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ABSTRACT 

A review is given of the advances made over the past decade in 

modeling steady, high speed, compressible separated flows through 

numerical simulations resulting from solutions of the mass-averaged 

Navier-Stokes equations. Emphasis is placed on bench-mark flows that 

represent simplified (but realistic) aerodynamic phenomena. These 

include impinging shock waves, compression corners, glancing shock 

waves, trailing edge regions, and supersonic high angle-of-attack 

flows. A critical assessment of modeling capabilities is provided by 

comparing the numerical simulations with experiment. The importance 

of combining experiment, numerical algorithm, grid, and turbulence model 

to effectively develop this potentially powerful simulation technique 

is stressed. 
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INTRODUCTION 

Although the separation that occurs in many aerodynamic flows can 

have a profound influence on vehicle performance, it remains one of the 

least understood and most difficult problems in fluid dynamics. Over 

the past decade, two primary factors have operated to intensify interest 

in understanding turbulent separation: the imposition on the vehicle 

designer of higher performance standards, and an increased possibility 

of predicting separation by applying recent advances in computational 

fluid dynamics. 

A potentially powerful approach to predicting turbulent separated 

flows is to so l ve directly the Reynolds-averaged Navier-Stokes equations 

(Chapman 1979). For practical reasons, such an approach is favored over 

direct simulation of the time-dependent, unaveraged Navier-Stokes equa­

tions because the three-dimensional, widely varying scales of turbulence 

present impossible requirements for even the largest and fastest com­

puters (Chapman 1981). A significant amount of research has been under 

way at Ames Research Center to develop the technology required to solve 

separated flows of practical interest within the framework of the 

Reynolds-averaged Navier-Stokes equations. An obvious advantage of such 

an approach is that the entire viscous and inviscid portions of the 

flow are captured simultaneously, and the potential exits for focusing 

directly on turbulence modeling, which is an important pacing item for 

the successful development of computational fluid dynamics. A disad­

vantage is the long computing time and large storage limitations of 

current computers, which has hampered attempts to focus directly on 
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turbulence modeling without considering numerical resolution and accu­

racy. As it now stands, the competing elements of turbulence modeling, 

numerical resolution, and accuracy must all be considered in any 

evaluation of our ability to compute flows with separation (Marvin 1982). 

This will be particularly true for three-dimensional flows, which are 

the interesting ones from the viewpoint of applications. 

The purpose of this paper is to review the advances made over the 

past decade in modeling separation in practical aerodynamic flows. As 

the paper develops, the problems remaining will become obvious, as will 

the need for future study. Nevertheless, it will also become apparent 

that great strides have been made and that the potential of numerical 

modeling has not diminished. In order to keep the scope of the paper 

within reasonable proportions, attention will be directed to steady, 

high-speed, compressible flows of particular interest to the author 

and his colleagues. Some of the practical situations of current interest 

are shown in the photographs of figure 1. Figure la shows a shadowgraph 

of the ascent configuration of the Space Shuttle and the mUltiple 

impinging shock waves that exist. Figure Ib shows an oil-flow pattern 

of the region on a lifting surface where separation occurs when a con­

trol surface is deflected. Figure lc shows the transonic flow over an 

airfoil where a strong shock wave develops. And figure ld shows the 

Space Shuttle orbiter at high angle of attack and at a supersonic speed 

where separation dominates the leeside flow. Such problems obviously 

involve many complications and the approach to their solution has been 

attempted in simplified stages, which this author has referred to as a 

building-block approach (Marvin 1980). 

4 



I 

I 

The paper begins with a section that develops the governing equa-

tions, presents a short discussion of the technique developed to solve 

these equations, and introduces the various turbulence models under 

-. development. Subsequently, examples of solutions for some building-

block flows are presented and critically assessed by comparing the 

results of computations and experiments. 

FLOW MODELING 

Modeling of turbulent separated flows is a combination of numerical 

modeling of the discretized form of the governing equations and the 

requirement for providing an adequate model of the turbulent correla-

tions in the governing equations. 

Governing Equations 

The time-dependent Navier-Stokes equations, supplemented by mass 

conservation and suitable gas-law relationships, describe the turbulent 

motion of a continuum fluid. Solutions to t he equations for turbulent 

flows of practical interest are virtually impossible using today's 

computers because turbulence is three-dimensional and has an enormous 

range of length and time scales. The difficulty can be circumvented by 

.-
rewriting the equations for another set of variables, obtained by 

suitable averaging. For compressible flows, this has been accomplished 

by introducing mass-weighted variables, decomposing them into their 

mean and fluctuating components, and averaging over a time that is long 

relative to the largest turbulent time-s cale (see Rubesin 1973). 
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In the process, however, physical information on the turbulent 

motion itself is lost. Furthermore, the formalism results in a new 

set of equations that has more unknowns, and an equation-closure problem 

arises. Usually, this is referred to as the turbulence-modeling problem. : 

Even introducing supplemental equations, derived by obtaining moments of 

the original equations, does not alleviate the problem, but does help to 

provide a means to introduce more information on the turbulence itself. 

Necessarily then, turbulence modeling becomes an integral, important 

part of our overall modeling process. A general description of various 

turbulence-modeling approaches used for applications in aerodyna.mic 

flows was presented by Marvin (1982). 

Solutions to most of the complex aerodynamic flows discussed herein 

use eddy-viscosity turbulence models. The governing equations in mass-

average variables and supplemental equations used in some of the eddy-

viscosity models are written for plane flow in vector form as follows: 

au + ~ + aG 
at ax ay 

H (1) 

p pu 

pu pu 2 + a xx 

pv puv - T 
U F 

xy 

pe u(pe + a ) xx 
- VT 

xy + qTx (2 ) -. 

pk puk + qky 

ps pus + qsx 
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pv 0 

puv - T 0 xy 

PV
2 + a 0 

G 
yx 

H (2) 
v(pe + a ) - UT - qTy 0 Contd. 

yy xy 

pvk + qky 1\ 
pvs + qsy H s 

The last two equations are the supplemental equations providing the 

velocity (k)1/ 2 and length scale s required in higher-order eddy-

viscosity models. In the column vectors, qTx and qTy are the laminar-

plus-turbulent heat-flux vectors; a , a are the laminar-p lus-
xx yy 

turbulent normal stresses; T is the laminar-pIus-turbulent shear xy 

stress; and qky' qsx' and qsy 

turbulence field variables. 

are flux vectors associated with the 

The stress terms and flux vectors are 

2 (au + av ) a p + - pk - T T ~T ay ax xx 3 xx xy 

T = ~ ~ (2 au _ av ) ~T (~ + pE) , xx 3 T ax ay , 

where p is the hydrostatic pressure; 2/3 pk is the pressure asso-

(3) 

ciated with the turbulence; ~ is the thermal conductivity, including 

the turbulent diffusivity; and PE is the turbulent eddy viscosity. 

The functional forms of the source functions H depend on the choice 

of the turbulence model. 
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Solution Methods and Turbulence Models 

The methods available for solving equation (1), along with the 

various turbulence models, are introduced in historical order so that 

the unfamiliar reader will be able to see what the technological devel-

opments have been and how they arrived at their present state. 

Development of methods for solving the mass-weighted form of the 

Navier-Stokes equations began after MacCormack (1971) used an explicit 

time-marching scheme to solve the laminar form of the equations. In 

this second-order-accurate method the equations are discretized and 

advanced in time such that 

n L (lI t)U. . 
1,J 

(4) 

The L(lIt) term is replaced by a sequence of time-split, one-dimensional 

operators, for example, 

L(lIt) 

where L solves the parts of equation (1) given by 
x 

au + ~ 0 
at ax 

and L solves the part given by y 

au + ~ 
at ay o 

The operators are advanced in time to a steady state, if one exists, 

according to a predictor-corrector sequence of steps. A numerical 

(5) 

(6) 

stability criterion exists that limits the time-step used to advance the 

solution. Typically, in high-Reynolds-number turbulent flows the limit-

ing time-step occurs in computational sweeps normal to the surface. It 

is given by 
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~y 

~ty ~ --------~{~V-l----V-2~} 
Ivl + c + -- +-­

~x ~y 

(7) 

where c is the sound speed and V1 and V2 represent viscous terms. 

The ~y step interval has to be very small to resolve the wall region 

of a turbulent boundary layer, and this time-step limit presents severe 

limitations which result in long computing times. Nevertheless, many 

solutions of shock-separated flows were reported using this method in 

the mid-1970s. 

Given the severe time-step restriction of the method and computer 

storage limitations, most investigators chose simple zero-equation 

eddy-viscosity models that use mean-flow information to close the gov-

erning equation. These two-layer eddy-viscosity models employed 

Prandtl's mixing-layer hypothesis in the inner layer, 

where 

E = t 2/ au + av I 
inner ay ax 

0.4 y(l - expy/A) } 

A+ ~ /(T /p)1/ 2 
W w 

26 

(8) 

In the outer region, either a mixing-length value was chosen, based on 

some length scale such as boundary-layer thickness, for example, 

t = t 
max 

(9) 

or Clauser's eddy-viscosity formulation was chosen with an intermittency 

factor, for example, 

Eouter 0.0168 u o~/[l + 5.5(y/o)6] 
max~ 

(10) 
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where u is the maximum velocity achieved in the boundary layer and max 

o~ is the kinematic displacement thickness. The turbulent heat flux 
1 

is modeled through a turbulent Prandtl number. To date, this latter 

aspect of modeling has not been altered. As will be shown later, solu-

tions with these formulations fail to give s a tisfactory predictions, 

although they qualitatively reproduce many experimentally observed 

features. Most of the shortcomings were earlier blamed on turbulence 

modeling, but not many of the studies reported effects of grid dependence 

or numerical smoothing which in retrospect may have been as important 

as the turbulence model. 

Even though computing times were excessive ( s everal hours on a 

CDC 7600 c omputer) attempts were made to modify the turbulence model and 

some improvement in the solutions to complex separated-flow problems was 

demonstrated. Two approaches are worth noting. One used experimental 

data to guide modifications to the mixing-length constants in the turbu-

l ence model (Marvin et al. 1975), and the other attempted to relax the 

outer eddy viscosity to account for the fact that turbulence does not 

adjust immediately to rapid changes in the mean flow (Shang et al. 1976; 

Baldwin and Rose 1975); for example, 

P€ = P€ + [P€ - P€ ] 1 - expa(x-x%o) 
o eq 0 

(11) 

where (P€ )o and 00 are undisturbed values ahead of the interaction 

region, (P€ )eq is the usual unmodified value given by equation (10), 

and a i s a relaxation length obtained by a best-fit comparison of final 

computed r e sults with experiment. It is obvious that both attempts rely 

heavily on experimental data over a wide range of conditions which limits 
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their generality. However, these studies illustrated the potential of 

the numerical simulations and encouraged development of faster computing 

methods and better turbulence models. 

At this point, the numerical algorithm development research branched. 

MacCormack (1976) developed his more efficient explicit hybrid method 

and Beam and Warming (1978) developed their factored implicit scheme. 

Also, turbulence-modeling improvements using higher-order eddy-viscosity 

models followed in the wake of the hybrid-method development, and 

improvements to algebraic eddy-viscosity models, mostly from a computa-

tional compatibility standpoint, followed in the wake of the factored-

implicit scheme. 

The time ··step efficiency of the MacCormack explicit method was 

improved by combining the advantages of implicit numerical stability 

with physical insight of the wave-propagating property of the fluid. 

Conceptually, this was accomplished by further splitting of the 

y-operator, L , into hyperbolic and parabolic parts, 
y 

L (~t) = L h(~t)L (~t) 
Y Y yp 

(12) 

The hyperbolic operator contains the convective and pressure terms in 

the column vector G such that 

au aGh -+--at ay o (13) 

In the prediction solution to G
h

, pressures and velocities are obtained 

by the method of characteristics in a manner that eliminated the speed 

of sound from the time-step limit such that 

t.t 
Y 

~t 

TVT 
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Since the finest portion of the mesh is usually confined to the wall­

bounded region where v is small, the stability bound of the allowable 

time-step is much less restrictive than that given by equation (7). The 

corrector step is applied as before. The parabolic operator L 
yp is 

treated implicitly and, therefore, unconditionally stable with regard to 

time advances. The programming for the hybr i d method is complicated by 

the necessity of using characteristic relations in the prediction step 

for the hyperbolic operator. However, decreases in computing times by 

an order of magnitude or more relative to the purely explicit method 

were achieved. Such decreases encouraged some investigators to apply 

higher-order eddy-viscosity models (e.g., see Viegas and Horstman 1979), 

and other s to move forward in the computations of three-dimensional 

flows (e.g., see Hung and MacCormack 1978). 

