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ABSTRACT 

In this paper we present calculations of sound radiated from unflanged 

cylindrical ducts. The numerical simulation models the problem of an aero-

engine inlet. The time-dependent: linearized Euler equations are solved from a 

state of rest until a time harmonic solution is attained. A fourth-order 

aceurate finite difference scheme is used. Solutions are obtained from a 

fully vectorized Cyber-203 computer program. Cases of both plane waves and 

spJln modeB are treated. Spin modes model the sound generated by a turbofan 

engine. Boundary conditions for both plane waves and spin modes are treated. 

Solutions obtained are compared with experiments conducted at NASA Langley 

Research Center. 
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INTRODUCTION 

In this paper we present a computational method to study sound radiated 

from an ullflanged cylindrical duet. An incident field which is either a plane 

wa'\I'e or a spinning mode (i.e., dependence on the azimuthal angle) propagates 

d01ffl the duct. At the open end of the duct, sound is radiated out into the 

farfield and a reflected wave traveling upstream in the duct is generated. 

ThJls problem is of importance in the study of noise radiated from aero-engine 

inlets and in the development of effective duct liners. 

A significant amount of work has been done on the computation of sound 

propagation in an infinitely long duct. A survey of such work may be found in 

[1 J • The open end of the duct and the ensuing outward radiation of energy 

significantly complicates the problem. A further complication is the presence 

of the inlet flow about which little is known experimentally. In the 

procedure adapted here the solutionis obtained by solving the Euler equations 

linearized about an arbitrary mean flow. Thus the method is general enough to 

permit co~?utation of the linearized fluctuating field about an experimentally 

determined mean flow. However, in this paper only the case of no mean flow is 

cons idered '. 

lve will briefly discuss some work which has been done in the past and is 

rell~vant to our work. The earliest work in calculating the sound wave 

(prj~ssure) radiated from cylindrical ducts is due to Levine and Schwinger [8]. 

They provided a method to predict sound from a semi-infinHe thin pipe, when a 

plane wave is incident upstream in the pipe, using the Weiner-Hopf technique. 

This work motivated several other researchers in this field, in particular 

Savkar [10] provided a method to predict sound using Weiner-Hopf techniques 

for the case of an incident spinning mode. Ting and Keller [13] developed an 

asymptotic expansion valid for plane wave incidence and flow frequencies. For 
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higher frequencies asymptotic methods have not been successfully applied to 

this problem because there are different length scales inside the pipe and in 

the farfield. Though these methods provide some means to compute the sound 

radiated from engine inlets, they do not correspond to the entire physical 

situation due to the thickness of the inlets. With a given thickness of the 

duct and for smooth geometries, calculations are effectively handled by 

integral eql.!ation methods. One such work is due to Horowitz, et a1. [5]. 

This method is based on a Helmholtz equation approach for the fluctuating 

sound pressure field and does not have the means to incorporate a mean flow. 

Thus a method is needed to study the radiation of sound that has the 

capability of handling flows. This is the motivation of this paper. 

2. FORMULATION OF THE PROBLEM 

We obtain the field equations from the fluid equations. The equations of 

inviscid flow with the standard summation convention can be written as a first 

order system 

lE.+ div(P.:y) = 0 at 

(2.1) 
aV

i av i 
+~= p(-+ Vj a;-) o. at 

j 
aX i 

Here p is the density, v the velocity, and p is the pressure. We divide 

the flow variables into mean and fluctuating parts. lye thus write 

p = p + p' 

v = Ji + .l!' (2.2) 

p = p + p' , 



where the bar denotes a mean quantity independent of time. We reformulate the 

resulting system by replacing the fluctuating density p' by the fluctuating 

pr1essure p' which is the common acoustic variable. We assume that the flow 

is homentropic and has no mean temperature gradient. It then follows that 

p = A pY (2.3) 

or 

p' = ~ + O(p'2), 
Co 

(2.4 ) 

