General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)

NASA Technical Memorandum Image: Comparison of the second of the sec

FILAMENTARY COMPOSITE SPHERICAL PRESSURE VESSELS (NASA) 130 P HC A07/MF A01 CSCL 11D

Unclas G3/24 41991

By Jan D. Dozier Structures & Propulsion Laboratory Science and Engineering Directorate

August 1983

National Aeronautics and Space Administration

George C. Marshall Space Flight Center

a 1961.361 (1977)(6.67)(6	2. GOVERNMENT ACCESSION NO.	3. RECIPIENT'S CATALOS NO.				
4. TITLE AND SUBTITLE Time-Dependent Response of F Spherical Pressure Vessels	8. REPORT DATE August 1983. 6. PERFORMING ORGANIZATION CODE EP42					
7. AUTHOR(\$) Jan D. Dozier		8. PERFORMING ORGANIZATION REPOR				
9. PERFORMING ORGANIZATION NAME AND AL	DDRESS	10. WORK UNIT NO.				
George C. Marshall Space Fli Marshall Space Flight Center	ght Center , AL 35812	11. CONTRACT OR GRANT NO.				
12. SPONSORING AGENCY NAME AND ADDRESS National Aeronautics and Spa	s ce Administration	13. TYPE OF REPORT & PERIOD COVE Technical Memorandum				
		14. SPONSORING AGENCY CODE				
A filamentary composit isotropic (or transversely liner and fill tubes omitte mechanical formulations, an of an internally pressured for the composite matrix ar the maximum strain theory o are formulated, solved in t and inverted back into the elastic properties of HBFR- HBFR-55 system is evaluated burst pressure with respect	e spherical pressure vessel isotropi [^]) composite shell, d. Equations of elasticity, d laminate properties are de spherical composite vessel. e used to characterize time- f failure, burst pressure an the Laplace domain with an as time domain using the method 55 resin are experimentally with a FORTRAN program. Th	is modeled as a pseudo- with the effects of the macromechanical and micro- rived for the application Viscoelastic properties dependent behavior. Using d critical strain equations sociated elastic solution, of collocation. Visco- determined and a Kevlar/ e computed reduction in analysis employed may be				
used to predict the time-de pressure vessel.	ORIGINAL PAGE IS OF POOR QUALITY	ntary composite spherical				
used to predict the time-de pressure vessel. 17. KEY WORDS Filamentary Composites Pressure Vessels Viscoelasticity	ORIGINAL PAGE IS OF POOR QUALITY 18. DISTRIBUTION Unclassifi	STATEMENT ed-Unlimited				
used to predict the time-de pressure vessel. 17. KEY WORDS Filamentary Composites Pressure Vessels Viscoelasticity 19. SECURITY CLASSIF. (of this report)	20. SECURITY CLASSIF. (of this page)	STATEMENT ed-Unlimited				

ORIGINAL PAGE IS OF POOR QUALITY TABLE OF CONTENTS

)

			Page
LIST	OF	TABLES	vii
I.IST	OF	FIGURES	viii
LIST	OF	SYMBOLS	ix
Chapt	ter		
	1.	INTRODUCTION	1
	2.	MATERIAL MODEL	7
	3.	EQUATIONS OF ELASTICITY	8
		<pre>3.1 Equilibrium Equations 3.2 Kinematic Equations</pre>	8 9
	4.	MACROMECHANICAL BEHAVIOR OF A LAMINA	12
	5.	MICROMECHANICAL BEHAVIOR OF A LAMINA	14
		5.1 Determination of E_L 5.2 Determination of E_T 5.3 Determination of v_{LT} and v_{TL} 5.4 Determination of v_{TT} and G_{LT}	16 18 19 20
	6.	PROPERTIES OF THE LAMINATE	22
	7.	MAXIMUM STRAIN THEORY OF FAILURE	26
		7.1 Boundary Conditions7.2 Failure Frediction	27 27
8	3.	DETERMINATION OF VISCOELASTIC MATERIAL PROPERTIES	30
		8.1 Laplace Transformations 8.2 Determination of Creep Compliance.	30
		$J_m(t)$	34
		lus, $E_{m}(t)$	35
		$v_{m}(t)$	37

iii

PRECEDING PAGE BLANK NOT FILMED

										rage
9.	ASS	SOCIA	TED ELAS	STIC SOLU	JTION	• • • • • •	• • • • • •	•••••		38
10.	API	PLICA	TION			• • • • • •	• • • • • •		• • • •	43
] 1	LO.1 LO.2	Viscoel HBRF-55 Associa	astic Ma Resin. Ited Elas	aterial stic Sol	Prope: lution	rties	of	••••	43 52
			10.2. <u>1</u> 10.2.2	Propert Maximur	ties of n Strain	the Land Theo	aminat ry of	Failu	ire	52 54
11.	CON	ICLUS	SIONS	••••••		• • • • • •	• • • • • •	• • • • •	••••	64
BIBLI	OGRA	APHY.	••••••	•••••			• • • • • •		••••	66
APPEN	DIX	A.	FORTRAN	PROGRAM	CREEP		• • • • • •		• • • •	69
APPEN	DIX	в.	FORTRAN	PROGRAM	THESIS		• • • • • •	• • • • • •	• • • •	77
APPEN	DIX	c.	FORTRAN	PROGRAM	THESIS	.ccc				117

LIST OF TABLES

rage
44
47
55
56
57

v

a a star a s

. .

LIST OF FIGURES

		rage
FIGURE 1.	CUTAWAY OF TYPICAL FILAMENTARY COMPOSITE SPHERICAL PRESSURE VESSEL	2
FIGURE 2.	SCHEMATIC OF MODEL AND DEFINITION OF COORDINATE SYSTEM	3
FIGURE 3.	TRANSFORMATION ANGLE BETWEEN L-T AND 1-2 COORDINATE SYSTEMS	23
FIGURE 4.	EXPERIMENTAL CREEP TEST APPARATUS	45
FIGURE 5.	CREEP COMPLIANCE VS. TIME	48
FIGURE 6.	CREEP COMPLIANCE VS. LOG TIME	49
FIGURE 7.	RELAXATION MODULUS VS. LOG TIME	51
FIGURE 8.	POISSON'S RATIO VS. LOG TIME	53
FIGURE 9.	BURST PRESSURE VS. LOG TIME, VARYING FIBER VOLUME FRACTION, V _f	59
FIGURE 10	BURST PRESSURE VS. LOG TIME, VARYING $\beta (= r_0/r_i)$	60
FIGURE 11	. STRAIN VS. LOG TIME, VARYING FIBER VOLUME FRACTION, V _f	61
FIGURE 12	. STRAIN VS. LOG TIME, VARYING β (= r_o/r_i)	62

ORIGINAL PAGE 19 OF POOR QUALITY States and states

a	$Constant \left[= \frac{g}{f} r_0^{-2n} b \right]$
A	Constant [= $p_f(t_0) - \sum_{v=1}^{k} h_v$]
Af	Area of fiber
A _m	Area of matrix
Ъ	Constant [= $\frac{p}{gr_i^{(n-\frac{3}{2})}(r_i^{-2n}-r_o^{-2n})}$]
^B j	Variable in partial fractions inversion
	$\left[= \frac{P(\lambda_j)}{Q(\lambda_j)} \right]$
c _i	Constants in partial fractions inversion
C _{ijkl}	Elasticity matrix
$\left(\begin{array}{c} c_{\theta\theta}, c_{\theta r}, \\ c_{\theta \phi}, c_{rr} \end{array} \right)$	Stiffness of laminate
$\left.\begin{array}{c}c_{LL},c_{Tr},\\c_{RR},c_{TT},\\c_{LT}\end{array}\right\}$	Stiffness of lamina
D	Constant from least squares curve fit
E	Elastic modulus
^E f	Elastic modulus of fiber
EL	Elastic modulus of lamina, longitudinal direction
E _m	Elastic modulus of matrix

E _r	Elastic modulus of laminate, radial direction
^E T	Elastic modulus of lamina, transverse direction
Έ _θ	Elastic modulus of laminate, theta direction
f	$Constant [= (n - \frac{1}{2}C_{rr} + 2C_{\theta r}]$
^F f	Fracture strength of fiber
Fi	Constant from least squares curve fit
g	Constant [= $(n + \frac{1}{2}) C_{rr} - 2C_{\theta r}$]
G	Shear modulus
G _f	Shear modulus of fiber
G _m	Shear modulus of matrix
G _{LT} ,G _{Tr} ,	Shear moduli of lamina
h v	Constant in associated elastic solution
н	Constant from least squares curve fit
K	Bulk modulus
κ _θ	Circumferential strain of composite fiber
L	Length of specimen
L, T, r	Lamina coordinates
М	Constant [= 3,4,5,]
n	Degree of anisotropy
N	Constant [= $\frac{G_{m}(\pi+4v_{f}) + G_{m}(\pi-4v_{f})}{G_{f}(\pi-4v_{f}) + G_{m}(\pi+4v_{f})}$]
P	Force
р	Pressure

^p f	Burst pressure
P(λ _j)	Polynomial in partial fractions inversion
Q(ك _j)	Polynomial in partial fractions inversion
R _i	Assigned values in least squares curve fit
ri	Inner radius of composite
ro	Outer radius of composite
r,θ,φ	Spherical coordinates of laminate
S	Laplace parameter
^S ij	Compliance matrix
t	Time
to	Time zero
u	Displacement
^u r	Displacement in radial direction
u _θ	Displacement in theta direction
u _o	Displacement in phi direction
^v f	Volume fraction of fiber
v _m	Volume fraction of matrix
W	Width of specimen
^W f	Width of fiber
W _m	Width of matrix
α	Angle between L axis and 1 axis, or between adjacent lamina
$\alpha_{\mathbf{v}}$	$Constant [= e^{(7-2v)}]$

12

.

おおおいろいまである

differentiations.

Ratio of outer radius to inner radius (r_o/r_i) β Wrap angle γ Strain in fiber €**f** Strain components ^εij Strain in lamina, longitudinal direction ε_{τ.} Strain in matrix ٤_m Constant uniaxial strain ³ Strain in lamina, transverse direction ε_T $\left. \begin{array}{c} \varepsilon_{\theta\theta}, \varepsilon_{\phi\phi}, \\ \varepsilon_{\phi r}, \varepsilon_{r\theta}, \\ \varepsilon_{rr}, \varepsilon_{\theta\phi} \end{array} \right\}$ Strain components in laminate Roots of partial fractions solution ^λ1 Constant [= $(1 + v_{TT})(1 - v_{TT} - 2v_{LT} - v_{TL})^{-1}$] ٨ Poisson's ratio ν Poisson's ratio of fiber ν_f Poisson's ratio of matrix νm ^VLT^{, V}TT ORIGINAL PAGE 19 Poisson's ratio of lamina OF POOR QUALITY ν_{TL} Average stress σ Stress in fiber σf Stress in lamina, longitudinal direction σ_L Stress in matrix σm

X

σ _T	Stress in lamina, transverse direction
°ij	Stress components
σο	Constant uniaxial stress
$\sigma_{\phi \phi}, \sigma_{\theta \phi}, $	Stress components in laminate
π	Constant [= 3.14]
-	Denotes Laplace transform when placed over a symbol

ORIGINAL PAGE 18 OF POOR QUALITY Pressure vessels which are made of filamentary composites have had a profound impact in applications where weight efficiency is a factor. In particular, filamentary composite pressure vessels with a spherical geometry are used in applications of space shuttle tankage [1] and for storage of various fluids [2].

Spherical storage pressure vessels usually consist of a thin metallic bladder onto which is wound high-strength fibers bound by an organic matrix. The bladder, which acts as a liner to prevent leakage, is usually fitted with one or more fill tubes for introducing the fluid to be pressurized. As shown in Figure 1, the spherical shape allows filament winding patterns which result in a laminate which may be considered as pseudo-isotropic. That is, the pseudo-isotropic (transversely isotropic) condition is met if the angles between lamina in a laminate satisfy the relation [3]:

$$\gamma = \frac{\pi}{M}$$
(1)

where M = 3, 4, 5...

ŧ

This wrap angle ensures that the stiffness matrix will be invariant for the $\theta - \phi$ plane shown in Figure 2 and the composite may be modeled as a transversely isotropic material. ,

ORIGINAL PAGE IS

FIGURE 1. Cutaway of typical filamentary composite spherical pressure vessel [7]

ORIGINAL PAGE IS OF POOR QUALITY

3

A number of closed-form solutions have been developed [3,4] which predict the stress-strain behavior of a composite shell assuming a pseudo-isotropic material and an elastic-plastic bladder response. These solutions predict short-term failure pressures of the vessel, and correlate well with experimental data [4,5,6]. Finite-element techniques are also used [2,7] to model discontinuities near the fill tubes.

Although recognized as a significant problem, little is known about the mechanisms which lead to the loss of long-term structural integrity of filamentary composite spherical pressure vessels. Some possible causes of this time-dependent loss of structural integrity are environmental degradation, matrix crazing, and manufacturing processes.

The static fatigue susceptability in composites is well-known, but it has not been treated successfully from the standpoint of mechanism identification. Therefore, in the case of long-term, high-pressurization storage, high factors of safety are used to compensate for uncertainties regarding creep rupture under conditions of sustained pressurization. The resulting low design allowables then detract from the weight-saving attributes of composites. This problem has heretofore been dealt with by a statistical analysis of manufacturing variations and experimental data [8].

The study of the time-dependent behavior of filamentary composite pressure vessels is further complicated by the lack of experimental data. Some data were collected at Lawrence Livermore National Laboratory on S-glass/epoxy composites [9], but most of the test specimens were destroyed and the test data invalidated due to a major earthquake in Northern California in 1980.

This study examines the time-dependent response of filamentary composite spherical pressure vessels by considering the linearly viscoelastic character of the matrix in the filamentary composite laminate. This characterization is important because the composite material over a period of time becomes more anisotropic, thus increasing the failure potential of the system. Therefore, this material model which includes the time-dependent properties of the matrix in a composite laminate is used to predict burst pressure and strain under conditions of sustained internal pressurization of a spherical pressure vessel. The lamina and laminate properties in the analysis are initially determined using micromechanical and macromechanical techniques. Viscoelastic material properties for the matrix are experimentally determined and included in the constitutive equations for the composite. These timedependent expressions are transformed into the Laplace domain and solved using the maximum strain theory of failure. The solution is then inverted back into the time domain using the method of collocation, and burst pressure and critical strain

of the composite spherical pressure vessels are expressed as a function of time. Finally, an application is given for a Kevlar/epoxy system, where the solution is numerically evaluated. The burst pressures for this system are predicted as a function of time, and critical strain is computed for a constant internal pressurization. The effects of constituent volume fractions and shell thickness on failure potential are also investigated. Thus, an analytical method is outlined and a numerical application is given to predict the time-dependent response of a filamentary composite spherical pressure vessel.

