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LINEARIZED POTENTIAL SOLUTION FOR AN
AIRFOIL IN NONUNIFORM PARALLEL STREAMS

By

R. K. Prabhul and S. N. Tiwari2

SUMMARY

A small perturbation potential flow theory is arplied to the problem of

determining the chordwise pressure distribution, lift and pitching moment of

a thin airfoil i.a the middle of five parallel streams. This theory is

then extended to the case of an undisturbed stream having a given smooth

velocity profile. Two typical examples are considered and the results

obtained are compared with available numerical solutions of Euler's

equations. The agreement between these two results is not quite satisfac-

tory. Possible reasons for the differences are indicated.

'Graduate Research Assistant, Department of Mechanical Engineering and
Mechanics, Old Dominion University, Norfolk, Virginia 23508.

2 Eminent Professor, Department of Mechanical Engineering and Mechanics, Old
Dominion University, Norfolk, Virginia 23508.



LIST OF SYMBOLS

Am unknown constants

a, b distance of the airfoil above or below a surface of

velocity discontinuity

c airfoil chord

c l airfoil lift coefficient

cm airfoil pitching moment coefficient

CJ jet momentum coefficient

d distance representing the width of velocity nonuniformity

dm unknown constants

i,	 j,	 k,	 n,	 s running indices

I,	 J,	 K, L circulation of the image vortices

h width of a stream in which the velocity is uniform

m(8) slope of the mean camber line

U,	 v perturbation velocity components

U undisturbed free strew velocity

X,	 x' distance from the airfoil leading edge along the chord

y height of the image vortex above the airfoil chord

Y(X) shape of the deflected jet sheet

a angle of attack;
factor defined by (U2	- U21/(U20	 + U2)

6 factor defined by (U2 - U2 )/(U2 + U2)
' 0	 -1	 0	 -1

Y(X) vortex distribution representing the airfoil

t circulation around the airfoil

9 defined by x	 (1-cos6) c/2

defined by x' _ ( 1 -cosO) c/2



Wa 1. INTRODUCTION

The st ,idy of aerodynamic characteristics of lifting surfaces in non-

uniform flow is of considerable practical interest. Wing sections behind a

propeller experiencing a jet-like velocity profile, and tailplane sections

of a conventional airplane experiencing a wake-like velocity profile are two

examples of such problems. Solutions of these problems are complex and re-

quire simpliFying assumptions. Even if the viscous and compressibility

effects are neglected, the presence of vorticity in the approaching stream

necessitates the solution of Euler's equations. Being nonlinear, Euler's

equations require numerical treatment. This has been done by several

workers, see for example Chow et al. (ref. 1) and Whitfield (ref. 2).

This problem can be simplified considerably by replacing tte approach-

ing nonuniform stream by an equivalent stream having a stepped velocity pro-

file with a finite number of discontinuities. This problem can be solved by

neglecting viscosity and compressibility and making a potential flow analy-

sis. Karman (ref. 3) gave the basis for a linearized potential flow analy-

sis for such problems. Glauert (ref. 4) employed this method to solve the

problem of an airfoil in the presence of a jet. He replaced the airfoil by

a single vortex and, by computing the increment in axial velocity and

streamline curvature at the airfoil, determined the increase in lift of the

airfoil. Ting and Liu (ref. 5) extended Karman's method further and

determined the chordwise pressure distribution on a thin airfoil in a

nonuniform stream.

In this note, the basis for linearized potential flow analysis for the

problem of an airfoil in a nonuniform stream is reviewed. The method of

solution of the integral equation for the unknown vortex distribution of

ref. 5 is simplified. The analysis is then extended to cover the case of

five streams with four surfaces of discontinuity. Finally, the problem of

an airfoil in a stream of smooth velocity profile is also treated by the

linearized potential flow analysis.

PRECE:D;INI C PAGE MLAN 6 (`SOT' FILMED
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2. FUNDAMENTAL BASIS FOR THE ANALYSIS

The present analysis is an extension of Ka man's method of representing

the flow past an airfoil in the proximity of a surface of velocity discon-

tinuity. This method is based on a linearized potential flow analysis.

