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1.0 ABSTRACT

The goal of the project was to evaluate the ac impedance characteris-

tics of Ni-Cd cells as an in-situ, non-destructive means of determining cell

lifetime, particularly with respect to the probability of premature failure.

Emphasis of the program was on evaluating Ni-Cd cell impedance over a wide

frequency range (10,000 to 0.0004 Hz) as the cells were subjected to charge/

discharge cycle testing.

The results indicate that cell degradation is reflected in the low

frequency (Warburg) impedance characteristics associated with diffusion

processes. The Warburg slope (W) was found to steadily increase as a function

of cell aging for completely discharged cells. In addition, based on data for

two cells, a high or rapidly increasing value for W signals imminent cell

failure by one mechanism. Degradation by another mechanism is apparently

reflected in a fall-off (roll-over) of W at lower frequencies.

As a secondary result, the frequency dependence of the absolute cell

impedance at low frequencies (5 - 500 mHz) was found to be a good indication

of the cell state-of-charge.
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2.0 INTRODUCTION AND BACKGROUND

4
2.1	 Rationale and Overall Approach

The overall objective of this program was to develop a non-destruc-

tive method for predicting the cycle fife of Ni-Cd batteries. The appro:Ach

taken was based on ac impedance measurements, which, because of the cyclic

natuve of the perturbation involved, would be expected to be particularly

sensitive to the irreversibilities in the electrode reactions that ultimately

lead to battery failure. Although themo are inherent irreversibilities in the

electrode processes which limit the attainable cycle life, the present effort

was focused on detecting flaws which enhance/introduce irreversibilities that

lead to premature failure.

Irreversible processes of interest would be expected to generally

involve mobile reactant species, primarily ions in solutions and odions in the

electrode surface, which can segregate and lead to densification, dendritec

growth, and loss of active material. The electrode flaws that are 'likely to

enhance these detrimental processes include crystalline imperfections,

impurity centers, and surface irregularities. As an example, Cd ions and/or

adions may deposit preferentially at lattice dislocation sites and then not

totally redissolve or disperse during discharge of the battery because of the

additional binding energy associated with the dislocations. If the amount of

segregated material increases with battery cycling, dendrites will form which

may ultimately penetrate the separator and short the cell. For convenience,

we will use the term "fatal" flaw to refer to the particular flaw which ulti-

mately leads to battery failure.

The probability that the existence of fatal flaws can be ascertained

from ac impedance measurements early in the cycle life of the battery would

depend on whether such flaws occur as isolated events or statistically in con-

, junction with more benign flaws. Using the example from the preceding para-

graph, we might imagine that any lattice dislocation of a particular type in

the electrode material would lead to a dendrite which ultimately penetrates

2
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the separator and shorts the cell. Such isolated flaws would be extremely

difficult to detect in the early life of the battery because they would repre-

sent such a small portion of the active electrode material. Fortunately, it

is unlikely that such isolated flaws are responsible for most premature bat-

tery failures since flaws, e.g., dendrites, are generally found in large num-

bers in healthy ;ells which have delivered the normal number of cycles. It is

more probable that "fatal" flaws are slight variations of benign flaws and are

simply more likely to occur when the flaw density is high. For instance, in

our example above, a fatal flaw might be a particularly severe or twinned

lattice dislocation, or a dislocation which occurs in the vicinity of a flaw

in the separator material.

In such cases, the probability that a fatal flaw exists would be

expected to increase with the overall density of flaws of a given type. Thus,

one could reasonably expect to relate battery cycle life to the densities of

flaws, which should be detectable by ac impedance measurements via the asso-

ciated irreversibilities in the electrode reactions.

G	 In the present program, the approach was to monitor the ac impedance
9

characteristics of hi-Cd cells as they , were subjected to charge/discharge

cycle testing. The principal test conditions involved various depths of dis-

charge and various temperatures. Ideally, a given cell would be characterized

prior to cycling and at close intervals during the test program to permit ac

impedance parameters to be correlated with increased flaw density/premature

failure.

