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ABSTRACT

Recent developmeuts in the application of spectral methods to two-
dimensional compressible flows are reviewed. A brief introduction to spectral
methods -~ their history and especially their implementation -- is provided.
The stress is on those techniques relevant to transonic flow computation. The
spectrzl multigrid iterative methods are discussed with aprlication to the
transonic full potential equation. Discontinuous solutions of the Fuler
equations are considered. The key element 13 the shock fitting techanique

which is briefly explained.

kesearch of the firs: author was supported by the National Aero: wtics
and Space Administration under NASA Contract Nos. NAS1-16394 and NAS1-17130
while he was in residence at ICASE, WAJA Langley Research Center, Hampton,
VA 23665. The work of the third author was supported by NASA Grant No. NAGl-
109 while he was at the College of William and Mary, Williamsburg, VA 23185.

e

/

i

s
. - - : . '}:‘1 PR PR IFN N
1



1. INTRODUCTION

Spectral methods have their roots 1in approximation
theory. They are based on representations of the solution to
a problem by a finite series of global (and preferably ortho-
gonal) functions. The expansion coefficients are usually re-
ferred to as spectra, and hence this technique is called the
spectral method. All the derivatives of the solution are ap-
proximated by the corresponding derivatives of the finite
series expansion. Under the right circumstances such high~
order approximations can produce extremely accurate numerical
solutions. There are three versions of spectral methods:
spectral Galerkin, spectral tau, and spectral collocation. An
extended discusslon of each of these versiocns is given in [1].

The first serious application of gpectral methods to
fluid dynamics used the Galerkin approach: the solution was
expanded in a series of functions satisfying the boundary con-
ditions and the calculation was performed entirely in terms of
the expansion coefficlents. Already in 1954 Silberman (2]
used them for meteorological modelling. The numerous investi-
gations which followed Silberman’s work established the feasi-
bility of the spectral method for low resolution calculatiomns.
In particular, FEllsaesser [3] showed that for the simple
balanced barotropic model the efficiency of a low resolution
spectral method was competitive with the then available low
resolution finite difference methods. However, the cost of
these early spectral Galerkin methods soared to a prohibitive
level as the number of expansion functions (and hence the
resolution) increased. The high cost was due to the straight-
forward manner in which the c.avolution sums arising from the
nonlinear terms were evaluated.

The breakthrough came when Orszag (4], [5] (and also
Eliasen, et al. [6]) proposed a transform method for handling
the conv-olution sums. ‘This change so improved the efficiency
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of spectral methods that they became practical for high-
resolution calculations, even 1in three dimensions. Indeed,
the accuracy of spectral Galerkin methods 1is 8o great,
especlally in terms of their extremely favorable phase errors,
that they are now routinely used in numerical weather predic-

- tion. They have also been profitaply applied to the simula-
tion of homogeneous, 1sotroplc turbulence [7].

The spectral tau method was devised by Lanczos [8). 1Its
principal difference from the spectral Galerkin method lies in
the treatment of boundary conditions. Lanczos used Chebyshev
polynomials as the expansion functions for solving linear
ordinary differential aquations with rational coefficients.
Orszag (9], [10] has applied this method to certain fluid
dynamics problems.

For many problems, especially nonlinear ones, the
spectral collocation method {s the easiest to {mplement as
well as the most efficient. The earliest 1iunvestigations of
this method are those of Kreiss and Oliger [l11], (who called
it the Fourier method) and Orszag [6], [12] (who termr it
pseudospectral). Thus far this has been the only type of spec-
tral method yet applied to transonic problems. The present
discussion will be confined to spectral collocation methods,
with all future references to spectral methods implicitly re-
ferring to this specific type.

Spectral calculations of compressible flows have only |
been performed in the last few years. The initial investiga- i
tious were for one-dimensional flows. These were carried out i
by Zang and Hussaini [13]}, Gottlieh, et al. [l4), and Taylor,
et al. [15]. Some promising two-dimensional trausonic results
have been ohtained recently for the full potential equation by
Streett [16] and Streett, ot al [17) and for the Euler equa-
tions by Salas, et al. {18] and Hussaini, et al. [19]. This
article will describe the details of the spectral methods em-
ployed in these two-dimensional calculations and will present
some representative results. Since spectral methods are a
novel approach to transonic flow computations, a basic intro-
duction to their properties and implementation will be pre- i
sented first.

2. FUNDAMENTALS OF SPECTRAL METHODS

For problems with periodic houndary conditions spectral
methods based upon Fourier series are the obvious choice. 1If
the boundary conditions are Dirichlet or Neumann, then Cheby-
shev polynomials are usually employed. For many problems an
appropriate spectral method can produce a rapidly convergent
approximation. The particular choices mentioned above have
the added advantage of efficient implementation via the Fest
Fourjer Transform. This section will furnish the details
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necegsary for implementing these spectial methods. To begin
with, however, the convergence properties of spectral methods
will be 1llustrated with two eleme tary examples. The first
of these has some of the characteristics of the steady poten-
tial calculations described in Section 4, whereas the second

is relevant to the time~dependent Erler solutions of Section
5.

2.1. A One-dimensional Elliptic Problem

A major reason for the appeal of spectral methods 1is
their potential for rapidly convergent approximations. The
Fourier series expansion over [0,27m] of the function

w(x) = ———— 1)

5 -4 cos x
provides a simple illustration. It is

a0 = 1w, (2)
e

where

5, - =kl (3)

The approximation obtained by truncating the Fourier series,

N/2-1 )
ug®) = L Gt *)
k=-N/2+1
satisfies n 2
IuN(X) - u(x)| < 4e . (5)
It converges exponentially fast, i.e.,
Mlug(x) = u(x)| >0 as N>e 6)

for all positive integers p. This property of exponential
convergence 18 exhibited by the truncated Fourler series of
any periodic function which 1s infinitely differentiable. The
rapid decay of the Fourier series of such a function follows
from repeated integrations-by-parts: Let u(x) be periodic
and infinitely differentiable on [0,27], Its Fourier coef-
ficients are given by

}fi

.
L s s
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u, = L f u(x)e 1kxdx. (7)
k 2n
0
' A single integration-by-parts ylelds
v
27 27
~ 1 -1kx 1 . -1kx
Sl R CONE Ry IO u (x)e " dx. (8)

The boundary term vanishes because of the periodicity require-

ment. The remaining integral is o(l) as %k * ® by the

Riemann-Lebesque Lemma because of the differentiability condi-

tion. Thus, a single integration lets us conclude that |
u = o(k~l). Clearly, p 1integrations produce uy = o(k~P).

Note that bhoth the periodicity and differentiability condi-

tions are necessary for this argument. If either fails, then

the rate of convergence 1is algebraic.

