General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)

MCR-82-1307 Contract NAS5-26496

NASA CR- Final 170576 April 1982

15-Meter Diameter Mechanically Scanned Deployable Antenna

(NASA-CR-170576)THE 15-METER LIAMETERN83-34123MECHANICALLY SCANNED DEPLOYABLE ANTENNAFinal Report (Martin Marietta Corp.)220 pHC A 10/MF A01CSCL 09CUnclasG3/3236562

ORIGINAL PACE IS OF POOR QUALITY

MCR-82-1307 Contract NAS5-26496

Final Report

April 1982

15-METER DIAMETER MECHANICALLY SCANNED DEPLOYABLE ANTENNA

Prepared by

J.V. Coyner, J.J. Herbert, E.E. Bachtell

Approved

F.R. Jchwar eng

F.R. Schwartzberg, Manager, Large Space Systems

MARTIN MARIETTA CORPORATION DENVER AEROSPACE P. O. Box 179 Denver, Colorado 80201

A

f

Ś

1. 17 H.

. . .

ς.

FOREWORD

This report was prepared by Martin Marietta Denver Aerospace under contract NAS5-26496. The contract was administered by the Goddard Space Flight Center of the National Aeronautics and Space Administration, Greenbelt, Maryland. The study was performed from April 1981 to March 1982, and the NASA-GSFC project manager was Mr. L.R. Dod.

The authors wish to acknowledge the contributions of the following individuals to this program: Mr. R.J. Richardson and Ms. D.A. Strange for their radio frequency analysis; and Mr. J.R. Postuchow and Mr. D.C. Rudolph for their design creativity.

CONTENTS

9

(

B. astro

.

		Page
I.	SUMMARY	1
II.	INTRODUCTION	7
III.	ANTENNA DESIGN AND ANALYSIS	9
Α.	Parabolic Structure Design	9
в.	Stowed Configuration	26
С.	Deployment	29
D.	Deployed Dynamic Analysis	34
E.	Mesh Tie-System Design	46
F.	Thermal/Thermoelastic Analysis	54
G.	RF Evaluation Using Aperture Distribution Techniques	78
H.	RF Evaluation Using Surface Current Integration Techniques .	91
I.	Recommendations for Further Study	102
	APPENDIX	
А	Member Properties	A-1
		thru
		A-23
В	NASTRAN Dynamic Model	B-1
		thru
		B- 16
С	Dynamic Balancing	C-1
		thru
		C-8
D	Reflective Mesh Coordinates	D-1
		thru
		D-48
Е	Mesh Deflections of Single Panel	E-1
		thru
F	Nodal Diflections for Thermal and Centrifugal Cases on the	
	Antenna Support Structure	F-1
		thru
		F-8
	Figure	
	ن جاری ہے جو بہ اور	
I-1	15-meter-dia Offset Feed Box-Truss Antenna	3
I-2	Deployable Box-Truss Bay	5
II-1	Deployable Box-Truss Schematic ••••••••••••••••••••••••••••••••••••	7
III-1	Lines of Force through Cube-Corner Fitting	10
III-2	Parabolic Cube-Corner Fitting	11
III-3	Compression-Molded Graphite-Fiber Reinforced Cube-Corner	
	Fittings	12
III-4	Superbox	14
III-5	Spin Adapter Structure	15
III-6	MSDA Section Properties Numbers	17-20
III-7	Graphite-Epoxy Vertical Member • • • • • • • • • • • • • • • • • • •	21
III-8	Low-Cost, Integrally Molded End Fitting	22
III-9	Telescoping Interior Diagonal Member	23

ē

F

3

1

÷.

III-10	Graphite-Epoxy Crossover Fitting	24
III -11	Graphite-Epoxy Midlink Hinge	25
III-12	Integral Offset-Feed Hinge Joint	27
III-13	MSDA Stowed Configuration	28
III-14	MSDA Deployment Sequence	31-33
111-15	MSDA NASTRAN Node Numbering System	35
111-16	MSDA NASTRAN Element Numbers	36-39
111-17	First Modal Frequency Plot - 12.55 Hz	41
TTT-18	Second Modal Frequency Plot - 12.75 Hz	42
111-19	Third Model Frequency Plot = 13 19 42	43
TTT=20	Rallast and Spacecraft Location and Inertial Droportion	45
TTT-21	MSDA Mach Tie System	47
TTT-22	Mach Numbering System	48
111-22	Double-Catenary Mach Model	40
111-23	Ave. Pay Deflector Model	サフ 50-51
111-24	Axe bdy Reflector Hodel	10-11
111-25		54
111-20		54
111-27		23
III-28	RF Reflectivity Loss of 5.2 Openings per Centimeter Tricot	
	Mesh	53
III-29	TRASYS Thermal Computer Model	55
III-30	TRASYS Drawing of MSDA Reflective Surface	56
III-31	Thermal Element Numbering in Mesh Tie System	57 - 58
111-32	Element-to-Element View Factors	59
III-33	Optical Transmissivity of 5.5 Openings per Centimeter Tricot	
	Mesh	60
III-34	MSDA Orbital Position	61
III-35	Umbra and Penumbra Shadowing Effects	62
III-36a-d	MSDA Steady-State Spin Angle, 0 to 270-deg Temperature	
	Results	64-67
III-37	MSDA Transient - Average Flux Temperature Results	68
III-38	Temperature Range and Mean in Antenna Support Structure	
	for Different Thermal Load Cases	70
III-39	Structural Deflection Plot - Centrifugal Load	72
III-40	Structural Deflection Plot - Thermal Load Case I and	
	Centrifugal Load	73
III-41	Structural Deflection Plot - Thermal Load Case II and	
	Centrifugal Load	74
111-42	Structural Deflection Plot - Thermal Load Case III and	
		75
ITT-43	ANSYS Mesh Model Numbering System	76
TTT-44	Reflector Geometry	78
TTT-45	Feed Horn -5.1 GHz	27 80
TTT-46	Feed Array - 5.1 GHz	31
TTT -47	Feed Horn Pattern - E-Plane	33
TTT-48	Feed Horn Pattern ~ H-Plane	20 27
TTT-49	Contour Plot - On-Axis Beam	04 2 c
	Princinal Flama X=Avig = On=Avig Room	ره ۵ <i>۷</i>
TTT_51	Defected Plane V-Avia - On-Avia Baam	00 07
111-27	Contour Blot - Boom Offert -1 41 des	8/
111-32	Definition - Deam Uliset -1.01 deg	88
111-57	Principal riane, X-AXIS - Deam UTISEC -1.01 deg	89
111-54	rrincipal Plane, Y-Axis - Beam Utiset -1.61 deg	90
TTT-55	41.3x41.3-cm Pillow Shape	92

3

۰.

2

Gini Inw

•

iv

-		
<u> </u>	III-56	Scaled Pillow Heights versus Derived Pillow Heights
		for 41.3x41.3-cm Pillow Shape
	II1-5/	Principal Plane, Asymmetrical Cut, Ideal Surface 95
	111-58	Principal Plane, Symmetrical Cut, Ideal Surface 96
	III-59	Principal Plane, Asymmetrical Cut, Ideal Surface 97
	III-6 0	Principal Plane, Symmetrical Cut, Pillowing-Only Surface • • • 98
	III-61	Principal Plane, Asymmetrical Cut, Pillowing and Manufacturing
		Surface
	111-62	Principal Plane, Symmetrical Cut, Pillowing and Manufacturing
		Surface
	III-63	Grating Lobe of Pillowing and Manufacturing Surface 101
		Table
	7-1	MSDA Design Requirements and Specifications
	T = 2	Antenna Verformance Summary
	1 2	MSDA Section and Material Properties
	TTT_2	Model Characteristics Summers
	111-2	Defloation of Food during Thermal and Contributed Loading 71
		Terresture Loads Head on Mach Support
	111-4	Temperature Loads Used on Mesh Support
	111-5	Maximum and rms Deflection of Single Mesh Panel, plus
		Box-Truss, Support System due to Temperature Change and
	- · - •	Centrifugal Force
	III-6	Summary of Total Distortions of Total Reflector Mesh
		due to Pillowing and Thermal Effects, and Manufacturing
		Tolerances
17 14	III - 7	Pillow Heights Used to Derive Pillow Shape
-	III-8	Gain Loss due to Surface Irregularities

v

٠

4

見き薄し

Į

The objectives of this study were to provide a preliminary design with structural model data and thermal-performance estimates of a 15-meter mechanically scanned deployable antenna (MSDA) that could be launched onboard a Shuttle Orbiter to provide radiometric brightness temperature maps of the Earth and oceans in selected bands over a frequency range from 1.4 to 11 GHz. This study assumed that this antenna will be attached to a spinning platform (360 deg; 6 rpm; 35-deg conical scan axis) on a free-flyer spacecraft in a 700-km altitude, 12:00 Sun-synchronous orbit. Table I-1 summarizes the design requirements and specifications that were involved in this study.

The study objectives were met through the design of a unique, integrated, offset feed mast and reflector design that uses the deployable box-truss structure as a building block (Fig. I-1). The performance of this system is summarized in Table I-2. Figure I-2 presents the all graphite-epoxy, 4.57-meter prototype cube that was completed in 1981 and is proposed for this reflector and feed mast design.

ŝ,

Table I-1 MSDA Design Requirements and Specifications

Requirements and Specifications									
Deployable 15-m-dia Effective Circular Aperture, Offset-Fed Parabolic Reflector and Feed Structure									
Dynamically Balanced, Conically Scanned (35-deg Nadir Angle, 6-rpm) System									
90% efficiency on a	90% efficiency on all beams, which are:								
	Channel, GHz								
Beamwidth, deg Beams in Track RF Bandwidth	1.414 1.07 3.0 28.0	4.3 0.35 10.0 200.0	5.1 0.3 12.0 100.0	11.0 0.35 10.0 100.0					
Mount on Spinning Pla	Mount on Spinning Platform on Generic Free-Flyer Spacecraft								
Operational Orbit [*] : 700-km Altitude, 12:00 Sun-synchronous									
Launch in Shuttle Orbiter									
Antenna/feed assembly stows in volume not to exceed 4-m- dia cylinder, 7-m long.									
Stowed-system structural resonant frequency must be 25 Hz.									
Scanning (deployed, rotating) system resonant frequency should be 12 Hz.									
* Inclination of 99% 99-min Period, Orbital Plane Precesses to Remain Aligned with Subsolar Point									

ORIGINAL PADE 18 OF POOR QUALITY

Figure I-1 15-m-aiameter Offset Feed-Box Truss Antenna (All Dimensions in Meters)

A

Table I-2 Antenna Performance Summary

11.941-m Focal Length	
Reflector Diameter, m	15.0
Focal Length, m	11.941
Reflector and Feed Support Mast, kg	400.07
Feed Mass Allocation, kg	27.14
Ballast Mass, kg	22.68
Deployed Frequency, Hz	
- Mode 1	12.55
- Mode 2	12.75
- Mode 3	13.19
Stowed Envelope, m	3.84x4.47 dia
Stowed Frequency, Hz	17.2
Surface Accuracy (rms) Worst-Case, cm	0.097
Feed Location Accuracy (Axial), cm	0.024
(Centrifugal Corrected) (Lateral), cm	0.051
18.000-m Focal Length	
Reflector Diameter, m	15.0
Focal Length. m	18.0
Reflector and Feed Support Mast, kg	484.99
Feed Mass Allocation. kg	27.14
Ballast Mass. kg	22.68
Deployed Frequency, Hz	
- Mode 1	7.071
- Mode 2	8.174
- Mode 3	13.05
Stowed Envelope m	4.04x4.47 dta
Surface Accuracy (rms) Worst-Case, cm	0.097

.

a 1

.

b Stowed

C

0

0

Figure I-2 Deployable Box-Truss Bay

ORIGINAL PAGE IS OF POOR QUALITY

II. INTRODUCTION

The 15-meter lia mechanically scanned deployable antenna (MSDA) is designed using the deployable box-truss structure to form the parabolic dish and feed mast. This truss comprises a deployable frame consisting of two equal-length structural members ("verticals"), two structural members hinged in the middle ("surface tubes") that connect the ends of the verticals and fold inward to stow between the adjoining verticals, and telescoping diagonal braces that lie in, and control the shape of, the deployed frame (Fig. II-1). Prototype hardware has been fabricated with all-composite tubes and fittings, and low-cost manufacturing processes are being developed for all repetitive components.

Figure II-1 Deployable Box-Truss Schematic

The shape of a box-truss reflector and feed mast is controlled by the diagonal tension braces in each frame face. The diagonals are multiple-ply graphite-epoxy tapes that telescope for stowage and deployment. Both diagonal tapes in each frame face lie flat in the plane of the frame, thereby equalizing solar input to the two tapes and minimizing thermal discortions.

A key feature of the truss is the hinge and latch in the middle of each folding surface tube. All moving parts are in the hinge and latch

7 PRECEDING PAGE BLANK NOT FILMED

interior. This eliminates protuberances that could interfere with the diagonal braces or an antenna surface during deployment. Redundant coil springs in the hinge are sized to produce the desired deployment rate. The spring-driven over-center latch increases in mechanical advantage when the deploying tube is approximately 10 deg from full deployment. The latch spring is sized to meet diagonal brace and antenna surface tensioning requirements. A redundant mechanical latch functions in parallel with the over-center latch.

The structure is deployed in a controlled sequence of steps. Feed beams are deployed one cube at a time and trusses are deployed one row of cubes at a time. In the latter case, the steps are accomplished in a preselected sequence in the two orthogonal deployment directions. This type of deployment is compatible with flat, cylindrical, and parabolic trusses, and virtually any beam shape.

The 5-bay by 5-bay antenna support structure has an extremely high stiffness-. -weight ratio and excellent thermal stability. Because of the box truss configuration, the structure easily stows within the allotted envelope. This 5x5 offset feed box truss design exceeds all requirements listed in Table I-1 with the exception of the 25-Hz stowed requirement. All structural members are made of thermally stable and stiff graphite-epoxy composite layup.

2. 1

A unique deployable feed mast has been developed for the offset feed space deployable antenna. The novel feature of this design is that it uses an extension of the reflector truss structure rather than adding appendages. The design features efficient stowage, simple integration to the reflector structure, excellent thermal stability, lightweight, and very high stiffness and dynamic stability. These features are achieved by using the efficiency and features of a deep truss structure. Previous offset feed masts were appendages added to the reflector structure and had less efficient packaging, more difficult integration, and substantially lower dynamic stability. Because of the high strength and stiffness, this mast can easily accommodate the more complicated and massive advanced feeds (e.g., line feeds, array feeds, and multifrequency multibeam feeds).

III. ANTENNA DESIGN AND ANALYSIS

The antenna support structure (Fig. I-1) shows the center row of bays radiating out from the feed support to make up the strongback for the structure. The strongback is a very stiff area of the structure that provides the load paths between spacecraft and the antenna support structure. The focal length for this antenna configuration is 11.941 meters with an integrated-offset feed. The feed mast structure is an extension of the antenna support structure.

A. PARABOLIC STRUCTURE DESIGN

The parabolic box-truss design is an accurate truss with all the force lines of action going through a coincident point. This design feature is shown in Figure III-1. The cube-corner fitting attachment point for the surface tube is adjusted so the surface tube line of action goes through a coincident point with all the other surface tubes and diagonal members of that particular cube-corner fitting. The depth of the cube-corner fitting (Fig. III-2) was increased relative to the original cube-corner fitting (Fig. III-3) to accommodate these changes of attachment points. Moving the attachment points to eliminate end noments on the vertical members dramatically increases the fundamental mode of the entire structure. Along with movement of attachment of the surface tube, specific surface member lengths must be kept identical in any row or column of the structure. This design feature ensures the structure remains orthogonal during sequential deployment in either direction. Identical member lengths are made possible by the geometric property that any cutting plane through the surface and parallel to the vertex axis will show an identical parabola through the intersection points.

Note:

All force vectors (lines of action) intersect at a single point of action. This eliminates and moments on the vertical members, thus increasing the structure's overall natural frequency.

Figure III-1 Lines of Forces Through Cube Corner Fitting

Figure III-2 Parabolic Cube-Corner Fitting

(

AND A SPECT OF

ORIGINAL PAGE 19 OF POOR QUALITY

Figure III-3 Compression-Molded Graphite-Fiber Reinforced Corner Fittings Join Box-Truss Structural Members (Flat Truss)

The cube-corner fitting (Fig. III-3) forms the structural ties between the cube's vertical members, surface tubes, and diagonal braces. The cube-corner fitting is made of 1.25-cm compression-molded chopped graphite-fiber in an epoxy matrix to give rigidity and thermal stability to the structure. Since the cube-corner fitting is a repetitive identical part, the part can be molded at low cost. Pin locations are drilled depending on the location of the cube-corner fitting in the structure. Since some pin locations in the cube-corner fitting require less depth, excess material will be trimmed from the fitting as a weight savings. To save additional weight in edge areas of the antenna structure where only partial fittings are needed, the cube-corner fitting is trimmed to the needed size.

Strongback and Superbox - The structural members in the strongback region have increased cross-sectional area to provide local stiffness. The increased cross-sectional areas were determined in an iterative process using the strain distribution in the structural modes obtained from the finite element dynamic computer runs. This process optimized member sizes by defining high stiffness members in areas of high-strain energy and low-stiffness (weight) members in areas of low-strain energy.

The heart of the strongback section is the "superbox" as shown in Figure III-4. The 2x2x4-meter superbox is extremely stiff and provides the interface points between the spacecraft and the antenna via the spin adapter structure (Fig. III-5). The superbox does not deploy and uses rectangular tubes for the diagonal members. The superbox allows the structure to meet the 12-Hz fundamental frequency requirement through its rigidity at the interface point. The spin adapter structure will be constructed of graphite-epoxy, although its exact dimensional characteristics have yet to be determined. <u>Member Properties</u> - The different section and material properties of the structural member are listed in Table III-I. The locations in the structure for the different member types are shown in Figures III-6a through -6d. The graphite-epoxy layups and cross-sectional dimensions for the members are contained in Appendix A. As can be seen in Table III-1, many different member types exist; therefore, only a general description of each major class will be discussed. All surface and vertical members were designed with a factor of safety of 1.25, and a 0.9 knockdown factor for nonstraightness of members (manufacturing and thermal). All members were designed based on deployed stiffness of the antenna system because applied loads on the antenna are small.

<u>Vertical Tube</u> - These structural members are called "verticals" because they span from top to bottom in the box-truss bays (Fig. III-7). These members are 3.81-cm square, are made of a graphite-epoxy laminate, and, for MSDA, do not have fins as shown in Figure III-7. In the MSDA structure, most verticals are closed sections (Types 10 and 11), with the exception of the feed support structure at the antenna-structure interface where channels are used. The nonfinned vertical members are bonded in the cube-corner fitting and extend through the fitting on the top surface to create 30.48-cm standoffs above the box-truss structure for the mesh tie system.

<u>Surface Tubes</u> - The surface tubes span the top and bottom surfaces of the antenna support structure. Tube diameters are 4.45 cm and vary in wall thickness according to their location in the structure. They contain a graphite-epoxy hinge and deployment mechanism, located at midspan, that allows them to fold for stowage. The surface tubes have integral end fittings with increased thickness to provide for improved bearing strength through the pin holes. This feature eliminates special fabrication and bonding of separate end fittings. The integral end fitting (Fig. III-8) is less expensive and has lower CTE than alternate end-fitting designs.

a and the state of the second s

ŧ

Figure III-5 Spin Adapter Structure (All Dimensions in Meters)

. 1930 . . .

ORIGINAL PAGE IS OF POOR QUALITY

ţ.

Member Type		Sec	ction	Mat	erial e No.	Area, m ²	I y	\$	I z,		Torsonal Constant,	Nonstructural Mass/Unit Length
Surface, 4.45-cm	dia	$ \begin{array}{c} 1\\ 2\\ 3\\ 4 \end{array} $		1 2 3 11		7.01E-5 1.72E-4 2.51E-4 4.64E-4	1. 4. 5.	69E-8 02E-8 71E-8 35E-7	1.69E 4.02E 5.71E	-8 -8 -8	3.39E-8 8.03E-8 1.14E-7 2.01E-7	2.85E-2 2.85E-2 2.85E-2 2.85E-2 2.85E-2
Vertical 3.81-cm	∍ sq	10 11		10 11		1.32E-4 5.34E4	3.	06E-8 06E-7	3.06E	-8 -7	4.58E-8 3.08E-7	
Channels		20 21		20 21		4.24E-4 1.35E-3	2. 1.	53E-7 12E-6	2.33E 4.88E	-7 -7	2.58E-10 2.57E-8	
Deployab Interior Tapes	Le	30 31 32		30 31 32		3.79E-5 6.01E-5 1.14E-4						1.48E-2 1.48E-2 1.48E-2
Nondeploy Interior Members	/able	33 34 35 36 37 38		33 33 35 10 37 37		3.74E-5 7.48E-5 1.41E-4 3.64E-4 6.97E-4 9.61E-4						1.48E-2 1.48E-2 1.48E-2
Deployabl Exterior Tapes	Le	40 41 42 43		33 33 42 43		1.28E-3 9.10E-6 1.82E-5 2.07E-4 2.59E-4						
Rectangul	ar	50 erti	00 9r	37 	mombo	1.02E-3	2.0	01E-6	3.73E-	-7	4 . 16E-7	
Material ^E L Type Nt/m ²		2	G LT Nt/m ²	2	^µ 1t	Densit kg/m ²	y,	CTE m/m/°C				
1 2 3 10 11 20 21 30 31 32 33 35 37 42 43	1.641 1.851 1.861 1.781 1.941 1.871 1.851 1.205 1.175 1.365 1.365 1.885 1.855 1.445 1.825	E11 E11 E11 E11 E11 E11 E11 E11 E11 E11	1.30H 1.14E 1.05H 1.29E 9.50E 1.16E 1.14E	210 210 210 210 210 29 210 210	0.193 0.198 0.154 0.243 0.136 0.225 0.190	1.61E3 1.61E3 1.61E3 1.69E3 1.69E3 1.69E3 1.69E3 1.55E3 1.55E3 1.55E3 1.67E3 1.67E3 1.60E3 1.60E3		-0.2 -0.3 -0.3 -0.3 -0.3 -0.3 -0.4 -0.3 -0.3 -0.3 -0.3 -0.3 -0.3 -0.3 -0.3	5E-6 8E-6 2E-6 5E-6 1E-6 3E-6 4E-6			

Table III-1 MSDA Section and Material Properties

*

Figure III-6b MSDA Section Properties Numbers

Figure III-6c MSDA Section Properties Numbers

-states controls

Figure III-6d MSDA Section Properties Numbers

2点5、5.255

The vertical member's column allowables can be varied easily by varying the fin construction.

