effects are too small to affect significantly Lageos' orbit

[Moyer, 1982, private communication].

The determination of tidal accelerations is based on a series ex-

pansion of the tidally induced potential by each of the cor,;idered

celestial bodies (primarily the Moon and the Sun), truncated to the sec-

ond degree. A more sophisticated model where the accelerations are com-

puted on the basis of the tidal constituents (such as the ones derived

by Doodson [1921]) is not required, since our goal here is not to study

the tides per se, but rather to include their effects on the motion of

the satellite in order to obtain a more realistic model for the actual

motion. This formulation assumes a static earth and the same elastic

response behavior of the earth for all orders within the same degree of

the expansion. Although a depEndence of this response on the frequency

of -the sustained tidal wave has been established [Lambeck, 1980; Gaposch-

kin, 1981], for the purpose of the p resent study the simplified model

is a sufficient approximation of the physical process. Since rio special

modeling of the ocean tides is included, it is justified to refer to our

model as that for the solid-earth tides. Ocean tide effects are not

modeled here since their effect is about an order of magnitude smaller

than that of the solid-earth tides [Melchior, 1978]. As pointed out by

18



Musen [1973] though, both tides cause satellite perturbations with the

same frequency spectrum and therefore aliasing is pssible. In fact,

aliasing effects are responsible fur the discrepancy between satellite-

derived and ground-data-derived values of the effective Love number k2

that characterizes the earth's elastic response to the applied tidal

attractions [Melchior, 1978]. For this exact reason the value k 2 = 0.27

is deemed more appropriate for use here rather than that of k 2 0.30

which is generally accepted as the more accurate estimate today [Lam-

beck, 1980].

For the solar radiation pressure we have adopted a simple model

based on the Sun's mean flux and a cylindrical shadow model as that given

in [Cappellari et al., 1976]. A more sophisticated model would require

tedious computations, and it is rather doubtful that the end result

would justify the required effort.

In the following sections we present the formulation for the com-

putation of each individual acceleration and the corresponding variation-

al equations. It should be mentioned here that the only unknowns in the

orbital model are the position and velocity vectors of the satellite at

the initial epoch of the integration. All other constants involved are

assumed errorless although in practice one would solve for a number of

them. For this reason, the variational equations which are presented

here are only those that pertain to the unknowns; a more general set of

equations can be found in [Cappellari et al., 1976]. 	 The formulation is

given in Cartesian rectangular coordinates since the special perturbation

method of orbit determination has been chosen due to the complex accel-

erations involved.

19
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2.2.1 Orbit determination with the method of special perturba-

tions.

The determination of Lageos' orbit using the method of special

perturbations [Cappellari et al., 1976] was dictated by the complexity

of the orbital model and the stringent accuracy requirements. Although

analytical methods can be more efficient and faster in orbit computa-

tions, when the modeled physical phenomena become complex, those methods

simply cannot handle them as accurately as numerical techniques and in

some cases cannot incorporate them at all. In case of Lageos, no spe-

cial formulation of the problem (time regularization, change of depen-

dent variables, etc.) is required since the orbit is almost circular

and very stable; we therefore chose the Cartesian formulation and coor-

dinate time as the independent variable.

A review of the relevant literature reveals that multistep numeri-

cal integration methods are the most efficient and accurate for problems

such as the determination of orbits. Furthermore, the integration of

the original second-order differential equations is to be preferred to

that of the reduced first-order system, since the higher-order set has

a much larger region of stability. Higher accuracy can be achieved--

for a given stepsize--by increasing the order of the method; however,

the higher the order, the less sta p le the process. We thus select an

algorithm that permits variable order so that neither loss of accuracy

nor instability can affect the solution. Frow the theoretical point of

view the orbit of Lageos can be integrated with a fixed stepsize. Since,

however, we use a variable order integrator, variable stepsize can result

in some savings since as the order increases the stepsize is allowed to
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increase too. A relative error test is used to determine whether to

increase or decrease the stepsize and/or the order. The algorithm

which fit our requirements and was conveniently available in computer

coded form was that developed by Krogh [1969, 19701 of JPL. The struc-

ture of this method consists of a modified Adams-Bashforth predictor

and an Adams-Moulton corrector of order one higher than the predictor.

The mathematical formulation of these algorithms are given in [Krogh,

19691, and the user required information in [Krogh, 1970].

Denoting by capital letters vectors defined in the CIS frame of

the integration and by t coordinate time TDB, we can write symbolically

the Lageos orbit equations of motion as:

R = R r, 1,1 + RNS + RTD + RSR + RAT	 (1)

where

PM	 denotes point-mass effects

NS	 denotes nonsphericity of the earth effects

TD	 denotes solid-earth tidal effects

SR	 denotes solar radiation pressure effects

AT	 denotes Lageos ad hoc along-track acceleration

All of the above accelerations are functions of the satellite state

vector and a number of model parameters (e.g., geopotential coefficients,

etc.) which are assum,2d errorless in this study. Since the state vector

at the initial epoch (initial conditions of the integration) is to be

adjusted through the differential orbit correction (DOC) process to best

fit the available observations, the variation in the initial conditions

must be propagated to the epoch of observation state vector. This is
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achieved by means of the transition matrix (or Jacobian of the state at

th ,2 Pooch with respect to the initial state) which is obtained through

the integration of the variational equations of the state [Cappellari

et al., 19761:

d?2 /aR \ _ (IRR /aRl + "aR'`d IaR) + /aR	 (2)

dt	 PJ 	 / l,3P / ^aR J d  \ aP J t aP

where P denotes the vector of parameters of the DOC, in our- case Ro and

Ro, the initial epoch state vector, and the * on the last term indicates

that the differentiation is carried explicitly with respect to P. Equa-

tion (2) can be put in a more compact form if we define the following

matrices:

A(t) _	 jR

aR

Y(t) _ _R

aP

*

B(t) -	
3	

C(t) =	
aR

aR	 aP

and	 Y(t) =	
aR

aP

(3)

We can then write (2) as

Y = A(t)Y + B(t)Y + C(t)
	

(4)

Considering (1) we can write A(t:) as

A(t) = aR
PM 

+ aR
NS 

+ aR
TD 

+ aR
SR 

+ aRAT	
(5)

aR	 aR	 A	 aR	 aR

where each term is a 3 x 3 matrix. Except for the relativistic part of

R PM and the RAT term in (1), no other acceleration depends on R. Since

both these accelerations are extremely small, their contributions to

the variational equations can be neglected with no loss of accuracy.

The variational equations are quite insensitive to such small effects,
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and in fact higher-order effects from the geopotential (for Lageos,

above degree and order four) can also be neglected. This is important

becat',,, the computation of these effects is very tedious and computer

time consuming. With no velocity-dependent terms in the model, we can

set (t) equal to the null matrix.	 In addition to this, C(t) can also

be set equal to the null matrix because the accelerations do not depend

explicitly on either Roor go, which are the only elements of vector P.

The variational equations that need to be integrated then take the sim-

ple form

Y = A(t) Y	 (6)

with initial conditions (i.e., Y(t = 0))

Y o = 1 , 1 ^]	 (7)

I and ^ being the 3 x. 3 identity and null matrix respectively.

2.2.2 Gravitational acceleration from N point masses

In discussing the CIS system in Section 2.2, we pointed out that

the chosen system will be realized in practice through the ephemerides

of the bodies responsible for the gravitational field, as computed from

the EIH formulation of their equations of motion. At this point, be-

fore we give the explicit EIH equations, we must note again that this

formulation is only accurate to an order 0 (1/c 2 ), and it assumes no

masses beyond our solar system. For the particular case of Lageos, we

can furthEr simplify the formulation by ignoring the relativistic ef-

fects of all bodies except for the Earth, the Sun and the Moon. Fur-

t-jermore, since Lageos' mass is insignificant compared to that of the

other bodies involved, we can safely assume that it does not contribute

23



N

u e — 
1E 

Pk

riQ1	
c2 

k=1 Irjk
k#j

ORIGMAL PAM'-' t3

OF POOR QUV.',r'

to the generation of the field, and therefore it behaves as a true mass-

less particle. Deviations of the assumptions on the internal structure

of the perturbing bodies are not a problem either, since they can be

taken irto account through additional perturbing accelerations. The

EIH equations have been derived by Moyer [1971] in a body-system-

barycentric coordinate system for the general case of motion of body i

in the environment of N bodies:

N	 _ _	 N

^• 
i

^-^— 1 - 4
J=1	 Irij j 3	 c	 z=1
j#i	 iti

^z
r. Tr.	 r. Tr.	 r.Tr.	 (r.-r.)T r.	 l

c `	c2	 c2	 2c2	 jrij1	 2c2	 J	 J(

N	 N

1	 u.	 _ T	 ._	 ^	 u•r•

+ z
	

--^— f ( r i — r j ) (4r i -3rj )] ( r i — r j ) +	
z ^

—^
1
	 (8)

c	 j=1	 Ir..J	 2C 2
	 Jr.•j

j #i	 ^^	 j#i	 ^J

where the required j-body accelerations are computed on a Newtonian

basis from

N
(rk-r.)

r j =	 Pk -^--	 ( 9)
1^1	 jrj kj
k#j

Equations (8) and (9) are the basis for the derivation V the

equations of motion for Lageos. To obtain the acceleration of Lageos

in the geocentered CIS frame, we use (8) to compute the Lageos acceler-

ation with respect to the barycenter (r PMg ) L , and in a second applica-

tion, the acceleration of the geocenter with respect to the barycenter
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(r PMB ) G . The required acceleration RPMI for Lageos is obtained as

their difference then:

I_	 1 .
B 	_ - B

	

R PM	 (rPM ) L	 (rPM )G

Since the first terms in (8) represent the Newtonian acceleration,

we can collect them together to produce a more illustrative form of the

final equations. All of the other terms are divided by the speed of

light squared, and we will use the notation (rRrL B ) to indicate the

sum of those terms, where the outer subscript indicates the event to

which they refer, (L, Lageos; G, Geocenter). We can write (10) then as:

I _	 (rCr)	 (rS-r)	 (rM-r)

RPM
	 "E S

 -r 3 r 
s' 	

r -1" 13 + 
UM rM_r l 3

E	 S

	

( r S - r E )	 (rM-rE)	 B	 _	 B

	

u S I - -- , - uM —--- 3 + (rREL ) L	(rREL )G	
(11)

	

i r S - r E ^	 jrM-rE1

where the vector quantities on the right-hand side of the equation are

all referred to the solar system barycentric coordinate system, and the

differentiation is performed with respect to coordinate time, TUB. The

above equation is written for the three major perturbing bodies, the

Earth, the Sun, and the Moon as indicated by the subscripts E, S, and

M respectively. Nonsubscripted quantities refer to the Lageos. This

notation is illustrated in Fig. 2.

For any other bodies of the solar system, only their Newtonian

contributions are taken into consideration using the following expres-

sion [Cappellari et al., 1916]:

(10)
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Fig. 2	 Relative geometry of barycentric and geocentric coordinate
systems.
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PM	
i=1	

3	 ^R	 3

The contribution of RPM to the variational equations is based on

the Newtonian terms only since the relativistic terms are too small to

have any significant effect and the computation of their effect would

unwarrantedly overcomplicate the numerical integration process. From

[ibid.] again we have:

dR
PM
	

uE	
N	 vi	 uERRT	 N	 (Ri -R)(Ri_p)T

	

= _ (_	

+^	 I + 3	 +	 —
aR	 ^R^3^Rls

	 i 1 u ^	 IRi_Rls

(13)

and

DR PM= L]	 (14)
aR

with I and ^ the 3 x 3 identity and null matrices.

2.2.3 Gravitational acceleration from terrestrial nonsphericity.

The infinite spherical harmonics series which describes the geo-

potential in space is given in [Heiskanen and Moritz, 1967]:

	

M	 n

_ E	 a

i( r ,^,^) = u

	

1 +	
(E)n	

[Cnm cos ma + Snm sin m^.] Pnm(sin41)
r	

J
r	 n=l	 m=0

(15)

It is implicitly assumed in writing (15) that the coefficients

C 11 
and 

Snm 
are referenced to the (r,p,a) coordinate system. The ac-

celeration induced on the satellite by -^ is equal to its gradient, v^.

Since the zero th term is considered in the point mass acceleration
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computations, we must subtract it from (15) which leads us to the "non-

spherical" part of	 the perturbing potential V. The derivation of

VV and subsequently RNS is given in [Cappellari et al., 1976]. Because

of the fact that the coefficients C nm and S nm are coordinate system

dependent, the acceleration 
RNS 

is obtained indirectly from the accel-

eration of Lageos in the body-fixed system to which these coefficients

refer. This computation involves the CIS to CTS transformation, and

it assumes that these coefficients refer to the CTS. It is possible

though that this may not be the case. If this is true then the classi-

cal procedure must be revised and the harmonics must be transformed to

the CTS. Formulas for such a transformation are giver, in [Kleusberg,

1980]. Assuming that this transformation has been applied, and denot-

ing by r  the Lageos (inertial) acceleration in the CTS frame, then the

acceleration in the CIS frame is

RNS - (SNP) T r 	 (16)

where (SNP) T is the CTS to CIS transformation [Mueller, 1980]. The

acceleration vector r  is obtained from vV as [Cappellari et al., 1976]

_ xz	 _ Y	 x

r2 P	 P`	 r

r b =	
- r P	 p2	

Y	 °^V	 (17)

0r 	 r

where

(x,y,z)	 _ (X,",Z)	 (SNP) T	(18)

r2 = x` + y2 + z `	(19)

and
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p 2 = x 2 + y 2	 (20)

The coordinates X,Y,Z are Cis referenced, and the x,y,z, CTS

referenced. The 3x3 matrix in (17) t-anstorms from the spherical coor-

dinates r,o,a to the Cartesian x,y,z coordinates.

The associated va r iational equations of state are given in

[Cappellari et al., 1976] as

f

^R	
= (SNP)T 

'r
_b	 (Sirs')	 (21)

aR	 2ri lls	 b	 , S

and

dR	
= l^]	 (22)

3R NS

with ^ the 3x3 null matrix.

Even if the consistency of the coordinate systems has been

assured though, there- are still conditions under which the above equa-

tions will give erroneous results. The reason is that certain low-

degree harmonics, namely, C 20 , C21, 5 21, C22, and S 22 are actually

associated with th? elements of the earth's inertia tensor [Heiskanen

and Moritz, 1967; Nagel, 1976], and it can be shown [Nagel, 1976;

Reigber, 1981] that tnrough these harmonics one can orient the refer-

ence frame in which they are referred, with respect to the principal

axes of inertia system as implied by these coefficients. The problem

arises from the fact that since the earth is not a rigid body, its axis

of figure (principal axis of maximum inertia) has body-fixed motions

due to seasonal mass redistributions (free motion) and a diurnal motion

due to the tidal bulge (forced motion). The free motion is rather small,



with an amplitude of at most 2m and a period close to the Chandlerian

(-430 days), but the forced diurnal motion can reach amplitudes of

±60 m! These facts have been known for some time [McClure, 1973;

Nagel, 1976; Leick, 1978; Moritz, 1979], but a combination of improved

measuring accuracies, more stringent requirements for accurate results,

and more dense (frequent) observational records have almost reached

the point that one cannot afford to continue ignoring them for much

longer [Tapley, 1982].

In the present study we have adopted a time variant nature for

the C21 and S 21 coefficients, computing their values at each epoch on

the basis of the adopted C L0 value and the coordinates of the pole,

using the formulation of Reigber [1981].

2.2.4	 Solar radiation pressure acceleration.

Photons emitted from a radiating source at a frequency , possess

an energy hv, where h is Planck's constant. Since they travel in space

with the speed of light, their momentum can be computed as the ratio

of their energy to their speed. When a massive body travels through

their continuum, the impinging photons transfer part of their momentum

to the body upon impact. It is obviously impossible to know the exact

number of photons that collide with a satellite, but we can determine

the total force if we know the distribution of photons in the continuum,

i.e., their flux. This flux, however, varies, and its instantaneous

value can only be obtained through observation. For the sun, for

instance, solar flares can significantly increase the flux, hence the

photon count. Nevertheless, for the present study adopting a mean
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flux is sufficient, since the effect on Lageos is quite small already.

To determine the acceleration of the satellite due to solar radi-

ation pressure, we first determine the force exerted on thQ satellite.

This force is proportional to the satellite's area of impact A, the

solar flux S, and a radiation pressure coefficient C R , and inversely

proportional to the speed of light c, and the sun-satellite distance

SRS -Rj squared. The radiation pressure factor C R is dependent on the

reflectance characteristics of the impact area. This radiation pressure

coefficient has been sufficiently accurately determined for Lageos at

1.1729. The magnitude of the resulting acceleration on Lageos can be

written, then, as [Cappellari et al., 1976]

F	 S	
IRSI2 C R A

m	 c SRS -Rl 2 m

where S is the mean solar flux at one astronomical unit (1 AU), and F

is the force exerted on the spacecraft. For convenience S/c is denoted

by PS , the solar radiation pressure constant, and it gives the force

exerted on a perfectly absorbing body (C R =1) at a distance of 1 All

from the sun. We have adopted the value of about 4.626 x 10 -6 Newtons/

M' for PS

Since this acceleration is the result of a collision, its direc-

tion is opposite to that of the impinging photons, i.e., in the direc-

tion of R-RS . We can then express the acceleration in the CIS coordi-

nates as

IRS12 C R A R-RS

RSR	 PS 14 -R1 2 m 	

(24)

S
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Because the satellite is not always exposed to solar radiation, its

motion can eventually bring it within the earth's shadow, equation (24)

must be applied only part of the time in the computation of an orbit.

To check whether the satellite is in or out of this shadow, one can go

to various degrees of sophistication, from the simple cylindrical

shadow model to the complex conical one, discriminating between umbra

and penumbra regions [Baker, 1967]. We adopt the s i mple cylindrical

iiiodel and we introduce the eclipse factor Y with only two possible

values:

Y = 1	 the satellite is in sunlight

Y = 0	 the satellite is in the shadow

To determine the value of Y, the following computational checks

are performed at each step:

(a) If R•R S >0, then Y = 1	 IRxR
__	 S

(b) If R•R S < 0, then compute	
1RSl

1R x RS A
If D=	 -

IRS

If 0 =

IR x RS1
_

RSi

at

- a E	 0, then Y = 1

-aE <0, then Y=0

The logic behind this check is best explained in Fig. 3.

If one wants to be absolutely rigorous in the computation of RSR,

then the earth is not the only body to consider. The lunar shadow

should also be considered. Furthermore, the above formulation considers

only the effects of direct solar radiation. 	 If radiation pressure is a
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IR'	 RSI
D:^0 I R^^,^	
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- ..
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m- - ---9
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—^- IR

R• R S < 0 R - RS^0

Fig. 3	 Cylindrical shadow geometry.

major perturbation in the motion of a satellite (unlike Lageos, A/m

0.007), then in addition to direct effects, one must consider the ef-

fects of diffusely and specularly reflected visible radiation from the

earth and also the opposing effect of promptly and delayed emitted

infrared radiation from the body of the satellite itself [Baker, 1967].

The associated partial derivative of (24) that contributes to the

variational equations of the state are given in [Cappellari et al.,

1976] as

aRSR	 PS IRS I 2 C RA	 (R-RS)(R-RS)T

dR 	 I	 m	 IR
-RSI3	

IR-RS1`

and

aR
SR = [^)

^R

where I and ^ denote the identity and null matrix respectively.
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2.2.5	 Tidal acceleration.

The attraction of the Sun and the Moon on the deformable Earth

creates a time-varying (due to the relative motion of the bodies) poten-

tial field which in turn induces additional accelerations on an Earth-

orbiting satellite. This tidal potential can be expanded on the Earth's

surface as an infinite series, as we have already discussed, though only

the second-degree term is of any significance in this study. Accord-

ing to A.E.H. Love [1911], the earth not being a perfectly elastic body,

the actual response of the earth can be obtained from this potential
' 	 t

as a fraction of it. The ratio of the induced potential to the tidal

potential was designated by Love as k, a number whose value depends on

the elastic properties of the earth. Further dependence of k on the

frequency of the tidal waves has been established today, but for this

study we will simply use the effective Love number k 2 with a numerical

value of 0.2748, consistent with satellite results when no modeling of

the ocean tides is included.

The tidal potential on the earth's surface can be written then

in the CIS frame as follows

^' b
U	 =	 a 2 P 2 (cos6)
T b	IR b I3 E

where R  is the distance between the centers of mass of the earth and

the disturbing body b, a  is a mean radius for the earth, P 2 is the

Legendre polynomial of degree 2, and 6 is the angle defined by the direc-

tion of the geocentric radius of the evaluation point and the geocentric

direction to the disturbing body. On the basis of (27) and using

(27)
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Dirichlet's principle, we can obtain the potential U Db that perturbs

the satellite's motion as

k,ub	 aEs

U (R) _ —	 — — 3

D 
	 2	

I k b l 3 IRI'

where we have used the in

manageable expression for

tidal acceleration on the

R b	 R

_	 _	 - 1	 (28)

I R b i	 I R I

ier product between vectors to give a more

P 2 (cose). From (28) and the fact that the

satellite is equal to VU Db (R), we obtain

^,	 aEs	 _ _	 ^.

TD = 2 k
2 —_ b3 -_ 4 [i - 5(u b • u) 2 ]u + 2(u b •u)ub	(29)

	

b	 IRbi	 IRI

where u  and u are unit vectors in the direction of the tide producing

body b and the satellite respectively.

From (29) we can obtain the contribution of this acceleration to

the variational equations as

u	 E s
-jRTD	

= 2 k 2 
_ b3 a=
	

[35(u b •u) 2 - 5]u uT + 2 ub ubT

	

I ,jR	 b	 IRbi	 IRI

+ [1 - 5(u b •u) 2 ]I - 10(u 
b* - 	

u b T + u  uT l	 (30)

and

RTD	
= [¢]
	

(31)
b

where I and y are the 3x3 identity and null matrix respectively. The

derivation of this equation can be found in Appendix A.

The complete effects on the satellite are obtained through a

summation of each body's effects over the number of bodies considered.
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2.2.6	 Lageos empirical along-track acceleration.

As more dense and accurate observations became available from

Lageos, its orbit was determined with increasing accuracy to the extent

that an urmodeled secular acceleration causing a mere 1.1 mm/day de-

crease of the semi-major axis could definitely be identified in all

orbital fits [Smith and Dunn, 1980]. The mysterious acceleration, al-

though small, alarmed scientists since its definitive existence jeopar-

dized the long-term stability of Lageos' orbit and scientific interest

was stirred up to attempt to give an explanation as to what is the phys-

ical cause for it. In most cases, the research has been concluded with

a rejection of the assumed physical phenomenon as the possible pause,

which in science is sometimes a more valuable contribution then finding

the cause itself. Two most recent publications give an example of the

diverse directions in which a solution has been sought.

Rubincam [1980] has examined a number of physical processes char-

acteristic of the upper atmosphere and others such as gravitational

resonance, gravitational radiation and terrestrial radiation, only to

conclude that of all processes examined only drag due to charged and

most likely neutral particles can be a plausible cause for the acceler-

ation. if the relevant theories were further developed, then a more

definitive answer could be given. For the time being though, his main

argument for accepting this explanantion is that it also helps solve

the so-called "helium problem" [Chamberlain, 1978].

Szebehely [1981] on the other hand, keeping in line with his in-

terest in the inverse problem of celestial mechanics, attempts to find

the potential that would generate the unexplained acceleration. On the

36
3



basis of a circular orbit and two-body motion he shows that this poten-

tial is proportional to the spiral function of Lageos (i.e., the equa-

tion described by Lageos on its orbital plane) and inversely propor-

tional to the square of its geocentric radius. One could then con-

ceivably examine processes that are candidates for the solution of the

problem and identify which of them could give rise to such a potential.

Since there is no definitive answer to the problem yet, we chose

to model the unexplained acceleration in the same empirical way that

the GSFC researchers do. From the full amount of available observations

on Lageos, a set of monthly values of the magnitude of this acceleration

has been compiled. We have adopted as definitive values those shown in

Table 1, communicated to us by Mr. Ron Kolenkiewicz of GSFC, covering

the period of time that was of interest to us. In a recent report

[Dunn, 1982], the average value of this magnitude over the first five

years of Lageos data has been reported to be 2.86 x 
10-12 m/s z . This

value can be used as a standard of comparison for the monthly variations

of the effect.

The empirical model assumes that a restraining force is acting

against the motion of the satellite, Giving rise to an along-track (in

the direction opposite to that of the velocity vector) acceleration

RAT . One then can express this acceleration as

RAT = -a 
R	

(32)
IRI

where a is the magnitude of the acceleration taken from Table 1 for the

relevant time period. No contribution to the variation of the state is
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Table 1.	 Lageos Along-Track Acceleration Magnitude

Time Period	 Acceleration Coefficient a x 10 - 12 m /s2

October 1979 4.3

Novembe r 4.4

December 3.2

January 1980 1.6

February 0.4

March 0.8

April 3.8

May 4.3

June 3.2

July 3.5

August 3.4

September 3.3

computed due to the fact the effect is too small to bring any signifi-

cant change in the variational partial derivatives.
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3. THE OBSERVABLE

3.1 Hardware Components

The operational principle of a laser ranging system was already

mentioned in the introduction of this study. The range is inferred

from the round-trip f light time of a pulse emitted from the station,

reflected on the satellite and received back at the station. 	 it is

thus obvious that the system consists of two major components, the

ground-based active instrumentation and the spaceborne sateliite target.

3.1.1	 Laser ranging instrumentation.

The basic subcomponents of the ground-based part of the SLR sys-

tem are the laser cavity, the timing equipment, the detection equipment,

and the pointing system. Other secondary components are mini-computers,

ancillary data collecting devices, calibration instruments, etc.

We will restrict ourselves here tc jescribing the present capabil-

ities of the available systems in terms of the observed ranges' accura-

cy and pointing out the source ..-, of systematic errors affecting them.

For a more detailed explanation of these errors consult [NASA, 19801.

From the laser cavity itself, the major source of error is the

distortion of the wavefront. It can map -Into the range as high as 6.0

cm, but for the last (third) ,,eneration systems is no larger than 0.5 cm.
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The receiver system contributes a much higher error which is a result

of the photodetector, the discriminators and the delays from the various

cables involved. Depending on the quality of the system, it varies

between 1. - 8.0 cm. The timing system introduces systematic errors

in the data for two reasons. The time interval counter frequency drift

affects the measurement directly. The frequency standard that keeps

absoluto time and is used in determining the epoch of the measurement is

also affected by similar factors, and it indirectly degrades the accu-

racy of the daL-a b y sunl y in q biased e p ochs. The total effect is no
Z.	 I

larger than 1.0 cm though.

Finally, the calibration process itself, although by definition

its purpose is to remove such errors from the measurements, can be in

error too. In the older systems that calibration was performed through

test measurements before and after a ranging session; the contribution

to the error budget could be as high as 1.0 cm. New models which are

capable of doing a real-time calibration have almost eliminated this

error source Silverberg, 1981a].

Although t y re above errors are systematic for a particular station,

we cannot claim that they are systematic among stations. In fact it is

more likely that they would be random in that sense. It may be that in

some cases simultaneous range-differencing between two stations will

result in a minimization of the above errors, but we cannot safely

assume that this will be the case always.
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3.1.2	 Laser Geodynamic Satellite (Lageos).

The spaceborne segment of a satellite laser ranging system con-

silts of a satellite which is equipped with corner cube reflectors (CCR)

which reflect light at the incident direction. One such satellite which

is dedicated to laser ranging is the Laser Geodynamic Satellite--

Lageos (7603901). We describe this satellite only because as its name

hints it has been launched to support geodynamics research and therefore

it is the optimal target for such purposes.

The utility and merits of a target satellite such as Lageos are

best summarized in [Johnson et al., 1976], the abstract of which we

quote:

The fundamental concept of Lageos is a long-lived, dense,
electrically and mechanica l ly inert spherical satellite with its
surface speckled with retroreflacting cube corners, designed such

that range measurements between duly equipped laser ground sta-
tions and the satellite are possible with an ultimate accuracy of
2 cm when data from a single satellite pass are appropriately
averaged. The Lageos concept requires that the satellite be
placed in an orbit for which an ephemeris can be determined

ultimately to 5 cm rms uncertainty for a 24-hour- arc. These
required satellite characteristics should allow the several

`	 geodynamic motions experienced b y ground stations to be deter-
mined typically with 2 cm accuracy.

Lageos is a sphere of 0.59988 m diameter, with a mass of 407.821

.44 x. 10 3 kg/m = and

pressure and aerodynamic

made of aluminum with a

appearing as a star of

core drum made of beryl-

kg, which results in a mass-to-area ratio of 1

therefore small sensitivity in solar radiation

drag forces. The outer shell of the sphere is

matte exterior surface which results in Lageos

visual magnitude 12-13. The sphere contains a

lium copper to provide the desired weight.
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The surface cf the satellite is speckled with corner cube retro-

re`lector • s arranged as uniformly as possible in eighteen "rows" or

"rings" and two single CCP's at each end of the satellite's axis of

symmetry. There is a total of 426 high quality, precision manufactured

and tested OCR's [Fitzmaurice et al., 1977].