Higher-order eddy-viscosity turbulence models were introduced into 

the hybrid method by expanding the column vec tors to include the turbu­

lent kinetic-energy and length-scale equations in equation (2). The 

one-equation model from Rubesin (1976), two-equation model from Jones 

and Launder (1971), and the two-equation model from Wilcox and Rubesin 

(1980) have been examined f or a range of different problems. The full 

equations describing the implementation of these models in the hybrid 

algorithm are given in Viegas and Horstman (1979). Modeling constants 

developed for incompressible flows are usually used without modifications. 

Authors have reported mixed results, but conclude overall that the 

higher-order models produce improvements. 

Concurrently , development of implicit methods was undertaken. For 

our purposes, the f a ctored-implicit scheme of Beam and Warming (1978) will 
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be briefly described. The method is an extension of their earlier 

development of an inviscid-flow solver, and, for conveni ence, the essen-

tial elements of the method will be discussed in t hat context. Time-

differencing of equation (1), where F and G contain only inviscid 

t erms, is accomplished by the uncondi tionally stab le scheme given by 

(1 5 ) 

whe re 

au = (B:. +~) 
at ax ay 

In this form, however, the system of equations is nonlinea r and con-

tains a large system of algebraic equations; as a result, t he advantage 

of unconditional stability might not resul t in solution times signi f i-

cantly smaller than the times for explicit schemes. However, t hey 

linearized the equations while maintaining temporal accuracy by a 

Taylor-series expansion of the nonlinear terms. For examp l e, they let 

(16) 

Substituting this expression and a similar one for G, wri ting the 

resulting in a delta form ~Un = Un+1 
- Un, and employing s patial fac-

torization, the f i nal form of the equation was written a s 

(
I + b.t aAn)fI + M aB

n
) ~Un = -M (B:. + aG) n 

2 ax \ 2 ay ax ay 
(17) 

The solution is marched in time to a steady state, if one exists, through 

a three-step sequence, as follows: 
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(r + ~ dAn) lIU* = lIt(~+'dG)n 2 'd x 'dx 'dy 

(1 + bt 'dBn) bUn 
2 'dy 

lIU* (18) 

Results from this procedure compare favorably wi t h those of the hybrid 

method f or the same test problems. Refinements to this method and other 

implicit solvers have been developed on a continuing basis; see for 

example, Briley and McDonald (1977) and Coakley (1983). MacCormack 

(1982) has recently reported a new mixed, explicit-implicit scheme 

which reduces the computation times and the complex programming problems 

assoc i ated with hi s hybrid method. 

Solutions to separa ted-flow problems using the implicit scheme 

developed by Beam and Warming (1978) have usually employed zero-equation 

turbulence models and the thin-layer approximation to the full equation ; 

for example , see Baldwin and Lomax (1978). The thin-layer approximation 

neglec ts derivatives of the viscous stresses in the flow direc tion . 

Baldwin and Lomax (1978) a rgue that this is computationally a cceptab le 

for even large separated flow regions because the accuracy of t hese 

derivatives in the discretized form of the full equations is question-

able since the aspect ratio of computational cells in t he near- wall 

viscous regions is usually very much less than unity for grids used to 

resolve turbulent layers. Bri l ey and McDonald (1977) and Coakley (1 983), 

however , have employed higher-order, two-equation models and the full 

equations. 
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One aspect of zero-equation turbulence-model improvement, still 

presently employed in the thin-layer implicit Navier- Stoke s codes under 

development at Ames, is that carried out by Baldwin and Lomax (1978) . The 

development of the model was initiated to circumvent a shor tcoming of 

the Clauser outer-eddy-viscosity formulation (eq. (1 0», aris i ng 

because in many instances the inviscid region s in complex f lows have a 

nonuniform velocity field, and determination of the viscous-layer edge 

needed to evaluate o~ in the model becomes difficult. The outer eddy 
1 

viscosity is redef ined as 

where 

The values of 

F wake 

0.0168 C F ~1 + 5.5 (0.3 y)6J_l 
1 wake y 

max 

YmaxFmax 

or the smaller 

Fmax and Ymax are determined from 

au av 2 - y+/A+ [( ) J
l/2[ ] 

F(y) = Y ax - ay 1 - exp 

In wakes, the exponential part of F(y) is set to zero. 

(19) 

( 20) 

(2 1) 

The F t e rm max 

i s the maximum val ue of the funct i on and Ymax is the corresponding 

value of Y at F . U 
max' diff is the difference between the maximum and 

minimum total velocity at a fixed x-station. The constant C1 was 

determined to have a value of 1.6 by ensuring that the resulting skin 

friction computed f or a f lat plate was equivalent to the value obta ined 

from the original Cebeci-Smith model formulation. In order to have a 

correct value of eddy viscosity for a far-wake, C
wk 

was t aken t o be 
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0.25. For two test problems involving shock-wave interaction, the model 

gave results that were improved relative to those of the simple two-

layer zero-equation model and more or less comparable to those achieved 

with the relaxation formulation given by equation (11). However, recent 

studies suggest that a certain degree of caution be exercised in apply-

ing this model. It requires modification of constants for Mach-number 

changes, the function F(y) is not always a smoothly varying one, and 

the choice of F is problem-dependent. See for example Deganni and max 

Schiff (1983) and Visbal and Knight (1983). 

EXPERIMENTAL REQUIREMENTS 

The emergence of methods for computing complex, turbulent separated 

flows places stringent requirements on experiments used to assess the 

development of the methods. In addition to the traditional role of 

providing basic understanding of the controlling mechanisms, they must 

also provide guidance for modeling approximations and provide sufficient 

detail so that accurate checks on computational output can be made. A 

synergistic framework for advancing computational ae rodynamics consist-

ing of closely coordinated experiments and computations was described 

by Marvin (1982). The continued necessity for data required to support 
-, 

the development of research-, pilot-, and production-type computer codes 

was emphasized in that work and will not be repeated here. 

At the present stage of their development, computer codes used to 

solve separated-flow problems that employ the mass-averaged Navier-

Stokes equations are probably best classified as research codes. Further-

more, the experimental data used t o assess their development vary in 
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completeness and accuracy because the flows are complicated by the 

presence of shock waves or separation or both~ and because many investi­

gators used instrumentation techniques that were themselves in develop­

mental stages. 

Nevertheless, a series of building-block or bench-mark flows has 

been developed that can assist in the development of computational 

methods (e.g., see Marvin 1982). Those used for the problems discussed 

in this paper are given in tables 1-6. They represent a cross section 

of simple, but practical, aerodynamic flows. The tables provide the 

unfamiliar reader with ample bibliographic sources for further study. 

In addition to bibliographic citations, information is given on test 

conditions, grid size, and type of turbulence model employed. Grid size 

alone is not the only criterion for assessing computational resolution, 

however, because grid stretching and special refinement in regions of 

rapid flow changes are important techniques commonly used by most inves­

tigators. But the sizes provide some measure for comparison between 

various computations. Likewise, the turbulence models used are only 

broadly categorized because they usually differ in detail as a result of 

programming decisions made by the various investigators. Experiments 

conducted before 1981 are noted in the tables; they were recently 

reviewed by an independent evaluation committee and ascertained to con­

tain the most comprehensive data sets for code validation (see Kline 

et al. 1981). 
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RESULTS AND DISCUSSION 

The modeling of the complex separated flows introduced earlier will 

now be critically reviewed. The physical characteristics of the flows, 

as determined by experiment, will be introduced and then comparisons of 

the results of computations and experiments will be presented to illus­

trate how well these physical characteristics can be simula ted 

computationally. 

Impinging Oblique Shock Waves 

Sketches showing the important features of two-dimensional oblique 

shock-wave interactions are shown in figure 2. For a purely inviscid 

flow the uniform upstream flow processed by the incoming shock wave is 

uniformly turned toward the surface and then straightened again by the 

r eflected shock. The corresponding surface-pressure signature is shown. 

Analytic expressions are available to predict this rather simple situa­

tion. The presence of a boundary layer confounds the problem, and the 

resulting flow-field characteristics depend on the strength of the 

incoming shock wave. 

In the weak interaction, the shock wave penetrates the turbulent 

boundary layer and turns more steeply toward the surface as it encoun­

ters the lower speeds within the viscous layer. It reflects from the 

viscous layer through a series of compression waves that coalesce into a 

reflected shock wave. A uniformly increasing surface-pressure signature 

is found, whose overall rise is nearly equivalent to the inviscid jump. 

In the strong interaction, the shock wave also penetrates the 

viscous layer, but that layer cannot overcome the pressure rise, and 
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separation takes place. The viscous layer is turned above the separation 

through a series of compression waves that coalesce into what is called 

a separation shock which is later weakened by expansion waves emanating 

from the viscous flow accelerating over the separation bubble. Down-

stream, where the bubble terminates, a series of compression waves 

coalesce into a reflected shock where the flow aligns itself with the 

surface. The corresponding surface pressure is characterized by a smooth 

pressure rise and an inflection region characteristic of separation. 

Because of the multiple shock losses the overall pressure rise is lower 

than the inviscid jump, by an amount that depends on the flow Mach num-

ber and incident shock angle. Also, it is assumed that the separation 

is closed by a dividing streamline that separates the mass entrained in 

the region from the outer flow and that a recirculating region is 

present. In actuality, the turbulent-flow probably leads to unsteadiness 

within this separa ted region, but how much influence this has on the mean 

characteristics is not understood at this time and further study is 

warranted. Above the separated region an island of very high peak pres-

sure exists near the bifurcation associated with the intersection of 

the incoming and separation shocks. The extent (scale) of the interac-

tion depends on the boundary-layer thickness, flow Reynolds number, and 

Mach number. 

One of the first considerations in computing such flows is the 

ability of the computation to resolve shock waves. As reported by 

Metha and Lomax (1982), the solution methods discussed previously are 

all capable of capturing shock waves. However, the degree of shock 

sharpness depends on the numerical method and computational mesh. An 

19 
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example, taken from Coakley (1983), which illustrates what can be 

achieved with a reasonably good numerical method and a uniform mesh, is 

shown in figure 3. Pressures along the solid surface and at a location 

about midway up in the mesh above the surface are shown for the case of 

an oblique wave inclined at 29° at a free-stream Mach number of 2.9. 

Similar results would be displayed in pressure distributions normal to 

the surface as the shock wave was traversed. The mesh used in this 

example is typical of the mesh dimensions used in the Navier-Stokes codes 

out in the inviscid regions of the flow. The point to note is that the 

numerical method requires a t least several mesh points to capture the 

pressure jump associated with the waves. From results such as these, 

it is easy to deduce that for solutions t o the strong-interaction 

problems, in which separation and reflected-shocks occur, mesh choice 

will have an inf l uence on how well the flow is modeled and further that 

a certain amount of shock "smearing" will always occur in practice. 

What seems to be missing in studies reported in the literature on 

shock-s eparated flow problems is an assessment of this effect on the 

results. 

Many of the firs t computations of separated turbulent flows were 

directed toward solving the two-dimensional, strong impinging-shock 

interaction problem (see table 1). Turbulence modeling was reported to 

have a strong influence on the results. An illustrative example is 

shown next . The bench mark experimental flow of Kussoy and Hortsman 

(1975) was computed with an explicit numerical method. The experimenta l 

apparatus was axisymmetric and thus eliminated three-d i mensional effects 

now known t o be present in other " t wo-dimensional" experiments. 
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Pressure contours from the experiment and two computations are shown 

in figure 4. The experimental contours show the presence of the 

incident-, separation-, and reflected-shock waves as evidenced by the 

closely spaced contour levels. An island of very high pressure exists 

above the separation near the intersection of the incident and separation 

shocks. The computations were made with zero-equation eddy-viscosity 

models and the equations were solved down to the wall; the baseline com­

putation used the mixing-length formulation given by equations (8) 

and (9). and the modified mixing-length model was determined from data 

analysis (Marvin et al. 1975). The grid wa s chosen to allow good shock 

capture in the outer regions, and in the viscous region a fine mesh was 

placed near the wall to resolve the turbulent boundary layer. The eddy 

viscosity from the baseline model is too high in the interaction region 

and as a consequence the computation only predicts the existence of a 

reflected shock wave. 