CHAPTER 2. MATERIAL MODEL

Filamentary composite spherical pressure vessels generally have filaments which are wound into a laminate considered as pseudo-isotropic (or transversely isotropic). In this analysis, the filamentary composite pressure vessel is assumed to be transversely isotropic in the $\theta - \phi$ plane, as shown in Figure 2.

The spherical geometry of pressure vessels under consideration is uniform, except in the areas surrounding the fill tubes. However, the model used in this analysis assumes a uniformly spherical geometry and does not include the discontinuities in the fill tube regions.

It has been shown that the bladder which lines the inner surface of the composite shell has a minimal effect in the burst pressure prediction of the pressure vessel [4, 10]. Therefore, the structural model used in this analysis does not include the effect of the bladder. Models have been developed which consider the elastic-plastic behavior of the bladder in failure prediction [3].

This model will be used in the following viscoelastic analysis to predict burst pressure and to calculate critical strain. It is further elaborated upon in the application to a Kevlar/epoxy spherical pressure vessel.

CHAPTER 3. EQUATIONS OF ELASTICITY

For a spherical geometry with uniformly symmetrical loading, all of the shear stress and strain components vanish. For the special case of a transversely isotropic material system, the general governing equations of elasticity may be further simplified. The following discussion derives the equilibrium equations and kinematic equations in spherical coordinates for a sphere transversely isotropic in the r plane.

3.1 EQUILIBRIUM EQUATIONS

Neglecting body forces, the following general equilibrium equations relative to a spherical coordinate system are [11]:

$$\frac{\partial \sigma_{\phi}}{\partial r} + \frac{1}{r} \frac{\partial \sigma_{\phi\phi}}{\partial \phi} + \frac{1}{r\sin\phi} \frac{\partial \sigma_{\theta\phi}}{\partial \theta} + \frac{3}{r} \sigma_{r\phi} + \frac{\cos\phi}{r\sin\phi} (\sigma_{\phi\phi} - \sigma_{\theta\theta}) = 0 \quad (2a)$$

$$\frac{\partial \sigma_{r\theta}}{\partial r} + \frac{1}{r} \frac{\partial \sigma_{\phi}}{\partial \phi} + \frac{1}{r\sin\phi} \frac{\partial \sigma_{\theta\theta}}{\partial \theta} + \frac{3}{r} \sigma_{r\theta} + \frac{2\cos\phi}{r\sin\phi} \sigma_{\theta\phi} = 0 \quad (2b)$$

$$\frac{\partial \sigma_{rr}}{\partial r} + \frac{1}{r} \frac{\partial \sigma_{\phir}}{\partial \phi} + \frac{1}{r\sin\phi} \frac{\partial \sigma_{r\theta}}{\partial \theta} + \frac{\cos\phi}{r\sin\phi} \sigma_{r\phi} + \frac{\cos\phi}{r\sin\phi} \sigma_{r\phi} + \frac{1}{r\sin\phi} \frac{\partial \sigma_{r\theta}}{\partial \theta} + \frac{\cos\phi}{r\sin\phi} \sigma_{r\phi} + \frac{1}{r\sin\phi} \frac{\partial \sigma_{r\theta}}{\partial \theta} + \frac{1}{r\sin\phi} \sigma_{r\phi} + \frac{\cos\phi}{r\sin\phi} \sigma_{r\phi} + \frac{1}{r\phi} \sigma_{r\phi} + \frac{1}{r\phi}$$

$$\frac{1}{r} \left[2\sigma_{rr} - \sigma_{\phi\phi} - \sigma_{\theta\theta} \right] = 0$$
 (2c)

where σ_{ij} are stress components in the θ, ϕ, r coordinate system. For uniform loading conditions, all of the shear stress components vanish, i.e., $\sigma_{\phi r} = \sigma_{r\phi} = \sigma_{r\theta} = \sigma_{\theta r} = \sigma_{\phi\theta} = \sigma_{\theta\phi} = 0$. Therefore, Equations (2) reduce to:

$$\frac{1}{r} \frac{\partial \sigma_{\phi \phi}}{\partial \phi} + \frac{\cos \phi}{r \sin \phi} (\sigma_{\phi \phi} - \sigma_{\theta \theta}) = 0 \qquad \text{ORIGINAL PAGE IS} \qquad (3a)$$

$$\frac{1}{r \sin \phi} \frac{\partial \sigma_{\theta \theta}}{\partial \theta} = 0 \qquad (3b)$$

$$\frac{\partial \sigma_{rr}}{\partial r} + \frac{1}{r} \left(2\sigma_{rr} - \sigma_{\phi\phi} - \sigma_{\theta\theta} \right) = 0$$
(3c)

For a transversely isotropic material system, the tangential stresses, $\sigma_{\theta\theta}$ and $\sigma_{\phi\phi}$ are equal. Equations (3) thus can be written:

$$\frac{1}{r} \frac{d\sigma_{\phi\phi}}{d\phi} = 0 \tag{4a}$$

$$\frac{1}{r\sin\theta} \frac{d\sigma_{\theta\theta}}{d\theta} = 0$$
 (4b)

$$\frac{d\sigma_{rr}}{dr} + \frac{2}{r} (\sigma_{rr} - \sigma_{\theta\theta}) = 0$$
 (4c)

Equation (4c) is then the only equilibrium equation of interest.

3.2 KINEMATIC EQUATIONS

For linear elasticity, the kinematic equations in spherical coordinates for any geometry are given by [11]:

$$\varepsilon_{\phi\phi} = \frac{1}{r} \frac{\partial u_{\phi}}{\partial \phi} + \frac{u_{r}}{r}$$
(5a)

ORIGINAL PAGE IS OF POOR QUALITY

10

$$\varepsilon_{\theta\theta} = \frac{1}{r\sin\phi} \frac{\partial u_{\theta}}{\partial\phi} + \frac{u_r}{r} + \frac{u_{\phi}}{r} \cot\phi$$
(5b)

$$\varepsilon_{\rm rr} = \frac{\partial u_{\rm r}}{\partial r}$$
(5c)

$$\varepsilon_{\theta\phi} = \frac{1}{2} \left(\frac{1}{r\sin\phi} \frac{\partial u_{\phi}}{\partial \theta} - \frac{u_{\theta}}{r} \cot\phi + \frac{1}{r} \frac{\partial u_{\theta}}{\partial \phi} \right)$$
(5d)

$$\varepsilon_{\phi r} = \frac{1}{2} \left(\frac{1}{r} \frac{\partial u_r}{\partial \phi} - \frac{u_{\phi}}{r} + \frac{\partial u_{\phi}}{\partial r} \right)$$
(5e)

$$\varepsilon_{\mathbf{r}\theta} = \frac{1}{2} \left(\frac{\partial \mathbf{u}_{\theta}}{\partial \mathbf{r}} + \frac{1}{\mathrm{rsin}\phi} \frac{\partial \mathbf{u}_{\mathbf{r}}}{\partial \theta} - \frac{\mathbf{u}_{\theta}}{\mathbf{r}} \right)$$
(5f)

where ε_{ij} are the strain components and u_i are the displacements in the θ, ϕ, r coordinate system.

For a condition of uniform loading, all shear strain components vanish and Equations (5d) through (5f) may then be eliminated. Also, displacement components u_{ϕ} and u_{θ} are zero and Equations (5a) through (5c) reduce to:

$$\varepsilon_{\phi\phi} = \frac{u_r}{r}$$
(6a)

$$\varepsilon_{\theta\theta} = \frac{u_r}{r}$$
(6b)

$$\varepsilon_{rr} = \frac{du_r}{dr}$$
(6c)

For a material transversely isotropic in the r plane, $\varepsilon_{\theta\theta} = \varepsilon_{\phi\phi}$ and $u_r = u$. Therefore, the final form of the kinematic equations is:

$$\varepsilon_{\theta\theta} = \frac{u}{r}$$

$$\varepsilon_{rr} = \frac{du}{dr}$$
ORIGINAL PAGE IS
(7a)
(7a)
(7b)

CHAPTER 4. MACROMECHANICAL BEHAVIOR OF A LAMINA

A lamina in a filamentary composite is an assemblage of fibers embedded in a matrix. It is necessary to describe the macromechanical behavior of a lamina, i.e., the behavior when averaged properties are considered, in order to understand the laminated structure. In this discussion the coordinate system θ, ϕ, r is aligned with the principal material directions 1,2,3 of the lamina.

The generalized Hooke's law relating stresses to strains can be written as:

where σ_{ij} are stress components, C_{ijkl} is the elasticity matrix, and ε_{kl} are the strain components. Although the elasticity matrix has 36 terms, it is symmetric and only 21 of the terms are independent.

The 21 constants in the elasticity matrix are necessary in order to characterize a general anisotropic material because there are no planes of symmetry. The case of a lamina which is transversely isotropic in the 3 plane yields properties which are non-directional in the 1-2 plane. The stress-strain relationship is based upon only five independent constants and is given by [12]:

> ORIGINAL PAGE 19 OF POOR QUALITY

						ORI OF	Ginal F	PAGE	13	13
σ11		C ₁₁	c ₁₂	с ₁₃	0	0	0		^ε 11	
^σ 22		c ₁₂	c ₁₁	c ₁₃	0	0	0		^ε 22	
^σ 33		с ₁₃	c ₁₃	с ₃₃	0	0	0		^е зз	
^σ 23	-	ο	0	0	с ₄₄	0	0		^ε 23	(9)
^σ 31		0	0	0	0	с ₄₄	0		^ε 31	
^σ 12		0	0	0	0	0	c ₁₁ -c ₁ 2	12	[€] 12	

Letting subscript $1 = \theta$, subscript $2 = \phi$, and subscript 3 = rin spherical coordinates, the stress-strain relations become:

$$\begin{bmatrix} \sigma_{\theta\theta} \\ \sigma_{\phi\phi} \\ \sigma_{rr} \end{bmatrix} = \begin{bmatrix} C_{\theta\theta} & C_{\theta\phi} & C_{\theta r} \\ C_{\theta\phi} & C_{\theta\theta} & C_{\theta r} \\ C_{\thetar} & C_{\thetar} & C_{rr} \end{bmatrix} \begin{bmatrix} \varepsilon_{\theta\theta} \\ \varepsilon_{\phi\phi} \\ \varepsilon_{rr} \end{bmatrix}$$
(10)

Again, due to loading symmetry, $\varepsilon_{\theta\theta} = \varepsilon_{\phi\phi}$. Therefore, the constitutive equations reduce to:

$$\sigma_{\theta\theta} = (C_{\theta\theta} + C_{\theta\phi}) \epsilon_{\theta\theta} + C_{\theta r} \epsilon_{rr}$$
(11a)
and

 $\sigma_{rr} = 2 C_{\theta r} \varepsilon_{\theta \theta} + C_{rr} \varepsilon_{rr}$ (11b)

CHAPTER 5. MICROMECHANICAL BEHAVIOR OF A LAMINA

Micromechanics is the study of composite behavior where the interaction of the constituent materials is examined in detail. This study is based on a lamina consisting of two constituents, the fiber and the matrix. In the coordinate system, L,T,r, the longitudinal direction, L, is along the length of the fiber, and the transverse direction, T, is across the width of the fiber and is orthogonal to L. The radial direction, r, is perpendicular to the L-T plane.

The constitutive relationship for an individual lamina in the $\theta - \phi$ plane may be expressed by the matrix given in Equation (10). If the coordinate axes (L,T,r) are oriented in the principal material directions and assumed to be transversely isotropic in the r-plane perpendicular to the fiber direction, the elasticity matrix is [3]:

$$\begin{bmatrix} C \end{bmatrix} = \begin{bmatrix} C_{LL} & C_{LT} & C_{Lr} & 0 & 0 & 0 \\ C_{LT} & C_{TT} & C_{Tr} & 0 & 0 & 0 \\ C_{Lr} & C_{Tr} & C_{rr} & 0 & 0 & 0 \\ 0 & 0 & 0 & G_{Tr} & 0 & 0 \\ 0 & 0 & 0 & 0 & G_{LT} & 0 \\ 0 & 0 & 0 & 0 & 0 & G_{Lr} \end{bmatrix}$$
(12)

ORIGINAL PAGE IS OF POOR QUALITY

ORIGINAL PAGE IS OF POOR QUALITY

Because of isotropy in the T-r plane:

$$C_{Lr} = C_{LT}$$
(13a)

$$C_{\rm rr} = C_{\rm TT} \tag{13b}$$

$$G_{Lr} = G_{LT}$$
(13c)

and

Г

The second s

$$G_{\rm Tr} = \frac{C_{\rm TT} - C_{\rm Tr}}{2} \tag{13d}$$

The corresponding lamina compliance matrix is:

	$\frac{1}{E_L}$ -	ET	$-\frac{v_{TL}}{E_{T}}$	0	0	0	
	$-\frac{v_{LT}}{E_{L}}$	1 E _T	$-\frac{v_{TT}}{E_{T}}$	0	0	0	
[S] -	- ^v lt - ^E l	ν _{TT} ^E T	1 E _T	0	0	0	(14a)
	0	0	0	$\frac{1}{G_{Tr}}$	0	0	
	0	0	0	0	$\frac{1}{G_{LT}}$	0	
L	0	0	0	0	0	$\frac{1}{G_{LT}}$	

Inversion of the lamina compliance matrix yields the elasticity matrix, Equation (12), and the following relationships [13]:

ORIGINAL PAGE 16 OF POOR QUALITY

$$C_{LL} = (1 - v_{TT}^{2}) \Lambda E_{L}$$

$$C_{TT} = (1 - v_{LT} v_{TL}) \Lambda E_{T}$$

$$C_{LT} = v_{TL} (1 + v_{TT}) \Lambda E_{L}$$

$$C_{Tr} = (v_{TT} + v_{LT} v_{TL}) \Lambda E_{T}$$

$$G_{Tr} = \frac{(1 - v_{TT}^{2} - 2v_{LT} v_{TL}) \Lambda E_{T}}{2}$$
(14b)
where

$$\Lambda = [(1 + v_{TT})(1 - v_{TT} - 2v_{LT} v_{TL})]^{-1}$$

The lamina engineering constants (E_L , E_T , v_{LT} , v_{TL} , v_{TT} , G_{LT}) can be expressed in terms of the elastic properties (E, v, G) and volume fractions of the fiber and matrix of the composite material. Micromechanical techniques are used which are based upon the assumption that the properties of the fiber and matrix are isotropic and are equal in tension and compression.

