General Disclaimer One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)

SYGTEM DYNAMICSINCOAPDAATED

MONTHLY PROGRESS REPORT \#3
for

SPACE SHUTTLE PROPULSION PARAMETER ESTIMATION

USING

OPTIMAL ESTIMATION TECHNIQUES
(NASA-CR-170847) SPACE SHUTTLE PROPULSION N83-33938
EARABETER ESMIMATION DSING OPTIONAL ESTIMAMION TPलilNIQUES Monthly progress Report (System Dynarics, Inc.) 49 p Unclas HC A04/MFA01 CSCL 21H G3/20 36074

CONTRACT NO. NAS8-3532.4

- submitted to

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION MARSHALL SPACE FLIGHT CENTER

HUNTSVILLE, ALABAMA

20 July 1983

1.0	INTRODUCTION
2.0	FILTERING AND SMOOTHING ALGORITHM
2.1	Extended Kalman Filter Algorithm
2.2	Modified Bryson-Frazier Smoother Algorithm
2.3	Iterations with the Filter/Snoother Algorithm
3.0	FILTER/SMCOTHER ALGORITHM SYSTEM AND MEASUREMEN] MOLEL
3.1	Equations of Motion and Measurement Equations
3.1 .1	Rigid Body Equations of Motion
3.1 .2	Measurement Equations
3.1.2.1	Platform Acceleration Measurements
3.1.2.2	Platform Attitude Neasurements
3.1.2.3	Ground Based Tracking Measurements
3.2	Linearized System State and Measurement Equations
3.2 .1	System State Partial Derivatives
3.2.2	Measurement Partial Derivatives
3.2.3	Additional parameter Partial Derivatives
3.2.3.1	Center-of-Gravity
3.2.3.2	Moments of Inertia
3.2.3.3	Wind Velocity
3.2.3.4	Inertial Platform Tilt
3.2.3.5	Aerodynamic and Flume Parameters
3.3	Propulsion Parameter States and Measurements
3.3.1	sSME Propulsion Parameter Nodel
3.3.2	SRB Propulsion Ferraeter Model
3.3 .3	Vehicle Mass State Variable
4.0	PFOJECTED ACIIVITIES DURING UPGOMING MONTH
	APPENDIX A
	APPENDIX B
	APPENDIX C
	APPENDIX D
	REFERENCES

1.0 INTKODUCTION

This third monthly progress report contains corrections and additions to previously submitted reports. The additions include the results of regression analyses on the tabular aerodynamic data provided. The objectives of the regression analysis were two-folal. The first kas the establishment of a representative aerodynam..c model for future coefficient estimation. The second was to reduce the storage requirements for the "nominal" model used to check out the estimation algorithms. The results of the regression analyses are presented in Appendix D.

The primary aytivities during this reporting period were the development of the computer routines for the filter portion of the eatimation algorithm and the "bringing-up" of the NASA SRB predictive program on SDI's computer. Forc the filter program, approximately 54 routines have been developed. The routines have been higrly subsegmented to facilitate overlaying program segments within the partitioned storage space on our computer. The attempt to bring up the NASA SRB predictive program on our computer has not been completely successful to date. With such a large program, overlaying techniques are required. Progress has been made and we are "hopefully" in the final stages of shifting subsegments around within the segments such that no segment is larger than the allocated partition.

2.0 EILTERING AND SMOOTHING ALGORITHM

The Space Shuttle Parameter Estimation Program utilizes optimal estimation techniques to provide estimates of the propulsion system parameters. The technique selected is the extended Kalman filter and the modified Bryson-Frazier smoother. By modeling the propulsion system parameters as time correlated random variables, improved estimates of these parameters are obtained and are properly time phased by removing the filter induced lag by using the combined filter/smoother. The smoother a.lso provides impr ved estimates of the initial state estimates.

The system, in state-space notation, is modeled as the continuous dynamical system disturbed by additive Gaussian white noise

$$
\begin{equation*}
\dot{\underline{x}}=\underline{f}(\underline{x}(t), t)+G(t) \underline{w}(t)+\underline{u}(t), x_{x}^{x}(0)=\underline{x} \tag{1}
\end{equation*}
$$

where

$$
\begin{aligned}
& \underline{x}= n \text {-dimensional state vector } \\
& \underline{x}= \text { Gaussian initial condition vector with covariance } F_{o} \\
& \underline{w}(t)= p \text {-dimensional white, zero-mean white Gaussian noise with } \\
& \text { covariance } \\
& E\left[\underline{w}(t) \underline{w}^{T}(\tau)\right]=Q(t) \delta(t-\tau) \\
& \underline{u}(t)=n \text {-dimensional control vector. }
\end{aligned}
$$

The elements of the vector $\underline{x}(t)$ represent vehicle position, velocities, attitudes, angular rates, aerodynamic and propulsion parameters, measurement biases; eto. Elements of $\underline{u}(t)$ include known control inputs such as SSME power level commands.

The system described by aquation (1) is observed at discrete times, t_{k}, with not all states being directly measured. Some measurements are nonlinear functions of the elements of the state vector $x(t)$. In general the measurement process is described as

$$
\begin{equation*}
\underline{z}_{k}=\underline{h}_{k}\left(\underline{x}\left(t_{k}\right)\right)+\underline{v}_{k} \tag{2}
\end{equation*}
$$

where

$$
\begin{aligned}
&{\underset{H}{k}}= m \text {-dimensional observation vector } \\
&{\underset{H}{k}}^{h^{\prime}}= \text { functional representation of the measurements in terms of } \\
& \text { the states } \\
& \underline{v}_{k}= \text { m-dimensional, zero-mean, while Gaussjan noise sequence with } \\
& \text { covariance } \\
& E\left[v_{i} \underline{v}_{j}^{T}\right]=R_{i} \delta_{i, j}
\end{aligned}
$$

Examples of the elements of the observation vector z_{k} include radar measurements of range, azimuth, and elevation from the radar site fo the vehicle.

It is assumed that the system process noise vector $\underline{w}(t)$ and the measurement noise vector \underline{v}_{k} are uncorrelated. Also, the system state initial condition vector x_{0} is not correlated with either of these two noise vectors. Therefore

$$
E\left[\underline{w}(t) \underline{v}_{-k}^{T}\right]=0, \quad E\left[w(t){\underset{-}{x}}_{T}^{T}\right]=0, \quad E\left[\underline{x}_{0} \underline{v}_{k}^{T}\right]=0
$$

where the superscript T denotes transpose. For later reference, the following matricies are defined

ORIGINAL PAELE figy
 OF POOR QUALITY

$$
\begin{equation*}
F(\underline{x}(t), t)=\frac{\partial \underline{\underline{f}}(\underline{x}(t), t)}{\partial \underline{x}(t)} \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
H\left(\underline{x}_{k}(-)\right)=\frac{\partial \underline{h}\left(\underline{x}\left(t_{k}\right)\right)}{\partial \underline{x}\left(t_{k}\right)} . \tag{4}
\end{equation*}
$$

These matricies are linearizations of the dynamics and measurement models respectively, evaluated about either a nominal or reference value of the state, or about the state estimate.

2.1 Extendec Kalman Filter Algor: thm

The extended Kalman filter algorithm i.s in essence a conventional linear Kalman filter algorithm applied to a mathematical model resulting from the linearization of the system model equation (1), and measurement process, equation (2), about a current state estimate. The filter yields optimal estimates if the linearization is accurate, i.,e., the state estimate closely approximates the true state. The derivation of the algorithm can be found in reference [1].

The algorithm proceeds as follows. After initialization of the state estimate and covariance, the state estimate and covariance are propagated forward in time uncil a measurement update is available, by

$$
\begin{equation*}
\dot{\underline{\hat{x}}}=\underline{f}(\underline{\hat{x}}(t), t) \quad, \quad t_{k-1}<t \leq t_{k} \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
\dot{P}(t)=F(\hat{x}(t), t) P(t)+P(t) F(\underline{x}(t), t)^{T}+G(t) Q(t) G(t)^{T} \tag{6}
\end{equation*}
$$

ORIGNAL PACE IG
 OF POOR QUALITY

At the measurement time, the state estimate and covariance are updated by

$$
\begin{equation*}
\hat{\underline{x}}_{k}(+)=\hat{\underline{x}}_{k}(-)+k_{k}\left(\underline{z}_{k}-\underline{h}_{k}\left(\hat{\underline{x}}_{k}(-)\right)\right) \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
P_{k}(+)=\left(I-K_{k} H_{k}\left(\hat{\underline{X}}_{k}(-)\right)\right) P_{k}(-) \tag{8}
\end{equation*}
$$

where the (-) and (+) represent the appropriate values just before and just after the update. The updated values are used to reinitialize the time propagation equations (3) and (4) for integrating up to the next measurement time. The Kalman gain matrix is computed as

$$
\begin{equation*}
K_{k}=P_{k}(-) H_{k}\left(\underline{\hat{x}}_{j}(-,)^{T}\left(H_{k}\left(\hat{\underline{x}}_{k}(-)\right) P_{k}(-) H_{i}\left(\hat{\underline{x}}_{k}, \cdots\right)^{T}+R_{k}\right)^{-1}\right. \tag{9}
\end{equation*}
$$

This algorithm is repeated until the last time point, t_{N}, is processed. For later use in the smoother algorithm, various combinations of the state estimates ($\underline{\hat{\hat{x}}}$), measurements (\underline{z}), linearized dynamics matrix (F) and measurement matrix (H), measurement noise covariance (R) and estimation error covariance matrix (P) must be stored for each time instant to be processed by the smoother algorithm.