Figure III-7 Graphite-Epoxy Vertical Member

Interior Diagonals - The interior diagonals span the interior faces of the box truss bays. These tension members are a two-part design made up of a tape and a mating flattened tube as demonstrated in Figure III-9. This unique construction scheme is used to permit the member to telescope for stowage. The interior diagonals are pretensioned from 89 to 445 N in deployed configuration (depending on location within the structure). The pretension level is selected to maintain tension in all diagonals under the combined effects of thermal distortions, manufacturing errors, and centrifugal forces. The interior diagonals set the box truss to a parabolic shape by prescribing their lengths through predetermined parameters depending on focal length and location within the truss. First, the box truss is assembled without the diagonals. Next, the truss is deployed and positioned to the desired shape and the diagonals are installed and tensioned. The diagonals are then bonded while under tension. This procedure minimizes manufacturing tolerance buildup and ensures proper tension levels. The diagonal members are packaged flat against the vertical member in the stowed configuration. During deployment, the interior diagonal members rotate 90 deg so they will lay flat in the plane of the interior bay face. This will enable the interior members to be heated and cooled more equally by the solar radiation and thus reduce thermal deflection. The interior diagonals are connected at midspan by a crossover fitting (Fig. III-10). This fitting acts as a load path during stowage because it is in intimate contact between two parallel vertical members. The crossover fitting is a square plate that has cavities machined in the plate for weight reduction.

Figure III-8 Low-Cost, Integally Molded End Fitting

Figure III-9 Telescoping Interior Diagonal Member

۰.

OF POOR QUALITY

Exterior Diagonals Members - The exterior diagonals members lie in the surface faces of the box-truss bays. These members must deploy in both directions and yet be fabricated of a very high modulus of elasticity material. The basic exterior diagonal (Sect. 40) is a tape configuration. The exterior diagonal members are connected at midspan with a crossover fitting similar to the one used with the interior diagonals. This fitting alleviates any bending of the tapes during stowage. These members are pretensioned in a manner similar to that of the interior diagonal members.

Exterior diagonals located in the strongback portion of the antenna support system required an increased cross-sectional area because of the higher stiffness required. These diagonals employed a tape/tube configuration similar to that used in the interior diagonal members because they only need to deploy in one direction.

Midlink Hinge Design - As mentioned earlier, each surface member uses a midlink hinge that allows the surface tube to fold for stowage. The midlink hinge must meet three requirements: (1) hinge action for stowage and deployment, (2) torsion springs to supply deployment drive torques, and (3) a rigid structural link between the deployed tube halves. Figure III-11 is a photograph of the all graphite-epoxy (except springs and pins) midlink hinge assembly. The torsion spring driving the overcenter latch has a high mechanical advantage. This assists in overcoming static and startup resistance forces and the completion impulse provides the force required to tension the reflector surface and truss diagonal members. The deployed structural link across the midlink hinge consists of the bearing surfaces on the hinge halves, which are held in place by the hinge axis pins and the overcenter links and pins.

Figure III-11 The Graphite-Epoxy Midlink Hinge Assembly in Each Surface Tube Containing an Overcenter Hinge that Drive Deployment and Locks Tube Straight Offset Feed Support Hinge Design - The connection point between the feed mast and the antenna support structure is a unique design. Fourteen different members' lines of force must converge through a coincident point. The fitting assembly (Fig. III-12) is a 3-dimensional joint with feed box trusses rotating out and up during deployment. The brace structural members fold up inside the interlocking vertical channels during stowage. The channels are of different thickness in the flanges and web so their centroidal planes intersect at deployment, maintaining a true truss configuration. The end fitting for the surface tubes in the feed mast is bonded to the back of the feed mast vertical channel (Sect. 20). The other channel that is part of the superbox is section type 21. This complex fitting is fabricated from several smaller graphite-epoxy laminates that are bonded and mechanically fastened into a single, unique hinged cube-corner fitting. The structural diagonal tubes of the superbox are pinned into this fitting. The advantage of a box-truss feed mast are longer focal lengths and larger feeds because of higher system fundamental modes resulting from the integrated design.

B. STOWED CONFIGURATION

The MSDA stowed configuration is shown in Figure III-13. All of the structural members compactly stow about the superbox thus allowing the antenna to easily meet the stowage requirement outlined in Table I-1. In the stowed condition, the cube-corner fittings butt against each other, forming a plane at the top and bottom surfaces. The plane formed by the cube-corner fittings provides a load path for loads incurred during launch with inplane shearing loads handled by interlocking pins between the fittings.

The dynamic characteristics of the MSDA in the stowed configuration were analyzed with the NASA Structural Analysis (NASTRAN) Finite Element Program. The model was conservative in the sense that it only contained the superbox stiffness with the rest of the masses lumped at the model's eight nodes. The first fundamental frequency obtained was 17.2 Hz, but this number is extremely conservative considering that the model did not take into account the stiffness added by the members being pinned and supported together during stowage. An additional restraint ring would readily permit attainment of the 25-Hz requirement.

Figure III-12 Integral Offset Feed Hinge Joint

.

EF-MAXING.

Ì

C. DEPLOYMENT

89

As shown in Figure III-14, the feed mast flips up first, after which the boxes on either side of the superbox deploy outward. The bays on either side of the middle deployed three are then deployed. Following this sequence, an entire row of five bays is deployed outward away from the feed mast. This is followed by each row deploying outward until the antenna support structure is fully self-deployed. The feed mast will then deploy its three boxes upward for the completion of the entire sequence. The deployment is controlled by latches between the cube-corner fittings. These latches release by remote control in proper sequence, initiating deployment of each section of the antenna support structure. The sequential nature of the deployment process dissipates the deployment energy in an incremental manner, thereby reducing the possibility of producing structural failure in the deploying truss.

R.

3

***** *

Figure III-14b MSDA Deployment Sequence

D. DEPLOYED DYNAMIC ANALYSIS

The MSDA dynamic analysis was performed using beams and rods to model the antenna support structure and the feed mast. The model contained 78 active nodes that connected 386 structural members. Each node has 0 deg of freedom, except for the four nodes (nodes 43, 44, 49, and 50) at the bottom of the superbox that were constrained in 6 deg of freedom to the spin adapter structure and the spacecraft. The node numbering is shown in Figure III-15, while the element numbering system is displayed in Figures III-16a through -16d. The element numbering system is consistent throughout the dynamic, static, and thermal analysis. The NASTRAN data listing is contained in Appendix B along with the dynamics run containing the first three modes.

The surface and vertical members were modeled with beam elements, while the interior and exterior diagonals were represented by rod elements. Because the surface members are pinned at either end, this degree of freedom is released in the rotational direction along the axis of those pins in the model. The diagonal members are represented by rods that were free to rotate along any axis. A lumped mass was placed at all the node points to simulate the mass of the cube-corner fitting and the integral end fittings in the tubes. A lumped mass was placed on Nodes 1 through 32 to simulate standoff and mesh mass. The midlink hinge mass and the crossover fitting mass were distributed along the length of their respective members because no node existed at that point. The feed and ballast were modeled with a 27.12-kg lumped mass divided between Nodes 67 and 70 at the top and front of the feed mast. Node 79 was the origin of the coordinate system. Node 80 was the center of gravity of the structure through which the spin axis rotated. These nodes have no structural significance. The standoff masses and the reflective mesh, including the tie system, were lumped on the top surface nodes of the antenna support structure. The 22.68-kg rear ballast mass was lumped at Nodes 44 and 50 and divided evenly.

Figure III-15 MSDA NASTRAN Node Numbering System

Figure III-16a MSDA NASTRAN Element Numbers

A Charles and the state of the second

•

Figure III-16b MSDA NASTRAN Element Numbers

4

e suite

Figure III-16c MSDA NASTRAN Element Numbers

Anteria Alexander and Martin and

Figure III-16d NSDA NASTFAN Element Numbers

灢

()

1.16

The dynamic computer model was run several times in an iterative process to satisfy the 12-Hz requirements. The original model was a 4x4-bay structure; this concept was abandoned early in the project in favor of a 5x5-bay structure that gives the system a much better interface between the antenna structure and the spacecraft. The Astromast feed was also discarded early in the study in favor of the offset box-truss integral feed mast that has the higher stiffness needed to meet the 12 Hz-requirement. If the dynamic analysis had used a free-free structure, the frequency requirement could have been easily met, but the structure was analyzed in a more realistic situation in which the antenna support structure was anchored to the much heavier spacecraft, thus dramatically driving down the fundamental frequency. By increasing the stiffness in those members carrying the highest strain energies, in several iterative steps, the first fundamental frequency of the structure was increased to 12.55 Hz. The first mode, shown in Figure III-17, is a bending mode about the y axis with its root at the base of the superbox. The second fundamental frequency of 12.75 Hz (Fig. III-18) is a twisting mode on the superbox base about the x axis and z axis where the feed mast and antenna structure are twisting in phase. The third mode (Fig. III-19) is very similar to the second mode with a frequency of 13.19 Hz. Table III-2 summarizes the dynamic data.

Dynamic Balancing - The dynamic balancing of the MSDA antenna involved attaching ballast at various points in the structure. The objective was to align the spin axis with one of the principal inertial axis as seen in Figure III-20. Early in the project, the antenna configuration had the spin axis 35 deg to the other side of the z axis, but it was found that a much smaller amount of ballast had to be added in its present configuration. The ballast mass and location were determined by a Martin Marietta computer program written using the weight generator from the NASTRAN finite model. The balancing computer program recalculated the principal inertias, including ballast of the structure, so an iterative process was used to determine the optimum ballast location and minimum mass. The theory and listing of the program are given in Appendix C. The locations and magnitudes for the four ballast masses are two 11.34-kg masses at the base of the surerbox (Nodes 44 and 50) and two 7.9-kg masses, each located on either side of the feed (Nodes 67 and 70). The feed location has the advantage of allowing extra feed mass allocation for a total of 27.14 kg to be used instead of ballast. The ballast location at the bottom of the superbox has the advantage of allowing the use of heavier members in that area without any penalty of lowering the fundamental frequency. These ballast locations are illustrated in Figure III-20. Spin balance was easily achieved with minimal added mass to the structure.

Figure III-17 First Modal Frequency - 12.55 Hz

ಷ್ಟುವ

Figure III-18 Second Modal Frequency - 12.75 Hz

The Part Statistic states of the

42

-10-2

••••••••

ж» •

1. 1

1

Mode	Freq, Hz	Description		
1	12.55	Bending about y axis.		
2	12.75	Torsional mode about x axis and z axis		
3	13.19	Torsional mode about x axis and z axis		

ł

"THEFT

.

Table II.I-2 Modal Characteristics	Summary
------------------------------------	---------

12

*

,

(

45

42.3

E. MESH TIE-SYSTEM DESIGN

The mesh tie-system design proposed for the MSDA antenna is a doublecatenary cord system. This cord system is made up of three types of cords--upper surface cords, drop cords, and rear cords. The upper surface cords, which are continuous cords across the total mesh surface, rest on the mesh surface and are spaced evenly between the box-truss standoffs. The point at which two surface cords cross is then pulled down into shape by drop cords that then attach to a rear cord catenary. The rear cord catenary system spans individual box-truss cube standoffs. Figure III-21 is an illustration of this cord system for a single box-truss section. The total mesh surface is formed by individually tensioning mesh panels (sized for compatibility with truss cube) and then sewing them together. The mesh is then attached to the deployed truss standoffs. The mesh attachment points were located and marked while the mesh panels were on the mesh stretching table. The surface cords with attachment beads and drop cords are then strung across the surface of the mesh. The rear cords are then strung and the drop cords are loosely fastened to the rear attachment beads. At this point mesh setting is started. During the setting process, a constant force is maintained in the front surface cords. Each upper surface attachment point will be adjusted to match the parabolic shape required. Coordinates for these points are in Appendix D. Figure III-22 shows the location of the tie points with respect to the overall antenna. An actual model of this tie system was made under Martin Marietta Independent Research and Development (IR&D) Project D-54D and is shown in Figure III-23. This model will be used to verify manufacturing methods and to identify surface distortions due to pillowing effects. The pillowing effects are discussed later. Under the same IR&D project, two mesh tie-system designs were evaluated. The proposed doublecatenary cord system was selected over the direct mesh tie system used on the 4x4-bay reflector model (Fig. III-24) because of its thermoelastic stability and ease of setting.

İ

Ħ

The direct tie design used upper surface cords similar to the proposed design, but instead of drop cords and rear catenaries, tie-backs were used that attached to the base of the standoffs on the box-truss structure (Fig. III-25). This direct tie system has limitations when incorporating it into large MSDA-size reflective surfaces because the tiebacks that shape the surface at the center of a box-truss section are almost parallel to the surface cords for a typical standoff of 30.48 cm. To pull the surface into shape, tie-backs would have to be highly tensioned or the standoffs would have to be two to three times longer. The highly tensioned tie-backs would make setting the surface very difficult, while the longer standoffs would increase the stowed truss length.

The selected double-catenary design decreased the coupling effect of the tie-back system. It also alleviated the problem of long standoffs of highly tensioned tie-backs because all the drop cords are normal to the reflective surface.

Figure III-21 MSDA Mesh Tie System

and the second s

Figure III-23 Double-Catenary Mesh Model

Mesh Surface Pillowing - Under IR&D Project D-54D, a major activity was initiated to design and understand a parabolic mesh reflector. This activity included fabrication of mesh models and surface distortion measurements. The shape of the reflector surface using the double-catenary cord system is defined by several factors-mesh tension and compliance, upper surface cord pattern (spacing), tension and stiffness, drop-cord stiffness and length, rear cord stiffness and length, and local radius of curvature. Further, geometric saddling effects (pillowing) due to biaxially tensioned mesh and the upper surface cord pattern cause local deformations. Figure III-26 shows a scale test model of a reflector surface. Measurements were made to determine pillow shape versus mesh tension and cord tension. When the panel's shape is duplicated and scaled to a mesh surface on a 15-meter reflector with an 11.94-meter focal length and average drop-cord spacing of 42.8 cm, the rms surface errors (best-fit mesh saddles relative to the ideal parabola) are 0.020 cm, and the worst-case deflections (drop-cord attachment points) are 0.067 cm behind the ideal parabola. Assuming 1/40 of a wavelength can be assigned to rms mesh distortions, the mesh surface design proposed would be appropriate for frequencies of 11 GHz.

<u>RF Reflective Mesh</u> - The radio-frequency (rf) reflective surface is formed by suspending a tricot-knitted, 0.003-cm-dia, gold-plated, molybdenum monofilament wire mesh. This design has the desirable properties of high rf reflectivity, corrosion resistance, low weight, wrinkle resistance, low spring rate, puncture resistance, and radiation resistance. Figure III-27 illustrates the mesh knit. The weave size is varied depending on the frequency of operation to ensure adequate rf reflectivity. Figure III-28 presents an estimate of mesh rf reflectivity for a mesh with 5.5 openings per centimeter. These data were obtained from literature published by Harris ESD. Actual mesh tensions were not specified but typical values of 1.5 to 3.0 N/m were assumed.

Mesh Surface Pillowing - Under IR&D ^project D-54D, a major activity was initiated to design and understand a parabolic mesh reflector. This activity included fabrication of mesh models and surface distortion measurements. The shape of the reflector surface using the double-catenary cord system is defined by several factors--mesh tension and compliance, upper surface cord pattern (spacing), tension and stiffness, drop-cord stiffness and length, rear cord stiffness and length, and local radius of curvature. Further, geometric saddling effects (pillowing) due to biaxially tensioned mesh and the upper surface cord pattern cause local deformations. Figure III-26 shows a scale test model of a reflector surface. Measurements were made to determine pillow shape versus mesh tension and cord tension. When the panel's shape is duplicated and scaled to a mesh surface on a 15-meter reflector with an 11.94-meter focal length and average drop-cord spacing of 42.8 cm, the rms surface errors (best-fit mesh saddles relative to the ideal parabola) are 0.020 cm, and the worst-case deflections (drop-cord attachment points) are 0.067 cm behind the ideal parabola. Assuming 1/40 of a wavelength can be assigned to rms mesh distortions, the mesh surface design proposed would be appropriate for frequencies of 11 GHz.

<u>RF Reflective Mesh</u> - The radio-frequency (rf) reflective surface is formed by suspending a tricot-knitted, 0.003-cm-dia, gold-plated, molybdenum monofilament wire mesh. This design has the desirable properties of high rf reflectivity, corrosion resistance, low weight, wrinkle resistance, low spring rate, puncture resistance, and radiation resistance. Figure III-27 illustrates the mesh knit. The weave size is varied depending on the frequency of operation to ensure adequate rf reflectivity. Figure III-28 presents an estimate of mesh rf reflectivity for a mesh with 5.5 openings per centimeter. These data were obtained from literature published by Harris ESD. Actual mesh tensions were not specified but typical values of 1.5 to 3.0 N/m were assumed.

Figure III-23 Double-Catenary Mesh Model

Figure III-24a 4 x 4-Bay Reflector Model Stowed

Original Page is Of Poor Quality

a,

Figure III-24b 4 x 4-Bay Reflector Model Deployed

Figure III-26 Mesh Pillowing Model

Figure III-27 Tricot Knit Weave

ľ,

Figure III-28 RF Reflectivity Loss of 5.5 Openings per Centimeter Tricot Mesh

F. THERMAL/THERMOELASTIC ANALYSIS

-

A thermal analysis of the MSDA structure was performed to provide temperature data as input to a thermal deformation analysis. Results are presented in this section.

The thermal/therm is lastic model that was used for this analysis included the total box drops structure for the feed mast and reflector, the complete mesh as a shadower of the truss structure, and a 2-meter tall by 3-meter-dia spacecraft as a shadower. This provided a rigorous definition of temperatures and thermal deflections of the truss structure that supports the mesh surface under the varying thermal environments. The mesh model, however, was a simplified single box mesh and tie system. Although this did not provide a total thermal distortion profile over the total reflector, it did provide a conservative thermal distortion rms error. This rms error included the effects of the mesh tie distortion relative to the truss, plus the distortion of the truss relative to its nominal shape.

To perform analyses, math models were built to use our standard thermal analysis computer programs--Thermal Radiation Analysis System (TRASYS) and Martin Marietta Interactive Thermal Analysis System (MITAS). Because MSDA has such a large number of members (more than 450), it was expedient to create utility programs that would use the MSDA NASTRAN data base to create both the TRASYS surface data description inputs and the MITAS thermal node description inputs. This technique used the same node identification number for all three analysis programs, as well as ensuring that all three programs used the same physical and spatial description of the MSDA members. Figures III-15 and III-16 show the identification numbers used for all of the MSDA analyses.

MSDA TRASYS Model - The TRASYS program is used to provide both the radfation interchange factors (f) between surfaces, as well as the environmental heating from the Sun and the Earth. The surface description model for the MSDA included all of the structural members and diagonal tapes, the rf reflective mesh surface, mesh standoffs, and the spacecraft. Figure III-29 is a TRASYS surface drawing showing the feed support structure and the structural extensions to support the mesh. The diagonal tape members have been omitted for clarity. The reflective mesh surface is shown in Figure III-30. The main structure has been omitted for clarity. This figure also shows the detail that was added in three areas of the rf mesh to give some representative temperature data for the mesh shaping cords. Figure III-31 is a typical mesh zone with all of the required support cords. The cords that were included in the thermal detail model have been accentuated. These three sets of front, back, and vertical shaping cords were chosen to give data in the center of the rf mesh (Zone 13) and near both the inboard (Zone 16) and outboard (Zone 20) edges. (Zones are shown in Fig. III-22.) These data could then be used for other zones that are in the same relation to the edge of the rf mesh.

Figure III-29 TRASYS Thermal Computer Model

aga Mana ana ang mana ang man

...

.

MSDA-Solar Eclipse Case

Contraction of the second

1

Figure III-30 TRASIS Drawing of MSDA Reflective Surface

21

The spacecraft used in the thermal analysis was assumed to be 3 m in diameter and 2-meter deep, located 85 cm below the tower and structure. The relation of the spacecraft to the MSDA is shown in Figure III-29. For this analysis, it was assumed that the spacecraft and MSDA were locked together and both spinning about MSDA's spin axis. This assumption simplified the TRASYS analysis in that the view factors between the spacecraft (S/C) and MSDA were then not a function of the spin position.