5.1 DETERMINATION OF E₁

For a volume of material loaded in the longitudinal direction, basic mechanics of materials says that

$$c_{\rm L} = \frac{\Delta L}{L} \tag{15}$$

where L is the specimen length and ϵ_L is the longitudinal extensional strain.

ORIGINAL PAGE IS OF POOR QUALITY

The stresses in the fiber and the matrix are given by

$$\sigma_{f} = E_{f} \varepsilon_{L}$$
(16a)

$$\epsilon_{\rm m} = E_{\rm m} \epsilon_{\rm L} \tag{16b}$$

where E_f is the fiber modulus and E_m is the matrix modulus. The average stress σ acts on a cross-sectional area A, σ_f acts on the cross-sectional area of the fiber, A_f , and σ_m acts on the cross-sectional area of the matrix, A_m . Therefore, the resultant force on the composite material is:

$$\mathbf{P} = \sigma \mathbf{A} = \sigma_{\mathbf{f}} \mathbf{A}_{\mathbf{f}} + \sigma_{\mathbf{m}} \mathbf{A}_{\mathbf{m}}$$
(17)

knowing that

$$\sigma = E_{L} \varepsilon_{L}, \qquad (18)$$

substituting Equations (16) and (18) into Equation (17) and rearranging yields:

$$E_{L} = E_{f} \frac{A_{f}}{A} + E_{m} \frac{A_{m}}{A}$$
(19)

Defining the volume fractions of the fiber and matrix, respectively,

$$v_f = \frac{A_f}{A} \text{ and } v_m = \frac{A_m}{A}$$
 (20)

and substituting Equations (20) into Equation (19) results in the expression:

$$E_{L} = E_{f} v_{f} + E_{m} v_{m}$$
(21)

ORIGINAL PAGE 13 OF POOR QUALITY

Equation (21) is the "rule of mixtures" expression for the elastic modulus in the direction of the fibers.

5.2 DETERMINATION OF E_T

If a stress σ_T is applied in a direction transverse to the fibers, the strains in the fiber and in the matrix are given by:

$$\epsilon_{f} = \frac{\sigma_{T}}{E_{f}}$$
(22a)
$$\epsilon_{m} = \frac{\sigma_{T}}{E_{m}}$$
(22b)

Let W be the transverse dimension of the specimen. Therefore, on an average basis, ε_{f} acts on $v_{f}W$ and ε_{m} acts on $v_{m}W$. Thus, the total transverse deformation is

$$\varepsilon_{\mathrm{T}}^{\mathrm{W}} = \mathbf{v}_{\mathrm{f}}^{\mathrm{W}} \varepsilon_{\mathrm{f}}^{\mathrm{f}} + \mathbf{v}_{\mathrm{m}}^{\mathrm{W}} \varepsilon_{\mathrm{m}}^{\mathrm{f}}$$
(23)

or

$$\varepsilon_{\rm T} = v_{\rm f} \varepsilon_{\rm f} + v_{\rm m} \varepsilon_{\rm m} \tag{24}$$

where $\epsilon_{\rm T}$ is the transverse extensional strain. Substituting Equations (22) into Equation (24) gives

$$\epsilon_{\rm T} = v_{\rm f} \frac{\sigma_{\rm T}}{E_{\rm f}} + v_{\rm m} \frac{\sigma_{\rm T}}{E_{\rm m}}$$
(25)

Knowing that $\sigma_T = E_T \epsilon_T$, (26) and substituting this relationship into Equation (25) yields ORIGINAL PAGE 16 OF POOR QUALITY

$$\sigma_{\rm T} = E_{\rm T} \left(v_{\rm f} - \frac{\sigma_{\rm T}}{E_{\rm f}} + v_{\rm m} - \frac{\sigma_{\rm T}}{E_{\rm m}} \right)$$
(27)

Solving for E_T from Equation (27) provides the expression for the transverse modulus:

$$E_{T} = \frac{E_{f}E_{m}}{v_{m}E_{f} + v_{f}E_{m}}$$
(28)

5.3 DETERMINATION OF v_{LT} AND v_{TL}

The major Poisson's ratio, v_{LT} , can be determined by a method similar to that used to determine E_L . For a volume of material loaded in the longitudinal direction, the Poisson's ratio is defined as:

$$v_{\rm LT} = -\frac{\varepsilon_{\rm T}}{\varepsilon_{\rm L}}$$
(29)

For a deformation in the transverse direction:

$$\Delta W = -W \epsilon_{\rm T} \tag{30a}$$

or

$$\Delta W = W v_{LT} \varepsilon_{L}$$
(30b)

The total deformation is also given by

$$\Delta W = \Delta W_{f} + \Delta W_{m} \tag{31}$$

where W_f is the fiber width and W_m is the matrix width. On the average basis, ε_f acts on $v_f W$ and ε_m acts on $v_m W$. Therefore,

$$\Delta W_{f} = W v_{f} \varepsilon_{f} = W v_{f} v_{f} \varepsilon_{L}$$
(32a)

and

$$\Delta W_{\rm m} = W v_{\rm m} \varepsilon_{\rm m} = W v_{\rm m} v_{\rm m} \varepsilon_{\rm L}$$
 (32b)

where ν_{f} is the Poisson's ratio of the fiber and ν_{m} is the Poisson's ratio of the matrix.

Then,

$$\Delta W = W \left(v_{m} v_{m} \varepsilon_{L} + v_{f} v_{f} \varepsilon_{L} \right)$$
(33)

Substituting Equation (30) into Equation (33) gives

$$v_{LT} \varepsilon_{L} = \varepsilon_{L} (v_{m}v_{m} + v_{f}v_{f})$$
(34)

which reduces to the expression:

$$v_{LT} = v_m v_m + v_f v_f$$
(35)

Equation (35) is the "rule of mixtures" expression for the major Poisson's ratio.

Because of symmetry requirements of the lamina compliance matrix, v_{TT} can be obtained from the relationship:

$$v_{TL} = \frac{E_T}{E_L} v_{LT}$$
(36)

5.4 DETERMINATION OF v_{TT} AND G_{LT}

Although there is not general agreement about the prediction of transverse lamina properties, reasonable predictions may be expressed as [14,15]:

ORIGINAL FACE IS
OF POOR QUALITY

$$v_{TT} = v_{f}v_{f} + v_{m}v_{m} \qquad \frac{1 + v_{m} - v_{LT} \left(\frac{E_{m}}{E_{L}}\right)}{1 - v_{m}^{2} + v_{m}v_{LT} \left(\frac{E_{m}}{E_{L}}\right)} \qquad (37)$$

$$G_{LT} = \frac{G_m}{2} - \frac{(4-\pi) + \pi N}{4} + \frac{4N}{(4-\pi) N + \pi}$$
(38)

where

.

-

.

.

$$N = \frac{G_{f}(\pi + 4v_{f}) + G_{m}(\pi - 4v_{f})}{G_{f}(\pi - 4v_{f}) + G_{m}(\pi + 4v_{f})}$$
(39)

21

Contraction of the local division of the loc

CHAPTER 6. PROPERTIES OF THE LAMINATE OF POOR OUALITY

Laminate properties may be determined by averaging properties of the individual lamina [12]. The laminate stiffnesses (C_{rr} , $C_{r\theta}$, $C_{\theta\theta}$, $C_{\theta\phi}$) are obtained by approximating the various lamina orientations in the spherical geometry as a continuous function of α , shown in Figure 3. An average stiffness is then computed by integrating the lamina stiffnesses which have been transformed from the (L,T,r) coordinates to the (1,2,r) coordinate system, also shown in Figure 3. These averaged elastic properties are derived with the assumption of constant strain in the laminate, independent of the orientation.

The average laminate stiffness in the (θ, ϕ, r) coordinate system is calculated from:

$$C_{\theta\theta} = \frac{1}{\pi} \int_{0}^{\pi} C_{11}^{d\alpha}$$
(40a)

$$C_{\theta\phi} = \frac{1}{\pi} \int_{\Omega}^{\pi} C_{12} d\alpha$$
 (40b)

$$C_{\theta r} = \frac{1}{\pi} \int_{0}^{\pi} C_{1r}^{d\alpha}$$
(40c)

and $C_{rr} = C_{TT}$ (40d) These equations may be used to determine the laminate elastic stiffness for any thickness, if the individual lamina is thin compared to its width.

ORIGINAL PAGE 13

ORIGINAL PAGE IS OF POOR QUALITY

24

(41c)

Using the method outlined by Gerstle [3], the following equations are obtained:

$$C_{\theta\theta} = \frac{3C_{LL}}{8} + \frac{3C_{TT}}{8} + \frac{1}{4} (C_{LT} + 2G_{LT})$$
(41a)

$$C_{\theta\phi} = \frac{C_{LL}}{8} + \frac{C_{TT}}{8} + \frac{1}{4} (3C_{LT} - 2G_{LT})$$
(41b)
$$C_{\theta r} = \frac{1}{2} (C_{LT} + C_{Tr})$$

Assuming that the transversely isotropic condition is met in the θ - ϕ plane

$$C_{\phi\phi} = C_{\theta\theta}$$
(42a)

$$G_{\theta\phi} = \frac{C_{\theta\theta} - C_{\theta\phi}}{2}$$
(42b)

$$C_{\phi r} = C_{\theta r}$$
(42c)

By substituting Equations (14) into Equations (41), the laminate stiffnesses may be obtained in terms of the elastic constants of an individual lamina:

$$C_{\theta\theta} = \frac{\Lambda}{8} [3(1 - v_{TT}^{2})E_{L} + 3(1 - v_{LT}v_{TL})E_{T} + 2v_{TL}(1 + v_{TT})E_{L}] + \frac{G_{LT}}{2}$$
(43a)

$$C_{\theta\phi} = \frac{A}{8} [(1 - v_{TT}^{2})E_{L} + (1 - v_{LT}v_{TL})E_{T} + 6v_{TL}(1 + v_{TT})E_{L}] + \frac{G_{LT}}{2}$$
(43b)

$$C_{\theta r} = \frac{E_T \Lambda}{2} \left[v_{LT} \left(1 - v_{TT} \right) + \left(v_{TT} + v_{LT} v_{TL} \right) \right]$$
(43c)

$$C_{rr} = E_{T} \Lambda (1 - v_{LT} v_{TL})$$
(43d)
ORIGINAL PAGE IS OF POOR QUALITY

The engineering constraints of the laminate are then obtained from:

$$E_{\theta\theta} = \frac{(C_{\theta\theta} - C_{\theta\phi}) [C_{rr}(C_{\theta\theta} + C_{\theta\phi}) - 2 C_{\theta r}^{2}]}{C_{\theta\theta} C_{rr} - C_{\theta r}^{2}}$$
(44)

$$E_{rr} = C_{rr} - \frac{2 C_{\theta r}^{2}}{C_{\theta \theta} + C_{\theta \phi}}$$
(45)

$$v_{\theta\phi} = \frac{C_{\theta\phi} C_{rr} - C_{\theta r}^2}{C_{\theta\theta} C_{rr} - C_{\theta r}^2}$$
(46)

$$v_{\theta r} = \frac{C_{\theta r} (C_{\theta \theta} - C_{\theta \phi})}{C_{\theta \theta} C_{rr} - C_{\theta r}^2}$$
(47)

Finally, the degree of anisotropy of the laminate is obtained from the relationship:

$$n = \frac{3}{2} \left(\frac{E_{\theta\theta}}{E_{rr}}\right)^{\frac{1}{2}}$$
(48)

It can be noted that if n = 1.5 the composite material is isotropic. The magnitude of n is affected by factors such as wrap angle, fiber and matrix content, and, as will be demonstrated herein, the time-dependent properties of the matrix material.

CHAPTER 7. MAXIMUM STRAIN THEORY OF FAILURE

Prediction of the burst (failure) pressure of a filamentary composite spherical pressure vessel with a metallic bladder is a function of the elastic-plastic behavior of the metallic bladder as well as of the composite material, but it has been demonstrated [4,10] that the behavior of the bladder has relatively little effect on the failure prediction of the composite. Therefore, the effect of the bladder on the burst pressure or circumferential strain of the composite sphere will not be considered in the following formulation.

Prediction of the burst pressure requires a determination of the maximum values of stress and strain at the inner surface of the sphere. The maximum strain theory of failure is chosen for this study for the following reasons:

1) Considerable experimental data has shown the general applicability of the maximum strain criterion for predicting vessel failure.

2) The published values for composite maximum strain have been shown to be essentially independent of vessel configuration or fiber volume fraction.

3) The calculated maximum strain includes the contribution of radial stress. This is important in predicting the behavior of thick-walled vessels.

ORIGINAL PAGE 18 27 OF POOR QUALITY

7.1 BOUNDARY CONDITIONS

Boundary conditions for the composite material portion of the pressurized structure are:

$$\sigma_{rr} = -p$$
 at the inner surface, $r = r_1$ (49a)

 $\sigma_{rr} = 0$ at the outer surface, $r = r_0$ (49b)

where σ_{rr} is the radial stress component and p is the internal pressure.

These boundary conditions and the symmetry of the spherical geometry greatly simplify the analysis and preclude the necessity of a three-dimensional analysis.

7.2 FAILURE PREDICTION

.