Consider two parallel streams with velocities U 0 and U 1 with the x-axis

being the undisturbed streamline separating the two streams. Let an airfoil

be located in the lower stream and let ( uo, vo) and (u l , v l ) be the perturb-

ation velocity components in the lower and upper streams respectively. If

the distorted streamline that separates the two streams makes an angle S

with the undisturbed streamline, then we have (see figure 1)
"o	 vl

	

tan 6 
1^ —+ U-0	 U1 +ul

Retaining only first order terms, we obtain
v0	vl

	

IT 71
	 (1)

We also require the static pressure to vary continuously across the surface,

i.e.,

2	 2	 2	 2	 2	 2

Pb + 1/2 p [ U0 - (U0 + u0 ) - V0] - PO + 1/2 p [Ul - (Ul + ul) - ull

Again retaining only first order terms, we obtain

uo Uo - ul U 1
	

(2)

These are the two basic conditions that must be satisfied across the undis-

turbed surface of discontinuity, and form the basis for the entire analysis

that follows.

2.1 Airfoil Near a Surface of Discontinuity

Consider two parallel streams with velocities U0 and U1 with the x-axis

as the undisturbed streamline separating the two streams. Let an airfoil be

located at the point P (with OP = a) in the lower stream (see figure 1).

Glauert ( ref. 4) replaced the airfoil by a vortex of unknown circulation t.

He then showed that equations ( 1) and (2) are satisfied if the flow in the

*^ r

4
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upper stream is that due to a point vortex of strength (r + K) U 1 /U 0 at P,

and the flow in the lover stream is that due to the vortex r at P together

with its defracted image of strength K at the point P' (see figure 2)

where

2	 2	 2	 2
K - r (UO - Ul) / (UO + Ul) - ra,

He then computed the increase in the axial velocity and the streamline cur-

vature induced by the image vortex and determined the change in lift of the

airfoil.

A logical extension of this approach is to replace the airfoil by a

vortex distribution Y(x), 0 < x < c, instead of a single vortex r. Each of

the vortex elements Y (x)dx forms images as described above. The downwash

at the mean camber line of the airfoil can then be determined in terms of

Y (x) and its image a-y(x) and, by satisfying the flow tangency boundary

condition on the airfoil, the unknown Y(x) can be determined. This

probi_em is treated as a particular case of a more general problem of an

airfoil in a jet of finite width which is considered in the following

section.

2.2 Airfoil in a Jet of Finite Width

A more interesting problem is the flow past an airfoil placed in a jet

of finite width. Let us consider the general case of three parallel streams

of velocities U-1 , tb , and U1 with two undisturbed surfacrs of discontinuity

(AA 6 BB) as shown in figure 3. Let an airfoil of chord c be placed in

the middle stream at a distance a below the undisturbed surface AA. In

this case the conditions (1) and (2) have to be satisfied at both the sui-

faces AA 6 BB. Ting and Liu (ref. S) represented the airfoil by a vortex

distribution of unknown strength Y(x), 0 4 x < c, and by satisfying equa-

tions (1) and (2) repeatedly across the surfaces AA & BB, obtained an infi-

nite set of image vortex distributions (see figure 3). The downwash at the

airfoil chord is then given by

r

c	 -

	

v(x) - 1	 J {	 1 , + I (a8) 3 [	 a (x-x' )	 +

	

2n	 o	 x-x j-0	 (x-x' )2 +4(jh+a) 2

B (x-x' )

(x-X, )2+4(jh+b)2

5
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(x-x' )2 +4( j+1)` h2 ]1

The flow tangency condition at tna airfoil requires

V(X) - Up (a - m(x))	 (4)

where a is the angle of attack and m(x) is the slope of tt.e mean camber

line of the airfoil. Equations (3) and (4) form an integral equation for

the unknown Y(x) subject to the boundary condition (Kutta condition) Y(c)

- 0. Note in equation (3) the first term in the integrand is the familiar

singular term that appears in the classical airfoil theory; the other terms

are not singular.