The TRASYS program has undergone some modifications that allow large space structures (LSS) to be more economically analyzed. Surfaces can be further identified as either being ELEM or TAPE. A surface identified as such undergoes a different treatment in the program. Our experience has led us to conclude that, for LSS, the radiation interchange factors between structural members and diagonal tapes can be ignored with little difference in the resulting temperatures.

This is illustrated in the plot of Figure III-32. Thus, surfaces identified as ELEM and/or TAPE do not have view factors computed to other surfaces that are identified as either ELEM or TAPE. This subset of the surfaces does have view factors to non-ELEM/TAPE surfaces, such as the rf reflective mesh and spacecraft. All of the structural members (surface type ELEM) were represented as being cylindrical in cross section. For those MSDA members that have rectangular cross sections, an effective cylindrical radius was used. This radius was the cross section width plus depth divided by π . The effective radius results in the member's projected area being the average projected area. Because the MSDA is spinning, the area exposed to either the solar or Earth IR flux would be the average projected, and, thus, for MSDA and the current version of TRASYS, this is a good approximation.

56

Figure III-31a Thermal Element Numbering in Mesh Tie System

* *

,

			Mesh Surface		
	•Box •1210	Box 1220	Box 1230	Box 1240	Box 1250
z × Feed Location	Box 1160	Box 1170	Box 1180	Box 1190	Box 1200
	Box 1110	Box 1120	Box 1130	Box 1140	о Вох 1150
	Box 1060	Box 1070	Вож 1080	Box 1090	Box 1100
	• Box • 1010	Box 1020	Box 1030	Box 1040	Box 1050
		Thermal	Model of rf Me	esh <u>Legend</u> : • Star • Tie	ndoffs Intersection
Zá muna T	TT 31h			Poir	nts

Figure III-31b Thermal Element Numbering in rf Surface

🗠 🗠 🖓 🖓 🖓

•

S, in.

The rf reflective mesh was modeled as a series of planes, none of which was coplanar, to approximate the actual contour of the rf surface. Because the mesh itself is composed of woven C.003-cm gold-deposited molybdenum wire, it can absorb and reflect any incident solar or IR heat flux as well as permit a portion of the flux to pass through it to the underlaying surfaces. This transparency also comes into play when the mesh is in between two surfaces for which the view factor is being calculated. Typical data for a tricot woven mesh of 5.5 openings per centimeter are given in Figure III-33, and are the data used in the TRASYS MSDA model.

The resulting TRASYS MSDA model had 548 nodes to represent all of the different areas of MSDA and the spacecraft. Of this, there were 43 surfaces (non-ELEM/TAPE) that represented the rf mesh surface and spacecraft.

The optical properties of the structural members and diagonal tapes were $\alpha = 0.875$ and $\varepsilon = 0.875$, where α is absorbtivity and ε is emittance. This is representative of unpainted graphite-epoxy. The values used on the gold-deposited woven RF mesh were $\alpha = 0.034$, and $\varepsilon = 0.04$, with the transparency ranging from 0.88 at 0-deg incident angle to 0.0 at an 89-deg angle. The spacecraft was assumed to be painted white, for which typical data of $\alpha = 0.3$ and $\varepsilon = 0.85$ were used.

Angle of Incidence of Sun, deg

Figure III-33 Optical Transmissivity of 5.5 Openings per Centimeter Tricot Mesh

60

10.69

After the view factors and resulting radiation interchange factors had been computed for the MSDA model, the same model was used to generate the environmental heating that would be experienced while in Earth orbit. The orbit used was a circular one with an altitude of 700 km. The actual orbital inclination is 99 deg, but for reasons of economy it was assumed to be 90 deg. A polar orbit introduces symmetry with respect to the sunlit portion of the Earth and permits heat flux to be calculated at selected positions of the orbit and reused at symmetrical positions, thus precluding another calculation. The orbit used was cuch that the Sun vector was in the orbit plane as shown in Figure III-34. This orbit gives rise to both the highest (at the sun-solar point) and lowest (in the Earth's shadow) flux levels and will generate the largest temperature change during an orbit. Flux data were computed for ten positions in the orbit measured from the North Pole: the North and South Pole positions, the subsolar and antisolar positions, 45-deg and 135-deg positions, and immediately before and immediately after entering and exiting the Earth's shadow.

The MSDA is nadir pointing and spinning about the pointing axis at 6 rpm. This pointing axis was assumed to be 35 deg from the z axis in the x-z plane. To simulate the spin, the MSDA TRASYS model was run through the same orbit four times. Each of these four cases represented one particular orientation during a revolution about the spin axis and was spaced 90 deg of a spin revolution apart, thus representing 0, 90, 180, 270 and 360 deg of a spin revolution. The resulting flux data were averaged at each orbital position to generate an average flux table as a function of time for each node.

During this calculation or orbital heating flux, another effect of designating surfaces as either ELEM or TAPE comes into play. For these surface types, TRASYS has been modified so the slight angle (1.5 deg) of the Sun's rays will be taken into account. Figure III-35 shows the effect of considering the umbra and penumbra effect with varying member sizes and separation distances. The MSDA structure has S/D ratios ranging from about 40 to 200; and, in that range, the umbra effect is significant.

<u>MSDA MITAS Model</u> - The MITAS program is used to provide either the steady-state or transient temperature solutions of a model. The radiation interchange factors (f) generated by TRASYS are used as radiation couplings between nodes of the model, while the time-versus-orbital heat flux is used to impress heating onto nodes of the model.

Similarly to the utility program used to generate the TRASYS surface decriptions, a utility program was created to use the MSDA NASTRAN data base and create the MITAS node description input data. This program was used to ensure that the nodes had the proper length, cross-sectional area, and member identification. This ensures that the identification label will be consistent across the structural/dynamic/thermoelastic/environmental/thermal analysis spectrum.

All of the nodes of the MITAS model were given a mass, except the mesh shaping cords. These were so small (1.14 x 10^{-2} -cm radius) that their thermal capacitance was ignored. The specific heat for the graphite-epoxy members and tapes was assumed to be a function of temperature. The data for this function ranged from 376.7 J/Kg-K at 93.3°C to 12,138 at 176.7°C in a nearly linear fashion. Data were taken from the Rockwell Internal Report TD-75-46, <u>Determination of</u> <u>Graphite-Epoxy Thermo-Physical Properties</u>, as being representative of the composite of the MSDA members.

The bulk of the node-node heat transfer is via the radiation interchange factors provided by TRASYS. The structural members are pinned at the corners presenting a high-thermal resistance and precluding any significant conduction heat transfer across the pin joint. The only place where there is a solid path for conduction is along the structural vertical members into the structural extensions used to support the rf reflective mesh. These 32 members pass through the corner fittings and are not pinned for deployment. These conductive paths were included for completeness. The longitudinal (along the graphite fiber) conductance representative of the MSDA graphite-epoxy composition is 97,800 J/HR-m-K.

1

The members have been represented in the TRASYS model as encompassing 360 deg in the circumferential direction; thus, the model will not predict any circumferential temperature gradient. The 10 seconds per revolution spin rate will also preclude any appreciable temperature gradient from being established on the perimeter of a member because all sides will be exposed to a comparable environmental flux level.

Five analyses were run with the MITAS MSDA model. The first of these used the four instantaneous environmental heating tables that were averaged to generate average heating data. These four cases do not represent a real case because the MSDA is constantly spinning but represent a boundary case for the environmental and temperature data. To further increase the extremes of the temperature results, a steadystate solution was employed. This removes any damping provided by the thermal capacitance and yields limiting temperatures. A series of steady-state solutions were generated at different positions in the orbit for each of the four different instantaneous spin positions. A representative set of results is presented in Figures III-36a through 36d and for the structural members.

The last analysis that was run on the model is the one that more nearly represents what MSDA will experience in orbit. This case uses the averaged flux data for an orbital position created from the four different instantaneous positions of a spin revolution. In addition, the damping effects imparted by thermal capacitance were included, i.e., transient temperature solution versus steady-state. Figure III-37 gives a representative sample of the total MSDA results.

E 😿 '

ŧ

ŧ

Figure III-36a MSDA Steady-State - Spin Angle 0-deg Temperature Results

*

di da m

Figure III-36b MSDA Steady-State - Spin Angle 90-deg Temperature Results

A DESCRIPTION OF A DESC
ORIGINAL PAGE 19 OF POOR QUALITY

э.

Figure III-36c MSDA Steady-State - Spin Angle 180-deg Temperature Results

Figure III-36d MSDA Steady-State - Spin Angle 270-deg Temperature Results

A difference and a difference .

<u>an an an an</u>

ĵ

۰.

The starting temperatures for the transient results were picked to be close to the expected results after one orbit. This was true in some cases and not in others. For this reason, the simulation was run for two orbits to allow the nodes to attain a state of equilibrium, i.e., the temperature at an orbit position will be the same for all successive orbits. The structure has low-thermal mass and so much exposed surface area that two orbits were sufficient for this equilibrium to be achieved.

The reflective mesh surface is by far the hottest surface (about 187.7°C) in the MSDA. This is caused by the optical properties of the gold-deposited wire. The emittance of this surface is only about 0.04, and, thus, it can not readily reradiate any absorbed energy.

The structural member temperatures were all less than 65.5° C, which is within the 90°C operation temperature limit for this graphite-epoxy composition. The minimum temperature of -97°C is within the minimum operation limit of -125°C. The shadows cast by both the members and the spacecraft cause a wide variation in the member temperatures. As a result, in some cases, peak temperatures are not achieved at the subsolar position of the orbit but on either side of it.

Thermal and Centrifugal Deformations - The temperatures derived from the TRASYS/MITAS programs were applied to a static NASTRAN model of the structure. Because the thermal analysis provided a multitude of temperatures, a statistical inspection was performed to determine approximately what were the worst-case thermal loads. Some of the criteria used were the largest temperature differential between any two members in the face of one of the bays and the largest deviation in the entire structure. From this analysis, three cases were selected to run in The two extremes in average temperatures were analyzed, plus NASTRAN. a third case that had some large temperature differentials within the structure due to shadowing effects. The hottest temperature in the antenna support structure was 72°C at the 90-deg point in the orbit and the coldest temperature was -77.5°C at the 270-deg orbital position (orbit position defined in Figure III-34). The three thermal cases used along with frequency plots of the temperatures in the structure are summarized in Figure III-38.

The three temperature cases were input into NASTRAN and combined with the centrifugal loading case of 6 rpm. The initial temperature for all the materials was set at 22°C, which is the fabrication temperature of the structure. Table III-3 summarizes the deflection at the feed for the three thermal cases combined with centrifugal deflection. Figures III-39 through 42 are computer plots of the different box-truss loading cases with x,y, and z deflections of each node of the structure for both thermal and centrifugal loads. The centrifugal deflection can be corrected in design because it is a steady-state condition. The deflections of the box-truss antenna support structure were then input into the single-box ANSYS stress-stiffened mesh model to determine thermal and spin effects on the rf surface.

hi den a

*

Case	Orbital Position (deg)	Temp, min	°C, Temp, Max	°C, Temp, Mean	°C, Standard °C Deviation
I	90	-36.57	72.17	19.41	29.97
II	225	-86.16	.76	-53.9	17.99
III	270	-98.5	-22.19	-77.5	13.98

Orbit Position: 90 deg from North Pole

Orbit Position: 225 deg from North Pole

Orbit Position: 270 deg from North Pole

ORIGINAL PAGE IS OF POOR QUALITY

Figure III-38 Temperature Range and Mean in Antenna Support Structure for Different Thermal Load Cases

ORIGINAL PAGE IS OF POOR QUALITY

Load Case	Deflection at Feed (Nodes 67 and 70 Avg)					
	X, cm	Y, cm	Z, cm	R _{OT} x Rad	R _{OT} y Rad	R _{OT} z Rad
- Centrifugal	-0.0372	0.00014	0.00136	3.45E-6	2.44E-4	1.27E-7
- Thermal I 90-deg Orbital Position	-0.0504	0.00118	0.0183	-7.32E-10	-6.42E-5	-1.49E-6
- Thermal II 225-deg Orbital Position	-0.0142	0.00323	0.0176	1.01E-7	-9.18E-6	3.85E-6
- Thermal III 270-deg Orbital Position	-0.0162	0.00340	0.0248	-4.81E-7	-1.52E-5	3.00E-6
- Thermal I and Centrifugal	-0.0876	0.00132	0.01966	3.45E-6	1.80E-4	-1.36E-6
- Thermal II and Centrifugal	-0.054	0.00337	0.0190	3.55E-6	2.35E-4	3.98E-6
- Thermal III and Centrifugal	-0.0534	0.00354	0.0262	2.97E-6	2.29E-4	3.13E-6

Table III-3 Deflection of Feed during Thermal and Centrifugal Loading

Thermal Distortions of Mesh Tie System - A problem inherent in desiging any LSS structure is verifying the reflector surface design under varying thermal environments. Modeling of the surface used ANSYS stress stiffening techniques. The model used cable elements to represent the mesh tie-system. ANSYS cable elements have the capability to be initially strained before the stiffness matrix is formed. This strain was determined by assuming a pretension in the mesh of 0.0175 N/cm. The 0.0175-N/cm pretension is the minimum tension required to give a flat reflective surface. Because of the enormous number of cable elements necessary to model the entire reflector surface, a single box-truss section was used. The analysis cost of the mesh tie-system model was reduced even further by halving the number of cable elements. This reduction in elements did not give a dramatic change in thermal distortion of the surface and gave a reasonable initial estimate of thermal distortions in the mesh tie-system. The mesh box section selected (Box 20 as shown in Figure III-22) had the greatest curvature and, therefore, gives a worst-case analysis for thermoelastic distortions of the mesh surface plus truss. Figure III-43 shows the node points for the ANSYS model. The model's initial geometry was adjusted for prestrain deflections. Therefore, when the prestrain was applied to the cable elements, the mesh tie-points deflected to form the parabolic surface required. This prestrained model was then subjected to three worst-case thermal environments. The thermal cases also included box-truss standoff

ORIGINAL PAGE IS OF POOR QUALITY

deflections due to thermoelastic deformations and inertial spinning of the antenna box-truss structure. The first thermal case included local shadowing effects of the spacecraft on the back catenary system. The second thermal case was the maximum temperature case, and the third thermal case was the minimum temperature case. Table III-4 gives the temperature values for each of the thermal cases. Results of the three thermal cases showed the maximum deflection of the upper surface mesh tie-system is 0.0356 cm at Node 41 with an rms deflection of 0.0137 cm. This occurred with the minimum temperature case (Thermal Case III). Table III-5 gives the maximum deflection and rms deflection of all three thermal cases. Appendix E gives the delta-x, delta-y, and delta-z deflections for the single-panel reflector surface for each thermal case. Using 1/40 of a wavelength for rms distortions, the mesh surface design proposed would be appropriate for frequencies of 11 GHz. Table III-6 summarizes the total distortions of the mesh due to pillowing, thermal effects, and manufacturing.

Figure III-39 Structural Deflection Plot Centrifugal Load

م ، محمد م م

÷

2

a: 3

•

1

Figure III-41 Structural Deflection Plot - Thermal Load Case II and Centrifugal Load

74

0

;

1

٩

.

A 100 A

.

Figure III-42 Structural Deflection Plot - Thermal Load Case III and Centrifugal Load

75

2

· •

Figure III-43 ANSYS Mesh Model Numbering System

Table III-4 Temperature Values on Single Panel Mesh Support System

1

Thermal Case	Upper Surface Cord	Drop Cord	Rear Cord		
Local Shadow Effect - 90°C	283°C Unshadowed	31°C for Shadowed Cords and 58° for Unshadowed Cords	52° for Shadowed Cords and 79°C for Unshadowed Cords		
Maximum Temp Case 90°	302 °C	66 °C	89 °C		
Minimum Temp Case 270°	170°C	-41°C	-28°C		
Note: Reference temperature = $22.2^{\circ}C.$					

Table III-5

Maximum and rms Deflection of Single Mesh Panel, Plus Box-Truss, Support System due to Temperature Change and Centrifugal Force

Thermal Case	Maximum Deflection, cm	Rms Deflection, cm
Local Shadow Effect	-0.0210	0.0123
Maximum Temperature	0.0295	0.0102
Minimum Temperature Case	0.0356	0.0137

Table III-6

Summary of Total Distortions of Total Reflector Mesh due to Pillowing and Thermal Effects, and Manufacturing Tolerances

l	Saddle Distortions	=	0.020-cm rms
	Spin + Thermal Distortion	=	0.013-cm rms
	Manufacturing	=	0.064-ch rms
	Worst-Case Total rms	=	0.097-cm rms
diversion of the local	واجاز المرافعات والتشاري والمتقاط فالتشار فالتقار المتكرك ومسترك والمترو والكافي والمراج والمرافع والمرافع والم		ومحافظا المواصدة وأعصفه منهون والمتعادين والمتعادية والمتعاد

G. RF EVALUATION USING APERTURE DISTRIBUTION TECHNIQUES

The present baseline design for the MSDA reflector (Fig. III-44) is offset-fed, with a diameter of 15 m and a focal length of 11.941 m. This focal length was selected based on structural considerations. It is the length given by a full-size three-bay feed support structure. A computer simulation of the antenna rf performance was made to establish the feed design and to determine if this focal length is adequate to meet performance requirements.

- 3-dB beamwidth \geq 0.3 deg;

- Angular spacing between feeds = 0.3 deg;

- Beam efficiency ≥ 0.90.

Beam efficiency is defined as the ratio of main beam power (null to null) to total power in the radiation pattern.

Two antenna parameters must be selected based on tradeoffs between conflicting requirements. These are (1) reflector illumination taper, and (2) reflector focal length. The performance considerations entering into the tradeoff are (1) a tapered illumination is needed to meet the beam efficiency requirement and to hold down the side-lobe levels, but if the taper is excessive, the 0.3-deg beamwidth requirement will not be met; and (2) a long focal length also helps to meet the beam efficiency requirement by reducing the coma distortion for off-axis beams. Also, it reduces main beam broadening of the off-axis beams. But if the focal length is excessive, it causes structural, packaging, and weight problems in the design of the feed support tower. These tradeoffs are best made iteratively by varying the parameters and observing the results.

An initial design was made of the feed system. This was not fully optimized but is adequate to give approximate values for beam efficiency and to show the degradation of the off-axis beams.

The selected feed horn design is shown in Figure III-45. A conventional smooth-walled pyramidal horn was selected for this initial design. Aperture diameter and horn height were selected to give a predicted reflector illumination taper of approximately 16 dB. The feeds are pointed 33 deg away from the parabola axis, which is slightly outboard from the reflector center. This was done to compensate for the space loss at the reflector outer edge, which is equal to 2.0 dB. The feed spacing, Δ , for a 0.3-deg spacing between beams can be found from

 $\Delta = K_{\rm B} \cdot f \cdot \tan (0.3 \, \deg)$

where f is the focal length, 1104.1 cm, and K_B is the beam steering factor. The reflector configuration of Figure III-44 has an effective (two-sided) f/D of 0.398, which corresponds to beam factor $K_B \sim$ 0.85. Using this value gives $\Delta = 7.356$ cm. This is smaller than the feed horn aperture size, so the staggered arrangement shown in Figure III-46 is used for the 12 feed horns. Given the direction of beam sweep across the terrain being mapped, this staggered arrangement gives the desired contiguous sweeps. As shown in Figure III-46, there could be some blockage effects between adjacent horns due to the 33-deg tilt, but this is expected to be negligible. Horn arrays at the other frequencies would be scaled from this design, and all arrays would be located side by side near the reflector focus.

Figure III-45 Feed Horn - 5.1 GHz

s

÷.

1

. .

a,

Figure III-46 Feed Array - 5.1 GHz

- - -

۰**,** ۲

The horn parameters of Figure III-45 were input into our program FPTRNP, which computes horn far-field patterns and formats them into a radiation density grid. The resulting pattern (E- and H-plane cuts) are shown in Figures III-47 and 48. As shown, the selected horn parameters did not give exactly the desired results. A longer horn could be used to reduce phase errors and give deeper nulls in the E-plane. This, together with a slightly larger E-plane horn aperture, would give a much lower edge taper. Also, the 33-deg tilt only gave a 1-dB differential on the inner and outer reflector edges, instead of the desired 2.9 dB. A slightly greater tilt should have been used. Edge taper, including path loss, is -14.3 dB at the inner edge and -16.2 dB at the outer edge. The H-plane pattern is slightly too narrow, giving an edge caper (including path loss) of -28.3 dB in the H-plane. This could also be adjusted in the final design to make it equal to the E-plane taper. However, the average taper was -18.3 dB, or approximately the level desired initially. A final design of the system was not undertaken at this time. A corrugated horn could be used in this design to give equal E- and H-plane beamwidths and no feed side-lobes. This is the recommended approach for a final design.

This horn pattern was then input as the feed into our reflector program VICTORS, together with the reflector geometry of Figure III-44. VICTORS is an aperture integration program that assumes an ideal reflector surface. The effects of surface irregularities are analyzed later in this report on a configuration that is slightly different from that shown in Figure III-44 and that uses our surface current integration program, FIRE.

VICTORS computes reflector secondary patterns and the following losses--illumination taper, blockage, phase error, and spillover. Two patterns were run--one with the feed on the focus, and one with a feed lateral offset of 41.24 cm (the maximum offset of Figure III-46). Results, for both the principal-plane cuts and the contour plots, are shown in Figures III-49 through III-54. Contour data were then integrated to find the beam efficiency. This result does not include the feed spillover loss and does not include the far-out side-lobes (beyond approximately seven beamwidths) that are not computed by VICTORS and are not given accurately by an aperture integration program. Results were 99.69% at boresight and 99.59% at 41.24-cm offset. These numbers drop to 94.9% and 95.1%, respectively, if spillover is included. Effects of the far-out side-lobes are difficult to predict because they depend on factors such as manufacturing errors that are not easy to model. The 3-dB beamwidths were found to be 0.29 x 0.31 deg at boresight and 0.62×0.38 deg at 41.24-cm offset, with the first (x) dimension being along the feed-array axis. Beam spacing with the feed geometry (Fig. III-46) is found to be 0.287 deg.