Within the composite, Equations (4), (7), and (11) yield:

$$c_{rr} \frac{d^2 u}{dr^2} + \frac{2 C_{rr}}{r} \frac{du}{dr} + 2 (C_{r\theta} - C_{\theta\theta} - C_{\theta\phi}) \frac{u}{r^2} = 0$$
 (50)

The solution to this second order differential equation is:

$$u = ar^{n-\frac{1}{2}} + br^{-n-\frac{1}{2}}$$
(51)

where a and b are constants given by:

$$a = \frac{g}{f} r_0^{-2n} b$$
 (52)

$$b = \frac{p}{g r_{i}^{(n-2)}(r_{i}^{-2n}-r_{o}^{-2n})}$$
(53)

and f and g are constants given by:

 $f = (n - \frac{1}{2}) C_{rr} + 2C_{\theta r}$ (54)

$$g = (n + \frac{1}{2}) C_{rr}^{2} - 2C_{\theta r}$$
(55)

ORIGINAL PAGE IS OF POOR QUALITY

28

The maximum strain prediction is found from :

$$a r_{i}^{(n-\frac{3}{2})} + b r_{i}^{(-n-\frac{3}{2})} K_{\theta}$$
 (56)

where K_{θ} is the ultimate composite tensile strain. It is reasonable to assume that the maximum strain in the structure will be no greater than the ultimate tensile strain in the fibers. Experimental results from biaxially loaded pseudoisotropic cylinders [3] have shown failure strains of about 0.75 ε_{f} , where $\varepsilon_{f} = \frac{F_{f}}{E_{f}}$ if the fibers remain linear to failure. Then,

$$K_{\theta} \simeq 0.75 \frac{F_{f}}{E_{f}}$$
(57)

where E_f = Fiber modulus of elasticity

 F_{f} = Fiber fracture strength

The maximum strain theory of failure predicts that vessel failure occurs when the circumferential strain in the composite is equal to or greater than the composite ultimate tensile strain, K_{θ} . This failure criterion may be expressed as:

 $\epsilon_{\theta\theta} \geq K_{\theta}$ (58)

The composite strain, $\varepsilon_{\theta\theta}$, is found by evaluating kinematic Equation (5b) for the displacement given in Equation (6b).

Thus,

$$\varepsilon_{\theta\theta} = \frac{p}{g(\beta^{2n}-1)} \left(\frac{g}{f}\right) + \beta^{2n}$$
(59)

where β is the ratio r_0 / r_1 .

Letting the pressure, p, equal the burst pressure, p_f , and comparing K_{θ} and $\varepsilon_{\theta\theta}$, the following equation can be used to determine when composite failure will occur:

$$K_{\theta} \leq \frac{p_{f}}{g(\beta^{2n}-1)} \quad (\frac{s}{f}) + \beta^{2n}$$
(60)

If failure occurs when K_{θ} equals $\epsilon_{\theta\theta}$, the expression for burst pressure is given by:

$$p_{f} = K_{\theta}g \frac{(\beta^{2n}-1)}{\frac{g}{f} + \beta^{2n}}$$
(61)

With the maximum strain theory of failure, Equations (60) and (61) are used to predict composite failure for a transversely isotropic spherical pressure vessel. These equations form the basis for the following derivations which consider the time-dependent behavior of the composite.

> ORIGINAL PAGE IS OF POOR QUALITY

CHAPTER 8. DETERMINATION OF VISCOELASTIC MATERIAL PROPERTIES

A stress analysis of viscoelastic materials requires the use of mechanical properties which characterize the timedependent behavior of the materials. These material properties must be experimentally determined. In this discussion of the properties of a linearly viscoelastic material, only the epoxy matrix of the composite is considered to exhibit time-dependent behavior.

The determination of the relaxation modulus, $E_m(t)$, is fundamental to the characterization of a linearly viscoelastic material. In a standard creep test, a constant uniaxial stress σ_0 is applied and the time-dependent uniaxial strain is measured. The time-dependent strain is proportional to σ_0 and may be written as

$$\varepsilon(t) = \sigma_0 J_m(t) \tag{62}$$

where $J_m(t)$ is the creep compliance of the material. The creep compliance is the strain per unit of applied stress, and describes uniquely the stress-strain behavior of a linear-ly viscoelastic material.

8.1 LAPLACE TRANSFORMATIONS

If σ_0 is set equal to unity and the Laplace transform of Equation (62) is taken, the following result is obtained:

$$\overline{\epsilon}(s) = \overline{J}_{m}(s) \tag{63}$$

ORIGINAL PAGE 19 OF POOR QUALITY

where s is the Laplace parameter and the Laplace transform is defined by

$$\overline{f}(s) = \int_{0}^{\infty} f(t)e^{-st}dt$$
(64)

If a standard stress relaxation test is now considered, wherein a uniaxial displacement is applied resulting in a normal strain ε_0 which is held constant, the corresponding time-dependent uniaxial stress is related to the constant uniaxial strain through the relationship

$$\sigma(t) = \varepsilon_0 E_m(t) \tag{65}$$

If ε_0 is set equal to unity and the Laplace transform of Equation (65) is taken, the following result is obtained:

$$\overline{\sigma}(s) = \overline{E}_{m}(s) \tag{66}$$

In the Laplace domain the "associated elastic" stress-strain relationship may be written

$$\overline{\sigma}(s) = E_{m}(s) \ \overline{\epsilon}(s) \tag{67}$$

and the corresponding strain-stress relationship may be written

$$\overline{\varepsilon}(s) = J_{m}(s) \ \overline{\sigma}(s) \tag{68}$$

ORIGINAL PAGE IS

where $\varepsilon(s)$ and J(s) are the associated elastic modulus and compliance, respectively. If conditions of the standard uniaxial creep test, i.e.,

$$\varepsilon(t) = J_m(t)$$
(69)

where

1989 (Second States of the second states of the

$$\sigma_0 = 1 \tag{70}$$

are applied to Equation (68), the following results:

$$\overline{J}_{m}(s) = \frac{J_{m}(s)}{s}$$
(71)

or

$$J_{m}(s) = s\overline{J}_{m}(s)$$
(72)

If conditions of the standard uniaxial stress relaxation test, i.e.,

$$\sigma(t) = E_m(t) \tag{73}$$

where

$$\varepsilon_{0} = 1$$
 (74)

are applied to Equation (67), the following results:

$$\overline{E}_{m}(s) = \frac{E_{m}(s)}{s}$$
(75)

or

$$E_{m}(s) = s\overline{E}_{m}(s)$$
(76)

Combining Equations (72) and (76) yields

$$\overline{E}_{m}(s) = \frac{1}{s^{2} \overline{J}_{m}(s)}$$
(77)

32

and a constraint of the second s

ORIGINAL PAGE IS OF POOR QUALITY

since, from Equations (67) and (68),

$$E_{m}(s) = \frac{1}{J_{m}(s)}$$
 (78)

From the definition of Poisson's ratio, v, as a function of time,

$$v(t) = -\frac{\varepsilon_{T}(t)}{\varepsilon_{L}(t)}$$
(79)

where $\epsilon_{\rm T}$ is transverse extensional strain and $\epsilon_{\rm L}$ is longitudinal extensional strain in a uniaxial test. If the uniaxial strain is held constant, Equation (79) becomes:

$$v(t) = -\frac{\varepsilon_T(t)}{\varepsilon_o}$$
(80)

Taking the Laplace transform of both sides of this equation results in the following:

$$\overline{v}(s) = -\frac{\overline{\varepsilon}_{T}(s)}{\varepsilon_{o}}$$
(81)

and therefore,

.

$$\epsilon_{o} = -\frac{\overline{\epsilon}_{T}(s)}{\overline{\nu}(s)}$$
(82)

In the Laplace domain, Poisson's ratio is defined as:

$$v(s) = -\frac{\overline{\varepsilon}_{T}(s)}{\overline{\varepsilon}_{L}(s)}$$
(83)

ORIGINAL PAGE NO OF POOR QUALITY

34

With the assumed constant uniaxial strain, ε_0 , Equation (83) becomes:

$$v(s) = -\frac{\varepsilon_{T}(s)}{\varepsilon_{o}/s}$$
(84)

or

$$v(s) = -\frac{s\overline{\varepsilon}_{T}(s)}{\varepsilon_{o}}$$
(85)

and therefore,

$$\varepsilon_{o} = -\frac{s\overline{\varepsilon}_{T}(s)}{v(s)}$$
(86)

Setting the right-hand sides of Equations (82) and (86) equal to each other, the following relationship is obtained:

$$-\frac{\overline{\varepsilon}_{T}(s)}{\overline{\nu}(s)} = -s \frac{\overline{\varepsilon}_{T}(s)}{\nu(s)}$$
(87)

This equation reduces to

$$\frac{1}{\overline{v}(s)} = \frac{s}{v(s)}$$
(88)

or

 $v(s) = s \overline{v}(s) \tag{89}$

which is the "associated elastic" Poisson's ratio as a function of the Laplace parameter.

8.2 DETERMINATION OF CREEP COMPLIANCE, $J_m(t)$

The creep compliance of a linearly viscoelastic material is determined by a curve fit to experimental data obtained

ORIGINAL PAGE 19 OF POOR QUALITY

from a standard creep test. If a least squares curve fit is utilized, the creep compliance $J_m(t)$ may be expressed in a Prony series formulation as [16].

$$J_{m}(t) = D + \sum_{i=1}^{m} F_{i} \exp(-R_{i}t) + Ht$$
 (90)

where D, F_i , and H are constants evaluated from the least squares curve fit to experimental data and the E_i values are assigned.

8.3 DETERMINATION OF RELAXATION MODULUS, E_m(t)

The relaxation modulus and creep compliance are related by their Laplace transforms as given in Equation (78). By inverting this relationship through the use of partial fractions, the expression for the relaxation modulus, $E_m(t)$ can be obtained.

The Laplace transform of the creep compliance in Equation (90) is:

$$\overline{J}_{m}(s) = \frac{D}{s} + \frac{m}{s} \frac{F_{i}}{s+R_{i}} + \frac{H}{s^{2}}$$
(91)

If m = 4, for example, the expanded form is :

$$\overline{J}_{m}(s) = \frac{D}{s} + \frac{F_{1}}{s+R_{1}} + \frac{F_{2}}{s} + \frac{F_{3}}{s+R_{3}} + \frac{F_{4}}{s+R_{4}} + \frac{H}{s^{2}}$$
(92)

which can be written as

$$\overline{J}_{m}(s) = \frac{C_{1}s^{5} + C_{2}s^{4} + C_{3}s^{3} + C_{4}s^{2} + C_{5}s + C_{6}}{s^{2}(s+R_{1})(s+R_{2})(s+R_{3})(s+R_{4})}$$
(93)

where the C_i , i=1,2,...,6, are coefficients evaluated by taking a common denominator.

ORIGINAL PAGE IS OF POOR QUALITY

From the relationship given in Equation (77),

$$\overline{E}_{m}(s) = \frac{1}{s^{2}\overline{J}_{m}(s)} = \frac{(s+R_{1})(s+R_{2})(s+R_{3})(s+R_{4})}{C_{1}s^{5} + C_{2}s^{4} + C_{3}s^{3} + C_{4}s^{2} + C_{5}s + C_{6}}$$
(94)

Solving for the roots of the fifth order polynominal in the denominator, and denoting the roots as λ_j , where j = 1, 2, ..., 5 yields the expression:

$$\overline{E}_{m}(s) = \frac{(s+R_{1})(s+R_{2})(s+R_{3})(s+R_{4})}{(s+\lambda_{1})(s+\lambda_{2})(s+\lambda_{3})(s+\lambda_{4})(s+\lambda_{5})}$$
(95)

Inverting this equation by the method of partial fractions [17] gives the form

$$\overline{E}_{m}(s) = \frac{P(s)}{Q(s)}$$
(96)

where Q(s) and P(s) are polynomials and the degree of P(s) is less than the degree of Q(s). Equation (95) may be written as the sum of partial fractions:

$$\overline{\overline{E}}_{m}(s) = \frac{B_{1}}{s+\lambda_{1}} + \frac{B_{2}}{s+\lambda_{2}} + \frac{B_{3}}{s+\lambda_{3}} + \frac{B_{4}}{s+\lambda_{4}} + \frac{B_{5}}{s+\lambda_{5}}$$
(97)

where B_j , $j = 1, 2, \dots, 5$, is evaluated:

$$B_{j} = \frac{P(\lambda_{j})}{Q'(\lambda_{j})}$$
(98)

The variable $Q'(\lambda_j)$ is the first time derivative of the polynomial $Q(\lambda_j)$ and $P(\lambda_j)$ is the polynomial evaluated at the roots λ_j . The resulting equation for the relaxation modulus in the time domain is obtained:

ORIGINAL PAGE IS 37 OF POOR QUALITY

$$E_{m}(t) = \sum_{j=1}^{5} B_{j} \exp(-\lambda_{j}t)$$
(99)

8.4 DETERMINATION OF POISSON'S RATIO, $v_m(t)$

The relationship of the bulk modulus K to the relaxation modulus and Poisson's ratio is employed:

$$K = \frac{E_{m}(t)}{3 [1 - 2v_{m}(t)]}$$
(100)

Therefore,

$$v_{\rm m}(t) = \frac{3K - E_{\rm m}(t)}{6K}$$
 (101)

or

$$v_{\rm m}(t) = \frac{1}{2} - \frac{E_{\rm m}(t)}{6K}$$
 (102)

The bulk modulus for the epoxy resin material system is taken as a constant. This assumption is consistent with experimental evidence and accepted practice. The time-dependent expressions for the matrix properties, $E_m(t)$ and $v_m(t)$ are thus determined.

CHAPTER 9. ASSOCIATED ELASTIC SOLUTION

In order to study the time-dependent behavior of a filamentary composite spherical pressure vessel subjected to a constant internal pressure, the correspondence principle was employed. Based upon this principle, the problem is transformed from the time domain to the Laplace domain, and the time-dependent problem is replaced by an "associated elastic" problem with constitutive relationships and boundary conditions expressed as functions of the Laplace transform parameter s instead of the time parameter t. Inversion of the associated elastic solution then yields the solution for the time-dependent linearly viscoelastic problem.

The basic inversion process can usually be accomplished by the method of partial fractions if the mathematical model has a closed form elastic solution and simple material parameters [18]. However, for a typical actual material system, the function to be inverted is often known only for discrete positive real values of the transform parameter and, therefore, numerical techniques are appropriately used to obtain the transformed solution. Although numerical methods were not used to obtain the solution presented here, the complexity of the employed equations warranted the use of an appropriate numerical inversion technique. Among numerous techniques, the collocation method [19] is

ORIGINAL PAGE IS OF POOR QUALITY

apparently an accurate inversion technique which yields a relatively straightforward calculation, regardless of the complexity of material representation.

This approximate-inversion method yields a time-dependent solution of the form [20]:

$$p_{f}(t) = A + Bt + \sum_{v=1}^{k} h_{v} e^{-\frac{t}{\alpha}v}$$
 (103)

where p_f is burst pressure and A, B, h_v , and α_v are constants. The constant A is evaluated from initial conditions,

$$A = p_{f} \begin{pmatrix} t_{o} \end{pmatrix} - \sum_{v=1}^{\infty} h_{v}$$
(104)

In this case, an internal pressure p is applied at time t_0 and held constant. Since the long-time value of p_f is assumed to be a finite constant, the value B = 0 substituted into Equation (103) yields:

$$p_{f}(t) = A + \Sigma \qquad h_{v}e^{-\frac{t}{\alpha}v} \qquad (105)$$

$$v = 1$$

Taking the Laplace transform of this equation and rearranging gives:

$$s \overline{p}_{f}(s) = A + s \Sigma \frac{h_{v}}{v=1 [(1/\alpha_{v}) + (1/\alpha_{w})]}$$
(106)

where w = 1, 2, ..., k.