As the first step in the solution of (3), x and x' are replaced by
e and 0 using the following transformation:

x - (1-cos e)c/2; x' - (1-cos0 c/2

Equations (3) and (4) together then result in

- m(e) -
U0	71

 1	 + ®a	 j (	 a(cos^-cose)
2R f {p coal-cose j-0 (as) (cosh-cor8)2+16(jh+a)2/c2

+	 B (cosh-coca)	 +	 20(coWcose) }
(coo -cose )2 +16(jh+b )2 /c2	 (co0-cos6 ) 2+16( j + l)h2 /c2

Y (^) sin ^ dm	 (S)

Ting and Liu ( ref. 3) then expressed Y W as the following series:

-



where Am, m ° 0,1,2,...,M are the unknown constants. Similarly they

expanded the expression a - ia(8) into a P crier series as follows:

a - m(e)	 dp + 7 d coo it 8	 (1)
m°1 1°

where dm, m • 091,2,...,M, ace the known constants which can be determined

for ,given a - m(8). 'these expansions were then substituted in equation

(5). The right side of the resulting equation was resolved into a cosine

Fourier series and, by equating the coefficients of like Fourier components,

a set of algebraic equations for the unknowns A m = 0,1,2,...,M, was
M,

obtained. The solution of these equations gave the values of A 
It 

and hence

the distribution Y(4).

This method of solution is rather lengthy. Since the integrand in

equation (5) is no more singular than the integrand in the classical r_irfoil

theory, all the methods of solving the classical airfoil integral would be

applicable in the present case also. In particular discretization of Y(0)

would be possible.

We therefore use Lan's method (ref. 6) and disc-eetize Y(0). In this

method vortex points 0 k and the control points 8 i are chosen as

follows:

m k	 (7.k-1) w/2%, k = 1, 2... ,N	 (8)

8.	 i n/N, i°1,2...,N	 (9)
1

With this, equation (5) reduces to
1	 N	 1 M 	a(cosok-cosei)

1	 2N k=1 	 cool kcos8 i j=0	 (cos 0k-cos8 i ) +16(j+l)h /c

B (cosh 
k 

cos8 i )	 2a6 (cosmkcos 8i)

+cost 
k 
co 

i 
+16 jh+b	 + cosokcose i +16 j+1 h c	 }

`	 Y(4 k ) sin 0 k , i°1, 2,..., M	 (10)
4 '

This is a set of linear simultaneous equations for the unknowns Y(mk), k =

1,2,...,N which can be eolved easily. The lift and pitching moment of the

airfoil are then given by

1
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c l = N
	

Y (mk) r,in ^k	 (11)

k=1

-^ N

c m = 2N I Y0 k) sin # k (1-cos # k)	 (12)
k=1

2.3 Airfoil in the Middle of Five Streams

Following Glauert ( ref. 4) let us consider the problem of an airfoil in

the presence of an infinite series of jets of the same width b. Let the

velocity in the nth jet be denoted by U n , - • < a < •. Let an airfoil

represented by a vortex of circulation r be located on the axis of the

principal jet in which the velocity is Up. Men the flow in any jet can be

represented by an infinite column of equisoaced point vortices at the

centers of the jets. Flog in the nth jet is due to the vortex system nit
s

as shown in figure 4. In general

n K n	 0, n * 0	 (1 3)

a Ko = r .	 (14)

Now by applying conditions ( 1) and (2) at the surface of discontinuity

between the nth and the (n+l ) th jets, the following fundamental relation for

the strength of vortices can be obta -:d.

	

n+1	 n(1-an+1)	 Kn+s+l	 Kn+s+l - an+l	
n-s -
	 < s < .	