Consistent with this single-shock reflection, the surface pressures 

are overpredicted somewhat. On the other hand, the modified model, which 

results in lower eddy viscosities, gave a better simulation of the 

experimental flow. In add i tion to the reflected shock wave. the presence 

of a separation shock is evident, but it appears to be weaker and smeared 

compared with the experiment. This deficiency in the calculations is 

probably a result of two things: the grid, which is still probably not 

fine enough to resolve the f low in the region of the island of high 

pressure, and the modif ied turbulence model, which still gives a small 

separation-bubble height relative to the experimental one. Surface skin 

friction and heat transfer were not accurately predicted within the 
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separated zone, although the model modification did improve the results. 

In this instance, the model modification was experiment-dependent and, 

therefore, not extendable to the other conditions of Mach number and 

Reynolds number. 

Although advances in numerical methods that improved computational 

efficiency provided the opportunity for inves tigating improvements in 

turbulence modeling, there has not yet been a significant advance in 

our ability to predict the flow detail within the separated region. 

What is known is that zero-equation eddy-viscosity models developed for 

attached f lows must be modified or abandoned in favor of other approaches 

to provide a physically plausible representation of the flow and that 

the model must provide s ome mechanism for altering the effective viscos­

ity in the i nteraction zone. Two approaches have provided some improve­

ment: modifying the zero-equation model eddy viscosity (Baldwin and 

Lomax 1978) and using two-equation eddy-viscosity models (Viegas and 

Horstman 1979). 

The former approach, which is advantageous from the viewpoint of 

computational efficiency, has been used extensively in three-dimensional 

computations in which computer storage and speed make application of 

higher-order models less attractive. 

Results of a recent s tudy by Brosh et al. (1983) of a three­

dimensional shock interaction are worth examining because they illus­

trate current limitations. The flow field is sketched in figure 5. A 

plane shock impinges on a cylinder aligned with free-stream flow. 

Separation occurs on the windward surface because of shock interaction, 

and on the leeward surface because, in part, of the cross flow imposed 
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by the windward portion of the free stream being processed by the oblique 

shock. On the windward plane of symmetry the shock interaction is simi­

lar to that depicted in figure 2, but the separation is not closed, and 

the flow within it is not a result of recirculation fed by downstream 

flow reattachment. (There has been some speculation that such open 

separations may be modeled appropriately with zero-equation eddy­

viscosity models.) 

A cursory examination of the computed results indicates that many 

of the features observed experimentally are simulated, for example, 

surface-pressures distributions (fig. 5) and the initial separation line. 

More detailed examination, however, shows deficiencies that result from 

both turbulence modeling and grid resolution. In figure 6, the windward 

plane flow field, determined by flow-field surveys, is sketched, and 

comparisons with static-pressure profiles are shown. Grid resolution in 

the region outside the viscous zone leads to significant shock smearing, 

and no separation shock is predicted. One reason that the overall pres­

sure rise of the interaction is predicted is that at this Mach number 

the additional losses caused by the presence of the separation shock are 

small compared with those caused by the recompression of the turning. 

In figure 7, the surface skin-friction directions from the computa­

tions are compared with a photograph of oil-flow patterns on a Mylar 

sheet that had been placed around the cylinder and then "unwrapped" and 

photographed after the test. On the windward plane (~ = 0), a single 

separated line is predicted, whereas a double separation line is evident 

in the experiment. It is likely that the deficiencies of the computa­

tion are caused by the combination of a poor turbulence model, which 
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gives an effective viscosity that is too high, and poor numerical reso­

lution of the shock system, which causes a local weakening of the shock 

strength. As the flow proceeds around to the leeward, a single line of 

separation is predicted, whereas a double line of separation is mea­

sured. As we wi l l see in a later section, the turbulence model of 

Baldwin and Lomax (1978) is unlikely to predict s econdary separations 

without modification and, in addition, the azimuthal grid spacing was 

probably too coarse. Hence grid resolution and turbulence modeling must 

both be improved before definitive conclusions can be reached on the 

modeling of three-dimensional, impinging-shock, separated flows. These 

particular calculations took 2 hr on a Cray 1-S computer, so f iner grid 

resolution that could help resolve this issue is costly and has not been 

carried out. 

Supersonic Compression Corner 

The physical characteristics and corresponding wall pressures for 

a two-dimensional compression corner are sketched in figure 8. For the 

inviscid flow situation a single shock forms, and the pressure rises 

abruptly to the level predicted by wedge-flow relations. The presence 

of a boundary layer complicates the flow, as depicted for two situa­

tions, the weak and strong interactions. In the weak interaction, a 

series of compression waves forms within the boundary layer as it 

encounters the pressure rise and they coalesce with the shock formed in 

the inviscid flow, whi ch is required to turn the flow in the direction 

of the ramp. The corresponding pressure rise shows a smoothing of the 

pressure at the beginning and end of the interaction . For the strong 
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interaction, the boundary layer cannot withstand the pressure rise and 

it separates. Compression waves that coalesce into a shock wave form 

near the forward portion of the separation bubble as the outer viscous 

flow negotiates the pressure rise. 

Experimentally, the separation shock-angle is found to be indepen­

dent of the corner angle. If the separation is large enough and the 

free-shear Mach number high enough, a second shock will form downstream 

when the flow over the separated region reattaches and turns in the 

direction of the ramp. The separation and recompression shocks coalesce 

with the outer shock wave. The corresponding pressure rise shows inflec­

tion over the separated region and the upstream influence is more pro­

nounced than in the weak case. The overall pressure rise through the 

interaction is somewhat lower than the inviscid rise because of the 

additional shock losses. Conceptually, the flow in the closed separated 

region is divided fr om the outer flow, and mass is entrained and recir­

culated through the reattachment process. However, as we shall see, 

there is experimental evidence of unsteadiness in this process. The 

characteristic scale of the interaction depends on the boundary-layer 

thickness and free-stream Mach number. 

Computations of this complex flow have been reported, as indicated 

in table 2. Different numerical methods and turbulence models have 

been employed. A comparison of two of the more recent computations with 

experiment is shown in figure 9. Two cases are shown, one near incip­

ient separation (weak interaction) and one with separation (strong 

interaction). In one computation, an implicit algorithm and the thin­

layer form of the equations were used with the modified zero-equation 
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model of Baldwin and Lomax (1978) which was described earlier . In the 

other, the MacCormack hybrid algorithm and the full equations were used 

with the two-equation turbulence model of Wilcox and Rubesin ( 1980). 

Metha and Lomax (1982) stated that these different numerical schemes 

should yield s i milar results, since comparable grids a r e used and care 

in carr ying out the computation is exercised. Accepting t hat premise, 

t he dif f erences between these calculations mainly reflect diff erences 

owin g to turbulence modeling. 

In both the weak and strong cases, the pr essures predicted using 

eithe r model agree reasonably well with the data, and this r e f lec ts the 

cornmon observation that the pressure rise can be estimated, for engi­

neering purposes, using any of the eddy-vis cos i ty models. However, 

differences occur in the viscous regions. The modi fied zero-equa tion 

model predicts skin-friction values that are much too low downst ream of 

the weak interaction, and this manifests itself more cr i tically in the 

strong-interaction case by predicting reattachment too fa r downs t ream 

and velocity prof iles that do not compare well with experiment. On the 

other hand, velocity profiles and shape factors in the downstream region 

are predicted better by the two- equation model, even for the s t rong­

i nte r action case in which skin friction is somewhat overpredi cted (see 

Marvin 1982). It is thought that the f a ilure of the t wo- e quation mode l 

to predict the ski n fricti on resides in the low-Reynolds-number modeling 

terms developed to allow i ntegration to the wall, but t his must be 

investigated further and in light of the experimental observations on 

unsteadiness, which is discussed next. 
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Unsteady pressures have been measured on compression corners by 

Dolling and Or (1983). Results from a 20° compression corner test are 

shown in figure 10. Normalized mean pressures, p /p , their rms 
w wo 

fluctuations, a , and an intermittency factor, y, are shown for posi­
w 

tions upstream of the corner. The intermittency factor represents the 

fraction of time that Pw > p + 3ap (i.e., the time that the 
Wo Wo 

instantaneous pressure is greater than that of the undisturbed turbulent 

boundary layer). The peak rms fluctuations occur ahead of separation 

in the region of the initial pressure rise. The intermittency reaches 

a value of 1 near the point of maximum fluctuations and just ahead of the 

mean separation point. It was deduced that these measurements most 

probably indicate a separation shock movement of about one boundary-

layer thickness. 

Such unsteadiness could be caused by unsteady mass entrainment in 

the recirculating zone as a result of scale changes within the turbulent 

structure. None of the computations reported have indicated unsteady 

motion of this sort, and if it is caused by time-varying turbulent struc-

ture changes, turbulence models based on mass-averaged variables will 

not be appropriate for modeling the unsteady details. Much, therefore, 

remains to be learned about modeling for these shock interacting flows. 

At this time, only mean pressures can be predicted with reasonable con-

fidence, as can the trends of separation and the reattachment location 

movement with changing Reynolds number based on the incoming boundary-

layer thickness (see fig. 11). 

Three-dimensional compression corner flows are also now under 

study; see for example Teng and Settles (1982). Interesting classifications 
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of these flows on the basis of conical and cylindrical upstream influ­

ence have been postulated. Although no calculations have been reported, 

one of the author's colleagues, C. C. Horstman, has had recent success 

in predicting the flows with conical upstream inf luence. These results 

should be available shortly. 

Glancing Shock Wave 

Control surfaces on vehicles or missiles can produce shock waves 

that sweep across adjacent boundary laye rs. Some bench mark experiments 

depicting the essential features of these f l ows are available for verify­

ing computations (see table 3). Geometries for two of these are sketched 

in figure 12 along with surface skin-friction lines and shock-wave struc­

trues which help to describe the general physical characteristics of the 

flows. 

The sharp leading-edge shock generator can result in both weak and 

strong interactions. In the weak case, the shock interacts with the 

incoming boundary layer and causes simple flow-turning, with the lower 

momentum fluid near the wall undergoing larger turning than the higher 

momentum fluid at the boundary-layer edge. Far from the generator 

leading edge, the shock pattern formed by the component of the Mach 

nUTIilier normal to the shock wave might appear as a weak shock, as sketched 

in figure 12. In the strong interaction, the boundary layer cannot 

overcome the pressure gradient, and a separation line forms ahead of the 

shock wave and a reattachment line forms downstream. Skin-friction lines 

accompanying such characteristics are sketched in the figure (see Peake 

and Tobak 1980). I n this case, the component of the Mach number normal 
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to the shock wave is larger, and the interaction is stronger and a shock 

wave with the characteristic lambda foot emanating from the compression 

waves formed near the separation line. In contrast to the two­

dimensional, normal-shock-wave case, the flow in the separation region 

is not closed and continued recirculation of the shock-processed fluid 

does not occur. In this sense, the swept shock flows are probably more 

steady than the two-dimensional flows. Furthermore, the flow relief 

owing to the third dimension causes the boundary layers to separate 

sooner and to have correspondingly larger upstream influence than the 

two-dimensional flows. The scale of these interactions is determined 

mainly by the incoming boundary-layer thickness and Mach number. 

In the case of the blunt leading edge, a bow shock wave is formed 

and a strong interaction takes place. Separation and reattachment lines 

form ahead and downstream of the bow shock wave. A horseshoe vortex 

forms as a result of the presence of the blunt generating surface ) and 

it streams around it. The shock wave in the plane of symmetry can form 

a lambda foot near the separation line for the strongest interactions 

and an inviscid shear layer emanates from the bifurcation point. The 

scale of the interaction is determined by the bluntness of the generator, 

because the shock standoff position and the horseshoe vortex scale are 

proportional to it. 

Surprisingly, numerical simulations of these glancing shock-wave 

f lows using rather coarse grids and a simple turbulence model provide 

adequate predictions of experimental data in contrast to the impinging­

shock-wave and corner-flow results discussed in previous sections. To 

illustrate this point for the sharp-generator case, typical comparisons 
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of computation and experiment are shown in figures 13-15. The computa­

tions by Horstman and Hung (1979) were made with the MacCormack hybrid 

method along wi th a two-layer, zero-equation, mixing-length eddy­

viscosity model (eqs. (8) and (10», modified by Hung and MacCormack 

(1978) to account approximately for the flow in the corner formed at the 

intersection of the generator and the plate. 