OF POOR QUALITY

Substituting Equation (104) into Equation (106) and rearranging yields:

$$\frac{k}{v} \frac{h_v}{(1 + \frac{\alpha_v}{\alpha_w})} = p_f(t_o) - s \bar{p}_f(s)$$
(107)

Because a six-term exponential function will be used to define the burst pressure p_f as a function of time, six discrete values of the Laplace parameter are utilized. An appropriate range of these values is chosen.

The selected expression for α_v is [20]:

$$\alpha_{v} = e^{(7 - 2v)} (v = 1, 2, ..., 6)$$
 (108)

and Equation (105) can be expressed as:

X

Utilizing Equations (76) and (89) for the Laplace tranforms of the relaxation modulus and Poisson's ratio, respectively, expressions for s $\overline{E}_{m}(s)$ and s $\overline{v}(s)$ are obtained.

ORIGINAL PAGE IS

These expressions are evaluated for discrete values of the Laplace parameter and inserted into the constitutive equations for the laminate given in Chapter 6. The laminate properties in the Laplace domain are then used to calculate burst pressure using the maximum strain theory of failure presented in Chapter 7. The associated elastic solution yielding $\overline{p}_{f}(s)$ is thus obtained:

$$\overline{p}_{f}(s) = sK_{\theta} \frac{g(s)[\beta^{2n}(s)-1]}{\frac{g(s)}{f(s)} + \beta^{2n}(s)}$$
(110)

The values of $\overline{p}_{f}(s)$ and $p_{f}(t_{o})$, the burst pressure at time zero, are substituted into Equations (107) from which the h_{v} values are computed. The value of A is then calculated from Equation (104). Substituting these values of h_{v} and A into Equation (105) yields the expression for the timedependent burst pressure for the filamentary composite spherical pressure vessel.

A similar associated elastic solution may be used to calculate the critical strain, $\epsilon_{\theta\theta}$, as a function of time. The Laplace transform of a constant internal pressure is used to calculate $s\overline{\epsilon}_{\theta\theta}$ (s):

$$\varepsilon_{\theta\theta}(\mathbf{s}) = \frac{\overline{p}}{\mathbf{s}} \frac{\frac{\mathbf{g}(\mathbf{s})}{\mathbf{f}(\mathbf{s})} + \beta^{2n}(\mathbf{s})}{\mathbf{g}(\mathbf{s}) [\beta^{2n}(\mathbf{s}) - 1]}$$
(111)

The collocation method of inversion as outlined above is then used to obtain the time-dependent strain $\varepsilon_{\theta\theta}$ at the inner surface of the filamentary composite spherical pressure vessel.

The mathematical model for a linearly viscoelastic material therefore yields expressions which describe the time-dependent response of a filamentary composite structure. A numerical example will be presented to show the application of this method to a Kevlar/epoxy spherical pressure vessel subjected to a constant internal pressure.

CHAPTER 10. APPLICATION

The material system chosen to demonstrate the analysis technique presented is a Kevlar/HBRF-55 filamentary composite. The HBRF-55 matrix material is a resin currently used in the filament wound motorcase of the Space Shuttle's Solid Rocket Boosters. The Kevlar fiber properties were supplied by the manufacturer and obtained from the literature [4] and are listed in Table 1. For the analysis, the fiber volume fractions (ratio of fiber volume to total laminate volume) used were 0.5, 0.6, and 0.7. These reflect values attainable for the system when wound into a spherical geometry. To demonstrate the effect of increasing the composite shell thickness, the solution was obtained for values of β (ratio of outer radius to inner radius) of 1.1, 1.3, and 1.5.

10.1 VISCOELASTIC MATERIAL PROPERTIES OF HBRF-55 RESIN

As described in Chapter 8, a creep (or equivalent) test is necessary in order to determine the time-dependent properties of a linearly viscoelastic material. Using the apparatus shown in Figure 4, a constant load was applied to a rectangular sample c^{f} HBRF-55 resin. The deformation of the sample was measured by a dial indicator, and at selected time intervals, the deformation of the sample was recorded.

TABLE 1. MATERIAL PROPERTIES

 $E_{f} = 19 \times 10^{6} \text{ psi}$

 $v_f = 0.2$

Where the subscript f refers to the Kevlar fiber

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

1. J.

Figure 4. Experimental creep test apparatus.

The strain was calculated from Equation (111) and these values are listed in Table 2.

The FORTRAN program CREEP listed in Appendix A was written to calculate the creep compliance for each time increment and to obtain a creep compliance expression as a function of time by applying a least squares curve fit. A cross-sectional area of 0.258 in² and an applied load of 107.9 pounds, provided a constant uniaxial stress of 574.2 psi. The creep compliance was, as outlined in Section 8.2, computed in program CREEP using Equation (90) for each time increment. A least squares curve fit of these data yielded the following expression for $J_m(t)$, the creep compliance of the HBRF-55 epoxy resin matrix:

$$J_{m}(t) = 0.2979 \times 10^{-5} + 0.2524 \times 10^{-6} e^{-.1t}$$

-0.22 x 10⁻⁶ e^{-t} -0.5191 x 10⁻⁷ e^{-10t}
-0.181 x 10⁻⁶ e^{-100t} + 0.223 x 10⁻⁷t (112)

A plot of the curve fit and the input data points is given in Figure 5. These plots versus log time are given in Figure 6.

Following the development of equations in Sections 8.3 and 8.4, the expressions for relaxation modulus and Poisson's ratio as a function of time were obtained. The Laplace transform of $J_m(t)$ is $\overline{J}_m(s)$ and is programmed into CREEP. The expression for $\overline{E}_m(s)$ is obtained from Equation (99) and a fifth order polynomial results in the denominator.

TABLE 2. EXPERIMENTAL CREEP TEST

Sample Length = 1.952 inches Constant Applied Stress = 570.2 psi

.

•

•

TIME	LOG TIME	<u></u>	£ C
(hrs.)	(hrs.)	$(in. \times 10^{-4})$	$(in/in \times 10^{-3})$
0.001	-3.0	31.0	1.5881
0.001778	-2.75	31.5	1.6137
0.003167	-2.5	32.0	1.6393
0.005611	-2.25	32.2	1.6496
0.01	-2.0	32.6	1.6701
0.017778	-1.75	32.9	1.6855
0.031623	-1.5	+ 33.2	1.7008
0.05556	-1.255	33.5	1.7162
0.1	-1.0	33.8	1.7316
0.1778	-0.75	34.0	1.7418
0.31611	-0.5	34.5	1.7674
0.5622	-0.25	34.8	1.7828
1.0	0.0	35.2	1.8033
1.945	0.289	35.9	1.8391
3.1622	0.5	36.2	1.8545
5.79	0.7627	36.3	1.8596
10.0	1.0	37.0	1.8955
17.7828	1.25	38.3	1.9621

Roots of this polynomial were extracted using UNIVAC subroutine RTPOLY. The method of partial fractions is utilized in CREEP to invert the Laplace expression $\overline{E}_{m}(s)$ into the time domain. The relaxation modulus, $E_{m}(t)$, is thus obtained for the epoxy resin HBRF-55:

$$E_{\rm m}(t) = 0.2212 \times 10^5 e^{-1065t} + 0.5835 \times 10^4 e^{-10.18t} + 0.2242 \times 10^5 e^{-1.07t} - 0.3064 \times 10^5 e^{-.092t}$$

 $+ 0.3402 \times 10^{6} e^{-.0075t}$ (113)

A plot of $E_{m}(t)$ versus log time is given in Figure 7. The relaxation modulus of HBRF-55 at time zero was calculated to be 360,000 psi.

The expression for Poisson's ratio, v_m (t), was obtained using the expression above for the relaxation modulus, $E_m(t)$. Substituting into Equation (102) a bulk modulus for HBRF-55 of 400,000 psi and rearranging, the equation for the Poisson's ratio is:

$$v_{\rm m}(t) = \frac{1}{2} - \frac{E_{\rm m}(t)}{2,400,000}$$
 (114)

From the expression for $E_m(t)$ given in Equation (113) the resulting expression for $v_m(t)$ is:

$$v_{\rm m}(t) = -9.2167 \times 10^{-3} e^{-106.5t} - 1.4313 \times 10^{-3} e^{-10.18t}$$

-9.3417 x 10⁻³e^{-2.07t} + 1.2767 x 10⁻²e^{-.092t}
-1.4275 x 10⁻¹e^{-.0075t} + 0.5 (115)

٠

.

.

,

۴.

51

418008th

A plot of $v_m(t)$ versus log time is shown in Figure 8. The Poisson's ratio for HBRF-55 at time zero was calculated to be 0.35.

10.2 ASSOCIATED ELASTIC SOLUTION

The correspondence principle, along with the collocation method, as derived in Chapter 9, may be used with the maximum strain theory of failure developed in Chapter 7 to predict the burst pressure as a function of time for a filamentary composite spherical pressure vessel subjected to a constant internal pressure. A FORTRAN program, THESIS, was developed to generate the time-dependent response of a Kevlar/HBRF-55 system and is listed in Appendix B. The program predicts burst pressure and critical strain as a function of time.

10.2.1 PROPERTIES OF THE LAMINATE

The previously derived expressions for $E_m(t)$ and $v_m(t)$ are transformed into the Laplace domain utilizing Equations (76) and (89) and result in the equations:

$$s\overline{E}_{m}(s) = \frac{22,120 \ s}{s + 106.5} + \frac{5,835 \ s}{s + 10.18} + \frac{22,420 \ s}{s + 1.07}$$
(116)
$$- \frac{30,640 \ s}{s + .092} + \frac{340,200 \ s}{s + .0075}$$

$$s\overline{v}_{m}(s) = 0.5 - \frac{0.0092 \ s}{s + 106.5} - \frac{0.0024 \ s}{s + 10.18} - \frac{0.0093 \ s}{s + 1.07}$$
(117)
$$+ \frac{0.0128 \ s}{s + .092} - \frac{0.1418 \ s}{s + .0075}$$

OITAR S'NOSSIOS

The matrix properties v_m and E_m are thus calculated in the program THESIS and summarized in Table 3. These values are then substituted into the lamina and laminate equations developed in Chapters 4, 5, and 6. For the case of $v_f = 0.6$ and $\beta = 1.1$, lamina properties computed in THESIS as a function of the six values of the Laplace parameter are given in Table 4. Laminate properties are listed in Table 5. Also listed are the computed values for n, the degree of anisotropy. For an isotropic material system, n = 1.5, and the departure from this value indicates the degree of anisotropy in the system.

10.2.2 MAXIMUM STRAIN THEORY OF FAILURE

The burst pressure and critical strain, utilizing Equations (61) and (59), respectively, are based upon the maximum strain theory of failure. In the Laplace domain, these expressions are given by Equations (110) and (111). The ultimate circumferenctial strain for Kevlar fiber is 0.0132 [4] and is the numerical value for K_p.

Equation (105) in the form of Equation (109) is then programmed into THESIS. The vector $\{p_f(t_0) - s\bar{p}_f(s)\}$ is obtained by calculating $p_f(t_0)$ from Equation (61) in program THESIS.CCC, given in Appendix B. The value for $s\bar{p}_f(s)$ is subtracted from $p_f(t_0)$ and evaluated for each discrete value of the Laplace parameter. From Equation

TABLE 3. VALUES OF s, $E_m(s)$, and $v_m(s)$

Ln s	8	E _m (s)	m(s)
5	148.4	350.2	0.3542
3	20.09	338.2	0.3591
1	2.718	327.5	0.3636
-1	0.368	314.9	0.3688
-3	0.050	286.1	0.3808
-5	0.0067	158.6	0.4339

ORIGINAL PAGE IS OF POOR QUALITY

 \mathcal{C}

.

;

-

TABLE 4. VALUES FOR LAMINA PROPERTIES

$(v_f = 0.6, \beta = 1.1)$

Ln s	E _L (s)	E _T (s)	G _{LT} (s)	v <u>LT</u> (s)	v _{TT} (s)
5	11.54	0.8519	0.5473	0.2617	0.3374
3	11.54	0.8236	0.5283	0.2636	0.3422
1	11.53	0.7981	0.5112	0.2654	0.3465
-1	11.53	0.7682	0.4913	0.2675	0.3517
-3	11.51	0.6994	0.4456	0.2723	0.3640
-5	11.46	0.3916	0.2453	0.2936	0.4251

ut. Avist ORIGINAL PAGE IS OF POOR QUALITY

TABLE 5. VALUES FOR LAMINATE PROPERTIES AND n $(v_f = 0.6, \beta = 1.1)$

<u>In s</u>	<u>n(\$)</u>	C _{rr} (s)	С _{өө} (s)	$C_{\theta\phi}(s)$	C _{er} (s)	E ₀ (s)	$\frac{E_r(s)}{r}$
5	3.316	0.9712	5.118	1.569	0.3379	4.579	0.9371
3	3.356	0.9424	5.093	1.569	0.3319	4.553	0.9093
1	3.395	0.9163	5.071	1.569	0.3263	4.529	0.8842
-1	3.442	0.8855	5.045	1.569	0.3194	4.501	0.8546
-3	3.564	0.8141	4.984	1.567	0.3026	4.437	0.7862
-5	4.469	0.4814	4.697	1.537	0.2043	4.154	0.4680

ORIGINAL PAGE IS CF POOR QUALITY

(, ')

٠

57

<u>نو</u>ر. ب (109), the values for h_v are calculated in double precision with UNIVAC subroutine DPINV.

The constant A is evaluated from Equation (104), using the initial burst pressure and the sum of the values of h_v . This operation is easily accomplished in the program THESIS.

Finally, the burst pressure in the time domain can be calculated from Equation (110), where the units of time is hours. The burst pressures computed from THESIS are plotted with respect to log time. Figure 9 shows burst pressure as a function of fiber volume fraction, v_f . Figure 10 demonstrates the effect of varying β , the ratio of composite shell outer radius to inner radius.