is the ambient speed of sound. Thus the resulting system from 

(2.1) becomes 

1 a' 1 --2" ~ + 2" div(p'.!D + div(~') -div(P U) + q 

Co Co 

(2.5 ) 

au' a ' au 
._( i J i 
Pat+ Uj aX j 

+ uj ax
j

) 

where q denotes higher-order terms containing '2 " '2 P , P u , u , etc. The 

left hand of system (2.5) contain the first order interacting terms between 

the fluctuating and mean quantities. The right hand side contain the mean 

flOl~ and fluctuating quantities of the lower order terms. In general the 

system (2.5) is a linear first-order hyperbolic system which includes all of 

the first-order terms for the fluctuating field subject to a time-dependent 

inflow condition. 

For the present purpose we assume the mean flow is zero. Thus the system 

(2.5) reduces to 

3 



4 

--.!. ap'" + 
Po div u ... = 0 2 at 

Co 
(2.6) 

au 
, 

Po a~ + Vp 
... = 0, 

where is the density of the ambient fluid. We non-dimensionalize these 

equations. Length is non-dimensionalized by the diameter of the pipe (d), 

time by cOid, pressure by 
2 

POcO and the velocity by to obtain 

~+ div u :: 0 at 

(2.7) 
au -= + Vp :: o. at 

Note that in (2.7) the prime on the fluctuating quantities are dropped for 

convenience. 

REMARK 2.1: If P and u are time harmonic, that is 

p(x,t) = ~(x)e-ikt, 

u(x,t) ~(x)e-ikt, 

where k is the wave number then the system (2.7) reduces to 

(2.8) 

The problem discussed here is to solve the sys tern (2.7) for p and u 

subject to appropriate boundary conditions which will be discussed later. 



The technique here is to drive the system (2.7) with a time harmonic 

source wh:Lch will yield the time harmonic solutions, namely the solution of 

(2 .. 8). 1rhis technique is essentially the numerical implementation of an 

appropriate limiting amplitude principle. For exterior problems this method 

has; been demonstrated by Kriegsmann and Morawetz [6] and Taflove and 

UmElshankar [12] and for wave guide problems by Baumeister [1] and Kriegsmann 

[7J. 

" 
3. SOLUTION PROCEDURES 

We take the origin at the open end of the duct so that its generators are 

parallel to the z axis (Figure 1). We look for solutions of (2.7) of the 

form 

p(r,e,z,t) 

.!!(r,e,z,t) 

imS 
= P(r,z,t)e 

ime 
= Q(r,z,t)e • 

In general solution will have the form 

00 

ime 
P (r,z,t)e , 

m p = l~ 
m··D 

(3.1) 

but we .confine our solutions as in (3.1) for a single mode m. For m" 1 

the solution is referred to as the spin mode solution. In physical situations 

they correspond to the modes prov:f.ded by a turbofan engine. 'For m = 0 (3.1) 

deslcribes a plane wave. The more important case is when m > D (a spinning 

modl~). ThEm the system (2.7) becomes 

5 
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~+ + +v + imw 0 u v = at z r r 

au +~ = 
at az 0 

(3.2) 

av +~ = 
at ar 

0 

aw + im p = 0 
at r 

and the problem reduces to solving the system (3.2) with appropriate boundary 

condi tions. 

The method we use to solve (3.2) is an explicit method which is fourth-

order accurate in space and second-order accurate in time and is due to 

Gottlieb and Turkel [4]. This is a higher-order accurate version of the 

MacCormack scheme. The use of an explicit method has been recently advocated 

by Baumeister [1]. The major advantages are drastically reduced storage 

requirements and programming' simplicity. Baumeister demonstrated the 

effectiveness of this approach for internal sound propagation with spinning 

modes [2]. The work in this paper extends this idea to the full radiation 

problem with a more accurate computational scheme. 