The axial variations of pressure and skin frict ion (fig. 13) and 

the spanwise variation of pressure and heat transfer (fig. 14) agree 

with the measurements except in the corner where modeling is undoubtedly 

incorrect. Differences in the axial variations at the farthest down­

stream location are caused by l ocating the computational boundary there. 

Although not shown here, agreement with mean-velocity profiles is also 

good. Similarly good comparisons of surface and flow-field quantities 

have been reported for wedge angles t o 12° and Mach numbers to 6. 

Surface skin-friction lines from the computations are shown in 

figure 15. Locations of the main features of this strong-interaction 

case are noted. The separation and reattachment lines were determined 

by examining cross-flow velocity vector plots oriented in a plane normal 

to the center of the vortex formed by the interaction. They correspond 

closely to the converging and diverging lines usually associated with 

the separation and reattachment locations (Peake and Tobak 1980). 

Several factors are believed responsible for the good agreement 

between computations, in which course grids and a simple mixing-length 

turbulent model are used, and experiment. First of all, the normal 

component of the Mach number is not large and therefore the shock-wave 

structure is not so difficult for capture. (In the example shown 
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~ = 1.3.) Secondly, the separated-flow region is not closed and highly 

turbulent fluid is not recirculating. And, as a consequence of the 

latter, the flow within the separated region is probably more steady than 

'. 
that within a two-dimensional separated region. 

The strong interactions resulting from a blunt generator have been 

recently computed by Hung and Kordulla (1983). The computations were 

made using a finite-volume version of the newest implicit-explicit method 

of MacCormack (1982) with the zero-equation turbulence model of Baldwin 

and Lomax (1978) modified in the same manner as the sharp-generator case 

to ac count for the presence of the generator wall. Some example compari-

sons of these computations with the experimental data of Dolling and 

Bogdonoff (1982) are shown in figures 16 and 17. Surface pressures along 

the flat plate and along the generator surface are shown. It can be 

inferred from these comparisons that the scale of the interaction, includ-

ing its upstream inf luence on the oncoming flow and its height relative 

to the oncoming boundary-layer thickness are probably being predicted 

quite well, although no flow-field data are available to verify such a 

conclusion. 

The predicte d particle paths which represent streamlines in the plane 

of symmetry are shown in figure 18 to illustrate the resolution of the 

flow-detail within the horseshoe vortex. Although not readily apparent 

in this plot (because of the scale of the figure), there is a secondary 

vortex f ormed at the junction between the blunt generator and the plate 

(see Hung and Kordulla 1983). The separation region formed by the horse-

shoe vortex is open and the vortex streams around the blunt generator and 

eventually merges with the secondary vortex. 
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Most of the features observed in oil-flow photographs taken during 

the experiment also compare favorably, at least qualitatively, with 

these computations. Again, it may appear surprising that the computa­

tions are doing so well, considering the grid resolut ion and simplicity 

of the turbulence model. However, the scale of the interaction is set 

mainly by the blunt leading edge of the generator, in contrast to the 

three-dimensional , impinging-shock case (figs. 5 and 6) in which no 

physical scale other than boundary-layer thickness is present . 

Further study of this blunt generator case is needed to determine 

whether important quantities, such as heat transfer or skin friction, 

can be predict ed. It should also be mentioned that an unsteady shock­

wave structure was found experimentally and tha t no such unsteadiness 

was found in the computa tion. 

Normal-Shock-Wave Inter action 

Understanding the normal-shock·-wave problem is important for the 

development of supercritical-wing technology . In this paper we will 

focus our attention on studies that have attempted to isolate the flow 

in the vicinity of the shock wave and in which the elliptic nature of 

transonic f low does not have to be considered (see table 4). Some of 

the physical characteristics are depicted in figure 19. The Schlieren 

photographs and Mach contours from the two-dimensional experiment of 

East (1976) a r e shown. At the lowest Mach number, a weak interaction 

develops and very little change in the normal-shock-wave structure 

occurs. A thickening of the subsonic layer takes place during the 

movement of the viscous-layer from the supersonic to the subsonic 
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regions. A small foot to the normal shock wave appears through a series 

of weak compression waves. The resulting wall-pressure distribution 

appears as a smoothing of the inviscid pressure jump, as we have seen 

previously for the weak-interacting, impinging oblique-shock flows. 

Increasing the Mach number strengthens the pressure rise, and 

eventually the boundary layer can no longer pass through without sepa­

rating. The thickening of the viscous layer occurs sooner (farther 

upstream) and the series of compression waves can eventually coalesce 

into a distinct oblique, separation shock forming the so-called lambda 

foot. This oblique shock will intersect the normal shock wave at a 

bifurcation point. The losses through the normal shock wave are larger 

than those through the oblique shock wave and, therefore, the static 

pressure downstream of the normal shock wave is higher than that of the 

flow downstream of the oblique shock wave and a second rearward-running 

shock will form at the bifurcation to equalize the disparity. 

At the higher Mach numbers, existence of a supersonic "tongue" has 

been observed (see for example, Kooi 1978). At the bifurcation point 

there is a difference in total pressure between the flow processed by 

the normal and compound shock systems and a shear layer (a discontinuity 

surface sometimes referred to as a vortex layer) forms. Corresponding 

surface-pressure distribution will show a steep rise in pressures ahead 

of separation, a decrease in the pressure gradient over the region of 

separation, and gradual increase to a level somewhat below the inviscid 

jump pressure for a normal shock. 

A certa in degree of success has been achieved in modeling the 

moderately strong normal-shock interaction where separation is rather 
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small. An example is illustrated in figures 20 and 21. Computations 

were made using the MacCormack hybrid method and the two- equation 

eddy-vis cosity model of Wilcox and Rubesin (1980). The grid (table 4) 

was chosen in order to provide adequate capture of the shock structure 

and to resolve the near-wall region of the turbulent boundary layer . 

In figure . 20, pressure-distributions and velocity-profile shape param­

eters are compared with the experiment reported by Om et al. (1982) 

for a range of Mach number and Reynolds number. The experiment was 

performed in an axisymmetric test section so that three-dimensional 

effects could be eliminated; therefore, a high degree of confidence can 

be placed in the experimental trends that are observed. 

The effects of Mach number and Reynolds number are predicted by the 

computations, except possibly in the immediate vicinity of the shock at 

the highest Mach numbers. Mach contours are compared in figure 21 for 

the highest Mach number case. For the most part the shock structure is 

also predicted by the computations. The shock is weakened because of 

viscous-layer thickening near the separation, and a series of compression 

waves coalesces into the normal shock. A smaller region of supersonic 

flow is predicted. One would not expect to capture any discontinuity sur­

face in total pressure that would lead to a so-called vortex layer because 

the grid is obviously too coarse. The extent of separation in the pre­

diction is somewhat smaller than that of the experiment. 

Studies have shown that the choice of turbulence model has an influ­

ence on the predictions (Viegas and Horstman 1979). An illustrative 

example is shown in figure 22. Although the turbulence model has little 

influence on the prediction of the overall pressure rise, models that 
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use information on the turbulent kinetic energy changes through the 

shock wave to form the velocity scale of the eddy viscosity provide 

much better estimates of the skin friction. We can also note that 

trends with Reynolds number over a wide, practical range are predicted 

with those higher-order eddy-viscosity models. However, even these 

higher-order models have to be applied with caution when wall skin 

friction or heat transfer is being predicted, because the low-Reynolds­

number functions, required when integrating the equation system from a 

wall boundary out into the flow field have not always been developed 

adequately. 

The reader is referred to a very recent paper by Viegas and 

Rubesin (1983) in which that aspect of higher-order eddY-Viscosity 

modeling for the moderately strong, normal-shock problem is studied. 

Figure 23 summarizes the main points from that study. When integrating 

from the wall boundary, only the Wilcox-Rubesin model gives adequate 

skin-friction predictions. In developing this model's low-Reyno lds­

number functions, particular attention was given to ensure that modeling 

was adequate for attached, large adverse-pres sure-gradient flows, and 

evidently the model can also perform adequately in moderately strong 

normal-shock interactions in which small separation occurs. 

On the other hand, the model of Jones and Launder (1971), with its 

original formulation of the low-Reynolds-number terms, and one developed 

by Chien (1982) to minimize computational stiffness encountered when 

applying the model of Jones and Launder, do not have the same degree 

of success. However, they did provide adequate predictions of surface­

pressure and velocity-profile shapes. Wall functions were developed by 
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Viega s and Rubesin (1983) for all the model s t o e liminate the need for 

int egration to the wall. Successful pr edici t on of the s kin f riction 

was achieved with all models, as shown in the second part of f igur e 23. 

In addition to developing the wall functions for the two- equation 

mo dels, the study of Viegas and Rubesin (1983) also showed t ha t the 

computer code became more robust and converged f aster. Togethe r with 

the savings in grid points near the wall and the advantage of r obustness, 

computational times using wall functions were decreased by near ly one 

order of magnitude over those using integrat i on to the wall boundary . 

Although the axisymmetric bench mark experimental flows have the 

advantage of minimizing three-dimensional e f f ects, they are limi ted t o 

moderately strong interactions because the f low is confined and s epara­

tion extent is limited . Therefore, one must exercise caution i n gener­

alizing these results f or two-dimensional situations, in whi ch for t he 

same free-stream Mach number, separation may be conSiderably l arger. 

In those cases, predictions from computations are not as good. To 

il lustrate this aspect, unpublished computations by C. C. Hors tma n of 

Ames Research Center f or the experiment reported by Deler y (1983) are 

presented in the next figures . 

In the experiment by Delery, a region of supersonic flow was 

achieved in an asymmetric channel fo rmed by haVing a bump on one wall 

of a rectangular test s ection. In addit ion to fo r ming a lambda shock 

foot, a separated region developed which closed downstream of the j unc­

t ion formed by the bump and the chanGel wall . Although the flow was 

choked across the channel, the significant viscous interaction effects 

only occurred in t he bump-wall side. The computations were made using 

36 

• 



the new implicit-explicit method of MacCormack (1982) along with the 

two-equation turbulence model of Jones and Launder (1971). Both walls 

were treated viscously, but the grid resolution was rather coarse on the 

far wall where interaction effects were small. The equations were inte-­

grated to the wall. 

An interferogram taken of the flow above the bump-wall is shown in 

figure 24. Mach contours determined from the interferogram are also 

shown. They can be compared with the computed contours using two dif­

ferent turbulence models. The unmodified model of Jones and Launder 

(1971), with the low-Reynolds-number formulation of Chien (1982), pre­

dicts a region of separation smaller than that found experimentally. 

As a result, the shock structure also differs in that the computed 

lambda foot of the shock is weaker and the zone of supersonic flow 

smaller. As mentioned previously, the low-Reynolds-number functions of 

the turbulence model may be affecting these calculations, but at the 

time they were made, that weakness of this model had not been reported. 

Therefore, Horstman made another computation using an ad hoc modifica­

tion to the model that had provided some improvements in other separated­

flow computations (see Horstman 1983) to see if the correct f l ow field 

'could be predicted. The results, shown in figure 25, provide a better 

comparison for the Mach contours and extent of separation. It is worth 

noting that these transonic flows also have unsteady aspects that may 

influence our ability t o model the separa ted region. 

The shear l ayer that develops during this strong normal-shock-wave 

interaction behaves like the one that develops downstream of a rearward­

facing step (Seegmiller et al. 1978; Delery 1983). Other studies 
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(Driver and Seegmiller 1982; and Driver et al. 1983) of such a flow, 

which eliminates uncertainties in separation location and the complicat-

ing presence of unsteady shocks, indicate that eddy-viscosity models do 

not work as well as Reynolds-stress models in predicting the flow within 

the separated region. Such models remove the assumption that the 

stresses respond immediately to changes in the s train rate and therefore 

constitute a more plausible physical description in the case of strong 

interactions. 

Some results which exemplify the main thrust of these studies are 

shown in figure 26. In the experiment, the size of the separated zone 

was altered by varying the upper angle of the channel walls, which 

changed the reattachment location . The separated flow was also unsteady, 

but the characteristic frequency was below any expected turbulence fre-

quencies by a factor of 3 . The prediction of the reattachment location 
, 

is a measure of how well the separated zone is being calculated, and one 

can note that significantly better results are achieved with an a lgebraic 

Reynolds-stress model. 