2.2	 AC Impedance Method/Previous Work

Since most electrochemical systems can be represented by series and

parallel combinations of various electronic circuit elements, the analysis of

ac impedance data usually involves construction of "equivalent circuits" which

provide a model for understanding the chemical and electrochemical processes

occurring. For example, a typical electrochemical interface can be repre-

sented by the equivalent circuit shown in Fig. 1, where R s is the sum of

3
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4

solution, separator and lead ohmic resistances, C p is the parallel capacitance

which is usually dominated by the dout.0e layer capacitance (C DL ), R  is the

parallel resistance which is usually dominated by the charge transfer resis-

tance (RCT ), and ZW is the diffusional (Warburg) impedance. In simple cases,

the values of the various circuit elements can be determined by plotting the

real (Z°) and imaginary (Z°) components of the impedance for a wide range of

perturbation frequencies. Such a complex plane plot, with the circuit

elements labeled, is shown in Fig. 2.

The relevance of these elements to the present work can be appreci-

ated by considering their physical significance. Ohmic resistance (R s ) is

primarily associated with the electrolyte and separator, and should reflect

dewetting or deterioration of the separator, migration of active material into

the separator, and perhaps increased plate surface resistance. The double

layer capacitance (C DL ) is associated with charge separation across the inter-

face, and depends on the electrode surface area and concentrations of ions,

adions and adsorbed species. Throu lgh CDL , it may be possible to detect very

small concentrations of flaws from the effect that they exert on the concen-

tration of charged intermediates, e.g., adions. In addition, C DL should be

sensitive to active surface area variations associated with densification,

expansion of plates, or pore blockage. Charge transfer resistance (R CT ) is

determined by the rate of electrochemical reactions. Low values of R CT might

signal abnormal plate growth corresponding to agglomeration of active material

with possible dendrite formation. High values of RCT could reflect irrever-

sible reactions associated with crystal formation or other losses of active

material. Diffusional impedance (ZW ) arises at low frequencies where many

reactions are diffusion controlled. The Warburg coefficient, determined from

the diffusion impedance, provides a measure of the surface concentrations of

reaction intermediates (adions) and might, therefore, be used to detect sur-

face flaws. In addition, the variation in Z W with signal frequency depends on

the electrode porosity and may reflect electrode densification or pore block-

age.

5
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To simplify analysis of results obtained from the more complicated

systems, data are often plotted in various alternate forms which permit a more

precise determination of the various equivalent circuit features. Log-log

plots of the total impedance ( Z) and the real W) and imaginary (Z") compo-
nents vs frequency can be particularly useful. Such plots V`or the equivalent

circuit in Fig. 1 are depicted in Fig. 3. The Warburg coefficient, a, which

Is an important diffusional parameter, is obtained from plots of Z' or Z" vs

wX over frequency regions where diffusion control predominates, where X is a

coefficient which reflects the morphology of the electrode (e.g., X = 1/2 for

a planar electrode and 1/4 for an ideal porous electrode). If the electrode

morphology is unknown, the value of X can be obtained from log-log plots of Z'

or Z" vs w.

The equivalent circuit fov Ni-Cd cells, which consist of two elec-

trodes electrically connected in series via an electrolyte/separator, is

considerably more complex than the circuit in Fig. 1. In addition, inductive
circuit elements may also be present, and the values of the various in-phase

resistive components can be frequency dependent. The situation is further

complicated by the fact that the cell electrodes are porous.

Impedance characteristics of porous electrodes have b Y.aen treated

theoretically by De Levie [l], using a transmission line model and assuming

infinitely-deep cylindrical pores of uniform cross section. Whereas inter-

facial impedances are simply additive for a planar surface, they combine as

the geometric mean for such porous electrodes. Consequently, impedance char-

acteristics for a given process may be significantly affected by the electrode

porosity. For example, whereas the diffusional impedance for a planar elec-

trode is directly proportional to w-1/2 (w = perturbation frequency), it is

proportional to w-1/4 for porous electrodes of the type treated by De Levie.
For electrodes having such idealized pores, the impedance can be correlated

g	 with that for planar electrodes by squaring the absolute magnitude of the

impedance and doubling the phase angle [1].