Degrees from Boresight

Standard Horn Construction

Legend:

Horn Placement

77.

Horn ID (X-dim) = 2.70 WL Horn ID (Y-dim) = 1.65 WL Horn Angle (X-dim) = 12.28 deg Horn Angle (Y-dim) = 7.58 deg Peak Gain = 8.16 db Phi = 90.00 deg X 0.000 Y 0.000 Z 0.000

Figure III-4? Feed Horn Pattern - F-Plane

Figure III-48 Feed Horn Pattern - H-Plane

Degrees from Boresight

Figure III-49 Contour Plot - On-Axis Beam

Computed secondary patterns are shown in Figures III-49 through III-54. The first three figures show a contour plot and the two principal plane patterns for the on-axis beam. The y axis is the symmetric cut and the x axis is the asymmetric cut given by the offset feeding arrangement. The second three figures show the same patterns for the beam steered 1.61-deg off-axis. As shown, the beam broadens a slightly in the y or nonsteered axis and substantially in the x or steered axis. The coma lobe, at -19 dB, less pronounced than might be expected, and is merged into the main beam as a shoulder lobe. The low level is due to the very high-illumination taper given by the selected feed. The merging of the main and coma lobels is probably due to the feed phase distortion shown in Figure III-47.

Degrees from Boresight

Figure III-50

·. ·

Principal Plane, X-Axis, On-Axis Beam

.

Figure III-51 Principal Plane, Y-Axis, On-Axis Beam

A 1997 **A**

1

Ť

ORIGINAL PAGE IS OF POOR QUALITY

Degrees from Boresight

Figure III-52 Contour Plot - Beam Offset -1.61 deg

ORIGINAL PAGE IS OF POOR QUALITY

1

-

★-077**₩**

•

.

.

Degrees from Boresight

Figure III-54 Principal Plane, Y-Axis, Beam Offset -1.61 deg

Several conclusions can be drawn from these results. First, the horn spacing should be increased slightly. The most important result is the large growth of the x-dimension of the main beam for off-axis beams, .ble its on-axis dimension at the outer limit of the horn reachi array. This is a problem that is not easily overcome. Assuming, for example, an on-axis beamwidth of 0.26 deg, it is estimated that if the focal length were increased to double the present length of 11.941 meters, the outer beam would have a beamwidth of 0.31 deg across the x axis. This is what would be required to approximate the 0.3-deg specification for all beams. This seems like an undesirable solution to the problem. It would be preferable to go to an aberration-correcting feed system, possibly combined with some increase in the focal length. It is estimated that a simple aberration-correcting feed (consisting of a controlled coupling of a small amount of energy between adjacent horns) could reduce the beamwidth shown in Figure III-43 to around 0.45-deg with an acceptable growth in the side-lobe level. A more detailed analysis would be required to determine the limits of this type of aberration-correcting feed system. The off-axis aberration problem will be much less severe at the lower operating frequencies.

H. RF EVALUATION USING SURFACE CURRENT INTEGRATION TECHNIQUES

To accommodate some of the recommended changes of the aperture distribution analysis, the focal length of the MSDA antenna was increased from 11.94 to 18 meters for the surface current integration analysis. The operating frequency of 4.3 GHz remained unchanged.

The mesh tie-system design remains unchanged, but the coordinates for the upper surface attachment points have been revised. The average drop-cord spacing has changed from 42.8 cm for the 11.94-meter focallength antenna to 41.3 cm for the 18-meter focal length antenna. The revised reflective mesh coordinates include an rms manufacturing error of 0.60 cm and the 0.067-cm deflection of the attachment point behind the ideal parabolic surface to minimize the rms surface error due to geometric saddling effects (pillowing).

The manufacturing error was randomly added to each reflective mesh coordinate using a Gaussian distribution of N(0, 0.0423).

Patterns determined from the surface current integration analysis used a 2λ (13.95-cm) grid pattern of points on the reflective mesh surface, which included pillowing effects between surface attachment points. The points do not include edge catenary effects. The pillow shape was derived by replacing the cloth on the existing mesh pillow model (Fig. III-26) with actual reflective mesh. The pillow height was measured and then scaled to match the tie-spacing and surface cord tension proposed for the MSDA reflective surface. Knowing the height of the pillow at the center and at the center at each edge, equations were derived that closely approximate the pillow shape. An example of the derived shape is shown in Figure III-55. The pillow height in Figure III-55 has been magnified to show the pillow shape. Actual pillow heights used are in Table III-7. Scaled-pillow heights versus derived-pillow heights at various locations are shown in Figure III-56.

٠á

-

-

Figure III-55 41. 3x41. 3- ... Pillow Shape

ORIGINAL PAGE IS OF POOR QUALITY

Pillow Type	Size, cm	Height at Center, cm	Height at Center of Edge 1, cm	Height at Center of Edge 2, cm	
l (square)	41.3x41.3	0.038	0.041	0.041	
2 (sq uare)	25x25	0.019	0.020	0.020	
3 (rectangular)	41.3x25	0.030	0.033	0.025	
4 (rectangular)	25x41.3	0.030	0.025	0.33	

Table III-7 Pillow Heights Used to Derive Pillow Shape

Figure III-56 Scaled Pillow Heights versus Derived Pillow Heights for 41.3x41.3-cm Pillow Shape

Due to the nature of the periodic and nonperiodic surface irregularities on the reflective surface caused by pillowing and manufacturing errors, surface current integration was selected. Surface current integration analysis was performed using Martin Marietta's Fast Integral RF Evaluation (FIRE) computer program. The program comprises a vector

(-2

integration of the surface current density over the reflective surïace. This method is superior to the aperture distribution technique because no restraint, e.g., such as parabolic smoothness or only-random surface irregularities, is required.

The 2 λ surface sampling used for the MSDA analysis is a rather coarse sample increment. This increment is approximately three times larger than the normal recommended increment. The feed power pattern used was of the form (cos [θ])^{23.274}, offset 29 deg along the y axis. This gives an illumination edge taper of -8.4 dB.

Several far-field patterns were computed. Principal-plane cuts ± 3 deg from boresight were run in the symmetric and asymmetric planes for three reflective surface cases. The cases are (1) an ideal parabolic surface, (2) a surface containing pillowing effects only, and (3) a surface containing pillowing effects plus random manufacturing errors. These patterns are shown in Figures III-57 through 62.

The rms surface error due to pillowing-only and pillowing-plus-randommanufacturing errors is shown in Table III-8. A comparison of the loss in gain due to surface irregularities with that given in the Ruze expression,

Loss (db) = 686 $\left(\frac{\zeta}{\lambda}\right)^{2}$,

is also presented in Table III-8. As shown, agreement is reasonably good for the pillowing-only surface but not so good for the pillowingplus-manufacturing surface. This may be explained by the undersampling of the surface. Also, the Ruze expression is only approximate and it assumes random rather than periodic irregularities.

Grating lobes can be generated if the pillowing is repetitive on a rectangular grid. The pillowing assumed for this model is not perfectly regular, but there is a substantial area that is nearly repetitive over the tie spacing of 41.3 cm. This should give a grating lobe in the region of

 $\sin^{-1}(6.975/41.3) = 9.72^{\theta}$

A portion of the symmetric cut in this region is given in Figure III-63, which shows the patterns associated with the ideal surface and the pillowing-plus-manufacturing surface. The grating lobe is broken up by the surface curvature and the randomness of the surface, but, as shown, there is a region in the vicinity of 9.72 deg where the sidelobe level is significantly higher than that given by the ideal surface.

>

ORIGINAL PAGE 13 OF POOR QUALITY

Figure III-59 Principal Plane, Asymmetrica! Cut, Pillowing-Only Surface

48 -----

y Axis (symmetrical c

Degrees from Boresight

ORIGINAL PAGE IS OF POOR QUALITY

Figure III-63 Grating Lobe of Pillowing and Manufacturing Surface

Table III - 8 Gain L	Loss Due to	Surface .	Irregularities
-----------------------------	-------------	-----------	----------------

Surface	σ, RMS Irregularities, cm	Fire Loss, dB	Ruze Loss, dB			
Pillows-Only	0.046	0.025	0.029			
Pillows-plus- Manufacturing	0.024	0.032	0.076			
<u>Note</u> : Wavelength-λ at 4.3 GHz is 6.977 cm.						

()

6.7
An examination of the three symmetrical cuts (Fig. III-58, -60, -62) does not show any unexpected results. The pattern given due to the ideal surface is symmetric with the first side-lobe at -25.2 dB (Fig. III-58). Side-lobes on the pillowing-only surface cut are slightly higher and slightly more irregular, and these differences are accentuated slightly in the pillowing and manufacturing surface cut (Fig. III-60 and III-62, respectively). The ideal surface, asymmetrical cut, shows little asymmetry (Fig. III-57). The asymmetry is more pronounced in the pillowing-only cut (Fig. III-59). The pillowing-plus-manufacturing cut shows an unusual lobe at 2.35 deg (Fig. III-61). This is apparently an artifact of the large sample increment, and would disappear if a smaller increment was used.

I. RECOMMENDATIONS FOR FURTHER STUDY

Five areas of investigation are recommended for further study:

- Optimization of antenna configuration (focal length and feed design);
- 2) Spacecraft control system design and angular momentum cancellation device;
- 3) Refined manufacturing tolerance analysis;
- 4) Feed integration;

A DESCRIPTION OF THE REAL PROPERTY OF

5) Cable integration and rotating joint design for signal and power between S/C and feed.

Appendix A-Member Properties

ł.

1

5 S

OGR.

Appendix A— Member Properties

~ i**b**

ORIGINAL FAGE 19 OF POOR QUALITY

MEMBER 1

۰.

Materials Used TAPE - PITCH75 FABRIC - T300

$$E_{L} = 24 \text{ MSI}$$

$$E_{T} = 4.2 \text{ MSI}$$

$$G_{LT} = 19 \text{ MSI}$$

$$V_{LT} = 0.193$$

$$CTE_{E} = -0.14 \times 10^{-6} \text{ IN/IN/F}^{\circ}$$

$$E_{ULT} = .001 \text{ IN/IN}$$

$$F_{TU} = F_{CU} = 24 \text{ KSI}$$

EL = LONGITUDINAL MODULUS ET = TRANSVERSE MODULUS GLT = SHEAR MODULUS VLT = POISSON'S RATIO CTEL = COEFFICIENT OF THEMAL EXPANSION IN LONGITUDINAL DIF.

A-1

ORIGINAL PAGE IS OF POOR QUALITY

i

MEMBER 2

Lay-up [45F/OT_/OF/OT_/OF/OT_/45F] T= TAPE F= FABRIC Materi 's Used TAPE - PITCH 75 FABRIC - T300 EL = 27.06 MSI Er = 3.51 MJI

$$G_{LT} = 1.67$$
 MSI
 $V_{LT} = 0.198$
 $CTE_{E} = 0.21 \times 10^{-6}$ IN | IN | F°
 $E_{LLT} = .001$ IN | IN
Fru = Fcu = 27 KSI

A-2

MEMBER 3

Lay-up [45F/072/0F/072/0F/07/0F/072/0F/072/45F]

Materials Used TAPE - PITCH 75 FABRIC - T300

$$E_{L} = 27.25 \times 10^{6} \text{ psi}$$

$$E_{T} = 3.65 \times 10^{6} \text{ psi}$$

$$G_{LT} = 1.53 \times 10^{6} \text{ psi}$$

$$V_{LT} = .154$$

$$CTE_{L} = -.186 \times 10^{-6} \frac{\text{IN}/\text{IN}}{\text{F}^{\circ}}$$

$$E_{ULT} = .001$$

$$F_{TL} = F_{cu} = 27 \text{ KSI}$$

A--3

ORIGINAL PAGE IN OF POOR QUALITY

MEMBER 4

Lay-up $[45F/(OT_2/OF)_2/OT_2/45F]$ Material Used TAPE - PITCH FABRIC - T300 EL = 28.36 × 10⁶ psi E_T = 3.44 × 10⁶ psi GLT = 1.39 × 10⁶ psi VLT = 0.136 CTE_L = -0.20× 10⁶ IN/IN/F⁶ E_{IIII} = .001 Fru = Fau = 28 KSI

A=4

Original page is of poor quality

MSDA MEMBER DEFINITION VERTICAL MEMBER MEMBER 10 t=.035" Area = .2051 in² $I_{yy}^{2}I_{zz}^{2}$.0734 in⁴ J = .1100 in⁴

MEMBER 10

Í

Lay-up $\left[\frac{45F}{0T_2}/\frac{90F}{0T_2}/\frac{45F}\right]$ Material Used TAPE - PITCH 75 FABRIC - T300 EL = 25.99 MSI E_T = 3.58 MSI G_{LT} = 1.89 MSI V_{LT} = 0.243 CTE_L² - 0.21×10⁶ IN/IN/F^o \sum_{uut} = .001 IN/IN F_{tu} = F_{cu} = 26 KSI

ORIGINAL PAGE IS OF POOR QUALITY

MSDA MEMBER DEFINITION

MEMBER 11

Lay-up [45F/ (0T2/OF)6/0T2/45F]

- Material Used TAPE - PITCH FABRIC - T300
- $E_{L} = 28.36 \times 10^{6} \text{ psi}$ $E_{T} = 3.44 \times 10^{6} \text{ psi}$ $G_{LT} = 1.39 \times 10^{6} \text{ psi}$ $V_{LT} = .136$ $CTE_{L} = 0.20 \times 10^{-6} \text{ in/in/F}$ $E_{ULT} = .001$ $F_{TU} = F_{CU} = 28 \text{ KSI}$

ORIGINAL PAGE IS OF POOR QUALITY

MEMBER 20

Area = ,6569 IN (200 mALIZED TD) I_{yy} .5352 IN I_{zz} .6074 IN 1J = .00062 IN 4

MEMBER 20

۳.

Lay-up Flange [45=/072/90=/072/45=/072/90=/072/45=] Web [(45=/072/90=/072/45=)4]

Material Used TAPE - PITCH 75 FABRIC - T300

Flange EL = 27.4 MSI ET = 3.34 HSI GLT = 1.7 MSI VLT = .225 CTEL = -0.23 × 10⁻⁶ IN/IN/F° EULT = .001 FTL = FLL = 27 KSI Web E_1 = 25.99 MSI E_T = 3.58 MSI GLT = 1.9 MSI VLT = .243 CTE_2 = -0.21×10⁻⁶ IN/IN/F° EULT = .001 Fru = Fcu = 26 KSI

ORIGINAL PAGE 15 OF POOR QUALITY

Area = 2.097 IN

$$I_{yy} = 2.694 IN$$
 $I_{zz} = 1.172 IN$
 $J = .0617 IN$

MEMBER 21

Lay-up $\left[\frac{45F}{0T_2}/0F}{0T_2}/0F}{0T_2}/45F\right]_6$ Materials Used TAPE - PITCH 75 FABRIC - T300 EL = 27.06 MSI ET = 3.51 MSI Gut = 1.67 MSI VLT = .198 CTE_= 0.21 × 10⁻⁶ IN/IN/F°

 $\xi_{u,r} = .001$

A-8

ORIGINAL PAGE IS OF POOR QUALITY MSDA MEMBER DEFINITION INTERIOR TELESCOPING DIAGONAL MEMBER MEMBER 30 . 3**Z**". Area of Tube = .0787 in" t= .039" Area of Tape = .0344 IN2 TAPE TUBE Arene== = . 2629 IN2 # E=== = 14.137 × 10° psi * P# .0561 LB/IN 3 * MEMBER 30 64.5% TUBE LENGTH 35.5% TAPE LENGTH CTE = 0. 186×10-6 IN/IN/F ** TUBE T= TAPE Lay-up [90F/07,/90F/07,/90F] * Area eff, Eeff, Per - nd Material Used TAPE - T300 CTE ore complication of Tube & Tape in a FABRIC - T300 64.5/35.5 ratio by EL = 14.72 MSI E. - 4.45 MSI length GLT= 1.24MSI ULT=0,087 CTE= 0.367 × 10" IN /IN /F" Eult = . 0045 Fru = Feu = 66 KSI

TAPE

÷4,

Lay-up Eot/90F/OT/90F/CT2/90F/OT/90F/CT]

Material Used TAPE - PITCH 75 FABRIC - T300

$$E_{L} = 27.54 \text{ MSI}$$

$$E_{T} = 3.97 \text{ MSI}$$

$$G_{LT} = 1.26 \text{ MSI}$$

$$V_{LT} = 0.0734$$

$$CTE_{L} = -0.15 \times 10^{-6} \text{ IN/IN/F}^{\circ}$$

$$\tilde{Z}_{ULT} = .001$$

$$F_{TU} = F_{CU} = 28 \text{ KSI}$$

and the subsequences

والمردية المتعادية المتعادية المتعادية المتعادية

ORIGINAL PAGE IN

ORIGINAL PACE IN OF POOR QUALITY

A-11

MISDA MEMBER DEFINITION	ORIGINAL PAGE IN OF POOR QUALITY
NON-DEPLOYED INTERIOR DIAGONAL	MEMBER 33
t=.042"	Area= .05796 12

MEMBER 33
Lay-up
$$Eot/90F/0t/90F/0t_{90F}/0t_{90F}/0t$$

Material Used
TAPE - PITCH 75
FABRIC -T300
EL = 27.54 MSI
ET = 3.97 NSI
GLT = 1.26 MSI
VLT = 0 0734
CTE_ = -0.15 \times 10⁻⁶ IN/IN/F°
Eur = 5001
FTL = FEL = 28 KSI

ì

ORIGINAL PAGE IST OF POOR QUALITY

MSDA MEMBER DEFINITION

NON-DEPLOYED INTERIOR DIAGONAL	MEMBER 34
±	Aren= . 11 59 1N2

MEMBER 34 Lay-up $E(GT/90F/0T/90F/0T)_4$] Material Used TAPE - PITCH 75 FABRIC - T300 EL = 27.54 MSI Er = 3.97 MSI GLT = 1.26 MSI ULT = 0.0734 CTE_ = -0.15 × 10⁻⁶ IN/IN/F° EULT = 001 FTL = FCL = 28 KSI

)

ORIGINAL PAGE IS OF POOR QUALITY

L. L.

MEMBER 35

- 3**6**-

TAPE - PITCH 75

EL = 29.37 MSI
E_T = 3.43 MSI
GLT = 1.165 MSI

$$V_{LT}$$
 = .0825
CTE_L= -0.195×10⁻⁶ in/in/F^o
E_{NLT} = .001
FTL = FCL = 29 KSI

ORIGINAL PAUL 19 OF POOR QUALITY

MSDA MEMBER DEFINITION

NON-DEPLOYED INTERIOR DIAGONAL

MEMBER 36

ŝ

Eg. e

14

a. 🖌

A100 = . 5649 102

MEMBER 36 $L_{avy-up} [(45F/OT_2/90F/OT_2/45F)_3]$

$$E_{L} = 25.99 \text{ MSI}$$

 $E_{T} = 3.59 \text{ MSI}$
 $G_{LT} = 1.89 \text{ MSI}$
 $V_{LT} = 0.243$
 $CTE_{L} = -0.21 \times 10^{-6} \text{ IN/IN/F}^{\circ}$
 $E_{ULT} = .001$
 $F_{TU} = F_{CU} = 26 \text{ KSI}$

A-15

ORIGINAL PAGE 15 OF POOR QUALITY

MSCA MEMBER DEFINITION

NON-DEPLOYED INTERIOR DIAGONAL MEMBER 27 2.22'' + 2.22'' + 2.22''

MEMBER 37 Lay-up [45F/(OTz/90F/OTz/90F)4/45F]

Material Used TAPE - PITCH 75 FABRIC - T300

 $E_{L} = 27.8 \text{ MSI}$ $E_{T} = 3.68 \text{ MSI}$ $G_{T} = 1.40 \text{ MSI}$ $V_{LT} = .121$ $CTE_{E} = 0.182 \times 10^{-6} \text{ in /in / F}^{\circ}$ $E_{UT} = .001$ $F_{TU} = F_{CU} = 28 \text{ KCI}$

ORIGINAL FACE S

MECA MEMBER DEFINITION NON-DEPLOYED INTERIOR DIAGONAL MEMBER 38

18.

MEMBER 33 Lay-up [45F/(OT, /90F/OT, /90F), /45F]

> Material Used TAPE - PITCH 75 FABRIC - T300 EL = 27.8 MSI $E_T = 3.68$ MSI $G_{LT} = 1.40$ MSI $V_{LT} = .121$ $CTE_{L} = -0.182 \times 10^{-6} IN/IN/F^{\circ}$ $F_{LLT} = .001$ $F_{TL} = F_{CL} = 28$ KSI

> > A-17

à.