A typical computational domain is depicted in Figure 2. Referring to 

this figure, the computations are carried out in the rectangular region which 

is bounded by an inflow boundary and the farfield boundary. Thickness of the 

duct is allowed by a mesh size thickness in the r direction. The solution 

for large times is extremely sensitive to the inflow condition and also the 

farfield condition [9]. The solution is assumed to start from a state of 

rest, i.e., p = u = v = w = 0 at time t = O. The system (3.2) can be 

written in the form 



where 

P 

u 
F = w == 

v 

w 

u 

P 

0 

0 

w +F +G =H, 
-t: -z -r 

v 

G = 0 and 
P 

0 

(3.3) 

v + imw 
r 

H 
0 (3.4) = . 
0 

imP ---r 

WE! use the method of time splitting to advance the solution from time t to 

t + Ut. If L (~t) and L (~t) denote symbolic solution operators to the z r 

one-dimensional equations 

1 
w

t 
+ F 

z 
= H 1 

then the solution to (3.3) is advanced by the formula 

(3.5) 

wet + 2~t) = L (At) L (~t) L (At) L (At) wet). z r r· z (3.6) 

This procedure is second-order accurate in time. The fourth-order accur.acy in 

space depends on formulating the difference scheme. For a one-dimensional 

system, i.e., for (3.5), we have 

(3.7) 

7 
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where Pi denote F evaluated at wi' etc. This formula contains a forward 

predictor and a backward corrector. This is second-order accurate in space. 

One can formulate another variant which contains a backward predictor and a 

forward corrector which is also second-order accurate in space. In order to 

achieve fourth-order accuracy we alternate (3.7) and its variant in each time 

step. If there are N intervals with nodes at z (i=O 1 000 N) i " , then the 

predictor in (3.7) cannot be used at i = N-l and at i = N and the 

corrector cannot be used at i = 0 and 1. Similar situations occur for the 

other variant too. At these points we extrapolate the fluxes using third-

order extrapolations. For the right boundary we use the extrapolation 

formulae 

(3 .• 8) 

and for the left boundary 

(3.9) 

Since we are interested in time harmonic solutions, the numerical 

solution is monitored until the transient has passed out of the computational 

domain and the solution achieves a steady time harmonic dependence. 
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4. BOUNDARY CONDITIONS 

A very important feature of our work is tn ohtaining appropriate boundary 

conditions. We derive our boundary conditions appropriate to an experiment 

ca.rried out at NASA Langley Research Center [14]. The boundary conditions 

consists of two major parts. The first part is derivation of an inflow 

condition which will model correctly the sound source. Next, we need accurate 

farfield boundary conditions which will simulate outgoing radiation • 

.!!!f1ow Coudi tions 

To derive inflow boundary (~onditions we consider the time harmonic case 

and in particular equation (2.8). We look for spinning mode solutions of the 

form 

A - e 
p = P(r,z)eim • 

This yields 

1 d (r dP) (k2 _ m
2

2
) d

2
p r ar dr + P + --2 = o. 

r dz 
(4.1 ) 

If we separate variables by sett:f.ng 

P{r,z) = f(r) g(z), 

we obtain 

f(r) J (Sr) 
m 

and g(z) = e ±Hz 
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(4.2) 

and t is to be determined. 

If a is the radius of the duct (here a = 112 due to the non-

dimensionalization) then the usual boundary condition on the pipe is the hard 

wall condition 

This gives 

or 

" ap 
-= 0 
an 

o 

Sa = A mn 

on r = a. 

on r = a 

(n=0,1,2,···,) 

where A 's are the zeros of the functions J'(z). mn m From (4.2), using the 

a~propriate subscript corresponding to A we have mn 

Definition: If ka > A , we say the mode mn 

Otherwise it is said to be cut-off. 

(4.3) 

(m,n) is cut-on. 