4
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For real porous electrode systems, nonidealized behavior must also be

considered. For example, since at lower perturbation frequencies pores must

be deeper to behave as though infinitely deep, a transition from porous to

nonporous electrode behavior can occur as w is changed over a few decades [1]•

Thus, for a typical frequency scan, which covers seven decades (e.g., 10 kHz

to 1 mHz), it is quite possible to encounter both porous and nonporous be-

havior. This effect has been used to advantage by Armstrong et al. [2], who

were able to detect a decrease in pore length for Cd electrodes in alkaline

solution, caused by redistribution of active material ind a progressive build-

up of Cd(OH) 2 during charge/discharge cycling. The effect of pore geometry on

Impedance spectra has been addressed by Keiser et al. [3]; noncylindrical

pores, especially those with occluded geometries, were shown to exhibit

anamalous impedance behavior. ThL-se authors were able to discern the average

pore structure of a nickel electrode from impedance studies.

For actual commercial cells, these are additional difficulties asso-

ciateo Y04,a the impedance measurement itself. Since the cell is typically

sealed, only the impedance of the total- cell can be measured, and the contri-

butions of the individual electrodes and electrolyte/separator must be

inferred subsequently. Also, because of the large charge capacity of many

commercial batteries, a compromise in the magnitude of the perturbation signal

is often required; even a 1 mY signal can yield current responses in the 1 A

range (which are difficult to handle electronically), whereas the signal to

noise ratio may be poor for smaller perturbations.

In spite of the difficulties involved, the impedance characteristics

of several commercial battery systems have recently been investigated,

typically with the goal of developing a method for determining the state-of-

charge. Hampson, et al. [4] have reviewed the literature prior to 1979 and

developed a general theory for describing the impedance of batteries. Systems

that have been studied, most of them in the last three years, include

Zn/Hg0 [5,6], Zn/Mn02 [7,8], Leclanche' cells [9-111, Pb/H 2SO4 [12-141,

Q
Mg/Mn02 [8], and Ni-Cd [15,16]. The effect of charge/discharge cycling on

8
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Pb [171 and sintered-plate Cd [2] electrodes have also been investigated.

These studies, although not particularly successful in establishing state-of-

charge correlations, have demonstrated the value of ac impedance for investi-

gation of battery properties.

As described by Pilla [181, impedance characteristics can also be

determined by the analysis of current transients, and the results can be con-

verted from the time domain to the frequency domain using Laplace transforma-

tio ► s. Zimmerman, et al. used the transient technique to study the impedance

of 10 A-hr sintered-plate Ni-Cd cells at equivalent ac frequencies from 10 to

0.1 mHz, and the ac method at higher frequencies. Most of the information

pertaining to diffusional and film growth processes is obtained in this low

frequency range, which had not been previously investigated.

Results obtained for Ni-Cd cells are of particular relevance to the

present Work. Zimmerman and his co-workers [151 showed that the impedance of

°	 an operating Ni-Cd battery is dominated by mass transport processes. Two

diffusional features were observed in the impedance spectra: one apparently

corresponding solid state proton diffusion within the nickel oxy-hydroxide

electrode and the other to cadmium diffusion. A finding which would tend to

validate the approach taken in the present program was that the diffusional

processes in Ni-Cd cells are sensitive to changes in the morpholoqy or chem-

ical structure of the electrode active material. These workers also found

that the inductive impedance observed above 10 Hz was insensitive to the cell

state-of-charge and the current, and could be attributed to self-inductance of

current collection leads and assemblies. Sathyanarayana, et al. [161, using 	 d

an ac technique from 5-30 Hz, also found that the impedance of Ni ­Cd cells is

dominated by diffusion and may be interpreted in terms of a long cylindrical

pore model. The latter authors found that the equivalent series or parallel

capacitance reflected (within 20-30%) the battery's state-of-charge.