Following the basic ccncept of the Lageos system, its orbit was

selected in such a way that perturbations caused by solar radiation

pressure, drag, a q d high frequency poorly determined gravitational con-

tributions were minimized. Nominal characteristics of the orbit, as

determined on the basis of initial acquisition data obtained with the

Baker-Nunn camera and laser system of SAO are given in Table 2 [Pearl-

man et al.. 1976]. Lageos has ever since been consistently tracked

with the international laser network maintained by NASA, SAO, and indi-

vidual country agencies. Its ephemeris quality has improved consider-

ably as improved ground instrumentation has been deployed and as the

parameters for the force model have been obtained with similarly better

accuracy. It is claimed [Lerch and Klosko, 19821 that we can now model

Table 2	 Lageos Nominal Orbital Elements

Epoch	 June 7.0,

Inclination	 10908585

Eccentricity	 0.003929

Apogee Height	 5941.9 km

Perigee Height	 5845.4 km

Period	 225.4706 r

Semimajor Axis	 12 271.79(
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the motion of Lageos over a month's time to better than 0.5 m. Never-

theless, it is natural to seek orbital models that have accuracies com-

parable to that of our observations which to date have reached the im-

pressive 2-3 cm level. Once we achieve parity in that respect and sub-

sequently maintain it, we can say that we have exploited the full poten-

tial of the Lageos system.

3.2 Generation of Simultaneous Range-Differences

The most tedious part of this investigation, aside from the writ--

ing, debugging and testing of the required orbital program, was the part

pertaining to the generation of SRD's from the voluminous amount of

laser ranging data provided by NASA/GSFC. The above statement though

requires clarification, since the normally required effort is much less

than chat one might surmise from it. Most of the work involved can be

characterized as "hunting" for suitable data. The fact that no specific

campaign was ever devoted to the application of this new technique

made data collected from stations coobserving the same pass hard to come

by and only by coincidence. It must be noted here that this task was

enormously facilitated by computer software kindly made available to us

by Mr. Ron Kolenkiewicz of NASA/GSFC [Kolenkiewicz, 1980, private com-

munication].

In the following sections we summarize the procedure that has been

followed herein for the generation of the SRD's. We initially describe

the range data set as originally obtained, the corrections that were

already applied to the ranges and corrections which we had to apply in

addition. For the sake of completeness, we describe the details of the
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selection process, although this in effect amounts to an explanation of

the NASA-supplied software. Finally, since we would eventually need to

interpolate the selected observations in order to generate the SRD's,

w2 have investigated three popular approximation techniques, truncated

power series, Chebyshev polynomials, and cubic splines, in order to

determine which would suit our purpose best. This by no means should

be taken as an exhaustive treatment of the problem since it is a re-

search topic in its own right and one can probably spend several years

testing various approximation methods each with its own merits and draw-

backs as well.

An investigation into the required relativistic corrections in

the measured ranges and the corresponding SRD's showed that this correc-

tion is for all practical purposes negliyible for the latter. The for-

mulation and derivation of these corrections along with the station

dependent tidal corrections are given in Appendix B.

3.2.1	 Description of the original set of range data.

Prior to the discussion of this section's topic, some clarification

on terminology is in order, as far as the types of data encountered in

laser ranging is concerned. We will refer to the data collected at the

individual laser stations as "raw data." Besides the observation itself,

each raw data set contains a great amount of ancillary data that is re-

quired in the preprocessing of each observation. Raw data are not use-

ful to an analyst unless the person is familiar with the operational

details of the NASA- or SAO-supported networks of stations. Instead, we

obtain the "preprocessed data" which comprise the actual observations
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with certain corrections applied, and with other corrections having

been computed but not applied. The latter are included in the dissemi-

nated data set with appropriate indicators that inform the analyst of

what has been included already in terms of corrections and what yet re-

mains to be applied. Such practice is particularly helpful in case

someone would prefer to compute the corrections anew with different

models or revised constants. The quality of the raw data depends heavi-

ly on the quality of the laser and timing instrumentation at each sta-

tion. The preprocessed data, though, go through a number of processing

stages and their quality is determined not only by that of the input

raw data, but additionally by the integrity of those processes which

they undergo. It is rather unfortunate that no scrupulous account has

yet been published for either of these two stages of data handling.

For both, the initial in situ processing of the collected data, and for

the subsequent further refinement at the central computational center

of NASA at GSFC, the documentation is outlined in a single short docu-

ment [Carpenter, 1970 distributed to project investigators or obtained

on request.

The gist of this document is that there are in general four cor-

rections which need be applied (and are) to the observed ranges: fixed

threshold to peak (return) signal offset, instrumental calibracion cor-

rection, atmospheric refraction correction, and satellite center-of-

mass offset correction. Some other corrections Wright be done addition-

ally to compensate for peculiarities of individual instruments (e.g.,

mount axis offset correction for X-Y type mounts). The first correction

is obtained from the output of the waveform digitizer and the registered 	 ?t
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travel time of the pulse. The internal calibration correction is deter-

mined from ground-target ranging results collected just prior and imme-

diately after a satellite ranging session. For the latest generation

of laser instrumentation these two corrections are determined and ap-

plied in real time [Silverberg and Malevich, 1978; Silverberg, 1981a].

The atmospheric refraction correction is computed from a formula given

in [Marini and Murray, 1973] using the pertinent information collected

at the station during the tracking session and transmitted along with

the raw data to the computing center. The center of mass offset correc-

tion is determined for each satellite before its laL , nch.	 It is meant

to refer the observed range to the point which is considered the center

of mass of the vehicle and to which the computed orbit state vectors

refer. For spherically symmetric satellites, such as Lageos, the correc-

tion is a constant (0.24 m for Lageos), but for satellites with compli-

cated figures (e.g., those which carry solar paddles) and whose center

of mass location depends on the relative position of moving parts (such

as the paddles), the computation of the correction depends on several

factors and sometimes it can only be approximately known. This is one

more reason why satellites such as Lageos are ideal for the precise

positioning required in geodynainics research.

When all the corrections have been applied, the data collected

over each satellite pass are fitted to a polynomial to identify blunders

and edit suspect observations. Nominally, a fifteenth-degree polynomial

is used; however, for passes where less than 60 ranges are accepted, the

degree of the polynomial is reduced to one-fourth the number of accept-

able data points. The editing is performed by comparing the difference
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between the observed range and that computed from the fit to the

rms deviation of the fit. Data points which differ by more than three

times this standard deviation are edited and the process repeated.

Carpenter [1978] assures us that for relatively well-distributed data

points, this process converges quickly and indeed eaits only spurious

data. It is not the goal of this investigation to examine the correct-

ness of these subtasks, but it is worth noting that the so-called 30

rule has been contested on various occasions [Uotila,1913 and 1976], and

the implicit assumption that the analyzed data errors are normally dis-

tributed (for the rule to have any meaning at all) is made rather out of

convenience than on the basis of some theoretical justification. At any

rate, discussions at the meetings of the parties involved indicate an

awareness of the problems in data preprocessing, ana it is safe to say

that major revisions can be expected in the near future in several as-

pects of this task.

The corrected ranges and the applied corrections are archived at

the National Space Science Data Center (NSSDC) from which copies may be

obtained upon request. It is this type of data that we have obtainea

for the numerical tests of this investigation. The format in which the

data have been enco&d on the magnetic tapes for transmittal is commonly

known as the "Lageos binary format" [Putney, 19801, and it replaces the
previously used (similar) Geos format.
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3.2.2	 Selection of ranging data on simultaneously observed

satellite passes.

The distributed preprocessed ranging data are obtained on magnetic

tapes, arranged in files, one for each month of the period covered.

Within each file, the Oata are arranged in chronological order. For

each set of monthly data, a catalog is constructed showing the stations

which have collected observations over that month and the number of ob-

servations collected. The catalog cor..ains also a pass-by-pass break-

down of the data and the beginning and ending epochs for each station

having observed a certain pass. On the basis of this catalog and the

known geographical location of the ooserving stations, the station pairs

which are likely to have sufficient numbers of observations on the same

portion of a satellite pass are determined.

If the number of coobserved satellite passes and the distribution

of the observations seem promising, the next step is the actual deter-

mination of the overlapping observational periods and the number of ob-

servations collected by each station of the pair over those periods.

This is accomplished by examining the data with the OVERLAP software.

Due to either equipment or data failures, occasionally a pass is inter-

rupted by gaps due to the missing or edited data. These gaps result in

an uneven data distribution over the pass and can cause problems a. a

later stage, when simultaneous ranges are to be interpolated. To allev-

iate this problem, the software checks the duration of these gaps in the

selected passes, and if they are larger than an allowed value, the pass

is broken down into subsets of data. A 30-second maximum gap has proven

reasonable as it does not cause problems in the interpolation, and at
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the same time it does not result in extremely small subsets that would

be hard to interpolate due to insufficient data points. At this point

the results of the overlap analysis are examined as to the data content

and distribution; periods with less than ten data points are rejected

and so are the data from station pairs that have no significant total

amount of observations over the whole month.

The remaining identified periods are now used to select the actual

observations out of the original data set. At this stage, the distribu-

tion of the selected data within the overlap period for each of the

paired stations is determined. 	 In almost all cases, and for obvious

reasons, the station with the largest nudiber of observations also has

the best distribution.	 It is important to known this detail, because

only for one of the staticis need the ranges be interpolated at the

epochs that the alternate station has observed. We therefore choose to

interpolate the ranges from the station with the best data distribution

in order to keep approximation errors as small as possible. The end

product of the selection process is two files, one containing the select-

ed observations, and one containing a data-station directory. 	 Included

in the directory are the endpoint epochs fo r each batch of data consti-

tuting a pass or a portion of it, the identification numbers of the sta-

tions coobserving the pass, and an indicator that determines for which

of the stations the ranges will be interpolated and for which the actual

observations will be used.
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3.2.3	 Functional representation of the data selected for

SRD generation.

We discuss here three different approaches for the approximation

of the station-satellite distance at a number of given e pochs, on the

basis of observations of this distance at other instances spanning the

approximated interval. One restriction in our choice from available

methods is the ar^itrary distribution of the observed ranges over the

satellite pass. Having no control at all over this factor, we have but

to eliminate outright the possibility of using some very simple, effi-

cient and accurate methods such as the Chebyshev approximation [Dahl-

quist and Bjork, 1974] or, for that matter, any other method which re-

quires that the given base points correspond to a particular set of

values of the free variable. Of the remaining viable methods, we have

chosen to study two which either by virtue of their simplicity or their

accuracy properties have attained widespread popularity among those who

analyze experimental measurements. These methods are the least squares

approximation and the cubic spline interpolation. There is a vast lit-

erature for both topics; one, however, is almost obliged to refer to the

classical text of Davis [1975] for the first, and the concise but practi-

cal treatise of Spath [1974; for the second. As far as the least squares

method is concerned, we have investigated th-- application of the method

with two different sets of base functions: monomials and Chebyshev

polynomials. To test the three methods in the absolute as well as the

relative sense, the following experiment was performed.

We chose two sets of ranges, each set distributed over an interval

of about 15 minutes, typical of the overlapping periods encountered in
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this study. One set is chosen to have a high data density, with observa-

tions being made at a rate of about 1 pps. The other set is one of very

sparse data, with observations about 20 seconds apart on the average.

The sparse data set was collected at the Orroral (7943) SLR station in

Australia, while the dense one comes from the Goldstone (7115) SLR sta-

tion in California. Figs. 4 and 5 are the plots of these ranges versus

time. The vertical bars indicate the actual data points. From these

two sets of ranges, we selected a number of data points evenly distrib-

uted over the entire pass to form a "ground truth" data set. These

selected ranges were eliminated from the original data sets. The re-

maining observations were subsequently used in the approximation process,

using all three different methods. The results are then used to approx-

imate the station-satellite distance at the "ground truth" points pre-

viously selected. Comparing the true values with the interpolated ones

provides a criterion for the integrity of the method. The performance

of each method in a regional, as well as a global sense is Pxamined, arid

finally the results of the three methods are intercompared, taking into

account also the c)mplexit_v (or simplicity) of each method, its effi-

ciency and the computational time that it requires.
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Range versus time graph for the sparse data set from

station 7943.
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3.2.3.1	 Least squares approximation using monomials and

Chebyshev polynomials as base functions. 	 The existence and uniqueness

of an n th -degree polynomial that takes given values on a set of n + 1

points of a closed interval [a, b] is guaranteed by the well-known

theorem of polynomial interpolation [Davis, 1975]. The representation

theorems of interpolation theory provide the tools for determining t''is

polynomial in various ways. Lagrange's and Newton's formulae are the

more often quoted solutions for this problem.	 It is equally well known,

though, that as the number of given points increases (the degree of the

polynomial increases, too) insurmountable problems arise from the compu-

tational aspect of this polynomial. Furthermore, even if the numerical

problems could be overcome, the resulting polynomial will exhibit such

strong oscillations between the fiducial points that it would be i% s-

sible to use it as a reliable approximation in those intervals. Despite,

therefore, Weierstrass uniform approximation theorem and Walsh simul-

taneous interpolation and uniform approximation theorem, in practice we

must find a working alternative free of the aforementioned drawbacks.

One such alternative that we study in this section is the appl:;;ation of

"best approximation," best in some sense soon to be defined.

A natural requirement for any type of approximant to a function f

is that it. should be "close" to f. As soon as we define the notion of

"closeness" quantitatively. we have established a criterion for deter-

mining the best approximant of f in that sense. For the specific prcb-

lem encountered in this investigation, we can restrict ourselves to the

theory as applied for normed linear spaces of finite dimension [Davis,

19751	 we chose to work with the 2-norm, since in that case its
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interpretat'on as the geometric distance between two elements of the

space is simple and intuitively appealing.	 For an element x of the

n-dimensional real space R n , the 2-norm iI defined as

n

1I x 11 = (E xiz)
i=1

	 1	
(33)

where x i
 0

= 1,	 n) are the components of x. If x,y are two elements

of a metric; space R 1^, and d denotes the distance function in R n , then

enforcing

d(x, y ) = II x -y II
	

(34)

to hold for all x,y E R n , makes R n a normed linear space.

An alternate and more appropriate way of obtaining a normed linear

space is to start with an inner product space. The inner product is a

"two-slot machine" similar to the distance function, possessing linear-

ity, symmetry, homogeneity and positivity. and denoted by <•, 	 If

we force in an inner product space the following equality to hold

11 x 11 = r<xx>	 (35)

then we obtain a normed linear space. Depending on the definition of

the inner product, we obtain different norms for the resulting normed

linear space. As they are all results of the more primitive concept of

an inner product, we call them "induced norms."

We have already chosen to work with the ?-norm , and it is easy to

see from (33) and (35) that the inner product should be defined as

n

<x, x =	 xi
i=1
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to be consistent with the rest of our formulation. We can now define

the best approximation in terms of closeness under the 2-norm:

Definition: The best approximation of y by a linear combi-

nation of (x i , ..., x k ) is a,x l + ... + a 
k 
x 
k 

if the following

inequality holds for every choice of the constants A lf ..., A k :

e = II y - (alxl + ... + a k x k ) II `. 11 y - (A,xi + ... + A k x k ) II 	 (37)

The quantity e is called the error norm, and it is obvious from the

above definition that the best approximation is	 the one which miniljizes

e.	 Since	 the x l , ...,	 x  span a subspace R k ' which contains the approx-

imant a y x, + ... + a k x k , the above inequality can be illustrated as a

projection of y onto this subspace R k . The error e then can be viewed

as the perpendicu - ar distance from y to R k , and the approximant as the

projection of y onto R k , as shown in Fig. 6.

Fig. 6	 Geometric interpretation of the best linear approximation.

It can be shown that for a given inner product, solving the pro-

jection problem is equivalent to solving the best approximation problem.

If the solution to either problem exists, then it is unique. Further-

more, we ca , 1 guarantee the existence of the solution (therefore its

uniqueness, too) by choosing x „ ..., x  to be linearly independent and
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k 2- n.  We can now construct the projection of y onto R  and thereby

obtain at the same time the best approximation under the 2-norm, better

known as least squares approximation.

Let x l , ..., X  be a spanning set for R k . By means of the Gram-

Schmidt orthogonalization process we can form an orthogonal basis el,

e  for R k . We are seeking the projection s of y onto R k so that

(y-s) 1 R k or equivalently (y-s)1e i for all e  in R k . Since fe i I are a

basis for R k and s is an element of R k , we can find ic i ) constants so

that
t

k

s =	 c  e i	(37)

i=1

The error vector y-s being orthogonal to all e  satisfies

< y-s, e. - = 0	 i=1, ..., k	 (38)

or
y, e i	= < s, e i >	 i=1, ..., k	 (39)

and by (37):

y, e 	 > = ci 11 e i	 (40)

which leads to

< y, ei

l e i	 112

The projection s is therefore fully determined and by the equivalence

theorem the representation (37) is the best approximation of y in the

least squares sense.

If we want to determine s in terms of the original spanning set

tx i ), then we modify (38), (39) and (40) accordingly:
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• Y-s, x i >. = 0	 i=1,	 ., k	 (42)

• y, x i > = < s, x i >	 i=1,	 k	 (43)

arid since now

k

S	 ci x i	(44)

i=1

we get	 k

< y, x i	 = 1, c z < x k , x i	i=1, ..., k	 (45)

Q=1

The last equation can be written in matrix form as

k l <y l x
1
>
11 = k[Gi,j]k k[ci

	
(46)

where

Gii = <x
i , x i	(47)

and it can be easily verified that the matrix G is symmetric. Equation

(46) is the normal equation of the problem. It is also known as the

Grammian of {x i } with respect to the adopted inner product. The solu-

tion of (46) yie','s the sought for coefficients tc i ) and the required

inverse of G is guaranteed by the linear independence of the basis

elements {xi).

Two different sets of basis elements {x i I have been used in this

study. The set of monomials

M(t) = t ,	 k =0, ..., k-1	 (48)

and the Chebyshev polynomials T V (t) defined as

To(t) = 1

T 1 (t) = t

?.	 I
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T Z (t) = 2t T Q_1 (t) - T^, _ 2 (t)	 z=2, ..., k-1	 (49)

The former result in the widely used "polynomial fit" to the given data,

while the latter, due to certain properties they have, show a superior-

ity from the computational point of view that becomes increasingly more

evident as the degree of approximation (the dimension of R k , k) in-

creases. In theory the two fits (for the same degree k) should be equi-

valent, since T(t) are linear combinations of M(t) and vice versa, and

therefore span the same space R k . The former have the interesting prop-

erty of being orthogonal with respect to summation though, whe.i the

summation is carried over specific points in the interval [-1, 1]:

m	 0

Z T i (t Z ) T i (t 9 ) =	 21, i = j # 0	 (50)

R=0
m+1, i = j = 0

where it 	 are the zeros of Tm+1 (t) defined as

t r = cos ( 2m+1) 2	
Z=0, 1, ..., m	 (51)

This property is the basis for the excellent from all aspects Chebyshev

interpolation [Oanlquist and Bjork, 1974; Snyder, 1966], when we can

_	 choose the distribution of the given data. It seems, however, that for

a dense distribution of data sums of products of T Z (t)'s, such as those

encountered in the formation of the normal equations (46), tend to be-

have in much the same way. The growth of the off-diagonal elements of

the G matrix is slower in this case (with respect to the degree k) com-

pared to a fit with monomials M Q (t). Furthermore, the loss of signifi-

cance (due to the finite nature of the computer) is much less serious

59

I



here than it is for the classical monomial fiL. We can thus use higher-

degree Chebyshev expansions than polynomial ones without the risk of

divergence and thereby absurd results due to an ill-conditioned normal

matrix.

The question then arises as to what should be the choice of the

degree k. Obviously, for a convergent fit the error will decrease as

the degree increases. The oscillation of the resulting approximant

will also increase though, and we must find a way of stopping at some

optimum degree before that and the loss of significance make the approx- 	 t

imant worthless. Since some of the criteria that we have studied are

based on statistical concepts, we first have to introduce such concepts

to our approximation process, which so far is of a purely mathematical

nature. The simplest way of doing this is to modify our definition of

the inner product (36) by including a weight function w(x i ) which is

assumed to be positive definite:

n

X, x >w =	 W(Xi) Xi2
i=1

The meaning of w(x i ) can be that of assigning various degrees of

importance to each x i in a relative sense. One natural choice in the

least squares approximation is to gauge importance against the amount of

information contained in each observation for the parameters of the

problem. To do this we must have some measure of the level of observa-

tional errors, and this can be achieved statistically by defining their

distribution.	 If the distribution is the normal, which is usually the

case, then it is fully defined through its first two moments, the mean

r_

(52)
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u and the variance a 2 . This being the case, it can be shown [Rao, 1973]

that the Fisher information measure of each observation on the u param-

eter of its distribution is

^'^^rcrNq^ P
022	

OF poO& Q^^ Ty	 (53)

_1(w) is a function that complies with the requirements of the weighting

function, and from its definition it seems that it is ur ge fit for this

purpose. The weights are therefore determined as

w(x i ) =	 12	 (54)

a.
1

where in our case we have used o i l = a 2 (i = 1, ..., n), since we have no

means to discriminate between the observations. In matrix notation,

the inner product can now be expressed by the following quadratic form:

<x, x>w = x T Wx	 (55)

where

W = diag [w(x i )]
	

(56)

If one can further make the assumption that the errors are dis-

tributed independently, then W is the inverse of their variance matrix

E, and in this case the approximation is more appropriately called

"minimum variance estimation" FRao, 1973]. We can now, in light of the

above discussion, speak of statistical properties of the approximant,

and in fact we should also change our terminology, substitutiog estima-

tion for approximation, estimator for approximant, and residuals for

errors. This generalization of the process of approximation opens the

way for use of various tests of significance, devised and applied in the
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theory of linear statistical inference [Rao, 1973; Pollard, 19771. 	 In

the tests that we have performed with the two selected sets of data we

have looked at possibilities such as the convergence of the root mean

square error of the fit (rms of fit), the rms of the recovered values

at the ground truth points, and the significance of the change of the

weighted sum of squares of the residuals between successive fits.

3.2.3.2	 Interpolation with cubic spline functions.	 Despite

the fact that theoretically one can always determine an interpolatory

polynomial for the station-satellite range function, we have already

seen that the large number of data points makes its computational aspects

awkward and its qualitative and quantitative value questionable. To

avoid the erratic behavior of the polynomial in between data points, we

must keep its degree low. If, however, low-degree polynomials are

fitted to the data, then we must tolerate the fact that they only approx-

imate the function, that they do not reproduce the function at the fidu-

cial points, and additionally, that some filtering of the high frequen-

cies in the data is unavoidable. An alternative that exhibits the

described low-degree-polynomial behavior and the reproducibility of the

function at the fiducial points is the use of spline functions [Spath,

1974].

Spline functions (SF's) are curves consisting of low-degree poly-

nomials each of which is defined over the closed interval [t i , t i+1 ] of

two successive fiducial points. These elements of the SF are connected

at these nodal points in such a way that their derivatives (to maximal

order) exist. Since the SF passes through all nodal points, it
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reproduces the interpolated function at these points exactly; and fur-

thermo re the use of low-degree polynomials suppresses the undesired

oscillations between these nodal points. Provided that some boundary

conditions are specified for the behavior of the SF at the endpoints of

the interpolated interval, the existence and uniqueness of the SF is

guaranteed [Spath, 1974].

As is the case with least squares approximation, the boundary con-

ditions for the SF determine an "optimality" criterion which the result-

ing SF satisfies. A natural cubic spline s(t), t C—[a,b], for instance.

is determined with the boundary condition

s"(a) = s"(b) = 0	 (57)

and it is shown in [Spath, 1974] that s(t) minimizes the following

integral

b
I(f) = j	 [f"(t)] 2 dt	 (58)

a

where f(t) is the interpolated function. Equivalently, one can say that

the above SF is the solution to the variational problem

b
I(f) = J [f"(t))]`dt = a minimum	 (59)

a

with the aforementioned 'jundary conditions supplemented by the addi-

ticnal constraints that the resulting function passes through the given

nodal points. Even though splines are interpolatory in nature, with a

reformulation of the problem they can be "fitted" to the data in some

optimal sense--most naturally the least squares sense. So one can con-

ceivably solve the problem of approximation and filtering simultaneously
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with this option [Spath, 1974]. Since in our case the weighting func-

tion for the observed nodal values is not known a priori, we refrain

from using smoothing splines. In what follows, vie summarize the compu-

tational aspects of cubic splines as we have applied them in this inves-

tigation.

We are given the values of the station-satellite range r  at n

epochs, t l <t 2 < ... <tn' We seek to determine the constituents f  (i=1,

..., n-1) of the cubic spline s(t), each f  being a cubic polynomial,

under the constraint t qat s(t) is twice differentiable dt the n epochs

t l ,	 tn. Each of the f i 's is defined on the corresponding range

[t i , t i+l ]. We adopt the following form for fi:

f i (t) = ai,l (t-t i ) 3 + a i,2 (t-t i ) 2 + ai,3 (t-t i
) + ai,4	

(60)

so we will have four unknown coefficients for each of the n-1 fi's,

4(n-1) total. To exploit the constraints for derivative continuity and

existence, let us first establish the following notation for brevity:

At 
=	 t i+l	 -	 t i or =	 r i+l	 -	

r 

r 
=	 f i (t i ) ri+l =	 fi(ti+l)

ri =	 f^	 (t i ) ri+l =	 fi(t	
(61)

i+l)

r =	 fj	 (t i ) ril =	 fI,	 (ti+l)

We can now write the following set of equations for each of the n-1

intervals [t i , ti+l]:

r.	 = a.
i	 i,4

ri+l = ai,lAti + ai,2 Ate + ai,3
 At + ai,4
	

(63)
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r^ }1 =	 3a i,1 nt	 + 2a i,2 nt i	+	 a .i,3 (65)

r^ =	 2a i,2 (66)

rl+1
=	 6a i,1

At  +
2a 

i,2
(67)

After some algebra, (62), (63), (66),	 and	 (67)	 can	 be solved	 for-

the four unknown coefficients 'a ij , j =1,	 ...,	 41:

ai,1
1=	 6	 ti	 (r'i +1	 - r i ) (68)

a.
i,2

-	 1	 r 11
2	 i

(69)

a i,3

_ Ar i

At 	
-

1

6 nti
(r +1

+	 2r") (70)

a 1 ,4 =	
r 

71

Substituting	 (68)	 - (71) into equations (64)	 and	 (65) we obtain

for the first derivatives

ri	 =
or.

- 6 ti	 (r + 2r^)	 i=1,	 ...,	 n-1 (72)t̂l
+1

and

Ar

rn _ 

,fin-1 + 6 Ltn_^ (2rn + r n-1 ) 	(73)
n-1

From the continuity constraints for the first derivative we must

force the following equality to held at the nodes:

f 
	 (t i+1 ) = f i+1 (t

i+1 )	 i=1, ..., n-2	 (74)

Substituting -Nom (64) and (65) we get the explicit constraint in terms

of the coefficients iaij):
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3a i11 et2 + 2a i,2 at 4 +ai ^ 3 - ai+1, 3 = 0	 (75)

We now substitute from (68) - (71) for the 
{aii} 

in terms of the second

derivatives r", etc. and obtain the following working expression:

	

or. + 	er.
st i r + (2nt i + 2oti+1)r +1 + Ati+1 r +2 = 6 ntl 1 - c,t^

	

i +1	 i

	

i = 1, ..., n-2	 (76)

Obviously this expression cannot be written fcr the first and last

nodal points, for there are neither prior ( for the first) nor posterior

(for the last) information on which the estimation of the ri and rn can

be based. We therefore need to provide this information through the

boundary conditions. In this case the first and last equations of the

(76) system are modified appropriately. When written in matrix form,

(76) is as Follows:

2(At l +:,t 2 )	 ot2	 0	 r

	

Ate	 2(ut2+At3)	 dt3	 r3

At3

	

stn-2	 rn - 2

	

0	 At	 2(at+-t	 )	 r"
n-2	 n•-2	 n-1	 n-1

	

6 ( nr2 - 
—A—r-1 - nt l r,"

1 Gtz	 At,

Lrj _ Gr2.

	

6 ot 3	At2

-

	

	 (77)

6 
/er

n-2 - ern -3
( 1.tn-2	 ntn-3 I

	

6 `r r.-1 _ Lrn-2	 nt	 r"
	At 	 At

 etn-2/
	 n-1 n
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For the system (77) to have a unique solution the coefficient

matrix must be invertible. This matrix is symmetric, tridiagonal, with

positive diagonal elements, and diagonally dominant. None of the pri-

mary determinants vanish therefore, and in fact they are all positive.

The matrix is thus positive definite, and its Layley inverse exists

(unique inverse).	 For the pa:-titular case of SLR data interpolation,

the sernined deriv3tvc	 t-^ i .^^ u^ she two end points are not known explicitl y,

and so we must look for an alternative set of boundary conditions.