A TFourier spectral method for a differential equation
makes use of some finite Fourier series representation of the
solution. This series will be related to, but different from,
the truncated Fourier series of Eq. (4). The details are fur-
nished in Section 2.3. Consider the differentfial equatic~

—=-u=f (9)

on [0,27] with periodic boundary conditions. Suppose that
f 1is chosen so that the exact solution is given by Eq (1).
Applied to this problem the spectral method yields the results
shown 1in the third column of Table I. The second column gives
the results of the truncated Fourler series and the last col-
. umn reports the results for a second-order finite difference
method. Note that the bound given by Eq. (5) for the trunca-
ted Fourier series 1s sharp -~ the entries in the second col-
umn agree precisely with this bound until N 1s so large that
round~-off error predominates. (These calculations were per-
formed on a CDC Cyber-175, which has 14 significant digits.)
The correct N = 128 and N = 256 entries are 2.17(-19) and
1.18(-38), rerpectively. The exponential convergence of the
truncated Fouriler series 1is evident. The spectral method per-
forms nearly as well. (In fact, its maximum error for N = 32
and N = 64 1is considerably lower, but this is due to a can- .
cellation of error. In an BRMS sense these two respective
; truncated series and Fourier spectral errors are withiu sever-
a al percent.) Only at very low resolution 1s the spectral
method substantially worse than the truncated series. But, of
course, the major point of this example 1s the decided superi-
- ority of the spectral method over the second-order finite dif-
I ference approximation.
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Table I. Maximum Rrror for a 1-D Periodic Problem

Truncated Fourier Finite
’ N Series Spectral Difference

4 1.00 ) hab2 0) 6.28 (0)

8 2.50 (-1) 1.28 (0) 1.98 (0)

16 1.56 (~2) 3.15 (-2) 2.02 (-1)

32 6.10 (-5) 3.46  (-5) 3.61 (=2)

64 9.31 (~10) 4.89 (-10) 8.65 (~3)

128 5.68 (~14) 7.11 (-14) 2.14 (=3)

256 5.68 (-14) 7.11 (-14) 5.34 (=4)

2.2. A One-dimensional Hyperbolic Problem

Spectral methods for time-dependent problems can also ex-
hibit exponential convergence. Indeed, spectral methods have
thus far made a greater impact on evolution equations than on
steady-state ones. A simple =xample is provided by the wave
equation

Ju, vy (10)

on the {ianterval [-1,1] with initial condition u(x,0) and
boundary condition u(-1,t). Since this is not a periodic
problem, a spectral method based upon Fourier series in x
would exhibit extremely slow convergence: the Fourier coeffi-
cients decay only es fast as 0(k~!) 1in the general case.
(The integration-by-parts argument given earlier fails, even
if the solution 1is 1infinitely differentiable because the
boundary term in Eq. (8) 1is finite.) However, rapid conver-
gence as well as efficient algorithms can be attained for
spectral methods based upon Chebyshev polynomials. These are
defined on [-1,1] by

Tn(x) = cos (n cos-lx). (11)

The function

u(x,t) = sin am(x-t) (12)
is one solution to Eq. (10). It has the Chebyshev expansion

u(x,t) = nzo u (£) T (x), (13)
where
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un(t) = . sin ( 5 - amt) Jn(an) (14)
with
2 n=20
cn = 1 n>1 (15)

and J,(t) 1s the Bessel function of order n. The asympto-
tic properties of the Bessel functions imply that

npﬁn(c) > 6 as n > ® (16)

for all positive integers p. Note that this result holds
whether or not © 18 an integer. In contrast, the Fourier
coefficients of u(x,t) are

i _iomt gin W(otk) 1 -ioamt gin T(a-k) (17)
2m © at+k 2m © ak  °

Gk(t) =

For non—-integer o these decay extremely slowly.

The change of variables

x = cos O, (18)
the definition

v(0,t) = u(cos 6,t), (19)

and Eq. (11) reduce Eq. (13) to

0

v(8,t) = ) u (t) cos nf. (20)
n=0 n

Thus, the Chebyshev coefficients of u(x,t) are precisely the
Fourier coefficients of v(0,t). This new function 1s auto-
matically periodic. If u(x,t} 1is infinitely differentiable
(in x), then v(8,t) will be infinitely differentiable (in 0).
Hence, straightforward integration-by-parts arguments lead to
the conclusion that the Chebyshev coefficients of an infinite-
ly differentiable function will decay exponentially fast.
Note that this holds regardless of the boundary conditions.

The effectiveness of this type of approximation is demon-
strated by the results 1in Table II. Shown there are the
errors at t = 1 for several approximations to Eq. (10) with
initial and boundary conditions based on Eq. (12) for a = 2.5.
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{The explicit time-step used in these calculations has been
taken to be so small that time-discretization errors, but not

round-off errors, are negligible.)

The results cof a spectral

m:thod based on Fourier series have been included to emphasize
the importance of the proper choice of expansion functions.

Table II. Maximum Error for a 1-D Hyperbolic Problem
Truncated Chebyshev Fourier Finite
N Series Spectral Spectral Difference
4 1.24 (0) 1.49  (0) 1.85 (0) 1.64 (0)
8 1.25 (-1) 6.92 (-1) 1.92 (0) 1.73  (0)
16 7.03 (~6) 1.50 (-4) 2.27 (0) 1.23 (0)
32 1.62 (-13) 3.45 (-11) 2.28 (0) 3.34 (-1)
64 1.79 (~13) 9.55 (~11) 2.27 (0) 8.44 (~2)

2.3. Implementation of Fourier Spectral Methods

The key to the implementation of Fourier spectral methods
u(x} be

is the Discrete Fourier Transform.
represented by

points

3

=27
X N

j=0,1,°,N-1

The discrete Fouriler coefficients of uj are

3=0

Let a function
its values uj = u(xj) at the collocation

k=-%, -F+1,00, §-1,

The inverse relationship is

and the orthogonali-

where

N2 -1

l.l:!==

et

k==N /2

o>
]

X, 2

celation 1s
1“{1 they
" e * k,0
3=0

k = £, &N, 242N, eee

0 otherwise

J = 091".'9N"19

(21)

(22)

(23)

(24)

(25)

N i bR

-
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Note the difference between Eq. (24) and the orthogonality re-
lation for continuous Fourier series. 1In the latter case the
sum 1is irzpiaced by an integral and the usual Kronecker delta
function sppears on the right-hand side.

The counterpart of the periodicity condition
u(x+27) = u(x) 1is

(26)

Unlike the continuous case, discrete Fourier series also have
a periodicity requirement on the coefficients:

Uy = Ve (27)

This is an immediate consequence of Eq. (22). The connection
between the discrete and continuous Fourier coefficients fol-
lows from Eqs. (2), (22), and (24) and is

-]

= L e (28)

fa-co

~

U

Ail but the £ = 0 contribution to the sum are the aliases of
Gk, i.e., Fourier components which are indistinguishable from
U on the discrete grid. These are a source of error in
spectral methods in addition to the error that arises from the
tiuncation of the exact Fourier series. It is just such
aliasing terms that account for the differences between the
entries in colums 2 and 3 of Table TI.