TI

4
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3.0 TECHNICAL RESULTS

This program was focused on developing a non-destructive ac impedance

method for predicting the cycle life of Ni-Cd aerospace cells. The ovorall

approach was to monitor the ac impedance characteristics of cells subjected to

cycle testing at JPL, and to correlate impedance parameters with cycle life.

3.1	 Experimental Details

Testing was'performed on 1 .2 A-hr sealed cells (General Electric) for

which the Ni active material was either chemically (L2 series) or electrochem-

ically (L1 series) deposited. The charge/discharge cycle was based on a

satellite low earth orbit and consisted of 60 minutes charging and 40 minutes

discharging. Nine test conditions were used, defined by the matrix of three

temperatures (20, 30 and 40°C) and three depths of discharge (20, 35 and 50%).

Statistical information is available for the average cycle life under a given

set of conditions; for example, at 40°C and 50% depth of discharge, cells have

a 63% chance of failing by 3100 cycles.

A block diagram of the apparatus used for ac impedance measurements

is shown in Fig. 4. The heart of the system is a Solartron Model 1172 fre-

quency response analyzer which determines the real and imaginary components of

the impedance as a function of frequency by impressing a small voltage across

the cell (via the potentiostat) and analyzing the current response. The volt-

age perturbation used in the present work was 2 mV (rms), except for prelimi-

nary studies (10 W). Impedance was measured from 10 kHz to about 0.4 mHz, 	 a

with 20 logarithmically-spaced points per decade of frequency. Full computer

control of the experiments and data handling was provided by a Hewlett-Packard

Model 9825 desktop computer. The potentiostat used (Stonehard Model BC1200)

has the advantage of dual reference inputs (see Fig. 4), which minimize lead

wire inductive effects - an important feature in view of the high current

responses involved.

Typically, cells were first discharged at the C/20 rate (— 600 mA) to

0.00 V, and the impedance spectrum was determined for the totally discharged

10
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state. In some cases, impedance measurements were also made at various other

states-of-charge. Some experiments were performed under galvanostatic rather

than potentiostatic control.

3.2	 Preliminary Studies

Initial studies involved 12 cells, nine of which had undergone charge/

discharge cycling, and were directed toward establishing suitable measurement

conditions (charge state, frequency range, integration time and perturbation

magnitude) and baseline data for subsequent comparisons. Impedance spectra were

measured, using a 10 mV (rms) voltage perturbation, for various states of

change, i.e., totally discharged (0.0 V), slightly charged (1.0 V), and with 4,

8 and 12 A-hr of charge.

k frequencies greater than about 10 Hz for charged cells and 100 Hz

for those totally discharged, the impedance is apparently dominated by induc-

tance associated with the electrical leads. This was demonstrated by measuring

the impedance of isolated resistors (0.02, 0.05 and 0.1 ohm) chosen to simulate

the Ni-Cd cells; an inductive response similar to that obtained for the cells

was observed. Because of these results, which are in agreement with those re-

ported in the literature [151, the inductive portions of impedance spectra were

ignored and are not reported here.

Representative impedance data plotted in the complex plane * for two

cells at various states of charge are shown in Figs. 5 - 8. In interpreting

these data, it is instructive to consider the overall electrode reactions, i.e.,

char
Ni00H + H 2O + e

- 
dis^ -^ OH- + Ni(OH) 2	(1)
c arge

Cd + 2OH- discharg@ 2e - + Cd(OH) 2	2)
c arge

ii

P

3
C

*Data were plotted in various other ways but only complex plane plots are
discussed in this section.