2.2 Modified Bryson-Frazier Smoother Algorithm

The operation of the smoother algorithm is similar to the filter algorithm except in reverse time. The derivation of this smoother algorithm is found in reference [2]. This fixed interval smoothing algorithm prow vides optimal estimates given all the measurements in comparison to the filtering algorithm providing optimal estimates given the previous
measurements procossed. Therefore the smoother provides improved estimates in addition to removing the time lag induced by the filter algorithm. The smoothing algorithm adjoint variables, λ and Λ are "initialized." at the final time processed by the filter, T,

$$
\begin{equation*}
\underline{\lambda}(\mathrm{T}-)=-H_{N}^{T}\left(H_{N} \mathrm{p}_{N} H_{N}^{T}+R_{N}\right)^{-1}\left(\underline{z}_{N}-\underline{H}_{N}\left(\hat{X}_{N}(-)\right)\right) \delta_{t_{N}, T} \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
\Lambda(T-)=H_{N}\left(H_{N} P_{N} H_{N}^{T}+R_{N}\right)^{-1} H_{N} \delta_{t_{N, T}} \tag{11}
\end{equation*}
$$

If T is not an observation time, λ anc Λ are zero. The adjoint variables are propagated in reverse time to the next previous measurement time by

$$
\begin{align*}
& \dot{\lambda}=-F(\underline{\hat{x}}(t), t) \underline{\lambda} \quad t_{k} \leq t<t_{k+1} \tag{12}\\
& \dot{\Lambda}=-F(\underline{\hat{x}}(t), t)^{T} \Lambda-\Lambda F(\underline{\hat{\hat{x}}}(t), t) \tag{13}
\end{align*}
$$

At the time of an available measurement, t_{k}, the adjoint variables are updated by

$$
\begin{align*}
\underline{\lambda}(-) & =\underline{\lambda}(+)-H_{k}^{T}\left(H_{k} P_{k} H_{k}^{T}+R_{k}\right)^{-1}\left(\left(\underline{z}_{k}-\underline{h}_{k}\left(\underline{x}_{k}(-)\right)\right)\right. \\
& \left.+\left(H_{k} P_{k} H_{k}^{T}+R_{k}\right) \cdot K_{k}^{T} \underline{\lambda}(+)\right) \tag{14}
\end{align*}
$$

and

$$
\begin{equation*}
\Lambda(-)=\left(I-K_{k} H_{k}\right)^{T} \Lambda(+)\left(I-K_{k} H_{k_{k}}\right)+H_{k}^{T}\left(H_{k} P_{k} H_{k}^{T}+R_{k}\right)^{-1} H_{k} \tag{15}
\end{equation*}
$$

OF POOR QUALTIT
The smoother state estimate and error covariance are obtained using the filter estimate and covariance and the adjoint variables by

$$
\begin{equation*}
\underline{x}^{*}(t)=\underline{\hat{x}}(t)-p(t) \underline{\lambda}(t) \tag{16}
\end{equation*}
$$

and

$$
\begin{equation*}
P^{*}(t)=P(t)-P(t) \Lambda(t) P(t) . \tag{17}
\end{equation*}
$$

Due to the potential number of time points to be processed, smoother estimates may only be computed at the discrete measurement times. For this approach the propagation equations (10) and (11) are replaced by

$$
\begin{equation*}
\lambda_{k}(+)=\Phi_{k}^{T} \underline{\lambda}^{(-)_{k+1}} \tag{18}
\end{equation*}
$$

and

$$
\begin{equation*}
\Lambda_{k}(+)=\Phi_{k}^{T} \Lambda_{k+1}(-) \Phi_{k} \tag{19}
\end{equation*}
$$

where Φ_{k}^{T} is the state transition matrix formed with the linearized dynamics matrix F to propagate the adjoint variable from time t_{k+1} to time t_{k}. Tha algorithm continues in reverse time until the initial time is reached.

2.3 Iterations with the Filter/Smoother Algorithm

The performance of the filter/smoother algorithm is a direct result of the accuracy of the linearization. Repeated operations of the algorithms with adjustments in initial state estimates and covariance in each cycle can yield improved estimates. 'This technique is known as global iterated
tiltoring as dofined in reforence [3]. Each eycle of operating the algorithms would yield increasing improvements in the stato estimates.

This feature of the algorithm andation is of special interest to the propulsion parameter estimation problem using the NASA prodictive models. Initial, or nominal, values of the parameters of interest can be used to obtain the necessary partial derivatives indicated carlier. From operating the algorithm improved estimates of those parameters are obtained. Using these improved estimates, more accurate partial derivatives are obtained for use in the algorithms. This process is continued until there is in essence no change in the partial derivatives or quality of the state estimates. If the linearization is accurate, the measurement residual should be a white noise prosess with known covariance.

3.0 FILTER/SMOOTHER AUGORITHM SYSTEM AND MEASUREMENT MODEL

The usefulness of the filter/sinoother algorithm is to provide estimates of the system states from the observed motion and dynamics while the syotam is driven by known and unknown olaments. These unknown elements are olements of the system state vector to be estimated. The evolution of motion resulting from those known and unknown elements is assumed to be suitably represented for this study by a six degree-of-freedom (6 DOF) rigid body equations of motion. These equations are presented and discussed in section 3.1 .

To implement these equacions into the filter/smoother algorithm presented in section 2.0 , a lintarization of the system state and measurement models is required. These linearized equations are presented in section 3.2 .

3.1 Equations of Motion and Measurement Equations

3.1.1 Rigid Body Equations of Motion

The rate of change of vehicle velocity in body coordinates, $\underline{v}^{(B)}$, as a result of external forces acting on the vehicle is described by

$$
\begin{equation*}
\left.\dot{\underline{v}}^{(B)}=\frac{\rho A v_{m}^{2}}{2 m} \underline{c}_{f}+{ }^{B} c^{I} \underline{g}^{(I)} \underline{r}^{(I)}\right)-\underline{\omega} \times \underline{v}^{(B)}+\frac{\dot{f}_{T}^{(E)}}{m}+\frac{\underline{f}_{p}^{(B)}}{m} \tag{20}
\end{equation*}
$$

where
$\rho=$ atmospheric density
$A=$ aerodynamic coefficient referenced area
$v_{m}=$ magnitude of vehicle velocity relative to the surrounding air mass

ORIGINAL FRER M OF POOR QUALITY

$\mathrm{m}=$ vohicle mass
$\underline{E}_{f}=$ aerodynamic force coefficient vector
$\underline{g}^{(I)}\left(\underline{x}^{(I)}\right)=$ gravity vector in inertial coordinates $\underline{\omega}$ angular rotation of the body relative to the inertial frame ${\underset{X I}{I}}_{(B)}^{(B)}$ resultant thrust force vector in body coordinates ${\underset{\sim}{f}}_{(B)}^{(B)}$ resultant plume force vector in body coordinates

The rate of change of vehicle position in inertial coordinates, $\boldsymbol{x}^{(1)}$, is then obtained by

$$
\begin{equation*}
\dot{\underline{r}}^{(I)}=X_{C^{B}}(B) \tag{21}
\end{equation*}
$$

where ${ }^{I}{ }_{C}{ }^{B}$ is the transformation matrix from body coordinates to inertial coordinates. The elements of the $I_{C} B$ transformation matrix are obtained from the resulting Euler angles defined by

$$
\left[\begin{array}{c}
\dot{\varphi} \\
\dot{\theta} \\
\dot{\psi}
\end{array}\right]=\left[\begin{array}{lcc}
1 & \sin \varphi \tan \theta & \cos \varphi \tan \theta \\
0 & \cos \varphi & -\sin \varphi \\
0 & \sin \varphi \sec \theta & \cos \varphi \sec \theta
\end{array}\right]\left[\begin{array}{l}
p \\
q \\
r
\end{array}\right]
$$

where φ, θ, and ψ are roll, pitch and yaw attitudes respectively. The roll, pitch and yaw rates of the body relative to inertial coordinates are p, q, and r respectively. Finally, the rate of change of the body rates relative to inertial. is given by

ORIGINAL FRE. A'

OF POOR QUALITY

$$
\begin{align*}
& \left.-\underline{\omega} \times(\underline{\underline{\omega}})+{\underset{T}{T}}_{(B)}^{(B)}+T_{P}^{(B)}\right] \tag{23}
\end{align*}
$$

where
$I=$ vehicle moments of inertia matrix
$\ell_{\mathrm{m}}=$ aerodynamic coefficient referenced length and moment coefficient vector
${\underset{\sim}{c}}_{(B)}^{(B)}=$ vehicle centernof-gravity vector in body coordinates
$\mathrm{F}_{\mathrm{A}}^{\left(\mathrm{H}^{2}\right)}=$ aerodynamic coefficient reference position in body coordinates
$T_{T}^{(B)}=$ resultant thrust torque vector in body coordinates
$I_{p}^{(B)}=$ resultant plane torque vector in body coordinates

The equations of motion represent the first twelve olements of the system state vector. These equations are summarized in Table 3.1.1-1.

The moment of inertia matrix I in general is given by

$$
I=\left[\begin{array}{ccc}
I_{x} & -I_{x y} & -I_{z x} \tag{24}\\
-I_{x y} & I_{y} & -I_{y z} \\
-I_{z x} & -I_{y z} & I_{z}
\end{array}\right]
$$

for the moment axis torms, i.e., I_{y}, and the product of inertia terms, i.e., $I_{z x}$.

TABLE 3.1.1-1

OFIGHAL FWG M OF POOR QUALITY

The acrodynamic force and moment coefficients and plume forces are defined as functions of angle-of-attack, α, and angle-of-sideslip, β, as shown in Figure 3.1.1-1. The body referenced rolative velonity vector, removing the wind velocity, ${\underset{\sim}{w}}^{v}$ from the vehicle velocity, is given by

$$
\begin{equation*}
\underline{v}_{x}=\underline{v}^{(B)}-B_{C}^{B} \underline{v}_{w}=\underline{v}^{(B)}-B_{C}^{C L} \underline{v}_{w}^{(L L)} \tag{25}
\end{equation*}
$$

where $\mathrm{v}_{-\mathrm{w}}^{(\mathrm{LL})}$ is the local-level referenced wind velocity vector. The follozing equations define α and β in terms of the components of v_{r}

$$
\begin{align*}
& \alpha=\tan ^{-1}\left(\frac{v_{r_{3}}}{v_{r_{1}}}\right) \tag{26}\\
& \beta=\sin ^{-1}\left(\frac{v_{r_{2}}}{v_{m}}\right) \tag{27}
\end{align*}
$$

where

$$
\begin{equation*}
v_{m}=\left(v_{r_{1}}^{2}+v_{r_{2}}^{2}+v_{r_{3}}^{2}\right)^{\frac{1}{2}} \tag{28}
\end{equation*}
$$