(1 S)

This equation can be solved; but as pointed out by Glauert, the complet,

solution is very complex. If, however, we consider only 5 streams as shown

in figure 5, the problem gets simplified to so= extent. When the condi-

tions (1) and (2) are applied to the four surfaces of discontinuity, we

obtain a relation similar to relation ( 15), except that in this case n

s	 sassumes the values -2, -1, 0 and 1 ,nly. Denoting 2K , 1 K , Olt , -1s	 s o 	 and

8,

NMI
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-2
Ks by Is , is  r s , Ks and Ls respectively, equation (15) for the '_-our dif-

ferent values of n can be written as follows.

62 Is+2 Js+2 - a2 JI.-s

01 Js+l 
= r 

8+1 - a l 
r_,

Bo r s = Ks - a0 K-s-1

6 - 1 Ks-1 Ls-1 - 
0
-1 L-s-2

Where a n = (UI-Un+1 )/(Un + Un 2	 Bri 3 (1-an), n=2 , 1,0,-1.	 (17)

	

Is	 0, s > 2.

	

Ji 	0, r0 - r , K-1 = 0,

and L s = 0, s 4 -2.

The solution of these equations can be obtained by substituting successive-

ly, positive and negative values of s. However, with some algebraic manip-

ulations, it is possible to obtain eecurrence relations for T s ; see

Appendix A for details. These relations are:

r , al r 1-s + a2 r 3-s - ala2r s -2' s> 2,

	

and r s	 - ao r -1-s - a-1 r -3-s - ao a-1 r s+21 s 4 -2,	 (18)

with ro -r,  r l -air, and r -i -ao r.

Some of the values of T s computed using these relations are given below:

r2 = - (a0 a -1 )r - r -2

	

r 3	 ((1262 - a0a2 ) r
1	 1



w

T _3 = (0, 0 ,,,- a_180 )T	
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2 2	 2 2	 2
T4 = (ac 0 a 1 - 010261 - a l ai-1 8 0 )T = T-4, etc.

In general T
n - 

a T where a 's are constants. Now, following the procedure
n	 n

adopted in the previous section we replace the airfoil by a vortex distribu-

Pool-	 tion Y(x), 0 4 x 4 c rather than by a single vortex. Then the defracted

images will also be vortex distributions a
n Y(x). We note that it is not

necessary to place the airfoil on the axis of the central stream. The

images formed when the airfoil is offset from the centerline will be shown

in figure 5.

The downwash at the airfoil is then given by

c	 n =	 a ( x-x'
v(x) _	 JO { x_X + ccG	 (x-x')4 +4n h ! r(x') dx' 	 (19)

n =n* 0

Transforming x and x' into 9 and 0 respectively as before, we

obtain

n	 n = °D	 a (cosO-cose)	
lv(8) _ ^ l0 1 7;^_Cose + 

c
_ - cosh-cor.6 +16n h /c } Y(`^)sin$ dO (20)

n* 0

On discretizing Y(¢), and choosing 0 k as the vortex points and 9 i as

the control points, as in equations (8) and (9) we obtain:

c
N 	 n = m	 a (cosh - cos9.)

v(8 i)	 2N = l cosO lcos9 i + _I -	coso -cosh. +16n zh c }Y(0k)sinok
k 1	 k	 nn * 0	

k

	

i - 1,2,...,N
	

(21)

For the linearized boundary condition on the airfoil at the control points,

we have

	

v(9 i) - U0 (a - m(8 i )) , i - 1, 2, ... ,N	 (22)

10
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Now this set of linear simultaneous equations can be solved for the unknowns

Y4 k), k - 1,2 9 ..., N. The lift and pitching moment coefficients can then be

computed using the relations (11) and (12) respectively.

2.4 Airfoil in a Stream of Smooth Velocity Profile

So far we have considered an airfoil in a stream with a stepped

velocity profile. We can extend our analysis to the case of a stream with a

smooth velocity profile. Let us consider, as in the previous section, an

infinite series of jets of the same width h, the velocity in the nth jet

being denoted by Un . In the limit as h tends to zero, the velocity

profile tends to the given smooth velocity profile. Let the airfoil be

placed on the axis of the primary jet in which the velocity is Up (see

Figure 6). The strength of image vortices is then given by the relation

(15). Glauert attempted to extend this to the case of a stream with

continuous variation of velocity; unfortunately, since he had only a single

vortex representing the airfoil, he ended up with a simple logarithmic

singularity in his expression for the increase in axial velocity as well as

for the streamline curvature at the airfoil. However, if we represent the

airfoil by a vortex distribution as was done in the previous sections, and

satisfy the flow tangency boundary condition at the airfoil, we do not

encounter any difficulty. This has been done in the following.