We now consider only cut-on modes. Then the solution of (4.1) has the 

form 

00 
r-'2 2 ±iz/(ka)- - A A 

mn (mn ) ae J --r. 
n m a 

P(r,z) I 
n=O 

(4.4) 



It is necessary to consider the case of a single cut-on mode propagating down 

the pipe. In this situation n = O. Dropping the corresponding zero 

subscripts in (4.3) we consider the values of ~ given by 

Then the general solution insidE! the pipe can be written as a combination of 

an incoming wave and a reflected wave. That is 

" p(r,e,z) (4.5) 

where R is the reflection coefficient and is also a function of the wave 

number k. Recalling that p(r,e,z,t) = ;(r,e,z)e-ikt and 

imS 
p(r,e,z,t) = P(r,z,t)e we have 

P(r,z,t) 
i~ z -i~ z 

(e m + R(k)e m) J (A ~)e-ikt. 
m m a 

(4.6) 

ThE~ reflection coefficient R is unknown. Thus we must eliminate R in 

(4 .. 6) • This is accomplished by taking the time derivative of (4.6) and 

suhtracting the 

but: 

kIf!- times the 
m 

P 
z 

ThulS the above equation becomes 

z derivative to get 

Hz 
-2ik e m J (A ~)e-ikt 

m m a ' 

from (3.2). 

11 
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Hz 
-21k e m J (A E.)e -ikt • 

m m a 
(1) 

We impose this boundary condition on the inflow boundary z = -L. We obtain 

boundary condition on v at the inflow by using (3.2), 

3v + ~ = 0 
3t 3r ' 

together with 

to give 

A J'(A E) 3P m m m a 
ar = a"J (A E) P 

m m a 

A J'(A E.) 
3v m m m a - + - . P = O. 
3 t a J (A E) 

m m a 

(II) 

Note that the coefficient of P here contains a singular term at r = O. 

However P contains a term (from (4.6» of the form 

J (A !.). 
m m a 

Thus when r = 0 (II) is simply replaced by v = O. 

Conditions on the Wall 

On the duct wall 3P 3P 0 b 3n = ar = , ut 

from (3.2). (III) 

This implies v = 0 on the wall. We note that a general impedance condition 

simulating an acoustic liner can be handled without difficulty. 



Conditions on the Axis 

When m = 0 the system (3.2) has only three equations for p, u, and v. 
~ 

The first equation of (3.2) contains a v 
r 

term. Thus the boundary condition 

on the axis in this case is 

v o on r = 0 (m = 0). (IV) 

Whl~n m = 1 the last equation of (3.2) gives 

ll{ + im p = 0 at r • 

Here p contains a term like for z close to -L. Thus is 

nonzero. But from the first equation of 0.2) we have 

v + iw o on r = 0 (m = 1). (V) 

For m) 2 the first and the last equations of (3.2) give 

v = 0, w = 0 on r == 0 (m ) 2). (VI) 

Farfield Conditions 

Radiation conditions are applied at the farfield boundaries. The 

development: follows that given in [3J. Let R be the distance (R = 11""+ z2) 

from the origin to a point in the farfield (see Figure 2). The condition we 

impose here is the first member of a family of nonreflecting boundary 

conditions which are accurate as R +00. This condition is 

13 
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3p 3p P 
at + 3R + Ii" = 0, 

where 

3p 3p 3p 
-- - -- cos a + -- sin a, 3R - 3z 3r 

where a is the angle from the z axis to the farfield point. Using the 

second and third equations of (3.2) we have 

3P 
3R = - ut cos a - vt sin a. 

Thus the radiation condition becomes 

3p ( + _P 3t - u cos a + v sin a)t R = O. (VII) 

The conditions I through VII were used to obtain the results discussed in the 

next section. 

5. NUMERICAL RESULTS 

We computed the solutions with the details given in Sections 3 and 4 on a 

CDC Corp. Cyber-203 machine. The algorithm described above is almost totally 

vectorizable. For a very low frequency plane wave case the typical number ,of 

grid points in the r,z plane wer~ 80 x 100. The inflow boundary was kept 

at z = -10d (10 diameters) and the radiation boundary was chosen so as to 

enclose a circle of radius lad. For high frequencies the typical grid sizes 

were 115 x 135 and the inflow boundary as varied from z = -lad to z = -8d. 