The resultant thrust force ${\underset{T}{T}}_{(B)}^{(B)}$ is expanded as
where the transformation matrix ${ }^{B_{C}} C_{i}{ }^{\text {, }}$ transforms the magnitude of thrust for each thrusting device, $\Psi_{T_{i}}^{Q}$, from its center-line to the body coordinates. The general eqaution for f_{T} is
 OF POOR QUALTTY

$$
f_{T_{i}}=f_{T_{i v a c}}-p_{s_{i}} A_{e}
$$

where

$$
\begin{aligned}
& f_{T_{i v a c}}=\text { vacuum thrust } \\
& P_{S_{i}}=\text { atmospheric pressure at motor exit }
\end{aligned}
$$

$$
A_{e}=\text { motor exit cone area }
$$

The matrix ${ }^{B_{C} Q}$ is different for the SSME's and SRB's and is given by

$$
B_{C} \Phi_{i}= \begin{cases}B_{C} M P M P_{C} G \cdot G_{C} \Phi_{1} & \text { SSME } \tag{30}\\ B_{C} \Phi & \text { SRB }\end{cases}
$$

where

$$
\begin{aligned}
{ }^{{ }^{B}} C^{M P}= & \text { transformation from the engine mount plane to the body } \\
& \text { coordinates } \\
{ }^{M P} C_{C}= & \text { transformation from the gimbal reference plane to mount plane } \\
& \text { (structural deformation) } \\
{ }_{C_{C}} C^{E}= & \text { transformation from enterline to the gimbal reference plane } \\
{ }^{B_{C} Q}= & \text { transformation from SRB nozzle centerline to the body } \\
& \text { coordinates (gimbal angles). }
\end{aligned}
$$

ORIGNAL PRGE CE OF POOR QUALITY

The resultant thrust torque is the summation of the torque contribution from each thrusting device and is given by

$$
T_{T}(B)=\sum_{i=1}^{n} \sum_{i=1}^{(B)}-{\underset{i}{r}}_{(B)}^{(B)} \times B_{i}^{G_{i}}\left[\begin{array}{c}
E_{i} \tag{31}\\
T_{i} \\
0 \\
0
\end{array}\right]
$$

where

3.1.2 Measurement Equations

The measurements assumed available for the filter/smoother algorithm include inertial piatform acceleration and attitudes, ground based radar tracking, SRB's head pressure, SSME's chamber pressures, liquid H_{2} flow rates, pressurant flow rates. The ET volumetric levels are available; however, due to their Iimited number (4), they may only be used for alternate checks of the filter/smoother algorithin performance.

The propulsion related measurements will be treated in a separate section. In the following, the inertial platform acceleration measurements, attitude measurements and ground based tracking measurements models will be described for later Iinearization.

3.1.2.1 Platform Acceleration Moasurements

Accelerometers mounted orthogonally on an inertially stabilized platform, not located at the vehicle center of gravity, sense externally applied special forces and accelerations due to body rotation. The accelerometer measurement is modeled by
where

$$
\begin{aligned}
& \mathrm{S}_{\mathrm{C}}{ }^{\mathrm{P}}=\text { transformation from platform coordinates to sensing coordinates } \\
& P_{C}{ }^{P \prime}=\text { transformation from misaligned platform coordinates to } \\
& \text { platform coordinates } \\
& { }^{P}{ }^{\prime}{ }^{B}=\text { transformation from body to misaligned platform coordinates } \\
& \underline{r}_{5}^{(B)}=\text { body coordinates of the platform center } \\
& \frac{b^{(S)}}{{ }^{(S)}}=\text { accelerometer bias vector } \\
& v_{-a}^{(S)}=\text { accelerometer measurement noise vector }
\end{aligned}
$$

3.1.2.2 Platform Attitude Measurements

The inertially stabilized platform for the STS is a four axis IMU with a redundant roll axis [4]. Vehicle body attitades are generated via quaternions [5]. It is assumed that an equivalent representation

ORIGMAL PAEETE
 OF POOR QUALITT

can be made to obtain vehicle attitude by a three rotation sequence of roll, pitch, yaw to transform from inertial to body coordjantes. This approach has been used in reference [6].

The attitude angle measurement model is given by

$$
\begin{equation*}
\underline{\theta}_{\mathrm{m}}^{(S)}=\underline{\theta}_{-}^{\theta}+\underline{b}_{\theta}^{(S)}+\underline{v}^{(S)} \tag{33}
\end{equation*}
$$

where
${\underset{-\theta}{ }}_{b_{\theta}}=$ platform misalignment bias vector (used to formulate ${ }^{P_{C} P^{\prime}}$)
$v_{n}^{(S)}=$ attitude measurement noise vector.

The transformation matrix used to transform from body to inertial coordinates in terms of the elements of the $\underline{\theta}$ vector is given by
$I_{C^{B}}=\left[\begin{array}{lcc}\cos \theta \cos \psi & \begin{array}{c}\sin \varphi \sin \theta \cos \psi \\ -\cos \varphi \sin \psi\end{array} & \begin{array}{c}\cos \varphi \sin \theta \cos \psi \\ +\sin \varphi \sin \psi\end{array} \\ \cos \theta \sin \psi & \begin{array}{c}\sin \varphi \sin \theta \sin \psi \\ +\cos \varphi \cos \psi\end{array} & \begin{array}{c}\cos \varphi \sin \theta \sin \psi \\ -\sin \varphi \cos \psi\end{array} \\ -\sin \theta & \sin \varphi \cos \theta & \cos \varphi \cos \theta\end{array}\right]$

3.1.2.3 Ground Based Tracking Measurements

Ground based radar tracking devices can provide measurements of range, azimuth and elevation from the radar sight to the vehicle. Azimuth and elevation are established relative to the sight's local level. If

Ontumbl bustry Or POOR QUALTI:

the tracking device is a passive optical tracker (not laser) then onjy azimuth and elevation measurements are available requiring more than one to establish position information.

Defining x, y, and z as the local east, north and up position of the vehicle relative to the ground based tracking devica, the radar measurement equations are given by

$$
\begin{align*}
& \rho=\left(x^{2}+y^{2}+z^{2}\right)^{1_{2}}+b_{\rho}+v_{\rho} \tag{35}\\
& A=\tan ^{-1}\left(\frac{x}{y}\right)+b_{A}+v_{A} \tag{36}\\
& E=\tan ^{-1}\left(\frac{z}{\sqrt{x^{2}+y^{2}}}\right)+b_{E}+\Delta E+v_{E} \tag{37}
\end{align*}
$$

where

$$
\begin{aligned}
& b_{\rho}, b_{A}, b_{E}=\text { range, azimuth, elevation biases } \\
& \Delta E=\text { atmospheric refraction correction } \\
& v_{\rho}, v_{A}, v_{E}=\text { range, azimuth, elevation neasurement noise. }
\end{aligned}
$$

The position vector of the vehicle relative to the tracking device is given by

$$
\left[\begin{array}{l}
x \tag{38}\\
y \\
z
\end{array}\right] \triangleq \Delta \underline{v}_{V}^{(L L)}=\operatorname{LL}_{C}^{E C F}\left[{ }^{E C F} C^{E C I} \underline{x}^{(I)}-{\underset{-r D R}{(E C F)}]}^{(\mathrm{EDDR}}\right.
$$

where OF POOR QUALITY

$$
\begin{aligned}
& \operatorname{LL}_{C} \mathrm{ECF}=\text { transformation from earth center fixed to local level } \\
& \operatorname{ECF}_{\mathrm{C}} \mathrm{ECI}=\text { earth centered inertial to earth centered fixed } \\
& \mathrm{r}_{-\mathrm{RDR}}^{(\mathrm{ECF})}=\text { position vector of tracking device in ECF coordinates. } \\
& \text { The transformation matrix } \quad L_{C} E C F \text { is given by }
\end{aligned}
$$

$$
L L_{C} E C F=\left[\begin{array}{ccc}
-\sin \lambda & -\sin L \cos \lambda & \cos L \cos \lambda \tag{39}\\
\cos \lambda & -\sin L \sin \lambda & \cos L \sin \lambda \\
0 & \cos L & \sin L
\end{array}\right]
$$

where L and λ are the geodetic latitude and east longitude of the device. The transformation matrix $E C F E C I$ is given by

$$
\operatorname{ECF}_{C} E C I=\left[\begin{array}{ccc}
\cos \left[\omega_{E}\left(t-t_{R N P}\right)\right] & \sin \left[\omega_{E}\left(t-t_{R N P}\right)\right] & 0 \tag{40}\\
-\sin \left[\omega_{E}\left(t-t_{R N P}\right)\right] & \cos \left[\omega_{E}\left(t-t_{R N P}\right)\right] & 0 \\
0 & 0 & 1
\end{array}\right][R N P]
$$

where
$\omega_{E}=$ earth rotation rate
$t_{\text {RNP }}=$ time tag for RNP matrix

OF POOR QUALITY

where
$R_{E}=$ equatorial radius of Fisher ellipsoid
$\mathrm{e}=$ flattening of Fisher ellipsoid
$h=$ altitude of the device above Fisher ellipsoid

3.2 Linearized System State and Meaourement Eguations

The vehicle equations of motion are nonlinear functions of their motion variables and are implicit functions of other elements of the system states. The measurement equations involve similar function ralationships. The linearizations for the filtar/smoother algorjthm require partial derivatives with respect to the motion variables, i.e., $\underline{v}^{(B)}$ and θ, and with respect to other elenents of the stats vector, yielding explicit functional relationships for the elements of interest.

For system state equations the partial derivatives will be presented in section 3.2.1 for the state elements in order of occurrence for the first twelve states. Other partial derivatives for candidate state elements will follow in section 3.3.1. The measurement equation partial derivatives for the first twelve states will be presented in section 3.2.2. Partial derivatives of the measurement equations for other candidate states will be presented in section 3.3,2.

The resulting partial derivatives are imbedded Into the linearized system state matrix, $F(\underline{x}(t), t)$, ahown in Figure 3.2-1 . A corresponding Iinearized measurement matrix, $H\left(X_{x}\right)_{,}$is similarly formed with the measurement equations' partial derivatives.

3.2.1 System State Partial Derivatives

Partial derivatives of each of the equations listed in Figure 3.2-1 are developed in their order of occurrence with respect to the order of
FIGURE 3.2-1. Linea: ization for Filter/Smoother Model

ORIGNAL MET B
OF POOR QUALITY
tho corresponding states. Partial derivatives of thrust torme aro presented as though for a singlo device.

Inertial Position Rate Equation

The first nonzero partial derivative of the $\dot{\underline{E}}^{(I)}$ equation is with respect to $\underline{v}^{(B)}$:

$$
\begin{equation*}
\frac{\partial}{\partial \underline{v}^{(B)}}\left(\dot{r}^{(I)}\right)=I_{C} B . \tag{42}
\end{equation*}
$$

The second nonzero partial derivative is with respest to $\underline{\theta}$. This partial derivative results in a third order tensor and occurs frequently in later developments. The genoralized form is presented in Appendis A.