MSDA MEMBER DEFINITION

NON - DEPLOYED INTERIOR DIAGONAL MEMBER 39

Material Used TAPE - PITCH 75 FABRIC - T300 $E_{L} = 27.8 \text{ MCI}$ $E_{T} = 3.68 \text{ MSI}$ $G_{LT} = 1.40 \text{ MSI}$ $V_{LT} = .121$ $CTE_{L} = -0.182 \times 10^{-6} \text{ IN/IN/F}^{\circ}$ $E_{ULT} = .CO1$ $F_{TU} = F_{CU} = 28 \text{ KSI}$

MSDA MEMBER DEFINITION

EXTERIOR DIAGONAL

ORIGINAL PAGE IS OF POOR QUALITY

MEMBER 40

-= .021 - .67-

Area = .0141 IN2

MEMBER 40 Lay-up [07/90F/07/90F/07]

Material Used TAPE - PITCH75 FABRAIC - T300 EL = 27.54 MSI ET = 3.97 MSI GLT = 1.26 MSI VLT = 0.0734 CTEL = -0.15×10⁶ IN/IN/F° EULT = .001 FTL = FCL = 28KSI

ORIGINAL PAGE 18 OF POOR QUALITY

MEDA MEMBER DEFINITION <u>EXTERIOR DIAGONAL</u> <u>+=.042</u> <u>+=.042</u>

MEMBER 41

Area = .02814 in2

MEMBER 41 Lay-up [CT/90F/OT/90F/OT_90F/OT_90F/OT]

 $E_{L} = 27.54 \text{ MSI}$ $E_{T} = 3.97 \text{ MSI}$ $G_{LT} = 1.26 \text{ MSI}$ $V_{LT} = 0.0734$ $CTE_{L} = -0.15 \times 10^{-6} \text{ IN/IN/F}^{\circ}$ $E_{ULT} = .001$ $F_{TL} = F_{CL} = 28 \text{ KSI}$

ORIGINAL PAGE 13 OF POOR QUALITY MSDA MEMBER DEFINITION HALF-DEPLOYED EXTERIOR DIAGONAL MEMBER 42 Area of Tube = . 328 in ,33 4 +=.049 _____ 3.11 ____ Aef= . 32151N * Eess = 21.1 ×10 psi * 50% TUBE LENGTH 50% TAPE LENGTH Perf . 05769 LB/IN3 * MEMBER 42 TUBE Lay-up [907/07/07*/907/07*/907/07*/07/907] Materials Used T300 * Aeff, Eeff and Peff are combination of TAPE + - PITCH 75 Tube and Tape in a EL = 16.99 MSI 50.0/50.0 ratio by ET = 8.76 MSI GLT = .65 MSI length Yur= 0.039 CTEF 0.37 × 10-6 IN/IN/F. Eult = ,001 Ftu=Fcu= 17KSI Eay-up [(07/90F/0+/90F/0+)] TAPE Materials Used TAPE - PITCH 75 FABRIC - T300 EL = 27,54 MSI Er = 3.97 MSI GLT = 1.26 MSI $V_{LT} = 0.0734$ CTE_= -0.15 × 10-6 IN/IN/E" Eu1+ = ,001 Fru= Fcu= 28KSI. A-21

ORIGINAL PAGE 18 OF POOR QUALITY

ORIGINAL PAGE 12 OF POOR QUALITY

MCDA MEMBER DEFINITION

SURFACE MEMBER

۶,

Đ

MEMBER 50

Aren= 1.58 1N2

MEMBER 50 Lay-up [45F/(OT,/90F/OT,/90F),/45F]

Material Used TAPE - PITCH 75 FABRIC - T300

 $E_{L} = 27.8 \text{ MSI}$ $E_{T} = 3.68 \text{ MSI}$ $G_{LT} = 1.40 \text{ MSI}$ $V_{LT} = .121$ $CTE_{L} = -0.182 \times 10^{-6} \text{ m/m/f}^{\circ}$ $E_{u,T} = .001$ $F_{TU} = F_{CU} = 28 \text{ KSI}$

A-23

Appendix B--NASTRAN Dynamic Model

ł

-

OGR,

Appendix B— NASTRAN Dynamic Model

.

NASTRAN EXECUTIVE CONTROL DECK ECHO

ID, MSDA5X5,DYNAMIC CHKPNT YES SOL 3 TIME 13 DIAG 8,9,13,14,19,21,22 CEND

ECHO OF FIRST CARD IN CHECKPOINT DICTIONARY TO BE PUNCHED OUT FOR THIS PROBLEM

OF POOR QUALITY

MSDA DYNAMIC MODEL 5X5 2M. NEW SPIN AXIS W/BALLAST LITESTRONGBACK 2M. NEW SPIN AXIS W/BALLAST

MODEL 29

. . .

CARD

С	۸	S	F	C	0	N	1	R	0	1	DECK	E	С	H.	0	
---	---	---	---	---	---	---	---	---	---	---	------	---	---	----	---	--

•

COUNT	
1	TITLE= MSDA DYNAMIC MODEL 5X5 2M. NEW SPIN AXIS W/BALLAST
2	SUBTITLE=LITESTRONGBACK 2M. NEW SPIN AXIS W/BALLAST
3	LABEL = MODEL 29
4	ESE=ALL
5	METHOD=6
6	SPC = 1
7	SEX 1=43.44,49.50
8	SPCFORCE = 1
9	OUTPUT (PLOT)
10	CSCALE 1.8
11	PLOTTER NAST
12	SET I=BAR
13	PAPER SIZE 26. X 20.
14	VIEW, 34, 27, 40. 17, 30.
15	FIND SCALE, ORIGIN 1, SET 1
16	PLOT SET 1
17	PLOT MODAL DEFORMATION O, SET 1, ORIGIN 1, SHAPE
18	VIEW,0.0,90.0,0.0
19	FIND SCALE, ORIGIN 1, SEI 1
20	PLOT SET 1
21	PLOT MODAL DEFURMATION O, SET 1, URIGIN 1, SHAPE
22	VIEW, 90., 0.0, 0.0
23	FIND SCALE, ORIGIN 1, SET 1
24	PLOT SET 1
25	PLOT MODAL DEFORMATION U. SET F. ORIGIN T. SHAPE
26	
27	FIND SCALE, URIGIN 1, SET 1
28	PLOT SET 1
29	PLUI MUDAL DEFURMATION U, SET 1, ORIGIN 1, SHAPE
30	BEGIN BULK

INPUT BULK DATA CARD COUNT = 699

MSDA DYNAMIC MODEL 5X5 2M. NEW SPIN AXIS W/BALLAST LITESTRONGBACK 2M. NEW SPIN AXIS W/BALLAST

MODEL 29

SORTED BULK DATA ECHO

-

CAPD										
COUNT	1	2		3	4	5	6	7	8	9 10 .
1-	CBAR	101	1	- 1	2	1.	0.	1.		+ 10 1
2-	+ 101	6	6							
3-	CBAR	102	1	2	3	1.	Ο.	1.		+ 102
4 -	+ 102	6	6							
5-	CBAR	103	1	3	4	1.	0.	1.		+ 103
6 -	+ 103	6	6							
7 ·	CBAR	104	1	29	30	1.	Ο.	1.		+ 104
8 -	+ 104	6	6							
9-	CBAR	105	1	30	31	1.	0 .	1.		+ 105
10-	+ 105	6	6							
11-	CBAR	106	1	31	32	1.	0.	1.		+ 106
12-	+ 106	6	6				_	-		
13-	CBAR	107	1	5	6	1.	Ο.	۱.		+107
14-	+ 107	6	6		_		-	_		
15-	CBAR	108	1	6	7	1.	Ο.	1.		+ 108
16-	+ 108	6	6				•	•		4 100
17-	CBAR	109	1	7	8	1.	0.	1.		109
18-	+ 109	6	6	-			•			
19-	CBAR	110	1	8	9	1.	0.	•.		*110
20-	+110	0	6	~			•			
21-	CBAR	111	1	9	10	۰.	υ.	۰.		****
22-	+111	6	6		• 2	•	0			+112
23-	CBAR	112	3		12	• -	υ.	•.		• • • • •
24-	7112		2	13	13		0	1		+113
25~	LBAR	- 113 - E		12	13	•.	0.	•.		
26-	1133	0	0	13	14		0	1		+114
21-	LBAR	- 114 - C	2 6	13		• -	0.	• ·		
20-	CRAD	115		14	15	1	0	1		+115
29-	+115	6	6			• •	0.	••		
31-	CRAR	116	1	15	16	1.	0.	1.		+116
37-	+116	6	6			••				
33-	CRAR	117	3	17	18	1.	0.	1		+117
34	+ 1 17	6	6	••						
35	CBAR	118	3	18	19	1.	0	1		+118
36 -	+118	6	6							
37 -	CBAR	119	2	19	20	1.	Ο.	1.		+119
38 -	+119	6	6							
39 -	CBAR	120	1	20) 21	1.	0.	1.		+ 120
40 -	+120	6	6							
41-	CBAR	121	1	21	22	1.	0.	1.		+ 12 1
42 -	+ 12 1	6	6							
43-	CBAR	122	1	23	24	1.	0.	1.		• 122
44 -	+ 122	6	6							
45-	CPAR	123	1	24	25	1.	0.	1.		+123
46 -	+123	6	6							
47	CBAR	124	1	25	i 26	1.	0	1		+ 124
48-	+ 124	6	6							
49-	CBAR	125	1	26	5 27	1.	0	1.		+125
50~	+ 125	6	6							

ORIGINAL PAGE IS

MODEL 29

SORTED BULK DATA ÉCHO

CARD										
COUNT	. 1	2		3 4		5	6 .	7 8	9	10
51-	CBAR	126	1	27	28	1.	0.	1.		+126
52-	+126	6	6							
53-	CBAR	127	1	5	11	Ο.	1.	. 1.		+ 127
54 -	+ 127	5	6							
55-	CBAR	128	з	11	17	0.	1	i .		
56-	CBAR	129	i	17	23	0.	1	1.		+ 129
57-	+ 129	6	6							
58-	CBAR	130	1	10	16	0	1.	1.		+130
59-	+ 130	6	6			-				
60-	CRAP	131	ĩ	16	22	0	1			
61	COAR	122	:	10	26	0.	1	1		+ 132
61	122	132 E	Ē	~~	20	0.	• .	• ·		
62-	T 132				6	0		•		+ 133
63-	LDAR	133	ċ	•	U	υ.	•.	•.		. 133
64	+133	0		c		0				4134
65-	CBAR	134	1	6	12	Ο.	۹.	۲.		134
66 -	+134	6	6							
67-	CBAR	135	3	12	18	0.	•	•		
68-	CBAR	136	1	18	24	0	1	1		+136
69-	+136	6	6			_				
70-	CBAR	137	1	24	29	Ο.	ŧ.	1.		+137
71-	+137	6	6							
72 -	CBAR	138	1	2	7	Ο.	1.	1.		+138
73-	+138	6	6							
74 -	CBAR	139	1	7	13	O .	1	1.		+139
75-	+139	6	6							
76 -	CBAR	140	1	13	19	Ο.	1.	1		
77 -	CBAR	141	1	19	25	Ο.	1.	1.		+ 14 1
78-	+141	6	6							
79-	CBAR	142	1	25	30	0.	1.	1.		+142
80 -	+142	6	6							
81-	CBAR	143	1	3	8	0.	1 .	1		+143
82-	+143	6	6							
83-	CRAP	144	1	8	14	0	1	1		+ 144
BA -	4 1 4 4	6	6	U	• •	0.	•••			
95.	CRAD	145	ĭ	14	20	0	,	1		
96.	CRAD	145		20	26	ŏ		1		+146
07-	LDAR	- 140 	6	20	20	υ.	•	••		
07	CRAD	147		26	21	0		•		+147
60 ·	CDAR	147	Ċ	20	31	0.	•	•		
89-	1 14 /	0	0		•	0		•		
9 0 -	CBAR	148	1	4	Э	0	•.	•		140
91	+148	6	6		. –	-	_	_		
92 -	CBAR	149	1	9	15	0.	1	1.		+ 149
93-	+ 149	6	6							
94 -	CBAR	150	1	15	21	0.	1.	1		
95 -	CBAR	151	1	21	27	0.	1	1.		+ 15 1
96 -	+ 15 1	6	6							
97	CBAR	152	1	27	32	0.	1.	1.		+ 152
98 -	+ 152	6	6							
99 -	CBAR	153	1	33	34	1.	0	1.		+ 153
100	+ 153	6	6							

.

R - - -

•

B-4

2

•

MSDA DYNAMIC MODEL 5X5 2M. NEW SPIN AXIS W/BALLAST LITESIRONGBACK 2M. NEW SPIN AXIS W/BALLAST

MODEL 29

SORTED BULK DATA ECHO

CARD										
COUNT	. 1	2)	4	5	6	7	8	9 10
101-	CBAR	154	1	34	35	1.	Ο.	1.		+ 154
102	+ 154	6	6							
103 -	CBAR	155	1	35	36	1.	Ο.	1.		+ 155
104 -	+ 155	6	6							
105-	CBAR	156	1	61	62	1.	Ο.	1.		+ 156
106-	+ 156	6	6							
107	CBAR	157	1	62	63	1.	0.	1.		+ 157
108 -	+ 157	6	6							
109-	CBAR	158	1	63	64	1.	0.	1.		+ 158
110-	+ 158	6	6							
111-	CBAR	159	2	37	38	1.	Ο.	1.		+ 159
112-	+159	6	6							
113-	CBAR	160	2	38	39	1.	Ο.	1		+ 160
114-	+ 160	6	6							
115 -	CBAR	161	1	39	40	t .	0.	1.		+ 16 1
116-	+ 16 1	6	6							
117-	CBAR	162	1	40	41	1.	0.	1.		+ 162
118-	+ 162	6	6							
119-	CBAR	163	1	41	42	1.	Ο.	1.		+ 163
120-	+ 163	6	6							
121-	CBAR	164	3	43	44	1.	Ο.	1.		+ 164
122-	+ 164	6	6							
123-	CBAR	165	4	44	45	1.	0	1.		+ 165
124 -	+ 165	6	6							
125-	CBAR	166	2	45	46	1.	0.	1.		+ 166
126-	+ 166	6	6							
127 -	CBAR	167	1	46	47	1.	0.	1.		+ 167
128-	+167	6	6							
129-	CBAR	168	1	47	48	1.	0.	1.		+ 168
130-	+ 168	6	6							
131 -	CBAR	169	3	49	50	1.	O .	1.		+ 169
132 -	+ 169	6	6							
133	CBAR	170	4	50	51	1	Ο.	1		+ 170
134 -	+170	6	6							
135-	CBAR	171	2	51	52	1.	Ο.	1		+ 17 1
136 -	+171	6	6							_
137 -	CBAR	172	1	52	53	1.	0	1.		+ 172
138 -	+172	6	6							_
139	CBAR	173	1	53	54	1	0.	1.		+173
140-	+173	6	6							
141-	CBAR	174	2	55	56	1.	0	1.		+ 174
142-	+174	6	6							
143-	CBAR	175	2	56	57	1.	0.	1.		+175
144 -	+ 175	6	6				-			
145 -	CBAR	176	1	57	58	1.	0	1		+176
146-	+176	6	6	_						
147	CBAR	177	1	58	59	1.	0.	1.		+177
148 -	+ 177	6	6			-	-			
149 -	CBAR	178	1	59	60	1.	0	1.		+ 178
150 -	+178	6	6							

.

and the second second second second second

MSDA DYNAMIC MODEL 5X5 2M. NEW SPIN AXIS W/BALLAST LITESIRONGBACK 2M. NEW SPIN AXIS W/BALLAST

.

MODEL 29

and the second
SORTED BULK DATA ECHO

4

CARD					-		.	•	0	•0
COUNT	. 1			3 . 4	. 5		b /	8		10
151-	CBAR	179	3	37	43	Ο.	1.	1.		+1/9
152 -	+ 179	6	6					_		
153	CBAR	180	3	43	49	0	1.	1.		
154 -	CBAR	181	3	49	55	Ο.	۱.	1.		+ 18 1
155-	+ 18 1	6	6							
156 -	CBAR	182	1	42	48	0.	1.	1.		+ 182
157	+ 182	6	6							
158 -	CBAR	183	1	48	54	0.	1.	1.		
159-	CBAR	184	1	54	60	0.	1.	1.		+ 184
160-	+ 184	6	6							
161-	CBAR	185	1	33	38	Ο.	1.	, I .		+ 185
162 -	+ 185	6	6							
163-	CBAR	186	2	38	44	0.	1.	1.		+ 186
164 -	+ 186	6	6							
165 -	CBAR	187	3	44	50	0.	1	1.		
166 -	CBAR	188	2	50	56	0	1.	1.		+ 188
167 -	+ 188	6	6							
168-	CBAR	189	1	56	61	0	1	1.		+ 189
169-	+ 189	6	6							
170-	CBAR	190	1	34	39	0	1.	1.		+ 190
171-	+ 190	6	6							
172-	CBAR	191	1	39	45	Ο.	1	1.		- 191
173-	+ 10 1	6	6							
174 -	CBAR	192	2	45	51	0	1.	t .		
175-	CBAR	193	1	51	57	Ο.	1.	1.		+ 193
176 -	+ 193	6	6							
177 -	CBAR	194	1	57	62	0.	1.	1.		+ 194
178 -	+ 194	6	6							
179-	CBAR	195	1	35	40	0.	1.	1.		+ 195
180-	+ 195	6	6							
181-	CBAR	196	1	40	46	Ο.	1.	1.		+ 196
182 -	+ 196	6	6							
183-	CBAR	197	1	46	52	0	1	1		
184 -	CBAR	198	1	52	58	Ο.	1.	1.		+ 198
185 -	+ 198	6	6							
186~	CBAR	199	1	58	63	Ο.	1	1.		+ 199
187 -	+ 199	6	6							
188-	CBAR	200	1	36	41	0	1.	۱.		+200
189-	+200	6	6							
190 -	CBAR	201	1	41	47	0	1.	1.		+201
191-	+201	6	6							
192	CBAR	202	1	47	53	Ο.	1	1.		
193-	CBAR	203	1	53	59	Ο.	1	1.		+203
194	+203	6	6							
195 -	CBAR	204	1	59	64	0.	1	1.		+204
196 -	+204	6	6							
197 -	CBAR	205	2	65	68	0	1	1.		
198 -	CBAR	206	1	66	69	0	1.	t .		
199-	CBAR	207	1	67	70	0	1	1.		
200	CBAR	208	2	77	78	0.	1.	1.		

•

ORIGINAL PAGE IS

. 1

1

MSDA DYNAMIC MODEL 5X5 2M. NEW SPIN AXIS W/BALLAST LITESTRONGBACK 2M. NEW SPIN AXIS W/BALLAST

MODEL 29

SORTED BULK DATA ECHO

CARD									
COUNT	. 1	2	:	3	4	5	6	7 8	9 10 .
201-	CBAR	209	2	71	74	Ο.	1.	1.	
202 -	CBAR	210	1	72	75	0.	1.	1.	
203-	CBAR	211	1	73	76	0.	1.	1.	
204 -	CBAR	212	50	11	65	-1.	Ο.	1.	+2 +2
205 -	+212	6	6						
206 -	CBAR	210	50	17	68	-1.	Ο.	- 1.	+213
207 -	+213	6	6						
20 8 -	CBAR	214	50	65	66	-1.	0.		+214
269 -	+214	6	6						
210-	CBAR	215	50	68	69	-1.	0.	1.	+215
211-	+215	6	6						
212-	CBAR	216	3	66	67	-1.	0.	1.	+216
213-	+216	6	6						
214-	CBAR	217	3	69	70	-1.	0.	1.	+217
215-	+217	6	6						
216 -	CBAR	218	2	77	71	-1.	Ο.	1.	+218
217-	+218	6	6						
218-	CBAR	219	2	78	74	-1.	Ο.	1.	+219
219-	+219	6	6						
220-	CBAR	220	1	71	72	-1.	0.	1.	+220
221-	+220	6	6						
222-	CBAR	221	t	74	75	-1.	0.	1.	+221
223-	+221	6	5						
224 -	CBAR	222	1	72	73	-1.	0.	1.	+ 2 2 2
225-	+222	6	6						
226	CBAR	223	1	75	76	-1.	0.	1.	+223
227 -	+223	6	6						
228-	CBAR	251	11	77	43	-1.	0.	۲.	+251
229-	+251	6	6						
230-	JAR	252	11	78	49	-1.	G .	1.	+252
231-	+252	6	6						
232 -	CBAR	301	20	11	77	-1.	Ο.	1.	+301
233-	+301	6							
234 -	CBAR	302	20	17	78	-1.	Ο.	1.	+ 302
235-	+ 302	6							
236 -	CBAR	303	21	11	43	1.	0.	· 1.	
237 -	CBAR	304	21	17	49	1.	Ο.	- 1.	
238 -	CBAR	307	10	5	37	1.	0.	- 1.	
239-	CBAR	308	10	23	55	1.	· 0.	-1.	
240-	CBAR	403	10	1	33	-1.	0.	- 1.	
241-	CBAR	404	10	6	38	- 1.	0.	- 1.	
242-	CBAR	405	11	12	44	-1.	0.	-1.	
243-	CBAR	406	11	18	50	-1.	0.	- 1.	
244 -	CBAR	407	10	24	56	-1.	0.	-1.	
245-	CBAR	408	10	29	61	- 1	0	- 1.	
246 -	CBAR	409	10	2	34	- 1.	0.	-1.	
247 -	CBAR	410	10	7	39	-1.	0.	-1.	
248	CBAR	411	10	13	45	-1.	0	-1.	
249	CBAR	412	10	19	51	-1.	0.	-1.	
250	CBAR	413	10	25	57	-1.	0	- 1.	

ORIGINAL PAGE IS

ľ

÷

and the second second

MODEL 29

SORTED BULK DATA ECHO

-

. .