Since the observed range is a slowly varying function, we can safely

assume that r^ and r" Ere related linearly to r2 and rn -2 respectively.

r" = u r2

r 11 _ T r l l

n	 n-1

where k7, T are constants which we must choose. The new set of boundary

conditions (78) requires t"iat the first and last of the equations (77)

be changed to

(2+j)^t l + 2nt 2 	Ate	 rr;'

lit n-2
2r,tn-2 + (2+-t ).stn-1] rn-1

6 !rz - Arl )
At2	 A . 1

6 ° rn-1	 am-2

rtn-1	
stn-2

(78)

(79)

IGR.
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0	 OOR QiU^ ..., v
Finally, the choice we have made for a and z is to set them

equal to unity. The rationale behind this is that the derivatives of a

polynomial become in general smoother as their order increases, and since

we have a smooth function to begin with, there cannot possibly be a sig-

nificant change in its second derivative over the few seconds that the

two nodla s are apart. Besides this, as shown in [Spath, 1974], the vari-

ation of the boundary conditions results in insignificant variations in

the interior intervals and therefore a stable interpolation spline will

be obtained for any reasonable choice of these conditions. The final

form of (79) is therefore (a=T=1):

3_^t 1 +2At 2	At2	 0	 r"

", t 2	 2(At2 +Ut 3) 	 At3	 r '3

•	
Atn-2

0	 At
n-2 

2At
n-2

+3At
n-1	 rn-1

6	 ^'
r2
	- L

tit2 At,

6	 Ar 3 Are

Zt 3 Ate

Arr-1 `ern-2
6

At 
n-1

_

At n-2

(80)

Solution of (80) yields the required second derivatives r" 0=2,

..., n-1) for the determination of the 4(n-1) coefficients (aid)

through (68) - (71). At this point the spline s(t) is fully determined

by the n-1 cubic polynomials f i (t) (i-1, ..., n-1) with the general ex-

pression (60). Values of the interpolated function can be be obtained

68



Ot?1GllyA^ ;if, .:^ B;;
Or POOR QUAY 

TY

from s(t) for any t 1 < t < to-1' We can use the interpolated values at

the ground truth points to get an idea of how well s(t) approximates

the range function.

3.2.3.3	 Comparison of least squares estimates and cubic spline

interpolants for the range `unction. 	 We present and compare in this

section the results obtained from a number of tests we performed with

the SLR data collected during two passes of satellite Lageos over the

Australian station at Orroral (7943) and the U.S. Station at Goldstone

(7115).	 In all cases, except fo r spline interpolation, the domain of

the function has been transformed to [-1, 1] through the following

equation

2t- (t6+tE)
tE - t 

where t6 , t  are the actual epochs of the first and last observations

available. The above transformati- n greatly improves the conditioning

of the normal equations, since raising T to high powers can now result

only in losing some significance if T is very small. 	 if t could be

larger than one, then we ran the risk of exceeding the exponent inagni-

tude limit of our computer.

With reference to the conditioning of the nor-inals, we have also

found helpful the scaling of the matrix in what is commonly termed

"correlation form" in statistics. This technique results in making

uniform the range of values of the elements of the matrix, thereby im-

proving its numerical properties. The scaliny is done jy means of the

square roots of the diagonal elements. We denote the original system

of normal equations by
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Nx=U
	

(82)

Then let

C = diag (n ii -
 
f )	 (83)

with ICI # 0 since N is positive definite. We put

N = CNC	 (84)

and therefore

N -1 = C 
I N

-1 C -1
	

(85)

Pre- and post-multiplying (85) by C we obtain

CN -1 C = CC -1 N
-1 C -1 C	

(86)

or

N_ 	 CN -1 C
	

(87)

from which we obtain in combination with (82)

x = CN -1 C U	 (88)

Although this procedure does not alleviate numerical problems com-

pletely, it seems to improve the solution,, especially in the case of a

good distribution of data, as can be verified from Table 3. When the

base functions are the Chebyshev polynomials, then the original normals

are already uniform, and we see no change in the results of the two

solutions.

The quality of the approximnation depends not only on the global

behavior of the approximant, but on the local as well. A generally good

fit therefore can give poor results in so le regions where the data dis-

tribution is worF? than in the rest of the data set. When the differ-

ences oetween the o`.served ranges and the approximated at the ground

truth points are examined, it is helpful to know whether we are working

in a dense region or a sparse one. We have determined the time intervals
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Table 3

Te s t	 (.:f 9e

Ur;;rec Nu[• ul:[ l
o f	 I^;qn^

I it	 Used

N
16

N

N
19

N

Comparison of Monomial Fits

Dense	 U a t :1
----------------------------

	

IUN	 Plc au	 Iterovery CPU
t, I t	 EI-I-o I •	 IUIS	 Tiule
(m)	 (nI)	 (ul)	 (S)

	

0.24	 0.01	 0.12	 1.3

	

0.22	 -0.01	 0.08	 1.3

	

7.21	 0.23	 6.37	 1.7

	

7.39	 -0.50	 4.61	 1.7

Using N and N

---------------------------------
S U it r •J• a	 1) a t a

-------------------------------
MIS	 Ple :1 It	 Re e o ve r y C 1' U

F i t	 Error	 11PL'4	 T 1 me

(III)	 (ul)	 (ui)	 (S)
-------------------------------

3.5	 -0.60	 2.36	 0.13

0.5	 0.10	 0.59	 0.15

	

1619.9 -406.20 1570.30	 0.18

1498.9	 0.25	 14.04	 0.18

0R!G NIP-.' PACE TS
OF POUR QUALITY

Table 4	 Distribution of Ground Truth Points,

Sparse Data

---------------- ------------------------------- - --
 -------

	

Station No. : 7943	 <--------- T	 ->

	

-Observation Epoch	
--<____-T^-____><__-T -->

	

-----------	 -a---
YYMMP,, HEMSS . SSSS T I T 

H
T

800814 110626.8209 7.50 15.00 22.50
800814 110719.3610 37.54 22.53 60.07
800814 110842.0612 7.50 15.00 22.50
800814 110934.5613 15.00 7.50 22.50
800814 111019.5615 15.02 7.50 22.52
809814 1111	 4.5216 22.46 22.46 44.92
800814 111134.4617 7.48 7.49 14.97
800814 1112	 4.4618 15.00 7.50 22.50
800814 111219.4319 7.47 15.00 22 47
800814 111256.9021 7.47 7.50 14.97
800814 111319.4022 15.00 7.50 22.50
800814 111356.8823 22.48 15.00 37.48
800814 111526.8828 15.00 45.02 60.02
800814 111626.9931 7.50 59.96 67.46
800814 112019.1846 7.50 15.00 22.50
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to the nearest observation prior to and after each of the ground trL,.h

points for both data sets. The epoch of these observations and these

time intervals are displayed in Tables 4 and 5, where T
L
 is the interval

in seconds to the nearest preceding observation, and T  is the interval

to the nearest succeeding one.

In all tests we have used expansions starting from degree five all

the way up to '20. The summaries which are discussed here display only

partial results which are enough to indicate the performance of each

method. From Table 6 it is obvious that even for the dense pass the

approximation with monomials starts diverging after degree 16. This is

also true for the other pass, as ca-- 	 peen from Table 7. The results

for solutions up to degree 14 are	 -= for monomials and Chebyshev

polynomials. From thereon though, wr.i.e the former diverge, the latter

converge with no major problems. The results given in Tables 8 and 9

ccn be compared to those of Tabels 6 and 7 respectively to verify this.

Only the recovered range data quality becomes poorer at higher degrees

for the sparse data set, and this is caused by the distribution of the

data, rather than instabilities in approximation technique. The denser

pass shows a very good recovery even at those high degrees.

The computational time is about ten percent higher for the Cheby-

shev solutions compared to the monomials, but the increased stability

and quality of the solution seems to be well worth it. It is therefore

recommended that if one has to choose between these two solutions one

should always go wit:-, the Chebyshev expansion rather than the monomials.

The question, that arises next is how to decide which is the lowest degree

that gives a satisfactory representation of the data. using the
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Table 5	 Distribution of Ground Truth Points,
Dense Data

Station No.	 :	 7115
--------------------------------------------------

<--------- T -------->
Observation

-------------------
Epoch ;----

-------------------------TL ---- ><-- TR-->

YYMMDD HHMMSS.SSSS i' T R T

800814 131626.0577 I.00 1.00 2.00
800814 131653.0577 1.00 1.00 2.00
800814 131714.0577 1.00 1.00 2.00
800814 131735.0577 1.00 1.00 2.00
800814 1318 2.0577 1.00 1.00 2.00
800814 1320 9.0577 1.00 1.00 2.00
800814 !32032.0578 1.00 1.00 2.00
800814 132052.0578 1.00 1.00 2.00
800814 132113.0578 1.00 1.00 2.00
800814 132134.0579 1.00 1.00 2.00
800814 132156.0579 1.00 1.00 2.00
8008!4 132217.0580 1.00 2.00 3.00
800814 132240.0581 1.00 2.00 3.00
800814 1323 4.0581 1.00 1.00 2.00
800814 132325.0582 1.00 1.00 2.00
800814 132345.0583 1.00 1.00 2.00
890814 1324 9.0584 2.00 1.09 3.00
800814 132436.0585 3.00 2.00 5.00
803814 1325!8.0586 3.96 1.00 4.00
800814 132547.0588 3.00 1.00 4.00
600814 132623.0589 1.00 1.00 2.00
800814 132652.0591 1.00 1.00 2.00
860814 132720.8592 6.00 1.00 7.00
800814 132745.0594 2.00 1.00 3.00
800814 13281 ► .0595 2.00 1.00 3.00
800814 132833.0597 1.00 1-00 2.00
800614 132654.0558 1.00 1.00 2.00
800814 132915.0599 1.00 1.60 2.00
800814 132939.0501 1.00 1.00 2.00
800814 1330 4.0602 1.00 2.00 3.00
800814 133038.0604 1.00 1.00 2.00
800814 1331 5.0606 1.00 1.00 2.00
1300814 133137.0609 3.00 1.00 4.00
800814 1332 9.0611 2.00 1.00 3.00
800814 133247 0614 7.09 3.00 10.00
800814 133329.0617 2.00 2.00 4.00
800814 133427.0622 4.00 1.00 5.00
800814 133528.0627 14.00 14.00 28.00
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Table 6	 Least Squares Approximation with Monomials, Dense Data

Station:	 7115	 Date:	 800814	 Obs.	 Approx.:	 754	 Obs.	 Recov.:	 38

Degree RMS of
Average
Recovery

RMS of

Recovery

Average Serial
Correlation for

CPU

of Fit Fit	 (m) Time	 (ins)
Error	 (m) Errors	 (m) Recovered Obs.

6 5.373 -0.477 5.316 0.947 353

8 0.249 -0.014 0.130 0.923 496

10 0.220 -0.016 0.079 0.893 634

12 0.220 -0.014 0.084 0.860 803

14 I	 0.219 -0.013 0.089 0.818 1064

15 0.219 -0.015 0.081 0.801 1177

16 0.220 -0.010 0.084 0.785 1315

17 0.323 0.024 0.133 0.770 1436

18 0.505 -0.162 0.334 0.751 1581

20 35.919 -1.033 9.041 0.709 1859

Table 7 Least Squares Approximation with Monomials, Sparse Data

Station:	 7943	 Date:	 800814	 Obs.	 Approx.:	 41	 Obs.	 Recov.:	 15

Degree	 RMS of	
Average	 RMS of	 Average Serial	 CPU

of Fit	 Fit (m)	
Recovery	 Recovery	 Correlation for	 Time	 (ms)
Error	 (m)	 Errors	 (m)	 Recovered Obs.

6 1,350 0.110 1.012 0.859 43

8 0.381 0.082 0.458 0.806 57

10 0.340 0.051 0.472 0.777 70

12 0.339 0.045 0.473 0.730 91

14 0.336 0.032 0.474 0.645 121

15 0.332 -.082 i	 0.561 0.573 135

16 0.460 I	 0.096 0.592 0.484 150

17 18.399 -	 1.435 5.586 0.412 166

18 272.217 -57.402 222.250 0.355 182

20 68626.4 >105 48583.9 0.277 210
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Table 8 Least Squares Approximation with Chebyshev	 Polynomials,

Dense Data

Station: 7115 Date:	 800814 Obs.	 Approx.: 754	 Obs.	 Recov.: 38

De g ree RMS of
Average RMS of Average Serial

CPU

of Fit Fit	 (m)
Recovery Recovery Correlation	 for	

Time (ms)
Error	 (m)	 Errors	 (in) Recovered Obs.

15 0.219 -0.016 0.082 0.801	 I 1296

16 0.219 -0.014 0.086 0.785 1433

17 0.219 -0.015 0.084 0.770 1580

18 0.218 -O.Oi5 0.084 0.751 1731

19 0.218 -0.015 0.084 0.730 1898

20 0.218 -0.015 0.087 0.709 2064

Table 9	 Least Squares Approximation with Chebyshev Polynomials,

Sparse Data

Station: 7943	 Date: 800814	 OLs. .Approx.: 41	 Obs. Recov.: 15

Degree	 FMS of
Average	 RMS of	 Average Serial	 CPU
Recovery	 Recovery	 Correlation for

of Fit I Fit (m) I Error (m)	 Errors (m)	 Recovered Obs. I Time (ins)

15 0.;:3 0.070 0.531 0.573 140

16 0.319 0.015 0.458 0.484 156

17 0.319 0.011 0.455 0.4+12 173

18 0.318 0.386

i	

1.592 0.355 191

19 0.318 1	 0.642 2.561 0.294 209

20 0.31-/ -0.762 2.964 I	 0.276 230

--- --- L-	 - -- - -

Note: CPU times above refer to the Amdahl V8 computer of The Ohio

State Univet-city Instructier. and Research Computer Center.
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statistics on the recovered ground truth data gives some indication of

the quality of the fit.	 It is, however, conditional on the selection,

distribution and number of such points within the available data.	 It is,

therefore, a very local test and does not provide a measure of the glob-

al performance of the estimator. The weighted sum of squares of the

residuals, on the other hand, has this property, and it is a standard

procedure in this type of problem to test the significance of the change

of this statistic between solutions based on the same data. Hamilton

[1964] derives the R-test to test the null hypothesis
I

Ho: the k th degree fit is as good as the 
(k+1)th 

degree fit

based on the variance ratio F-test.

The test statistic is the followinq:

(VTPV)k

R=

(VTPV)k+1

where the subscript indicates the fit from which the residual norm has

h?en computed. The theuretical vdlue is obtained as

1

1, (n-k-1),	 n-k-1 F	
+

1, n-k-1, a 	
1	 (90)

with significance level 100,7,. The hypothesis is rejected at this level

if R -
	

,, The test must be used carefully, and one should make certain

that the process has reached a stable convergence before one applies the

test. Furthermore, the hypothesis to be tested should actually be a

"chain-type" one, in the sense that we test from the highest degree down

to the lowerst one where we find that we must reject the hypothesis.

For example, if we test in sequence

(89)
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Ho l : a 19th-degree fit is as good as a 20th

H O2 : an 18th-degree fit is as good as a 19th

Hoy: a 13th-degree fit is as good as a 14th

and we find that Ho, is rejected while all previous hypotheses were

supported by our results, then we can say that a 14th-degree fit is as

good as any of the higher-degree fits at the tested significance level.

Carrying out this test for the two test data sets, we have found that

for the dense data set the lowest degree acceptable fit is for degree

ten, and for the sparse data set it is degree seven. The test statis-

tics are given in Table 10.

Table 10 R-Ratio Test Results (a	 =	 0.01)

- -I
.,Data Dense Data T Sparse Data

Set

VTPV

2.6828 -

'R)9 1"

--

HoDegrec	 J V T PV	 x1,99% 	 Ho

5 232.05	 --	 -

1.0661 1.0080 R 3.5881 1.329 R

6 217.67 0.7477

72.036 R 11.2946 R

7 3.0217 0.0662

6.4580 R 1.1107 A

8 0.4679 0.0596

1.2494 R 1.0700 A

9 0.3745 0.0557

1.0272 R 1.1740 1.252 A

10 0.3646 0.0474

1.0006 A 1.0023 A

11 0.3644 0.0473

1.0023 1.0080 A 1.0040 1.230 A

12 0.3635 0.0471

Note: A - Accept,	 R - Reject

;R	 I
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We have finally examined the statistical independence of the esti-

mated range values at the ground truth point . Even if we assume that

the available data are contaminated with uncorrelated random errors,

the recovered ranges have approximation errors that are quite strongly

correlated. The closer these points are to each other, the higher the

correlation between every successive pair. The level of correlation

drops as the degree of the fit is increased or as the data set becomes

sparser. We have computed the average value of this serial correlation

for each of the fits, and it is listed along with the other statistics

in Tables 6 and 7 for fits with monomials, and Tables 8 and 9 for fits

with Chebyshev polynomials. The choice of base functions has no effect

whatsoever on this correlation. For the two fits that have been selec-

ted on the basis of the	 test, the corresponding correlation levels

are 83% for the seventh-degree fit on the sparse data set and 89°^ for

the 10th-degree fit on the dense data set. Since a significant level

of correlation is seen even between every fourth or fifth observation,

one would have to include a full weight matrix in any subsequent use of

these ranges if a meaningful result is sought. This, however, would

make the use of such data very cumbersome and increase the computational

effort beyond reason.

A way to circumvent this difficulty, without compromising on the

assumed statistics of the estimates, is to use the cubic spline interpo-

lation. Results for the two data sets are given in Tables 11 and 12.

Since the splines fit exactly at the data points, the rms of the fit is

identically zero and cannot be used as an indicator of the quality of

the fit. We can use though the recovered around truth data statistics
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Table 11	 Interpolation with Cubic Splines - Dense Data Sets

Observ.	 Observa-	 Average	 RMS of	
CPU

Test	 Approx.	 tions	 Recovery	 kecovery

Recovered	 Error (m)	 Errors (m)	
Time (ms)

	

I	 754	 38	 -0.032	 0.210	 125

	

II	 754	 37	 -0.007	 0.147	 125

Table 12	 Interpolation with Cubic Splines - Sparse Data Set

Test
Observ.
Approx.

Observa- T
tions

Recovered

Average

Recovery

Error	 (m)

RMS of
Recovery

Errors	 (m)

I 41 =0.202 0.944

CPU

Time (ms)

25

to compare with the least squares estimates. Because splines are very

sensitive to data distribution, we have recomputed the statistics for

the dense pass after deleting the last entry, which as can be seen from

Table 5 is isolated and does not conform with the rest of the test

points. This results in a significant improvement of the statistics.

One should justify this in the sense that uniformity must exist if one

wants to obtain results of sane quality. At any rate, it is apparent

chat the results here show a higher rms error by a factor of two com-

pared to the least squares estimates, but at the same time the computa-

tional effort is about three times smaller. 	 In addition to that, be-

cause the interpolation over each interval is done using a different

constituent of the spline, interpolates from different intervals are

totally uncorrelated. One way to show this is the following experiment.
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We have recomputed the spline curve for the dense data set, only this

time we truncated the data set to data collected prior to 13h32m00s,

and thus we are riot recovering the last five ranges of the ground truth

data.	 If this is done for the least snuares estimator, the errors for

the recovered ranges change, because the fit is done using information

from all data points simulLaneously.	 In the case of the s^'ine curve

though, only local information is used, and as can be seen from Table

13 the errors of recovery are identical at the common points for both

the complete (a 4 -- sc(t)) and the shortened (po- ss(t)) data sets.

It can now be safely assumed that the interpolation errors for the

cubic spline are uncorrelated, and 'herefore the error characteristics

of the interpolated ranges are not altered by this p rocess. For a uni-

form dense distribution of the base points in the region where the

ranges are interpolated, the mean value of the recovery errors is below

the centimeter level, and their fluctuation does not indicate a disper-

sion signiticantly different from that of the original data (cf. Table

11). It is very simple to check the quality of the interpolated ranges

by examining the time 4 ntervals T
L
 and T R . When thc;e intervals are

significantly different from their average value over the ertire pass,

then it might be wise to delete that range from the data set or at

least give i" a smaller weight in subsequent use. One cannot form

strict rules to follow for this procedure; it is more easily solved on

a case-by-case basis, and the action taken depends largely on the ex-

perience and Judgment of the investigator. For the purpose of this

study, we feel that the right approach is to delete such ranges com-

pletely.
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Table 13	 Comparison of Recovery Errors from Two CubiL.	 Splines

for the Complete and the Restricted Dense Data Sets

StatIon No.	 :	 7115 <---- ----- T --------> Recovery Error
Observation
-------------

Epoch
------

<----
---------

TL ---- ><-- TR-->
----------------

Po- -
----------------

100-	 ! t)

YYMMDD 118MMSS. SSSS T L T R T ( m) (M)

800814 131626.0577 1.00 1.00 2.00 0.1000 0.1000
800814 131653.0577 1.00 1.00 2.00 0	 1191 0.1191
8110814 131714.0577 1.00 1.00 2.00 -0.0708 -0.0708
11001114 13 1735. 0577 1.00 1.00 2.00 -0. 05 15 -0.0515 
81111814 1,318	 2.0577 1.00 1.00 2.00 0. 1370 0. 1.170
800814 1320 9.0577 1.00 1.00 2.00 0.013111 0.011171
800814 132032.0578 1.00 1.00 2.00 0.0878 0.t1878
800814 132052.0578 1.00 1.00 2.00 -0.1059 -0.1059
8001114 132113.0578 1.00 1.00 2.00 -0.1053 -0.1053
8001114 132134.0579 1.00 1.00 2.00 -0.0250 -0.0250
800814 132156.0579 1.00 1.00 2.00 -0.0225 -0.0225
8001114 132217.0580 1.00 2.00 3.00 -0.0624 -0.0624
800814 132240.0581 !.00 11.00 3.00 -0.0514 -0.0514
8001114 1323 4.0581 1.00 1.00 2.00 -0.0791 -0.0791
800814 13232:1.0582 1.00 1.00 2.00 -0.1289 -0.12119
800814 132345.0583 1.00 1.00 2.00 -0.0216 -0.0216
800814 1324 9.0584 2.00 1.00 3.00 -9,1772 -0.1772
800814 132436.0585 3.00 2.00 5.00 .0008 0.000ll
1100814 1325 M. 058x, 3. 400 00 _00; 4'.'3'3!!4
800814 132547.0588 3.00 1.00 4.00 0.0733 0.11733
800814 132623.0589 1.00 1.00 2.00 0.21'33 0.213:{
811111114 132b52.0591 1.00 1.00 2.00 0.062,1 0.4162'5
800814 132720.0592 6.00 1.00 7.00 -0.3168 -0.,168
800814 132745.0594 2.00 1.00 3.00 -0.1194 -0.1194
8(101114 13'21111.0595 2.00 1.00 3.00 -0.0176 -0.0176
8001114 132833.0597 1.00 1.00 2.00 0.1412 0.1412
800814 132854.0298 1.00 1.00 2.00 -0.0258 -0.02511
8001114 i32915.0599 1.00 1.00 2.00 - 0.2227 -0.2227
8001114 132939.0601 1.00 1.00 2.00 0.0429 0.0421)
800814 1330 4.0602 1.00 2.00 3.00 0.1807 0.1807
800814 133038.0604 1.00 1.00 2.00 0.1012 0.1012
1300814 1331	 5.0606 1.00 1.00 2.00 -0.1256 -0.1256
1100814 13:1137.0609 3.00 1.00 4.00 0.4690 0.4690
8t, A814 1332 9.0611 2.00 1.00 3.00 -0.0131:1 -
111^0h 1 4 133247.0614 7.00 3.00 10.00 -0.2.687 --
111J0E '.4 133329-0617 2.00 2.00 4.00 --0. 0889 --
600814 '334'27.0622 4.00 1.00 5.00 0.0831 --
800814 1,s0528.0627 14.00 14.00 28.00 -0.9416 --
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The ease by which spline interpolation can be applied in our

problem and the properties that we have found it to posses encouraged

us to use it as the most suitable method for interpolating the quasi-

simultaneous ranges required for determining the station-satellite-

station range difFerences.

R,
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4. THE ESTIMATION PROCESS

4.1 Introduction

The motions of the satellite and the observing stations in space

have been described in the second chapter in terms of models that

depend on a number of parameters. Some of these parameters are obtained

from theories based on very lone (time-wise) records of observations and

therefore carry a great deal of confidence in them (e.g., precession,

nutation). A considerable number of these pal,ameters, though, are only

approximately known, and part of the reason for requiring an adjustment

of the observations is the improvement of their numerical values. The

other more obvious reason, of course, is the smoothing of the errors

inherent in every measurement process. In short, the adjustment process

determines the unknown parameters based on the information contained in

the discrepancies between the measured values of the observables and

those computed from the assumed model. The operator that relates the

corrections in the parameters to these discrepancies is the design

matrix of the problem. In the usual case where there are redundant ob-

serv-.ions available, the row s pace of the design matrix has a dimension

larger than that of its column space. Its rank then is determined by

the dimension of its column space. If its columns are linearly indepen-

dent, then the rank is equal to their number, the dimension of the

coliimn space, and the problem will have a unique solution. 	 In the event.
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though, that two or more of its columns are linearly dependent, the

design matrix is rank deficient, its deficiency determined by the number

of interdependent columns. When this happens, the problem does not

admit a unique and unbiased estimate for the parameters. Special tech-

niques must be employed in order to obtain even a unique estimate,

preferab'.y one with a minimum bias too [Rao, 1973]. Other techniques

which are applicable in such a case, although with different properties

from the previous one, have been reviewed in [Pavlis, 1979].

The fact that the relationship between observations and parameters

may be a nonlinear one, as is the case here, further complicates the 	 r

process. Although extensive literature exists for the linear model,

that for the nonlinear one is very much restricted and hardly ever

addresses the validity of extending statistical concepts established for

the first for use in cases involving the second. Technically, the solu-

tion is most uA.ally obtained ^y means of a Newton-Gauss iterative pro-

cedure [Pope, 1974j. Starting from some approximation to the solution,

the nonlinear relationship is expanded as a Taylor series retaining

terms up to those including the first derivative. Assuming continuity

and boundness for the original nonlinear function, the iteration might

converge to the sought-for solution [Pope, 1972]. Tne convergence can

be established by examining the percent change in the weighted sum of

squares of the residuals between successive iterations. This test quan-

tity can also he used to detect a divergent problem or an oscillating

one. Possible explanations for these cases can be found, for instance,

in [Hamilton, 1964; Pope, 1972; Uotila, 1975].
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Even when the problem has converged because of the nonlinearity,

one cannot be sure that the solution is the one that corresponds to the

infimum of the weighted sum of squares of the residuals. It is always

possible, depenaing on the starting approximate solution and the nature

of the particular function involved, to converge to a local minimum.

To assure the global convergence one would have to use several and

widely differing starting approximations and establish that the algo-

rithm always converges to the same minimum. This can hardly eve r be

accomplished in practice due to the large number of observations in-

volved, but then again one has in most cases a very good idea of what

values the parameters take on, and therefore in practice such dismal

cases are scarce [Hamilton, 19641.

What is very real, however, is the fact that the DOC process as

applied herein, and almost everywhere else, is neither a least squares

adjustment nor a minimum variance one in the standard statistical sense

of these terms [Rao, 19731. TFe required partial derivatives in the

Taylor expansion are determined in part numerically from the integration

of the variational equation of state rather than from some well-defined

analytical expression.	 It is then possible, even probable, that incor-

rect modeling or omission of the effect of dominant forces in the orbit-

al model will result in an incorrect or strongly biased solution. The

fact that the solution is obtained by means of the formulas for either

of the aforementioned statistical adjustment procedures is not enough

justification to call the result unbiased. Since we never know all the

mechanisms that govern the orbit of the satellite perfectly, we are not

entitled to use the term unbiased even in the cases when all the unknown
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parameters entering the mathematical expressions of these mechanisms

are being determined from the observations themselves. The best that

we can probably have is a "conditionally unbiased" estimate of these

Farameters, the condition being that the assumed model reflects reality

to a degree that exceeds the effect of computer round-off errors in the

final result. Obviously, with the limited knowledge of the model, it

is to our advantage to us ', the available observations in ways that will

minimize the effect of this deficiency in the resulting solution, which

is one of the objectives of this investigation. Nevertheless, the condi-

tional unbiasedness of the results still holds, and it would be unrealis-

tic to advocate the opposite just because technically the same mathemat-

ical formulas are used ir. both adjustment algorithms.

We finally want to address here an issue that some might object to,

that is, the use of quantities (the simultaneous range-differences) as

observations in the estimation which are not really observed, but rather

inferred from observed quantities (the ranges). If we wanted to avoid

this question but still be able to use the observed ranges in a differ-

encing mode, we would have to modify our mathematical model in a way

that the difference of simultaneous ranges and the parameters satisfy

condition equations involving both. This mathematical mode, known as

"combined model" [Uotila, 1967], will result in a solution that is iden-

tical with that obtained from the simpler model where the "pseudo-

observed" SRD's are written as a function of the parameters alone

(observation equations model).
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4.2 Differential Relations Between the Observable and the Parameters

Let r be a vector function in X, continuously differentiable. A

first-oraer approximation of F over a differentially small region about

X = X s can be obtained by expanding F in Taylor series and retaining

t!., rms up to and including the first derivative:

_	 a (X )1
F(X) = F(X s ) +	

^Xs	
(X
_
 - X s )	 (=')

J

Using (91) we can linearize the SRD function in order to be ahlc to

adjust them in the DOC process.