As we noted earlier, the solution cf equation (15) for the case of an

infinite set of jets of the same width h is very complex. However, if we
a

assume small variation of velocity from jet to jet, we can write a
n 

as

U2 - 12	2U u + u2	u
a - n	 n+l	 n n	 n _ n	 (23)
n 211n + Un+1	 2Un + 2Unu n + un	

Un

where u  - (Un+l -
 
U n ) << Un.

With a n<< 1, we can obtain a first order solution (consistent with the

linearization done elsewhere in the analysis) for equation (15). The re-

sulting image system for the primary stream is then found to be

11
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r 2n	 0,

r 2n-1 
= a 

n 
r. at y 	 (2n-1)h, n -^ 1

an , at yn = (2n-1)h, n < 0.

Replacing the airfoil by a vortex distribution Y(x) instead of a single

vortex r, we end up with a similar image system. The downwash at the

airfoil with this image vortex system is then given by

c	 a (x-x' )
v(x) _	 j

o 
{ x_x + I	 xnx +y

n=1,3,...	 n

a (x-x' )

n	 -1,-3,... x-x	
+yn

This is the governing equation for the downwash velocity v(x) at a point

x on the airfoil chord in terms of the unknown vortex distribution Y(x).

For a given airfoil at a given ( small) angle of attack, the slope of the

mean camber line is known. 	 Then, by satisfying the flows tangency condi-

tion on the camber line, the unknown y(x), 0 < x < c can be determined.

The stepped velocity profile is only an approximation to a smooth

velocity profile. We can formally proceed to the limit of a smooth velocity

profile by increasing the number of steps (N) and correspondingly decreasing

the width of the step (h). For small h (-dy), u
n - 

(dU/dy) dy, and the

expression (23) for a
n 

becomes

_ 1 dU
a n =	 U dy ' dy

where U and dU/dy are measured at (2n-1) h/2 ndy - dy /2, and the corre-

sponding image is located at (2n-1) h - 2ndy - dy. In the limit as N

tends to infinity, the summations in the integrand in equation (24) are re-

placed by the correspon-ing integrals. With this, the downwash equation

(24) can be rewritten as
J

12 4̂
1

(25)
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v(x) 1 f  
iT - f^ 1 dU (x-x')d

2n	 o	 x- x	 0 U 'ay x- x +4y

0

	

+ f	 U dy x(x-x1 +4y
	} Y(x') dx'	 (26)

-„

It can be shown that for U and U' of the order of unity, the linearized

boundary condition is

	

v(x)/U(0) - a - m(x)
	

(26a)

For any given smooth velocity profile U(y) with U ( y)#0,	 < y < -, the

integrals within the brackets can be evaluated using any standard technique

and the vortex distribution Y(x) can be determined by the usual procedure.

Relations (11) and (12) can then be used to determine the lift and pitching

moment coefficients.

If the given velocity profile U ( y) is symmetric and the airfoil is

placed on the line of symmetry, equation (26) reduces to

R.	 I

c
	

cc

v(x) = 1 f 1 1	 - 2(x-x' )	 f 1 dU	 dy	 } Y(x' )dx' (27)
Zm	

0	 x-x'	 0 U dy (x-x' )2+4y2

The unknown vortex distribution can now be determined by the usual procedure

after which relations (11) and ( 12) yield the lift and pitching moment co-

efficients.
If the given velocity profile U(y) is symmetric and the airfoil is

placed on the line of symmetry, equation ( 26) reduces to

v(x) = 1 f c 1 1	
- 2 (x-x' )	 f= 

1 dU	 dy	 } Y(x' )dx' (27)
Zn	

0	 x-x'	 0 U dy (x-x') 2+4y2

The unknown vortex distribution can now be determined by the usual procedure

after which relations ( 11) and ( 12) yield the lift and pitching moment co-

efficients.