12
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Since Ni-Cd cells are typically constructed with excess negative (Cd)

electrode capacity, the cell impedance for the totally discharged state (Figs. 5

and 7) is dominated by the Ni electrode. Note that the overall impedance is

relatively high, probably because of the presence of a resistive nickel hydrox-

ide layer. In this case, the equivalent circuit given in Fig. 1 is at least

approximately applicable. However, the low frequency slopes are considerably

greater (65-80 0 ) than expected for a diffusional process to either a planar

electrode (45') or a porous electrode (22 0 ). Such large slopes are probably

associated with pore shape, solid-state diffusion or slow adsorption/desorption

processes (perhaps involving protons). Since the electrode processes involved

are unknown, circuit elements are given the more general designations, R  and

Cp , rather than RCT and COL.

For partially or fully charged cells, the impedance behavior is more

complex (Figs. 6 and 8). Although well-defined semicircles are generally ob-

served for the lower states of charge, the diffusional impedance region is often

non-linear (see Fig. 8a), which makes it difficult to tabulate data and make

quantitative comparisons. Nonetheless, note that the diffusional slopes tend to

fall in the range expected for a porous electrode (20 - 40 0 ). Interestingly,

for the highest state of charge (12 A-hr), an inflection in the impedance spec-

trum is often observed at a Z' value of about 0.42 n (see Figs. 6c and 8c).

Because of the limited resources available for this program, it was

necessary to limit measurements to either a few cells or one charge state. It

was decided to monitor the impedance characteristics of the maximum number of
a

cells at one state of charge so as to maximize the probability of including

cells that would fail prematurely; such cells are essential to establishing

definite correlations between ac impedance parameters and cell cycle life. The

fully discharged state, for which a relatively simple equivalent circuit model

appears to be applicable, was chosen. This choice also facilitates data acqui-

sition since the zero charge state can be reproducibly attained and measurement

3
problems associated with high current response are minimized ( cell resistance is

A	 largest). Based on these preliminary studies, a perturbation voltage of 2 W r^

( rms) was also selected.

b

17
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3.3	 Failure Prediction

AC impedance data were determined (as a function of frequency) for Ni-

Cd cells (in the fully discharged state) at various points during charge dis-

charge cycle testing and were routinely plotted in the four ways illustrated in

Figs. 9 - 12. From the complex plane plots (Fig. 9), R R , Cp and W (see Section

2.1) were determined (whenever possible) and tabulated. 	 Log-'log plots of the

total impedance (Z) and its imaginary (Z") and real (Z') components vs fre-

quency (w) generally exhibited two linear regions. The slopes and inflection

points for such plots were also tabulated, using the notation given in Figs. 10

- 12. Data tabulations for all cells evaluated are given in the Appendix.

Data for the impedance parameters found to depend on the cell charge/

discharge history, i.e., W and C p , are summarized in Table I. For both types of

cells (Ni active material chemically deposited for L2 series and electrodeposi-

ted for L1 series), W increases steadily with the number of charge/discharge

cycles after the initial conditioning period. t Interestingly, Cp decreases with

cycling for L2 cells but increases for '.1 cells.

Based on data for two cells, a high or rapidly increasing value for W

apparently signals imminent cell failure. This is most evident for cell 1-2-95

which yielded a W value of 87.1° when evaluated at 3124 cycles (Table I) and

failed only 200 cycles later; note that W typically falls in the 60-75 0 range.

The complex impedance spectrum for this cell is shown in Fig. 13. Likewise, W

for cell 1.2-68 steadily increased and was high (82.1 0 ) when evaluated at 5223

cycles, just before failure. Unfortunately, only four of the cells monitored by

ac impedance failed during the course of this work so that a firm correlation

between W and cell failure could not he established. It should be mentioned,

however, that high W values have been reported [101 for Leclanche' cells and

attributed to polarization of the carbon electrode caused by inadequate sorptive

or electrocatalytic properties.