Body Velocity Rate Equation

The partial derivative of $\underline{\underline{v}}^{(B)}$ with respect to $\underline{\underline{r}}^{(I)}$ is given for altitude terms approximately as

$$
\begin{equation*}
\frac{\partial}{\partial \underline{r}^{(I)}}=\frac{\partial}{\partial h} \frac{\underline{r}^{(I)^{T}}}{\left|\underline{r}^{(I)}\right|} \tag{43}
\end{equation*}
$$

where

$$
\begin{align*}
\frac{\partial \underline{v}^{(B)}}{\partial h} & =\frac{A v_{m}^{2}}{2 m} \frac{\partial \rho}{\partial h}{\underset{f}{f}}+\frac{\rho A v_{m}}{m} \underline{c}_{f} \frac{\partial v_{m}}{\partial h}+\frac{\rho A v_{m}^{2}}{2 m} \frac{\partial \underline{c}_{f}}{\partial \alpha} \frac{\partial \alpha}{\partial h}+\frac{\rho A v_{m}^{2}}{2 m} \frac{\partial \underline{f}_{f}}{\partial \beta} \frac{\partial B}{\partial h} \\
& +\frac{1}{m}\left({ }^{B} C^{E} \frac{\partial f_{-}}{\partial p_{s}} \frac{\partial p_{s}}{\partial h}+\frac{\partial f_{p}^{(B)}}{\partial h}+\frac{\partial f_{-p}^{(B)}}{\partial \alpha} \frac{\partial \alpha}{\partial h}+\frac{\partial f_{j}^{(B)}}{\partial \beta} \frac{\partial B}{\partial h}\right) \tag{44}
\end{align*}
$$

$$
\text { OREMP }:
$$

OF POOR QURE:
The partial derivatives of $\frac{\partial v_{m}}{\partial \underline{q}^{(B)}}, \frac{\partial \alpha}{\partial \underline{v}^{(B)}}, \frac{\partial B}{\partial \underline{v}^{(B)}}, \frac{\partial \alpha}{\partial h}, \frac{\partial B}{\partial h}$ and $\frac{\partial v_{m}}{\partial h}$ occur frequontly and are given in Appondix B.

The gravity vector ${ }^{B} \mathrm{C}^{\mathrm{I}} \underline{q}^{(I)}\left(\underline{{ }^{(I)}}\right)$ partial derivative with respect to $\underline{\underline{r}}^{(I)}$ is
where

$$
\mu=\text { gravitational constant. }
$$

The partial derivative, $\frac{\underline{\underline{v}}^{(B)}}{\partial \underline{\underline{r}}}$ (I) , is the sum of the matricies in equations 43 and 45.

The partial derivative of $\underline{\dot{\underline{v}}}^{(\mathrm{B})}$ with respect to $\underline{v}^{(B)}$ is given by

$$
\begin{align*}
& \frac{\partial \underline{\underline{v}}^{(B)}}{\partial \underline{v}^{(B)}}=\frac{\rho A v_{m}}{m} \underline{c}_{f} \frac{\partial v_{m}}{\partial \underline{v}^{(B)}}+\frac{\rho A v_{m}^{2}}{2 m} \frac{\partial \underline{c}_{f}}{\partial \alpha} \frac{\partial \alpha}{\partial \underline{v}^{(B)}}+\frac{\rho A v_{m}^{2}}{2 m} \frac{\partial \underline{c}_{f}}{\partial \beta} \frac{\partial B}{\partial \underline{v}^{(B)}} \\
& \left.+\frac{1}{m}\left[\frac{\partial f}{\partial \alpha} \frac{\partial \alpha}{\partial \underline{v}^{(B)}}+\frac{\partial \underline{f}}{\partial \beta} \frac{\partial \beta}{\partial \underline{v}^{(B)}}\right]-f \underline{\underline{\omega}}\right] . \tag{46}
\end{align*}
$$

ORIGINAL PAC: OF POOR QUALITY

whore
ful $=$ skew symmotric matrix made from the olements of the vector $\underline{\omega}$ and equivalent to the cross product operatur $\underset{\sim}{\omega}$ ().

The partial derivative of $\underline{\dot{b}}^{(B)}$ with respect to $\underline{\theta}$ is

$$
\begin{align*}
& \frac{\partial \underline{v}^{(B)}}{\partial \underline{\theta}}=\frac{\rho A v_{m}}{m} \underline{c}_{f} \frac{\partial v_{m}}{\partial \underline{v}_{I}} \frac{\partial \underline{v}_{ \pm}}{\partial \underline{\theta}}+\frac{\rho A v_{m}^{2}}{2 m} \frac{\partial \underline{c}_{f}}{\partial \alpha} \frac{\partial \alpha}{\partial \underline{v}_{I}} \frac{\partial \underline{v}_{I}}{\partial \underline{\theta}} \\
& +\frac{\rho A v_{m}^{2}}{2 m} \frac{\partial \underline{c}_{f}}{\partial B} \frac{\partial B}{\partial \underline{v}_{ \pm}} \frac{\partial \underline{v}_{I}}{\partial \underline{\theta}}+\frac{\partial}{\partial \underline{\theta}}\left[\left[^{B} c^{I} g^{(I)}\left(\underline{r}^{(I)}\right)\right]\right. \\
& +\frac{1}{m}\left[\frac{\partial f_{p}^{(B)}}{\partial \alpha} \frac{\partial \alpha}{\partial \underline{v}_{\underline{L}}} \frac{\partial \underline{\underline{v}}}{\partial \underline{\theta}}+\frac{\partial{\underset{\sim}{p}}^{(B)}}{\partial \beta} \frac{\partial \beta}{\partial \underline{v}_{ \pm}} \frac{\partial \underline{v_{r}}}{\partial \underline{E}}\right] . \tag{47}
\end{align*}
$$

The partial derivatives of $\frac{\partial}{\partial \underline{v}}$ are given in Appondix B and the partial derivative $\frac{\partial \underline{x}}{\partial \underline{\theta}}$ is given in Appendix A. The last partial derivative is given in Appendix C.

The partial derivative of $\dot{\stackrel{\rightharpoonup}{v}}^{(B)}$ with respect to $\underset{\sim}{\text { is }}$

$$
\begin{equation*}
\frac{\partial \dot{v}^{(B)}}{\partial \underline{\omega}}=\frac{\rho A v_{m}^{2}}{2 m} \frac{\partial \underline{c}_{f}}{\partial \underline{\omega}}+\cdot \underline{v}^{(B)} \neq \tag{48}
\end{equation*}
$$

Euler Angle Rate Equation

The Euler angle rate equation is a function of both the Euler angles and the inertial rates. The linearization will yield the two associated matricies.

First with respect to the vector $\underline{\theta}$, the following matrix results

$$
\frac{\partial \dot{\theta}}{\partial \theta}=\left[\begin{array}{lcc}
q \cos \varphi \tan \theta-r \sin \varphi \tan \theta & q \sin \varphi \sec ^{2} \theta+r \cos \varphi \sec ^{2} \theta & 0 \tag{49}\\
-q \sin \varphi-r \cos \varphi & 0 & 0 \\
q \cos \varphi \sec \theta-r \sin \varphi \cos \theta & q \sin \varphi \sec \theta \tan \theta+r \cos \varphi \sec \theta \tan \theta & 0
\end{array}\right]
$$

The partial derivative of $\dot{\theta}$ with respect to $\underline{\omega}$ is

$$
\frac{\partial \underline{\theta}}{\partial \underline{\omega}}=\left[\begin{array}{ccc}
1 & \sin \varphi \tan \theta & \cos \operatorname{con} \theta \tag{50}\\
0 & \cos \varphi & -\sin \varphi \\
0 & \sin \varphi \sec \theta & \cos \varphi \sec \theta
\end{array}\right]
$$

Inertial Angular Acceleration Equation
The first partial derivative of this equation is with respect to the vector $r^{(I)}$. Using the approximation indicated in equation 43 , this partial derivative is

$$
\begin{aligned}
& \frac{\partial \dot{\omega}}{\partial \underline{\underline{r}}(I)}=[I]^{-1}\left\{\frac{A d v_{m}{ }^{2}}{2} \frac{\partial \rho}{\partial h}{\underset{-m}{m}}+\left(\rho v_{m} A d c_{m}+\left(\underline{r}_{A}^{(B)}-\underline{r}_{-c g}^{(B)}\right) \times \rho v_{m} A \underline{f}_{f}\right) \frac{\partial v_{m}}{\partial h}\right. \\
& +\left(\frac{\rho v_{m}^{2} A \alpha}{2} \frac{\partial c_{m}}{\partial \alpha}+\left({\underset{-}{r}}^{(B)}-{\underset{-}{r}}^{(B)}\right) \times \frac{\rho v_{m}{ }^{2} A}{2} \frac{\partial c_{f}}{\partial \alpha}\right) \frac{\partial \alpha}{\partial h} \\
& +\left(\frac{\rho v_{m}^{2} A d}{2} \frac{\partial c_{m}}{\partial \beta}+\left({\underset{r}{A}}_{(B)}^{\left(\underline{r}_{-G g}^{(B)}\right)} \times \frac{\rho v_{m}^{2} A}{2} \frac{\partial \underline{G}_{f}}{\partial \beta}\right) \frac{\partial B}{\partial h}\right.
\end{aligned}
$$

Next, with respect to the vector $\underline{v}^{(B)}$, the partial derivative is

$$
\begin{align*}
& \frac{\partial \dot{\underline{\omega}}}{\partial \underline{v}^{(B)}}=[I]^{-1}\left\{\left(\rho v_{m}^{A d} \underline{c}_{m}+\underline{\underline{r}}_{-\mathrm{A}}^{(B)}-\underline{r}_{-\mathrm{rg}}^{(B)}\right) \times \rho v_{m}^{A} \underline{G}_{f}\right) \frac{\partial v_{m}}{\partial \underline{v}^{(B)}} \\
& +\left(\frac{\rho v_{m}^{2}{ }^{2}}{2} \frac{\partial g_{m}}{\partial \alpha}+\left(\underline{r}_{-A}^{(B)}-\underline{r}_{-g}^{(B)}\right) \times \frac{\rho v_{m}{ }^{2}{ }^{A}}{2} \frac{\partial \underline{c}_{f}}{\partial \alpha}\right) \frac{\partial \alpha}{\partial v^{(B)}} \tag{52}
\end{align*}
$$

$$
\begin{aligned}
& \left.+\frac{\partial \underline{T}}{\partial \alpha} \frac{\partial \alpha}{\partial \underline{v}^{(B)}}+\frac{\partial \underline{T}}{\partial \beta} \frac{\partial \beta}{\partial \underline{v}^{(B)}}\right\} .
\end{aligned}
$$