2.5 Jet-Flapped Airfoil in a Nonuniform Stream

Let us consider a thin jet flapped airfoil in the middle of five
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parallel streams. Following the method of Spence ( ref. 7) the airfoil is

represented by a distribution of vortex with density Y(x), 0 < x < c, and

the jet emerging from tke trailing edge of the airfoil is represented by a

distribution of vortex with density Y 
J
.(x), c < x < m . As in the previous

examples, this vortex diw-,ribution also forms a system of images. Then the

expression for the downwash on the x- axis can be written as follows:

^	 c	 m	 a (x-x' )
v(x) _	 j { xlx +	 x-x +4n h } Y(x' )dx'

0	 n = -n# 0

a*	 a (x-x' )
+	 j { XX^ +	 - m x-x +4n h } Yj (x' )dx'	 (28)

^ 0

The coefficients a 's are those described in section 2.3. The boundary
n

conditions are:

on the airfoil	 v(x)	 U0 ( a - m(x)) , 0 < x < c,	 (29) .

and on the jet	 v ( x) _ -UO y' ( x) , c < x < 00 .	 (30)

Now Y.
J 

is related to the curvature of the jet by the relation

Y i (x) _ -1/2 UOCJy" 	
(31)

where CJ is the jet momentum coefficient and y ( x) is the shape of the

jet. Combining these, we obtain the following pair of integro-differential

equations:

c	 C	 m

J	 { F} Y (x' )dx' -	 j	 { F} yO " dx'	 a-m(x) , 04x4c
c

_ -y'(x), c<x<-.

1	 n
where F ' x-x' +	 Tx--x' +4n h

R# 0

It should be noted that Y (x) for 0 < x < c and y(x) for c < x < W are

the unknowns. When the jet flap is absent ( CJ = 0) we obtain the problem

solved in section 2.3, whereas when the approaching stream is uniform

14

(32)



(an-0), we obtain the problem solved in ref. 7. 'he present problem

appears to be a rather difficult one. The method of solution of the simpler

problem of ref. 7 with some modifications may still be applicable'but this

needs to be investigated.

t	 1



3. RESULTS AND DISCUSSION

The effect of proximity of a surface of discontinuity on the list of an

airfoil is shown in figure 7. Results from reference 4 are included in this

figure for comparison. Glauert (ref. 4) represented the airfoil by a single

vortex distribution. This the only reason for Glauert's results not

agreeing with the present ones. For large values of h/c, as can be seen

from the figure, both methods give the same results. This trend is to be

expected. At lower values of h/c, the present results are more accurate.

For values of h/c very close to zero, the results are, however, not

reliable.

Figures 8 and 9 illustrate the effect of a uniform jet on the lift of a

flat plate airfoil. Figure 8 shows that as the ratio of the jet width to

the airfoil chord (h/c) increases, the lift ratio (L/L O) increases and

reaches a value of 1.0 asymptotically. The lift of the airfoil depends on

the location of the airfoil in the jet. Figure 9 shows that the lift is

maximum when the airfoil is in the centerline of the jet and decreases as

the airfoil is moved away from the centerline. lLhis is obviously a result

of linearization.

Changes in the lift and pitching moment due to a nonuniform stream and

wall effects were reported by Ting and Liu (ref. 5). Figure 10 shows the

results for the example case of reference 5, obtained by the present analy-

sis and compared with those of reference 5. The two results should have

been identical. The small differences that can be noticed in this figure

are due to a small error that had crept in the results of reference 5. When

this was corrected, their results were identical with the present ones.