In a similar fashion, the vector $\{\epsilon_{\theta\theta}(t_0) - s\overline{\epsilon}_{\theta\theta}(s)\}$ is obtained by calculating initial strain ϵ (t_0) in program THESIS.CCC. The value for $s\overline{\epsilon}_{\theta\theta}(s)$ is subtracted from $\epsilon_{\theta\theta}(t_0)$ and evaluated for each discrete value of the Laplace parameter. Then, the values of h'_v are calculated. The constant A' is evaluated and input into the time-dependent expression for strain. Computed values for strain from the program THESIS are plotted with respect to log time. Figure 11 is a plot of strain versus log time and illustrates the effect of fiber volume fraction, v_f . Figure 12 demonstrates the effect of varying β from 1.1 to 1.5.

봋

-

;

45°

6.1

Ŧ

A comparison of predicted burst pressure in Figure 9 and strain in Figure 11 is shown for fiber volume fractions 0.5, 0.6, and 0.7. These plots show that an increase in fiber volume fraction increases the performance of the composite. In particular, Figure 11 shows that the failure strain of Kevlar, 0.0192, is approached almost immediately for $v_f = 0.5$, is approached much later for $v_f = 0.6$, and is never approached for $v_f = 0.7$.

The effect of shell thickness on vessel performance is shown by varying β from 1.1 to 1.5 in Figures 10 and 12.

Figures 9 through 12 summarize the results of THESIS, a program of the time-dependent burst pressure and strain equations from the associated elastic solution based upon the maximum strain theory.

CHAPTER 11. CONCLUSIONS

The maximum strain theory of failure developed for composite filamentary pressure vessels, when combined with the linearly viscoelastic behavior of the composite matrix, yields a solution which predicts burst pressure and critical strain for the vessels as a function of time. This solution is obtained by solving the equations in the Laplace domain and inverting them back into the time domain using the method of collocation. An evaluation of the burst pressures and strains computed using this method demonstrates that when the time-dependent response of a composite matrix is considered, the failure performance of the vessel is reduced. It is thus concluded that this general method may be used to predict a time-dependent response, and that the linearly viscoelastic properties of a composite matrix contribute to this reduction in vessel performance. Knowing the relaxation modulus and Poisson's ratio of a matrix with respect to time, design criteria for a filamentary composite spherical pressure vessel could be derived which consider the time-dependent response of the matrix.

The numerical evaluation of the Kevlar-HBRF-55 system illustrates the reduction in burst pressure and increase in critical strain with respect to time. The inclusion of the viscoelastic material properties of the resin into the associated elastic solution is thus a viable approach for predicting time-dependent vessel performance.

There are additional mechanisms which affect vessel performance in time, such as nonlinear effects and/or matrix crazing, perhaps initiated by this modeled timedependent matrix stiffness reduction. The same type analysis could include a damage criterion or function and provide a more accurate prediction of time-dependent response. It has been shown that this type of analysis can be used to predict the time-dependent response of filamentary composite spherical pressure vessels and can possibly be used to identify the mechanism(s) which cause the observed failures.

BIBLIOGRAPHY

- 1. Foral, R.F., "Composite Spherical Pressure Vessels with Hardening Metal Liners," <u>Journal of Pressure</u> <u>Vessel Technology, Transactions of the ASME</u>, Vol. 101, August 1979, pp. 200-206.
- Kulkami, V., McGovern, D., and Baker, D., "Load Sharing Gas Pressure Vessels and Hydraulic Expulsion Tank for AMsRV Preprototype Flight Vehicles," Acurex Corporation/ Aerotherm Report TM-78-199, April 1978.
- 3. Gerstle, F. P., Jr., "Analysis of Filament-Reinforced Pressure Vessels," <u>Composite Materials: Testing and</u> <u>Design (Third Conference)</u>, ASTM STP 546, American Society for Testing and Materials, 1974, pp. 604-631.
- 4. Gerstle, F. P., Jr., "High Performance Advanced Composite Spherical Pressure Vessels," Pressure Vessels and Piping Conference, ASME Paper No. 74-PVP-42, June 1974.
- 5. Gerstle, F. P., Jr., and Moss, M., "Thick-Walled Spherical Composite Pressure Vessels," <u>Composites</u> in Pressure Vessels and Piping, ASME Paper No. PVP-PB-021, September 1977.
- Guess, T. R., "Spherical Kevlar 49/Epoxy Vessels with
 62 ksi (430 MPa) Burst Pressures," submitted to <u>Journal</u> of Pressure Vessel Technology, October 1982.
- Knight, C. E., "Analytical Failure Prediction of Spherical Composite Pressure Vessels," <u>Journal of</u> <u>Pressure Vessel Technology, Transactions of the ASME</u>, Vol. 104, August 1982, pp. 229-231.
- 8. Gerstle, F. P., Jr., "Prediction of Long-Term Failure in Kevlar 49 Composites," submitted to <u>Proceedings of</u> <u>ASTM STP Symposium on the Long-Term Behavior of Composites</u>, March 1982.
- 9. Chiao, T. T., Glaser, R. E., and Moore, R. L., "Life Estimation of an S-glass/Epoxy Composite Under Sustained Tensile Loading," UCRL-87982 preprint submitted to Composites Technology Review, July 1982.

- 10. Grover, R. L., Foral, R. F., and Humphrey, W. D., "Development of Kevlar 49/Epoxy Spherical Vessels for Ultra-High Internal Pressures," <u>12th Annual SAMPE</u> <u>Technical Conference</u>, October 1980, pp. 870-881.
- 11. Saada, Adel S., <u>Elasticity Theory and Applications</u>, Pergamon Press, 1974.
- Jones, Robert M., <u>Mechanics of Composite Materials</u>, McGraw-Hill, 1975
- Tsai, S. W., "Mechanics of Composite Materials Part II - Theoretical Aspects," AFML-TR-66-149, Part II, 1966.
- Whitney, J. J., "Elastic Moduli of Unidirectional Composites with Anisotropic Filaments," <u>Journal of</u> <u>Composite Materials</u>, Vol. 1, No. 2, 1967, pp. 188-193.
- 15. Foye, R. L., "Advanced Design Concepts for Advanced Composite Airframes," AFML-TR-68-91, Vol. I, 1958.
- Flügge, Wilhelm, <u>Viscoelasticity</u>, Second Edition, Springer-Verlag, 1975.
- 17. Kreyszig, Erwin, <u>Advanced Engineering Mathematics</u>, John Wiley & Sons, 1979.
- Hackett, R. M., "Viscoelastic Stress Distribution in a Two-Phase Composite Material Model," <u>AIAA Journal</u>, Volume 6, No. 12, December 1968, pp. 2442-2444.
- Schapery, R. A., "Stress Analysis of Viscoelascic Composite Materials," <u>Journal of Composite Materials</u>, July 1967, pp. 228-267.
- 20. Hackett, R. M., "Viscoelastic Stresses in a Composite System," <u>Polymer Engineering and Science</u>, Volume II, No. 3, May 1971, pp. 220-225.

APPENDIXES

APPENDIX A

FORTRAN PROGRAM CREEP

ĵ,

ORIGINAL PAGE 3 OF POOR QUALITY

• : a. 1 ł 1 i 1 i 4 . : i ţ 1 ! ÷ ļ Ì 1 1 į ł 1
 Nitissisis
 Nitissis

 Notation
 Nitisio ÷ į į 81 E 11 1 120 26 2 3 ゴミムニンニ ミマイン スマバチ てんたん エレス とんめつえた きょう ガチ ショナ アオ 375 23 3 i

*

•

ORIGINAL PAGE 19 OF POOR QUALITY

•

.

•

•

51		
2		÷
<u>,</u>		
: 3		
~ •		
55		
: :		
; : ; ;		
5	un 1 (5 6 , 1 4 0)	
10 16	(0000 [1/(/255.j.)]WVI a nalkist	
: 2		
11		
2 :		
4		
		,
2:	utititis	
2		
20	10115 10 2001	
917 (U	errister (1/2,1) and the start of the start	
:		
-		
-		
151 54		
	11067722406611	
:		
:		
102 (
103 500		
501		
101		
=		

71

ORIGINAL PAGE 19 OF POOR QUALITY

ł į ; ł 1 l i i 1 ł i i f entrations, "noois of an N-44 experientary MELECA.230341. Fentration INC sector 15 % =17773 untit (1, 270) sum Langal (22, 18, 21, AL, <u>J, 21</u>00: 2, 01, 41) -Stor i C CMCCR Reefs [h Perthenial | Gualium 1-14141-01 ł "PHEP 4547.1 BHE4.HE4 14 MAIR/WAIA 101.11.E 2 . 2 917 230 740 3 270 킛뿚 1 į = ΞĒ

·

ORIGINAL PAGE IS OF POOR QUALITY

. : ļ 1 í i ł : ; , ł ----ł 1.93916-03 1.83916-03 1.83916-03 1.85966-03 1.85961-03 1.9556-03 ÷ ! ļ 1 ١, -5622 -5622 -5622 -5-1622 -5-19 -14--14į 1 \$ ----1 ļ

1141 11AL STRUSS :514.2000

1.1

鹵

ANCL	500-	500	500-	500-	500	200	500-	500-	500-	500-	500-	500-	005	500-	500-	500	500	005		10.4604. 100.4745	3623.001.1598.00	36U0:UU1. 1210-001	Ju-2211. 100-11-5
CUMPLI	.2766-	-0182.	- 5587-	-2182.	- 606 2 .	-2235-	- 2962.	- 5862.	.3016.	- 2642.	. 3078 .	- 5015 -	-1+15.	- 22U3-	- 1230-	- 1239-	- 105 5 .	-1167 -		. 100:0121	· 1.0.1641	. 100.0SET	· Inv . 5 28 9
	1588-002	-1619-002	-16 39 - UD2	.1650-002	.1670-002	-1485-402	200-1011.	-1116-002	-1132-UD2	-1192-UD2	.1767-U02	1183-002	. 1803-002	.1839-UD2	.1055-002	.1860-002	.1895-002	1252-002	NPUT A HAIR	. 200-1911.	· 200. 1811.	1029-002	. IUN. DSG1.
HE (HRS)	01000	81118	19167	11950	10000	81111	31623	55560	00000	11800	16110	62240	00000	1 5000	62200	00006	00000	00928		200.6461.	1426+002	200-1111.	100.14.61.
3	10.	n.	.00	.0.				3.	-	-	5.	5	1.01	1.9	1.5	1.5	10.01	11.11		100+0001	1543+002	200:101	190.6'52

.1946-004 .4448-004 .13577-004 .1028-004 .1360-003

\$01-0122* 300-0101-100-12108 2 4101008 5230-000-2220-000

4

FINAL SOLUTION-LUMVE FIT

									£									
CUMPLIANCE	500-1612.	500-6082.	200-002.	-2860-005	500-0062.	500-1467.	-2913-005	500-1667.	· 301 3 - 005	. 1038-005	. 3068-005	200- Sult.	· 1149-005	500-6615.	. 3224-005	. 1249-005	· 3295-005	SUD-8145.
106 1146	·6.9u1155	-6.332266	-5.754970	-5.193026	-4-645170	-4-029194	- 3.45 3871	-2.890292	-2.302585	-1.127096	-1.151665	515698	000000.	565562	1.151268	1.756132	2.302585	2.878232
1141	00100.	- 40111B	191800.	. 105611	.010000	8111 In.	.431623	. 055550	. 100000	.17.800	. 31 61 10	.562200	1.000000	1.945000	3.162703	5.19001.0	0000000.01	11. : 42 800

ORIGINAL PAGE IS

75

1

1.4

HOUTS OF AN N-TH DRDER POLYNUMIAL THE ORDER 15 N = 5

,

IN POLYNOMIAL COEFFICIENTS ARE

22116993-000 ALPI . 35644658-002 . 32268374-003 .22299372-005 - 24955493-003 - 2747603340-003 - 27476603-002 - 2498584 • 000 6191 1.1.1 . 1392 3097 - 004 POL YNOM IAL . 3275 3151-005 RLAL R0015 - 75329294-002 - 91617210-001 - 10125371001 - 101255210103 200-20958112-1001

1 AI T ZI RU: . 1599.006

ORIGINAL PAGE IS OF POOR QUALITY

76

:

APPENDIX B

FORTRAN PROGRAM THESIS

12 258

*

12.

*

JETM-J MATM/JWINI MATM/JWINI C PROCEMA TO CALCULATE TIME-OCPENDEM RESPONSE C UT TLANE WIART CUMPOSITE SPHERICAL PRESSURE VESSELS <u>WT JAM D. DOZIER WWOLM UPPLGIJYM OL RODERJ B. HACALILEOR PARIJAL EULEIJLINGMI OF.</u> Requirements fow masiew's degnet in mechanical engineerping at inc Whytersity of Alabama in Munisville, 1982-83 EFELASTIC MONULUS OF FIRER FFEP01556W'S AAI10 OF FIRER VT -VOUML FRACION OF MARLA VT -VOUML FRACION OF MARLA VT -VOUML FRACION OF MARLA STRATS PRESSOR AT TIME A STRATS DINENSION ENFILOJ, SMISUJ, PHPLIUJ, PLLUJ, BPLLOJ, BPLLOUJ UMELISLOM SIRMLIUJ, USJANJLUJ, SIML2001, LML2001, PML2001 UOULE PRECISION ALG, 71, 5161, GVL61, SUMSIN, AC REAL LANGALOAN ALG, 71, 5161, HVL61, SUMSIS, AAC FEAL LANGALOAN MLCOIP LALCULAIL LLASTIC MOUDLUS OF MATHIX AND PPISSON'S RATIO OF MAINIX IN LAFLACT (TIM') DOMAIN T OWMAT 1 31 10.61 KCADIS.151(P(1).1=1.6) FORMAT(6F10.61 HEAD JUPUT PARANETLAS FOUNATION 10.61 INPUT PARAMETERS: WELTL 16.171 N : 5 12 2 -91 -5 -. JIU -. ±

ORIGINAL PAGE 19 CF POOR QUALITY

BN: 145 0 P 1:99 VE 1:000 1 P 1:99 VE 1) / 46 0 P 1 - 49 VE) 46 VE 1) 44 4VE) 1 GL 7 - 46 V/2 10 4 14 4 - P 1) 9 P 1:08 V / 44 49 68 V / 4 49 68 40 1 9 68 40 1 1 UO 1000 J 1 (b EMP (1) = 22120. Pr (1) / (P(1) + 106. 5) + 5835. Pf (1) / (P(1) + 102. 18) + 222 20. Pr (1) / (P(1) + 1.00 / 5) + 322 300. PF (1) / (P(1) + 1.00 / 5) PMP (1) = .5 - .0092 PP (1) / (P(1) + 1.001) - .0092 PP (1) / (P(1) + 1.001) - .002 PP (1) / (P(1) + .092) Elu = (Clulu-Clubs !+ (Cum+(Cluhu-Clubs) - 2+Clum++2) / <u>C LALCULAIL IGANS IN CLASIICITI MAIPIT OF LANINAIC</u> L art spuerical coomulmates r, int ia, pui C C CALCULATE PROPERTIES IN LONGTUDIANT IL AND C CARANSKERSE (1) UIRECITONS OF INDIVIDUAL LAMINA C LEALUAIT TETHS IN LLASTICITY MATHIX OF LAMIMA C MRT L.T. AND R (MAULAL) UTRECIIONS C CALCULATE SHEAR MODULUS OF MAIRIA AND FIBER 13100. . [[] 11/1114.01»[.-LANBUA=1/111-0[110-1]-0PL1-20PL10PTL1) CLL =11-0F1-022)-CANDAGEL CLL =11-0L10PTL001A06L CLL =PL-0110PTL001A06L CL =PL-0110PTL001A06L CR =10711-20PL001A01 CR =10711-20PL001A01 CITITI-S+CLL/8-1+CTI/8+1CL1+2+GL1/4 CTIP5=CLL/8+CT1/8+13+CL1-2+GL11/4 CTIP8=1CL1+CTR1/2 ER : CAR-1; +CIMP++21/1CIMIN+LINP51 CALCULATE N. ULCHEL OF ANISOTHUPT 6F = EF / 12+ 11 + PF11 LL = E = VE + EMP + 11 + VM LT = 1 / VM / LM + LT + VF / LT + PL = E + OF + PMF + 11 + VM PTL = E + OF + 1 / VL • 5 u - -1. -

.