In these computations by Sindir (1 982), the steady form of the 

equations was solved and the wall functions were developed and imple-

mented to eliminate the low-Reyno Ids-number terms needed for integration 

t o the wall. It was recognized early in Sindir's study that the scale 

equation used in the original algebraic stress model was the weakes t 

aspect of the model formulation. Therefore, when the original stress-

model formulat i on failed to predict the experiment, the production term 

was modified. The change causes the dissipation t o increase and shear 

stresses to decrease with the net effect yielding an increase on 
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reattachment length or larger separated zones. Within the separated 

zone, improved velocity and shear-stress profiles are also achieved. 

Such a model has not yet been implemented in shock-separated flows 

because of computational efficiency considerations. However, with the 

compressible-flow wall functions developed by Viegas and Rubesin (1983) 

future attempts can be anticipated. 

Trailing-Edge Flow Interactions 

Supercritical-wing technology development also depends on an under­

standing of the flow at the trailing edge because of its global influ­

ence on wing lift and drag. A series of two-dimensional bench mark 

flows, as shown in table 5, has been under investigation to provide 

modeling guidance. The experimental flows range from attached incom­

pressible flows with no pressure gradient to high subsonic speed com­

pressible flows with adverse pressure gradients leading to small 

separation. For incompressible flows, viscous - inviscid interactions 

have not been important, and modeling studies have shown that two­

equation eddy-viscosity models are adequate to resolve the flow in the 

near-wake region (Marvin 1982). For the higher speed flows, viscous­

inviscid interactions are important and some additional discussion is 

warranted herein. 

Some of the important physical characteristics of these higher 

speed flows are depicted in figure 27. A spark shadowgraph and mean­

flow characteri s tics, determined from laser velocimeter measurements of 

Viswanath and Brown (1982), are shown. There is a rapid thickening of 

the upper surface displacement thickness as the trailing edge is 
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a pproached. This displacement effect causes changes in s t reamline 

curvature and significant influence on the outer inviscid f low. Such 

effects must be accounted for if correct drag and lift cha rac ter i stics 

a r e t o be predicted . Two viscous layers of differen t thickness merge 

in t he near-wake, and the locus of does not occur along the u . 
IDln 

ima ginary geometric line separating the upper and lower surfaces. 

Turbulence modeling that reflects the mixing of two v iscous 

regions of different characteristic scales must be addressed. In this 

r egard, the incompressible experiments have been extremely useful. 

They have verified that two-equation models accomplish this mixing of 

t wo different length scales quite adequately and they have a definite 

advantage over zero-equation models which must heuristically blend 

t hese two lengths a s a function of Reynolds number and angl e of a ttack. 

When pressure gradients are large enough, small separation can occur as 

in this example. 

The flow direction in this separated region has been found t o be 

int ermittent (Viswanath and Brown 1982). Another feature of t he f lows, 

ob s erved in the short-duration shadowgr aph exposure, i s the existence 

of di strict counterclockwise vortical structures that originate a t the 

trailing edge, grow, and merge with one another downs t ream . Such struc-

tures have also been observed in high- speed, unseparated , asymme t r i c 

trailing-edge flows. Their occurrence is due to the singul ar nature of 

the trailing edge where t he interaction between the high-momentum lower-

surface flow and the l ew-momentum upper-surface flow occurs. It is not 

known if these structures are the primary causes of the unsteadiness in 

the small separated zone. 

40 



Some success has been achieved in modeling the mean flow within 

complex trailing-edge regions (see Horstman 1983). An example of 

comparisons between experiment and computations using the two-equation 

turbulence model of Wilcox and Rubesin (1980) are shown in figures 28 

and 29 for the case with small separation. Grid resolution was fine 

enough to resolve the expected interaction between the viscous and 

inviscid regions, to provide proper integration of the near-wall, low-

Reynolds-number terms in the modeling equations, and to provide adequate 

numerical transition between the no-slip wall-boundary condition and the 

near-wake flow without resorting to grid alignment with the experimen-

tally determined u . ml.n streamline. 

In figure 28, the predicted pressure distribution is ShOWIl to agree 

adequa tely with the experimental one. Although the location of separa-

tion was different in the computation and experiment, values of the 

viscous disp l acement and momentum thickness also showed excellent agree-

ment. Corresponding mean-velocity and turbulence profiles are shown in 

figure 29. These comparisons also indicate good agreement. The inter-

mittent nature of the separated flow and the vortical structures were 

not predicted. 

Whether these aspects could ever by predicted within the framework 

of the mass-averaged Navier-Stokes equations depends on whether the 

characteristic shedding times are much longer than the characteristic 

times associated with the turbulent structure. Although no estimates 

of the vortical s hedding frequencies were made, a characteristic fre-

quency of pressure fluctuations beneath the separated zone was measured 
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and found to be about 9 kHz. This frequency is of the order of the 

characteris tic frequencies within the attached turbulent layer and 

hence it is unlikely that computations would resolve these structures . 

The importance of resolving these unsteady features has not been fully 

explored and further study of this aspect may be warranted. 

Cross-Flow Separation at Supersonic Speeds 

Aircraft maneuverability requirements and space transportation 

vehicle reentry attitudes require an understanding of flows over bodies 

at high angle of attack where separation can occur on their leesides. 

For our discussion, we will limit consideration to steady separa-

tions on simple shapes for which some modeling successes for fully 

turbulent flows have been demonstrated. Bench mark flows are shown 

in table 6. 

Some typical physical characteristics of these flows can be 

explained with the aid of figure 30, where cross-flow streamline pat­

terns and surface skin-friction directions are illustrated. The ratio 

of angle of attack to cone half-angle, a, is often used to categorize 

these simple flows. When a is less than 1, inviscid theory, coupled 

with boundary-layer techniques , is adequate for predicting these flows. 

As a nears or exceeds 1, separation occurs near the lees ide generator. 

As a increases, separation moves farther from the lees ide generator. 

Secondary, and even tertiary, separation can manifest itself. The 

converging and diverging skin-friction direction represents separation 

and attachment lines, respectively. Depending on the flow Mach number 
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and angle of attack, cross-flow shock waves can also occur; they too 

can cause separation (such a circumstance is not illustrated). 

The separations that occur are open in the sense that there is no 

recirculation of downstream fluid to forward locations. And, for 

supersonic flows, the downstream influence on the upstream flow is felt 

only through the subsonic region of the boundary layers, which can be 

quite small for turbulent flows. In such situations, the mass-averaged 

Navier-Stokes equations can be put in parabolic form by neglecting 

derivatives of the shear stresses in the marching direction, and pro­

viding some special procedures in the subsonic region of the flow (see 

for example Schiff and Steger 1980; Rakich et al. 1982). Such approxi­

mations provide considerable improvement i n computational efficiency 

be cause the solutions are marched in space coordinates only, time being 

superfluous. Considerable success has been shown for this approach, 

using implicit procedures when a is less than 1, and when the flows 

are attached. In these cases, adequate turbulence modeling is provided 

by zero-equation eddy-viscosity models. 

When separation occurs, viscous effects determine the 1eeside flow 

structure. Numerical resolution and turbulence modeling both become impor­

tant. To illustrate the effect of the choice of turbulence model, the data 

from the bench mark flow published by Rainbird (1968) at a given axial 

location are compared with several computations in figure 31. The surface 

shear-stress angle direct ions ws are defined relative to the conical 

generator. Therefore , when the angle is positive, the flow is toward 

the l eeward p l ane of symmetry and away from it when the angels are 

negative. Thus, this flow shows primary separation at the first 
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location of a sign change in w (i.e., 123°), and secondary separation 

at the next sign change location (154°). 

The computations shown in figure 31 were performed using two dif­

ferent algorithms that solve the parabolized form of the Navier-Stokes 

equations. They differ mainly in the manner in which the subsonic 

region of the flow is treated. Rakich et al . (1 982) solve for a portion 

of the pressure term in that region , to enable the solution to march 

TI10re efficiently in regions where departure solutions may occur, and 

they actually march the solution from the cone apex. Deganni used the 

approach of Schiff and Steger (1980) in which the pressure within the 

subsonic region is assumed to be constant and equivalent to that in the 

supersonic region and the flow is treated as if it were conical. Both 

methods used implicit procedures to advance the solutions. Although 

no thorough comparisons of these two methods have been reported, example 

computations using comparable grids on similar shapes at lower angles of 

a ttack where the flow is attached would suggest the two methods yield 

essentially the same solutions. The comparison in figure 31 tends to 

substantiate this for separated flows as well. 

The differences in results between the computations in figure 31 

probably show the effects of different turbulence modeling. First, we 

observe that the computations of Rakich who used the unmodified zero­

equa tion model (eqs. (8) and (10)) does a reasonably good job of pre­

dicting both pres sure distribution and shear-stress direction. On the 

other hand, Deganni's solution using the model of Baldwin and Lomax 

(1978) fails t o predict the leeside flow, giving a simple primary 

separation with reattachment near the leeside generator. Deganni 
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found that the maximum of the vorticity function equation (21), used 

to establish the length scale, did not have a single maximum. Choosing 

the y associated with maximum farthest from the body introduced 

artificially high values of viscosity and erroneous prediction of the 

flow. Modifying the computational logic to ensure that the length scale 

was determined at the location of the first maximum resulted in much 

better prediction. In most respects, the results of the modified model 

compare with the zero-equation computations of Rakich. 

A further illustration of the influence of modeling on the compu­

tations is shown in the top portion of figure 32(a) where velocity vectors 

in the cross-flow plane (taken from Deganni and Schiff 1983) are shown. 

Proper modeling results in the correct flow field with the primary, 

secondary, and tertiary vortices. However, another facet of flow 

modeling numerical resolution - must also be considered. This facet 

is shown in figure 32(b). The computations are for another cone and 

another set of conditions. Using the modified turbulence model, 

Deganni showed that when the cross-flow grid is too coarse ~~ = 5°, 

a single vortex associated with primary separation is found. For the 

finer grid (~~ = 2°) the primary, secondary, and tertiary vortices are 

found. The latter corresponds better with the measured results from the 

experiment, and it is concluded that the fine-resolution computations 

fairly represent the real flow field. The obvious conclusion from such 

studies is that grid resolution and turbulence modeling in the initial 

stages of cross-flow development are both very important. 

Further work r emains to refine our ability to model these flows 

with large separations. Removing the ambiguity in defining the proper 
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length scale in the eddy-viscosity model would be a fruitful area for 

study, as well as establishing some criteria for proper grid resolution. 

CONCLUDING REMARKS 

The status of flow modeling in which numerical simulations of the 

mass-avera ged Navier-Stokes equations are us ed to compute high-speed, 

compressible, turbulent s eparated flows was reviewed. Emphasis was 

placed on bench mark f l ows that represent simplified, but realistic 

aerodynamic phenomena. These included impinging shock waves, compres­

sion corners, glancing shock waves, trailing-edge regions, and super­

sonic , high-angle-of-attack flows. In each case, comparison with 

experiment provided an assessment of modeling capabilities and short­

comings. Consideration was given to showing the importance of combining 

experiments, numerical a l gorithm, grid, and tur bulence model to develop 

effectively this potentiall y powerful technique for solving separated­

flow problems. 

The mass-averaged Navier-Stokes computer codes in use today are 

still in their developmental s tages. They rep r esent a compromise between 

the choice of numerical algorithm, grid, and turbulence model. The 

compromise is dictated by constraints of numerical efficiency and the 

lack of an adequate turbulence mode l . Provided that adequate safeguards 

are used to ensure numerical r esolution, it is apparent that the compu­

tations employing eddy- viscosity turbulence models can give a qualita­

tively good repres entation of many two- and three-dimensional, complex 

aerodynamic flows involvi ng shock waves and separation . Although flow 

details within separated regions cannot be predicted with complete 
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confidence, the solutions can now provide a bridge for connecting com-

putations on either side of embedded separated regions. 

Of the work remaining in developing these codes into predictive 

tools, proper physical modeling remains paramount. The challenges of 

better numerical accuracy and resolution along with better turbulence 

modeling are areas for further exploration. With regard to the latter, 

it is clear that some distinct advantages are gained by employing 
-

higher-order turbulence models. Without inordinate increases in com-
... ---. 
putational times (25% increases are typical), two-equation models pro-

vide unambiguous, albeit approximate, determinations of the length and 

velocity scales needed to define an effective viscosi ty, and they pro-

vide inherent means to allow turbulence to adjust itself appropriately 

to rapid changes in the mean flow . 