The effect of four surfaces of discontinuity on the lift and pitching

moment of a flate plate airfoil is illustrated in figure 11. The airfoil is

assumed to be located on the axis of the central stream. The widths of the

middle three streams are the same. Even though the velocity profile is

assumed to be symmetric in this example, the computer program developed to
j	

solve this problem is quite general and accepts different values for the

velocity in the streams adjacent to the middle stream increases, the lift

f^
S

F

F
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=.	 (and the pitching moment) ratio of the airfoil increases approaching the

value of 1.0; this increase can be looked upon as the result of an increase

in effective jet width.

The effect of a nonuniform stream of a smooth velocity profile is given

in figures 12, 13, and 14. Figure 12 shows the effect on the lift of a flat

plate airfoil due to a jet of a Gaussian velocity profile in a uniform

stream. In figure 12a, a uniform approach strew corresponds to a = 0, and

hence the value L/4 at this point is unity. For values of 'a' greater

than zero, the stream has a jet like velocity porfile and the low velocity

streams above and below the airfoil cause the lift ratio to drop. For

values of 'a' less than zero (but greater than -1.0) the stream has a wake

like profile. In this case the high velocity stream in the neighborhood of

the airfoil causes an increase in the airfoil lift ratio.

Figure 12b shows the effect of the spread of the jet on the airfoil

lift ratio. For small values of the parameter (d/c) the airfoil lift

ratio is small. As (d/c) increases, the lift ratio increases and reaches

the value of 1.0 asymptotically as (d/c) tends to infinity.

Lifting characteristics of a Joukowski airfoil in a nonuniform stream

have been studied by Chow et al. (ref. 1) by solving Euler's equations.

Some of their results are given in figures 13 and 14 for comparizon with the

results of the present analysis. It may be recalled that the present analy-

sis is a linear potential flow analysis.

As the first example following reference 1, the upstream nonuniform

velocity profile is represented by

	

.,	 U(y) = m [ l+a exp (-(y-ys)2/d2)] 	 (33)

where 'a' is the ratio between maximum excess velocity and the velocity U.

(at y	 Parameter d represents the spread of the velocity nonuniform-

ity and y
s 

represents the vertical location of the jet centerline with re-

spect to the airfoil. Figure 13 illustrates the effect of varying the

location of the airfoil on the lift of a thin Joukowski airfoil (camber •

5%) at zero angle of attack for three different values of the jet spread

(d/c). In all these cases the present results show that the lift is maximum

17



-	 when the airfoil is located on the centerline of the jet. The numerical

results of Euler's equations included in figure 13 for comparison show that

the maximum lift occurs when the airfoil is slightly below the jet center-

line. Generally there is no satisfactory agreement between the two results

in figure 13.

As the second example, the lifting characteristics of the Joukowski

airfoil in a shear layer between two parallel streams is studied. For anal-

ysis, the upstream velocity profile is chosen to be

U(y) - Up [ 1+a tanh ( (y-y 8Vd) ]	 (34)

The mean velocity Up is used as the velocity scale. Thi parameter d rep-

resents the spread of the shear layer. As before, y  denotes the vertical

location of the airfoil relative to the upstream profile. Figure 14 shows

the lift coefficient of the Joukowski airfoil placed in such a stream

obtained by the present analysis together with the numerical results of

Euler's equation from reference 1. The results show the expected trend, but

the agreement between the two results is not satisfactory.

There could be several reasons for the poor agreement between the pre-

sent results and those of the numerical solution of Euler's equation. The

present analysis is a linearized potential flow theory. Linearization may

have introduced some errors. Yet another reason could be due to possible

errors in the numerical results of reference 1. For example, in reference

1, a value of 1.315 has been quoted for cc 	 for the Joukowski airfoil (c

1.808) at zero angle of attack in uniform stream. This implies a c 	 of

0.727. But the linearized theory gives a c  of only 0.625. Considering

these differences, the lack of good agreement in results in figures 13 and

14 is not surprising.

When a small perturbation approximation is introduced in the vorticity

transport equation, we arrive at the following linear partial differential

equation for the perturbation velocity components.

U (u - v )	 + v (U ) - 0
	

(35)
y x x	 y y

where U - U(y) is the undisturbed nonuniform velocity and u(x,y) and

18



v(x,y) are the perturbation velocity components. The subscripts x and y

stand for partial differentiation with respect to x and y respectively.