ORIGINAL PAGE IS OF POOR QUALITY

÷

Posta 9 12HU0 • 515 VLC 51N VLC.) DO 1500 1:1,6 V0115(0,1001P(1),FMP(1),LMP(1),8PF(1),PS18M(1),F(1),5(1) C01114/(113,164,5,2X,6(12,6) C0N11MUC C CALCULAIC SIMAIN USING MAXIMUM SIMAIM THI URT C CALCULAIE BURSI PRESSUME USING MAXIMUM SIMAIM INCORT C C PER OR LAPLACE THANSORM INVENSION AND SOLVE C PER OR LAPLACE THANSORM INVENSION AND SOLVE C POR CONSTANTS. TO BE USED IN THE -DEPENDENT C STRESS AND STRAIN EQUATIONS A12.11-1 (2) F 11 1 - 8PF1 - 8PF 11 1 5 (1) - 51841 - P518M11 1 COMTINUE 11.514:15.2.21 11.114:12.214 5-0-11-114 000 100 50 122

ORIGINAL PAGE IS OF POOR QUALITY

\$

ORIGINAL PAGE IN

WRIEL6-1101 FOMMATINI.55X, INFUT A MAIRIF.//) FOMMATIN.55X, INFUT A MAIRIF.//) FOMMATIS.6012.11 FORMATIS.6012.11 FO L=1 Call OPINVIA.K.L.KN.OETER1 Call OPINVIA.K.L.KK.OETER3 MELILIG.1501 FORMAT.//,555,-131VIRI'D MAIRIY.,//) FORMAT.//,555,-131VIRI'D MAIRIY.,//) MELILIG.17012(ACT.,J).J=1,61.,131,61 0.0=10510 0.0=10510 0.1=1-000 0.1=1-000 0.1=100 0.1=100 C SUM CONSTANTS 0115 130 170 150 110 -25355555 --

\$

ORIGINAL PAGE IS ип.I.L.(6,2001) Гойматтініі.2x,''ІІМ (нез)',5x,'t.og ТІМ'', вx,'вийбі́ РRLSSUPE', ••• 'StRAIM'' LL 2000 514(1) = AAC + W(1) = (1, 1) = (1, 4, 4, 4) = (1 Č LVALUAIE ČONŠIANI A FRUM İMITLAL SIRAIM AND ŠTRESS C congilions 11+121-12 - 0 A (1 1 - 1 X b (- b (1 1 - 1) + n A (5) - 1 X b (- L (5) + 1) ILOG LOGIDII WRITL(MPLOI) ILOG, PP(1), SIM(1), CM(1), PM(1) WRITL(MPLOI) ILOG, PP(1), SIM(1) COMMIN(2/, LIO-4, SX, LIO-4, SX, LIO-4) COMMINUT COMMINUT COMMINUT COMMINUT COMMINUT C CALCULATL TING-ULPENULNI SIPLSS ANU STRAIN WHITCH, 1701 FORMALICA, 131, "SOLUTION & MAIRIE.,/// ----URILIA-2201540510 URILIA-2201540510 ACCONNTIN-254 -540 OF HV-4,01..41 ACCONNTIN-240510 URILIA-2001440 URILIA-200140 UR AC-8PF1-SUMSIS Mail(0,1001AC FORMI//,5X,'A CONSIAMI:',012.4) Wail(0,210) FORMATIC/6.18015UNSIS 5**11+5200*-14x1+521+1*-1:101 1:1111 III I ANI I SHUSENI SHUS IVII)=AALL.II STAFT I HNE CONTINUE 310 2000 180 230 000/ 210 20 170 190 007 ۵ 328 222 ----151 25. . 56 25

.

-e ORIGINAL PAGE IS 84 ÷ -* CULTIAL BUNST PRI SSURE . 1531.005 cast 1 INTTAL STRAIN: . 1681-001 POISSON, F .. 2000+000 100-0261* : 11 HI Y HE IA 000-0051" = 1"1 000.0002. :M.V 000-0005. : 1.4 \$ ١.

ORIGINAL PAGE IS OF POOR QUALITY

.

SUU-9121. - JAU22199 12908 100-1401. : 11, NO22104 000+0111 . . 11,4022104 POISSON, 11 . 4008 104 FOISSON, N. 1939-000 518A1N: . 5260.001 C. INTH: . 5927-007 100.4266. 2411.1 *********** 100-1111 C. INU: . 1915-006 1.11. .3130.007 C.11: . .1 30.006 100-5661. .11.1.1 4. TR. .2006+UU6 4.14: .1062+004 1. HP. . . 1 50-006 100-1141 - 119 1.1: . 5145.006 1. . . 1546.006 L.N. . 5961.006 4.M. . 5530 . 005 100-2591. 29 100.00...... 1 00.4007 : : 1

\$

-

															0	F	GIA	OR	P	AG		S Y					1	86
	1			1			.,																			1		
	1									+			÷													*		
				1			1														×.							
										1			1															
	i			-						-			1															
	, i			1			1			1			1			i.												
	1			1			1			1						i.												
										1		1									ł					1		
									1	1	-		1					1			1							
	1											1		•				i						ž.		1		
	1			1																						÷		
																		ł			÷.							
	1									-								1										
	1						1			1								÷			1							
	-				1										. ,						1							
	į.			1						1			l		. 1			4										
										1					1													
	-						1											,			į.							
	1						1											i			1							
	1																	1			Ì					}		
	1			1						1											1		- 1					
								ł							-											1		
				1			0	i.				1						1						500-4				
04.80					00	0-16	0		t-	1					10		-				1		1	.1.5	2			
- 50	400.	900.	100.	•0ne				900.0		100+	100+	100.	•00.	-006	16.0	900-	0.09	1.19	00.4	100.	400		-	il i		1		
	1161	1036	464	1195							103.	-219-	.2 604	.2401		. 681	-			3664		00.4	10.1	1123				
	1			1.	50	20	150	**							5			*					20	-	ä	1		

and the second

86

.

.

ORIGINAL PAGE IS

F01550N+M= .3688+0UU	
1001101: 1101	
6.M1150.006	
1.1 9657.007	
t,1: .6196+006	
DG0+++82* = 11*N055104	
POISSON, IL : . 1824-001	
POISSON, 11: . 3890+000	
6,11: . Ja 76+UD6	
1.1 3192.006	
C.LL: .9824.0U7	
C.11: .1388+006	
C.LI 2914:006	
C, IR: .2921+UD6	
6. IR: .2230+DU6	
LAdBUA	
C.RK: .1384+UU6	
C. IHIH: .42U8+UU7	
100+142 La SAU. J	A start of the second sec
C. IHE . 2930-006	
1.1H= .3710.007	
L.H 7080:006.	
100.4646.44	
100+#512. 1	
6: . ()20-00 l	the second s
200+88PL. = JHU22 MM I 2MU8	
100-6575 - 2414HS	

6.2

٠

87

÷

POISSON, N: . 36 36.000

100-11-101 : 1.9

6.41 .1201-006

1.1: . 4664 . 001

PO15504,L1: .2818.000

POLSSON, 11 - 1877-001

3624+0006

1. . 12 15+DU6

4111 . . ? 989•UUs

0.18. .2329.006

C. HR. . 1633+006

L. IN IN: .4229.001

100-1361 . 1361-001

C. INK - . 2983+006

1.14: .3732.007

1.4. . 1315-006

100.9865. =N

100-1092. :

SUN+ UD41. : JANKS JAJ 1 SANA

STRAJN. . 7062-002

÷

\$

ORIGINAL PAGE IS

400.2721. - 19U22444 12800 POISSON.LT. . 2171.0022109 POISSON, 1L . 1969-001 POISSON, 11. . 3711 . U00 POLSSON, M. . 5542.000 \$100-5121* :NTVHS 100-9926" -HIHI ") Tho-8951. 5.001.0 6,1 1: . 3888*UD6 1. 144 . - HU - 1 - UU6 4. INH: . 3069+046 4,11: .BUTI+UQ6 6. IR: ..' 508+006 4.18- . SUS4+006 100.9986. . 11.3 1.1.1. . 3483.006 100.2116. 11.1 100-11-1 . 1.9 1 .1 . .96.75+007 1.1: .6076.006 6.M: .1295+006 L.N. . 3502 • 006 1. . . 1131. OUG. 100:59:52 :0 100+7155* :N 100-5002- 11

4

.

j 1 200-936259-2009-224555. 100-926590. 200-949991. 301-127-2003-121-2013 [00-40KFk5*-500+45402k* [00-55564]* 500+0180k[* 900+7164[5* 000+222895* 100-061381--2000-242906. 100-256101. SUU-9600051. 300+964221. 000+395792. 200-91262--2000126202, 200-65001, 200-010121, 200-525282, 2009-511955. .15* 164+0UN .35U16U+0U6 .152217+UUS .189204-UU1 .882976+002-.110354-003 SIN VLC STS VEC 15.4 ----HURST P (I AS MOU P01550N \$ 500-019tro-nns-.348.000 200+102-100.712-.148.003 -

CIN-V

INPUT & NATHIX

INPUT F MAIRLE

200-0100 . 711-4-003 . 100-2-003 . 100-2-003 . 00-4-11. 4-00-4-212.

INPUT S MAIRIE

INVLATED MATHIX

.

100.9051- 11	100.1534	200+6101- 21	12 .1003.002	100.0099 11	100.1375. 11
.9451.00	1291-00	.1317.00	n0.1011	.6469.00	1175.00
200+6101	-1317+002	1245+002	100+2569.	100+6651	000.11.81.
1001. UN2	1181.002	100.5264.	··1657 • UUI	-2+12+UU0	100-9252*-
100.0398	100.6919.	100.6651		100-6615	. 13us-nu?
100.1416.	100.5111.	000-1281.	100-9752*	500-5015 ·	\$ nn - 8 nu -

SOLUTION & MATHIX

100+1041. 100-1141. 500-1414. 200-2442. 200-2442. 200-2242.

+00+6814" :A'S JO MIS

SUNSTITUT : INVISAOD .

Solution in MATHIA

,

. . .

101-1511- 101-0411- 001-1181- 100-1151- 200-9111- 200-5554--

SUN OF INV. -. 6182-002

INU-6667: : INVISION W

1

ORIGINAL PAGE IS OF POOR QUALITY ORIGINAL PAGE 13 OF POOR QUALITY

CASE 2

.

1.15 .1900-008

POISSON, 1 - 2000-000

k

100.0011 . : VI 34

1 Int 14 . 1920-001

V.1 : .6000.000

000.000 - - N.V

INITIAL BUNSI PRESSURE: .1863.005 INITIAL STRAIN: .1546-UDI

\$

1 200.0091 - : JANSS 744 15808 FOLSSON, LT . . 2936 .000 POISSON, 11. - 1003-001 POISSON, 11: . 4251 .000 PO15504. ******* 000-6186 :11") C.IL: .1156+000 100-1845. =MIAHI2 C, INTH: .4697.007 C. INPS: .1511.001. C. INR: .2093+006 900+2542. :119 4.18: .137*•UU6 100++5t+ =H1 * 1 400.0202 : : 113 L, IR: .7061+006 1.1: . 3916.006 t.n= .1586.006 100+1161 : 1.9 U.N. . 5550+005 4.90.00.000 .H. 1 100.5061. :0 100-6152. = 1 100+6966" :N

ORIGINAL PAGE IS OF POOR QUALITY

\$

POISSON, LT. . 7775.104 POISSON. IL : . 1654-001 POI 5504.11 . . 3640 .000 C. ININ: 1 AMDLA: .1169.001 To0.1951. . : 5441.0 411. . 4456.006 C. IR. . 5014.006 6.18: .2564+906 C.LL. .1168.008 9/10-1418. :11.3 C.LI. . 3036+006 100.1101. : 1.9 6.M: .1036.006 1.1.1.1006 900.4669. :1.1

POISSON, N. . 9808 000

SHU. MILL. : JANSS JN4 I SHUH L. IHA: . 3026.006 1862-006 100.0955. ... 6: .2703-0UT

000+9+26 . NIANI2

1 10

ORIGINAL PAGE 13 OF POOR QUALITY

į

Suu ulat. : Jauss Jag Isaug FOISSON, IL: . 1783-001 POISSON, LT: .2675.000 POISSON, 11: . 3517+000

C. INTH: . SUNS. UUT

400.0. 11 . 31 VO.006

100-105+. -11-1

L.R. . 0596:QU6.