CARO			-						
COUNT	. 1	2	3	4	. 5	. 6		78	9
251-	CBAR	414	10	30	62	-1.	0	-1.	
252 -	CBAR	415	10	3	35	- 1	0.	-1.	
253 -	CBAR	416	10	8	40	- 1	0.	-1.	
254	CBAR	417	10	t4	46	- 1	õ	-1.	
255-	CBAR	418	10	20	52	~ 1	õ	- 1	
256 -	CBAR	419	tõ	26	58	- 1	õ	-1.	
257 -	CBAR	420	10	31	63	- 1	ŏ	-1.	
258-	CBAR	421	10	4	36	- 1	õ	- 1	
259-	CBAR	422	10	9	41	- 1	Ō.	- 1	
260	CBAR	423	10	15	47	- 1	Ō.	1.	
261-	CBAR	424	10	21	53	- 1	õ	- 1	
262 -	CRAR	425	10	27	59	- 1	õ	- 1	
263 -	CBAR	426	10	32	64	- 1	ŏ	-1.	
264 -	CBAR	427	10	10	42	- 1	Ő.	- 1	
265-	CRAR	428	10	16	48	- 1	õ	- 1	
266-	CRAR	429	10	22	54	- 1	ň.	- 1	
260-	CRAD	420	10	26	60	- 1	0.	- 1	
268-	CRAP	431	11	65	71	- 1	0.	- 1	
260-	CRAR	432	11	68	74	- 1	0	- 1	
270	CRAR	402	10	66	72	- 1	Õ.	- 1	
270	CRAD	434	10	69	75	- 1	0	- 1	
272.	CRAD	435	10	67	73	- 1	ň	- 1	
273	CBAR	436	10	70	76	- 1	Ő.	1	
274-	CONM2	2001	1	õ	0038	70	0.	• •	
275-	CONM2	2002	2	ŏ	00483	35			
276-	CONM2	2003	3	ŏ	0048	35			
277-	CONM2	2004	4	ŏ	00387	70			
278-	CONM2	2005	5	ŏ	00238	35			
279-	CONM2	2006	6	õ	00726	50			
280-	CONM2	2007	7	õ	00689	95			
281-	CONM2	2008	8	ŏ	00689	95			
282	CONM2	2009	9	õ	00726	50			
263-	CONM2	2010	10	ō	0038	70			
284-	CONM2	2011	11	õ	00543	35			
285-	CONM2	2012	12	Ō	00689	95			
286	CONM2	2013	13	õ	00592	22			
287-	CONM2	2014	14	Ö	00592	22			
288-	CONM2	2015	15	0	00689	95			
289	CONM2	2016	16	0	00483	35			
290	CONM2	2017	17	0	. 00543	35			
291-	CONM2	2018	18	0	00689	95			
292 -	CONM2	2019	19	0	00592	22			
293-	CONM2	2020	20	0	.00592	22			
294	CONM2	2021	21	0	00689	95			
295	CONM2	2022	22	õ	0048:	35			
296	CONM2	2023	23	ō	.00231	85			
297 -	CONM2	2024	24	ō	00726	50			
298	CONM2	2025	25	ō	00689	95			
299	CONM2	2026	26	Ō	00689	95			
300 -	CONM2	2027	27	õ	.00726	50			
~ ~ ~ ~				~					

•

10

•

MSDA DYNAMIC MODEL 5X5 2M. NEW SPIN AXIS W/BALLAST LITESTRONGBACK 2M. NEW SPIN AXIS W/BALLAST

MODEL 29

				SOKIE	D BOLK	UAIA	EU	n U	
CARD									
COUNT	. 1	2	. .	3 4	5	6	7	8	9
301-	CONM2	2028	28	0	.003870				
302 -	CONM2	2029	29	0	.003870				
303-	CONM2	2030	30	0	.004835				
304 -	CONM2	2031	31	0	.004835				
305-	CONM2	2032	33	0	. 00 3870				
306 -	CONM2	2033	33	0	.002385				
307	CONM2	2034	34	0	. 002985				
308 -	CONM2	2035	35	0	. 002985				
309 -	CONM2	2035	36	0	. 002385				
310-	CONM2	2037	37	0	.002385				
311-	CONM2	2038	38	0	.003585				
312-	CONM2	2039	39	0	.003585				
313-	CuNM2	2040	40	Û	.003585				
314-	647 92	2041	41	i -					
315	1. State -	2042	42	Э					
316-	CL M2	2.143	43	0	TO ¥585				
317-	CONM_	÷ •	44	0	137				
318-	COUMS		15	3	1.185				
319-	CONM2			t	£741585				
320-	CONM2	2 O /		•	19				
321-	CONM2	2048		-	`9				
322 -	CONM2	2049	- 1	<i>,</i> •					
323-	CON:M2	2050	. J						
324 -	CONM2	2051	51	Ŭ	•				
325 -	CONM2	2052	52	0	003585				
326 -	CONM2	2053	53	0	. 003585				
327 -	CONM2	2054	54	0	.002985				
328 -	CONM2	2055	55	0	.002385				
329-	CONM2	2056	56	0	.003585				
330-	CONM2	2057	57	0	003585				
331-	CONM2	2058	58	0	.003585				
332 -	CONM2	2059	59	0	003585				
333-	CONM2	2060	60	0	.002385				
334 -	CONM2	2061	61	0	.002385				
335-	CONM2	2062	62	0	.002985				
336 -	CONM2	2063	63	0	.002985				
337-	CONM2	2064	64	0	.002385				
338 -	CONM2	2065	65	0	. 002985				
339-	CONM2	2066	66	0	.002985				
340	CONM2	2067	67	0	.0799365				
341	CONM2	2068	68	0	.002985				
342 -	CONM2	2069	69	0	.002985				
343-	CONM2	2070	70	0	0799365				
344	CONM2	2071	71	0	.002985				
345 -	CONM2	2072	72	0	.002985				
346	CONM2	2073	73	0	002385				
347 -	CONM2	2074	74	0	.002985				
348	CONM2	2075	75	0	.002985				
349	CONM2	2076	76	0	.002385				
350-	CONM2	2077	77	0	.002985				
-									

ORTED BULK DATA ECHO

10.

ORIGINAL PAGE IS

٠

.

B-9

SORTED BULK DAIA ECHO

CARD		-	-		5	6	7	8	9	10
COUNT	. 1	. 2	. 3		002985	-				
351-	CONM2	2078	18	0	34					
352-	CROD	501	30	1	37					
353 -	CROD	502	30	33	2					
354 -	CROD	503	30	2	35					
355	CROD	504	30	34	3					
356-	CROD	505	30	3	36					
357-	CROD	506	30	35	4					
358-	CROD	507	30	29	62					
359-	CROD	508	30	61	30					
360-	CROD	509	30	30	63					
361	CROD	510	30	62	31					
362-	CROD	511	30	31	64					
363 -	CROD	512	30	63	32					
363	CROD	513	30	5	38					
304-	CROD	514	30	37	6					
305-	000	515	30	6	39					
366-	CROD	516	30	38	7					
367-	CRUD	517	30	7	40					
568-	CRUD	519	30	39	8					
369 -	CRUD	510	30	8	41					
370-	CKUD	515	30	40	9					
371-	CRUD	520	30	9	42					
372 -	CROD	521	30	Å 1	10					
373-	CROD	522	30	11	44					
374 -	CROD	523	39	43	12					
375 -	CROD	524	39	43	45					
376-	CROD	525	32	12	13					
377 -	CROD	526	32	44	46					
378-	CROD	527	32	15	14					
379-	CROD	528	32	45	47					
380-	CROD	529	30	14	47					
381-	CROD	530	30	40	40					
382	CROD	531	30	15	40					
383-	CROD	532	30	4/	10					
384 -	CROD	533	39	17	50					
385-	CROD	534	39	49	18					
386 -	CROD	535	32	18	51					
387-	CROD	536	32	50	19					
388 -	CROD	537	32	19	52					
389-	CROD	538	32	51	20		•			
390-	CROD	539	30	20	53					
391-	CROD	540	30	52	21					
397-	CROD	541	30	21	54					
303-	CROD	542	30	53	22					
393	CROD	543	30	23	56					
334 -	CPOD	544	30	55	24					
382-	CROD	545	30	24	57					
396	CROD	546	30	56	25		•			
397	CROD	547	30	25	58					
398 -	CROD	549	30	57	26					
399	CRUD	540	30	26	59					
400~	CRUD	545	30							

ORIGINAL PAGE IS

٠

- -----
MSDA DYNAMIC MODEL 5X5 2M. NEW SPIN AXIS W/BALLAST LITESTRONGBACK 2M. NEW SPIN AXIS W/BALLAST

3°.

1 TEL

MODEL 29

SORTED BULK DATA ECHO

CARD														
COUNT	. 1	2	:	3	4		5	 6	 7	 8	• •	9	 10	
401	CROD	550	30	58		27								
402 -	CROD	551	30	27		60								
403-	CROD	552	30	59		28								
404 -	CROD	5 53	30	5		43								
405 -	CROD	5-4	30	37		11								
406 -	CROD	555	37	11		49								
407 -	CROD	556	37	43		17								
408 -	CROD	557	30	17		55								
409-	CROD	558	30	49		23								
4 10	CROD	559	30	10		48								
411-	CROD	560	30	42		16								
412 -	CROD	561	33	16		54								
413-	CROD	562	33	48		22								
414-	CRUD	563	30	22		60								
415-	CROD	564	30	54		28								
416 -	CROD	565	30	1		38								
417-	CEOD	566	30	33		6								
418-	CROD	567	30	6		44								
419-	CROD	568	30	38		12								
420-	CROD	569	39	12		50								
421-	CRUD	570	33	44		18								
422	CROD	5/1	30	18		50								
423-	CRUU	572	30	50		24								
424-	CRUD	373	30	24		20								
425-	CRUD	3/4	30	20		29								
420-	CRUD	575	30	2		39								
427-	CRUD	570	30	34		46								
420	CROD	570	30	20		40								
425	CROD	578	30	12		51								
430	CROD	590	35	45		10								
437-	CROD	581	30	19		57								
432	CROD	582	30	51		25								
434-	CROD	582	30	25		62								
434	CROD	584	30	57		30								
436-	CROD	585	30	3		40								
437-	CROD	586	30	35		8								
438	CROD	587	30	8		46								
439-	CROD	588	30	40		14								
440	CROD	589	34	14		52								
441-	CROD	590	34	46		20								
442	CROD	591	30	20		58								
443-	CROD	592	30	52		26								
444	CROD	593	30	26		63								
445-	CROD	594	30	58		31								
446 -	CROD	595	30	4		41								
447-	CROD	596	30	36		9								
448-	CROD	597	30	9		47								
449	CROD	59 8	30	41		15								
450-	CROD	599	33	15		53								

•

.

ilia(a

ORIGINAL PAGE IS

J

MODEL 29

SORTED BULK DATA ECHO CARD 9 .. 10 . . 8 6 . . 7 . . • . . . COUNT CROD 451-452 -CROD CROD **U**2 453-CRND 454 -455 -CROD 456-CROD 457 -CROD CROD 458 -CROD 459-CROD 460-CROD 461-462-CROD CROD 467-CROD 464 -CROD 465-CROD CROD . 467 -CROD 468-469 -CROD CROD 470-CROD 471-CROD 472-CROD 473-CROD 474-475 . CROD CROD 476-417-CROD CROD 478 -479-CROD CROD 480-CROD 481-482-CROD CROD 483-CROD 484 -CROD 485-CROD 486 -CROD 487 -CROD 488-CROD 489-CROD 491-CROD CROD CROD CROD CROD CROD CROD CROD CROD

CROD

•

ORIGINAL PAGE 18 OF POOR QUALITY

.

MSDA DYNAMIC MODEL 5X5 2M. NEW SPIN AXIS W/BALLAST LITESTRONGBACK 2M. NEW SPIN AXIS W/BALLAST

MODEL 29

SORTED BULK DATA ECHO

+

.

ORIGINAL PAGE IS

A

à.

C	CARD													
(COUNT	. 1	2	:	з	4		5	 6	 7	 8	 9	 10	-
	501-	CROD	724	40	3		7							
	502 -	CROD	725	41	7		14							
	503-	CROD	726	41	8		13							
	504 -	CROD	727	41	13	l i	20							
	505 -	CROD	728	41	14		19							
	506-	CROD	729	41	19	i i	26							
	507 -	CROD	730	41	20)	25							
	508-	CROD	731	40	25	i	31							
	509-	CROD	732	40	26		30							
	510-	CROD	733	40	3		9							
	511-	CROD	734	40	4		8							
	512-	CROD	735	40	8		15							
	513-	CROD	736	40	9		14							
	514-	CROD	737	40	14		21							
	515·	CROD	738	40	15	i	20							
	516-	CROD	739	40	20)	27							
	517-	CROD	740	40	21		26							
	518-	CROD	741	40	26	i i	32							
	519-	CROD	742	40	27		31							
	520-	CROD	743	43	37		44							
	521-	CROD	744	43	38	1	43							
	522-	CROD	745	36	43	1	50							
	523-	CROD	746	36	44		49							
	524-	CROD	747	43	49)	56							
	525-	CROD	748	43	50)	55							
	526-	CROD	749	40	41		48							
	527 -	CROD	750	40	42	!	47							
	528-	CROD	751	40	47		54							
	529-	CROD	752	40	48	1	53							
	530-	CROD	753	40	53	1	60							
	531	CROD	754	40	54		59							
	532 ·	CROD	755	41	33	•	39							
	533 ·	CROD	756	41	34		38							
	534-	CROD	757	40	38	1	45							
	535-	CROD	758	40	39)	44							
	536-	CROD	759	43	44		51							
	537 -	CROD	760	43	45	i	50							
	538 -	CRUD	761	40	50)	57							
	539 -	CROD	762	40	51		56							
	540-	CROD	763	41	56	i	62							
	541-	CROD	764	41	57		61							
	542-	CROD	765	40	34		40							
	543-	CROD	766	40	35		39							
	544-	CROD	767	40	39)	46							
	545-	CRUD	768	40	40)	45							
	546	CROD	769	40	45	i i	52							
	547 -	CROD	770	40	46	i	51							
	548~	CROD	771	40	51		58							
	549	CROD	772	40	52	!	57							
	550	CROD	773	40	57	,	63							

MODEL 29

CARD									
COUNT	. 1	2	. 3	4	. 5 6	7	. 8	ι.	9 10
551-	CROD	774	40	58	62				
552 -	CROD	775	40	35	41				
553	CROD	776	40	36	40				
554 -	CROD	777	40	40	47				
555 -	CROD	778	40	41	46				
556-	CROD	779	40	46	53				
557 -	CROD	780	40	47	52				
558 -	CROD	781	40	52	59				
559 -	CROD	782	40	53	58				
560-	CROD	783	40	58	64				
561-	CROD	784	40	59	63				
562 -	CRUD	785	42	11	×9				
563-	CROD	786	42	17	65				
564 -	CROD	787	41	77	74				
565 -	CROD	788	41	78	71				
566 -	CROD	789	42	65	69				
567 -	CROD	790	42	68	66				
568 -	CROD	791	41	71	75				
569-	CROD	793	42	66	70				
570-	CROD	794	42	69	67				
571-	CROD	795	41	72	76				
572	CROD	796	41	75	73				
573-	CRUD	797	41	72	74				
574-	EIGR	6	MGIV			5			45678
575-	+5678	MASS							
576 -	GRID	1	0	78.740	-295.27648.104				
577 -	GRID	2	0	214.155	-295.27668.912				
578 -	GRID	3	0	345.509	-295.276107.732				
579-	GRID	4	0	471.212	-295.276162.022	2			
580-	GRID	5	0	0.000	-168.82413.829				
581-	GRID	6	0	78.740	- 168 . 824 16 . 896				
582 -	GRID	7	0	214.155	- 168.82437.704				
583	GRID	8	0	345.509	- 168.82476.524				
584 -	GRID	9	0	471.212	- 168 . 824 130 . 814				
585 -	GRID	10	0	590.551	- 168 . 824200 . 533				
586 -	GRID	11	0	0.000	-39.370 - 504				
587-	GRID	12	0	78.740	-39.370 2.564				
588	GRID	13	0	214.155	-39.370 23.372				
589-	GRID	14	0	345.509	39 370 62 192				
590-	GRID	15	0	4/1.212	-39.370 116.482	2			
591-	GRID	16	0	590.551	-39.370 186.200	,			
592-	GRID	17	0	20.000	39 370504				
593-	GRID	18	0	78.740	39.370 2.384				
594	GRID	19	0	214 100	39.370 23.372				
595	GRID	20	0	343.309	39.376 02.192				
590	GRID	21	0	4/1.212 600 664	39.370 110 484	:			
597*		22	<u> </u>	0.000	169 974 12 970	,			
598- 598-	GRID	23	0	70 740	100.024 13.023				
223	GKID	24	0	70.740	100.024 10.030				
1000-	GRID	20	U	214.100	100.024 37.104				

SORTED BULK DAIA ECHO

ORIGINAL PAGE 15 OF POOR QUALITY

10

1.000 ^{- 2}

Standard and the standard states and the

MSDA DYNAMIC MODEL 5X5 2M. NEW SPIN AXIS W/BALLAST LITESTRONGBACK 2M. NEW SPIN AXIS W/BALLAST

ter in the second

no an iga An ini

CARD

MODEL 29

SURTED BULK DATA ECHIO

ه نه

5 .. 6 .. 7 .. COUNT 2 3 4 . . 8 9. 10 1 GRID 345.509 168.824 76.524 601-26 0 602-GRID 27 0 471.212 168.824 130.814 590.551 168.824 200.533 603-GRID 28 0 604 -GRID 29 0 78.740 295.276 48.104 605 -GRID 30 214.155 295 276 68.912 0 606 -GRID 31 0 345.509 295.276 107.732 607-GRID 471.212 295.276 162.022 32 0 78.740 -295.276-109.000 608 -GRID 33 0 609-GRID 34 0 214.155 -295.276-87.682 GRID 345.509 -295.276-48.305 610 35 0 GRID 471.212 -295.2766.564 611 36 0 GRID 612-37 0 0.000 -168.824-143.682 78.740 - 168.824-140.208 613-GRID 38 0 614-GRID 39 0 214.155 - 168.824-118.890 345.509 - 168.824-79.512 615-GRID 40 0 616-GRID 41 0 471.212 - 168.824-24.644 GRID 590.551 - 168.82442.998 617-42 0 0.000 -39.370 -158.014 GRID 618 -43 0 78.740 -39.370 -154.540 619 GRID 0 44 214.155 -39.370 -133.222 620-GRID . 45 0 GRID 345.509 -39.370 -93.845 621-46 0 GRID 471.212 -39.370 -38.976 622-47 0 GRID 590,551 -39.370 28.666 623· 48 0 0.000 39.370 -158.014 624 -GRID 49 0 625-GRID 78.740 39.370 -154.540 50 0 GRID 51 214 155 39.370 133.222 626-0 GRID 345.509 39.370 -93.845 627 -52 0 628-GRID 53 0 471.212 39.370 -38.976 629-GRID 54 0 590.551 39.370 28.666 630-GRID 0 0.000 168.824 - 143.682 55 631 GRID 56 0 78.740 168.824 -140.208 632-GRID 57 0 214.155 168.824 -118.890 633 GRID 345.509 168.824 -79.512 58 0 634 -GRID 59 471.212 168.824 -24.644 0 635 -GRID 60 590.551 168.824 42.998 0 636 GRID 61 78.740 295.276 -109.000 0 GRID 214.155 295.276 -87.682 637 -62 0 638 -GRID 63 0 345.509 295.276 -48.305 639-GRID 471.212 295.276 6.564 64 0 GRID -39.37 155.44 640 65 0 0.00 641-GRID 0 0.00 -39.37 312.78 66 642 GRID 67 0 0.00 -39.37 470.12 643 GRID 68 0 39.37 155.44 0.00 644 GRID 39.37 312.78 69 0 0.00 645 GRID 70 0 0.00 39.37 470 12 646 -GRID 71 160.00 -39.37 155.44 0 647 GRID 72 ο -160.00 -39.37 312.78 648 GRID 73 0 - 160.00 - 39 37 470.12 649 GRID 74 0 -160.00 39.37 155.44 650 GRID 75 0 - 160.00 39.37 312.78

OF POOR QUALITY

/|

MSDA DYNAMIC MODEL 5X5 2M. NEW SPIN AXIS W/BALLAST LITESTRONGBACK 2M. NEW SPIN AXIS W/BALLAST

MODEL 29

SURIED BULK DATA ECHO

CARD										
COUNT	. 1	2	3	4	5	6	. 7	. 8	9	10.
651-	GRID	76	0	- 160.00	39 37	470 12				
652-	GRID	77	0	- 160 . 00	- 39.37	504				
653-	GRIÐ	78	0	160.00	39.37	- 504				
654 -	GRID	79	0	0.0	0.0	0.0	0	123456		
655-	GRID	80	0	121.717	0.0	35.2646	0	123456		
656	MAT 1	1	24.E6	1.90E6	. 193	1.502E-	4 - 14E-0	6 72.		
657 -	MA I 1	2	27.06E6	1.67E6	. 198	1.502E -	4 21E-	672		
658 -	MAT1	3	27.25E6	1.53E6	. 154	1.502E -	4 18E-	6 72		
659-	MATE	10	25.99E6	1.89E6	. 243	1.581E-	421E-	672.		
660 -	MA E 1	11	28.36E6	1.39E6	136	1.58 IE -	4- 2E-6	72.		
661	MAT 1	20	27.4E6	1.7E6	225	1.581E ·	423E-0	672.		
662 -	MAT 1	21	27 OGE6	1.67E6	198	1.581E-	4- 21E	672		
663-	MAT 1	30	17 52E6	0.0	00	1.454E-	4 583E (672		
664 ~	MAT 1	31	17 1586	0.0	00	1.454E ·	4 187E (672		
665 -	MAT 1	32	19 9686	0.0	0.0	1.474E-	4 187E-	672.		
666 -	MAT 1	33	27 54E6	0.0	0.0	1.567E-	415E-0	672		
667	MATI	35	29 37E6	0.0	0.0	1.567E-	4- 19E-	672		
668 -	MAT 1	37	27 E6	00	0.0	1.581E -	4- 18E (672		
669 -	MAT 1	42	21 1E6	0.0	0.0	1.494E -	4 11E-6	72		
670-	MAT 1	43	26.OE6	0.0	0.0	1.494E -	4.11E-6	72.		
671-	PARAM	ASING	- 1							
672 -	PARAM	COUPMA	1551							
673	PARAM	GRDPNI	79							
674 -	PBAR	1	1	. 10869	04067	04067	08 134	4 14E-6		
675-	PBAR	2	2	267	. 0965	. 0965	193	4.14E-6		
676-	PBAR	3	3	. 3896	1371	. 1371	2741	4.144E-6		
677-	PBAR	4	1 E	. 7	3	. 3	Э	4.14E~6		
678	PBAR	10	10	. 205 1	.0734	.0734	110			
679 ·	PBAR	11	11	. 828	495	495	7399			
680	PBAR	20	20	. 6569	5352	.6074	00062			
681-	PBAR	21	21	2.097	1.172	2.694	0617			
682 -	PBAR	50	37	1.58	897	4.83	10			
683	PROD	30	30	0587	0.	0	2 152E	6		
684	PROD	31	31	0931	0	0	2 152E	6		
685 -	PROD	32	32	. 1774	0	0	2 152E	-6		
686	PROD	33	33	0579	0	0	2 152E	6		
687 -	PROD	34	33	. 1159	0.	0.	2 152E	- 6		
688 -	PROD	35	35	. 2184	O .	0	2 152F	6		
689	PROD	36	10	5649	0	0				
690-	PROD	37	37	1.08	Ο.	0				
691	PROD	38	37	1.49	0	0.				
692	PROD	39	37	1.99	Ο.	O .				
693 -	PROD	40	33	.0141	0	Ο.				
694 -	PROD	41	33	02814	0	0.				
695	PROD	42	42	. 3215	0.0	00				
696	PROD	43	43	. 4	0.0	0.0				
697	RFORCE	1	80	0	1	57357	0 0	819152 2		
698 -	SPC I	1	123456	43	44	49	50			
	ENDDATA									

ORIGINAL PAGE IS

١

101AL COUNT = 699

+++ USER WARNING MESSAGE 2251A, ONE UR MORE MATI CARDS HAVE UNREASONABLE OR INCONSISTENT VALUES OF E.G OR NU. ID OF FIRST ONE = 1

.