Whether they can be improved to provide completely adequate model-

ing or whether they must give way to Reynolds stress modeling is a 

debatable issue, the resolution of which requires additional study. 

More has to be done to determine the causes and effects of flow unsteadi-

ness and its importance in modeling both two- and three-dimensional 

flows. And, more has to be done experimentally to define flow-field 

structures and critical parameters, to gain further understanding of 

modeling, and to provide well-documented bench mark tests against which 

progress can be gauged. 
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(a) SHOCK IMPINGEMENT (b) CONTROL SURFACES 

(c) TRANSONIC SHOCK INTERACTIONS 

,il \ 

(d) LEESIDE FLOWS 

• 

, . 

Figure 1.- Photographs showing aerodynamic flows with separation: 

(a) Shock impingements; (b) Deflected control surfaces; (c) Transonic 

airfoils ; (d) Leeside flows. 

58 



INVISCID INTERACTION 

I.S. R.S . 

p · -
--'" x 

::;.-:; 

WEAK INTERACTION 

R.S. 

p 

L-----------------------~x 

STRONG INTERACTION 

I.S. 

p 

L-----------------------_x 
S R 

Fi gure 2. - Physical characteristics of 2-dimensional oblique shock-wave 

interactions . 
,-

59 



Co 
l,) 

Co 
l,) 

.6 

.4 

.2 

M ::: 2.9, e ::: 29° 

o COMPUTATION 

x, Y MESH (60 x 20) 

~. I . I . j . I . I . I . I . I . I . O 

¢ 
d 
I 

¢ 
r· I . I .I . I . IH.I.H . I . II.I .~ y = 0.475 

p 
o .. . ... . .... . 

. 6 

.4 

.2 

o 1 

OIQr.j .j .J.!.j.j.[.j . j.j.j .j . j.[ .J.I·j ·j ·,·j·j·j ·H · I · j 

~ 
¢ 
I 

¢ 
I 
I 

r y=O 

I 
¢ 

4 

Figure 3.- Modeling of an inviscid oblique shock-wave interaction. 

60 

.. 

.. 



4 
LS. S.S. 

R.S. 

3 

... E 2 u 

>-
~ . 

1 

(a) 0 

COMPUT ATION 
O·EO. MODEL 

\ R.S. 
3 

E 
u 2 
>-

1 ~ 

(b) 

\ COMPUTATION 
MODIFIED MODEL 

~.S.(WEAK) 

3 ~ 
I 

E 
u 

>-

1 . 

(e) O ~~~~~~W=~~~~-L~~~~~ 

-5 -4 -3 -2 -1 0 1 2 3 4 5 
(x - xo)/oo 

Figure 4.- Modeling of a strong oblique shock-wave interaction: 

(a) Experimental isoba rs; (b) Computation using a O-eq. turbulence 

model; (c) Computation using a turbulence model modified by experi-

mental information. 

61 



M =3 
R~ = 18 x 106 

.20 1> = 00 

.16 
(WINDWARD) 

. , 

.12 

.08 

.04 
·0 000 

~ 0 
Cl.. 

---~ 
Cl.. 

.20 1> = 1800 

.16 
(LE EWARD) 

.12 o EXPERIMENT 

-- COMPUTATION (O-EQ.) 
.08 

.04 

o° C()Cb \ 
. - '-O(x)OO CD 

° ·00 0 ° 
0 
30 40 50 60 70 80 

x , em 

Figure 5.- Modeling of a plane strong oblique shock- wave i n t er acting 

wit h a f low- aligned cy l inder: Surface pre ssures on windwa r d a nd 

leeward planes . 

62 



E 
u 

> 

3.5 

3.0 

2.5 

2.0 

1.5 

1.0 

.5 

INCIDENT SHOCK 

(A) (B) (C) 

t \ t 

FAN 

(D) (E) 

~ t 

BOUNDARY 
LAYER EDGE 

O~--~~~~~~~--+--,-L--~~---.---,---.---.---.--.---. t 52 50 56 58 60 62 64 

S1 NR1,S2 NR2 x, em 

(a) FLOW FIELD INTERPRETATION 

E 
u 

> 

2.5 

2.0 

1.5 

1.0 0 

.5 

8 
B 
o 

(A) (B) (e) (D) 

8 
8 
o 

DIl 
[] 
o 

8 
10 

o EXPERIMENT 
COMPUTATION (O-EO.) 

(E) (F) SURVEY 

o 
o 
o 
o 
o 
o 
o 
o 

LOCATIONS 

o OJ 
o 
o 
o 
o 
Qi 

DO 
OJ 

[] 
o 
o 

OL-~~-L~-L~~J--L~-U~~~-L~~~~~~~~--~~ 

0.0 0 .0 0.0 0 .0 0.0 0.0 .05 .10 .15 .20 
(A) (B) (C) (D) (E) (F) 

P/PToo 
(b) STATIC PRESSURE SURVEY 

Figure 6.- Modeling of a plane strong oblique shock-wave interacting 

with a flow-aligned cylinder: (a) Windward symmetry-plane flow field 

interpreta tion from experiment; (b) Comparison of experimental and 

computational static pressure surveys in the windward symmetry-plane. 

63 



" 

: : 
(a) COMPUTATION 

50 52 54 56 58 60 62 64 66 
x, em 

(b) EXPERIMENT 

Figure 7.- Modeling of a plane strong oblique shock-wave interacting 

with a flow- aligned cylinder: Comparison of experimental a nd compu-

tationa l sk in friction lines, 

64 



INVISCID 

p 

L-________ -L ____________ ~ X 

WEAK INTERACTION 

'/ p 

L-________ ~ ____________ ~ X 

STRONG INTERACTION 

p 

L------------'---------------.x 
C 

Fi gure 8.- Physical charac t eristics of 2- dimensional compression-corner 

interactions . 

65 

--------_._--- -



3 

8 e: 2 
a.. 

(a) 

.002 

..... 8 .001 
u 

o 

o EXPERIMENT, SETTLES et al. 

O-EO., IMPLICIT } 
2-EO., HYBRID COMPUTATIONS 

WEAK INTERACTION STRONG INTERACTION 

RelQ = 6.3 x 10: 1m J SHOCK 

~ -x x 

e = 16 

...-

/,,-''0 
. 0..--

/0' 
/5' 

1/ 
/6 
./ 

.& 

I 
/ 

/ 
/ 

I 0 
o 

o 

e = 20 

o 
o 

.~ 10 
I. i 0 // 
I I ~ a / 0',;6' / 
bi9 / 
Iqp / 
\ I' I 
\ ., I 
\1 i / 
b-I 

-. 001 '--l.--L-'-...L-.L...J'----'-' --'---'---'--'"----' 

o .1 o .1 
(b) x,m x,m 

Figure 9.- Modeling of a compression-corner interaction using different 

algorithms and different turbulence models : (a) Pressure distribu-

tions; (b) Skin f riction distributions. 

66 



~ 
Co -... ~ .10 

Co 
t:> 

.05 

(b) 
0 

1.0 

.8 

?-- .6 

.4 

.2 

(c) 
0 
- 1.4 

M=3 

Re = 6 x 107/m 

o EXPER IMENT, 
e = 20° 

00 0 o 

MEAN PRESSURE 

o 
o 

o 

o 

o o o 
o 

RMS FLUCTUATIONS 
o o 0 

0 0 
0 

0 

0 
0 0 

0 

0 0 

INTERMITTANCY 

000 
0 

0 

0 

0 
0 

0 

-1.2 - 1.0 -.8 -.6 
x/oo 

o 0 
00 0 

0 000 0 

- .4 -.2 

o 

0 

0 0 o 

000 

0 

Figure 10 .- Effects of unsteadiness on the phy s ical structure of a 

compression- corner interaction : (a) Mean surface pressure; (b) rms 

of fluctuating pressure ; (c) Int ermit tency r ela tive to undisturbed 

f l ow. 

67 



.005 

o 

E _ -.005 
x 

-.010 

00 EXPERIMENT 

---COMPUTATIONS, (2-EQ.1 

o 
o ./" .., o 

REATTACHMENT 
o 0 

./" ---------

\ 
o \ 

\ 
o 

~---­
o ---------

o 
SEPARATION 

o 

-.015 '--___ ~ _____ "__ ____ .......... ____ _...J 

o 2 4 6 8 x 106 

Reo 

Figure 11.- Modeling of separation and reattachment points for a com-

pression corner . 

68 

-. 



(a) SHARP LEADING EDGE 

A 

* -B 

¢ STREAMLINES OUTSIDE 
BOUNDARY LAYER 

$- SKIN-FRICTION LINES 

WEAK INTERACTION 

VIEW ALONG A VIEW ALONG B 

STRONG INTERACTION 

SEPARATION 7 / REATTACHMENT 
LINE / LINE 

-----
I 

SHOCK 

7 I 
I 

---., 

(b) BLUNT LEADING EDGE 

A 

~ 

SEPARA nON LINE 

--
SHOCK 

VIEW ALONG A 

VIEW ALONG B 

Figure 1 2.- Physical characteristics of glancing shock-wave interactions: 

(a) Sharp l eading edge; (b) Blunt leading edge . 

69 



z 

2.0 

8 c. 
~ 1.5 
c. 

2.0 

1.5 
0 .... 

u --.... u 
1.0 

(b ) 
.5 
- 10 - 8 

y 

y/oa = 7.3 

- 6 -4 -2 

I 

Moo = 3 

Reo = 8.7 x 105 
o 

o EXPERIMENT 

COMPUTATIONS 
- (O-EO., MODIFIED) 

o o 

I 
i---INVISCID 
I SOLUTION 
I 
I 
I 

I 

0 2 4 6 8 

Figure 13 . - Modeling of a glancing shock-wave interaction from a sharp 

leading- edge wedge : (a) Pressures along streamwise direction; 

(b) Skin friction along streamwise direction . 

70 



--- - --

o 
~ 

U --... 
~ 

U 

2.5 

2.0 I 
I INVISCID 

:/ SOLUTION 

I 
I 
I 

1.5 

2.0 

1.5 

1.0 
o 

(b) .5L-___ ~ ___ ~ ___ _L ___ _L ___ ~ 

o 2 4 6 8 10 
(Y - yDI /o O 

Figure 14.- Model ing of a glancing shock-wave interaction from a sharp 

leading-e dge we dge: (a) Pressures along transverse direction; 

(b) Skin f riction along transverse direction. 

71 

I 
I 



· -------------

I 
I 
I 

I 

I 12 

101 

'-SEPARATION 
LINE 

8 
~ ./ 

0 c.o 
6 ~ 

./ ./ 

INVISCID ./ ...... "" ./ ,. 
SHOCt( ./ ...... 

..... 
...... 

4 
...." 

2 --
..... ./ 
./ ./ -- -~ -;;: 0 

0 

10 
></0 

Figure 15._ Skin- fricti on line directl.'ons 

computed fo r a gl ancing shack ~aVe f rom a sha rp leading_edge ~edge . 

20 

72 

---- ----



Re/m = 6.7 x 107, 2R = 1.27 em, Z/R = 0 

~ . 

6 .. 3 Moo = 2.95 

INVISCID /1 0 b. EXPERIMENT 
BOW SHOCK 

5 

2 
4 

0 EXPER IMENT 
8 c.. CALCU LATION 8 -- c.. c.. (O-EO. , MODIFIED ) --c.. 

3 0 

1 

2 

(a ) 
1 
-4 - 3 -2 - 1 0 -2 0 2 4 6 

(x - xo )/R (x - xo ) /R 

Figure 16 .- Modeling of a glancing shock- wave i n t erac t ion f rom a blunt-

plate generator: (a) Pressures on the fla t plate i n t he plane of 

symmetry ; (b) Pressures on the flat plate off t he pl ane of symmetry . 

73 



2.5 

2.0 

1.5 

z/D 

1.0 

.5 

0 

5 

4 

3 

z/D 

2 

1 

o 

(a) 

.4 

rp = 90° 

(c) 

1 
PIP 00 

.8 1.2 
Pw/Pt ? 