Let S denote the vector of Cartesian CES referred coordinates of

the satellite at the instant of an observation dp, and G 1 , 62 , the cor-

responding coordinate vectors of the observing stations in the same sys-

tem. We can express by as

PP i ] = [( s i - 6
2) T(si - O2.)] i - [( S i - ^,)T(Si - 61)] 1 	(92)

where i is the number of observations. We can now identify [dp i ] as

FM, and X as the vector containing the station and satellite positions

along with several other parameters relating to the orbital model and

the CIS to CES and CTS to CES transformations.

The relationship between these frames of reference is expressed

through the orthogonal rotations for precession (P), nutation (N),

earth rotation (0), and polar motion (C) as

S i = [NP]R i	(CIS -} CES)	 (93)

Gj = [CA T U j	(CTS	 CES)	 (94)

Because of the similarity of the two terms in (92), we need only form

the partial derivatives for the first term; the Ones for the second can
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then be readily obtained by changing the index in the G  vector. The

partial derivatives for dp i can then be formed by differencing these

two partials. From the above the only elements of the transformations

that will be treated as unknown are contained in the matrices C and 0.

From [Mueller, 1969],

1	 0	 x

C	 0	 1 -y	 (95)

-x	 y	 1

and

Cosa	 sine	 0

	 ?.

0 =	 -sine	 Cosa	 0	 (96)

0	 0	 1

where x,y are the coordinates of the celestial pole with respect to a

local tangent plane coordinate system with its origin at the North C15)

pole, its x-axis on the a =0° meridian, and its y-axis on the X=270'

meridian, and a is the angle of rotation between the first axis of the

CTS (origin of longitudes) and the first axis of the instantaneous CES.

The x and y will be conside red as parameters of the problem to be deter-

mined in the adjustment. We can also include the rate of change of a

as a parameter in hopes of determining "length-of-day" variations;

however, for reasons explained in [Van Gelder, 1978], this is best deter-

mined from observations with alternate techniques such as VLB1 (Very

Long Baseline Interferometry), rather than SLR.

The orbit is adjusted in terms of corrections to the initial ap-

proximation of the satellite's orbital elements at a fixed epoch. The

in ,-tantaneous discrepancies at the epochs of observation are related
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to these parameters through the transition matrix Y, obtained from the

integration of the variational equation of state as formulated in Sec-

tion 2.2.1, equation (6). This enables us to write:

dR i = Y[dRo; d O ] T	 (97)

where [Ro	 Ro] T is the initial epoch satellite - state vector.

Working with one range a ij at a time, where

pij = 
1(S i - Gj)T (Si - G j )J
	

(98)

and letting Tij denote S i - G  for brevity, we use the chain rule of

differentiation to obtain:

ap.. IT.

J .

	 _	 a^	 IT..	 1S.	 aR. ( aR i	 dRo

	

1	 ^
aT..	 aU•	 IT 

^J
. •	 aS•	 ^R. /	 aRo , .aRo	 L dRo

^J	 >	 >

aa ; . (IT..	 aG.	 aF..	 aT..	 3G.

IT ii
3G 
	 ax	 aTij 

DG 
	 ay

Using now (93) and (94) and the definitions for C, 0, and T ij , the

required partial derivatives for evaluation of (99) are determined ex-

plicitly:

ap • •	 1
^^ = p — T i

j T	
(100)

aT
ij 	 ij

aT .

310013	 (101)
au .

J

IT..

	

 3 111 3	 (102)

aS.
i
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aR.
i

^) = 3 [Y] E	(104)

1(aR o ; aRo

aT. .
^i _ -3[1]3	 (105)

aG.
J

aGj	
-Uj3 Cosa

— - -Uj3 sine	 (106)

ax	 Ujl	 I

_U j3 sine

aGj =
	 U j3 cose	 (107)

ay	 _U j2

Expressions (100) through (107) can be substituted in (99) to

obtain the explicit first-order differential of n ij with respect to the

parameter vector [U j 	 Ro	 Ro ; x ; y] . Writing the resulting equa-

tion for j = 1 and j = 2, a:id subtracting the two, we obtain the differ-

ential

ddni	
1pi2	 d,'il
	

(108)

which corresponds to the SRD of equation (92).

Assuming now that our initial approximation for the unknown param-

eters is close to their true values, we can use this differential ex-

pression (108) in connection with the Taylor expansion (91), where the

following equalities are identified:

X = [U^	 R o 1 Ro	 x	 y ] T	 (109)

F(X) _ [6Pi + e i ]	 (110)
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with e  denoting errors to be estimated during the adjustment. Note

that in practice there will he A cumber of x,y parameter pairs in a

problem since these represent averages of the coordinates of the pole

over a predetermined time interval (e.g., five-day averages). With Xs

being the initial approxima J on to the parameters, and lettin g S = X -

X s , we get:

g = [dui ; dRo	 dRo ; dx ; dy] T	(111)

We will use the notation A i to indicate the ith row of the design 	

I

matrix which consists of the partial derivatives with respect to the

parameters X (arranged in precisely the same order). In addition, we

let r denote the residuals, estimates of the errors i, and d, the dis-

crepancy vector:

d = F ( X s ) - [d p i ]
	

(112)

We can now write the linearized mathematical model in terms of the

established notation, which results in the set of observation equations

to be adjusted:

[r i ] _ [ A ij J[s j I + Cd i J 	(113)

The explicit expressions for the elements A ij of the design matrix are

further developed in Appendix C.



4.3 Estimable Parameters

The concept of "estimability" or "estimable parameters" was first

introduced by R.C. Bose [1947] in an attempt to expand the applicability

of the well-known theorem of Gauss-Markov [Rao, 1973]. In [ibid.] the

estimability of the parameters or parametric functions in an estimation

problem is examined through the rank of the design matrix of the experi-

ment. Because of the fact that a matrix can become "algorithmically"

rank deficient due to ill-conditioning [Forsythe and Moler, 1967], there

has been some confus i on in the past as to the status of geodetic param-

eters estimated from dynamic space techniques.

The truth of the matter is that the status of a parameter in this

respect is determined by the underlying physical reality and not by the

numerical entries of a matrix or their interrelationship. The scienti-

fic interest in this subject is reflected by some rather extensive

literature, the most recent ones being [Van Gelder-, 1978, Grafarend and

1'	 Livieratos, 1978; Grafarend and Heinz, 1978; Pavlis, 1979]. None of

these investigations, though, has looked at this issue from the physical

point of v1PW. The estimability of a parameter should be determined by

two simple factors. Eitner i.ne observations contain information about

the parameter, or the model contains information, or both.

It is a trivial exercise tc show that range measurements and linear

measurements in general contain only scale information and are inde pen-

dent of the coordinate system that is used in the parametrization of

the problem. On the other hand, the physical inodel describing the dy-

namics of the satellite contains information that is enough to define a

particular coordinate system. If the harmonic coefficients for the
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geopotential are assumed known, then the satellite orbit becomes

sensitive to the coordinate system in which these coefficients are

referenced. It is only a peculiarity of the physical figure of the

Earth that two out of the three principal moments of inertia are nearly

equal [Heiskanen and Moritz, 1967], namely, the equatorial moments;

the definition of the origin of longitudes, therefore, is a very weak

one. This is, in fact, the reason why in dynamic solutions with only

metric measurements the longitude of one of the participating stations

is kept fixed. This is not the only solution to overcome a case of pure

ill-conditioning, but it is the most popular and the simplest to apply.

It is thus obvious that there is no rank deficiency in the dynamic

problem of satellite geodesy conditional on the fact of a finite expres-

sion for the geopotential, but rather an extreme ill-condition due to

`he aforementioned reasons. With that in mind we can further investigate

the interaction between parameters of' interest to determine which of

them are separable in a simultaneous adjustm-2nt. This can be best

accomplished by examining the information required for their determina-

tion.

4.3.1 Information required for the determination of the problem

parameters.

The goal of this investigation is primari l y the determination of

interstation baseline distances and variations in the coordinates of

the celestial pole. The former are obtained from the estimEted station

coordinates, while the latter are determined as additional rigid body

rotations of the station network with repsect to the sate'lite orbit,

in addition tj the modeled rotations included in the transformation
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between the CTS and the CIS systems. The estimation will be based on

simultaneous range-differences reduced in a long-arc dynamic mode solu-

tion. We examine here the complete observation equation with parameters,

the station positions, the coordinates of the pole, and the initial state

vector of the satellite to determine which of them are separable and

therefore design experiments in which those parameters of primary

interest will be estimable.

For the sake of brevity, the form of the observation equations

used in this section is the "body-fixed" form presented in Appendix C.

In the fallowing, the prefix A will denote differences of coordinates, 	 ^.

W will denote the variational partials matrix rotated in the CTS system

with W(j) denoting the jth column of that matr i x. Subscripts will refer

to station positions and superscripts to satellite positions. The

letters X, Y and Z will denote CTS coordinates, and coordinate differ-

ences are always taken between a satellite position and that of the

observing station, i.e.,

AXZ	 =	 X I .. X 2
	

(113)

We write here two observation equations, each from a different

pair of stations to a different satellite position. The parameter list

is in the following order:

(1) Station coordinates X,Y,Z for each of the stations,

(2) Satellite state vector at initial epoch, and

(3) x, y coordinates of the pole.

With three parameters for each of the four stations, six for the state

vector, and two for the pole, there are twenty parameters in total, and
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the design matrix A given in equation (114) will have twenty columns.

In identifying linear dependencies between the parameters, we will use

the notation A(j) for the j th column of A. We can separate A into three

submatrices according to the three major groups of parameters as pre-

viously stated:

A = L AO	 AS	 A P I
	

(115)

with AG consisting of the partials with respect to ground station coor-

dinates, A S . partials with respect to the satellite state vector, and

t
Ap , partials with respect to the coordinates of the pole. From the

definition of these groups and (114), we can state that there are no

linear dependencies betwe , columns of the design matrix within the

same group. We concentrate, therefore, in finding the dependencies, if

any, between columns of the design matrices niong different groups. We

are investigating here whether it is possible to find a set of constants

{c l , ..., c2o}, not all Zero, such that the following equality holds:

c 1 A(1) + c 2A(2) + ... + c GO A(20) = 0	 (116)

At first glance it would seem as if the columns of the A S sub-

matrix can be written as combinations of those of A G . This is not so,

though, since the W matrix is different from one observation to the

next; and therefore its elements w ij which are used in for ing A S differ

too (which is obvious by the different superscripts in (114)).	 in the

case of A P and AF., however, one can easily write the following relation-

ships between their columns for the first observation:

(-Z 2 )AG (4)	 + (X 2 )AG (6) +	 (-Z,)A G (1)	 + (X,)AG (3) =	 A p(l, l )	 (117)

(-YJA 
G
(6)  + (Z 2 )AG (5) +	 (-Y 1 )AG (3)	 + (Z;)AG (2) =	 A p (1,2)	 (118)
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and for the second:

(-Z 4 )AG (10)	 + (X 4 )AG (12)	 + (-Z 3 )AG (7)	 + (X 3 )AG (9) =	 A p (2,1)	 (119)

(-Y 4 )AG (12)	 + (Z 4 )A3 (11)	 + (-Y^)AG (9)	 + (Z 3 )AG (8) = Ap( 2 , 2 )	 (12G)

Observing now the location of zero elements in A u , we can combine the

above in one equation that shows the existing sought for set of constants

C to be:

C = [ - Z 1 Z1 -Y1+X1 -Z 2 Z2 -Y2+X2 -Z3 Z3 -Y3+X3 - Z4 Z4 - Y4 +X4

0 0 0 0 0 0 -1 -11	 (121)

so that:

ACT = b]	 (122 )

The zero elements of C correspond to the columns of A which constitute

the submatrix A S . Dependencies between A S and A  do not ex',t, for if

they did we would come to the contradiction that A  which is a 'inear

transformation of AG can be written as a transformation of A S and at the

same time A S can be independent of AG.

We come to the conclusion, therefore, that we cannot separate the

station parameters and the ones for the pole in a simultaneous adjust-

ment. Theoretically, this dependence would be broken if (122) did not

hold even for just one row of A. If that is the case, we assumed that

x,y are known for the first (say) observation, and we set the correspond-

ing partials A(1, 19), A(1, 20) equal to zero. The problem is that if

we were to check the column independence of the resulting A matrix

using (122), we would find that the result differs from zero only

slightly. That means the corresponding parameters have extremely strong

correlations, and the normal equations will be algorithmically singular.

If the above is repeated for several rows of A, the condition of the
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normal equations is improved, but one must realize that in this case the

station coordinates are being determined from these first observations,

the rest of them contributing very little due to the confounding between

the two groups of parameters.

Conceivably, we could assume that the coordinates of the pole are

known from previous solutions, for a sufficiently long period of time

so that data available over that period can be used for the estimation

of station positions alone. With our present capabilities in laser

ranging, it would be required that data over, more than a month's inter-

val be used for this purpose, in order to achieve sufficiently accurate

station positions for subsequent estimation of the global motions of this

r•etwork. Objections that one can raise against this practice is the

bulk of computations that need to be repeated in every solution and the

fact that the coordinates of the pole estimated in each of these solu-

tions refers to the CTS defined by the simultaneously estimated station

positions. That is to say, every solution defines a new CTS. This is

obviously the most undesirable of the two side effects of a simultaneous

solution. It would therefore be more meaningful to do a separate solu-

tion for the stations from that for the coordinates of the pole. Adopt-

ing the resulting CTS at some epoch, we could then monitor the rotations

of the defining network of stations with respect to the celestial pole

by jeans of independent solutions in which the station positions are not

allowed to adjust.
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4. 1t Minimization of Model Biases by Use of SRD Observations

We have already seen that the adjustment of satellite ranging data

is based on a model that involves hundreds or thousands of parameters,

none of which is perfectly known. Moreover, it is practically impossi-

ble to include all of them as unknown parameters of the problem. We

therefore resort to the option of adopting a fixed value for a number of

them. Such a practice obviously biases the results of the adjustment

since the adopted values differ- from the ever unknown true values of the

fixed parameters. From the description of the ranging model it should

•	 I
be clear that the most parameters which are held fixed are those involved

in the determination of the satellite orbit (e.g., geopotential coeffi-

cients). Their errors affect the quality of the orbit directly, and

when the model value for the range is computed from this orbit to com-

pare it to the observed one, the errors propagate into the discrepancy

vector and thereby in the solved for parameters. We will see now how

these biases can be diminished if we take advantage of the simultaneity

of the observations and use them in the simultaneous range-difference

mode.

Assume that we have two sets of range data in which each observa-

tion from the first is taken at t he same time to the same satellite posi-

tion as the corresponding one from the second set. If we were to differ-

ence these data sets we would obtain the SRD data as we have described

them in Chapter 3. The linearized observation equations for these two

data sets can be written as

r l = A,^ + dl

(123)
r 7 = A 2 R + dz
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and the solution for the parameters a is

_ -(A l Ell A l + A2 Eli A 2) 1 (A1 Filth + A2 Eli d ;)	 (124)

We have considered here the case of common parameters a for both data

sets since the data are taken on the same satellite arc, and as we

mentioned above the major source of b^js is the computed satellite

orbit.

The discrepancy vrctor d can be written out in terms of its

components as

d i = F i (s o ) - Po
	

(12'S)

I
where F i (^ o ) is the model computed range and p i the one observed. If the

fixed parameters were fixed at their true values, then the computed range

would have a different value, P^. That would, of course, be the desired

value also, although this is practically impossible. The term Fi(BO)

then has two components, one being PC and the other being the bias bi:

F i (s ) = P i + b i	(126)

Using (126) in (124) and denoting with N the matrix of normal

equations, the resulting expression for the solved for parameters S

becomes

-tN 1[AI EI k	 - c'0), + AT E21(4^C - P°),-] +

+N 
i[A1 E i l b l + A2 Eli b 2l	 (127)

The first term in (127) represents the proper adjustment in the

parameters ^ based on the information in the observations, while the

second is the bias term in b due to errors in the adopted values of the

nonadjusting parameters of the model. A secondary and much less serious

effect of the erroneous model parameters is the error in the elements
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of the design matrices A l and A 2 which in general are functions of these

parameters. These errors, however, are more important in computing the

covariance matrix of the adjusted parameters than in estimating s.

We will now derive the corresponding adjustment equations for the

SRO mode. Since the order in which the observations have been arranged

is not important in the adjustment, we may assume that the two data sets

are already in correspondence, i.e.,

pli " p2i	
in the sense that:	 dui
	 p 2i	 pli	

(128)

From (123) and (128) then it follows that the linearized observation

equations for the SRD mode are:

AS + d = r	 (129)

with

A = [A 2 - All,

d = d2 - d l , and	 (130)

r = r2 - rl

The minimum variance adjustment estimate for the solved for parameters

will then be

Q = -{[(AT- AT)(^1+ EZ) 1 02 A1)] 
1 

( Az - Ai)( L 1 + EZ) 1(d2 - d. )}	 (131)

where we have used E 1 + L, as the variance-covariance matrix of the SRO

pseudo-observations as obtained through error propagation on the basis

of (128).

Writing the discrepancy vector in its components again, we obtain

the following:

d = d 2 - d l = ( p i - p i ) - ( p ^ - p°) + (b 2 - b l ) = Spc - dp o + (b 2 - b l )	 (132)

Denoting by N the matrix of normal equations in (131) and consider4ng

(132) we can write
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+ N 1 [( A 2 - AT)(^i + E Z ) 1 ( b2 - bl)]}	 (133)

for the estimate of the parameters' adjustment from SRD observations.

The last term in (133) is again the bias term, only this time it involves

the difference of the bias in each of the computed ranges. Naturally,

the two bias components b l and b 2 do not always have the same sign or

magnitude, so we cannot outrightly set the last term to zero. We will

examine though the behavior of this difference in comparisun to -its indi-

vidual components by means of a simulation study.

4.4.1	 Simulation study for bias propagation characteristics.

The computation of 
6p  

is based on the coordinates of the observ-

ing stations and those of the satellite at the epoch of the observation.

We will introduce known biases in the satellite coordinates and then

examine how these biases and to what extent they affect the computed

ranges pi and p2 i as well as the corresponding SRO's dp c . To simplify

the computations, we will assume a spherical earth model and a satellite

orbiting at the mean altitude of Lageos on a circular orbit. These

assumptions are well justified since they are not too far from the real

situation, and we are only after order of magnitude of the Biases rather

than exact numbers. We have computed the biases on the intersection

points of a 1"x1° grid covering the area around the observing stations

and then plotted the results to ease their evaluation. It is common to

state orbital errors in three directions, the radial, the along-track

and the across-track, but we have chosen to use the radial, latitudinal,

and longitudinal directions. This simplifies the computations without

altering the results, and it also has the advantage that the bias-surface
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P l ots are applicable for a much wider class of orbits, while otherwise

we would have to restrict ourselves to those having the same inclination

with Lageos as well as the same mean orbital altitude. Although we have

tested several station configurations in terms of absolute position on

the earth's surface, as well as relative to each other, we will present

and discuss here only two cases which are representative of the complete

set. In case A the observing stations are 2000 km apart (chord distance

between them), while in case B we decreased the distance to 200 km. For

both cases we have taken the first station to be at latitude 40° N and

longitude 0 0 , while the second occupies four different positions so that

the azimuth of the great circle arc connecting the two is 0°, 30°, 60°,

and 90° counting clockwise positive from the meridian of the first station.

The satellite coordinates at the grid points are computed from the

spherical coordinates r, ^, X using

X = r cosh cosx

Y = r cosh sing	(134)

Z = r sin,

and the biases in X,Y,Z are obtained from the adopted values in the r,

0, X system using the following transformation which follows from differ-

entiation of (134):

,^X	 r X/r	 -XZ/p	 -Y	 Ar

AY	 =	 Y/r	 -Y7/p	 X	 A^	 (135)

%Z	 Z./ r	 p	 0	 Ax

where we have used the following substitutions
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sink = Z/r	 cosh = p/r	 (136)

sin.	 = Y/p	 cosh = X/p

The values of Ar, A^, and AX used in the simulations are

Ar = 2.00 m

^^ = 0:'01

-0.'02

These values were arbitrarily chosen; their order of magnitude

though reflects the present level of stability in the satellite orbit

defined and maintained reference frames. 	 ?.

4.4.2 Analysis of the simulation results.

Using equation (135) we have separated the biases into their com-

ponents AX,, AX A , AX r , etc. so that we can study individually the propa-

gation characteristics c` each one of them and their effects on the com-

puted ranges and SRD's.

This arrangement resulted in three sets of biases (the radial, the

latitudinal, and the longitudinal) for each station configuration consid-

ered. These biases are, of course, three-dimensional functions that

depend on the absolute as well as the relative positions of the observing

stations and the observed satellite points. An optimal way of displaying

their features and characteristics is to create contour plots in the

regions of interest. This is what is presented and discussed in this

section. The contour plots which are discussed here are based on the

results of the simulations described in Section 4.4.1.

The quantity which is plotted is the bias in the range/SRD due tc

the biases introduced in the orbit.	 In all cases this bias is plotted
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4n centimeters. The following example will clarify the use of these

"bias surface" contour plots.

From Fig. 7(a) we find that when station 1 is ranging to Lageos

at a point with subsatellite coordinates ^ = 37" N and A = 10 0 E, the

bias in the computed range due to the 2.00 m radial bias in the orbit

used will be 1.98 m or 198 cm. Fig. 8(a) shows that when the same satel-

lite point is observed from station 2, the bias in this case is about

1.88 m. When the two ranges though are subtracted to create an SRD ob-

servation, the resulting bias is only 10 cm (!), as can be verified from

F-ig. 11(a).

Inspection of the bias surface contour plots leads to a number of

interesting remarks. The radial bias surface is bell shaped with its

apex on the observing station's rad i us. The latitude and longitude bias

surfaces exhibit an antisymmetry, the former with respect to a line of

almost constant latitude (equal to that of the observing station), and

the latter with respect to the station's meridian. The form o f these

three surfaces depends on the absolute position of the station only in

the case of the latter two, and in this case the one for latitude depends

only on the latitude of the station. 	 In any event, their shape changes

very slowly and since a coobserving pair of stations should not be more

than about 2000 km apart (in case of Lageos), for all practical purposes

we can assume the corresponding surfaces to be the same. Finally, 11;

far as the smoothness of these surfaces is of concern here,

from their contour plots that at least in the vicinity of tf

stations the radial bias surface is by far the most flat of

the other two exhibiting considerably stronger gradients.
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The bias surfaces for the range differences are computed exactly

as the differences of the true SRD values from the biased ones. They

represent therefore the difference surface of the corresponding range

bias surfaces. On the basis of this observation and the previous discus-

sion on the propagation characteristics of the various biases, it should

come as no surprise that radial biases are almost completely eliminated

when we use the SRD mode. Compare, for instance, the contour levels

between Figs. 7(a) and 11(a). 	 In addition to this we also note that the

level to which this bias can be eliminated depends :n the distance be-

tween the two stations as well asthe relative location of the satellite

track and the interstation baseline. The closer the stations, the smaller

the remaining bias in the SRD's, as one can verify from Figs. 11 and 12.

Since the two surfaces are nearly the same in the vicinity of the sta-

tions, their difference will be smallest in the area between the two

stations and close to their baseline. If one now considers the fact that

as the interstation distance increases, the area in which simultaneous

observations are possible "shrinks" towards the point amid the two sta-

tions, it becomes obvious that the SRD iuode has a clear advantage over

simple ranging in the case of radial bias in the satellite orbit.

The situation is quite the opposite in the base of latitude and

longitude biases. Since the range bias surfaces in this case have dif-

ferent signs in different areas, it is possible t^at for some areas the

biaseswill increase in the SRD mode while they will still decrease in

others. This is indeed what happens in the area in between the two sta-

tions as Figs. 7(b), 9 and 13 show for the latitudinal bias, and Figs.

7(c), 10 and 15, for the longitudinal case. 	 If, however, the length of
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the interstation distance is decreasedso that most of the coobservable

satellite positions lie outside the critical area, then the SRD mode

will again be biased to a much more limited extent than the ranging mode.

This is illustrated by the 20C km baseline example in Figs. 14 and 16

which should be compared to the range bias surfaces shown in Figs. 7(b)

and 7(c). We do not have to go to the extreme of using only very short

baselines since the :`sigh altitude of Lageos allows for a rather extensive

area of coobservable satellite positions even :;hen the interstation dis-

tance is quite long. With a spherical approximation, the radius of

Lageos observability around a station is about 60°. That means an area

that is almost one-third of the total of the globe. !fence even with

longer baselines, the SRD mode can be considerably less affected by

biases in the latitude and longitude directions compared to the ranging

mode if the data are collected in a region that excludes the immediate

vicinity of the baseline.

I.	 In general, all three types of biases will affect the computed

range differences, and we thus have to select our data in a way that all

of them will be minimized simultaneously. Since the radial bias is mini-

mized independent of the satellite position, the guidelines are set by

the requirements we mentioned above for the minimization of the latitud-

inal and longitudinal biases.

107



OR104MAL V.. -E I:3

OF POOR QUT-,;—iTY

	

poi ^ Iw .._._ Ir -``7p --t ,4 ^	 c -- - t -
^ot	 Nt - - lot	 'N ^,N \\ L

1 	Y
	 f

so.o a
/,tt N^ y '4 \\ \ 1 I I I
t	

^ _*{ R t if r	 r

35.0 ± •s 	 r	 t	 C i/

,y .^'N _lot	 ^+ / ^• ! `^	 ^'
rim•	 r n

	

70.0	 -10.0	 O.n	 In.n	 7a.n	 10.0	 vn (1	 Sn.n	 60.n

(a)	 radial

t	 rt • ^ 0

	

S0.0 - '+•-rt.t— It.t ^^e^^r.^^t°	 ttY^t,
IA

\- -t.e--t.e at e 	it	 t	 .t

35.0 -,- e.e^ to -- te— o.t-- 'tor rte	 ^.ro.
t.t	 t

— rt— . r.e— rt- -. ^ los^
ne•	

.tt

• It t -- Ir t	 u t	 u t — It.t - 
It.e --^ •I+.o

rt.c - u.n --ne _ . Ito _ .. ne-	 Ir y - Ito- ^v

Ir.t -- 11 t -- Ir.f —. 11. ► _

	

- n t, -	 -U. a -_ i r r70.0 rTrrm r) ran.,. r1. n.,n„ I , mm^ryn m.,n l .m mrfmnnrrlm 0S

	

-70.0	 1110	 U.0	 ICI. II	 !n.0	 3U.0	 YU.a	 5n.0	 LU.0

(b) latitudinal

	o 	 ^	 4	 f

	

•^	 v	 r ^ ^ ,r C	 U	 ,n Y

1111 }III/^/

	

n.ol.rJr.,l,rl„^.^ II	 t	 r
...I rrfnrmr+r i nn n.0

70.0	 -IO.0	 U.0	 IU.0	 IOU.0	 tO.0	 9U.0	 511.0	 UU.0

(c) longitudinal

Fig. 1	 Range bias surfaces for the fixed station 1.

108



a

m E
•r

N0
N O

oC)
0

o ^

0
0

fV

0

ra

N

4-
O

N

O

U
O

L

O

t

E
N
rJ

O0

E
N

0

ORIGir:AL pa., 
1$OF Pp0^ 

QU'z

0

•r y	 4

4r °i	 ri

^r

^^^,\\1 \s'V
s c'ssts _ -

N 	 11^ii1' i^.
•	 s :: s : r : o

i	 ^'lJllll	 ^

L-.a	 , ,
0

a '

M1

^ /	 _ rb \	 ro

ee ^	 c

oz
	

^4r \ rf^ o

\	 G

i I	 l ,%	 o[ N
'^ r
	

rC

°(
'\ °j ^ see /`^

o	 ^t	 su	 :^`	 eP c

r(,

6'	 no	 c
o	 m M1

0	 0
o	 ^

IhT
	 ° i \

ro	
{

[
tF
1 o_

\\ \ \'\ \g\ 1 fl_^r ` t c

^	 ^^11111	 I
M1

I N I	 I	 I !	 I	 I	 f ^ c
r	 -	 s	 s

,.	 r	 t s	 ^ ^

O	 O

^	 N
^	 m

M1
O	 '

O
N

I	 4, \^ fr^ ^
	 \tr c

S	 (V	 _ :_ :. 9 S	 ^

C 4	 ^C^' 8 I l k

2

•	 C



L

E
N

to
0
0
0)

L

N

b
00

C
CV

	

I•- e• 1	 e I	 ° I N

	

^IIj111 I !	 fc-;

	

j lll{Ilil!I	 !	 o

II j l { ! { 1	 1	 1	 1	 1	 1	 I	 ^ o
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4.5 Sensitivity Analysis of SRD Observations

4.5.1 Introduction.

In designing an experiment the minimization of bias effects with-

out overparametrizing the problem is an important factor, but it is

neither "the" major factor nor the only one to be considered. A more

important and challenging issue is the selection of the proper data that

would yield the most accurate parameter estimates with the least amount

of computations. Not all of the available observations will contain the

same amount of information about the parameters in general. That does

not mean that we should not use these observations, but if the computa-

tions are tedious and expensive in terms of required computer ±;one, then

we might want to weigh the benefits from the use of these observations

against the increased computation effort and cost.