*Note that Rs was neglected since it was found to be insensitive to the battery
charge state and cycling history.

tNote that Ni-Cd cells typically must undergo several charge/discharge cycles
before normal behavior is obtained.
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Dependence of W and C	 for Various Ni-Cd Cells on
Charge/Discharge history

Cell Number

Charge/Discharge
Cycle	 Depth of Cycles W	 Cp

Temperature	 Discharge
(°C)	 M (Number) (deg)	 (F)

L2-59 1116 76.6	 2.2
30°/35% 3457 82.4	 1.7

L2-68 1957 71.6	 -
30°/20% 3119 77.1	 2.1

4704 78.7	 2.0
5223 82.1	 1.8

° -FAILED-

L2-82 1132 65.6	 2.0
40'/35% 2448 67.4	 2.2

4488 68.1	 1.7

L2-93 378 71.6	 5.2
40 0 /50% 1496 45.0	 -

3072 69.7	 2.2
3573 -FAILED-

L2-95 3124 87.1	 1.8
40 0 /50% 3351 -FAILED-

L2-96 1561 76.6	 1.9
40 0 /50% 3025 74.5	 -

L2-102 906 69.7	 1.8
30 0 /50% 5109 79.9	 1.9

L1-68 0 79.5	 8.9
35 0 /30% 800 80.5	 4.7

2278 81.4	 5.1

L1-69 0 80.5	 5.8
35 0 /30% 800 65.6	 3.4

2278 76.9	 4.3

L1-70 0 77.4	 4.2
50°/40% 800 76.3	 5.8

2126 -FAILED-

L1-71 0 80.2	 4.2
50%/40% 800 76.0	 5.4
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Fig. 13 Complex impedance spectrum for Ni-Cd cell L2-95 at 0.0 V
after 3124 charge/discharge cycles.
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A rapid falloff of W in the diffusional region may also signal cell

deterioration, most probably by a different mechanism. This is evident from the

complex impedance spectra fo r failed cells shown in Fig. 14. For the first

three spectra (a-c), the low frequency diffusional response is absent, presum-

ably because the cells have been shorted by dendrites/separator failure. For

r	 these cells, the impedance behavior is apparently dominated by double layer

charging and, in cases where two semicircles are observed (Figs. 14b,c), adsorp-

tion processes. The impedance spectrum for cell L2-94 (Fig. 14d), which com-

prises a normal high frequency semicircle and a diffusional tail that becomes

non-linear (falls off) at lower frequencies, is of particular interest. The

latter behavior is typical of diffusion through a finite diffusion layer and has

been observed for normal Ni-Cd cells [15]. The possibility that the deviation

of Z" from linearity in the diffusion region signals cell deterioration is

supported by the preliminary data obtained for cell L2-94. Figure 15 depicts

the complex impedance spectrum for this cell after 2350 cycles (1000 cycles

before failure). The value of W is lower than for most cells, and the curvature

in the diffusional region is greater than that observed for any other cell.

As indicated by the impedance data for L1 cells after 800 charge/

discharge cycles suimnarized in Table II, C  may also reflect cell deteriora-

tion. For the harsher cycle conditions (50°C, 40% depth of discharge), Cp,

which also increases with cycle life for this type of cell, is considerably

larger.
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Fig. 14 Complex impedance spectra at 0.0 V for failed Ni-Cd cells:
(a) L2-95; (b) L2-93; (c) L1-70; and (d) L2-94.

Table II

Dependence of CDL and mz t for L1 Cells After 800 Charge/Discharge Cycles

Cycle Depth of C
Cell Temperature Discharge

P mzk

Number (°C) M (F)

L1-68 35 30 4.7 -0.96

L1-69 35 30 3.4 -0.92

L1-70 50 40 5.8 -0.86

L1-71 50 40 5.4 -0.75

mz k = the slope of the log L vs log w plot between — U.4 and 5 mHz .
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3.4	 State-of-Charge Determination

In view of the considerable current interest in ac impedance as a means

of determining battery state of charge, data generated under the present program

were evaluated for incidental relationships along these lines. It was found

that increases in the state of charge are consistently reflected by a linear

increase in mZh , which, as depicted in Fig. 16, is the slope of the linear por-

tion of log Z - log w plots between 500 and 5 Oz. Values of mZh as a function

of charge state for 8 Ni-Cd cells are tabulated in Table III. Although the

absolute values vary somewhat, the trend is consistent for each cell. The

results indicate that low frequency impedance measurements are most promising

for state of charge determinations, which is consistent with recent work in-

volving the diffusional impedance for Ni-Cd cells [151.