2 

.~: : : : : : : 

o 
o 

I .x 

1.6 

o EXPERIMENT 

COMPUTATION 
-- (O-EO., MOD IFIED) 

0 

o 

.5 
P/Pt 

rp = 90° 

o 
o 
o 
o 

2 

x/R = 5 

(d) 

1 
P/Poo 

1.0 

2 

Figure 17.- Modeling of a glancing shock-wave interaction from a blunt-

plate generator : (a) Pressures on the blunt-plate generator, ~ = 0°; 

74 

. ~ 



1.5 

1.0 

Z/D 

.5 

BOW SHOCK 
_ _ ________ _ -1---~ 

-1 .5 -1 
(x)/2 R 

I 
I 

-.5 o 

Figure 18.- Particle paths that depict streamlines in the plane of syrn-

metry ahead of the generator from computations of a glancing shock-

wave interaction from a blunt-plate generator. 

75 



~ 
(J\ 

240 

200 

160 
E 
E.120 
>-

80 

40 

o 

(a) WEAK SHOCK 

SCHLIEREN 

MACH CONTOUR 
(LASER VE LOCIMETER) 

Moo = 1.3 

£-IS 
SHOCK WAVE 1/ 

I 
~-'" It ,// I ...--/ 

I 
/ 

I 

/ /,~/ ---
EDGE OF " y /I///r -- --.J.:.~ 
BOUNDARY v ,o/,~{/~/~A --....... 
LAYER /11 'L' j 
,.,, ___ ~~;/7/) __ _ o:.!l.. ---
j.lO -==. === ::::::::: __ ~~----::::::.--::=- _- - --0.' HO ~~y~ __ _ -=--==-~ --=-----=-_--=0.' 

j-O 0.' 0-. 0''-- 0'-' - o-s --= 00 4 ==-0-. 
40 80 120 160 200 240 280 

x, mm 
o 

(b) MODERATE STRONG SHOCK 

SCHLIEREN M = 1.4 

MACH CONTOUR 
(LASER VELOCIMETER ) 

Moo = 1.4 

/ 
x/ 

/ 

/ 
/ 

/ 

/ 

/ 
/ 

/ {" It.· 
/ I 

/ / 

/ SHEAR LAYER - - - - --- --:;. 
/'/' 

/ -<.: 
/./'./' 

'-0 --- --
:;::-"-"- 10()1 __ 

--~-

40 80 120 160 200 240 280 
x, mm 

(c) STRONG SHOCK 

SCHLIEREN M = 1.54 

MACH CONTOUR 
(LASER VELOCIMETER) 

SHOCK WAVEI / 
/, 0 -. £. 

/ _SHEARJ:j\YER ;I>' 
/ .t,; r -Moo = 1.54 

/ / 0-' 
/ / J" 

/ '/ / / 
/ / / / / . / 

/ / \ / / 1 / ,/,/ 
,/ 

,/ 
,/ 

/ II 
~'Y / 

,/ 
,/ 

~ 

/ '/ '0 1 -,,/ 
7. J 1 / ,_,__ /::: ___ .J:l- - - ,.., ,_. ___ -:::::::~.......-;::::::=9~ -:::::.::::::.- _---'-0 ,,=""~~~=~======~~ .. _ c---- ~...3?'';='-~ :::;;;:..:--~~~-==-~~ ~ 0-6 

o 40 80 120 160 200 -240 280 
x, mm 

Figure 19 .- Phy sical characteristics of normal shock- wave i nteractions: (a) Weak shock; (b) Moderately 

strong shock; (c) Strong shock. 

" 
~ 

----.----------



2.0 

1.5 

f · 

1.0 
:J 

Q" --Q" 

1.0 

1.0 

1.0 

6 

5 

4 

*::l3 
~ 
* 2 "0 

Moo Re/m x 10-6 

1.29 9.84 
,.r,I')()C~OCX:~"" J-O--0--0---0-0--0- 0 0 0 

4.92 

4.92 

4.92 

_ l _____ 1 ____ 1 

o EXPERIMENT 
COMPUTATION (2-EQ.1 

-----: .. ~x 

Moo Re/m x 106 6 
Re/m x 106 

Moo 
1.48' 4.92 5 

0--0-0 1.48 4.92 
0 4 o 0 0 0 0 0 0 0 0 0 0 

0 
0 

1.37 4.92 3 
0 0 0 1.37 4.92 

:J 2 0 0 0 0 0 0 0 <I:> 0 0 _ --<I:> 

4.92 1 
1.28 4.92 

0 0 0 

0 0 0 
~-O--o 0 

9.84 1.29 9.84 
_. --.l J 

10 20 30 40 50 0 10 20 30 40 50 
X X 

Figure 20.- Mode ling of a moderate ly strong normal-shock wave inter-

action f or various Mach and Reynolds numbers: (a) Surface pres-

sures; (b) Displacement thicknesses; (c) Momentum thicknesses. 

77 



8 

6 

I > 4 

2 

MACH CONTOURS 

Moo = 1.48, Re/m = 5 x 106 

: 1.0 0.95 

~LENGTH OF SEPARATION 

0.91 

0.91 

o~~~====~-----L----~----~----~----~--~ 

8 
SHOCK 

POSITION 0.910 ·~~0 1.0 0.95 0.91 

I> 4 

~ /<// =='=='=,=;;;:-='= ...... = .... ~~----::::.-:.==== ...... =----==-~-======= 
~= I / / " --- ' " ---...... - '-VORTEX LAYER 

1.4 / / / \, '" , / / / \ I , 
/ ,1.3 / / 11.05 /1.0 10.95 [) 

// / // ----"L/_--7,L/~~=-=_=--=-=-~-~-:-~~~=-=-~-=~~--
2 ( ) / /1. 2 ./ _- - _--- - 0.91 

b / / J - --

6 

---~~~~~~~--~~--------~------------[)* 
LENGTH OF SEPARATION 

o 5 10 15 20 25 30 35 40 

x 

Figure 21.- Modeling of a moderately strong normal shock-wave inter-

action: (a) Mach contours from the computation; (b) Mach contours 

from the experiment. 

78 

· t 

". 

J 



I . 

__ Xo . 1 • x 
(111(1111/(((/((((///11(/(/(11/((/ 

)} ,j jjjj); ) 1)} 7>;;;;} > 'JJ)JIJJ JJ7 77 

2.0 

1.5 
8 a. 
~ 
a. 1.0 ~ ____ -:..J 

o 
.5 

Moo = 1.48 

Reo = 5 x 105 
o 

EXPERIMENT 

O-EO. } COM PUT ATION 
2-EO. 

(a) OL-____ L-____ L-____ L-____ ~ ____ ~ ____ ~ ____ ~ 

.002 

.001 

-u 
0 

1.000 (b) 
-10 -5 o 5 10 15 20 25 

Figure 22.- Effect of turbulence modeling on moderately strong normal 

shock-wave interactions: (a) Surface pressure; (b) Skin friction. 

79 



M 
o 

4 

3 

~ 2 
..... 

u 

(a) 

o EXPERIMENT, 1V100 = 1.48 

WILCOX·RUBESIN MODEL) 

JONES·LAUNDER MODEL COMPUTATIONS 

CHIEN MODEL 

(\ , \ , \ , \ 
I \ 
I \ 
I \ 
I \ 
I \. :=-...:....-==.==--:... .. :::::0" J "-

~:"\\ / ............... 
\'\ / .-.-.-~'"'"':"'.::::. ............. - ..... ~-'" . =.' ". / -\' 

\ '- 0°° 
0 00 

0 0 ' 
0 ' 

° 

oL--------L--------~-------L--------~-------L------~ 

M 
o ..... 

2 

x 1 ..... 
u 

° 

(b) 
o~------~--------~--------~--------~------~~------~ 
-10 -5 o 10 15 20 

Figure 23.- Effects of low-Reynolds-number-term treatment in 2- eq. models 

used to predict moderately strong normal shock-wave interactions: 

(a) Integration to the wall; (b) Wall- function treatment. 

80 

.. 

-. 



ex> 
f-' 

601-1 

40 
E 
E 
>-

20 

" 

EXPERIMENT 

MACH CONTOURS 

E 
E 

>-

E 
E 

>-

75 

50 

25 

75 . 

50 

I 

/ 

/ 

COMPUTATION 
I I 

,'1.1 / 
/ 

/ 

I 1.3,' / ~\ UNMODIFIED MODEL 
r' /, IV. 

I , 
/ 

I 

./ 
/ 

/ 
/ 

" 

I 

,/ 

./ 

--.. /" 

I 

I 

, 
1 , 

, , 

./ 
./ .. 

i 

I 

./ 

I ,;f \ / \/",A../',--,. 
/ 1"1 Y '\ 

1 <y, I \ 
,- ,'.t· 'I ',A. 

1/ :~~I.' "-
:/ff,," '\ 

';})i I " 
.({f!/(f/~ "-... ',/1.1 i, ...... '-.'''' 

d~(f7i .r.. 1 "" 111':~/.i' \.>\ " 
/ .-~:~~:I{ \ ... \ 

/~rf/ ~............ "-
/:p, . ...).. '. " \ \ ,;:..'" '. ,,' -' 

, 'Ii,,;' . ..., -'"'\ 1 0 '.... \, 0 9 
i ,,-? ~jt I • . • , " • 
.. .... I'~'/t" / ~ -.. , J , 
._ ,_ . .?~;2:.'/~'. .~- - _ .... > ,/,/ _-
-'-f · '-. ,-=-~.:y~;---- ---;:--~:-,~s;~=~rff~-~~~~~~~~~fff~~-

, 
1 

/ 

-"'-·7$5 if~ - ;"~"""""--=-~-= 
• • __ • • ••• ; •• • : ~ . ':I: _ 

I 
/ 

I 

/ , , 

1.0 / 

,. 
i 

.. 
1 

/ 
I' 

/ 

I 
/ 

I 

... / 
, 

1 
I 

.' 

/ 
I 

I 

1.3 / ,( A~~ v· 
r ; ~11( 

MODIFIED MODEL 

',.. -/~II.V/L 
• I /(,,' 1/ '- "~' • 
V /!f,nIV I ', . IN ... ./ v ---,. .. ~ 
• / '~/I.~ .. . 

/ ,- I,' .' i/~j.f \.. ',,-
l ,.. ' /, lf~I{(~ \" '\, 
1'/';"1'/\ " \ 

.{. 1//,, :.'1 1..., ~ \ " \\ .'./,:. ~ .. l I "- \ 

/ '/ff~v \ I " \ 
' r/~;; ' )..- i \ , \ 

./ ) //Y, · ..... / "~" " 
' ./ '? / ~ • i , , 

/ &,%7.' \ " U ~ O " \ / ",,,,/ \ '- ' , 0,9 J 

U = 0 R 

o [I ===:::=:::::::~::;;~:-~-I-_~-~'----~ 
250 300 

0' I .... . I '- '- ., , 

250 275 300 325 350 350 

25 r / ?~,;, 1.0 ~ I -=_. '-',"" ) ,. _ ~ 
./ /~;.~~ ... ' ~~ !~;;:~~r-~~~~~=== "';'i: ,//' -i$2 Q , = _ " j€f"nr::~ ?i.~:: ..... . : .. .. ........ . _. 

x, mm x. mm 

Figure 24.- Modeling of strong normal shock-wave interactions: Comparison of shock structure from 

experiment and computation. 

--- . __ ._---



. 7 

.6 

u.. .5 
UJ 
a:: 

0.. 

---0.. .4 

.3 

o.··q ···:·· ·· · ·· · 
0'" 

0 ·0' 
D" '" .. ··· ··0 · 

.' --:' 0 '0 '0 000 
: '0 

o EXPERIMENT , 
2-EO. ) COMPUTATION 
2-EO. (MODIFIED 

.2 L-__ ~ ____ ~ ____ ~ ____ ~ ____ ~ ____ -L ____ -L ____ ~ ____ ~ __ ~ 

.20 .24 .28 .32 .36 .40 
x , m 

(a) Surface pressures. 

Fi gure 25.- Modeling of strong normal shock-wave interactions. 

82 

.. 



.012 

E 
> .006 

, . 

x = 0.232 m x = 0.280 m 

o 

o 
o 

x = 0.310 m 

Q­
O· 

¢ 
p 

Il 

x = 0.350 m x = 0.400 m 

.2 .6 1.0 - .2 .2 .6 1.0 -.2 .2 .6 1.0 - .2 .2 .6 1.0 - .2 .2 .6 1.0 
2 u/ uoo 

o 

.012 

"0 
b 

"'0 

E ~o 
.006 ~o 

> :0 
..... 0 

":8 . . 

a .01 .02 a .01 .02 a .01 .02 a .01 .02 

(u'v ' ) /u~ 

0 
0 0 

\ 0 
.012 :0 

';0 
0 0 \ 0 

0 0 ;0 
0 0 

:% 0 0 E .006 0 0 ;0 
> 0 0 0 b 

oP 0 /0 

OB :1 (0 

':§ 0 . . 

a .05 .1 a .05 .1 a .05 . 1 0 .05 .1 
2 k / uoo 

(b) Velocity and turbulence profiles. 