Here then are the details of the spectral method used for
the Table I results:

1) Given fj = f(x3) for j = 0,1,°**,N-1, find the dis-
crete Fourier coefficients fy for k = -N/2,
- N/2+41,°+¢ N/2-1. (Use ®q. (22) with f in place

of u.)
2) Set -
£
- _-ls-_f k] < N/2
~ 1 +k
uy = N (29)
0 k = -N/2

(This 1s the solution of Eq. (9) in terms of the
Fourier coefficients.)

3) Compute u itself for j = O0,1,°***,N-1 from {its
discrete Fourier coefficients. (Use Eq. (23).)

e -
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The Fast Fourier Transform (FFT) 1s an efficient and
widely-available algorithm (even in assembly language) for ac-
complishing sceps (1) and (3). 4 broad survey of FFT s {is
provided in [20]. The only slight complication is that stan-
dard versions of the FFT (such as the IMSL subroutine FFT2)
produce the ccefficients for k = 0,1,*** ,N-1. The periodic~-
ity relation given by Eq. (27) eanables the desired coeffi-
cients to be extracted readily from the FFT output. The pe- " -
odicity relation also helps 1in using the FFT to perform :...3
such as those in Eq. (23).

The ease with which a direct solution 1is attainable for
this spectral discretization of Eq. (9) 1is exceptional. For
example, no efficlent direct solution scheme exists for the
spectral solution of

3 d 3 3
57 (any) ) + 5 (bex,y) 32) = £ (39)

Cne must, 1in general, resort to iterative schemes for its so-
lution. An essential element of these schemes 1s the explicit
evaluation of terms such as those appearing in Eq. (30). Con-
sider just the first term. Given u(x,y) at the rollocation
points, this term is evaluated by

1)  computing 3du/dx by Fourier coilocation,
2) multiplying by a(x,y), and
3)  computing 9/3x(a(x,y)du/dx) by Fourier collocation.

The differentiatfon occurring in step 1 involves (with the y-
dependence suppressed):

(i) using the FFT to compute the discrete Fourier coeffi-
cients up Ffor k = =N/2,-N/2+1,+°+ N/2-1,

{11) setting

) ‘ik&k el < ¥ o
Ve ® ’
Lo €--4

(114) usfing the (inverse) FFT on Qk to get 9du/dx at the
collocation points.

The choice of G—N/z calls for some explanation. Since
u(x) _ is real, so too will be wu._y/2. But only the real part
of v.y/2 makes any effective contribution to 3u/3x. 1If a
derivative of higher-order is desired, then steps (1) to (iii)
still apply but with the appropriate power of 1k appearing
as the multiplier of ﬁk in Bq. (31).

The FFT enables the le <-hawd side of Eq. (30) to be

A
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evaluated at all the N X N collocation points in 0(N?2%n N)
operations. For large N this compares unfavorably with the
finite difference cost of O0{N’°) for an N x N grid. However,
when judged by the cost of equally accurate solutions the
spectral method is likely to be cheaper since it needs a
coarser grid (see Table I).

2.4. Implementatirn of Chebyshev Spectral Methods

A Chebyshev spectral method makes use of = finite
Chebyshev series such as

N
ug(x) = ¥ u T (x). (32>

n=0

The standard collocation polnts are

x = cos 1—% §=0,1,% N, (33)
Thus, N
uj = 2 u cos 3%1 s (34)
n=0

where u is the approximation to u(xi). The inverse rela-
tion is i

R N
u === ] Ej‘l uy cos NUA (35)
Ney 3=0
where
_ ‘2 J=0 or W
e = . (36)
] ll { & § < N-l

These last two sums may he evaluated by the ¥FT. The standard
FFT, however, does complex arithmetic and ignores the symmetry
present in a cosine transforu. The second appendix of [6]
describes how to make more efficient use of the FFT for
evaluating the sums in Eqs. (34) and (35). One may also use a
Fast Cosine Transform. A Fortran listing of one version 1is
given in [21].

The Chebv.hev collocation points are the extreme points
of Ty(x). Note that they are not evenly distributed in x,
but rather are clustered near the endpoints. The smallect
mest size scales as 1/N2, While this distribution contri-
butes to the quality of the Chebyshev approximation and per-
mits the use of the FFT in evaluating the series, it also

A
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places a sevare time-step limitatica on e~piicit mei.hods fcr
evolution equations.

A Chebyshev spectral method for Eq. (10) combines some
explicit time-discretization with an approximation to the spa-
tial derivative which is based upon analytical differentiation
of the Chebyshev series for u. Consider first the infinite
series, for which

u(x) = nzo Gnrn(x), (37)

with the time dependence of u suppressed. Write the expan-
slon of the derivative as

w(x) = ) Gél)Tn(x)- (38)
n=0

The goal 1s to relate the coefficients 1in Eqs. {37) and
(38). The starting poiunt is the recursion relation

T n+1(x) - Tn—l(x)
m+l n-1

2
- Tn(x), (39)
n

which follows from Eq. (11). Inserted into Eq. (38) this pro-

duces
® T, (x) T . (x)
. 1 - ~(1) 1 n+l _ _n-1
u” (x) h Z cnun [ n+l n-1 ]
n=0
~(1) ~(1)
@ ¢ u ® u
SR . =L S O S Y 2 i T (40)
2n n 2n n
n=1 n=1
But from Eq. (37)
» - VT
t’ (%) n;1 unTn(x). (41)
) Therefore,
~ ~(1) _ ~(1)
2n u Cae1%n-1 U n?> 1. (42)

The evaluation of the Jdu/3dx term in the Chebyshev spec-
tral method for Eq. (10) consists of:

1) Given uy = u(xy) for § = Okl,"',N find the dis-
crete Chebyshev coefficients wu, for a = 0,1,***,N.
(Use Eq. (35).)
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2) fet
(1) _
uys1 = 05
~(1) (43)
uy o= G,
and compute aél) for n = N-1,N-2,°¢',0 from
(1) . (1 :
cpuit? = ull) + 2(a#1)u . (44)

3) Compute Jdu/dx(x;) 1itself for § = 9,1,*°+,N from
its discrete Chebyshev coefficients. (UUse the analog
of Eq. (34).)

Higher-order derivatives can be calculated by repeating step
(2) as often as needed. When the FFT is used for steps (1)
and (3) the cost »of a derivative evaluation 1s O(N £n N).

For the Eq. (10) calculation, the derivative 9du/3x is
not needed at the inflow boundary (x = -1) since the boundary
condition rather than the PNDE is used to update u,. Note
that there 18 no need for a special tformula at the outflow
boundary (x = +l). Although the PDE is used to update ug,,
the value of du/dx at x = 1 {13 automatically available
from the Chebyshev spectral calculation outlined above. 1In
concrast the second-order finite difference calculation used
for Table II employed the special formula of first-order
extrapolation at the outflow boundary.