ORIGINAL PACR G OF POOR QUALITY

The partial derivative with respect to the vector $\underline{\theta}$ is

$$
\begin{aligned}
& \frac{\partial \dot{\omega}}{\partial \underline{\theta}}=[I]^{-1}\left\{\left(\rho v_{m}^{A d}{\underset{-m}{c}}^{\underline{\omega}}+\left(\underline{r}_{A}^{(B)}-{\underset{r}{c g}}_{(B)}^{c}\right) \times \rho v_{m}^{A}{\underset{f}{f}}^{f}\right) \frac{\partial v_{m}}{\partial \underline{\theta}}\right.
\end{aligned}
$$

$$
\begin{align*}
& +\left(\frac{\rho v_{m}{ }^{2} A d}{2} \frac{\partial c_{m}}{\partial B}+\left(\underline{r}_{A}^{(B)}-\underline{r}_{-g}^{(B)}\right) \times \frac{\rho v_{m}{ }^{2} A}{2} \frac{\partial \underline{c}_{f}}{\partial \beta}\right) \frac{\partial B}{\partial \underline{\theta}} \tag{53}\\
& \left.+\frac{\partial T}{\partial \alpha} \frac{\partial \alpha}{\partial \underline{\theta}}+\frac{\partial T}{\partial \beta} \frac{\partial B}{\partial \underline{\theta}}\right\} .
\end{align*}
$$

The final partial derivative for the first twelve states is with respect to the vector $\underline{\omega}$. This operation yields

$$
\begin{equation*}
+\{I \omega\}-\{\underline{-}\} I\} \tag{54}
\end{equation*}
$$

3.2.2 Measurement Partial Derivatives

The measurements assumed to be available, as discussed earlier, include ground based radar tracking, inertially stabilized platform atititudes relative to the vehicle body, and stabilized platform mounted 3 axis orthogonal accelerations. As with the state dynamics matrix, the measurement equations are linearized about the best state estimates.

Radar Track Measurement Equation
Referring to the radar track measurement equations, the required partial derivatives are

$$
\begin{equation*}
\frac{\partial \rho}{\partial \underline{r}^{(I)}}=\frac{\partial \rho}{\partial \Delta \underline{r}_{v}^{(L L)}} \frac{\partial \Delta \underline{\underline{v}}_{v}^{(L L)}}{\partial \underline{r}^{(I)}} \tag{55}
\end{equation*}
$$

$\frac{\partial A}{\partial \underline{r}^{(I)}}=\frac{\partial A_{A}}{\partial \Delta \underline{q}_{v}^{(L L)}} \frac{\partial \Delta \underline{r}_{-}^{(L L)}}{\partial \underline{r}^{(I)}}$
$\frac{\partial E}{\partial \underline{r}^{(I)}}=\frac{\partial E}{\partial \Delta \underline{-}_{-}^{(L L)}} \frac{\partial \Delta \underline{r}_{v}^{(L L)}}{\partial \underline{r}^{(I)}}$.
The last partial derivative in each of these equations, $\frac{\partial \Delta r_{-}^{(L L)}}{\partial r^{(I)}}$, is

$$
\begin{equation*}
\frac{\partial \Delta r^{(L L)}}{\partial \underline{r}^{(I)}}=L L_{C} E C F E C F C^{E C I} \tag{58}
\end{equation*}
$$

The rest of the required partial derivatives are

$$
\begin{align*}
& \frac{\partial \rho}{\partial \Delta{\underset{\sim}{v}}^{(L L)}}=\Delta{\underset{v}{v}}_{(L L)^{T}}^{T} /|{\underset{-v}{r}}| \tag{59}\\
& \frac{\partial A}{\partial \Delta \underline{r}_{v}^{(L L)}}=\left[\frac{y}{x^{2}+y^{2}}, \quad \frac{-x}{x^{2}+y^{2}}, 0\right] \tag{60}\\
& \frac{\partial E}{\partial \Delta \underline{w}_{-}^{(L L)}}=\left[\frac{-x z}{\rho^{2} \sqrt{x^{2}+y^{2}}}, \frac{-y z}{\rho^{2} \sqrt{x^{2}+y^{2}}}, \frac{\sqrt{x^{2}+y^{2}}}{\rho^{2}}\right] \tag{61}
\end{align*}
$$

Inertially Stabilized Platform Attitude Equation
The inertial platform is assumed to provide attitude angle measurements of the true attitude plus an attitude bias plus measurment noise. The partial derivative of the measured attitudes with respect to the vector Θ yields an identity matrix.

Accelerometer Measurement Equation

The accelerometer senses specific body forces excluding gravity along the sensing axes. With reference to the accelerometer equation, the partial derivative with respect to $\underline{r}^{(I)}$ is

$$
\begin{aligned}
& \frac{\partial a_{-m}^{(S)}}{\partial \underline{w}^{(I)}}=S_{c^{B}}\left[\frac{A v_{m}^{2}}{2 m} \frac{\partial \rho}{\partial h} \underline{c}_{f}+\frac{\rho A v_{m}}{m} \underline{c}_{f} \frac{\partial v_{m}}{\partial h}\right. \\
& +\frac{\rho A v_{m}^{2}}{2 m} \frac{\partial \underline{C}_{f}}{\partial \alpha} \frac{\partial \alpha}{\partial h}+\frac{\rho A v_{m}^{2}}{2 m} \frac{\partial \underline{C}_{f}}{\partial \beta} \frac{\partial B}{\partial h} \\
& \left.\left.+\frac{1}{m} c^{B} C^{Q} \frac{\partial f_{T}^{(£)}}{\partial p_{s}} \frac{\partial p_{s}}{\partial h}+\frac{\partial \mathcal{F}_{p}^{(B)}}{\partial \alpha} \frac{\partial \alpha}{\partial h}+\frac{\partial{\underset{p}{p}}_{(B)}^{\partial \beta}}{\partial \beta}\right)\right] \frac{\underline{r}^{(I)^{T}}}{\left|\underline{r}^{(I)}\right|}
\end{aligned}
$$

The partial derivative with respect to $\underline{v}^{(B)}$ yields

$$
\begin{align*}
& +\frac{1}{m}\left[-\frac{\partial \underset{\sim}{f}}{\partial \alpha} \frac{\partial \alpha}{\partial \underline{v}}(B)+\frac{\partial f}{\partial \beta} \frac{\partial \beta}{\partial \underline{v}(B)}\right] \tag{63}
\end{align*}
$$

For the partial derivative of the accelerometer with respect to the vector θ, the measurement equation is temporarily rewritten as

$$
\begin{equation*}
{\underset{a}{a}}_{(S)}^{(S)} S^{S} c^{P^{\prime} P^{\prime}} c^{B} \underline{s}^{(B)}+{\underset{b}{a}}_{(S)}^{(S)}{\underset{\mathrm{v}}{\mathrm{a}}}_{(S)}^{(S)} \tag{64}
\end{equation*}
$$

where the vector $\underline{s}^{(B)}$ represents the sum of the aerodynamic, thrust, plume and rotational coupling terms. The matrix ${ }^{P \prime} C^{B}$ is the same matrix as $I_{C} B$. The required partial derivative results from

$$
\begin{equation*}
\frac{\partial \underline{a}(S)}{\partial \underline{\theta}}=S_{C^{p \prime}}^{p^{\prime}} \quad \frac{\theta}{\partial \underline{\theta}} I^{I^{B}} \underline{S}^{(B)} \tag{65}
\end{equation*}
$$

The partial derivative on the right hand side is developed in Appendix A with the vector ${\underset{S}{(B)}}^{(B)}$ representing the sum of the terms indicated above. The final partial derivative for the accelerometer measurement is with respect to the body rotation vector $\underline{\omega}$. Defining

$$
\underset{-s}{\Delta r} \triangleq\left[\begin{array}{c}
\Delta r_{1} \tag{66}\\
{ }_{s} \\
\Delta r_{2} \\
\Delta r_{s} \\
r_{s}
\end{array}\right]=\left(r_{-}^{(B)}-\underline{r}_{-\mathrm{cg}}^{(B)}\right)
$$

and denoting ω_{i} as the $i^{\text {th }}$ element of the vector $\underline{\omega}$, the resulting matrix is

$$
\frac{\partial a_{m}}{\partial \underline{\omega}}=s_{c} B\left[\begin{array}{lll}
\omega_{2} \Delta r_{2}+\omega_{3} \Delta r_{3} & \omega_{1} \Delta r_{2}-2 \omega_{2} \Delta r_{1} & \omega_{1} \Delta r_{3}-2 \omega_{3} \Delta r_{1} \tag{67}\\
\omega_{2} \Delta r_{1}-2 \omega_{1} \Delta r_{2} & \omega_{1} \Delta r_{1}+\omega_{3} \Delta r_{3} & \omega_{2} \Delta r_{3}-2 \omega_{3} \Delta r_{2} \\
\omega_{3} \Delta r_{1}-2 \omega_{1} \Delta r_{3} & \omega_{3} \Delta r_{2}-2 \omega_{2} \Delta r_{3} & \omega_{1} \Delta r_{1}+\omega_{2} \Delta r_{2}
\end{array}\right]
$$

ORIGINAR PSE: R

OF POOR QUALITY

3.2.3 Additional Parameter Partial Derivatives

The mathematical developments are presented in this section for the partial derivatives of the system and measurement equations to allow for additional candidate parameters to be included in the estimation algorithms. These parameters include center-of-gravity, ${ }^{r} \mathrm{cg}$, moments of inertia, I, wind velocity, ${\underset{W}{W}}^{w}$, and inertial platform tilt errors. Aerodynamic and plume parameter partial derivatives are also presented.

The computer program is being structured to permit these parameters to be easily incorporated without significant impact on the program code.