Table III

Dependence of mZh on the Charge State of Various Ni-Cd Cells

State of	
mZh

Charge	 L2-6; L2-72	 L2-82 L2-88	 L2-92	 L2-93	 L2-96	 L2-102
(A-hr)

	

4	 -0.08 -0.062 -0.10 -0.061 -0.083 -0.083 -0.073 -0.10

	

8	 -0.09 -0.069 -0.11 -0.069 -0.080 	 -	 -0.10	 -

	

12	 -0.14 -0.095 -0.13 -0.095 -0.095 -0.11 	 -0.13	 -0.18

mZh = slope of log Z - low w plot between 500 and 5 mNz.
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.3Fig. 16 Log-log plot of cell impedance vs frequency for Ni-Cd
cell L2-97 at full charge.
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3.5	 Recommendations for Future Work

For the present program, which was of very limited scope, ac impedance

	

`	 techniques for use with Ni-Cd batteries have been developed and some impedance

parameters which reflect cell deterioration have been identified. Unfortu-

nately, none of the evaluated cells failed prematurely under charge/discharge

cycling so that correlations between impedance characteristics and cycle life

could not be verified. Thus, attainment of the long-term goal of a non-

destructive method for predicting cell life will require a more comprehensive

study, which would also provide valuable information for improving cell design

and performance. Some guidelines for such a study, derived from the results of

the present work, are outlined below.

More work is certainly warranted to investigate diffusional (low

	

V	 frequency) impedance parameters (measured for fully discharged cells), which

have been shown to reflect battery deterioration. For example, the absolute

magnitude of the Warburg angle (W) or the change in W over a few charge/

discharge cycles may ultimately provide a predictive measure of the cell cycle

life under some conditions. However, measurements should not be limited to the

fully discharged state; this was done in the present program only because of

resource limitations. One important disadvantarye of measurements for discharged

cells is that the impedance reflects primarily processes at the Ni electrode,

whereas some important cell failure modes involve the Cd electrode.

Alternate measurement techniques, which may provide greater sensitivity

(especially at the higher charge states), should also be investigated. For

example, a galvanostatic method (involving a current perturbation) which was

evaluated under this program warrants further attention. Figures 17 - 19 show

complex impedance spectra for cell L1-67 obtained at the fully discharged state

with sinusoidal current perturbations of 10, 100 and 350 mA (rms), respectively.

For the 10 mA perturbation (Fig. 17), which approximates the current obtained

with a 2 mY perturbation, the impedance spectra for the galvanostatic and

potentostatic approaches are equivalent. However, additional information seems

to be obtained for the higher current perturbations (Figs. 18-19); three dis-
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tinct spectral features (plateaux) are evident. The transient technique des-

cribed by Zimmerman, et al. [15] also offers some advantages, especially for

investigating diffusional processes. Study of the latter by ac impedance

involves low frequency measurements that can be very time-consuming, a full

impedance scan in the present work required 14 hours. The main difficulties

with the transient technique, i.e., assumption of a "natural cell response" and

stringent temperature control requirements, can be alleviated by utilizing the

fast Fourier transform method, which represents a compromise.

A significant improvement for the potentiostatic ac impedance method

could be reali zed if measurements could be made in the three-electrode mode.

This would permit the impedance of each battery electrode to be measured

separately, but would require that a third electrode, e.g., Ni/NiO (oxidized

nickel wire), be built into the cell (which is sealed) at manufacture.
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Fig. 17 Complex impedance spectrum for Ni-Cd cell h1-67 determined

galvanostatically at 0.0 V using a 10 mA (rms) perturbation.
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5.0 APPENDIX

t	 Tabulation of impedance data obtained from Ni-Cd cells as described in
A

text.
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