As a general rule the correct numerical boundary condi-
tions for a spectral method are the same as the correct analy-
tical boundary conditions. The global nature of the approxi-
mation avoids the need for special differentiation formulae at
boundaries. At the same time spectral methods are quite un-
forgiving of incorrect boundary ccndi_ions. The inherent dis-
sipetion of these methods 1e so 1low that boundary errors
quickly contaminate the entire solution. In many fluid dyna-
mical applications the computationai regfcn must be terminated
at some finite, artificial bouundary. The difficulty at
"art!ficial" boundaries 1s that analytically correct, fully
nonlinear boundary conditions for systems are seldom known.
Onc example of a workable artificial boundary condition for
the Euler equations is given in Section 5.4.

3. SPECTRAL MULTIGRID ITERATIVE METHODS

Direct solutions of implicit spectral equations -~
wr ‘her arising from elliptic problems or from implicit time-~
discretizations of evolution problems -- are rarely feasible.
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Except in speclial cases the matrices representing spectral
apfroximations are full. TIterative methods are a practical
alternative because the requisite matrix-vector prclucts can
be evaluated via the FFT.

3.1. An Flementary Example

An attractive 1iterative scheme for sgpectral equations
utilizes multigrid concepts. The basic description of spec-
tral multigrid methods for linear, elliptic equations 1is given
in [22] and {23). Additional considerations for the non-
linear, potential flow application are given in {17]. A brief
summary of these concepts 18 given here since they play a
major role in the spectral transonic potential flow calcula-
tions discussed in the following section.

The fundamentals of spectral multigrid are perhaps
easiest to grasp for the simple model problem

2
Lk (45)
dx

on [0,27] with periodic boundary conditions. The Fourier
approximation to the left-hand side of Eq. (45) at the collo-
cation points is

N/2-1 .
p? u elPry . (46)
p= N/2+1

The spectral approximation to Eq. (45) may be expressed as

LU = F, (47)
where

U= (uo,ul,"‘,uN_l), (48)

F = (fo,fl,"',fN_l), (49)

and2 L 2repreaenta the Fourier spectral approximation to
"d/dXC

A Richardson’s iterative scheme for solving Eq. (47) is

V<V + wF-LV), (50)
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where ® 18 a relaxation parameter, on the right side of the
replacement symbol (¢) V represents the current approximztion
to U, and on the left it represents the updated approvimation.
The eigenfunctions of L =zre

£ (p) = e2MHIPMN (51)
b
with the corresponding eigenvalues
2
A(p) = p°, (52)
where j =0,1,°°*,N-1 and p = - N/2+1,** N/2-1. The

index p has a natural interpretation as the frequency of the
eigenfunction.

The error at any stage of the iterative process is V - U;
it can be resolved into an expansion 1in the eligenvectors of
L. FEach iteration reduces the p’th error component to V(A )
times its previous value, where P

V(A) = 1 = wA, (

n
(3]
~z

The optimal choice of ® results from minimizing |[v(})] for
Ae [Amin’ Amax]’ where A, =1 and A .. = N2/4. (One
need not worry about the p = % eigenfunction since it corre-
sponds to the mean level of the solution, which 1is at one’s
disposal for this problem.) The optimal relaxation parameter
for this single-grid procedure 1is

2
“se T T ¥ ¢ (34)
max min

It produces the spectral radius

p Amax B Amin (55)

86 =3 .
max min
Unfortunately, p.. * 1 - 8/N2 , which implies that  O(N?)
iterations are required to achieve convergence.

This slow convergence is the outcome of balancing the
damping of the lowest-frequency eigenfunction with that of the
highest-frequency one in the minimax problem described after
Eq. (53). The multigrid approach takes advantage of the fact
that the low-frequency modes (|p| < N/4) can be represented
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just as well on coarser grids. It settles for balancing the
middle-frequency eigenfunction (|p| = N/4) with the highest-~

frequency ome (]pl = N/2), and hence damps effectively only
those modes which cannot be resolred on coarser grids. In
Eqs. (54) and (55), Amin is replated with Amid = A(N/4) .

The optimal relaxation parameter in this context is

2

Yo = X raswait (56)

max mid
The multigrid smootl.ing factor

A - A
max mid

"o =T 43 G7)
max mid

measures the damping rate of the high-frequency modes. In
this example Hyn = 0.60, independent of N. The price of
this effective gamping of the high-frequency errors is that
the low-frequency errors are hardly damped at all. However,
on a grid with N/2 collocation points, the modes for

Ipl € [N/S, N/4} are now the high-frequency ones. They get
damped on this grid. Still coarser grids can be used until
relaxations are so cheap that one can afford to damp all the
remaining modes, or even to solve the discrete equations
exactly.

Let us consider just the iaterpiay between two grids. A
general, nonlinear fine-grid problem can be written

LEwf) = ¥f. (58)

The shift to the coarse grid occurs after the fine-grid
approximation v has been sufficiently smoothed by the
relaxation process, i.e., after the high-frequency content of
the error VE - uf  has been sufficiently reduced. The
related coarse-grid problem 1is

LE(U®) = FC, (59)

where

C £

¢ = r[Ff - LEwD)] + Lo @wyi). (60)

The restriction operator R interpolates a function from the
fine grid to the coarse grid. The coarse-grid operator and
solution are denoted by L¢ and U®, respectively. After an
adequate approximation V¢ to the coarse-grid problem has

k!
.
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been obtained, the fine-grid approximation 1is corrected via
v « vf 4 p(ve - mrvE). (61)

The prolongation operator P 1interpolates a function from the
coarse grid to the fine grid.

3.2. Interpolation Operators

The spectral multigrid interpolation operators for perio-
dic coordinates amount to trigonometric finterpolation: for
example, given a function on a coarse grid, compute the dis-
crete Fourier coefficients and then use the resulting discrete
Fourier series to construct the interpolated function on the
fine grid. This may be accomplished by performing two FFT's.
Interpolation for non-perfodic coordinates employs Chebyshev
series in an analogous fashion. Detailcd descriptions of the
interpolation operators are available in [17] and [23].

3.3. Coarse—Grid Operator

A typical term in the c¢lass of problems containing
potential flow is

& [atu,0 4. (62)

The discrete operator which represents its fine-grid spectral
approximation is

£

tf =040, (63)

where 0 is a spectral first-derivative operator (either
Fourier or Chebyshev) and A 1s the diagonal matrix

A = a(u

1* (64)

5 .
1°%37°%1,k

Many multigrid investigators liave advocated choosing the
coarse-grid operator so that

1¢ = rifp, (65)
Both the Fourier and the Chebyshev first~derivative operators

satisfy

o = Rrofp. (66)
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However, Eq. (65) 1itself 1s not satisfied if the coarse-grid
aralog of Eq. (63) 1s used to define L®, except in the
trivial case for which a(u,x) 18 a constant. On the other
hand, much of the efficiency of the pseudospectral method is
lost 1f Eq. (65) 1s used to define the coarse-grid operator.
The most satisfactory compromise seems to be using Eq. (63)
but with the restricted values of a(uj,xj) in place of the
pointwise values.