3.2.3.1 Center-of-Gravity

From equation 23, the partial derivative of angular acceleration with

From equation 32, the partial derivative of the measured acceleration with respect to $r_{\text {rg }}$ is

$$
\begin{equation*}
\left.\frac{\partial \underline{a}_{m}}{\partial \underline{r_{c g}}}=-S^{s} C^{B} \underline{f} \times \underline{\omega}\right\} \tag{69}
\end{equation*}
$$

OFtrextir so $\because: 5$ OF POOR QUAWTN

3.2.3.2 Moments of Inertia

The moments-of-inertia are grouped into "principal" terms, i_{p}, and cross product terms, ${\underset{i}{c p}}$. From equation 24, these vectors are defined as

$$
\dot{i}_{p}=\left[\begin{array}{c}
I_{x} \tag{70}\\
I_{y} \\
I_{z}
\end{array}\right]
$$

and

$$
\underline{i}_{c p}=\left[\begin{array}{c}
I_{x y} \tag{71}\\
I_{z x} \\
I_{y z}
\end{array}\right]
$$

With these definitions, equation 23 is rewritten as

$$
\begin{align*}
\underline{\dot{\omega}} & \left.=[I]^{-1}[\Sigma \underline{I}-f \underline{\omega}]\left[\begin{array}{ccc}
{\left[\begin{array}{lll}
\omega_{1} & 0 & 0 \\
0 & \omega_{2} & 0 \\
0 & 0 & \omega_{3}
\end{array}\right] \underset{-p}{i_{p}}} \\
& +\left[\begin{array}{ccc}
-\omega_{2} & -\omega_{3} & 0 \\
-\omega_{1} & 0 & -\omega_{3} \\
0 & -\omega_{1} & -\omega_{2}
\end{array}\right] \stackrel{i}{-\mathrm{cp}}
\end{array}\right]\right] \tag{72}
\end{align*}
$$

CRIGRAR MAEE F
 OF POOR QUALITY

where $2 \mathbb{L}$ represents the sum of the nonrotational torques in equation 23. Defining an intermediate vector a as

$$
\begin{equation*}
\underline{a}=\Sigma \underline{T}-\underline{\omega} \times(I \underline{\omega}) \tag{73}
\end{equation*}
$$

the partial derivatives of the angular acceleration with respect to

$$
\frac{\partial \underline{\dot{\omega}}}{\partial \underline{\underline{i}}_{p}}=\left.\frac{\partial}{\partial \dot{\underline{i}}_{p}}\left(I^{-1} \quad \underline{a}\right)\right|_{\underline{a-f i x e d}}-(I)^{-1}\left[\begin{array}{ccc}
0 & -\omega_{2} \omega_{3} & \omega_{2} \omega_{3} \tag{74}\\
\omega_{1} \omega_{3} & 0 & -\omega_{1} \omega_{3} \\
-\omega_{1} \omega_{2} & \omega_{1} \omega_{2} & 0
\end{array}\right]
$$

and

$$
\frac{\partial \dot{\underline{\omega}}}{\partial \underline{i}_{c p}}=\left.\frac{\partial}{\partial \dot{i}_{c p}}\left(I^{-1} \underline{a}\right)\right|_{\underline{a-f i x e d}}-[I]^{-1}\left[\begin{array}{ccc}
\omega_{1} \omega_{2} & -\omega_{1} \omega_{2} & \omega_{3}^{2}-\omega_{2}^{2} \tag{75}\\
-\omega_{2} \omega_{3} & \omega^{2}-\omega_{3}^{2} & \omega_{1} \omega_{2} \\
\omega_{2}^{2}-\omega_{1}^{2} & \omega_{2} \omega_{3} & -\omega_{1} \omega_{3}
\end{array}\right]
$$

where
 OF POOR QUALITY

$$
\begin{align*}
& \frac{\partial}{\partial \dot{I}_{p}}\left(I^{-1} \underline{a}\right)=\frac{1}{\Delta}\left[\begin{array}{ccc}
0 & I_{z} a_{1}+I_{z x} a_{3} & I_{y} a_{1}+I_{x y} a_{2} \\
I_{z} a_{2}+I_{y z} a_{3} & 0 & I_{x} a_{2}+I_{x y} a_{1} \\
I_{y} a_{3}+I_{y z} a_{2} & I_{x} a_{3}+I_{z x} a_{1} & 0
\end{array}\right] \tag{76}
\end{align*}
$$

and

$$
\begin{aligned}
& \frac{\partial}{\partial \dot{I}_{c p}}\left(I^{-1} a\right)= \\
& =\frac{1}{\Delta}\left[\begin{array}{lcc}
I_{z} a_{2}+I_{y z} a_{3} & I_{y} a_{3}+I_{y z} a_{2} & -2 I_{y z} a_{1}+I_{z x} a_{2}+I_{x y} a_{3} \\
I_{z} a_{1}+I_{z x} a_{3} & I_{y z} a_{1}-2 I_{z x} a_{2}+I_{x y} a_{3} & I_{x} a_{3}+I_{z x} a_{1} \\
I_{y z} a_{1}+I_{z x} a_{2}-2 I_{x y} a_{3} & I_{y a_{1}}+I_{x y} a_{2} & I_{x} a_{2}+I_{x y} a_{1}
\end{array}\right]
\end{aligned}
$$

and

$$
\begin{equation*}
\Delta=I_{x} I_{y} I_{z}-I_{x y} I_{y z} I_{z x}-I_{z x} I_{x y} I_{y z}-I_{y} I_{z x}^{2}-I_{z} I_{x y}^{2}-I_{x} I_{y z}^{2} \tag{78}
\end{equation*}
$$

3.2.3.3 Wind velocity

From equations 20 and 25 , the partial derivative of the vehicle asceleration with respect to ${\underset{-}{w}}^{v}$ is

$$
\begin{equation*}
\frac{\partial \underline{v}^{(B)}}{\partial \underline{v}_{W}}=\frac{\rho A}{2 m} \underline{c}_{f} \frac{\partial v_{m}^{2}}{\partial \underline{v}_{W}}+\frac{\rho A v_{m}^{2}}{2 m} \frac{\partial c_{f}}{\partial \alpha} \frac{\partial \alpha}{\partial \underline{v}_{W}}+\frac{\rho A v_{m}^{2}}{2 m} \frac{\partial c_{f}}{\partial \beta} \frac{\partial B}{\partial v_{W}} . \tag{79}
\end{equation*}
$$

The fisst of the partial derivatives in equation 79 can be obtained from the following equation

$$
\begin{equation*}
v_{m}^{U}=\underline{v}_{x}^{T} \underline{v}_{x}=\underline{v}^{(B)^{T}} \underline{v}^{(B)}-2 \underline{v}^{(B)^{T}} B_{C} \underline{v}_{w}+\underline{v}_{w}^{T} c^{B B_{C}} \underline{v}_{w} \tag{80}
\end{equation*}
$$

From equation 80 , the following is obtained

$$
\begin{equation*}
\frac{\partial v_{m}^{2}}{\partial v_{w}}=-2 v_{x}^{T B} C . \tag{81}
\end{equation*}
$$

OF POOR QUALTHY

Denoting the eloments of the matrix ${ }^{B} C^{C}$ as c_{11}, c_{12}, etc., the following equations are obtained for the partial derivatives of α and β with respect to $\underline{v}_{\mathbf{w}}$;

$$
\frac{\partial \alpha}{\partial \underline{v}_{W}}=\frac{-1}{v_{r_{1}}{ }^{2}+v_{r_{3}}{ }^{2}}\left[\begin{array}{l}
\left(v_{r_{1}} c_{31}-v_{r_{3}} c_{11}\right) \tag{82}\\
\left(v_{r_{1}} c_{32}-v_{r_{3}} c_{12}\right) \\
\left(v_{r_{1}} c_{33}-v_{r_{3}} c_{13}\right)
\end{array}\right]^{T}
$$

and

$$
\frac{\partial B}{\partial v_{w}}=\frac{-1}{v_{m} \sqrt{v_{r_{2}}{ }^{2}+v_{r_{3}}{ }^{2}}}\left[\begin{array}{l}
v_{m} c_{21}-\frac{v_{r_{2}}}{v_{m}}\left(v_{r_{1}} c_{11}+v_{r_{2}} c_{21}+v_{r_{3}} c_{31}\right) \tag{83}\\
v_{m} c_{22}-\frac{v_{r_{2}}}{v_{m}}\left(v_{r_{1}} c_{12}+v_{r_{2}} c_{22}+v_{r_{3}} c_{32}\right) \\
v_{m} c_{23}-\frac{v_{r_{2}}}{v_{m}}\left(v_{r_{1}} c_{13}+v_{r_{2}} c_{23}+v_{r_{3}} c_{33}\right)
\end{array}\right]^{T}
$$

3.2.3.4 Inertial Platform Tilt

Temporarily rewriting equation (32) as

$$
\begin{equation*}
a_{-m}^{(S)}=S_{C^{P}}(I+\underline{\delta \theta} x) \underline{s} \tag{84}
\end{equation*}
$$

ORIGINAL. PRGE E OF POOR QUSLITY

where
$\underline{\underline{\theta}}=$ vector whose elements are the axes misalignments
$\underline{s}=$ sum of the bracketed terms in equation 32 multiplied by ${ }^{P^{\prime}} C^{B}$. The following partial derivative of the measured acceleration with respect to $6 \underline{\theta}$ is obtained

$$
\frac{\partial a_{a}^{(S)}}{\partial 6 \underline{\theta}}=S^{p} \operatorname{fsf}^{f},
$$

3.2.3.5 Aerodynamic and Plume Parameters

A linear model for the aerodynamic and plume characteristics is used. This model is expanded as

$$
\begin{equation*}
\underline{c}_{f}=\underline{c}_{f 0}+c_{f \alpha} \alpha+c_{f \beta} \beta+\cdots \cdot \tag{86}
\end{equation*}
$$

$$
\begin{equation*}
{\underset{\sim}{p}}^{f}={\underset{-p}{f}+f_{-p \alpha} \alpha+E_{p \beta} \beta+\ldots .}^{f_{p}} \tag{88}
\end{equation*}
$$

where additional terms to represent rates, cruss couplings, and controls can be included.

The basic approach of establishing the partial derivatives will be illustrated for a couple of terms, ${\underset{-}{f \alpha}}$ and ${\underset{m}{m \alpha}}$. Using these example

ORIGPNR PAER E OF POOR QUALITY

illustrations, the rest of the candidate parameters can be similarly obtained. From equation 20, the following partial derivative is obtained

$$
\begin{equation*}
\frac{\partial \underline{v}^{(B)}}{\partial \underline{c}_{f_{\alpha}}}=\frac{\partial \underline{v}^{(B)}}{\partial \underline{E}_{f}} \frac{\partial{\underset{c}{f}}^{\partial G_{f}}}{f_{\alpha}}=\frac{\rho A v_{m}^{2}}{2 m} \alpha[U] \tag{89}
\end{equation*}
$$

where
[U] $=$ unit 3×3 matrix with one's (1) on the diagonal and zeros off the diagonal

From equation 23, the partial derivative of angular acceleration with respect to $f_{n_{\alpha}}$ is

$$
\begin{equation*}
\frac{\partial \dot{\omega}}{\partial c_{m}}=\frac{\partial \dot{\omega}}{\partial c_{m}} \frac{\partial c_{m}}{\partial c_{m}}=[I]^{-1} \frac{\rho A v_{m}^{2}}{2} \alpha[U] \tag{90}
\end{equation*}
$$

The corresponding partial derivative with respect to \mathbb{G}_{α} is

$$
\begin{equation*}
\frac{\partial \dot{\omega}}{\partial \underline{c}_{f_{\alpha}}}=\frac{\partial \dot{\omega}}{\partial \underline{c}_{f}} \frac{\partial \underline{c}_{f}}{\partial \underline{c}_{f_{\alpha}}}=[I]^{-1} \frac{\rho A v_{m}^{2}}{2} \mathbb{E x}_{A}^{(B)}-{\underset{-G g}{(E)} \neq \alpha[U] .}^{(U)} \tag{91}
\end{equation*}
$$

The static aerodynamic coefficient model has been obtained by a multiple regression analysis of the current aerodynamic tubular data. This model is presented in Appendix D with the associated regression coefficients.