Optimization of a design in classical geodetic networks has been a

popular topic with a very rich literature. In the case of space system

networks, though, the problem becomes extremely complex and practically

intractable on an observation-by-observation basis due to the possible

thousands or even hundreds of thousands of observations connecting the

space subset and ground subset of network vertices. We have to resort,

therefore, to a geometrical analysis of "categories" of observations

rather than a one-by-one examination. Since the observations are col-

lected from individual satellite passes over the network stations, it

seems natural to use the segregated observations over each pass as an

etAity whose optimal position relative to the network is sought. Opti-

mality again is Judged by the contribution of information about the prob-

lem parameters. Going from individual observations to individual passes
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reduces the amount of work tremendously. Further savings can be

achieved by classifying the passes according to their direc,ion (e.g.,

North-South, East-West, etc.) and the maximum elevation that the satel-

lite reaches with respect to the station's zenith (e.g., overhead passes,

horizon passes, etc.). We therefore end up having to deal with only a

small number of categories of obse-vations which is a much more manage-

able problem than what we originally started .with.

4.5.2 Optimal designs for baseline estimation.

Our primary interest here is to find optimal estimates of the in- 	 '

terstation chord distances (baselines). An extensive investigation for

the range observable has been published in [Pavlis, 1979]. Since ranges

and SRD's contain the same type of information, the conclusions of that

study are valid for our problem too. Some of the most important results

are the constancy of the relative precision of the system over a wide

range of baseline lengths, the accuracy dependence of the estimated base-

line on the orientation of the pass relative to its direction, and the

independence of that estimate from biases in the adjustment's parameter

estimates.

The first result is important from the point of view that we are

not restricted to use baselines of equal length throughout our design.

The last one is of importance also, especially in cases where due to in-

sufficient data or unfavorable distribution a desired unbiased estimate

for all or some of the parameters cannot be found. The usual practice

in this case is to apply prior information (if available) and use the

Bayesian adjustoent process, whereby we deflate the variance of some of

the parameters in exchange for the unbiasedness of the solution [Pavlis,
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19791. In our study, for instance, we have already seer, that the station

position and the coordinates of the pole are inseparable parameters.

When the one is being estimated, the other mu r ' be kept constrained to

already known val :s, and i f is, of course, desired that the estimates

be least affected by any bias introduced by the constraints.

The relative orientation between baselinEs and satellite passes

will be ;-cexamined here, since the peculiarities of the SRD observations

shed more light on the relationship between observables and parameters.

The results of the aforementioned study are still valid, that is, satel-

lite passes parallel to the estimated baseline should be preferred to

those which cross it at almost a right angle. Since the SRD's, though,

are the differences of ranges emanating from the endpoints of the base-

line and directed to the same satellite position, they can be expressed

as functions of the baseline length directly. From Fig. 17 and some

elementary geometry we see that if d is the length of baseline 1-2, and

d is the observed range difference S1-S2, then

AB = d cosw	 (137)

0
where from the triangle 1SD we find

W = a + w	 (138)

0
From the triangle ICE we obtain

AB = CE = C1 cosh	 (139)

and since

SC = S2 =>	 C1 = S1 - S2	 or	 C1 = d	 (140)

Therefore

AB = 6 cosq,	 (141)

which, upor substitution in (137), yields
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= d cos a +

cos4,
(142)

It becomes obvious from (142) now that if the observations were collected

near the satellite point equidistant from stations 1 and 2, then their

values wouio be near zero and the determination of d very poor. On the

other hand, as a -> 0° or 180`, which happens as S - ► N, or N,, respectively,

then d -► d and uncertainties in the values of o. end ip have no effect on

the determination of d. In thiscasc we have assumed that the baseline

lies on the plane of the pass; therefore its direction intersects the

satellite trajectory at N, and N,. Although this special case illustrates

to satisfaction the relationship between observables and parameters of

interest, it is hardly ever possible for it to happen in practice; and

even i` it did, we would have no means of knowing a priori anyway. The

more realistic case is that of pass number two in Fig. 17, where the

orb i tal plane and the direction of :he baseline are nearly parallel.	 In

this case the points N, and N 2 do not exist, but the observations which

are collected at low elevation angles, near the points where the horizons

of the two stations intersect with the satellite trajectory, will still

be the ones with the greatest amount of information about the baseline.

For stations which are not too far mart (baselines of a few hundred

kilometers), the laser rays will travel through almost the same atmospher-

ic layers and any errors from an incomplete refraction model which is

always a limiting factor in low elevations, will be highly correlated

arid therefore cancel out in the differencing. Using the SRD mode for the

reduction of laser ranging data, therefore, we can make use of the low

elevation observations that are normally edited from the range adjustment
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and at the same time enjoy the minimization of biases due to errors in

the mathematical model which this approach offers.

4.5.3 lip-imal design for the estimation of the motion of the pole.

Baselin	 a, q , of course, not the only parameters of interest.

The coordinates of the celestial pole are equally important here as well.

The former are parametric functions of the adjustment parameters, and as

such we could not use the sensitivity matrix of the design to deduce the

optimal experiment for their estimation.. For the latter, though, this

approach can be taken since they enter the adjustment directly. The

goal of this investigation is to find an experimental design for SRD mea-

surements which will result in a set of normal e quations with an associ-

ated matrix being as close to a diagonal matrix as possible and with as

large diagonal elements as possible. Such a normal matrix will, of course,

result in small parameter variances and insignificant correlations among

them. To put it in fewer words: an orthogonal design. In the case of

a truly orthogonal design, the columns of the design matrix A are orthog-

onal, and since the nomal matrix is the Gramiar, of those vectors, the off-

diagonal ?lements are all zero. When exact orthogonality ca;inot be met,

we must try to st p y as close to such a design as possible.

One May to do this, and probably the most illustrative, is to exam-

ine the variations in the sensitivity of the observable with respect to

the parameters as a function of its various possible realizations. In

other words, compare the elements of the des i gn matrix for each of the

parameters at all possible observation points. Since each SRD observa-

tion involves two station locations arid one satellite position, there are

an infinite number of variations of this three-point configuration to be

it
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examined. We have again a practically intractable problem. The pole

coordinates, though, are basically two orthagonal rotations about the r-

and y-axes, and one can therefore use an intuitive approach to identify

a small number of configuration variations that would be enough to sup-

port the analysis. Based on the form of the sensitivity matrix elements

that correspond to the (x,y) parameters and the definition of the coordi-

nate system in which these parameters are referenced, we conclude that

two absolute locations for the observing stations that could give infor-

mation about our problem are those near the meridional planes on which

the x and y axes lie, i.e., the X = 0° and a = -90° meridians.

The rotations for the motion of the pole are about axes that lie on

the equatorial plane, and therefore their effect on the coordinates of

stations increases as the latitude of these stations increases. From

the practical point of view though, we cannot expect to have laser sta-

tions in near polar latitudes, and we have therefore limited our tests

to areas where most of the currently operational stations are located.

This study follows very closely the setup for the bias propagation study.

We have again used spherical approximations and a circular orbit at

Lageos' mean altitude, and we have plotted the values of the sensitivity

coefficients for each of the parameters at the intersection points of a

1 0X 1° grid surrounding the coobse-ving stations. In order to examine the

dependence of the observable's sensitivity on tho relative positioning of

the stations in the case of the SRJ mode, we have used various baseline

lengths and azimuths to determine the second station with respect to a

fixed position of the first one. From the analytical expressions for the

sensitivity coefficients, we can gather that their numerical values will
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in general increase as the coordinate separation between the stations

increases. This observation has been verified by the numerical tests

for different baseline lengths. It has also been observed that the abso-

lute maximum of these sensitivity curves is encountered near the midpoint

of the baseline, and their gradient is minimum in a direction nearly per-

pendicular to the baseline at its midpoint. These observations and the

`act that the simultaneity requirements constrain the actual baseline

lengths to not more than about 2000 km indicate that a 1000 km separation

would be the optimum for obtaining a sufficient number of observations
R.

with high enough sensitivity for a precise parameter determination. We

have therefore included here only the sensitivity plots that refer to

this particular case.

The sensitivity surfaces are shown for the range observable from a

station at 40 0 N latitude in Fig. 18 for 0 0 longitude, and Fig. 19 for

A = -90 0 . It can be readily verified from these plots that as the sta-

tion is moved in longitude by 90° to the west of its original position,

the sensitivity surfaces undergo a 90° counter-clockwise rotation about

the station's geocentric radius. The end result is that the sensitivity

surfaces for x and y at 0 0 longitude are identical to those of y and x

at 90° W longitude except for a sign change in the coefficients for x at

the second location and those for y in the first.

Inspection of other cases where the stations are located in between

the above two meridians shows that indeed the shift in sensitivity from

one parameter to the other is a smooth operation and on the a = 45 0 merid-

ian (or a = -45°) the range observable is equally sensitive to both param-

eters. It is also worth noting here that the sensitivity of the system
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is in general increased with respect to either of the parameters as the

observed satellite positions are selected farther away from the station's

zenith. In the case of ranging, therefore, we are in the unfortunate

situation that we have to use very low elevation observations if we want

to increase the sensitivity of our system with respect to the motion of

the pole. As it has already been mentioned, these observations have the

largest uncertainties due to incomplete modeling of the atmospheric re-

fraction effects and since the ranging mode cannot eliminate biases as

the SRD mode does, such poor quality observations are hardly ever included

in the range adjustment.

These last few observations, when first noted in the initial steps

of this investigation, prompted us to examine the potential use of the

SRD mode for the estimation of the coordinates of the pole. Based on the

sensitivity surfaces of the previously used station pairs we computed by

differencing the sensitivity surfaces for the SRD mode. From Fir . 20

and 2"" 	 can see tKa t for a stronger determination of the x coordinate

the station pair must be in the vicinity of the X = 0° meridian (or a =

180°), and of all possible baseline orientations, that nearest the North-

Scuth direction will result in the highest sensitivity possible. 	 Simi-

larly, Fios. 21 and 23 indicate that the strongest determination of the

y coordinate will result from the observations at a station pair near the

X = -90 0 meridian (or k = 90°), and a qain the highest pussible sensitivi-

ty will be achieved if the orientation of the baseline is in the general

North-South direction.	 It can be verified also that baselines in the

East-West direction will contribute to the sensitivity of the model too,

but in a reverse manner from that of the Norte-South baselines. That is
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to say, an E-W baseline near the X = 0' or 180° meridian will be sensi-

tive to the y coordinate although almost completely insensitive to the

x, as Figs. 21(c) and 20(c) show respectively. 	 In parallel, for an E-W

baseline near A = 90° or -90°, the observable is sensitive to the x

coordinate but not to y, as Figs .22(c) and 23(c) indicate.

The conclusions which can ue drawn, from this study are rather obvi-

ous by nori. The optimal SRD network for monitoring the motion of the

pole should consist of perpendicular baseline pairs located near the two

meridians on which the x and y coordinate axes lie. Some savings in the 	

I

number of dedicated laser equipment can be achieved by giving these sub-

networks an L-shape, one station being common for both the N-S as well as

the E-W baselines. Considering now that laser ranging is a weather-

dependent system and the fact that with a single Lageos target there is

a six hour gap in every 24-hour period curing which a typical station at

about 40 0 latitude will not be able to observe du:2 ^o the earth's iner-

tial rotation, it is only logical to plan for far , more stations than the

mere minimum. If the additional requirement of a uniform distribution of

the observations over the globe is considered, then we should also in-

clude subnetworks located in the Southern Hemisphere. In this manner we

not only increase the chances of observing the target within a given time

interval, but we can also minimize orbital biases coming mainly from an

inaccurate geopotent;al model. The importance of having a uniform dis-

tribution of data in time will be further discussed in connection with

the operational estimation technique for Lt d-_• coordinates of the pole.

What should be considered though as the major advantage of this network

configuration over simple raoging is the fact that the resulting design
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is nearly orthogonal over the entire area surrounding each baseline. In

other words, observat-ions from each of the baselines in an L -pair are

only sensitve to one of the parameters, ei ther x or y, and estimates of

these parameters will have nearly zero correlation as the normal equations

matrix is almost diagonal. This cannot occur in the case of ranging

except in very restricted designs where the satellite pass fcllows either

of the two directions on which the sensitivity with respect to one of the

parameters is nearly zero while 't is maximum for the other one (see Fig.

18).

4.6 Operational Approach for Parameter Estimation

4.6.1 Estimation of baseline lengths.

The estimation of baseline lengths in a dynamic solution is based

on the estimated coordinates of the observing stations. We have shown

already that in a long-arc problem where the satellite is tracked over

several revolutions, the coordinates of the tracking stations are separa-

ble from the initial conditions for the orbital integration (initial sat-

ellite state vector) except for an ill-conditioning in longitude caused

by the peculiarities of the earth's mass distribution.

The first option that one has then is to adjust all the data cul-

lected from all stations observing the satellite in one batch adjustment

with one station's longitude constrained to an adopted value. Such a

solution, of course, will have to utilize a very detailed orbital model,

since any unmodeled sources will progressively affect the solution more

and more as the length of the arc becomes longer and longer. As the

model gets more complicated, the computations become more complex; and
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time consuming; therefore, the cost per estimated baseline increases.

In addition to the above, a requirement of the long-arc solution is the

uniform distribution of the observations over the entire arc, and for

this to be achieved the stations must have a global distribution. That

presupposes the existence (and continuous maintenance) of a global net-

work of stations. For various reasons, the land-sea distribution being	 n

the most obvious, the existence of such a network cannot always be

guaranteed.

An alternate approach which circumvents the aforementioned problems I
is the semi-dynamic solution where each satellite pass over a station of

interest is treated as an independent arc. In this case the length of

the arc hardly ever exceeds one-third of a complete revolution, and the

orbital model therefore cannot furnish the required information about the

origin and orientation of the underlying coordinate system. The shorter

the arc, the less the contributed information by the orbit. Such solu-

tions have been common practi-:e with Doppler system users, especially

individual ones who have no way of observing the satellites on a global

scale. The usual remedy to the problem is the constraint of the satel-

lite orbit over each pass to some fairly accurate known values. By doing

so, one hopes that the introduced bias in the recovered positions of

nearby stations will be highl) correlated and cancel out during the inter-

station distanc e. computation. This, however, is neither guaranteed nor

does it mean that the resulting baseline estimate is bias-free by defi-

nition. The advantages of this method though are quite obvious. There

are no requirements for an extensive network and the orbital arcs being

very short, the orbital model can be simplified tremendously, since long
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period and secular perturbations in the model have no time to build up

and corrupt the solution. As a result, the cost of this mode of solution

compared to the previous one (for the same amount of data) is reduced

substantially, in some cases by an u.der of magnitude.

4.6.2 Estimation of the coordinates of the pole.

The fact that the coordinates of the pole cannot be separated frum

those of the observing stations in a simultaneous adjustment has been

shown already in Section 4.3.1. At that point some options were examined

for the separation of these parameters. Because of the arguments we

t
raised at that point, the second option seems to be the only one which

can produce consistent results over a long period of time. What is even

m 'e important is the fact that this method would result in a set of pole

coordinates that is compatible in sense with those currently obtained

and published by the international organizations such as BIH.

Since the coordinates of the observing stations are fixed to some

adopted values (which define the CTS), errors in these values will affect

the resulting polar motion record. As long as we always use the same set

of coordinates the effect of their errors on the polar motion record is

more or less the same, and we need not concern ourselves with this item

any further. The effort should be diverted in establishing the connec-

tion between the previously adopted CTS and the one used in the new tech-

niques. In fact this has been one of the most pressing issues 'in recent

years, and there are several suggestions on how to deal with it, the most

recent and, in our opinion, the most straightforward appears in [Mueller

et al., 1982].
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The idea of monitoring the motion of the pole by two rigid body

rotations of the station polyhedron with respect to the CIS defined by

the satellite orbit seems to be in agreement with the current trends and

requirements of the interested parties. There are two items -hick are

of concern in connection with this mode of estimation--the dynamic na-

ture of the parameters and the stability of the satellite-defined CIS.

Since we do not have a rigorous mathematical model to describe polar mo-

tion, we must resort to a discretization of the problem for the estima-

tion of the state of the process. The quality of the final result will

depend on the distribution. of These individual estimates in time. On the

other hand, the distribution of these estimates in time is associated

directly with the spectrum of the process and the capabilities of the

measurin g system. The already long record of observations has establish-

ed the fact that there are two dominant frequencies in the spectrum, an

annual one and the 14-month or Chandler frequency. From this point of

view then., the determination of an appropriate interval for the computa-

tion of the state is rather simple. The complications arise from the

consideration of the capabilities that the satellite system can demon-

strate. It is not only important that this system is accurate enough so

that the signal can be separated from the noise; we must also be able to

collect a sufficiently large number of observations over the estimation

interval in order to be able to produce reliable results. The laser sys-

tems, being weather dependent, will have a disadvantage in that respect

since observations lost on one day cannot be made up with additional ob-

servations on the next (lay. That implies that a large number of optimal- 	 ,.

ly selected stations should be em p loyed at all times.
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Because of the fact that the station polyhedron defines the CTS, a

question which must be examined very carefully is the effect of missing

stations' observations in the estimates. From the theoretical point of

view, deleting or adding stations (or changing their location or coordi-

nates) results in a new CTS, and one should therefore be alert to this

for the proper interpretation of discontinuities or irregular behavior

in the estimates. In connection with the reference system stability, we

must also examine that of the satellite CIS. It is true that Lageos,

which is the favored target for geodynamics research, has a very stable

orbit compared to other geodetic satellites, but nevertheless we still

do not know of an orbital model which would result in a centimeter level

accurate orbit over a period of a few years. For obvious reasons it is

not very desirable to have even a quasi-inertial system whose definition

changes so much in so little a time. The general consensus on this issue

is to use the satellite system as an interpolatory one and periodically

calibrate it with respect to one of the systems that exhibits long-term

stability such as Lunar Laser Ranging (LLR) and Very Long Baseline Inter-

ferometry (VLBI). The application of the SRD mode, however, can consid-

erably increase the stability of the satellite system due to the fact

that the biases in the observations can be greatly reduced with proper

scheduling. That not only will increase the quality of the end product,

but it will also reduce the need for a frequent calibration procedure,

which can be a nuisance and a source for further error.

Returning now to the data distribution question, we should point

out that by the discretization process we have in essence approximated

the nonlinear functions which represent the coordinates of the pole with

138



"Orr--,
r

a step function. It is obviously desired that the values of the step

function at each interval be unbiased estimates of the average value of

the true function over that interval. This can hardly be achieved if

the collected data are not uniformly distributed over the entire inter-

val as Fig. 24 illustrates. Even with a large number of stations in-

volved, we still cannot guarantee the uniformity of the data at all times

because we have no control over the weather or system failures. We sug-

gest here that in processing data for polar motion determination, a dif-

ferent set of coordinates of the pole should be estimated when the data

set density changes abruptly, that is, each batch of observations which

span a time interval no larger than that determined by the resolution of

the system be used to estimate one set of x,y coordinates. Furthermore,

and perhaps more important, the reference epoch for these estimates

should be computed on the basis of the data distribution rather than the

middle epoch of the interval, as is currently assumed. In Fig. 25 we

have plotted an assumed distribution of data for the problem of Fig. 24.

With the current practice, the estimates will refer to epochs M 1 , MZ,

etc. With the proposed new approach, the corresponding epochs will be

E 1 , Ez, etc. When these epochs are used in plotting the variation curve,

it is obvious that the estimated curve will be much closer to the true

curve than the dashed line of Fig. 24 which is based on the M 1 , etc.

epoch labeling. The fact that the new estimates are rot equally spaced

should not alarm the standard users of this information, for a smooth

curve can be fit to these points, and thereby one can obtain estimates at

regular intervals. In fact, the astrometrically determined coordinates of

the pole	 are always smoothed by means of Vondrak's method x1977] and

the published results are indeed the output of this filtering process.
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5. NUMERICAL EXPERIMENTS AND RESULTS

5.1 Simulation Studies

A number of simulation studies were performed in order to substan-

tiate our claims about the estimation of geodetic parameters from SRD ob-

servations as opposed to the classical range observations. Simulations

provide a lower bound on the accuracy of the results expected from the

analysis of real data. In this case, however, this is of lesser concern

to us because the main purpose of these simulations is to show the

relative performance between the two approaches on the basis of identical

data.

In order though that the results of these simulations reflect real-

ity too, we have used in most cases orbital models that contain all of

the major perturbation sources and station configurations that either

exist or whose existence in the near future is nearly certain. What has

not been accounted for in the generation of the simulated observations is

the weather. It is common practice in simulation studies to adopt a

certain percentage p (usually 50%), which is used as a weather factor,

i.e.,if N is the total number of observations which are possible, then pN

of them are deleted to account for poor weather at the observing sites.

Since we are interested in a relative comparison of the results, this is

not an important issue. The treatment of the weather problem in the

above fashion raises several questions, the most important of which is

how does one apply the weather factor. It certainly makes little sense 	

I
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to delete the first or last pN observations of the campaign since that

only shortens its duration, and deleting pN observations at random is

not very realistic either since it is equivalent to reducing the sampling

rate by an appropriate factor. Modeling the weather realistically at

each station, based on past weather records would certainly seem to be

the most logical solution. This, however, would result in unduly in-

creasing the complexity of the simulation process and with no major gains

in the relative comparison of the results.

In connection with the distribution of the data issue, a related

factor is the observational capabilities of the stations. Although cur-

rently only a few stations can observe during the day, most of the sta-

tions are undergoing upgrading to the third generation of laser instru-

mentation which will make -it possible to observe at all times. For this

reason, we have not discriminated between day and night observations in

the simulations.

In the following we discuss the three most important simulation

studies performed. The first one involves nine existing stations. Its

purpose was to find out what amount of SRD data could be collected from

these nine stations over the observational period of ten days in the sec-

and half of August, 1980, and compare it with what was actually collected

over that period of time. The purpose of the second simulation was to

investigate the merits of using the proposed method in analyzing data

collected from a hypothetical network of 17 stations which is likely to

be realizable by 1983 as proposed in [CSTG Bulletin, June 9, 1982]. The

goal of this network is the establishment and maintenance of a Conven-

tional Terrestrial Reference System by means of modern observational

J
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techniques such as satellite laser ranging (SLR) and very long baseline

interferometry (VLBI). Our study focuses on the problem of determining

the baseline lengths between the observing stations of this network. In

the third simulation, four nearly optimal baselines of the previous net-

work have been singled out in order to study the capability of this sub-

network in determining the coordinates of the pole.

In all three simulation studies all possible simultaneous events

between pairs of stations are generated. Since the SRD data set which

consists of only simultaneous events is used to create the simple range

data set, the number of observations in the latter is twice that of the

former. In addition to this, because SRD observations will be in practice

obtained from independent range observations, assuming that the two

ranges in a pair have equal noise variance 0 2 , the resulting SRD will

have a noise variance equal to 20 2 . This fact is also considered in the

simulations.

Each of the simulated pair of data sets (one for ranges and one for

SRD's) is then used in estimating the parameters of interest, whether

they be baseline lengths or the coordinates of the pole. Being simula-

tion studies, if everything is left as is, there will be no difference in

the recovered results larger than the input noise level. Our interest

though is to compare the two methods wher there are unmodeled orbital

biases in the problem which are not being accounted for in the solution

parameters. To achieve this, we apply a bias in the reference orbit which

is a common input and identical for both the range and the SRD adjustment.

The method which is least affected by this bias is obviously the one which

recovers the parameters of interest closer to their "true" values.
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5.1.1 Simulations for an existing SLR network.

The fact that the simultaneity constraint reduces significantly

the amount of usable ranging data in the SRD mode has been mentioned al-

ready. In anticipation of using some existing laser ranging data for

testing the proposed method, we performed an initial simulation study

using the same stations from which the real data had been obtained and

covering a period of time during which these stations seemed to have per-

formed extremely well in acquiring large amounts of data.

Of all stations observing during August of 1980, eight NASA sta--

tions and two SAO stations seemed to be the only ones with significant

amounts of data. After a preliminary inspection of the data distribution

in time, it was apparent that nine of these stations had coobserved La-

geos passes with significant overlapping intervals. Table 14 gives a

summary of the available real data from all ten stations and the

Table 14	 Lageos Data Selection Summary

Station Available Selected
No. Observations Observations

7090
------------------------

73590
--------------

19042
7943 6068 1934
7092 4167 607
7096 4492 786
7120 18245 2749
7007 3040 207
7063 3322 1698
7115 7163 1047
7091 7522 319
7114 4130 324

Totals

----------------------------------

133931 29113

------
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corresponding amounts of data collected simultaneously by any two stations

of the network. Comparing the totals in these two columns, it is obvious

that less than 22% of the available data can be used in the SRD mode.

From a detailed tabulation of the selected Lageos data (per day/

station), it was found that the greatest concentration is in the second

half of the month for almost all stations. When the data collected in

overlapping time intervals are selected, it turns out that only 38

Lageos passes had been coobserved. A listing of the data per pass for

each station in a station pair is given in Table 15. From this tabula-

tion it becomes very clear that the two stations on the Australian conti-

nent, Yaragadee (7090) and Orroral (7943), which dominate the complete

data set (cf. Table 14), are also the ones with the most data in the

selected (simultaneous) observations data set. The implications of these

facts will become more obvious at a later stage when we will discuss the

analysis of real data. From the initial 133921 available ranges, only

2431 SRD events could be generated f-r the following seven station pairs:

	

7090 - 7943	 7115 - 7114	 7114 - 7063

	

7120 - 7115	 7092 - 7120

	

7943 - 7096	 7092 - 7943

Following the general guidelines of our simulation process, we have

generated a data set of SRD observations which are collected from a net-

work including the above eight stations and an additional one, the SAO

station 7907, located at Arequipa, Peru. The generated data span a ten-

day period, August 16 - 25, 1980, and we have used a sampling rate of one

range every 30 s for all stations. A total of 26253 SRD events are possi-

ble for the selected station pairs. The groundtracks of the observed
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Table 15	 Overlapping Data Distribution for Eight Station Pairs

^^ I
station	 I

No.	 I

i Satellite	 1 7090 7943	 7096 7092	 7120 7115 7114	 7063
1'a&s	 I

x I

1	 1 664
------------------------------------------------------------------------

49
4 2	 I 669 647

3	 1 551 4.1
4	 I 701 76
5	 I 106 30
6	 I 836 53
7	 I 543 45
8	 I 431 31
9	 I 13	 36

10	 I 149 32
I	 1	 1 117 22
12	 1 239 34
13	 1 220 28
11	 1 6	 58
15	 1 30 8
16	 1 640 30
17	 1 315 12

' is	 1 513 61
19	 I 935 181
20	 I 66 12
21	 I 286 29
22	 1 131 10
23	 1 100 9
24	 I 30 6
25	 I 37 4026	

I 32 26

27	 I 60 37

23	 I 226 32
29	 1 632 88
30	 I 176 18
31	 I 6	 32
22	 I 112	 115
33	 I 10 118
34	 1 1217 151
3,i	 1 149 46
36	 I 876 113
37	 1 228	 593

i

I---

33	 I

------ ------------------------------

55 7

------ -------------------- ------

n
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Lageos passes and the baselines defined by the selected station pairs

are shown in Fig. 26. We refer to this data set as the AG80 data, since

the observational period falls in the interval during which this campaign

occurred.

Even if we halve the number of possible events to account for the

fact that not all of the stations had day-night observational capabili-

ties, and further take half of the remaining observations to account for

poor weather, equipment breardowns, etc., we are still left with over

6500 events. Considering that these events span only one-third of the

entire month of August and, furthermore, that our sampling rate of one

observation every 30 s is nearly ten times lower than the observational

rate of most stations, one should realize that the actual number of possi-

ble SRD events for the entire month should be well above 50,000 with

ample allowance for all factors. It therefore seems that either extreme-

ly adverse conditions in the worst possible combinations dominated the

performance of these stations over that period or there was a lack of

effort in obtaining all possible observations.

The data generated for the AG80 data set were subsequently used in

two recovery adjustments, one for polar motion components and one for

baseline lengths. Both adjustments were done in the SRD as well as ill

the ranging mode. To identify which of the two modes is affected more

severely by orbital errjrs, we perturbed the reference orbit in two dif-

ferent ways.

Initially we used only a random error applied to each coordinate of

the satellite; subsequently, though, we augmented that with a linear

trend time-dependent component. The adjustments are purely geometrical,
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i.e., the reference orbit is assumed perfectly known and no adjustment

for it is allowed. The differences therefore between the simulated and

recovered polar motion components and baselines ("recovery errors") reflect

the effect of the induced orbital errors on the solved for parameters of

interest.