To verify the effectiveness of the code we compared our results with 

asymptotic expansion obtained by 'ring and Keller [13J for .a low frequency 



plane wave. To make comparisons we computed the solutions in the duct and on 

the axis at various stations for a non-dimensional frequency ka = 0.2. Here 

2 'IT k =
w is the wave number. Results are presented in Table I. 

For high frequencies we compared our results with the Weiner-Hopf results 

of Savkar and Edelfelt [11J and the experiment done at NASA Langley Research 

Center [14J. In this experiment the directivity patterns were measured on a 

circle at 10 diameters from the open end of the pipe. The test facility has a 

spin mode synthesizer which can produce both plane and spinning mode wave. 

The first comparison was made for the plane wave case (m = 0) and a 

non-dimensional frequency of ka = 3.76. Since the experimental results were 

obtained only in the farfield the sound pressure level was plotted as a 

function of angle measured from z axis. The results are presented in Figure 

3 ,and shmo' good agreement with the experiment. 

Figures 4 and 5 show typical comparisons of the spinning mode case 

wHh m = 2 and for frequency values ka = 3.37 and 4.40. As in these 

figures, except the plane wave case, the computed results agree within 5 dB 

levels. Clearly our results show better comparison than Weiner-Hopf results 

[11 J due to allowance of thickness. In these cases the results near the axis 

do not compare very well. This is due to the fact that in the experiment it 

is difficult to completely control other modes and plane waves. This is 

particularly true for this frequency ka = 4.lfO which is close to the next cut-

on mode. In the plane wave case the results were unexpectedly good. 

15 
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6. VARIABLE GEOMETRY DUCTS 

We consider ducts with a local variable geometry cross section. The duct 

is assumed to be straight as z + -00 (see Figure 4). Thus the inflow 

boundary conditions previously formulated are still valid. The variable duct 

is incorporated in the numerical scheme by mapping it into a straight duct. 

This slightly changes the coefficients in the final system (3.3) but does not 

degrade the convergence to the time harmonic solution. 

Suppose the duct configuration is as in Figure 4. It has a curved 

boundary near z = 0 and has straight extension everywhere else. This allows 

us to have the same inflow boundary conditions and the conditions on axis and 

also the radiation condition. But the boundary conditions on the wall will be 

changed. 

The Euler equations have the form 

(6.1) 

We do the following maps: 

(6.2) 

We use chain rule to compute fz' gr in terms of fZ1 and grt' etc. where 

r = n(z) is the geometry of the duct. This yields 

w + f + (_1_ g - rn'(zL. f) + f n'(z) + h 
t zl an(z) an(z)2 r 1 n(z) 

o. (6.3) 
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This has the same form as (6.1). Thus very minor changes in the difference 

scheme and in the radiation boundary conditions are required. The boundary 

condition v = 0 on r = a is replaced by the vanishing of the normal 

VE!locity on the wall. On the surface of the pipe a normal vector is (1, 

- an'(z» in (r,z) coordinates. Thus the above condition reduces to 

v - an'(z)u == O. (6.4 ) 

We simulated a duct where n(z) has the form 

n(z) = 
f .5 

l.5 - E(2z -1)(z+1)2 

z < -1 

-1 " z " 0 

(see Figure 4). The grids of the computational domain follow the same 

geometry. For E = .15 the results we obtained are shown in Figure 6 

compared with the straight duct situation. The dB level reduces at 900 by 

about 10 dB. This indicates the importance of the nozzle geometry in 

determining the farfiel~ radiation pattern. 
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Table I. Comparison with Ting and Keller Solution 
Ita = 0.2 

Ting & Keller Numerical 

Z Ipl Ipl 
-10 1.5026 1.5054 

- 9 1.0984 1.1113 

- 8 .3873 .3544 

- 7 .4355 .3933 

- 6 1.1133 1.0874 

- 5 1. 7603 1. 7196 

- 4 1.9280 1.9583 

- 3 1.8933 1.9097 

- 2 1.5495 1.5477 

- 1 1.0279 1.0076 
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