3.3 Propulsion Parameter States and Measurements

A candidate approach for incorporating the NASA propulsion model's capabilities has been identified. This approach utilizes nominal predicted values of thrust, pressure, propellant and pressurant mass flow rates, and utilizes sensitivities or partial derivatives of these variables with respect to the independent parameters selected for estimation by the algorithm.

The approach is to include deviations from nominal values of measured chamber pressure, power level, propellant and pressurant mass flow rates as states. The models assumed for these deviations are time correlated random processes. Then as states, partial derivatives of the first twelve states with respect to these variables will be required.

For the SSME and SRB, this model.ing approach is discussed in the following. Additionally, the necessary partial derivatives of the first twelve state variables with resepct to the additional states are presented.

3.3.1 SSME Propulsion Parameter Model

For the SSME, the total actual values of vacuum thrust and oxidizer mass flow rates are modeled by

$$
\begin{equation*}
f_{T}=f_{T_{\text {nom }}}+\Delta f_{T} \tag{92}
\end{equation*}
$$

and

$$
\begin{equation*}
\dot{m}_{0_{2}}=\dot{m}_{0_{2}}+\Delta \dot{m}_{0_{2}} . \tag{93}
\end{equation*}
$$

The measurements of fuel mass flow rate, pressurant mass flow rates and power level are modeled as

$$
\begin{align*}
& \dot{m}_{H_{2}}=\dot{m}_{H_{2}}+\Delta \dot{m}_{H_{2}}+\dot{b}_{\dot{m}_{2}}+\dot{s}_{\mathrm{m}_{H_{2}}} \tag{94}
\end{align*}
$$

$$
\begin{align*}
& \dot{m}_{\mathrm{o}_{2}}={\stackrel{\dot{m}}{\mathrm{O}_{2}}}_{2_{p_{\text {nom }}}}+\Delta \dot{m}_{\mathrm{O}_{2}}+\dot{\mathrm{b}}_{\mathrm{m}} \dot{\mathrm{O}}_{2}+\dot{\mathrm{s}}_{\mathrm{m}} \dot{\mathrm{O}}_{2} \tag{96}
\end{align*}
$$

and

$$
\begin{equation*}
\mathrm{PL}=P L_{\mathrm{nOm}}+\Delta \mathrm{PL}+\mathrm{b}_{\mathrm{PL}}+s_{\mathrm{PL}} \tag{97}
\end{equation*}
$$

These measured quantities include measurement noise s, and potential bias states b () modeled as random constants. In these measurements, the $\Delta^{\prime} d$ variables are to be included as states in the estimation algorithm. If the nominal values are zero or unknown, then the $\Delta \cdot d$ variables absorb the entire estimate. Where required, the estimate for the variables used in the estimation algorithm is formed using the nominal and the estimate of the deviation, etc. In example, thrust and fuel mass flow rate estimates are forned as

$$
\begin{equation*}
\hat{f}_{r \mathrm{I}}=\hat{f}_{T_{n o m}}+\hat{\Delta f_{T}} \tag{98}
\end{equation*}
$$

Whombe ot Fhent bo
 OF POOR QUALTTY,

and

$$
\begin{equation*}
\dot{m}_{\mathrm{H}_{2}}=\dot{m}_{\mathrm{H}_{2}}+\dot{\mathrm{m}}_{\mathrm{nOm}}+\hat{\mathrm{b}}_{2} \dot{m}_{\mathrm{H}_{2}} \tag{99}
\end{equation*}
$$

The deviation or $\Delta^{\prime} d$ measurement variables are modeled as time correlated random variables. This permits these variables to vary within a band of frequencies. The typical model is then given as

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{dt}} \Delta()=-\frac{1}{\tau_{(}}, \Delta()+\frac{1}{\tau_{(}}, \mathrm{s}() \tag{100}
\end{equation*}
$$

where the parenthesis () would be replaced by the variables, i.e., $\dot{m}_{H_{2}}$. For the SSME, an additional variable $\Delta c_{\text {mult }}^{*}$ is modeled as in equation 100 and included as a state variable with the $\Delta^{\prime} d$ measurement variables.

The thrust deviation is expanded as in the following truncated Taylor series as a function of the independent parameters.

$$
\begin{align*}
\Delta f_{T}= & \frac{\partial f_{T}}{\partial r_{H_{2}}} \dot{m}_{H_{2}}+\frac{\partial f_{T}}{\partial r_{O_{2}}} \Delta \dot{m}_{O_{2}}+\frac{\partial f_{T}}{\partial \Delta c^{*}} \Delta c^{*} \\
& +\frac{\partial f_{T}}{\partial \mathrm{PL}} \Delta \mathrm{PL}+\frac{\partial f_{T}}{\partial M R} \Delta M R . \tag{101}
\end{align*}
$$

In the $\underline{\dot{v}}^{(B)}$ and $\dot{\dot{\omega}}$ equations, with equation 101 replacing $\dot{f}_{T_{i}}$, the partial derivatives of f_{T} with respect to the $\Delta \cdot d$ variables are obtained directly from equation 101.

ORIGINAL PGEA: EA
OF POOR QUALITY
It is desirable to includo vehicle mass bias as a state. The SSME's system contribution to the mass deviation is given by

$$
\begin{equation*}
\Delta \dot{m}_{\text {SSME's }}=\sum_{i}\left(\Delta \dot{m}_{H_{2}}+\Delta \dot{m}_{O_{2}}-\Delta \dot{m}_{H_{2}}-\Delta \dot{m}_{p_{i}}\right) \tag{102}
\end{equation*}
$$

In equation 101 , the $\Delta \mathrm{m}_{2}$ contribution to the mass deviation is not available from measurements. As with the thrust deviation, this quantity is formed as

$$
\begin{align*}
\Delta \dot{m}_{O_{2}}= & \frac{\partial \dot{m}_{2}}{\partial \dot{m}_{H_{2}}} \Delta \dot{m}_{H_{2}}+\frac{\partial \dot{m}_{2}}{\partial \mathrm{~m}_{2} O_{2}} \Delta \dot{m}_{O_{2}}+\frac{\partial \dot{m}_{2}}{\partial \Delta c^{*}} \Delta c^{*} \\
& +\frac{\partial \dot{m}_{O_{2}}}{\partial \mathrm{PL}} \quad \Delta \mathrm{PL}+\frac{\partial \mathrm{O}_{2}}{\partial M R} \Delta M R . \tag{103}
\end{align*}
$$

which is in terms of other estimated state variables. In equations 101 and 103 the deviation in mixture ratio, $\Delta M R$, is obtained algebraically from

$$
\begin{equation*}
\Delta M R=\frac{\dot{m}_{H_{2}}-\dot{m}_{\mathrm{H}_{2}}}{\frac{\dot{m o m}_{\mathrm{H}_{2}}}{\partial \mathrm{MR}}} \tag{104}
\end{equation*}
$$

3.3.2 SRB Propulsion Parameter Model

The approach for the SRB modeling follows closely that used for the SSME. Candidate independent parameters include propellant burn rate exponent, a, and motor efficiency coefficient, c_{m}. Others can be added using this technique.

The actual value of vacuum thrust is given by equation 92 . The only measurement available for the SRB is the total pressure at the forward head end of the motor case and is modeled as

$$
\begin{equation*}
\mathrm{P}_{\mathrm{O}_{\mathrm{H}}}=\mathrm{P}_{\mathrm{O}_{\mathrm{H}}}+\Delta \mathrm{P}_{\mathrm{O} \mathrm{H}}+\mathrm{b}_{\mathrm{P}_{\mathrm{O}_{\mathrm{H}}}}+\mathrm{s}_{\mathrm{p}_{\mathrm{O}}} \tag{105}
\end{equation*}
$$

where b () and s () represents a bias and measurement noise respectively. The independent parameters, Δa and Δc_{m}, are included in the model as states. The model assumed can be as given by equation 100 or another suitable dynamical process, i.e., random constant.

The thrust deviation is given by the following truncated Taylor series as a function of the candidate independent parameters.

$$
\begin{equation*}
\Delta f_{T}=\frac{\partial f_{T}}{\partial a} \Delta a+\frac{\partial f_{T}}{\partial c_{m}} \Delta c_{m}+\ldots . \tag{106}
\end{equation*}
$$

The partial derivatives for the $\dot{\underline{v}}^{(B)}$ and $\underline{\dot{\omega}}$ equations with respect to the independent parameters are obtained directly from equation 106 . The mass deviation equation for the SRB is given as

$$
\begin{equation*}
\Delta \dot{m}_{S R B}=\underset{i}{\sum(\Delta \dot{m})} \tag{107}
\end{equation*}
$$

where

$$
\begin{equation*}
\Delta \dot{m}_{i}=\frac{\partial \dot{m}_{m}}{\partial a} \Delta a+\ldots \tag{108}
\end{equation*}
$$

The head pressure deviation, $\Delta P_{O_{H}}$, is expanded similarly

$$
\begin{equation*}
\Delta P_{O_{H}}=\frac{\partial P_{O_{H}}}{\partial a} \Delta a+\ldots \tag{109}
\end{equation*}
$$

3.3.3 Vehicle Mass

The total rate of change of vehicle mass is given by

The first two terms in this equation are the apriori assumed nominal values. The third and fourth terms were discussed earlier. The last term should be zero; however, it can include a mass bias uncertainty Δm_{b}

The equations, state and measurement, in which mass occurs are the $\dot{\underline{v}}^{(B)}$ and ${\underset{a}{-}}$ equations. Assuming equation 110 can be summarized as $\dot{m}+\Delta \dot{m}_{b}$ then the mass can be written as $m+\Delta m_{b}$. Replacing this expression for the mass in the two indicated equations yields the following partial derivatives with respect to the Δm_{b}.
and

4.0 PROJECTED ACTIVITIES DURING UPCOMING MONTH

During the next period, the filter portion of the estimation algorithm should be checked out. Additionally, the smoother portion routines should have been coded. The smoother routines are more straightforward and represent less developments than the filter routines.