OGR.

١

Appendix C----Dynamic Balancing

۰. ج Appendix C-Dynamic Balancing

ORIGINAL PAGE IS OF POOR QUALITY

This appendix describes the methodology that was employed to ballast the basic MSDA structural configuration in order to orient the principal inertial axes with the desired spin axis. In general, ballast can be used to change the structural inertial axes to any desired orientation; the obvious solution is to use the minimum amount of ballast.

Given a finite element model, the <u>basic</u> structural rigid-body mass (inertial) properties can be expressed as:

where

. 0cm

and where the volume integrals are defined with respect to an arbitrary reference point, 0. The system mass center is defined as:

$$\overline{\mathsf{R}}_{\circ_{cm}} = \left[\hat{\imath}_{\hat{j}}\hat{k}\right] \left(\frac{1}{M_{\circ}}\right) \left\{\begin{array}{c} S_{\circ_{x}} \\ S_{\circ_{y}} \\ S_{\circ_{z}} \end{array}\right\} = \left[\hat{\imath}_{\hat{j}}\hat{k}\right] \left\{\begin{array}{c} \overline{\mathsf{X}}_{\circ} \\ \overline{\mathsf{Y}}_{\circ} \\ \overline{\mathsf{Z}}_{\circ} \end{array}\right\}$$

C-1

and the inertial properties, with respect to the mass center, are

 $M_{\circ_{cm}} = \begin{bmatrix} I & O \\ B^{\mathsf{T}} & I \end{bmatrix} \begin{bmatrix} M_{\circ} & S_{\circ} \\ S_{\circ}^{\mathsf{T}} & J_{\circ} \end{bmatrix} \begin{bmatrix} I & B \\ I & B \\ O & I \end{bmatrix} = \begin{bmatrix} M_{\circ} & O \\ 0 & J_{\circ_{cm}} \end{bmatrix}$ with $B = \begin{bmatrix} O & -\overline{z}, & \overline{y}, \\ \overline{z}, & O & -\overline{x}, \\ -\overline{y}, & \overline{x}, & O \end{bmatrix}$. The principal inertial properties are then

found using an eigensolution as:

$$\begin{bmatrix} J_{op} \end{bmatrix} = \begin{bmatrix} Q_o^T \end{bmatrix} \begin{bmatrix} J_{ocm} \end{bmatrix} \begin{bmatrix} Q_o \end{bmatrix}$$

where the orthonormal rotation transformation $[Q_0]$ defines the orientation of the principal axes with respect to the basic axiosystem.

An examination of the procedure to ballast the configuration follows from examination of a single ballast mass; the extension to multiple masses is obvious. Given the basic system as defined previously, the addition of a ballast mass yields:

$$M_{i} = \begin{bmatrix} I & 0 \\ R_{i} & I \end{bmatrix} \begin{bmatrix} M_{i} \\ 0 & J_{i} \end{bmatrix} \begin{bmatrix} I & R_{i} \\ 0 & I \end{bmatrix}$$

where $\begin{bmatrix} M_i \end{bmatrix}$ and $\begin{bmatrix} J_i \end{bmatrix}$ define the inertial characteristics of the ith ballast mass about its own mass center and where, for $\overline{R}_i = \begin{bmatrix} i & j & k \end{bmatrix} \begin{cases} X_i \\ Y_i \\ Z_i \end{cases}$,

$$\begin{bmatrix} R_i \end{bmatrix} = \begin{bmatrix} 0 & z_i - y_i \\ -z_i & x_i \\ y_i - x_i & 0 \end{bmatrix},$$

C-2

4.5

ORIGINAL PAGE IS OF POOR QUALITY

defines the location of the ith ballast mass with respect to the arbitrary reference point, 0.

Given the above, the <u>total system inertial</u> properties can be represented as: $M_{T} \mid S_{T}$

 $M_{\tau} = M_{0} + \sum_{i=1}^{n} M_{i} = \begin{bmatrix} M_{\tau} & S_{\tau} \\ - - \tau & - - - \\ S_{\tau} & J_{\tau} \end{bmatrix}$

from which the composite mass center for the ballasted configuration becomes

$$\overline{R}_{cm} = \lfloor \hat{c} \hat{j} \hat{k} \rfloor \begin{pmatrix} I \\ M_{T} \end{pmatrix} \begin{cases} S_{T_{x}} \\ S_{-,} \\ S_{T_{z}} \end{cases} = \lfloor \hat{c} \hat{j} \hat{k} \rfloor \begin{cases} X_{T} \\ \overline{y}_{T} \\ \overline{z}_{T} \end{cases}$$

The total system inertia properties, with respect to this new mass center location, follow as:

$$M_{cm} = \begin{bmatrix} I \\ ----- \\ B^{T} \\ I \end{bmatrix} \begin{bmatrix} M_{T} \\ S_{T} \\ J_{T} \end{bmatrix} \begin{bmatrix} I \\ B^{T} \\ J_{\sigma_{cm}} \end{bmatrix} = \begin{bmatrix} M_{T} \\ ----- \\ J_{\sigma_{cm}} \end{bmatrix}$$

with

🚛 Sterna and the state

1

$$B = \begin{bmatrix} 0 & -\overline{z}_{\tau} & \overline{y}_{\tau} \\ \overline{z}_{\tau} & 0 & -\overline{x}_{\tau} \\ -\overline{y}_{\tau} & \overline{x}_{\tau} & 0 \end{bmatrix}$$

and the new ballasted principal

inertial properties are:

$$\begin{bmatrix} J_{\tau_p} \end{bmatrix} = \begin{bmatrix} Q_{\tau}^{\tau} \end{bmatrix} \begin{bmatrix} J_{\tau_{cm}} \end{bmatrix} \begin{bmatrix} Q_{\tau} \end{bmatrix}.$$

C-3

4.3

ORIGINAL PAGE IS OF POOR QUALITY

ł

```
PROGRAM DYNBAL (INPUT, OUTPUT, TAPE5=INPUT, TAPE6=OUTPUT, TAPE2, FILMPL)
С
C
       DIMENSION AMO(6,6), W(6,6), XYZBAL(20,3), R(6,6), AMT(6,6)
       DIMENSION AMB(6,6,10), ISEL(10,2), XYZB(3), B(6,6)
       DIMENSION APRIN(3), AROT(3,3), AMP(3,3), XYZREF(3)
C
C
  999 CALL START
С
   READ BASIC STRUCTURE MASS WRT REFERENCE POINT
THIS IS MO MATRIX IN NASTRAN NOTATION
CALL READ(AMO,NR,NC,6,6)
C
Ċ
C
C
   READ REF POINT WRT BASIC COORDINATES
   THIS DEFINES LOCATION OF NASTRAN REF POINT
С
       CALL READ(XYZREF.N1.N3.1.3)
C
   READ CANDIDATE BALLAST LOCATIONS AND MASS WRT BASIC COORDINATES
C
       CALL READ(XYZBAL, NBALP, NC, 20, 3)
   READ(5,10) NBALM
10 FORMAT(1615)
       DO 85 K=1,NBALM
   85 CALL READ(AMB(1,1,K),NR,NC,6,6)
C
   LOOP ON CASES
C
Ċ
       READ(5,10) NCASES
       DO 600 KCASE = 1, NCASES
       WRITE(5,22) KCASE
   22 FORMAT(///,20X.+ CASE = +,13)
C
   READ TABLE OF DESIRED BALLAST LOCATIONS AND MASSES
C
       CALL RENDIM(ISEL, NBALL, 2, 10, 2)
C
¢
   SET UP FOR BALLAST SUMMATION
       CALL UNITY(R.6.6)
      DO 87 I=1,6
50 87 J=1,6
   87 \text{ AMT}(I,J) = AMO(I,J)
С
       00 100 K=1, NBALL
      ISEP = ISEL(K, 1)
       ISEM = ISEL(K,2)
       R(1,5) = XYZBAL(ISEP,3) - XYZREF(3)
       R(1,6) =-(XYZBAL(ISEP,2) - XYZREF(2))
       R(2,4) = -(XYZBAL(ISEP,3) - XYZREF(3))
      R(2,6) = XYZBAL(ISEP.1) - XYZREF(1)
R(3,4) = XYZBAL(ISEP.2) - XYZREF(2)
R(3,5) =-(XYZBAL(ISEP.1) - XYZREF(1))
       CALL BTAB(AMB(1,1,ISEM),R,W,6,6,6,6)
       DO 101 I=1.6
      DO 101 J=1,6
  101 AMT(I,J) = AMT(I,J) + W(I,J)
  100 CONTINUE
С
       CALL WRITE(AMT.6.6.3HAMT.6)
C
С
   EXTRACT CM LOCATION WRT REFERENCE POINT
       XYZB(1) = AMT(2,6)/AMT(1,1)
       XYZB(2) = AMT(3,4)/AMT(1,1)
       XYZB(3) = AMT(1,5)/AMT(1,1)
```

ORIGINAL PAGE 19 OF POOR QUALITY

.

```
C

CALL WRITE(XYZB,1,3,6HCMLOC,1)

C

TRANSFORM MASS TO CM

CALL UNITY(B,6,6)

B(1,5) = -XYZB(3)

B(1,6) = XYZB(2)

B(2,4) = XYZB(1)

B(3,4) = -XYZB(1)

CALL BTABA(AMT,B,6,6,6,6)

CALL WRITE(AMT,6,6,6HAMTCM,6)

C

C

EXTRACT PRINCIPAL INERTIAS

DO 103 J=1,3

103 AMP(I,J) = AMT(I+3,J+3)

CALL EIGN1(AMP,APRIN,AROT,3,0.,3)

CALL WRITE(APRIN,1,3,6HPRINRE,1)

CALL WRITE(APRIN,1,3,6HPRINRE,1)

CALL WRITE(APRIN,1,3,6HPRINRE,1)

CALL WRITE(APRIN,1,3,6HPRINRE,1)

CALL WRITE(APRIN,1,3,6HPRINRT,3)

ALPHA = ATAN2(2,*AMT(4,6),(AMT(6,6)-AMT(4,4)))

ALPHA = (ALPHA/2.)*57.3

WRITE(6,28) ALPHA

28 FORMAT(//,30X,*ALPHA (DEG) = *,F10 3)

C

600 CONTINUE

GO TO 999

END
```