4. THE COMPRESSIBLE POTENTIAL EQUATION

The computational results of the past decade have demon-
strated that fairly accurate predictions for a number of tran-
sonic flows of practical interest can be made on the basis of
the compressible potential equation. This nonlinear equation
is of mixed elliptic-hyperbolic type, precluding purely ellip-
tic or purely hyperbolic solution procedures. The numerical
solution of the potential equation became feasible only after
the introduction of type~dependent differencing by Murman and
Cole ([24). The review by Hall ([25] provides an exhaustive
history of computational approaches to the potential equation.

Until the recent work of Streett [16], the discretization
procedures for the potential equation were invariably based on
low-order finite difference or finite element methods.
Streett used a spectral discretization of the full potential
equation and obtained 1its solution by a single-grid iterative
technique. The application of spectral multigrid techniques
by Streett, et al. [17] produced a dramatic acceleration of
the iterative scheme. Even in its relatively primitive state
the spectral multigrid scheme 1s competitive, and in some
cases unequivocally more effictent, than standard finite dif-
ference schemes.

4.1. The Reduced Potential Problem

Streett solved the two-dimensional full potential equa-
tion (applying houndary conditions at the actual airfoil sur-
face). In this work a numerical conformal mapping (also gen-
erated by Fourier techniques) was used to transform the air-
folil onto the unit circle. Moreover, the calculations were
actually performed in terms of the reduced potential G, which
i3 defined by

G =90 - (R +-%) cos O - E tan—l[VI - Mi tan O], (67)

where ¢ 1is the potential, R and ©O are the computational
polar coordinates, E 1s the circulation and M_ 1is the Mach
number at infinity. The reduced potential 1is periodic in O
and it satisfiles

. ;1“
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a—R-(RD s'ﬁ'} + B_O-(E —O) = 0, (68)
along with
g—‘; =0 at R =1, (69)
G+ 0 as R > o (70)

and the Kutta condition. The density is given by the isentro-

pic relation 1

Y-1 .2 2 2 ]Y-l_
?

M (qr + qG - 1)

=M, (11)

p = [1-

the ratio of specific heats 1is denoted by Y, the velocity
components in the physical (r,8) plane are

1 3¢
9 = H 9R (72)
1 99
5 = R 50 ° (73)
and the Jacobian between the complex physical plane (z = reie)

and the complex computational plane (0 = Re™ ") 1is

. (74)

4,2, Discretization

The spectral method employs a Fourler series representa-
tion in O. Constant grid spacing in ©O corresponds to a
convenlent dense spacing in the physical plane at the leading
and trailing edges. The domain in R (with a large, but
finite outer cutoff) is mapped onto the standard Chebyshev do-
main [~1,1] by an analytical stretching transformation that
clusters the collocation points near the airfoil surface. The
stretching 18 so severe that the ratio of the largest-to-
smallest radial intervals is typically greater than 1000.

The most expedient technique for dealing with the mixed
elliptic-hyperbolic nature of the transonic problem is to use
the artificial density approach of Hafez, et al. [26]. The
original artificial density is

~ “+
p=p - udp (75)
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H = max{O,l - lf}’ (76)
M

-
where M 1s the local Mach number and &8p {s an upwind
first-order (undivided) difference. The spectral calculations
employed a higher-order artificilal density formula. The
spectral method also required a weak filtering technique to
deal with some high-frequency oscillations generated by the
shock. Detsils are available in [16].

4.3. Spectral Multigrid Solution Sclieme

Let the spectral discretization of Egs. (68) - (70) be
denoted by

M(U) = 0, (77)
and define
J@U) = -g% ). (78)

A suitable relaxation scheme for the spectral multigrid solu-
tion of transonic potential flow 1s based upon approximate
factorization techniques similar to those used In finite dif-
ference discretizations {[27). The Jacobian J(U) 1is split
into the sum of two operators J,(U) and J (1), each invol-
ving derivatives in only the one coordinate direction indica-
ted by the subscript. The most straightforward spectral ap-
proximate factorization scheme 1is

fol - JX(V)][GI - Jy(V)]AV = waM(V), (79)

where V 1{s the last estimate of U, and V + AV {s the next
estimate. This is commonly referred to as AFl for the tran-
sonic problem. For second-order spatial discretizations the
term [oI - Jx(V)] leads to a set of tridiagonal systems, one
for each value of y. The second left-hand side factor pro-
duces another set of tridiagonal systems., For spectral dis-
cretiza*ions, however, these systems are full; hence, Eq. (79)
1s still relatively expensive to invert. The spectral factor-
i1zation scheme makes the additicnal approximation of replacing
Jx and Jy with their second-order finite difference
analogs, dénoted by H, and Hy, respectively:

[ol - H_(V)] (ol - Hy(V)]AV - waM(V). (80)
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¥or purely finite difference approximations some analy-
tical results are available for selecting optimal values for
the parameters a and w [28]. VNo similar results are yet
available for the spectral approximation. By analogy with the
finite difference case w was chosen to be of order unity and
a senuence of a’s was selected in a range [al’ah] by the
rule
o k=l
k 2\K-1
o = ah(a;) ’
where K denotes the number of distinet a’s. The choices
of a, and a  were based in part on estimates of the eigen-
value range of the discrete operators and in (much greater)
part by trial and error. Fortunately, the AFl scheme is not

(81)

very sensitive to chese parameters. This basic {terative
scheme may be employed in either a single-grid or a multigrid
context. In the latter case the parameters a, and «a

should be chosen scparately for each grid to optimize the
high-frequency damping.

The spectral multigrid solutions of Streett, et al., used

three different fine grids (with the coarser levels in
parentheses): 16 x 32 (12 x 16 and 8 x 8), 16 x 48 (14 x 32,
12 x 16 and 3 x 8) and 18 x 64 (16 x 48, 14 x 32, 12 x 16 and
8 x 8). Note that in passing to a ccarser level the grid is
typically reduced by 1less than a factor of 2 1in each
coordinate direction. This choice leads to a significant
improvement over the standard gridding for the spectral
potential flow problem, especially in the supercritical regime
where the solution has large high-frequency content.

All the spectral multigrid results were obtained with the
same fixed schedule: start on the finest grid, work down to
the coarsest grid and then back up to the finest grid; on the
way down there 1s ' sgweep though the (three) parameter
sequence and on the way up there are 2 sweeps.