Since U an U(y) is known, the equation is a linear p.d.e. with variable

coefficients. The linearized boundary condition on the airfoil is as before

v - Uy', where y' is the slope of the mean camber line.

The perturbation velocity components u and v s"tisfy the equation

(Uy - x) - 0. Hence, it is evident that the present potential flow solu-

tion of linearized Fuler's equation (35) only if yy is small.

19



4. CONCLUDING REMARKS

A linearized potential flaw theory has been applied to the problem of a

thin airfoil iii the middle of five streams With four surfaces of discon-

tinuity. The theory is than extended to solve the problem of a thin airfoil

in a nonuniform stream having a smooth velocity profile. Results have been

obtained for two examples - one for a stream having a Gaussian velocity

profile and the other having a hyperbolic tangent velocity profile. These

results have 6"n compared with more sophisticated numerical results of

Euler`s equation. Some differences are noticed between these two results,

and possible reasons for this poor agreement are indicated.
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APPENDIX A	 OF POOR QUALHIY

DERIVATION OF THE RECURRENCE RELATION FOR THE STRENGTH OF MACE VORTICES

Consider the relations (16a) to (16d)

02 Is+2 - Js+2 a 2 11 -8 	 (16a)

0 1 Js+1 - r 
s+1 - a 1 r-s	

(16b)

0 0 r •	 Ks a0 K-s-1	 (16c)

9 -1 K•-1	 L
•-1 -a -1 L -s-2	 (16d)

Witt,	 I - 0, for a > 2
s

J1 -0, ro - r , K-1 - 0,

and	 Ls - 0, for s < -2 	 (Al)

E	 We can rewrite (16b) as

r s+1 - 9 
I 

1 8+1 + a 1 r _s	 (A2)

The relation (16a) with s repinced by (s-1) gives

62 Is+1 -
 

J s+1	 a 2 J2-s

Since I8+1 - 0 for s > 1, this can be written as

0 . Ji+1 -0
2 2-•

J	 for s > 1

or Js+1
	 a2 T2-s	 (A3)

36



OF POOh?
Using (A3) in (A2) we obtain

r 8+1 = a 
2B 1 J2-s + a 

l r _s for s> 1	 (A4)

which can be rewritten with s replaced by (1-s) as

2-s s S 1 
1
2-9 + a 1 r

 
8-1	

AS

Combining (AS) and (A4) we obtain

r s
+l a a 2 (r 2-s - a 

I  s-1) + a 1 r_ 
8 	 (A6)

or r g	 = a 1 r _(s-1) + a 2 r _(s-3) - a la 2r s-2

Next since L = 0 for s 4 -2, the relation (16d) reduces to
s

S -1 Ks-1 -a -1 L-s-2 for s < -1	 W)

Also replacing s by -(s+l) in (16d), we obtain

S-1 K_ 
(s+2)	

L_ (s+2) - a-1 Ls-1	 (A8)

Using (A7) in (A8) and noting L (s-1) = 0 for s 4 -1, we get

Ka-1 
a- a-1 

K-(s+2) 
for s t-1	 (A9)

or Ks	- a_ 
1  
K_(s+3) for s 4 -2.

Next replacing s by -(s+l) in (16c), we obtain

So ` —(s+l)	 K-(s+1) - ao K
s	(A10)

If this relation is used in (16c), then we find

ao r -(s+1) ' - r  + Bo Ks	(All)
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which can also be written with s replaced by -(s+3) as follows:

ao r s+2 = - r 
_(s+3) + 0 0 K_ (s+3)

On using (All) and (Al2) in (A9), we arrive at

r a =- 
a-1 r -(s+3) - ao r -(s+1) - ap a-1 r s+2

(Al 2)

(Al 3)

(A6) and (A13) are the required recurrence relations for rs for s > 2 and

s t - 2, respectively. It can be easily shown with ro = r that r l =

aor , r_i = a-, r. Other values of i s can be determined using the above

recurrence relations.
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