The random error used in the first simulation has a z p r-. mean and

a 2.0 m standard deviation. The bias model o' the second simulation can

be analytically expressed as

di	
= a  + b i (t - t o ) + n i	i = X,Y,Z
	

(144)

where the following (arbitrary) r.umericai values were used for the coef-

ficients a i , b  and the noise component n i :

a  = -0.20 m	 b  = 0.01 m/day	
n 
	 N(0.0, 0.05)

a  = 0.40 m	 by = -0.01 m/day

a  = -0.50 m	 b  = 0.02 m/day
	

(145)

and t - to represents the time in days elapsed since the epoch t o of the

first day of the 1imulation.

The recovery of the polar motion components was done for two differ-

ent avera g ing interval scenario,. Initially, we broke down the ten-day

mission into three intervals: a four day, a five day, and a one day, in

this order. Subsequently, since the data distribution permitted it, we

attempted a solution for ten daily averages.

The baseline recovery simulation involved eight baselines between

the same station network used for the polar motion simulation. Only t'^e

second orbit-biasing scenario was used in this simulation.
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The results of the two simulations described so far have been sum-

marized in the form of recovery errors in Table 16 for the polar motion

components and Table 17 for the eight baselines. As can be seen from

Table 16, the range adjustment results for the coordinates of the pole

deteriorate by an order of magnitude when the orbit is perturbed by

white noise 'Case 1). In the case of the SRD adjustment though, the rms

error increases by only 70% from its nominal value for the true orbit

solution. When she errors in the orbit are of a systematic nature (equa-

tion (144)) as in Case 2, the range adjustment results exhibit a fourfold

increase in the rms recovery error compared to the SRD-based results. The

resu -Its of the range adjustment can be significantly improved- -although

still worse than the SRD results--by recovering the coordinates of the

pole over shorter time intervals (Case 3). The less time the biases are

allowed to accumulate, the less their effect on the estimated parameters.

In this case the rms recovery error for the range adjustment dropped

from 0."022 to less than 0."009 (Table 16, Case 3).

The summary of the baseline recovery adjustments are given in Table

17. Only the systematic error model was used in this simulation. The

rms recovery errors were computed based oi, the differences of the recov-

ered baseline lengths from the a priori (modeled) baseline lengths. They

are 1.9 cm and 3.7 cm for the SRD and the range adjustment results respec-

tively. The contrast between these results is nut as impressive as in the

case of the coordinates of the pole, the reason being that we are dealing
1

here (by choice) with extremely long baselines and in most cases with

i	

rather unfavorable geometry. In fact, from Fig. 26 one can gather that

except for the baseline between stations 7943 and 7092,
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Table 15	 Polar Motion Component Recovery Error Sunm2ry

mujus t men t Tr "" Orbit
--------------------------------------------------------------------

Random Orbital Systematic Orbital
Noise only Error Error

Mode C*3" Case	 I Case m Case 3

113o1gre3 0.30
--------------------------------'-----------------------------------

2.55 21.70 8.50
mmm` * 0.40 0.6e *.10 6.20

Not,	 :	 Table °a/u" o	 In
--------------------------------------------'----------------------

mi//ia,=se""oa°.

Table 17	 Baseline Recovery Error Summary

-----------------------------------------------

uuoelxoea ^ujur,m~ut
u ° t we CIA with

oiui i " u= auu:pa Sum'9
-----------------------------------------------

7033 - 711* -n'v -w.r
?063 - -so07 -u'u -o.m
ro^o - -) -^3 -/^a 1.1
.'^-)2 -	 7/2n -2'1 5

-j ' 3 2.1
s - 79^3 -u'o 2.5

^I+a - 7/f^o o./ 0.5
^120 - 19 ,13 -a ' o -/.x

rm^ ^ 'cov,ry c,rvr
----------------------------------------------

1.9

y
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in all other cases the geometry of satellite grouridtracks - baseline

direction is of the type to be avoided. This strong dependence of the

SRD mode on the geometry of the problem has already been pointed out in

Section 4.5.2, and these results merely confirm it.

5.1.2 Simulations for a proposed SLR network.

5.1.2.1 Baseline Recovery. Based on an optimal global laser sta-

tion distribution (likely to be realizable by mid-1983) proposed at a

recent meeting of the COTES study group [CSTG Bulletin, June 9, 1982], a

simulation study for baseline recovery was performed. Except for the

fact that different stations (17 total) are involved, this simulation was

similar to the one previously reported for the AG80 data set. The station

locations and the data distribution are given in Tables 18 and 19. Base-

line estimates and their statistics were computed for both the range and

the SRD adjustments. In order to assess the effect of orbital biases on

the baseline recovery, the orbit used in the adjustment (range and SRD)

was again biased. In this simulation, however, the bias was applied in

a slightly different manner from what was done in previous simulations,

by applying it in terms of a radial, an along-track, and an across-track

error as follows:

radial bias	 2.00 m

along-track bias	 0.60 m

across track bias	 -1.20 m

Two different adjustments were performed. In the first case the

coordinates of all stations were obtained in a simultaneous adjustment

based on the data collected from all station pairs. On the basis of this

solution the baselines between all possible station combinations were
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Table 18	 Coordinates for the Stations Used in the
Simulations

Station 0	 X (m)	 Y (m)	 Z (m)

FTDAVS 7086	 - 1324510.442 -5332139.932	 3231791.056
WETTZE 7914	 4074613.305	 931963.678	 4801492.271
HAWAII 7120	 -5464096.683 -2402363.153	 2240358.273
STALAS 7663	 1130304.818 -4831721.449 	 3993759.624
WESTFO 7091	 1492212.742 -4458121.791	 4296005.489
ONSALA 7095	 3392750.872	 783278.257	 5325906.607
HERSTH 7911	 4022035.768	 000000.000 4933550.635
GRAZ	 7999	 4130031.490	 1106638.602	 4716882.075
JAPAN 7935	 -4121637.800	 3220176.370	 3637871.320
M CHi•IO 7069	 961533.601 -5674186.968 	 2740519.741
QUINCY 7051	 -2516274.396 -4.98843.469	 4975154.569
YARAGA 7090 -389125.331	 5042839.038 - 3078750.728
CIIILBO 7901	 3844341.319	 -134247.357	 5070549.690
ORROHA 794:3	 -3912965.794	 2259151.854 -4488060.975
DIONYS 7940	 4728637.251	 1910493.462	 3817397.791
AZ:.^UI 7907	 1941330.115 -5632024.122 -1796312.986
GRASSE 7952	 45.10759.258	 639567.505	 4408096.973

Table 19

	

	 Distribution of Ranges and SRD's for
Each Baseline

Baseline	 I.vngth	 Range	 SRD
No.	 End Stations	 (m)	 Obs.	 Obs.

-----------------------------------------------

	

1	 7901 => 7914	 1123:•87.006	 7202	 3601

	

2	 7095 => 7940 2308853.694	 5976 2988

	

3	 7942 => 7999	 700368.121	 7460	 3730

	

4	 7095 => 7942	 1484591.097	 6954	 3477

	

5	 7091 => 7095	 5669657.481	 2594	 1297

	

6	 7063 => 7911	 5703839.391	 2442	 1221

	

7	 7069 => 7942	 7451634.061	 446	 223

	

8	 7911 => 7940	 2322723.588	 5884	 2942

	

9	 7901 => 7942	 139620.646	 7062 3531

	

10	 7942 => 7914	 683352.290	 7468	 3734

	

11	 7911 => 7095	 1073641.514	 7450	 3725

	

12	 7942 => 7940	 1412734.544	 6496	 3248

	

13	 7095 => 7999	 1009482.790	 7478	 3739

	

14	 7999 => 7940	 1346693.532	 6620	 3310

	

13	 7095 => 7914	 872957.116	 7612	 3806

	

16	 7091 => 7069	 2044497.683	 4496	 2248

	

17	 7053 => 7907	 546566.472	 1024	 512

	

13	 7036 => 7907	 6014011.635	 994	 497

	

19	 7069 => 7907	 4643137.99::	 1716	 858

	

20	 7069 => 70d3	 2360121.040	 4112	 2056

	

1	 7053 => 7031	 3701536.397	 3944	 1972

	

22	 7051 => 7036	 1843222.236	 5296	 2648

	

33	 7120 => 7051	 3909408.1132	 2950	 1475

	

24	 7120 => 7025	 5167466.0:31	 1650	 925

	

135	 -OZ3 => 7063	 2618612.747	 4bbb	 2333

	

25	 7091 => 7036	 3135345.207	 4348	 2174

	

27	 7120 => 7935	 5947116.046	 1342	 671

	

23	 7935 => 7090	 7171939.095	 366	 183

	

29	 7090 => 7943	 420..079.994	 3226	 1613

	

30	 7935 => 7051	 7603305.998	 412	 206

----------------------------------- -----------

R.
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obtained along with their formaraccuracies and differences with respect

to their "true" values. Part of the baseline results are summarized in

Table 20. Only the cases in which a station pair has coobserved have

been listed. In all cases but two, one listed (7090-7943) and one not

(7901-7911), the baseline lengths have been overestimated although the

errors in the SRD case are about an order of magnitude smaller than the

ones for the range adjustment. Since the positive radial bias results in

an "expansion" of the network of satellite positions, this should come as

no surprise. The stations have a global distribution and because the

observations from all stations are adjusted simultaneously, their posi-

tions become interdependent and the aforementioned expansion affects all

of them similarly. Fig. 27 shows the results of the two adjustments for

all possible baselines.

This first solution prompted us to test the recovery of baselines

from independent adjustments. In this second case the data collected

from each pair of stations are adjusted independently and the estimated

baselines are only the ones defined by coobserving station pairs. The

results of this second type of solution are shown in Table 21. What is

obvious again is that the SRD results for the baseline lengths are again

superior to the range adjustment results.

The most interesting observation, though, in this solution is that

on the basis of the same data the range adjustment now underestimates the

baselines and the recovery errors are all negative. The reason behind

this is the one-sided data distribution in this instance, as opposed to

the global distribution that existed in the network adjustment case.

r
From Fig. 26 it is obvious that we are dealing with extremely long
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I Dd -h^-^ DO^d JCIŝ MCIL)N0t-'pN	 h%Dt^w^I
I maNaCOC OCOd a- vC, co)	 M0,v(3, 900 ^Z t c, 0, 1

-'^	 I OHO-O d' MmLO.CIL^L;hL;-^^r^co;;,l-or•.lO:aa
0be- IhMN - hadCO © N- I}'C'.Mhh'9-i • - 10ClW* ID, CI . 131Oaa!O IC E I COL^̂̂  DaL7MM , JC`JL."f:I)=C% uL cac - MNM,lO,O-v'- - l-0 I
i. d^ I d• COMIti^OCO^DhOM^O[^V'^9ad't^O--aCl-td'^oM-a0M I
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Fig. 27	 Network solution results, recovery errors versus
baseline length.
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baselines in which case the simultaneous events are confined in the area

in between the end stations. The loss of the uniform data distribution

around the stations results in a one-sided biasing of the station posi-

tion towards the opposite station or, better, towards the "barycenter"

of the observed satellite events. Since this, as we discussed above,

	

^i	 lies in between the two stations, thence the "shrinkage" of the estimated

baselines.

For the SRD results there seems to be no bias preference, and

those errors are rather randomly distributed and in almost all cases at

the centimeter level. The three baselines for which the range adjustment

has given better results than the SRD all have lengths in excess of 7000

km and very few observations. As it has been previously reported, the

SRD mode is much more geometry dependent than the range mode, and as the

results of Table 21 show it admits of its limitations very eagerly (note

the formal accuracies on those baselines!). Unlike the SRD mode, the

	

'	 formal accuracies for the range mode give no hint whatsoever as to the

real accuracy of the results. Even though the recovery errors are of the

order of a few decimeters in all cases, the reported 6's are hardly ever

higher than 2 cm! A pictorial presentation of the recovery errors for

this solution are shown in Fig. 28.

On the basis of these simulations one can conclude that the SRD

mode will in all likelihood provide more meaningful results in the pres-

ence of unmodeled orbital biases of the type considered herein than the

range mode, and it will also give more reliable accuracy estimates for

those results. Comparing the batch (global) solution to that of individ-

ual adjustments, the latter seems to be by far a better approach in the

7
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Table 22	 Summary Statistics for Baseline Recovery Errors

Adjustment Mode Network Independent

Statistic Observable
-------------------------------
mean RanRew 69 -55
Recovery
Error	 (cm) SRD's 18 4
------------------------------
Mean Ra"Kes 52 -17
Ratio
Error /Sigma SRD's 17 0.2

case of SRO observations, although the opposite is true for the range

observations. Compare, for instance, the level of recovery errors be-

tween Tables 20 and 21. This is also documented by the average values

of the recovery errors displayed in Table 22 for both the ranges and the

SRD's as obtained from the network as well as the independent solutions.

5.1.2.2 Polar Motion Parameter Recovery. Since the global rota-

tions of the CTS polyhedron will be monitored by a subset of the defining

stations [CSTG Bulletin, June 9, 1982], we selected four :iaselines out

of the 136 possible between the proposed 17 stations [ibid.] to investi-

gate the performance of sucri a subnetwork in estimating the coordinates

of the pole.

The selected baselines were chosen in such a way that they conform

as nearly as possible with the o p timality criteria established in the

previous chapter of this investigation with respect to polar motion esti-

mation from SRO observations. The locations of the eight stations defin-

ing these baselines are given in Fig. 29. A set of SRO observations was
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generated, spanning a seven-day period, August 14 through 20, 1980. The

sampling rate in this simulation was one observation per minute, and to

each SRO observation was added a white noise component with a standard

error of 14 cm, the equivalent of 10 cm in each range. The coordinates

of the pole were specified as two-day averages; their "true" numerical

r	 values are given in Table 23. The satellite orbit was biased in the same

manner as for the previous simulation, this time by the following errors:

radial bias	 1.00 m

along-track bias	 0.06 m

across-track bias	 -0.12 m

Table 23	 Polar Motion Component Values Used

in	 the

--------------------------------------

Simulations

Time Interval True Values
YY[Ud)D YYNia)D x	 y

cooa 1 : - aoc :1 G

--------------------------------------
-0"020	 0"310

CJJ"1C - 300313 -11"019	 0 ":31 1
=Ji3 - 300020 _011013	 0";;1'2

The results of the two adjustments for the three two-day averages

of the coordinates of the pole are shown in Table 24. The rms errors for

the range adjustment are nearly an order of magnitude higher than those

for the SRO adjustment. Table 25 lists the statistics of the estimated

coordinates of the pole for both adjustments. Despite the continents made

above as 0 the quality of each solution, the formal statistics give no

hint at all about it, and it should once again be pointed out that they

are completely unreliable in the presence of unmodeled errors.
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Table 24	 Polar Motion Component Recovery Results, Complete

Data Set Solution

-------------------------------------------------------------------

	

Simulated Polo Coordlnatew	 Recovered Pole Coordinates
'rim,- Interval	 True Values	 Range Solution	 SRD Solution

YY7if•l!)D	 11TUMD	 x	 y	 x	 y	 x	 r
-------------------------------------------------------------------

000314 - 300316 -0"020 0"310 	 -0"008 0"316	 -0"019 0"308
100316 - 300:113 -0"019 0"311	 -0"004 0"317	 -011019 0"311
101000118 - :.03:._0 -0 1, 0119 0 11 312	 _011006 0"310 	 -0 "017 0 "31 1

rttiq rocovary error	 0 "013 0"006	 011001 0"001
-------------------------------------------------------------------

Table 25	 Statistics for the Recovered Polar Motion Components

Obtained from the Complete Data Set	 iR
--------------------------------------------------------------------------

nn n M e	 S 0 1 u t t o n	 S R D	 S o I u t I o n
Step	 Ctnndorl Deviationa Correlation Standard Deviations Correlation

(1 )	 Q (1 )	 Qy( i )	 4( I) <-> y( 1)	 GX( 0	 CV( I)	 x( 1) <-> y(i )
".^s)	 (m^^)	 (mas)	 (MEIN)

----------------------------------------•--------------------'-----
1	 0.039 	0.083	 -0.023	 0.314	 0.459	 -0.141;
2	 0.039	 0.007	 -0.046	 0.311	 0.459	 -0.142

0.090	 0.0:37	 0.003	 0.311	 1). 459 	 -0.145

It must be obvious by now that an order of magnitude improvement in

the accuracy of the coordinates of the pole can be achieved by analyzing

the exact same range observations in the SRD mode. One should also con-

sider that this particular simulation is based on feasible station loca-

tions which are in no way the optimal network for polar motion determina-

tion, and additionally no effort was made to single out the optimal sat-

ellite passes for each specific baseline. Yet, the results are rather

promising in view of the generally accepted requirement of 0:'002-accurate

pole positions over two-dej intervals.

In an effort to account for the effect of loss of data we have

readjusted the simulated observations only this time we restricted the
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admissible observations to those with an elevaticri of 40° above the

station's horizon. The recovered coordinates of the pole and their sta-

tistics are given in Tables 26 and 27 respectiveiy. The SRI) adjustment

still recovers the parameters better than the range adjustment. What is

more interesting here, however, is the indication of a downward trend in

the correlations between the recovered values for the SRD case and the

opposite for the range case. When we used the more restricted data set

in the second simulation, we in effect forced our observations to lie

within and around the two baseline stations. As we have already seen in

Section 4.5.3, this is the optimal region for selecting observations

which will result in the highest sensitivity with respect to one of the

parameters and the lo ,.-jest with respect to the other. Although the

Table 26	 Polar Motion Component Recovery Results, Restricted
Data Set Solution

-------------------------------------------------------------------
Siuniated Pole Ccordinat .̂ s	 Recovered Pole Coordinates

T ^^ ?n:e: S3 1 	 True da la:s	 Run,-e So I u t ion	 SRD So iut for

L'	 14 - 0003 16 -0"020 O "310	 0 "(d.91 0 "31 1	 -0"021 0"508
- S00313 -0 1''Z119 o "St l 1 	 011005 0"305	 -0"019 0"310

000313 - 0430520 -0"013 0"312	 0"017 0"3e3	 -0"019 0"309

itri oco% - ; y crrc r 	 0"028 0 " 007	 0"000 C"'002

Table 27	 Statistics for the Polar motion Components As Obtained
from the ^2str i cted Data Set

R a a :x a	 ° o l it t i o n	 S R D	 S o I u! 1 o n
y iaadnru ")ev :31io • cr - Torrelation Standard Deviations Correlation

GY( i )	 -r( 1) <-> yi i)	 rx(1)	 GY(1)	 a( i) <-> Y( ( )

	

taus )	 (mas)	 ( inas )

1 - --------------------- ----------------- 	 -0. ;w	 0. 5%)7 	 1.203	 1.161	 -0 1

	

-----

	 4

0. -; c,3	 0.615	 -0.616	 1.219	 1 . I i'.'.	 -0.104
U.:•9:3	 0.600	 0.006	 1.246	 0.955	 -0.044
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original correlation of -15% is not really significant, it is only fair

to point out that in the restricted second simulation it drops to -10%

or less. At the same time the range adjustment results show in general a

slight increase in the correlation.

Finally, we compare the formal accuracy estimates between the two

solutions. The first simulation is based on 7407 SRD's, while the second

on only 669, a ratio of about 11:1. Since in both cases the noise level

is the same; one would expect that the increase in the formal accuracies

between the two adjustment should follow the YIn__ law, n being the ratio of 	 f

the observations between the two solutions, or in our case we would ex-

pect roughly a threefold increase in the Q's of the recovered parameters.

Any deviation from this ratio on the higher side indicates that the

poorer data distribution affects the solution, while on the lower side it

indicates that the new geometry is superior to the former. This is ex-

actly what happens Mere since the o-ratio for the ranges is neatly 5.6

(compared to the expected 3= - 3.3), while for the SRD's it is only

2.5. The invoked data selection has not only compensated for the loss

of data, but in fact it has improved the sensitivity of the system with

respect to the estimated parameters.

i.;"I
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5.2 Experiments with Real Data

5.2.1 Preliminary adjustment for data editing.

Since the purpose of this investigation is the introduction and

study of a new method for the analysis of ranging observations to satel-

lites and in particular to Lageos, knowing the quality of the data which

we planned to use for testing the method was one of our primary concerns.

As we have already discussed, the distributing agencies such as NASA

and SAO do edit the raw data and delete most of the spurious observations.

This editing, however, is done on a pass-by-pass basis and not for

the whole aggregate of the available data. To do so one has to "fit" an

orbit to the data as a whole and to compare the discrepancies of each

observation from that orbit. This is the primary reason for which we

considered an adjustment for the complete data set as a necessity.

Secondarily, though, such an analysis of the data would also pro-

vide an indication of how well and to which level of accuracy our orbi-

tal model fit the data. The lower the rms residual of the observations,

the better the orbiral model deployed. The qualitative and quantitative

characteris;.i,:s of this model are of great interest in this investigation.

We will later use this model to calculate the reference orbit with re-

spect to which the SRD observations are adjusted.

Last but not least, since most of the data have already been ana-

lyzed by other agencies, the results of our own sof aware (GEOSPP--GEO-

detic Satellite Positioning Program) could provide a check on the code

and give us some confidence in the program. This latter is always a

major problem since, as someone put it, "Every nontrivial program has at

least one error."
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An initial inspection of the August, 1980, Lageos data set (Sec-

tion 5.1.1) had already indicated that the highest concentration of si-

multaneously observed Lageos passes fell in the second half of the month

of August. For that reason our effort -focused on the subset of data

spanning the period from August 14 through 31, 1980. It turns out that

the last coobserved pass occurs on August 28. Data from the ten most

active stations during that period were selected in order to subsequent-

ly be used for SRD event generation. A total of 24240 range observations

were selected in such 4 way that all stations but one (7907) have nearly

the same amount of data. These data were analyzed with our computer

program GEOSPP in a preliminary adjustment.

The theory behind the orbital model used in GEOSPP :t:as been de-

scribed in Section 2.2; the numerical values for some of the constants

used in the program are given in Table 28. We have used the geopotential

coefficients of the preliminary model PGS-L1 [Lerch and Klosko, 1981] up

to degree and order twelve, since as it is reported in [ibid.] the per-

turbations of higher harmonics for such a short period of time (14 days)

are nearly equal with the errors caused by the uncertainties in the

Table 28 Numerical Values of Constants Used by GEOSPP

Semi-axis mayor ...............
Inverse flattening............

Gravitational constant........:

A.otationaI rate ...............
Speed of light ...............
Astronomical Unit ( i AU)......:

Solar pressure at I AU........:

	

6378144.11	 (M)

	

298.255	 ---

398600.4125x10 9 (m31s2)

0.000072921158547 (rad /9)

	

299792458.0	 (r /s)

	

149547870950.0	 (m)

	

4.62576x10	 (N/m2)
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coefficients themselves. An initial state vector for Lageos was pro-

vided by Dr. P. Dunn, although in a reference frame different from that

used in GEOSPP. The state vector that we used was obtained from the

former by applying to the former the nutation, precession and equinox

Table 29	 Numerical Orbit Integration information for GEOSPP

VARIABLE ORDER-VARIABLE STEPSIZE NUMERICAL INTEGRATION
----------------------------------------------------------------------------------------------------------------

NOMINAL STEPSIZE........:
PIINIHUM STEPS IZE ........ :
PLAXIPium STEPSIZE ..........
RELA'T'IVE ACCURACY
EQUATIONS OF NOTION.....
VARIATIONAL EQUATIONS...:
I NT. r-E:SSAGE OUTPUT UNIT

140.0 SEC
0.0 SEC

600.0 SEC

I.OD-07
1. OD-04

21

PERTURBATION rODEL
----------------------------------------

GEOPOTENTIAL..	 ........	 (12,12)
FOR VARIATIONAL EQUATIONS ..............: ( 4, 4)

	

PIGON ................................... 	 YES
SUN..	 ...............	 YES
WiTIODELED ACCELERATIONS 	 YES

ALONG TRACK	 = - 0.348@D-11 (M/S2)
CROSS TRACK	 = 0.0	 (M/S2)
RADIAL	 = 0.0	 (M/S2)

SOLAR WiDIATION PRESSURE..	 ....	 YES
SATELLITE AREA =	 0.2827 (112)
SATZLL IT;: PIASS = 406.9650 (KG)
SATZLLITZ REFLECTIVITY CR= 1.1729

	

SOLID EARTH T i DES ......................	 YES
LOVE NO.	 1t2=0.2740
PHASE .'ANGLE E2=2.3300

LOVE NURSER FOR ?-L&D I AL EXPANSION H2 - 0.600
SHIDA ITUIMER FOR UCRIZONTAL SHEAR L2 = 0.075

INPUT 1 N; O?J-L1T I ON FOR ARC : 7603901.01

YYMMDD HHMPLSS.SSS
EPOCH OF ELEIIVNTS ...... : 80 813 235930.028
OBSERV_1TUDWS START AT..: 80 814 0 0 0.000
OBSERVATTOLS END AT....: 80 829 0 0 0.000
REFERENCE SYSTEN EPOCH.: 80 731

IINERT T U, CART%8IAPT ELEMENTS AT THE EPOCH
------------------------------------------

k (II)	 Y (M)	 Z (M)
-5398161.430	 -5961700.182	 -9377042.063

NXOT ( NIS)	 YDOT ( MIS)	 ZDOT (MIS)
-4740.0626632	 -870.0206757	 3111.3650676
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corrections that relate the two reference frames. The result along with

•.ne other information required for the numerical integration of the

orbit is given in Table 29. The orbit was allowedto adjust freely in

this solution. The a priori station locations are given in Table 30.

Table 31 gives the summary of the residuals' statistics for the last

iteration of the sclution. We have already discussed the fact that the

dynamic mode i^ an ill-conditioned problem due to the physical

Table 30	 A Priori CTS Station Coordinates

Station No. X (m) Y (m) Z (m)

STALAS 7063 1130711.700 -4831371.300 3994088.700
?IL0502 7090 -2389002.297 5043333.488 -3078528.544
PIL0702 7091 1492450.900 -4457281.700 4296817.000
DIL01302 7092 -6143448.500 1364706.900 1034164.800
PIL0602 7096 -6100049.584 -996197.831 -1568978.317
PIL0211 7114 -2410428.196 -4477882.221 3838688.071
KL0307 7115 -2350b67.357 -4655546.092 3660999.228
PIL0110 7120 -54660:)3.686 -2404404.305 2242228.593
AREL_S 7907 1942786.100 -5804076.900 -1796938.600
ORRLAS 7943 -4447545.681 2677137.812 -3694997.951

TaJle 31

	

	 Residual Summary for the Complete Lageos Range Data
Set Adjustment by GEOSPP

ADJUSTMENT STATIST ICS FOR ITERATION : 2

DEGREES OF FREEDOM FOR THIS ADJUSTMENT .....................: 24234
PREVIOUS WEIGHTEDSUM OF SQUARES OF THE RESID,JALS/D.F......: 	 0.1760
CURRENT WEIGHTED SUM OF SQUARES OF THE RESID[,ALS/D.F......: 	 0.1760
IMI)ROVENENT IN PERCENT (NEG.S1GN INDICATF9 DECTEASE).......:	 0
CONTRIBUTION FROM STATION PARAMETER CONSTRAINT.............: 1745.D-04
CONTRIBUTION FROPI POLAR MOTION PARAMETER CONSTRAINTS.......: 5508.D-12
CJNTRIBUTION FROM ORBITAL PARAMETER CONSTRAINTS ............: 	 0.

PASS BY PASS BMEAIDO!•!N OF ADJ USTMXNT STATISTICS FOR I TERAT I ON : 2

P(1SS	 CONSTRAINTS FROM :	 TOTAL NO.OF NUMBER OF NUMBER OF
NO. STtA ,r I ON5 P . M. S'T'EPS ORBIT CONSTRAINTS OBSERVATIONS PARAMETERS

1	 30	 6	 0	 36	 24240	 42

N'E I GJITED SS. DEGRi:ES OF VARIANCE V'ITV( 1) HAS OF THE MEAN OF
OF RES I DUALS FREEUi1Pi COMPONENT F OBS . -6 RESIDUALS RESIDUALS
0.42666D+04	 2423.1	 0.1761	 0.18	 0.4195	 -0.0009

'.	 I
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characteristics of the earth (Section 4.3). This ill-conditioning can

be alleviated in a range data solution if, for example, the longitude of

one station is constrained. In this particular problem though we prefer-

red an alternate solution which has been discussed previously in [Pavlis,

19791, that is, the "ridge estimation." By applying a very small weight

in all station coordinates, we overcome the numerical singularity of the

normal equation matrix and at the same time we show no preference for

any single station. The weight applied in this case corresponds to a

variance of (50 m) 2 in each station coordinate.

As the residual summary in Table 31 shows, the data seem to be of

rather good quality since they fit the orbit with an rms of 42 cm over-

all. The station position estimates and their statistics are given in

Table 32 and the adjusted satellite state vector and its statistics in

Table 33. It should be no surprise that the estimated variances for the

X and Y coordinates are so much higher than those for Z. The ridge esti-

mator has overcome the numerical singularity, but it does not separate

completely the two parameters which are associated with the stations'

longitude, i.e., X and Y. This should be of no immediate concern, since

the relative quantities such as the baseline lengths which are of more

interest to us are not affected by this peculiarity.