4.4. Airfoil Examples

The flow past an NACA 0012 airfoil at 4° angle of attack
and a freestream Mach number of 0.5 18 a challenging subcri-
tical case. The airfoil produces a fairly large 11ift coeffi-
cient at these conditions and the surface pressure distribu-
tion shows a sharp suction peak near the leading edge. Since
the local Mach number in this peak 18 nearly 1, compressibili-
ty effects are substancial.

Nevertheless, the spectral solution on a relatively
coarse grid captures all the essential details of the flcw.
The surface pressure coefficient from the spectral code MGAFSP
{17] wusing 16 points {in the radial (R) direction, and 32
points in the azimuthal (O) direction is displayed in Fig. l.

. j‘s
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Figure 1. Spectral (trisngles) and finite difference (solid
l1ne) surface pressures for a subcritical flow.

The symbols denote the solution at the collocation points.
For comparison, the result from the finite difference, multi-
grid, approximate factorization code FLO36 ([29] is shown as a
solid line. The grid used in the benchmark finite difference
calculation 1s su fine (64 x 384 points) that the truncation
error is well below plotting accuracy. The FLO36 and MGAFSP

results are 1dentical to plotting accuracy. The spectral
computation on this mesh yilelds a 1ift coefficient with
truncation error less than 107 %, Spectral solutions on a

16 x 32 grid are thus of more than adequate resolution and
accuracy for subcritical flows.

In Figur2 2 are shown convergence histories from FLO36,
MGAFSP, and the finite difference, approximate factorization,
single-grid code TAIR [27]}. Meshes which yield approximately
equivalent accuracy were chosen. The surface pressure results
are the same _to plotting accuracy, the 1lift coefficient is
converged in the third decimal place, and the predicted drag
coefficient 18 less than .00l. (Actually, the spectral result
is an order of magnitude more accurate than these limits, out
the TAIR result barely meets them.)

A lifting sup-rcritical case 1s provided by the NACA 0012
airfoil at M_= 0.75 and o= 2°. This ylelds a section
11ft coefficient of nearly 0.6. A shock appears only on the
upper surface for these conditions and 1s rather strong for a
potential calculation; the n.rmal Mach number ahead of the

SRR "}
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TAIR
-4 60 x 297
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16 x 32
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T (sec - CY175)

Tigure 2. Maximum residual versus machine

1201

time for a subcritical flow.

Aa

Figure 3. Surface pressures for a supercritical flow:

a) MGAFSP
polated ont

at collocation points; b) MGAFSP inter-
o finer grid; c) TAIR, and d) FLO36.
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shock 1s about 1.36. Lifting supercritical cases are
especlally difficult for spectral methods since the solution
will always have significant content in the entire frequency
spectrum: the shock populates the highest fraquencies of the
grid and the 11ift is predominantly on the scale of the entire
domain. An 1terative scheme therefore must be able to damp
error components across the spectrum.

Surface pressure distributions £from MGAFSP, TAIR, and
FLO36 are showr in Figure 3. The respective computational
grids are 18 x 64, 30 x 149, and 32 x 192. The latter two
are the default grids for the production finite a.fference
codes. Spectral results obtained by trigonometrically inter-
polating the 18 x 64 grid results ounto a much finer grid are
included alongside the regsults at the collocation points.
This reveals the wealth of detail that i1is provided by the
rather coarse spectral grid. The shock predicted by TAIR is
far more rounded and smeared than that of FLO36, reflecting
the coarser mesh and larger artificial viscosity used in the
former. The TAIR result shown 18 also only correct to one
decimal place in 1lift as compared with a finer-grid result.
Convergence histories for these three cases are shown in
Figure 4 aloug with the results for MGAFSP on a coarser grid
(16 x 48).

0‘ ~
108,y T ~

_1'4

N MGAFSP

\\\\\\\ 18 x 64
5 GRIDS
\\

-4 ’ FLO36 MGAFSP
TAIR 32 x 192 16 x 48
30 x 149 \ 5 GRIDS 4 GRIDS

¥ ——— aatend ™

— . .
0 20. 40 60. 80. 100. 120.
T (sec - CY175)

Figure 4. Maximum residual versus machine
time for a supercritical flow.

5. THE EULER EQUATIONS
The Euler equations undoubtedly provide more information

than the potential flow approximation. The numerical diffi-
culties 1in solving the Fuler equations are well known. The
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problems tend to be even more severe wita spectral than firnite
difference mnethods. Explicit time-stepping schemes are
especially costly because the Chebyshev collocation points
have a very small spacing near the boundary. The numerical
boundary conditions, particularly for artificial boundaries,
must be sophisticated hecause spectral methods are extremely
sensitive to improper boundary treatments. The osciliations
arising 1in shock-capturing methiods are quite troublesome
because the global nature of spectral approximations spreads
the oscillations over the entire domain.

Spectral methods for compressible flows are still so
novel that most of these difficulties remain to be surmounted.
However, at 1least the shock-induced oscillations can be
avoided by resorting to shock-fitting tachniquas. Here the
shock front 1s a computaticnal boundary whose shape and motion
are generated during the calculation. Since the flow within
the computational domain is smooth, there is reason to expect
a shock-fitted solution to be highly accurate. Shock~fitted
spectral solutions to the ruler equations were first presented
by Salas, et al. [18]. Results for related problems were sub~-
sequently given by Zang, et al. [30]. Additional examples and
more numerical details are contained in [19]. The essential
features of these 1investigations follow.

S5.1. The Shock Interaction Problem

PHYSICAL PLANE

Sl e R e e A N

»aﬁ.aﬁaaﬁ‘\~//.
l—o-c—o~-v-o—o-v~\\""’.
.~--.—.-a~-.-.‘\4/'/'-.
e e

T

X X
L S
L] L]
L [
bl °
.
}-v—'-v-o—.*--a-—-.ﬂ».\. rr o, PRV [ A
e e e adee e s JENEENY ”"41/1 o
adnddiadba e il i dadi SENGENY ’ PRI A A Y
e e I I e e RN ' VAR, A S
D i TR I die JE I . VAR ::I:
bo — —a 4 = v > > - . \‘..' VR ,.r.,
INFLOW [ = -===~~7 b v ak
- A . - P .
¢ o
. 14
.

SRR NN N S NN
P R
RS T T

«
J P

T S S

-
B R e R o

PO N N NN

Lo — -_._._.\..._.‘,./’.n\

LR SR N T

[ S W

P N N
.