100.2465" :N 100-0025 - : 1

LABUA . . 1158-001

4.18 . . 2 . 1 . UD6

400+2112. :#1.3 1.1.1:

400+5548. : SH1,)

400+514+ :11'9

11111-111-1000 4UU1 . 8855 : UU6

POISSON, Nº . 3688+000

100+1141 : 119

1.153.000

400.0511. :m.D

1.1: . 7682.006

96

100-526** :NIVHIS

\$

100:585. ...
SUN. SZRI. : THOSS THE ISHOP POISSON, N . 36 36 .000 POISSON,LI: .2654.000 POISSON. 11 . 1052109 P015504. 11 . . 3465 4000 5.M. .1201-006 C. INTS. . 1569-001 100-1141 : 1.9 6.LI: .5112.006 400.1111 - 111. 1.4: .1153.000 1.1: . 7981 . UUL C. 14: . 5235+006 C. INH . . 3263+006 STRAIN: .5607-002 400.1914 . . 11.J C.LT. . 5291 .006 6.14. .2964 .UU6 Len. . 52 15-006 1.00+0524. :111.1 900-2488 · 28.1 100-1142. ... 100-5465 1.00.0000 . . 1

ORIGINAL PAGE IS OF POOR QUALITY

,

.

\$

S A. ISOL . - Musslad Isona Pol 5504, 11 . . 3422 +000 POISSON, IL . . 1882-001 FOISSON, LT: . 2636.000 \$1441W: .7602-005 Lute. . 5095.001 100-6951 · :5441 ·) 400.f925. :11.J 100:0211. C. INK: . 5319.006 6.18: . Jues-006 400+ 5245" MH " J 1111 400-1511. L, IN. . 3288+004 1.111. .*553+001 100. 4511* : 1* I 1.1: . 07 56.006 4.0. .1744.006 L.T. . 5562.046 400-F404 - 24. 1 100.0142. 19 1.00-3252 . 11 100.3555 · :N

ORIGINAL PAGE IS

98

\$

Polssów, A: .1517-000		
6,1 : . 1411-001		
L+#2 .1291.006		
t.tijw.000		
Polssow, it = .7417.000		
PO155001.11. 1022-001		
P015504,11: .3374+000		
1000cl vs. 111.9		
(,11: .01/2.000		
SAIL-ANDERDA		
C.IR: .311.000		
6.18: .1185.006		
Lambai		
(, 1112-1006	OF	OF
C. MM: .5110-001	P	RIG
Callins	00	IN
C. Mut J379.006	DR	AL
[, 11	QI	P
-Life . 13 U1: 004	JA	AG
1.0ee11(; :n		EI
f: .Juli-but	Y.	13
100-06/F 25		
000-151-11212001 - 1501-1 - 1500-1 - 1501-1 - 1500-1 - 15		
Steals: +104-001		

.

99

1

l,

. 100-1451/1-500+424986. 100-916791. SN0+254121. 980424-000-7141265-000 COD-811554--COO+666765. TOD-151651. SOU-096091. SOU-016411. OUD-111895. 100-524112*-500+114552* 100-061951* 500+341601* 900+242866* 000+211456* 514. VLC 515 VIC 15.4 ----A T29UA CLAS NOD P01550N 100-005-. 366 . 000 100-717-200.102. -610-012 -

.

ORIGINAL PAGE 18 OF POOR QUALITY

÷

\$

.

.

ORIGINAL PAGE IS OF POOR QUALITY

101

:

CASE 5

1.1 .1900-0UB

POI 5504,1 : 1,000 • 000

HE IA . . 1100-001

N THE FA: . 1920-001

•

000-0001 - 1'A

V.H. . 3000+000

INITIAL BURST PRESSURE: .2295+305

INITIAL STRAIN: .1255-001

1

.....

ORIGINAL PAGE IS OF POOR QUALITY

102

1

:

SUUS PRESSURE . 1942 . 1941 POL 5504 5. 11, NO22 109 100-0501. . 11.0025104 POLSSON, 11 . 36 90 . U00 POLSSON, M. 1839+000 100+5125. :NIANT2 Lanuta: .1168-001 C. INTH: . 5551+001 L. IIIR: .2246+006 C.LL: .1341.U08 400.0.09 -11.J 4.1R. .1894+U06 L, KR. . 6040+006 C.I.I. . 2299-996. 400+2522* :81*) 100.1101. : 1.0 1.1: .51 85.006 1.14: .1585.0U6 200.0255. :H.J 1.1: .1335.008 900-toks. :#.1 100++96 + :H =

ORIGINAL PAGE IS

103

	100+115/*		· · · · · · · · · · · · · · · · · · ·	
OKIGANAL PARSE NA OF POOR QUALITY	.in3e+aue			
	.1339-008			
	.9212+006			
OKIGANAT LISSUE ALL 11500 ALL 11100 ALL 111000 ALL 111000 ALL 111000 ALL 111000 ALL 111000	0N,LT: .2542.000			
	0w.it = .175u-001			
	04,11: .3233*000			
	.1194.006			
	• SA61.006	services and the service of the serv		
	•135••00			
	. 1034:00?			
	400+1045.			
	+00.11*L.	A CHIEFE A CONTRACT OF A CONTR		
	-3481-006			
	1132-001			
	.1038-007			
	200.5565. :1			0
	/D0+66-91* ::			F
				PO
	- 540++UU			OR
	100se001			
	177-UUL			201
1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	100-20			ali
H4550ML	195+001			T
T	PRLSSURE2117			,
	UUU			
				1

÷

•

.

ORIGINAL PAGE IS

***** BUNST PHLSSURL: .2224 •UUS PO1550N,LT: .2506+000 POISSON, IT: . 3141 .000 POISSON, M. 3688.000 POISSON, 11 - 1891 - 001 LAMULA: .1125-401. C.INTH: .6437+042 6.LT: . A522+UD6 L.11: .1132*007. TOU-BISS - INTENIS 6.f . 1917.007 C.LL - .1350.000 C. IR: .3625+006 C. INH : . 3685+UU6 6.M: .1150.006 6.4 Li ... J 719 : 106 .. 6.1R: . Set5.U06 100-2511. :NN. 3 1.1. .1539.008 1.11.101.1.1.1 1 .M. . 1142.006 1.00+9942. :111.3 L.R. .. 10 %6. UUL. 6= . \$6 \$C. 001 -100+9262. W

The second

1 18

÷

-

P015504. ME . 36 36 +000 SUN- PWISS INU SHUD POLSSON, 1945. . 11, NO22109 POISSON. IL . 1991-001 POISSON, 11: . 3102+000 6.11: .8855.006 C. INTH: . 6073-001 1.1115. . 1692.007 200-1214. :NIANI2 100.7/11. -11.7 6.11 . Jass . UL6 100-5115 - 20 100.1101. :1.0 4.M= .12U1.0Uh 111: 1159.000 L. IR. . 3710+006 C.48: .1172+007 4. INK . . 3777+046 1.1 . . 13+0+048 1.1: .1049.001 1 .M. . 57 75.0UL 4.1R: . 4005-006 100.0555. :01.1 100-5611- -----100+5185 . IN 100.250* . : 1

ORIGINAL PAGE 13 OF POOR QUALITY 106

1

÷

ORIGINAL PAGE IS

•000					1.+000	100-11	000+6																soni t922*	a state of the state of
455H.NO	100+1161.	400.0021.	.1340.008	100.5801.	42. =11.MO	04. 11 - 20	ON. 11: . 30	900.1016.	 . 1382 -006	.1364.000	1200.001.	. 1925-006	.3781 · UU6	.4142.006	0.n211	100.0021-	 10.06.91. :5	 100.1155-	-1168:001.	110.512	100+611	100.581	- PRESSURE -	N 6559- U

-

201. 0022 - 1942 5944 1 SHOR POISSON, N: . 3542+640 POISSON, IL . . 2054-101 POISSON, 11: .2462.000 POU-5506. 11. NO22109 000+5454* :11" 100-0111- TADAN 1 NIN-2158* =NIVHIS C. ININ- .6138.007 TON-1847* -S.M. . 5 C.LL : .1360+008 100.4421. :11.3 100+++21. :48.3 C. INK: . 3935.006 C. IN: . 5851 .UU6 4, 18: . *293.UDL L .M. . 3542 . 006 1.00.1042. :01.1 100-1161 . : 1.9 6.n= .1293-006 1.1. .15+1.046 100.6111. 11.1 103-5021. :#* 1 6: . 3862 . UUT 100-9525 . M 1

ORIGINAL PAGE IS OF POOR QUALITY

1 -----

1

ORIGINAL PAGE IS

							1		-			•	ALC: NO
													*
214 615	200-666122*	100-111-003.	19779999999	.202011-003	100-111120-								and the second second
212 212	- 152 85 8 - 004 -	- 11 1955 - 100-	-200+111101.	- 206245 -003-	-100+1+1468.								
1	100-042941*	1 3226 3-001	100-004621.	100-128 821.	100-922/51.								
	500++12+41.	2001-21171.	222428•0US	suu . 88 27 .	200.0111.005	1						-	
TAN NOD	.158582.006	-2 86UTT-9U6	900-014415-	. 127*9* .006	400-242826.								
POISSON	000-50455+-	000-111 N#5-	. 366777.000	. 36 356 3 • 000	000-511456.								
	10-012	100-00	000.87	100.71	200.10	;							

. .

.

109

INPUT & NATHIA

	000.0005.	000. 80us.	100.0584.	000.5194.	000+1666	0.0001.
	000.2411.	000.000s.	00n.anes.	.98.0.000	000+5166.	0+1666"
	100-6611-	000+2411.	· 5000 • 000	000. 8088.	. 9920.000	0.5166.
	200-5142.	100-6611.	000.2611.	·5000 • 000		0.0204.
1	. 3354-0US	-2913-042	100-2611.	1192:000	. 5009-000	0. 5066.
	+00-0454.	1354-003	200-5192.	100-6611	000.2611.	· 2000 · 0

TINUL & HOTAL

100+0151. [00+14[.] 00+2401. Jun: 2101. +00+4111. +00+6251.

INTUE S MAIRLE

INVERTED MATRIE

100.0898 ···	.1003.002	1019-002	100.1586.	7504 .001
100.6969.	200.1011	1311.002	200.1421	100.1504.
100.6651.	100.2569.	1225-002	1317+002	1019+002
000.21.2.	100-1291	100.25.69.	1181.002	.1003.002
100-0411.	000.5144	100.4451	100+69499.	
-1305-0u2	100-9252	.16 57 . 000	100+5/11	100+2272.

SOLUTION 6 MATHIA

1111- 100-11- 100-11- 110-0-01: 100-0-11: 001-- 000-111-

.

+00-5169" :49 JO HOS

A CONSTANT: . 1598-005

Solution II nater

100-0511** END-1021** 400-5051** END-1052** END-1598* 200-066***

AA CUNSTANT:

:

ORIGINAL PAGE IS OF POOR QUALITY

APPENDIX C

•

FORTRAN PROGRAM THESIS.CCC

11 = 11 - 11 - 4 - PLI - 4 - PLI - 1 - 1 AMBLA - 1 /2 0 2000 J=1 M 1012 - 2101 - 11 1012 - 2101 - 11 1012 - 2101 - 11 1012 - 2101 - 1121 1012 - 2101 - 1121 1012 - 2101 - 1121 1012 - 2101 - 1121 1012 - 2101 - 1121 1012 - 2101 - 2121 1012 - 2101 - 2121 1012 - 2101 - 2121 1012 - 2101 - 2121 1012 - 2101 - 2121 1012 - 2121 - 2121 ADIS, 12 100 14, 144, 144, 140 0441 (07 10.40 (ADIS, 15 11(4(1),1=1,41 04441 (110.4) AF IN. I RAINCCCC. MAJN/CCC DIMENSION LN1101, Skit501 REAL LANDOA, LOAD CAU15.10161.01.00 PIES. 14159 UO/IL BUINI + 7+ INE SISCI 2 2 -\$2 1 20 2 \$ 2: 2111111111111111 - ~ 212

ORIGINAL PAGE IS OF POOR QUALITY .

ORIGINAL PAGE IS OF POOR QUALITY

.

\$

and the second

-

1 199

PUISSON, F . 2000+000

PO1550N.M. . 350U+000

100.11.1. . 1.9

6.N: .1333.UD6

1.00.0899. : 1.1

1.15 . 1064.006

100:500,11 - .2150 -001

POLSSON, 11 . . 3664.000

L.11: . 8256+006

C.LT: .3119.006

(, IR: . 3085 •006

6. IR: .2586.006

100+54 11* : VORWE 1

L. RH: . 8256-006

100.041. :2'HI.J

4.1114: . 3102.006

4

114

÷

100+6814. -----

•

•

1.4.1 .7916.006

N= . 3282+001

1 00+2052 - 29

INITIAL BURST PRESSURE: .1531.005

- INIIIAL SIRAIN= +1881-401

1

ORIGINAL PAGE IS OF POOR QUALITY

CASE 2

11 .1 vuo uote	1		
POLSSON, F			
POISSON, N. 35500.000			
L.F . 1917-007			
6.M: .1333-006			1
11154-008			
1.1: . 6749.006			1
Po155041L1: 2600 .UOU			
100-0141. = 11, wession			
UDD: 4666 11, MO22104			-
6,LT: .5629+006		1	
vf : . 6uñu+uðu		1	
NN			
1.4 3529+006			
C,UI = .11 72*008		•	1
410+5+66* : 11*3			
4.1 T 3464+006			
C. TR: .3 sev + UOD			1
4.14: .3281+U06			
LAMBUA: .1143-00:			
C. MA			
L. INTH: . 51 \$4:007			
L. IN-5: . 1568-007			

ORIGINAL PAGE 18 OF POOR QUALITY

116

-

1

(, ink: . 3425.006

\$

ORIGINAL PAGE IS OF POOR QUALITY

100.1095.

.

1,45 . Y546+UU6 Nº . 3289+UU1

1. . 1959-041

1411141 BURSI PRESSURE - 1863-005

LUD-4PSL. - NIANIS JALTINI

1.

117

-

\$

and

	ā
-	
~	
	•
-	٠

-	
5	
-	
-	
ē	
-	
-	
-	
-	

000.0021. "M.NO22:09	6.F = . 791 7+0UT	 1.15.1.000	1.1	00+05+2. =11.Noss tod	PO1550N. IL 2099-00	100. CONC 11. NOS 5 104	400+t

		908	900	100	900	100	900	100.9
1000-00	00.000	. \$5.99.0	.1361.	.1275.	. *005.	. 5165 .		111. 1
				:11:	-11-1	C. In:	18: 18:	

ORIGINAL PAGE IS

÷

.....

-

ORIGINAL PAGE IS OF POOR QUALITY

URPUR 2011/01/2011/01/2012 AUTOR

*

\$