The estimates for the baseline lengths for all possible station

pairs (45 total) are given in Table 34 along with their formal accuracies.

All of these estimates show an internal consistency of 2 - 3 cm. Excep-

tions are the baselines which involve station 7907, primarily because

that station has almost ten times less data than the average station in

the solution.
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Table 32	 Station Coordinates and Standard Deviations Estimated

by GEOSPP

statlo n no. X (a) Y (s) Z (ta) Gx(.) (SY(.) aZ(.)

---------
STALAS

---
7063

------------
1130708.445 -48„ 1 371.261

--- -------------------------------------------
3994088.935 5.728 1.341 0.040

140502 7090 -2389000.008 5043..'4.831 -307a527.612 5.979 2.833 •.935
!4 0702 7091 1492446.214 -4457282.664 4296817.845 5.284 1.770 0.641
!4.0802 7092 -6143448.162 1364709.115 1034163.064 1.616 7.284 0.041
!4.0602 7096 -6100049.965 -996195.202 -1568977.313 7.232 0.041
!110211 7114 -2410430.112 -4477001.286 3638688.977

.3161
5.309 2.858 0.040

KLO307 7115 -2350869.216 -4655545.167 3666,099.858 5.519 2.707 0.037
!4.0110 7120 -5466004.678 -2404402.080 2242229.461 2.851 6.461 0.040
ARE1A8 7907 1942783.226 -5604060.205 -1796919.713 6.681 2.304 0.091
ORRL.AS 7943 -4447544.472 2677140.227 -3694997.074 3.174 3.273 0.034

Table 33	 Initial State Vector for Lageos As Obtained by GEOSPP

from the Complete Lageos Range Data Set Adjustment

Reference System Mean of	 800731 -

P O S I T I O N X (m) Y (m) Z( m)
---------------

Estimate
--------

-5097881.421
_----- ------
5961549.913 -9377290.436

Standard Deviation	 : 7.068 6.044 0.042
rms	 position (m) 5.369

V E L O C I T Y X (m/s) Y (m/s) Z (m/s)

Estimate
--------------------------

-4720.07387
------	 -

-871._5438
-
3111.28230

Standard Deviation	 : 0.00103 0.00560 0.00002
rms	 velocity (m/s)
----------------------------------------------------------------

0.00329

Reference System TOD
-------------- 800813 235930.028

Position	 (m)  -5098243.471 --5961677.201 -9377012.675
Velocity	 (m/s) -4720.05663 -870.98060

--------------------------------------------------
3111.38509

Note	 :	 TOD -	 "Trite of Date"
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Baseline	 End
No.	 Stations

Apriort
Estimate

(m)

Adjunted	 Adjusted Sigma
VeIue	 minus

(m)	 Apr for i	 ( M)4

12645Q51.761
602032.143

10003296.515
9896473.055
3562138.713
3501893.178
7244020.742
5928036.951

12108539.654
12638160.062
6674009.770
7247520.432

11768618.014
11810628.856
9656458.579

11750456.119
3196328.733

10141371.223
10199643.124
3929728.800
3900598.445
7540273.824
6257037.782

12249596.212
3514556.686
7479017.596
7584680.410
4015538.430

11171115.715
5192643.026
7414696.951
7402692.901
4112220.542
9373094.052
4554571.701
258289.958

4022959.527
7243602.178

10587702.281
4096904.174
7038726.657

10595990.172
9097407.601
7880988.899

10787493.058

12645950.847 -0.914	 0.018
602032.169 0.026 0.036

10003295.833 -0.682 0.025
9896471.526 -1.528 x`.022
3562137.442 -1.272 0.041
3501891.797 -1.381 0.037
7244019.261 -1.482 0.028
5928019.003 -17.948 0.085

121085313.064 -0.990 0.018
12638160.219 0.156 0.024
6674008.743 -1.027 0.024
7247520.743 0.311 0.023

11768618.337 0.323 0.018
11810629.014 0.158 0.016
9656458.910 0,331 0.021

11750458.620 2.500 0.034
3196328.646 -0.087 0.021

10141371.602 0.379 0.031
10199642.536 -0.587 0.025
3929728.019 -0.782 0.039
3900597.570 -0.876 0.034
7540273.123 -0.701 0.029
6257020.271 -17.511 0.088

12249596.272 0.059 0.022
3514554.371 -2.316 0.027
7479018.461 0.865 0.027
7584681.155 0.745 0.026
4015538.979 0.550 0.028

11171110.424 -5.291 0.041
5192640.982 -2.044 0.024
7414696.912 -0.040 0.023
7402692.731 -0.170 0.025
4112220.461 -0.081 0.025
9373093.497 -0.554 0.044
4554572.165 0.464 0.024
258290.167 0.210 0.036

4022959.505 -0.022 0.031
7243588.024 -14.154 0.076

10587702.701 0.420 0.018
4096904.146 -0.027 0.031
7038712.246 -14.411 0.074

10595990.425 0.253 0.018
9097399.3139 -8.212 0.052
7880989.300 0.401 0.022

10787496.735 3.676 0.041

"• -:0-
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Table 34

	

	 Baseline Lengths and Standard Deviations Estimated

by GEOSPP

1 7063 =_> 7090
2 7063 =_> 7091
3 7063 =_> 7092
4 7063 ==> 7096
3 7063 =_> 7114
6 7063 =_> 7115
7 7063 =_> 7120
8 7063 =_> 7907
9 7063 =_> 7943

10 7090 = _ > 7091
11 7090 =_> 7092
12 7090 =_> 7096
13 7090 =_> 7114
14 7090 =_> 7115
15 7090 =_> 7120
16 7090 =_> 7907
17 7090 =_> 7943
18 7091 =_> 7092
19 7091 =_> 7096
20 7091 =_> 7114
21 7091 =_> 7115
22 7091 =_> 7120
23 7091 =_> 7967
24 7091 =_> 7943
25 7092 =_> 7096
26 7092 =_> 7114
27 7092 =_> 7115
28 7092 =_> 7120
29 7092 =_> 7907
30 7092 ==> 7943
31 7096 =_> 7114
32 7096 =_> '7115
33 7096 =_> 7120
34 7096 =_> 7907
35 7096 ==> 7943
36 7115 __> 7115
37 7115 =_> 7120
38 7114 =_> 7907
39 7114 =_> 7943
40 7115 =_> 7120
41 7115 =_> 7907
42 7115 =_> 7943
43 7120 =_> 7907
44 7120 =_> 7943
45 7907 7943

The station-by-station and pass-by-pass analysis of the residuals

gives some more insight into the relative performance of the stations and

the relative quality of their data. Tables 42 through 51 in Appendix D

give these sun;maries for each of the ten stations. In general, the stan-

dard deviation of the residuals iii a pass is at the decimeter level,
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although for some of the stations (e.g., 7063, 7907, and 7943) it is

about three times higher than that or more. In addition to that, it

seems that the observations from three of the stations on four particu-

lar occasions include an unreasonably high bias. These are

	

for station 7063: pass #4 	 -2.1 m
(cf. Table 42),

	

pass #8	 -4.4 m

for station 7114: pass #11	 -4.5 m	 (cf. Table 47),

	

and for station 7115: pass #4	 -6.8 m	 (cf. Table 48).

Overall, the data seem to be of consistent quality, except for the in-

stances cited above, and the performance of the orbital model and the

computer software were satisfactory.

The data were subsequently examined to find the baselines with the

most simul taneously obser'v'ed passes. A computer program (OVERLAP) sup-

plied to us by Mr. R. Kolenkiewicz of NASA/GSFC was used for this purpose.

When we isolated the data falling in the overlap periods and examined

their distribution by station and by time, it was realized that there

were no aggregates of passes that spanned intervals of time long enough

to detect polar motion with decimeter level observations. In addition to

that, the number of observations per baseline was disappointingly small

to attempt a baseline solution, except perhaps for the station pair

7943-7090 which had 984 observations. For these reasons we concentrated

on attempting a solution in the SRD mode with data collected from the

aforementioned baseline only.
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5.2.2 Estimation of the 7943-7090 baseline.

The overlap range data from stations 7943 and 7090 were processed

along the guidelines established in Chapter 3 for the generation of

"quasi-observable" SRD's. The data distribution for the range observa-

tions from each station is given in Tables 35 and 36. Out of these

nearly 7500 range observations, only 975 simultaneous events could be

generated. The corresponding range data set of course contains exactly

twice as many observations, i.e., 1950.

Table 35 Observation Summitry for Range Data from Station 7943

St3tton 7943 Passe-

---------------------------------------------------------------------------

Tracked :	 32 Observations	 iotal :	 3418

Pass Beginning D-.te

---------------------------------------------------------------------------

EndIngg Date Pass Obs. Density
No. YYMMDD HHM SS.S YYMMDD HBMMS.S Duration Lag

(s) (n)

1 '800814 Y1101	 0 2 800814 ^112015	 2 1154.9 56 20.63
2 800815 92745.0 800815 100630.3 2325.3 122 19.06
3 BOUB 15 124959.9 800815 132145.0 1905.1 82 23.23
4 800815 1603 7.7 800815 1641	 0.0 2272.3 98 23.19
5 1945 7.6 800815 200952.4 1484.7 83 17.89
6 808816 81544.9 800816 84152.7 1567.8 85 18.44
7 831:816 114022.8 800816 1204 7.8 1425.0 90 15.83
8 800816 14-• 522.7 300816 1531	 7.7 2745.0 212 12.95
9 80001^i 181515.0 600816 1 00345.0 2910.0 159 18.30
10 800817 101652.8 BOPS17 1049 7.7 1934.9 47 41.17
11 830817 134330.4 800817 140545.0 1514.7 54 28.05
12 30CS17 170115.0 800817 1728 0.0 1605.0 75 21.40
13 838818 90422.7 800818 93445.2 1822.5 139 13.11
1-1 800f:l8 1 1.:t7	 0.2 800818 124837.7 1897.5 100 18.97
15 830311; 153015.1 8001118 161930.1 2955.0 170 17.38
16 800alB 191532.3 806818 194952.5 1890.0 106 17.83
17 800819 110015.2 800819 113215.1 1919.9 90 21.33
18 800820 125830.2 600820 133437.7 2167.5 44 49.26
19 SOC-821 1507 7.7 BOOB21 154515.2 2287.5 79 2B.96
20 8CO3321 183030.1 800821 191159.9 2489.8 178 13.99
21 89ZB22 102622.7 800821' 105115.2 1492.5 3d 39.28
22 800°22 134252.P, BOC822 141745.3 2092.5 86 23.71,
23 800323 17C915.1 800822 175622.4 2827.3 172 16.44
24 BDD)J23 92933.2 800823 940 0.1 629.9 73 8.613
23 E00525 131730.2 B00825 134430.1 1619.9 67 24.18
26 800825 !63287.7 830825 .65937.4 1619.7 96 16.37
27 830326 34152.G 8". 0826 91352.5 1919.9 163 1 1 . 7B
211 800326 115522.7 800826 122837.7 1995.0 191 10.44
2 =) 330825 153923.7 800826 155922.5 2999.8 262 11.45
30 300328 92537.5 890828 958 0.2 1942.7 97 20.03
31 850828 1233 0.0 800828 131415.1 2175.1 61 35.66
33 5Jb'823 153732.7 800828 162230.1 1507.4 41 36.77
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Table 36	 Observation Summary for Range Data from Station 7090

Station	 7090	 Pawoes Tracked : 30	 Observations total : 4143

	

Pass	 Bepll.tning Date	 Endingg	 Dote

	

No.	 YYMIDD RIEVISS . S	 WHO HHMMS . S
Pass	 Obs

Duration
(s)

De tug t t y
Log
(s)

800814 73524.0
800814 110144.0
800814 1735 6.0
600814 210657.0
800815 93831.0
V00815 162233.0
830815 1941 3.0
600818 91445.0
E09818 124141.0
1;00318 19a634.0
800819 111532.0
8f3819 175013.0
8'00319 212421.0
8JU820 629 6.0
8308:0 200224.0
8:) 33 3 1 W,'132.0
830322 727:5.0
800822 104041.0
800322 171526.0
800322 204736.0
C00326 84746.0
800826 122016.0
800826 1535. 1.0
800325 1847 5.0
609827 103632.0
830827 143042.0
800827 172746.0
800827 210:•29.0
630823 161247.0
600323 1937 5.0

800014 81120.0
800814 1136 6.6
800814 1817 7.0
800814 2148 8.0
800815 102222.0
800815 165243.0
800815 202838.0
8f30818 94842.0
800818 1259 1.0
300818 1953 1.0
800819 114928.0
800819 183136.0
800819 213335.0
300820 65033.0
800820 204123.0
1300821 91537.0
1300322 74943.0
800822 111838.0
80'822 175657.0
806822 2128 5.0
800826 928 7.0
800826 123826.0
830826 155759.0
300826 193427.0
800827 112919.0
800827 143218.0
800327 181144.0
890827 213938.0
800828 164735.0
800828 2022 5.0

2156.0 97
2182.0 167
2519.0 182
2471.0 207
2631.0 196
1810.0 141
2653.0 263
2037.0 119
1040.0 67
2787.0 171
2036.0 136
2481.0 203
574.0 50

1287.0 29
2339.0 136
2645.0 104
1318.0 55
2277.0 162
2491.0 173
2409.0 136
2421.0 155
1090.0 41
1438.0 88
2842.0 233
1947.0 115

93.0 6
2638.0 189
2109.0 154
2088.0 154
2700.0 214

22.2.1
13.07
13.84
11.94
13.42
12.84
10.85
17. 1'2
15.5'.x,
16.30
14.97
12.22
11.48
44.311
17.20
25.43
23.56
14.06
14.40
17.71
15.62
26.59
16.:14
12.'x'.0
16.93
15.50
13.96
13.b9
13.56
12.62

1

3
4
3
6
7
8
9

10
Il
1.:
13
14
13
16
17
1S
19
20
21
22
23
24
23
26
27

n .	 28
29
30

Both data sets were adjusted using the GEOSPP program to obtain

station positions with respect to a fixed orbit. The results for the

station positions and the associated baseline length from the range and

SRD adjustments are given in Tables 37 and 38 respectively. The two

baseline estimates differ by about one meter, which considering the fact

that the SRD observations are good to about 0.5 m and, taking into

account the sparseness of the data used in this experiment, can hardly

be used as a basis fcr drawing firm conclusions about the absolute quali-

ty of the two estimates.
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Table 37	 Station Coordinates and Baseline Length Estimates and
Statistics Obtained from the Rance Data Adjustment

StntIon . Jo.	 X (m)	 Y ( m)	 Z (m)	 G)X(m) GY(m) GZ(m)

PH-0502 7090	 -2389000.233 5043334.860 -3078527.569 0.043 0.0311 0.027
ORHLAS 7943	 -4447544.467 2677140.178 -3694997.100 0.048 0.032 0.033

Baseline Length	 ( in)	 3196328.569
Standard Deviation (m)	 0.062

Table 38	 Station Coordinates and Baseline Length Estimates and

Statistics Obtained from the SRD Data Adjustment

Station No.	 X (m)	 Y (m)	 "Z (m)	 OX(m) CY(m) t)7.(m)

M.0502 7090	 -2389002.227 5043335.760 -3078530.595 0.744 0.560 0.669
01U(LAS 7943	 -4447545.783 2677142.099 -3695000.143 0.595 0.750 0.658

Base I ine Length	 ( m)	 3196327.380
Standard Deviation (m)	 0.342

Besides that, if we consider the location of the stations on the

earth and the fact that Lageos has a nominal inclination of 109°, we

reach the conclusion that optimal passes parallel to the dominantly East-

West direction of this baseline will be hard to come by for this satel-

lite at any time. We plotted the coobserved events in Fig. 3 1), and as

expected almost the entire set of points come from satellite passes

orthogonal or nearly so to the baseline direction. The deficiency of

the strongly geometry-dependent SRD mode in such a situation has already

been pointed out, and it has also been confirmed through the very first

simulation studies discussed in Section 5.1.1. The results in that case

(Table 17) indicated that the error of recovery for the ranges would
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only differ (be worse) by 7 mm from that for the SRD solution. If we

compare this difference to the corresponding differences for some base-

lines with optimal location with respect to the tracked satellite passes

(e.g., 7120-7943, 5.6 cm; 7092-7943, 3.2 cm), we realize that it is

really of an insignificant level. It is not surprising either that the

results of the second simulation study discussed in Section 5.1.2.1 also

point out that this particular baseline is not the best for testing the

{	 proposed method. Even though in that case the recovery errors for the

range solution are 3-4 m larger than the corresponding ones for the SRD

mode, in the case of tic station pair 7090-7943 the difference between

the two errors is only 18 cm!--hardly significant in the presence of

10 cm noise.

The residuals' summary for each of the adjustment are given in

Tables 39 and 40 for the range solution, and in Table 41 for the SRD's.

Comparin g the mean residual per pass between the two adjustments, we

find that the SRD solution tends to fit the orbit better for passes 1, 3,

5, 6, 12, 13 and 14, which,as can be seen from the groundtrack plot in

Fig. 30, are the ones better conforming with the optimality criteria for

spatial data distribution in the SRC mode. Finally, a comparison of the

rms residual between the two solutions shows that the SRD solution tends

to have residuals with a dispersion which is dictated by the most "noisy"

of the two stations collecting the observables. In the present case, we

have already seen in the preliminary adjustment of the complete range

data set that station 7943 has a noise level 5-10 times higher than sta-

tion 7090.	 It is understandable then that the rms residuals in the SRD

solution are almost identical to those obtained in the range adjustment

for the data from station 7943.
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Table 39	 Pass-by-Pass Residual Summary for Adjusted Range Data

from Station 7090

Pass Obs. Residual rms Standard Pass Minimum Maximum Mean
No. Mean Deviation Duration Residual Residual Closure

(m) (m) (m) (s) (m) (m) (m)

1
-

53
---
-0.9237 0.058

----------------
0.053 1049.92

------
-0.117

------
0.097

----
-0.02

2 117 0.0035 0.113 0.113 1657.67 -0.214 0.305 0.00
3 57 -0.2763 0.291 0.094 1064.96 -0.415 -0.075 -0.28
4 82 -0.1879 0.202 0.074 1462.25 -0.269 -0.059 -0.19
5 55 0.0790 0.125 0.097 1192.00 -0.175 0.235 0.08
6 22 -0.0055 0.073 0.075 399.00 -0.132 0.146 -0.01
7 105 -0.0361 1.136 1.140 1815.00 -1.384 7.648 -0.04
8 65 -0.0788 0.099 0.060 952.60 -0.173 0.059 -0.08
9 24 -0.0120 0.038 0.037 592.60 -0.109 0.036 -0.01

10 154 0.1124 1.426 1.426 2340.04 -2.939 4.611 0.11
11 121 0.1202 0.160 0.106 1554.00 -0.125 0.354 0.12
12 15 0.0835 0.105 0.065 473.00 -0.052 0.184 0.08
13 87 0.1704 0.212 0.127 1414.00 -0.203 0.405 0.17
14 18 -0.4927 0.497 0.069 495.05 -0.666 -0.440 -0.49

Table 40	 Pass-by-Pass Residual Summary for Adjusted Range Data

from Station 7943

Pass Obs. Residual rms Standard Pass Minimum Maximum Mean
No. Mean Deviation Ddratlon Residual Residual Closure

1 53- -0.0133 0.437 0.441 - 1049.92 -1.040 ~0.952 -0.01
2 Ill 0.0868 0.315 0.304 1657.67 -0.716 0.851 0.09
3 57 0.0099 0.395 0.398 1064.96 -0.973 0.687 0.01
4 82 0.1142 0.440 0.428 1462.25 -1.194 1.277 0.11
5 55 0.0634 0.082 0.052 1192.00 -0.043 0.226 0.06
6 22 O.1C07 0.244 0.168 399.00 -0.116 0.536 0.18
7 105 -0.0510 0.343 0.341 1815.00 -1.098 0.733 -0.05
a 65 0.0294 0.261 0.261 952.60 -0.642 0.704 0.03
9 24 -0.0566 0.578 0.588 592.60 -1.002 1.449 -0.06

10 154 -0.0373 0.260 0.258 2340.04 -0.678 0.611 -0.04
11 121 -0.1538 0.187 0.099 1554.00 -0.316 0.188 -0.16
12 13 0.0586 0.328 0.334 473.00 -1.078 0.339 0.06
13 87 0.1719 0.203 0.109 1414.00 -0.073 0.360 0.17
14 18 -0.0776 0.5.53 0.460 495.05 -1.342 0.574 -0.08
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Table 41	 Pass-by-Pass Residual Summary for Adjusted SRD Data

from the 7090-7943 Station Pair

Pass Oba. Residual rms Standard Page Minimum Maximum Moan
No. Mean Deviation Duration Residual Residual Closure

(m) (m) (m) (a) (m) (m) (m)

1 53 -0.0138 0.414 O.418r 1049.92 -1.002 0.980 -0.01
2 117 -0.1076 0.313 0.295 1657.67 -0.691 0.591 -0.11
3 57 -0.1531 0.426 0.401 1064.96 -0.995 0.694 -0.15
4 32 -0.2073 0.464 0.418 1462.25 -1.363 1.047 -0.21
5 55 -0.0381 0.176 0.173 1192.00 -0.381 0.310 -0.04
6 22 0.1796 0.253 0.182 399.00 -0.171 0.480 0.18
7 105 -0.0663 1.189 1.193 1815.00 -1.680 7.513 -0.07
8 65 -O.0985 0.283 0.267 952.60 -0.714 0.545 -0.10
9 24 0.0382 0.573 0.584 592.60 -1.467 0.941 0.04

10 154 O.1218 1.420 1.419 2340.04 -3.544 4.152 0.12
11 121 -0.2444 0.276 0.129 1554.00 -0.585 0.123 -0.24
12 15 -0.0225 0.311 0.321 473.00 -1.130 0.288 -0.02
13 87 -0.0774 0.134 0.110 1414.00 -0.364 0.226 -0.08
14 18 -0.3999 0.600 0.460 495.05 -1.010 0.905 -0.40
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6. CONCLUSIONS AND RECOMMENDATIONS

6.1 Conclusions

The theoretical investigations and the numerical examples presented

in this study lead to a number of conclusions concerning the issues

raised herein. The most important of these is the fact that the analysis

of Lageos data in the SRD mode minimizes the effect of all of the consid-

ered types of systematic orbital errors on the estimated baselines and

coordinates of the pole. We have refrained from attributing these errors

to any particular source; it is, however, important that we discuss one

of them.

It is well known that baseline lengths are independent of the under-

lying reverence system; baseline "estimates," however, especially when

determined by satellite techniques or even more generally by any non-

direct measuring system, are directly dependent on the reference system.

To be more specific, they depend on the stability with which this system

ca- be maintained. This is a consequence of the fact that the estimate

is obtained from the end-station coordinates which are determined on the

basis of their individual observing records. If the "barycenters" of

these data are considerably apart in time, then the station coordinate

estimates are a ffected by the reference system errors accumulated in the

intervening time interval. The along-track and across-track errors used

in the simulation study of Section 5.1.2.1 can be analyzed in a

OOW
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latitudinal and a longitudinal component, and therefore one could think

of them as the errors in the coordinates of the pole used to rotate the

satellite positions from the CIS to the CTS frame.

It is self-evident that when the SRD mode is invoked, the above

problem is alleviated completely by virtue of the simultaneity of our

observation:,. Even though the differencing of the simultaneous ranges

is not required in this case (simply simultaneous data would be suffi-

cient), we would recommend that in view of the significant improvements

in the accuracy of the observable, the SRD mode be followed through in 	
R

its entirety.

The quality of the results determined on the basis of the recovery

errors shows that using this method the goal of determining baseline

lengths with centimeter level accuracies and two-day averages of the

coordinates of the pole to five centimeters is feasible even in the

presence of over one meter biases in the orbital model. Such accuracies

in the orbit are about two to three times our current ca pabilities in

predicting the orbit of Lageos over thirty-day periods.

It is thus conceivable that the predicted Lageos orbit used in

I	 determining the observational schedules of the stations and the editing

of the observations can also be used for the analysis of SRD data on a 	 1

nearly real-time basis. The elimination of the satellite orbit from the

parameter list simplifies the estimation process beyond expectation.

Users with no access to global sets of data can stall use their regional

data sets in the SPD mode and suffer no loss of accuracy in their results

even when their reference orbit model is incomplete or they use a fixed

predicted orbit. The simpler computational procedures of this type of
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analysis relaxes the expensive hardware requirements imposed by the more

complicated softwares available.

The generation of the SRD data set can easily be incorporated into

the data editing package of the data processing center. As we have seen

from the results of tests performed on real data, the use of cubic spline

interpolation is far better than the commonly (and presently) used least

squares polynomial approximation. Since the latter has several advan-

tages from the data editing point of view (which is of no concern in this

study), a compromise between the two methods is probably the best solu-

tion. Data smoothing cubic splines exist [Spath, 1974], and in this case

they would be the most suitable to use. It is our fi rm belief that the

above scheme of generating SRD data will result in an insignificant in-

crease of the overhead cost for data editing which will be well worth it

considering the improvements in the accuracy of the results and the major

reduction in the cost of analyzing the data.

It has been shown here through theoretical arguments as well as

simulation studies that the SRD mode is very much dependent on the geom-

etry of the station network and the coobserved Lagees passes. For the

determination of baseline lengths the best results are obtained from data

taken on passes which are parallel to the baseline direction. We cannot

always ensure that such requirements are fulfilled, but we should consider

doing so whenever we have a choice on the baselines to be determined. For

all practical purposes, the systematic orbital errors propagate into the

observables (SRD's) in proportion to the baseline distance separating the

two coobserving stations. Having a rough estimate of the orbital accuracy

and the lengths of the baselines between the stations, we can determine

Ir
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the pairs for which the level of the systematic errors remaining in the

observable after the range differencing will be minimum. The generation

of bias-surface plots similar to those used in Section 4.4.2 can facili-

tate the planning stage of a campaign in the selection of the optimal

station locations as well as the ccobserving pairs of stations.

In the case of polar motion parameter estimation the situation is

slightly more complicated. This is mainly because of the fact that not

only does the station location matter in this case, but the distribution

of the data in time is of concern here too. We discuss first the station

94

location issue.

As shown in Section 4.5.3 we need two nearly perpendicular baselines

in order to be able to resolve the two components of the motion of the

pole. Because of the convention in the definition of these two compon-

ents x and y, it turns out that the optimal locations are near the two

prime meridians, i.e., X = 0° or 90° or 180 0 or 270 0 . Considering the

continuous operation of these stations, it is worth pointing out that

great savings can be achieved if we limit ourselves to an L-shaped

rather than a +-shaped network, thus decreasing the number of stations

required to only three. The middle station can be paired with both of

the outside stations for the required perpendicular baseline pair.

In an L-shaped network near X = 0 0 or 180°, the N-S pair is sensi-

tive to the x component, while the E-W pair determines the y component.

Exactly the opposite is true in the case of a network near a = ±90 0 . To

avoid gravity related orbital errors affecting the estimates, it is ad-

visable to keep observing networks in both the Northern as well as the

Southern Hemispheres.
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The second issue of interest here is the distribution of the data

in time. The higher the density of the observation record, the higher

the resolution in the x and y. In that sense, the resolution is only

bounded by the accuracy of the observations. The precision of the esti-

mates can be increased by either increasing the data density over the

averaging interval or by increasing the interval itself. It should be

kept in mind that the former does not affect the resolution of the

parameters, while the latter does. It results in its decrease. These

are issues to be resolved when a final decision is taken on the practical
r

determination of the x and y. In any case though, it should be made

certain that whatever the chosen averaging interval, there will always

be enough networks with proper satellite observability schedules to col-

lect enough well-distributed (globally) observations over the entire

time interval.

The analysis of real data has not given us grounds for basing

firmer conclusions, although the agreement between these results and those

obtained from the simulation studies gives us a higher degree of confi-

dence in the validity of the latter. The absence of extensive real data

tests is due to the lack of suitable data. By this we do not mean to

cast the blame on others, but rather to point out that as it is shown in

this study, proper scheduling and a genuine effort from the field parties

would have certainly resulted in a sizable amount of data.

There is indeed a striking similarity between the SRD and the pure-

ly geometric mode. However, the SRD mode requires the coobservation of

the Lageos pass from only two stations, while in the geometric mode data

from at least four and preferably more stations with strict simultaneity
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I	 are required. Apart from the weather factor, there should be no other

excuse for not obtainin g SRD data from nearby stations. The probability

for t4:;, such stations coobserving lageos is much higher than for the

geometric erode (minimal) four-station network.

6.2 Recommendations

The results of this investigation have shown that the proposed

simultaneous range-differencing approach for the analysis of laser rang-

ing observations to Lageos is an avenue worth pursuing for improvement

of our geodetic estimates. On the basis of these results we would recom-

mend that

(a) An effort be made during one of the upcoming observational

campaigns (the 1983 MERIT campaign, for instance) to coobserve as many

Lageos passes as possible.