L-—o—.—o-.-.-._..,_._./'—.\

e e e e NN

v-o-o—o—-—.»—.-o—.—'—'/'\\

-

N, w0t

C N T

LI N N N T T T

PO R . T
-

O Y

> v . —r s e e . e N

~ . s ..
~ A A A
O . T

—o-c—.—o-—o—o—o—o—o—o"-.\ N

[ ] ®
L] L ]
. .
LEFT COMPUTATIONAL SHOCK DOWNSTREAM
BOUNDARY WAVE FLOW

Figure 5. Model problem in the piyysical domain a short
time after the start of the calculatiou.
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A model problem which has been used to study the
interaction of a shock wave with =z vortex ([31] or with
idealized turbulence [32] {s 1llustrated 1in Figure 5. At
time ¢t = 0 an infinite, normal shock at x = " scparates a
rapidly moving, uniform fluid on the left from the fluid on
the right which is 1in a qulescent state except for some
specified fluctuatioun. The 1anitial conditions are chosen so
that 1in the absence of any fluctuation the shock moves
uniformly 1in the positive x~direction with 3 Mach number
(relative to the fluid on the right) denoted by Mo Inm the
presence of fluctuations the shock front will develop ripples.
The shape of the shock is described by the function x(y,t.
The numerical calculations are used to determine the state of
the fluid 1in the region between the shock front and some
suitable 1left boundary xL(t) and also to determir the
motion and shape of the shock front itself.

The physical domain in whbich the fluid motion is computed
is given by

xL(t) < x < xs(y,t)

-® <y <@ (82)
t > 0.
The change of variables
x - x (t)

X =
xs(y,t) - xL(t)
1 .

Y =3 [1 + canh(ay) ] (83)

T = ¢,

produces the computat{ional domain

0 <X <1
0<Y<1 (84)
T > 0.
The stretching parameter « 18 typical ' of order 1l.
The fluid motion 13 modeled by the two-dimensional Euler

equations. In terms H>f the computational coordinates these
are
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whare
Q = [P,u,v,S], (36)
[V YX YX 0
2
ax U 0 .
Y X
b 2’ , (87)
T Xy 0 U 0
L 0 ¢ 0 U J
and
-V YY YY 0
X y
a’ v . .
Y Yx
c = 2 . (38)
ay 0 v o
Y oy
L O 0 0 v

The contravariant velocity componants are given by

U = Xt + uXx + vX
and Y (89)
V=Y +uY + vY .
t X y

A subscript deuotes partial differentlation with respect to
the indicated variable. P, a, and S are the natural
logarithm of pressure, the sound speed, and the entropy
(dividqd by the specific heat at constant volume),
respecti iy, all normalized by reference conditions at
downstream infinity; u and v are velocity components in
the x- and y-directions, both scaled by the characteristic
velocity defined by the square root of the pressure-density
ratio at dowmstream infinity. A value Y = 1.4 has been
used.

5.2. Discretization

Let k denote the time level and let At be the time-
atep increment. The time discretization of Eq. (85) #s then
as follcws:

k] k

Q= [1 -~ aer*]0%, {90)
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k+1 1

Q b + a - ael)a], (91)

where the spatial operator L represents an approximation
to B 3/9X + C 3/9Y. 1In the spectral method, the solution
Q 1is first expanded as a double Chebyshev series,

M N
X,Y,T) = T)T T , 92
Q( ) pZo qzo QM ()T (M) (92)
where
E=2X -1 and n=2y -1, (93)

and Tp and Tq are the Cnebyshev polynomials of degrees
p and q. The derivatives appearing in the spatial operators
are then evaluated as

M N
2 ) ) Q(1,0)

0, = T (O)1 (M), (94
X 50 q0 P g
and
MM
oy =2 ) 1 of¥Dr ey (. (95)
p=0 q=0 L

The Chebyshev coefficients of the X-derivative are denoted by
Qéé’o). They are evaluated by the recursion formulae of Eqgs.

(43) and (44) for each q. The Y-derivative 1is handled in a
gsimilar fashion.

Spectral methods for all but constant-coefficient, linear
problems require some sort of weak filtering for stability.
For the calculations presented below, the upper third of the
frequency spectrum of the tolution was filtered every 50 time-
steps or so. Details are given in [19].

5.3. Shock Fitting

The Rankine-Hugoniot conditions are used both to
determine the fiow variables (P, u, v, and S) immediately
upstream of the shock and to determine the shock position.
Use the subsgeripts ] and 2 to denote the vartables cn the
downstream (right) and upstream (left) sides of the shock.
Since all the (quantities on the downstream side are
prescribed, the flow variables on the upsiream side follow
routinely from the Rankine-Hugoniot relations. 0Of course
these relations must be employed in a manner which accounts
for the shock velocity and curvature.

A few preliminary definitions are needed for the equation

A

K+ 0
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which determines the shock pogition as a function of the
computational time T. Let N be the unit normal to the
shock front. Its components in the physical plane are

- (1,9x_/3y)
N s

. (96)

/{v+ (3xs/3y)2

Let u, denote the normal velocity of a point on the shock.
Then

u =uN (97)

—

and xs(Y,T) can be obtaired by integrating with respect to
T the projectior of ug onto the X-direction. If tue
incoming normal velocity relative to the shock 18 denoted by
urel, then

~

Upep = 4] * N - ug (98)
and the relative Mach number {is

M = qu

/al. (99)

rel rel

The preeent numerical method presumes that M., 1s always
greater than 1.

The Rankine-Hugoniot relations imply that

- 1=1 2
P, =P, + zn[mf_el -5+ £n[Y+1]. (100)

The equation for the shock acceleration 1s obtained by
differentiating Eqs. (99) and (100) and then combining the
results to obtain

a

1 2 Y=-1
u . =A- (P, - P, J(ME -2 - M a, .,
s,T ZYMrel 2, T "1,T rel rel I’T(101)
where
A= !1,T * N +_gl' NT. (102)

The time derivatives on the right-hand-side of Eq. (10l) are
obtained from Eq. (85) using spectral approximations to the
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spatial derivatives. The shock velocity 18 obtained by
integrating Eq. (i01) with respect to T.

The collocation grid in the computational plane is fixed
and uniform. Since the shock tront moves to the right in the
course of the calculation, the corresponding discrete grid in
the physical plane 1is expanding. Thus, the effective resolu-
tion in the x-direction contlnually decreases during the
evolutica. Eventually the resolution of any calculation will
become inadequate and the results will no longer be reliable.
Fortunately, 1in many situations the important information can
be extracted before this occurs, especially 1if the initial
grid is taken to be a fine one.

5.4. Boundary Conditions

The correct boundary conditions at both the left and
right boundaries depend uron the relative shock Mach number.
If Y= 1.4 and MS > 2.08, then the flow behind the shock is
supersonic. In this case both boundaries are supersonic in-
flow boundaries and it 1s appropriate to prescribe all varia-
bles there. If M_, < 2.08, then these boundaries are subsonic
inflow ones. The advisable procedure here is to base the nu-
merical boundary conditions on the linearized characteristics
of the Euler equations. At the left (subsonic) bhoundary the
(linearized)} characteristic variable corresponding to the out-
going characteristic direction is

-= -_‘Y_

R P 2 U (103)
Similarly,

RF=p+2e (104)

corresponds to the outgoing characteristic direction at the
right (subsonic) boundary.