The ability to bring up the NASA SRB predictive model on our computer will be determiend. If not successful, two other possibilities exist. The first, and leagt desirable, is to utilize the computer facility at the University of Florida under NASA sponsorship. The second is to have provided the necessary partial derivitives or allow SDI personnel access to these programs resident on the NASA computers for the purposes of generating the partial derivatives. There may be other possibilities than those mentioned here.

1. Sage, A. P., Optirnum Systems Control, Prentice~Hall, Inc., Englewood Cliffs, N. J., 1968.
2. Bierman, G. J., "Fixer Interval Smoothing with Discrete Measurements," Int. Jr. Control, Vol. 13, No. 1, 1975, pp. 65-75.
3. Jazwinski, A. H., Stochastic Processes and F'iltering Theory, Academic Press, New York, 1970.
4. Davis, L. D., "Coordinate Systems for the Space Shuttle Program," NASA TMX-58153, October, 1974.
5. Perry, E. L., "Quaternions and Their Use," NASA/JSC Internal Note 82-FM-64, December, 1982.
6. Lear, W. M., "Description of the LRBET Program," NASA/JSc Internal Note 81-FM-5, February, 1981.

APPENDIX A

PARTIAL DERIVATIVE OF THE VECTOR ${ }^{I} c^{B} \underline{w} w \underline{\theta}$

This partial derivative is one of several that occurs frequently in the formulation of the linearized system state and measuremetn eqautions. The desired partial derivative is

The resulting matrix is given in Table $A-1$.
table A-1. Partial Derivative of ${ }^{I} c^{B} \underline{v}$ wrt θ

$$
\begin{array}{r}
(\cos \varphi \sin \theta \cos \phi+\sin \varphi \sin \psi) v_{2} \\
-(\sin \varphi \sin \theta \cos \phi-\cos \varphi \sin \psi) v_{3}
\end{array}
$$

$(\cos \varphi \sin \theta \sin \psi-\sin \varphi \cos \psi) v_{2}$
$-(\sin \varphi \sin \theta \sin \psi+\cos \varphi \cos \psi) v_{3}$
$-\cos \theta \mathrm{v}_{1}$
$-\sin \varphi \sin \theta \quad \mathrm{v}_{2}$
$-\cos \varphi \sin \theta \quad \mathrm{v}_{3}$

ORIGINAL PAEXE IS OF POOR QUALITY

APPENDIX B

$$
\frac{\partial v_{m}}{\partial \underline{\underline{v}}(B)}, \quad \frac{\partial \alpha}{\partial \underline{v}}(B), \quad \frac{\partial \beta}{\partial v^{(B)}}, \quad \frac{\partial \alpha}{\partial h}, \quad \frac{\partial \beta}{\partial h} \text { and } \frac{\partial v_{m}}{\partial h} \text { Exprossions }
$$

These partial derivatives occur frequently and will be developed in this appendix. The equation for V_{-1} is

$$
\underline{v}_{x}=\underline{v}^{(B)}-B_{C}^{L L} \underline{v}_{W}^{(L L)}
$$

B-1

Since the wind velocity, $\underset{W}{v}(L L)$, is only a function of altitude then

$$
\frac{\partial}{\partial \underline{v}_{w}}=\frac{\partial}{\partial \underline{v}}(B)
$$

The first partial derivative, $\frac{\partial v_{m}}{\partial \underline{v}(B)}$, is

$$
\frac{\partial v_{\mathrm{m}}}{\partial \underline{v_{-}}(B)}=\frac{1}{v_{\mathrm{m}}}\left[\begin{array}{c}
v_{r_{1}} \\
v_{r_{2}} \\
v_{r_{3}}
\end{array}\right]^{T}
$$

The second, $\frac{\partial \alpha}{\partial \underline{v}(B)}$, is given by

CNGMM FRER OF POOR QUALITK

$$
-\frac{\partial \alpha}{\partial \underline{v}(B)}=\left[\begin{array}{c}
-v_{r_{3}} \\
\frac{v_{r_{1}}{ }^{2}+v_{r_{3}}{ }^{2}}{} \\
0 \\
\frac{v_{r_{1}}}{v_{r_{1}}{ }^{2}+v_{r_{3}}{ }^{2}}
\end{array}\right]^{T}
$$

The equation for $\frac{\partial B}{\partial \underline{v}^{(B)}}$ is

$$
\frac{\partial B}{\partial \underline{(B)}}=\left[\begin{array}{c}
\frac{-v_{r_{1}} v_{r_{2}}}{v_{m} \sqrt[3]{v_{r_{1}}{ }^{2}+v_{r_{3}}{ }^{2}}} \\
\frac{\sqrt{v_{r_{1}}{ }^{2}+v_{r_{3}}{ }^{2}}}{v_{m}^{3}} \\
\frac{-v_{r_{2}} v_{r_{3}}}{v_{m}^{3} \sqrt{v_{r_{1}}{ }^{2}+v_{r_{3}}{ }^{2}}}
\end{array}\right]
$$

ORIGINAL PROE RE
 OF POOR QUALITY

The following equations define the last three required partial derivatives

$$
\begin{array}{ll}
\frac{\partial \alpha}{\partial h}=-\frac{\partial \alpha}{\partial v^{(B)}}{ }^{B} C^{L L} \frac{\partial \underline{v}_{w}^{(L L)}}{\partial h} & B-6 \\
\frac{\partial B}{\partial h}=-\frac{\partial \beta}{\partial \underline{v}^{(B)}}{ }^{B} C^{L L} \frac{\partial \underline{v}_{w}^{(L L)}}{\partial h} & B-7 \\
\frac{\partial v_{m}}{\partial h}=-\frac{\partial \beta}{\partial \underline{v}^{(B)}}{ }^{B} C^{L L} \frac{\partial \underline{w}_{w}^{(L L)}}{\partial h} & B-8
\end{array}
$$

OF POOR QUALTIY

APPENDIX C

PARTIAL DERIVATIVE OF THE VECTOR ${ }^{B} C^{I}$ v wrt $\underline{\theta}$

The third of the frequently occurring required partial derivatives
is

APPENDIX D

AERODYNAMIC MODELING REGRESSION ANALYSIS AND RESULTS

The aerodynamic data tables provided as IVBC3 data has been incorporated into an aerodynamic coefficient polynomial model. This modeling effort reduces the dimensionality of the numerical tables to one and reduces the storage requirements for the aerodynamic model.

The coefficient model used for the two stages differ slightly as a result of the available data. The regression analysis led in the selection of the form of the aerodynamjc model. Terms with insignificant correlation were eliminated from the model.

In equation form, the first stage static coefficients of axial force, C_{A}; normal force, C_{N}; pitching moment, C_{m}; rolling moment, $C_{l} ;$ side force, $C_{Y} ;$ and yawing moment, C_{n}; are given below

$$
\begin{align*}
& C_{A}=C_{A_{0}}+C_{A_{\alpha}} \alpha+C_{A_{\alpha}} \alpha^{2}+C_{A_{\alpha \beta^{2}}} \alpha \beta^{2}+C_{A_{B} 2} \beta^{2} \\
& C_{N}=C_{N_{0}}+C_{N_{\alpha}} \alpha+C_{N_{\alpha \beta}^{2}} \alpha \beta^{2} \\
& c_{m}=c_{m_{0}}+c_{m_{\alpha}} \alpha+c_{m_{\alpha \beta}^{2}} \alpha \beta^{2} \\
& C_{\ell}=C_{\ell}+c_{\ell \beta} \beta+c_{\ell}{ }_{\alpha \beta} \alpha \beta+c_{\ell}{ }_{\alpha}{ }_{\alpha \beta} \alpha^{2} \beta
\end{align*}
$$

$$
\begin{aligned}
& C_{Y}=C_{Y_{0}}+C_{Y_{\beta}} \beta+C_{Y_{\alpha \beta}} \alpha \beta+C_{Y_{\alpha}{ }_{2}} \alpha^{2} \beta \\
& C_{n}=C_{n_{0}}+c_{n_{\beta}} \beta+c_{n_{\alpha \beta}} \alpha \beta+c_{n_{\alpha}{ }^{2} \beta} \alpha^{2} \beta
\end{aligned}
$$

The corresponding second stage model is given by the following equations

$$
\begin{align*}
& C_{A}=C_{A_{0}}+C_{A_{\alpha}} \alpha+C_{A_{\alpha}} \alpha^{2} \\
& C_{N}=C_{N}+C_{N_{\alpha}} \alpha+C_{N_{\alpha} 2} \alpha^{2} \\
& c_{m}=c_{m_{0}}+c_{m_{\alpha}} \alpha+c_{m_{\alpha}} \alpha^{2} \tag{D. 9}\\
& c_{\ell}=c_{\ell}+c_{\ell_{\beta}} \beta+c_{\ell_{\alpha \beta}} \alpha \beta+c_{\ell_{\alpha} Z_{\beta}} \alpha^{2} \beta \\
& C_{Y}=C_{Y_{0}}+C_{Y_{\beta}} \beta+C_{Y_{\alpha \beta}} \alpha \beta+C_{Y_{\alpha}{ }_{\beta}} \alpha^{2}{ }^{2} \\
& c_{n}=c_{n_{0}}+c_{n_{\beta}} \beta+c_{n_{\alpha \beta}} \alpha \beta+c_{n_{\alpha}{ }^{2} \beta} \alpha^{2} \beta
\end{align*}
$$

For the first stage, data from an angle-of-attack range of -6 to +6 degrees was used in the regression analysis. Data from a range of -8 to +4 degrees was used for the second stage. The results, tcxx..., from the regression analysis is presented below for each of the coefficients, $C_{X X} .$. , above.

ORIGINAL PRES E3 OF POOR QUALITY

ORIGINAL FGGE OF POOR QUALITY

ORIGINAL PFER ITG OF POOR QUALITY

OF POOR QUALITY

FFOFFIEA	SET: ELLA
MHCH	- TCllo
. 6	0.00009300
. 8	-0.00100400
. 7	0.0011 .9100
. 75	0.00113500
1.0	0.00102300
1.1	0.00255850
1.15	0.00142150
1.25	0.00098950
1.4	0.00152650
1.55	0.00162500
1.3	0.00150650
2.2	0.00164350
2.5	0.00175700
3.5	0.00078500
4.5	-0.00035500

OF POOR QUALITY

TABLE D-6. First Stage Yawing Moment Coefficient

CRIENAL PFAE E
 OF POOR QUALITY

TABLE D-7. Second Stage Longitudinal Coefficients