(b) Continue the research effort in optimizing the network config-

urations that will allow uninterrupted monitoring of the motion of the

pole within the internationally agreed limits.

(c) Further research is warranted in the direction of SRD data

generation. As the field instrumentation is upgraded and the stations

become capable of obtaining more than one observation per second, the

amount of incoming data will grow out of proportion. It is therefore

suggested that further improvement and standardization of the SRD genera-

tion technique is needed. The possibility of integrating this procedure

in the raw data preprocessing at the data gathering centers should be

given serious consideration.
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(d) The scheduling of mobile or highly mobile laser ranging equip-

ment deployment should be re-examined, and if feasible advantage should

be taken of this method of analysis by collecting suitable observations.

(e) As the time for the establishment of a new Conventional Terres-

trial System nears, the role of the proposed method must be reaffirmed

through further simulation studies and if possible the analysis of real

data in contributing optimal estimates for the fundamental polyhedron's

side lengths.

(f) A study should be initiated to investigate the merits of the

t
proposed method in determining the variations in the rotation rate of the

earth.

(g) Finally, the application of this method to other ranging or

pseudo-ranging satellite systems such as the GPS is a research topic

worth pursuing.

R	 1
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APPENDIX A

DERIVATION OF THE VARIATIONAL EQUATION OF STATE FOR THE

CASE OF TIDAL ACCELERATIONS

Equation (29) (Section 2.2.5) gives the perturbing acceleration

on a satellite due to the tidal effects of a perturbing body b. On the

basis of this equation we will derive here equation (1-),0) which gives the

contribution of the above acceleration in the variation of the satellite

position vector. For clarity we repeat equation (29):

5
3	 ubaE	 —

RTDb 
= 2 k2 jR j3	

" 

([ 1 - 5(u b •u) 2 ]u + 2(u b •u)u b )	 (A.1)

b

where

u = R
	

(A.2)
jRj

and

R

jRbj

To obtain the expression for 	
aRTDb	

we differentiate each of the

terms in (A.1) individually	
af^	

with respect to R:

a	 [1 - 5(ub•u}2]u	 a	
(RbT R) 2	R

aR	 "	 aR	 jk	 2
1R1

2	 jRj5

(RbT R)2

	

jRb 1 22 a	 +	
1 - 5 (RbT R)2	 R 

a 	
5 +

jRj 5	 a^	 jRbj2!Rj2	 aR

)GR.	 1
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_ _

I R I 5 aR	 IRbI2^R12

_ _	 —T

	

- [1 - 5(u b •u ) z ] I 
+ [1 - 5(u b • u)

2
] R r-5 

R 

2	 +

I R I 5	 IRI

R	 2(P,bT R)	 T	 (RbT RT)2	 RT	 =+ IRI5	 _5 
IRb12IR12 

Rb 	-	 5	 IRbI2	
-2 

IRI4

~	 [1 - 5(u b • u) 2 ]	 u u 	
(ub•u)2 — —T

_	 I -5—_—+25 _	 u 

I R I 5	 IRIS	 IRI5

(ub•u) — — T	

(ub•u)2

-	 T10	 _	 u u 	 + 10	

S

_	 u u

I R I 5	 ^R^ 

1—T
{[1 - 5(ub • u) 2 ] I - 5 u u  + 35 (ub•u) —Z u u

IRIS

I	 - 10 Nu b* 	 u ubT }	 (A.4)

^I

a	
2(ub.u)ub	

a	 RbT R	 Rb	 -

aR	 IRI°	 aR	 IR	
s

bIIRI	
IRbI 

	R bRbT 	(RbTR) _	 RT

'	 = 2	 + 2	 Rb	
-5 IRI- 6

1	

IRb12IRI5	
IRbI2	 IRI

1	 _
{2(ub ubT ) - 10(u b • u) ub UT }	 (A.5)

IRI5

Collecting terms in the combination of (A.4) and (A.5), we obtain:

l
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(A.4) + (A.5)	 =	 IRIS {[1 - 5(ub • u) Z ] I + [35(ub • u) 2 - 5] u uT

- 10(u b • u) [u ubT + ub uT] + 2(ububT)}

which when multiplied by the constant terms in (A.1):

3k	

a
ub	

S

2 z IRb1 3 	 F

results in expression (30).
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APPENDIX B

SYSTEMATIC CORRECTIONS APPLIED TO THE OBSERVATIONS

B.1 Correction for Geometrodynamical Effects.

The observed and interpolated ranges are required to compute the

correction to the SRD's due to signal retardation by gravitation or,

better, by the curvature of the space [Shapiro et al., 1971; Shapiro,

19801. Since the satellite position is also required to compute this

correction, it seems logical to defer its computation until this position

is automatically available during the DOC step.

The determination of the geometrodynamical correction is based on

*	 the formula that relates TDB cnd TAI (Z) as obtained by Moyer [1981b]

ar,d the retardation correction for light signals as given in [Shapiro,

1980].

Moyer's expression for AT  = [TDB - TAI(Q)] can be used to convert

the measured time interval at the station from a proper time interval to

a coordinate one, provided we know the epochs that are associated with

the transmission, reflection and reception of the laser pulse. Since

F	 though in the case of laser ranging to artificial satellites the whole

interval rarely exceeds 80 ms, the change of the correction over this

short time can be obtained from differentiation of AT A and retention of

only those terms which are significant. From Moyer's expression for AT 

we find that only the second and fourth terms are significant. For a
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station with cylindrical coordinates (u, a, z), u and z in kilometers,

we can then write:

d(TDB - TAI(k)) = 1.658 x 10 -3 cos E dE +
dt	 dt

+ 3.17679 x 10-10 u cos(UT1 + a) 
d UUTI	

(B.1)dt

with

dE
dt = (1 + e cos M)n	 (B.2)

and

d UT1 _ w
	 (B.3)

dt

where E, M and n are the eccentric anomaly, mean anomaly and the mean

motion of the earth-moon barycenter's heliocentric orbit respectively,

and w is the spin rate of the earth. Substitution in (B.1) results in

d(TDB - TAI(k)) 
__ 1.658 x 10 -3 n cos E (1 + e cos M)

dt

+ 3.17679 x 10 -10 w u cos (UT1 + a)	 (B.4)

From [Moyer, 1981b]

n = dt	 1.99096871 x 10 -7 rad/s	 (B.5)

ani using the adopted value of w for GRS80 [Moritz, 19801

w = 7192 115 x 10-11 rad/s,

equation (B.4) yields

d(TDB - TAI	
= 3.3010261 x 10 -10 cos E(1 + e cos M)

dt

+ 2.3165518 x 10 -17 u cos (UT1 + a)	 (B.6)

where we have changed the units of u to meters, the final result given

in seconds. This equation can now be used for the time interval conver-

sion i.sing the finite observed time interval 8t:

I^
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d(dt) = d(TDB dtTAI(k)) dt
	 (B.7)

or upon multiplication of the above with c, the speed of light, the

equivalent correction for the range is

dPt _ d TDB - TAI (k)) cdt
	 (B.8)

dt

Since cdt = po, the range prior to the correction, we finally obtain

dp t	[3.3010261 x 10 -10 cos E (1 + e cos M)

+ 2.3165518 x 10 -17 u cos (UT1 + a)] Po 	 (B.9)

The remaining ret,

u s
dpr	2

2C

where R E and R  are the

earth and the satellite

puted as

3rdation correction is computed from

on	
IREI + IRLI + 

IRE	 RLI	 (B.10)

[IR 
E I + I RLI - I RE - RLI

solar system barycentric coordinates of the

respectively. The final range now can be com-

pC = Po + dpr - dpt	
(B.11)

the last term being subtracted since it compensates for a retardation.

With each range in a SRD pair corrected, we can now determine the SRD by

their difference

dpc
	 c2
= p 	- p cl
	

(B.12)

or using (B.11)

dPC = P02 + 6P r2- 6p t2 - p ol - 6Prl + dptl	(B.13)

It can 'ie observed though from (B.10) that 
6p  

is independent of

the station position, and it is the same for both ranges in the SRD pair;

it therefore cancels in the computation of 6p 
C' 

Some further savings

can be achieved from a close examination of the 
6p  

terms also. From

201

s
a



(B.9) it can be seen that the second term depends on the station position

through u, X and Po, while the first only on po. With some reasonable

values for these quantities, the maximal value that 
6p  

can reach in the

case Lageos is only about X0.007 m. Upon differencing, therefore, in

(B.13), the maximum correction for the SRD dp is at most ±0.014m below

the measuring accuracy of most available instruments in the field.

Since the correction hcs a periodic nature [Moyer, 1981b], we can safely

eliminate it from the computation of 6p 
C* 

Equation (B.13) therefore

takes the simple form

opc ° Poz — Poi
	

(B.14)	 ;R.

which is used for the determination of the simultaneous range differences

in this investigation.

B.2 Systematic Corrections Due to Tidal Motions of the Observing Stations

The effects of the lunisolar tides on points located on the surface

of the earth are theoreticaliy rather well studied [Melchior, 1978]. If

these temporal variations in the location of the observing stations with

respect to the center of mass of the earth are not accounted for in the

observations, the committed error can reach an amplitude of about 0.5 m.

The traditional way of correcting for these effects is to compute

the temporal changes in the coordinates of the observing station rather

than the effect on the measurement directly. In the present study only

the effect of the solid earth tides was considered mainly due to the

fact that the remaining effects of the ocean and atmospheric tides are

much smaller and not yet as well understood or modeled [Lambeck, 1980].

The nonrigidity of the earth is accounted for by the Love number for
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radial expansion h 2 and the Shida number R2 for horizontal shear. The

values used in our experiments are those used by the NASA/GSFC scientists

[Chin et al., 19721:

h 2 = 0.600

R2 = 0.075

The mathematical formulation for the station coordinate corrections

based on the tidal potential from equation (27) is derived in [Diamante

and Williamson, 1972]. The accuracy of this formulation can hardly

match the observation accuracy level today, and it is well known that

for best results, the local tidal motions should be obtained from direct
	

R

in situ observation rather than from the model. This has not been the
	

y

case so far for almost all operational SLR stations.
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APPENDIX C

FURTHER DEVELOPMENT OF THE DIFFERENTIAL ERROR EQUATIONS

C.I. Station Coordinates

From the discussion in Section 4.2 of the range differential 
rpii'

we can use equations (99), (100), and (101) to write

dp i 	= pl T i ^ T (-[CUJ T ) dU	 (C.1)

i,

with

TijT =	 S i T - G A T	 =	 S i T -	 US T	 [Co]	 (C.2)

Substituting	 (C.2) in	 (C.1) we obtain

dp i _	 -
p
1 [S i T - U S T [C0] 1 [C0] T dJ^
ij

_ - 1 [ S i T [Cu] T - UJT [CU][cel T ] dU^	 (C.3)p 

ij

From the well-known property of orthogonal matrices R 	 = R-1

[Mueller, 19691, we have

[CON C01T = 3
1 a	 (C.4)

and C.3 becomes therefore

dp i
	= -1 

[ S i T [CA T - US T ] da	 (C.5)

I
Considering now that by (93),

S i T = R  T [NP] T	(C.6)

we finally obtain
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dp ij = - pl [(CO NP) R i - Uj ]T dU j	(C.7)

tj

Note that the first vector in the brackets is the satellite posi-

tion vector in the CTS frame. The differential relationship for the SRD

observable ddp'i from stations j,k is obtained by substitution of (C.7) in

(108).

C.2 Satellite State-Vector

The set of equations (99), (100), (102), (103) and (104) yields

the following range differential relationship:

dpij 
= pi T

ij ' [NP] ["'] d --Q	 (C.8)

ij	 ^o

Using some of the derivations given in (C.1) and (C.8), we can

write:

_	 _	 Ro

dpij = pl [S i T -
	 Ro

[ CO]] [NP] [ Y ] d Rotj

_	 _	 Ro

	

pI -[[ NP ] R i - [CO] T U j ] T [NPY] d 
Ro	

(C.9)

iJ

Using again the property of orthogonal matrices [CO] T [CO] = I, we

can insert this product between the first and second bracket in (C.9)

which, upon multiplication, results in

_ 	 R
dp i j = p1 [(CO NP) R i - Uj ] T [(CC NP) Y] d 

Ro	
(C.10)

ij

The second bracket in (C.10) is the transitional matrix in the CTS

frame. The corresponding differentiae ddp i for the SRD observations is

obtained again by differencing (C.10) written for each of the observing

stations.

206



CRIG4NAL PAGE IS

OF POOR QUALITY

C.3 Polar Motion Parameters	

i
Equations (99), (100), (105), (106) and (107) can be used to write

the differential relationship between the observed range and the polar

motion parameters x and y

-Ui3 cose ; -Uj3 sine
_

dpijp
	

[(CO NP) R i ] T [CO]-Uj3 sine	 Uj 3 cosh d[x-]
y

iJ

Ujl	 ; -U
j2	 (C.11)

where we have used some of the substitutions derived in (C.1) and (C.2).

Multiplying the seco

-Uj3 cose

[CO] -Uj3 sine

U
jl

nd with the third matrix we find

_U 
j3 

sine

Uj3 cose	 =

-U j2

-U j3 (cos 2 6 + sin 2 9) + x Ujl

Uj3 (cos e sine - cose sine) - y Uj1

Uj3 (x Cos 
26 

+ y sine cos9 + x sin 20 - y sine cose) + Ujl

-Uj3 (cos6 sine - sine cosh) - x Uj2

	

U j3 (sin 2 e + cos 2 e) + y U
j2	 -

Uj3 (x cosh sine + y sin 28 - x sine cose + y cos 2 6) - Uj2

	-UJ3 + x Ujl
	

- x Uj2
	 -Uj3 ;	 0

	

- y U jl	 ;	
U j3 + y Uj2	 0	 ;	 U j3	 (C.12)

	

U jl + x U
j3	

-Uj2 + y U j3	 Ujl	 -U.
J2

The last approximation in (C.12) is justified in the case of simu-

lation studies, even in actual solutions indeed, since the x,y parameters
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are of the order of 
10-8 radians and the stations are confined on the

earth's surface. Therefore,

juiz ! - 0 (10 6 )
	

(C.13)

To obtain the differential d6p i for the SRD observation, we must

evaluate (C.11) for the two coobserving stations and subtract the result-

ing expressions.
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Table 42	 Residual Summary for Station 7063

CONSOLIDATED STATISTICS FOR STATION s	 7063

► ASS 085ERV RESID MEAN RMS DEVIATION LENGTH MIN RESD MAX RESD MEAN CLCS

1 4 -0.9288 S.313 6.123 1292.00 -8.493 5.007 -0.93

2 471 0.1070 0.237 0.212 1641.00 -2.866 0.398 0.11

3 202 0.1237 0.643 0.632 1494.00 -6.840 5.480 O.I2

4 6 -2.0976 3.4S9 3.012 1689.00 -5.903 1.408 -1.10

S 859 0.1242 0.225 0.187 2358.00 -2.436 0.473 0.12

6 l 0.0458 0.046 0.0 0.0 0.046 0.046 0.05

7 I550 0.0139 0.322 0.321 2810.00 -4.383 8.987 0.01

B 4 -4.4022 5.625 4.043 1503.00 -9.1.52 -1.045 -4.40

9 14 -0.4982 2.473 2.514 2550.00 -4.545 5.946 -7.50

10 1167 -0.1706 0.464 0.432 2484.00 -6.694 7.124 -C.17

Table 43	 Residual Summary for Station 7090

CONSOLIDATED STATISTICS FOR STATION i	 7090

LASS 08SERV	 RES10 ME AA It MS DEVIATION LENGTH MIN RESD MAR RCSD MEAN CLOS

1 97 0.0882 0.130 0.095 2156.00 -0.221 0.344 0.09

2 167 -0.0315 0.104 0.099 2182.00 -0.337 0.177 -0.03

3 182 -0.0892 0.131 0.096 2519.00 -0.513 0.131 -0.09

4 207 0.0322 0.109 0.105 2471.00 -0.282 0.264 0.03

S 196 0.0335 0.140 0.137 2631.00 -0.433 0.448 0.03

6 141 -0.0832 0.142 O.P 6 1810.00 -8.386 0.192 -0.08

7 263 -0.0764 0.119 0.091 2853.00 -0.427 0.177 -0.08

8 119 0.0891 0.138 0.106 2037.01 -0.153 0.384 0.09

9 67 -0.0531 0.093 0.078 1040.00 -0.235 0.145 -0.05

10 l:l -0.0780 0.121 0.094 2787.00 -0.471 0.181 -0.08

11 136 -0.0961 0.138 0.097 2036.00 -0.451 0.101 -0.10

12 203 -0.0640 0.112 0.091 1481.00 -0.526 0.145 -O.D6

13 SO 0.0123 0.080 0.079 574.00 -0.157 0.216 0.01

14 29 0.0674 0.143 0.128 1287.00 -0.219 0.286 0.07

15 136 -0.0940 0.124 0.081 2349.00 -0.347 0.092 -0.04

16 104 0.1106 0.435 0.422 2645.00 -3.875 0.378 0.11

17 55 0.1305 0.233 0.194 1318.01 -0.281 0.690 0.13

18 161 -0.1606 0.204 0.126 2171.00 -0.471 0.071 -0.16

l a 173 U.0735 0.136 0.114 1491.00 -0.272 0.326 0.07

20 136 -0.1598 0.217 0.140 2439.00 -0.567 O.11l -0.16

21 155 0.0943 0.185 0.159 2411.00 -0.323 0.378 0.09

22' 41 0.0313 0.069 0.061 1090.00 -0.113 0.143 0.03

23 88 0.1992 0.218 0.088 1438.00 -0.102 0.348 0.20

24 133 -0.0433 0.111 O.IU4 2842.00 -0.597 0.195 -0.04

15 115 0.1164 0.156 0_092 1947.00 -0.168 0.345 0.13

26 6 0.1595 0.172 0.073 93.00 0.011 0.280 0.16

27 189 0.0197 0.110 0.126 1638.00 -0.189 0.294 0.02

28 IS4 0.0897 0.123 0.095 2109.00 -0.164 0.328 0.09

29 154 -0.0249 0.723 0.223 2088.00 -0.567 0.398 -0.02

30 214 0.0598 0.118 0.114 1700.00 -0.379 0.291 0.06

210



IENGTM

1145.00

1718.00
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1153.00

2380.00
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174.00

MIN RFSO MAx RE.O MEAN ...

'••-0.750•" 0.683 • ••`•	 .•O.OB

	

-1.040	 0.346	 -0.06

	

-0.545	 0.450	 0.05

	

-1.142	 4.742	 -0.02

NIN RFSO MAx ME SD MFAN CL OS

	-0.256	 0.527	 0.22

	

-0.84s	 0.666	 -0.17

	

-1.234	 0.986	 -0.00

	

-1.293	 0.734	 -0.03

	

-0.367	 0.726	 0.09
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Table 44	 Residual Summary for Station 7091

CONSOLIDATED STATISTICS FOR STATION : 7091

PASS	 085ERV	 RES10 MEAN	 RMS	 DEVIATION

l	 137	 0.0824	 0.271	 0.259

2	 352	 -0.0646	 0.182	 0.171
i

3	 240	 0.0505	 0.169	 0.162

4	 439	 -0.0102	 0.314	 0.313

Table 45	 Residual Summary for Station

CONSOLIDATED STA T ISTICS FOR STATION 17092

PISS	 OBSERV	 RESID MEAN	 RMS	 DEVIATION

1	 322	 0.2185	 0.260	 0.156

2	 186	 -0.1712	 0.168	 0.206

3	 1273	 -0.0004	 0.239	 0.239

4	 363	 -0.0324	 0.304	 0.303

5	 9	 0.0926	 0.331	 0.337

Table 46	 Residual Summary for Station 7096

CONSOLIDATED	 STATISTICS FOR STATION :	 7096

►ASS OBSERV RESID MEAN RMS DEVIATION LENGTH Mlh RESD MAx RLSD MEAN CICS

1 969 0.0078 0.189 0.189 2389.00 -0.583 0.546 0.01

2 461 0.0359 0.150 0.146 1008.99 -0.731 0.331 0.04

3 268 -0.1355 0.2S7 0.219 1109.01 -0.931 0.313 -0.14

4 91 -0.3075 0.391 0.244 652.00 -0.953 0.122 -0.31

S 45 0.0547 0.166 0.158 924.30 -0.451 0.356 0.06

6 616 0.0351 0.213 0.210 1368.01 -1.019 0.531 0.04

Table 47	 Residual Summary for Station 7114

CONSOLIDATED	 STATISTICS FOR	 STATION 17114

PASS OBSERV RESID MEAN
.... .................................................................RKS DEV[ATIDN LENGTH MIN RESD...............................MAR RESO KERN CLOS

1 182 -0.0405 0.176 0.172 1181.99 -0.458 1.003 -0.04

2 17 -0.1346 1.47S 1.514 1136.00 -4.979 2.632 -0.13

3 855 0.0155 0.263 0.262 2535.00 -3.965 1.966 0.02

4 9 1.1201 2.490 2.358 1367.00 -1.729 5.392 1.12

5 161 0.0939 O.LS5 0.124 1009.99 -0.310 0.465 0.09

6 390 -0.0036 0.129 0.129 2102.99 -0.367 0.968 -0.00

7 6 -0.7358 3.65S 3.922 887.00 -4.838 6.072 -0.74

8 228 -0.0291 0.350 0.349 1045.00 -0.384 4.296 -0.03

9 7 0.0771 0.111 0.086 676.00 0.001 0.236 0.08

10 7 0.4243 0.703 0.606 108U.00 0.099 ).779 0.42

11 4 -4.5052 5.795 4.208 400.00 -8.096 7.651 -4.51

211



ORiGWAL PAGE 19
OF POOR QUALITY

Table 48	 Residual Summary for Station 7115

CONSOLIDATED STATISTICS FOR STATION 7115

PASS 085ERV	 RESID MEAN RMS OEVIAT{ON LENGTH MIN RESD K1X RFSD REAM LL US

1 264 0.0850 0.131 0.099 1224.01 -0.178 0.379 0.08
2 29 0.2660 0.260 0.088 711.00 0.077 0.410 0.27

3 384 -0.0730 1.057 1.056 2001.00 -6.960 0.595 -0.07

4 27 -6.7929 6.793 0.090 1021.00 -6.969 -6.617 -6.79

S S00 0.0934 0.151 0.119 2271.00 -0.422 1.167 0.09

6 36 0.3169 0.328 0.088 1313.00 0.120 0.488 0.32
7 171 0.3589 0.511 0.364 1346.00 -0.525 4.824 0.36
8 63 -0.0468 0.145 0.138 889.00 -0.346 0.257 -0.05
9 lt9 -0.2538 0.312 0.161 1913.00 -0.739 0.504 -0.25

10 588 0.1708 0.20 0.128 2727.00 -0.255 1.811 0.17

11 37 0.1305 0.165 0.102 1608.00 -0.075 0.363 0.13

12 44 0.2436 0.286 0.151 652.00 -0.040 0.949 C.24

Table 49	 Residual Summary for Station 7120

CONSOLIDATED	 STATISTICS FOR STATION :	 7120

^^^^=^^^OBSERV RESID REAN RRS OEViATION LENGTH M!N RESD MALI RESD MEAN CIOS

1 2Z5 -0.1213 0.142 0.073 1964.00 -0.380 0.120 -0.12

2 44 -0.0037 0.151 0.159 829.00 -0.772 0.180 -0.00

3 160 0.0996 0.140 0.098 1197.00 -0.225 0.313 0.10

4 42 -0.0689 0.108 0.084 618.00 -0.218 0.098 -0.07

5 187 0.0268 0.133 O.l3l 2614.00 -0.337 0.857 0.03

6 346 -0.0766 0.114 0.085 2759.00 -0.348 0.247 -0.04

7 401 0.0931 0.138 0.102 2573.00 -0.259 0.298 0.09

8 SO -0.2583 0.294 0.141 865.00 -0.511 0.034 -0.26

9 121 -0.1879 0.216 0.107 1655.00 -0.38C 0.104 -0.19

l0 328 0.1102 0.163 0.120 2417.00 -0.221 0.409 0.11

Table 50	 Residual Summary for Station 7907

CONSOLIDATED STATISTICS FOR STATION 7907

T+ ASS 085ERV	 RESID M^ ► N RMS DEVIATION LENGTH M1^ RESD MAX RESD MEAN CLOS

1 11 0.1231 0.366 0.360 292.40 -0.408 0.939 0.12

2 41 -0.0135 0.604 0.611 1132.95 -1.S20 0.761 -0.01

3 51 0.0917 O.SO9 0.505 862.51 -1.291 0.803 0.09

4 l9 -0.0486 0.335 0.341 1027.76 -0.167 0.561 -0.05

5 5 -0.0084 0.596 0.666 360.15 -1.164 0.446 -0.01

6 52 0.1661 O.S11 0.498 892.90 -0.951 2.032 0.17

7 24 0.0601 0.401 0.405 660.27 -0.925 0.724 0.06

8 19 -0.2028 0.393 0.346 607.64 -0.868 0.360 -0.20

9 35 0.0493 0.288 0.287 1162.58 -0.648 0.640 0.05

10 53 -0.0616 0.108 0.408 914.95 -1.008 0.881 -D.06

it 34 -0.0226 0.390 0.403 967.53 -1.199 0.697 -0.0'

12 5 0.2501 0.257 0.065 360.10 0.169 0.303 0.25

13 24 -0.5918 1.005 0.830 1110.02 -2.043 0.962 -0.59

14 17 0.0004 0.813 0.838 689.96 -1.536 1.569 0.00

l5 B 0.2717 0.528 0.484 420.00 -0.434 1.126 0.27

16 9 -0.1124 0.568 0.590 465.05 -1.312 0.451 -0.11

17 22 -0.1859 0.744 0.737 847.96 -1.970 1.863 -L.19

18 28 0.2387 0.405 0.333 1012.50 -0.646 0.796 E..Z^

19 2 -D.3987 0.425 0.107 90.00 -0.545 -0.252 -0.40

20 29 0.0272 0.411 0.417 779.97 -0.855 0.698 0.03
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Table 51	 Residual Summary for Station 7943

CONSOLIDATED	 STATISTICS FOR	 STATION 3	 7943

VASS 06111,V RESID MEAN RMS DEVIATION LENGTH MIN RESD MAX RESD MEAN CLOS

1 56 0.0012 0.433 0.437 1154.92 -1.039 0.959 0.00

2 122 0.0426 0.336 0.336 2325.29 -1.432 0.815 0.04

3 81 -0.0666 0.439 0.437 1905.10 -1.252 1.074 -0.07

4 98 -0.0301 0.408 0.409 2272.34 -0.910 O.TIS -0.03

5 83 0.0633 0.426 0.424 1484.75 -1.229 1.222 0.06

6 85 0.0516 0.337 0.335 1567.79 -0.911 0.872 0.05

7 90 0.1375 0.292 0.259 1424.99 -0.489 0.991 0.14

B 212 -0.0796 0.318 0.309 2744.95 -0.864 0.679 -0.08

9 159 0.0983 0.344 0.330 2910.00 -0.720 0.861 0.10

10 47 -0.0243 0.511 0.516 1934.86 -1.052 1.198 -0.01

11 54 0.0337 0.429 0.432 IS14.65 -1.193 L.353 0.03

12 75 -0.L024 0.552 0.546 1605.00 -1.306 0.974 -0.10

13 139 0.0414 0.239 0.236 1822.48 -0.681 0.594 0.04

L4 100 -O.OG34 0.375 0.377 1697.49 -0.85, 1.041 -0.00

15 170 -0.0420 0.414 0.413 2955.00 -1.097 1.295 -0.04

16 106 -0.0637 0.347 0.338 1890.00 -1.137 0.715 -0.08

17 90 -0.0132 0.280 0.281 1919.92 -0.876 0.702 -0.01

18 44 -0.0889 0.470 0.467 2167.47 -1.129 0.643 -0.09

19 79 0.1661 0.414 0.392 2261.55 -0.943 0.849 0.17

20 176 0.0212 0.262 0.282 2489.80 -0.607 1.253 0.02

21 i8 -0.1316 0.625 0.617 1492.55 -1.636 1.460 -0.14

22 88 -0.0665 0.485 0.483 2092.54 -1.147 1.249 -0.07

23 172 -C.035S 0.263 0.261 1827.32 -0.671 0.6	 l -0.04

24 73 -0.3053 0.399 0.259 629.94 -0.896 0.119 -J.3L

25 67 0.0351 0.448 0.450 1619.87 -1.124 0.798 0.04

26 96 -0.0945 O.S96 0.592 1619.69 -1.605 1..349 -0.09

27 163 -0.1419 0.279 0.241 191V.90 -0.771 0.511 -0.14

28 191 0.1105 0.330 0.312 1994.91 -0.727 0.898 0.11

29 267 0.1799 0.365 0.318 2999.76 -0.819 0.837 0.18

30 97 0.1417 0.282 0.245 1942.65 -0.673 0.703 0.14

31 61 0.1396 0.466 0.445 2175.10 -0.953 0.875 0.14

32 41 -0.0645 0.485 0.483 1507.44 -1.351 0.607 -0.0V
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