A set of successful numerical boundary conditions on the
left 18 obtained by first calculating preliminary values of
all quantities at the left boundary and then incorporating the
given values of S, v, and R* as

§= Sgiven

vE vgiven

(105)
P+ l-u - R+
a given

P-Tuaurp -1
a

a prelim uprelim‘

— e e
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Thus, the PDE 1s used to update the appropriate characteristic
combination of variables at the boundary. Thte characteristic
analysis 1s given in [33]). The particular numerical boundary
condition was advocated in [34]. For the right boundary a
gimilar characteristic correction procedure can be incorpora-
ted into the evaluation of the P2 r temm in Eq. (101). This
characteristic affects the shock vélocity.

At the top and bottom boundaries (which have been
stretched to infinity in the physical plane) zero disturbance
boundary conditions are enforced. This 18 certainly justifi-
able whenever the fluctuations decay rapidly in these direc~
tions. However, there will be spurious reflections from the
upper and lower boundaries if the disturbances extend that far
out. The spurious reflections that might emanate from these
boundaries need not pose a serious problem since the
decreasing resolution resulting from the shock motion already
1imits the useful duration of a calculation.

5.5. Shock Interaction Examples

Salas, et al. [18] used the algorithm outlined above to
compute the interaction of a shock with a single vortex, a hot
spot and a Karman vortex street. They also gave comparisons
with results from a similar second-order finite difference
nethod. The spectral method produced virtually identical
results with only 1/7 as many grid points.

A4 T A T v L v T v

s 1
L .
.

- .
L .
L .
- b
r J

A A L 4 i i
conom prev i 200t Y Jas i 10w
Figure 6. Initial entropy contours of a 25%7 hot spot
about to fnteract with a Mach 1.2 shock.

A Mach 1.2 hot spot calculation is 1llustrated here in
Figures 6 and 7. The Yot spot situated in the quiescent field
on the right in Figure 6 has the temperature distribution T
given by

T=k exp{-[(x-xo)2 + (y—yo)Z]/ZOZ}. (106)
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where k = 0.25, ¢ = 1.25, x, = 0.5 and y, = 0. The initial
shock position 18 x = O. Figure 7 displays the velocity
fleld at time t = 0.52, after the shock wave has passed over
the hot spot. The shock front appears a the solid line in
both figures.
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Flgure 7. Perturbed _pstream velocity vectoxs
after the shock-hot spot interaction.
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Figure 8. Spectral (circles) and finite difference
(squares) results for vorticity wave
amplification versus incideuce angle. The
80lid line 1is the linear thecory prediction.

A sample of the spectral r~sults of Zang, et al. [30] for
shock-turbulence interactions is given in Figure 8. This i{s a
comparison of the computed, nonlinear amplification of 1inci-
dert Mach 3 vorticity waves with the 1linear theory predic-

R o B T T



32

Gl o
OF PCOR Lvivt”

tions. Figure 5 shows the result of a large amplitude 30° in-
cident vorticity wave interacting with a Mach 1.5 shock. The
gpectral and finite difference results are comparable even
though the spectral results were produced on a far coarser
grid -~ 32 x 8 versus 64 x 32.

Although the present spectral calculations are more effi-
cient than the finite difference ones in terms of storage,
they do not yet offer a clear advantage in terms of machine
time. The culprit is the severe explicit time-step restric-
tion for the spectral method. A robust means of surmounting
this restriction 1is perhaps the most pressing need for spec-
tral methods for evolution problems.

5.6. The Blunt Body Problem

The classical problem of a blunt body in a supersonic
stream has been an 1deal test problem for numerical methods as
it provides a relatively simple well-posed transonic problem
with nontrivial inftial and boundary conditions. Like most
common methods the spectral method of Hussaini, et al. [19]
obtains the steady state solution as the time asymptotic
gsolution of the unsteady Fuler equations which are written in
the cylindrical polar coordinate (r,6) system. The physical
domain of interest consists of the known body r = r,(0), the
unknown shock location r = rg(8,t), the axis of symmetry
(the front stagnation streamline O =7 ) and the outflow
boundary 6 =T - gmax’ For the purpose of shock ifitting,
the coordinate transformation

r -~ r (9)
X = b 5
(107)
m-0
Y = —
0
max

is {introduced so that the shock wave and the body are
coordinate lines in the transformed domain. The transformed
equations of motion, in the notation of the previous problem,
are

OT + B Qx + C QY +R =0, (108)
where -
F
U AL (\r/wxe 0
(aZ/Y)X U 0 0
B = ) r , (109)
(@“/v) (1 /r)Xq 0 U 0
0 0 0 i\
L.. e
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B \'4 YYr (Y/r)Y9 07
(aZ/Y)Yr v 0 0
C = ? ’ (110)
(@™ /7)1 /)Yy 0 \ 0
0 0 0 v
and L -
u V2 uv
R = [Y ;: -;—a T’ 0] (111)
with
U=X +uX_ + %-xe
(112)
vulyy
r

The flow fleld variables are expanded 1in double Chebyshev
series, and the solution technique 1is the same as for the
previous problem.

The shock boundary r = rg(f,t) (1.e., X = 1) {is computed
using Rankine-Hugoniot jump conditions and the compatibility
equation along the incoming characteristic from the high pres-
sure side of the shock. At the symmet:ry line 8 «7m (Y =0)
the O-component of velocity v 1s set equal to zero. On the
hody r = ry() ({.e., X = 0), the normal component of
velocity u 1s zero. Op,, 1s chosen so that the outflow
bouadary Y = 1 is supersonic, and hence no bhoundary
conditions need be impesed.

LOCAL MACH NUMBER VELOCITY VECTORS

-

Figure 9. Spectral solution on an 8 x 8 grid for a
circular cylinder ia a Mach 4 uniform stream.
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Figure 9 shows the Mach number contours and the velocity
vectors for a circular cylinder in a unifo- s stream at M, = 4.
The resulis are found to be 1In very goo. agreement with the
tabulated values given in [36]. (The grid 1s so coarse that
the contour plotter produces jagged lines.) Figure 10 gives
the results rfrom the linearly-sheared stream. FEven on a very
coarse grid the spectral method captures the recirculating
region.

M, =18 LOCAL MACH NUMBER VELOCITY VECTORS

Figure 10. Spect..” solutfon on an 8 x 8 grid for a
circular cylinder in a linearly-sheared stream.

The axplicit time-step restriction is a problem here as
well, for neither spectral solution was run to a truly
acceptable steady-state.

6. SUMMARY

Techniques are now available for obtaining wviable
spectral solutions to some compressible flow problems on grids
far coarser than those needed for comparable finite difference
solutions. The greatest success for shock-capturing spectral
methods has been for potential flow. Far more sophisticated
filtering techniques than are presently available appear
necessary for cuccessful shock-capturing in the context of the
Euler equations. However, when the shock 18 fit rather than
captured, the Euler solutions contain no discontinuities and
thus spectral solutions might be expected to yleld exponentisl
convergence.
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