Figure 25.- Concluded. 

83 



9 

8 

.:e. 7 
0:: 
x 

6 

5 

4 

2.5 

2.0 

1.5 

1.0 

. 5 

-----(a) 

- 2 o 

--
2 

o 

--
4 

ex 

x/h = 4 

o 

--
6 8 

o 

(e) 

EXPERIMENT, DRIVER 

2-EQ. } 
RSE, MODIFIED COMPUTATIONS 

x/h = 4 

--on --" D J 0. ..... 
...f)-----

(b) 
o~~~~~--~--~----~--~--~ 
-.4 -. 2 o .2 .4 .6 .8 1.0 -.02 0 .02 .04 .06 .08 .10 .1 2 .14 

Figure 26 .- Step-flow studies undertaken to provide modeling-guidance 

for large separated flow regions: (a) Reattachment length; 

(b) Velocity; (c) Shear stress profiles. 

84 

. , 



(a) SPARK SHADOWGRAPH 

.. 

(b) MEAN FLOW FEATURES 

4r--------,---------.---------r--------~--------~--------~--------~------~ 

DIVIDING STREAMLINE 

2F---

LOCUS OF Urnin 

O~----------e===~~~==~======~====~ 
/S LOWER 

- 2 L-______ ~~ ______ ~ ________ ~ ________ _L ________ ~ ________ ~ ________ ~ ______ ~ 

-8 -6 -4 -2 0 2 4 6 8 
x, em 

Figure 27.- Physical characteristics of a trailing-edge flow with small 

separation: (a) Spark shadowgraph; (b) Mean flow features from 

laser velocimeter experiment. 

85 



.8 o 0 EXPERIMENT 

-- COMPUTATION (2-EQ.l .. 

LOWER SURFACE 

.7 

~ lI-e. e. 

o 0 

.6 
UPPER SURFACE 

FLAP HINGE LINE 

~ 
.5 ~ ______ ~ ______ ~ ______ ~ __ ~ __ -L ______ ~ 

-50 -40 - 30 -20 -10 o 
x, em 

Figure 28.- Modeling of a trailing-edge flow with small separation: 

Surface pressures. 

86 



.. 

x, em = -1.27 
4 

3 

2 

E 
c.J 

>- 0 

-1 

-2 
(a) 

-3 
0 1 

x, em = -1.27 
4 

3 

2 

5 1 

>- o f----z+-=--j 

-1 

-2 
(b) 

-3 '----L_~ 

0.40 5.08 12.07 

0 1 0 1 0 

u/uo 

0.40 5.08 12.07 

- .005 0 .005 - .005 0 .005 -.005 0 .005 -.005 0 .005 

4 

3 

2 

-1 

-2 

x, em = -1.27 

(e) 
-3 '--~-~ 

-(u'v')/u~ 

0.40 5.08 12.07 

o .005 .010 0 .005 .010 0 .005 .010 0 .005 .010 

(u,2 + v,2)/2u~ 

o EXPERIMENT 

-- COMPUTATION (2-EQ.) 

Figure 29 .- Modeling of a trailing-edge flow with small separation: 

(a) Velocity profiles; (b) Shear-stress profiles; (c) Kinetic 

energy prof ile s . 

87 



SEPARATION (S~)J-:~~~¥:~I 

ATTACHMENT (A) 180 

(PRIMARY ) S", 

A,~........, .... 

--- 0 
....-- 0 

(SEC ON DAR Y) S --r;~-.;:::-;:--;:-:---o------1~ 180 
A/ 

o 

SURFACE SKIN FRICTION LINES 

cxle = ex 

CROSS FLOW PLANE 
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Figure 31.- Modeling of supersonic flow over cones at high angle of 

attack from computations using the parabolized Navier-Stokes equa-

tions: (a) Surface pressure; (b) Surface shear-stress angle. 
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Figure 32 .- Modeling of supersonic flow over cones at high angle of 

attack from computations using the parabolized Navier- Stokes equa-

tions: (a) Effect of turbulence model; (b) Effect of azimuthal grid 

resolution using the modified turbulence model. 
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TABLE 1. BENCHMARK FLOWS FOR EVALUATING NAVIER-STOKES COMPUTATIONS : 
IMPINGING OBLIQUE SHOCK WAVES 

FLOW EXPERIMENTS 

2-d HOLDEN (1972) 

~r6-= 
REDDA AND MURPHY (1973) 

KUSSOY et al. (1975)b 

CLOSED SEPARATION 

3-d I KUSSOY et al. (1980)b 

-f~1 
OPEN SEPARATION 

3-d 
BROSH et al. (1983) 

----....... 

OPEN SEPARATION 

aZERO-, ONE-, AND TWO-EQUATION MODELS 

Moo 

8.5 

3 

7.2 

2.2 

3 

Re x 10- 6 

22 

57 

13 

36 

18 

bSELECTED FOR AFOSR/HTTM STANFORD CONFERENCE (KLINE et aI., 1981) 

COMPUTATIONS 

BALDWIN AND MacCORMACK (1974) 
BALDWIN AND ROSE (1975) 

BALDWIN AND LOMAX (1978) 

VIEGAS AND HORSTMAN (1979) 

MARVIN et al. (1975) 

COAKLEY et al. (1977) 

VIEGAS AND HORSTMAN (1982) 

KUSSOY et al. (1980) 
VIEGAS AND HORSTMAN (1982) 

BROSH et al. (1983) 

GRID 
x,y, rp 

40,32 

40,32 

40, 32 

40, 35 

40, 78 

29,45 

89,50 

MODELa 

0; 2 
o (MOD.) 

o (MOD.) 

0;2 
0; 0 (MOD.) 

0; 1; 2 

2 

47, 20,20 I 0 
47,20,20 0;2 

45,34,38 I 0 (MOD.) 



TABLE 2. BENCHMARK FLOWS FOR EVALUATING NAVIER-STOKES COMPUTATIONS: 
COMPRESSION CORNER 

Re x 10-6 COMPUT A TlONS 
GRID I MODELa FLOW EXPERIMENTS Moo X,Y,Z 

2-d SETTLES et al. (1976, 1979)b 2.9 63-200 HORSTMAN et al. (1977) 50,32 0; 1 

VIEGAS AND HORSTMAN (1979) 50,32 0; 1; 2 

VIEGAS AND HORSTMAN (1982) 80,36 2 

160,40 2 

HUNG (1982) 77,46 o (MOD.) 

\.0 
HOLDEN (1972) 8.7 22 HUNG AND MacCORMACK (1977) 63,31 0; 0 (MOD.) 

N LAW (1974) 3 10 SHANG AND HANKEY (1975) 64,30 0; 0 (MOD.) 
CLOSED SEPARATION HUNG AND MacCORMACK (1977) 63,31 0; 0 (MOD.) 

TENG AND SETTLES (1982) 2.9 6 HORSTMAN (PVT. COMM.) 40,35,20 0;2 

OPEN SEPARATION 

aZERO-, ONE-, AND TWO-EQUATION MODELS 

bSELECTED FOR AFOSR/HTTM STANFORD CONFERENCE (KLINE et aI., 1981) 
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TABLE 3. BENCHMARK FLOWS FOR EVALUATING NAVIER-STOKES COMPUTATIONS: 
GLANCING SHOCK WAVES 

FLOW EXPERIMENTS Moo Re x 10-6 COMPUTATIONS 

3-d PEAKE (1976)b 2 10 HORSTMAN AND HUNG (1979) 

~ VIEGAS AND HORSTMAN (1982) 

~h 
HUNG AND MacCORMACK (1978) 

OSKAM et al. (1975) 3 5 HORSTMAN AND HUNG (1979) 

WEST et al. (1972) 3 0.8 SHANG et al. (1979) 

OPEN SEPARATION 

~ 
DOLLING AND BOGDONOFF (1982) 3 0.8 HUNG AND KORDULLA (1983) 

I I r\ I I 

~ 
OPEN SEPARATION 

-~- ~- ---- _ . _-

aZERO-, ONE-, AND TWO-EQUATION MODELS 

bSElECTED FOR AFOSR/HTTM STANFORD CONFERENCE (KLINE et aI., 1981) 

GRID 
I 

MODEL a X,Y,z 

21,28,31 o (MOD.) 

21,28, 31 o (MOD.) 

32,36,32 o (MOD.) 

21 , 28,31 o (MOD.) 

17,33,33 o (MOD.) 

40,32,32 o (MOD.) 

J 
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TABLE 4. BENCHMARK FLOWS FOR EVALUATING NAVIER-STOKES COMPUTATIONS: 
IMPINGING NORMAL SHOCK WAVES 

FLOW EXPERIMENTS Moo Re x 10-6 COMPUTATIONS 

2-d SEDDON (1960) 1.5 0 .6 VIEGAS AND HORSTMAN (1979) 

;:'<~~, 
VIEGAS AND RUBESIN (1983) 

MATEER et al. (1976, 1979)b 1.3-1.5 10-200 VIEGAS AND HORSTMAN (1979) 

VIEGAS AND HORSTMAN (1982) 

McDONALD (1982) 
CLOSED SEPARATION 
STRAIGHT WALLS 

2-d OM et al. (1982) 1.3-1 .5 0.5- 1 OM et al. (1982) 

M~r/~j~:; DELERY (1983)b 1.3-1 .5 2-4 CAMBIER et al. (1981) 

HORSTMAN (PVT. COMM.) 

~ SALMON et al. (1981) 1.3-1.4 4 L10U et al. (1981) 

CLOSED SEPARATION 
CURVED/DIVERGED 
WALL(S) 

aZERO-, ONE -, AND TWO-EQUATION MODELS 

bSELECTED FOR AFOSR/HTTM STANFORD CONFERENCE (KLINE et aI., 1981) 

' ( 

GRID MODELa 
x, Y 

40,35 0; 1; 2 

20,35 2 (MOD.) 

40,35 0; 1; 2 

38,40 2 

76,40 2 

31,41 2 

170,40 2 

61,21 0 i 

0 ;2 

80,50 2 

'. 



\0 
V1 

TABLE 5. BENCHMARK FLOWS FOR EVALUATING NAVIER-STOKES COMPUTATIONS: 
TRAILING-EDGE FLOWS 

FLOW EXPERIMENTS Moo Rex 10- 6 COMPUTATIONS 

RAMAPRIAN et al. (1981) 0 1 MARVIN (1982) 

~Moo < 1 VISWANATH et al. (1980)b 0.4 47 VISWANATH et al. (1980) 

'(~-
VISWANATH AND BROWN (1982) 0.4 26 HORSTMAN (1983) 

--------
---

aZERO-, ONE-, AND TWO-EQUATION MODELS 

bSELECTED FOR AFOSR/HTTM STANFORD CONFERENCE (KLINE et aI., 1981) 

GRID 
MODELa 

x,y 

50,40 2 

60, 50 0;2 

79,82 2 
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TABLE 6. BENCHMARK FLOWS FOR EVALUATING NAVIER-STOKES COMPUTATIONS: 
SUPERSONIC - HIGH ANGLE OF ATTACK 

FLOW EXPERIMENTS Moo Re x 10-6 COMPUTATIONS 

M > 1 
RAINBIRD (1968)b 1.8 25 RAKICH et al. (1982) 

--. DEGANNI AND SCHIFF (1983) 
BANNINK et al. (1978) 3 7 DEGANNI AND SCHIFF (1983) 
McRAE et al. (1980) 1.6 25 McRAE et at. (1980) 

KAYSER AND STUREK (1978) 3 7 SCHIFF AND STEGER (1980) 

OPEN 
SEPARATION 

aZERO-, ONE-, AND TWO-EQUATION MODELS 

bSELECTED FOR AFOSR/HTTM STANFORD CONFERENCE (KLINE et aI., 1981 ) 

" " 

GRID MODEL a 
x,Y, rp 

VAR., 50, 47 0 

0,50,144 o (MOD.) 

0,50,144 o (MOD.) 

0,30,36 o (MOD.) 

VAR., 50, 36 o (MOD.) 
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