kri Naj

MSDA CONFIG 14 ANO 6 6 0. 0. 0. 1 1 19528 0. 1.9538 0. -269.64 2 1 0. 1.9538 0. -269.64 0. -269.64 2 1 0. 0. 1.9538 0. -269.64 0. 2 5 C. -260.90 0. 1.9538 0. -269.64 3 5 260.90 0. 1.9538 0. 118117. 5 1 0. -269.54 0. 118117. 5 5 208328 0. 280.9 0. 45967. 000000000000000000000000000000000000	MSDA 14						
ANC 6 6 0 0. 0. 0. 0. ANC 1 1 1.9938 0. 0. 0. 0. 2 1 0. 1.9938 0269.84 3 1 0. 1.9938 0269.84 3 1 0. 1.9938 0269.84 3 1 0. 0. 240.90 0. 4 1 0269.84 0. 260.9 0. 4 1 0269.84 0. 260.9 0. 5 1 269.64 0. 260.9 0. 4 1 0269.84 0. 260.9 0. 6 1 0. 260.9 0. 45967. 5 2 06220. 0. 6 6 1 0260.9 0. 45967. COCOCOCOCO XYZ 5 3 1 1 307.03 097.7335 XYZ 5 3 1 1 048. 312.78 2 1 0. 48121.424 4 1 229.032 48121.424 4 1 2 1 1 0.4 1 1 0.065 2 2 0.065 0000000000 ISEL2 4 2 1 3 1 3 14 4 1 4 2 0000000000 ISEL3 4 2 1 1 1 2 2 3 1 3 2 4 1 4 2 1 1 1 2 2 1 2 1 3 3 1 3 14 4 1 4 1 00000000000 ISEL3 4 2 1 1 1 1 3 1 1	MSDA C	ONFI	G 14				
1 1	AMO	I EQ	UALS	10, 25	, 50 LBS AT PTS 86.	69, 51, 45	
1 5 269.64 0 -269.30 -269.64 2 5 C. -269.30 0. -269.64 3 5 260.90 0. 1.9538 0. 0. 3 5 260.90 0. 1.9538 0. 118117. 5 1 289.64 0. 260.9 0. 118117. 5 1 289.64 0. 260.9 0. 6 5 5 208228. 0. 260.9 0. 45967. 0000000000 X727 5 3 1 1<307.03 0. -97.7335 1 1 307.03 0. -97.7335 -121.424 -2000000000 X72 5 3 3 125.032 -48. -121.424 -20000000000 4 1 259.032 -48. -121.424 -20000000000 -121.424 -20000000000 0000000000 - -22.026 -3 -3 -121.424 -201.424 -121.424 -121.424 -121.424 -121.424	1	1	1.9	538	0.	0	•
2 1 0. 1.9538 0. -269.900 3 1 0. -269.900 0. 1.9538 0. 4 1 0. -269.54 0. 118117. 118117. 5 1 269.64 0. 260.90 0. 118117. 5 1 269.64 0. 260.9 0. 0. 6 1 0. -280.9 0. 45967. 0. 0000000000 . 162988. 0. -97.7335 . . 20000000000 307.03 0. -97.7335 . . . 21 1 0. -48. 312.78 . . . 21 1 0. -48. 312.78 21 1 0. -48. 312.78 2 1 0. -48. <	t	5	269.	. 64	0.	0.	Ο.
2 5 C. -260.90 1.9538 0. 3 5 280.90 0. 1.9538 0. 4 1 0. -269.34 0. 118117. 5 1 269.64 0. 260.9 0. 6 1 0. -269.3 0. 45967. 00000000000 0. -260.9 0. 45967. 00000000000 0. -269.3 0. 45967. 00000000000 0. -2780.9 0. 45967. 00000000000 0. -97.7335 45967. 0. XYZREF 3 1 2.90.32 -48. 312.78 2 1 0. -48. 312.78 312.78 3 1 259.032 -48. -121.424 4 4 1 259.032 -48. -121.424 4 4 1 259.032 -48. -121.424 4 4 1 0.26 3 3 3 3 00000000000 <td>2</td> <td>1</td> <td>0.</td> <td></td> <td>1.9538</td> <td>Ο.</td> <td>-269.64</td>	2	1	0.		1.9538	Ο.	-269.64
3 2 0. 1.9538 0. 4 1 0. -269.54 0. 118117. 5 1 269.64 0. 260.9 0. 5 5 20828. 0. -260.9 0. 45967. 00000000000 1307.03 0. -97.7335 45967. 30 2 1 1 0. -48. 312.78 312.78 2 1 0. -48. 312.78 312.78 312.78 3 1 259.032 -48. -121.424 -121.424 -121.424 4 1 259.032 -48. -121.424 <td< td=""><td>2</td><td>5</td><td>Ç.</td><td></td><td>-260.90</td><td></td><td></td></td<>	2	5	Ç.		-260.90		
A 10.100 0269.84 0. 118117. 4 5 0. 45987. 260.9 0. 5 5 208328. 0. 260.9 0. 45967. 0000000000 XYZRFF 1 3 1 1 0280.9 0. 45967. 0000000000 XYZ 5 3 1 1 048. 312.78 3 1 259.032 48. 312.78 3 1 259.032 48121.424 0000000000 AMB3 6 6 1 1 0.26 3 3 0.265 0000000000 AMB3 6 6 1 1 0.26 3 3 0.265 0000000000 AMB3 6 6 1 1 0.26 3 3 0.265 0000000000 AMB3 6 6 1 1 0.26 3 3 3 .026 0000000000 AMB3 6 6 1 1 1.026 2 2 .026 3 3 .026 0000000000 AMB3 4 2 1 1 0.27 3 3 .026 0000000000 AMB3 4 4 1 1.102 2 1.21.424 4 4 1 1.102 2 2 .026 3 3 .026 0000000000 AMB4 6 6 1 1 .130 2 2 .085 3 3 .045 0000000000 AMB4 4 2 1 1 1 2 2 1 2 1 3 1 3 0 0000000000 AMB4 4 2 1 1 1 1 3 1 3 14 4 4 4 1 1 1 2 2 1 2 1 3 1 3 14 4 4 4 2 00000000000 AMB4 5 6 1 1 1 026 2 2 .026 3 3 .026 0000000000 AMB4 4 4 4 4 4 4 2 1 2 1 2 1 3 1 3 2 4 1 4 2 1 1 1 2 3 1 3 2 4 1 4 2 1 1 1 2 3 1 3 2 4 1 4 2 1 1 1 3 2 1 2 1 3 1 3 2 4 1 4 2 1 1 1 3 2 1 2 1 3 1 3 2 4 1 4 2 1 1 1 3 2 1 2 1 3 1 3 2 4 1 4 2 1 1 1 3 2 1 2 1 3 1 3 2 4 1 4 2 1 1 1 3 2 1 2 1 3 1 3 2 4 1 4 2 1 1 1 3 2 1 2 1 3 1 3 2 4 1 4 2 1 1 1 3 2 1 2 1 3 1 3 2 4 1 4 2 1 1 1 3 2 1 2 1 3 1 3 2 4 1 4 2 1 1 1 3 2 1 2 1 3 1 3 2 4 1 4 2 1 1 1 3 2 1 2 1 3 1 3 2 4 1 4 2 1 1 1 3 2 1 2 1 3 1 3 2 4 1 4 2 1 1 1 3 3 1 3 2 4 1 4 2 1 1 1 3 3 1 3 2 4 1 4 2 1 1 1 3 3 1 3 2 4 1 4 2 1 1 1 3 3 1 3 2 4 1 4 2 1 1 1 3 3 1 3 2 4 1 4 2 1 1 1 1 3 3 1 3 2 4 1 4 2 1 1 1 1 3 3 1 3 2 4 1 4 2 1 1 1 1 3 3 1 3 2 4 1 4 2 1 1 1 1 3 3 1 3 2 4 1 4 2 1 1 1 1 3 3 1 3 2 4 1 4 2 1 1 1 1 3 3 1 3 2 4 1 4 2 1 1 1 1 3 3 1 3 2 4 1 4 2 1 1 1 1 3 3 1 3 2 4 1 4 2 1 1 1 1 3 3 1 3 2 4 1 4 2 1 1 1 1 3 3 1 3 2 4 1 4 2 1 1 1 1 3 3 1 3 2 4 1 4 2 1 1 1 1 3 3 1 3 2 4 1 4 2 1 1 1 1 3 3 1 3 2 4 1 4 1 3 4 1 4 1 3 4 1 4 1 3 4 1 4 1 1 4 1 4 1 1 4 1 4 1 1 4 1 4 1	3	, i	260	a n	0.	1.9538	Ο.
4 9 0. 43967. 0. 118117. 5 1 269.54 0. 280.9 0. 6 1 0. -260.9 0. 45967. 0000000000 122983. 0. 45967. 0. 0000000000 1 307.03 0. -97.7335 1 1 307.03 0. -97.7335 2 1 0. -48. 312.78 2 1 0. -48. 312.78 3 1 259.032 -48. -121.424 4 1 259.032 -48. -121.424 4 4 1 1.0 -48. 312.78 3 1 259.032 -48. -121.424 4 1 1.005 -121.424 -121.424 4 1 1.065 -121.424 -121.424 4 1 1.0065 -121.424 -121.424 4 1 1.0065 -121.424 -121.424 4 1 1.000<	4	1	0.		-269 84		• • • • • • •
S 1 269.64 0. 260.9 0. 6 1 0. -260.9 0. 45967. 00000000000 XVZRFF 3 1 1307.03 0. -97.7335 1 1 0. -48. 312.78 3 2 1 0. -48. 312.78 3 1 259.032 -48. -121.424 0000000000 448. -121.424 4 4 1 259.032 -48. -121.424 0000000000 448. -121.424 4 4 1 0.05 -121.424 4 4 1 0.026 -121.424 4 4 6 6 -121.424 4 4 1 0.026 -121.424 4 4 1 0.026 -121.424 -121.424 4 1 0.026 -121.424 -121.424 4 1 0.026 -121.424 -121.424 4 1 0.03.3 -130.03 <td>4</td> <td>5</td> <td>Ō.</td> <td></td> <td>45967.</td> <td>0.</td> <td>118117.</td>	4	5	Ō.		45967.	0.	118117.
5 5 208328. 0. -280.9 0. 45967. 000000000000000000000000000000000000	5	1	269.	64	0.	260.9	0
0 0. -280.9 0. 45967. 0000000000 102988. 1 307.03 0. -97.7335 VYZREF 1 307.03 0. -97.7335 1 2 1 10. -48. 312.78 3 2 1 10. -48. 312.78 3 3 1.259.032 -48. -121.424 -121.424 0000000000 4 -121.424 -121.424 -121.424 00000000000 4 -121.424 -121.424 -121.424 00000000000 4 -121.424 -121.424 -121.424 00000000000	5	5	2083	128.	0.		•.
000000000000000000000000000000000000	0 4		0.		-260.9	0.	45967.
XYZRFF 3 1 307.03 0. -97.7335 XZ 5 3 2 1 0. -48. 312.78 3 1 259.032 -48. -121.424 0000000000 48. -121.424 0000000000 48. -121.424 AMB1 6 6 0000000000 48. -121.424 AMB2 6 6 1 1 0265 2 2.026 3 3 .026 000000000 AMB3 6 6 1 1 065 2 2 .026 3 3 .026 0000000000 4 6 4 1 1 1 1 1 2 1 1 3 3 130 00000000000 1 1 ISEL2 4 2 1 1 1 2 1 2 <td>000000</td> <td>0000</td> <td>υ.</td> <td></td> <td>162968.</td> <td></td> <td></td>	000000	0000	υ.		162968.		
1 1 307.03 0. -97.7335 1 1 0. -48. 312.78 2 1 0. -48. 312.78 3 1 259.032 -48. -121.424 4 1 259.032 -48. -121.424 0000000000 4 -121.424 -121.424 4 1 206 -121.424 4 - -121.424 -121.424 4 - -121.424 -121.424 4 - - -121.424 4 - - -121.424 4 - - -121.424 4 - - -121.424 4 - - - - 3 - - - - 2 - - - - 3 - - - - 4 1 - - - 3 3 - - - 3 3	XYZREF	1	3				
COCOCOCOOO ATTENDE XYZ 5 3 1 1 0. -48. 312.78 3 1 259.032 -48. -121.424 4 1 259.032 -48. -121.424 0000000000 4 -121.424 -121.424 AMB1 6 6 -000000000 AMB2 6 6 -121.424 COOCOCOOO	1	1	307	. 03	Ο.	-97.7335	
XYZ 5 3 2 1 0. 48. 312.78 3 1259.032 -48. -121.424 0000000000 48. -121.424 0000000000 48. -121.424 AME1 6 6 1 1 026 3 3 026 3 3 026 3 3 026 0000000000 4 AMB3 6 1 1 1 1 2 2 0000000000 4 AMB3 6 1 1 3 3 3 065 00000000000 4 ISEL1 4 1 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 4 1	000000	0000	_				
	X7Z	5	3				
- - - 3 121.424 4 1 259.032 -48. - 121.424 0000000000 - - 121.424 - 121.424 AMB1 6 6 - - 121.424 AMB1 6 6 - - 121.424 AMB2 6 6 - - 121.424 AMB2 6 6 - - 121.424 AMB2 6 6 - - 121.424 AMB3 026 - - - 121.424 AMB3 6 6 - - - 121.424 AMB3 6 6 - - - - 121.424 AMB3 6 6 - - - - - - - 121.424 00000000000 - - - - - - - - - - - - - - - - - - </td <td>2</td> <td>1</td> <td>0.</td> <td></td> <td>- 48 .</td> <td>312.78</td> <td></td>	2	1	0.		- 48 .	312.78	
4 1 259.032 48 -121.424 AMB1 6 6 -121.424 AMB1 6 6 -121.424 AMB2 6 6 -121.424 AMB2 6 6 -121.424 AMB2 6 6 -121.424 AMB3 6 6 -121.424 AMB3 026	3	i	259	. 032	48. - AR	312.78	
0000000000 4 AMB1 6 6 1 1 026 2 2 026 3 3 026 0000000000 AMB3 6 AMB3 6 6 1 1 065 2 2 026 3 3 065 0000000000 AMB4 6 AMB4 6 6 1 1 130 2 2 085 03 3 130 00000000000 4 4 1 1 3 1 3 4 1 1 2 1 1 3 1 3 3 1 3 4 1 1 5 2 2 3 1 3 3 1 3 3 1 3 4 1 2 1 1	4	1	259	.032	48.	- 121,424	
AMB1 6 6 COOD000000 AMB2 6 6 1 1 0.26 000000000 AMB3 6 6 1 0000000000 AMB3 6 6 1 1 0.65 000000000 AMB4 6 6 1 1 1 1 130 2 2 130 0000000000 AMB4 6 6 1 1 130 2 2 130 0000000000 0 00000000000 0 4 1 1 1 1 1 1 1 2 1 2 1 1 1 1 3 1 3 1 1 1 1 2 1 2 2 2 2 2 3 1 3 2 2 2 3 3 1 2 1 2 2 3 3 3 1 3 3	0000000	0000					
AMB1 6 6 1 1 026 2 2 026 3 3 026 0000000000 AMB3 6 1 1 065 2 2 026 3 3 026 00000000000 AMB3 6 1 1 065 2 2 065 00000000000 AMB4 6 AMB1 1 130 2 2 130 3 3 130 00000000000 4 ISEL1 4 2 1 1 1 2 1 2 3 1 3 4 1 4 00000000000 ISEL2 4 1 1 2 3 1 3 3 1 3 2 1 2 3 1 3 3 1 3 <td>4</td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td>	4	-					
AMB2 6 6 1 1 026 2 2 026 3 3 026 COCOCOCOCOC AMB3 6 6 1 1 065 2 2 085 3 3 065 COCOCOCOCOC AMB4 6 6 1 1 100 2 2 130 3 3 130 COCOCOCOCOC 4 ISEL 4 2 1 1 1 1 2 1 2 1 3 1 3 1 4 1 4 1 COCOCOCOCOCO ISEL2 4 2 1 1 2 2 3 1 3 2 4 1 4 2 1 1 2 2 1 2 2 3 1 3 2 4 1 4 2 1 1 2 2 1 2 2 3 1 3 2 4 1 4 2 1 1 2 2 1 2 2 3 1 3 2 4 1 4 2 1 1 1 2 2 1 2 1 3 1 3 2 4 1 4 2 1 1 2 2 1 2 2 3 1 3 2 4 1 4 2 1 1 1 2 2 1 2 2 3 1 3 2 4 1 4 2 1 1 1 2 2 1 2 2 3 1 3 2 4 1 4 2 1 1 1 2 2 1 2 2 3 1 3 2 4 1 4 2 1 1 1 2 2 1 2 2 3 1 3 2 4 1 4 2 1 1 1 2 2 1 2 2 3 1 3 2 4 1 4 2 1 1 1 2 2 1 2 3 3 1 3 2 4 1 4 2 1 1 1 3 2 2 1 2 3 3 1 3 2 4 1 4 2 1 1 1 1 3 2 1 2 3 3 1 3 3 4 1 4 1 4 2 COCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCO		5	6				
1 1 0.028 2 2 0.026 0000000000 0 AMB3 6 6 1 1 0.85 2 2 0.85 3 3 0.65 0000000000 0 AMB4 6 6 1 1 1.30 2 2 1.30 000000000000 4 4 4 1 1 1 2 1.30 1.30 000000000000 4 1 1 1 2 1.2 1 3 1.3 1 4 1 1 2 1.2 2 3 1.3 2 2 1.2 2 3 1.3 3 2 1.2 3 3 1.3 3 3 1.3 3 3 1.3 3 3 3 3	AMB2	6	8				
2 2 026 3 3 .025 000000000 AMB3 6 6 1 1 065 2 2 065 3 3 .065 000000000 AMB4 6 6 1 1 130 2 2 .130 3 3 .130 0000000000 4 4 ISEL1 4 2 1 1 1 1 2 1 2 1 3 1 3 1 4 1 4 1 0000000000 ISEL2 4 2 1 1 2 2 3 1 3 2 4 1 4 2 0000000000 ISEL2 4 2 1 1 1 2 3 1 3 2 4 1 4 2 0000000000 ISEL2 4 2 1 1 1 2 3 1 3 2 4 1 4 2 1 1 1 2 3 1 3 2 4 1 4 2 1 1 1 2 2 1 2 3 3 1 3 2 4 1 4 2 1 1 1 2 2 1 2 3 3 1 3 2 4 1 4 2 0000000000 ISEL3 4 2 1 1 1 3 3 3 1 3 3 4 1 4 2 1 1 1 1 3 2 1 2 3 3 1 3 3 4 1 4 2 00000000000 ISEL3 4 2 1 1 1 1 3 2 1 2 3 3 1 3 3 4 1 4 2 0 1 1 1 1 3 2 1 2 3 3 1 3 3 4 1 4 2 0 1 1 1 1 1 1 2 1 2 3 3 1 3 3 4 1 4 2 0 1 1 1 1 1 2 1 2 3 3 1 3 3 4 1 4 2 1 1 1 1 1 1 2 1 2 3 3 1 3 3 4 1 4 1 2 1 1 1 1 1 1 2 1 2 3 3 1 3 3 4 1 4 1 2 1 1 1 1 3 2 1 2 3 3 1 3 3 4 1 4 1 3 1 1 1 3 1 1 1 3 1 1 1 1 3 1 1 1 1 3 1	1	1	.026				
3 3 .026 O00000000	2	2	.026				
AMB3 6 6 1 1 065 2 2 065 3 3 .065 000000000 AMB4 6 6 1 1 130 2 2 130 3 3 130 0000000000 4 ISEL1 4 2 1 1 1 1 2 1 2 1 3 1 3 1 4 1 4 1 0000000000 ISEL2 4 2 1 1 1 2 2 1 2 2 3 1 3 2 4 1 4 2 0000000000 ISEL2 4 2 1 1 1 2 2 1 2 1 3 1 3 1 4 1 4 2 1 1 1 2 2 1 2 1 3 1 3 1 4 1 4 2 0000000000 ISEL2 4 2 1 1 1 2 2 1 2 2 3 1 3 2 4 1 4 2 1 1 1 2 2 1 2 2 3 1 3 2 4 1 4 2 1 1 1 1 2 2 1 2 2 3 1 3 2 4 1 4 2 00000000000 ISEL3 4 2 1 1 1 1 3 2 1 2 3 3 1 3 3 4 1 4 2 000000000000000000000000000000000000	3	3	. 026				
1 1 065 2 2 065 3 3 065 000000000 AMB4 6 6 1 1 130 2 2 130 3 3 130 000000000 4 4 ISEL1 4 2 1 1 1 1 2 1 2 1 3 1 3 1 4 1 4 1 0000000000 ISEL2 4 2 1 1 2 2 3 1 3 2 4 1 4 2 1 1 1 2 2 1 2 1 1 1 2 2 1 2 2 3 1 3 2 4 1 4 2 1 1 1 2 2 1 2 1 3 1 3 2 4 1 4 2 1 1 1 2 2 1 2 1 3 1 3 2 4 1 4 2 1 1 1 2 2 1 2 2 3 1 3 2 4 1 4 2 1 1 1 2 2 1 2 2 3 1 3 2 4 1 4 2 1 1 1 2 2 1 2 2 3 1 3 2 4 1 4 2 0000000000 ISEL3 4 2 1 1 1 3 2 1 2 3 3 1 3 3 4 1 4 2 1 1 1 2 1 2 3 3 1 3 3 4 1 4 2 1 1 1 1 3 2 1 2 3 3 1 3 3 4 1 4 2 1 1 1 1 3 2 1 2 3 3 1 3 3 4 1 4 2 1 1 1 1 3 2 1 2 3 3 1 3 3 4 1 4 2 1 1 1 1 3 2 1 2 3 3 1 3 3 4 1 4 2 1 1 1 1 3 2 1 2 3 3 1 3 3 4 1 4 2 1 1 1 1 3 2 1 2 3 3 1 3 3 4 1 4 1 1 1 1 3 2 1 2 3 3 1 3 3 4 1 4 1 1 1 1 3 2 1 2 3 3 1 3 3 4 1 4 1 1 1 1 3 2 1 2 3 3 1 3 3 4 1 4 1 1 1 1 3 2 1 2 3 3 1 3 3 4 1 4 1 1 1 1 3 2 1 2 3 3 1 3 3 4 1 4 2 1 1 1 1 3 2 1 2 3 3 1 3 3 4 1 4 1 1 1 1 3 2 1 2 3 3 1 3 3 4 1 4 1 1 1 1 3 2 1 2 3 3 1 3 3 4 1 4 1 3 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1	0000000	000	~		•		
2 2 085 3 3 065 000000000 AMB4 6 6 1 1 .130 2 2 .130 3 3 .130 000000000 4 ISEL1 4 2 1 1 1 1 1 2 1 2 1 3 1 3 1 4 1 4 1 0000000000 ISEL2 4 2 1 1 2 1 2 1 2 2 3 1 3 2 4 1 4 2 1 1 1 2 2 1 2 1 3 1 3 2 4 1 4 2 1 1 1 2 2 1 2 2 3 1 3 2 4 1 4 2 1 1 2 2 3 1 3 2 4 1 4 2 1 1 2 2 3 1 3 2 4 1 4 2 1 1 2 2 3 1 3 2 4 1 4 2 1 1 2 2 3 1 3 2 4 1 4 2 1 1 2 2 3 1 3 2 4 1 4 2 1 1 2 2 3 1 3 2 4 1 4 2 1 1 2 2 3 1 3 2 4 1 4 2 1 1 2 3 3 1 3 3 4 1 4 2 1 1 1 3 2 1 2 3 3 1 3 3 4 1 4 2 1 1 1 3 2 1 2 3 3 1 3 3 4 1 4 2 1 1 1 3 2 1 2 3 3 1 3 3 4 1 4 2 1 1 1 3 2 1 2 3 3 1 3 3 4 1 4 2 1 1 1 1 3 2 1 2 3 3 1 3 3 4 1 4 2 1 1 1 1 3 2 1 2 3 3 1 3 3 4 1 4 1 2 1 2 3 3 1 3 3 4 1 4 1 2 1 2 3 3 1 3 3 4 1 4 1 2 1 2 3 3 1 3 3 4 1 4 1 2 1 2 3 3 1 3 3 4 1 4 1 2 1 2 3 3 1 3 3 4 1 4 1 1 1 1 3 2 1 2 3 3 1 3 3 4 1 4 1 1 1 1 3 2 1 2 3 3 1 3 3 4 1 4 1 1 1 1 3 2 1 2 3 3 1 3 3 4 1 4 1 1 1 1 3 2 1 2 3 3 1 3 3 4 1 4 1 1 1 1 3 2 1 2 3 3 1 3 3 4 1 4 1 3 3 1 4 1 4 1 1 1 1 3 2 1 2 3 3 1 3 3 4 1 3 3 4 1 3 1 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	1	.065				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2	2	.065				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3	3	. 065				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0000000	000	-				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	AM154	6	6				
3 3 130 0000000000 4 ISEL1 4 2 1 1 1 1 1 2 1 2 1 3 1 3 1 4 1 4 1 00000000000 ISEL2 4 2 1 1 1 2 2 1 2 2 3 1 3 2 4 1 4 2 00000000000 ISEL3 4 2 1 1 1 3 2 1 2 3 3 1 3 2 4 1 4 2 00000000000 ISEL3 4 2 1 1 1 3 2 1 2 3 3 1 3 3 4 1 4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2	2	130				
000000000000000000000000000000000000	3	3	130				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0000000	000	-				
1 1 1 1 2 1 2 1 3 1 3 1 4 1 4 1 0000000000 ISEL2 4 2 1 1 1 2 3 1 3 2 4 1 4 1 000000000000000000000000000000000000	4		-				
2 1 2 1 3 1 3 1 4 1 4 1 0000000000 ISEL2 4 2 1 1 1 2 2 1 2 2 3 1 3 2 4 1 4 2 0000000000 ISEL3 4 2 1 1 1 3 2 1 2 3 3 1 3 3 4 1 4 2 000000000000000000000000000000000000	12661	4	2				
3 1 3 1 4 1 4 1 0000000000 ISEL2 4 2 1 1 1 2 3 1 3 2 4 1 4 2 00000000000 ISEL3 4 2 1 1 1 3 2 1 2 3 3 1 3 3 4 1 4 2 000000000000 ISEL3 4 2 1 1 1 3 3 1 3 3	2	1	2	1			
4 1 4 1 0000000000 ISEL2 4 2 1 1 1 2 2 1 2 2 3 1 3 2 4 1 4 2 00000000000 ISEL3 4 2 1 1 1 3 2 1 2 3 3 3 1 3 3 4 1 4 2	· 3	i	3	i			
0000000000 ISEL2 4 2 1 1 1 2 2 1 2 2 3 1 3 2 4 1 4 2 0000000000 ISEL3 4 2 1 1 1 3 2 1 2 3 3 1 3 3 4 1 4 2 000000000000000000000000000000000000	4	1	4	1			
1 1 1 2 1 1 1 2 2 1 2 2 3 1 3 2 4 1 4 2 00000000000 ISEL3 4 2 1 1 1 3 2 1 2 3 3 1 3 3	00000000	000	~				
2 1 2 2 3 1 3 2 4 1 4 2 0000000000 ISEL3 4 2 1 1 1 3 2 1 2 3 3 1 3 3 4 1 4 2	13662	4	2	•			
3 1 3 2 4 1 4 2 00000000000 ISEL3 4 2 1 1 1 3 2 1 2 3 3 1 3 3	2	1	2	2			
4 1 4 2 0000000000 ISEL3 4 2 1 1 1 3 2 1 2 3 3 1 3 3 4 1 4 2	3	1	3	2			
000000000 ISEL3 4 2 1 1 1 3 2 1 2 3 3 1 3 3 4 1 4 2	4	1	4	2			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	00000000) 00					
1 1 3 2 1 2 3 3 1 3 3 4 1 4 2	ISEL3	4	2				
	2	1	2	3			
	3	1	3	3			
- I 4 J	4	1	4	3			

.

ORIGINAL PAGE 13 OF POOR QUALITY

1

3

.

•

00000000	000					
ISEL4	4	· 2				
1	1	1	2			
3	,	Э	4			
Ā	1	•	4			
0000000	000					
STOP						
MSDA COI	NFIG	14				
BALLAST	EQU	ALS 20.	50,	100 LBS AT PTS 34, 62		
AMO	6	6		-	•	0
1	1	1.9538		0.	0.	0.
1	5	208.04		1.9538	Ο.	-269.64
2	5	0. 0.		-260.90		-
3	1	ō.		0.	1.9538	0.
3	5	260.90)	0.	•	118117
4	1	0.		-269,64	0.	
4	5	0.		45567.	260.9	Ο.
5 5	5	208328		0.		
6	1	0.		-260.9	Ο.	45967.
6	5	ο.		162968.		
0000000	000	-				
XYZREF	1	3		0.	-97.7335	
0000000	000	307.0		•		
XYZ	5	3				
1	1	259.03	32	-295.276	-75.284	
2	1	259.03	32	295.276	-/0.204	
0000000	0000					
AMR 1	6	6				
0000000	0000	-				
AMB2	6	6				
1	1	.052				
2	2	.052				
0000000	0000	.032				
AMB3	6	6				
1	1	. 13				
2	2	. 13				
0000000	\sim	. 13				
AMB4	6	6				
1	1	. 259				
2	2	. 259				
	2000	. 439				
4	0000					
ISTL1	2	2				
1	1	1	1			
2	1	2	1			
15512		2				
1	ī	1	2			
2	1	2	2			
000000	0000	_				
ISEL3	2	2	2			
1	1	2	3			
0000000	0000	-	-			
ISEL4	2	2				

C-7

.

4. 7

ł

1	1	1	4						
2	1	2	4						
00000000	00								
MODA 14	- • •								
MSUA CUN	P 1 G	14							
DALLASI		ALS 20	J. 50	. 100 LB	5 AI P	15 35, 6	53		
AMU	0				•			-	•
1	1	1.95	38		0.			Ο.	0.
1		269.0	54		0.	-			
2	1	0.			1.953	8		0 .	-259.64
2	5	0.			-260.	90			
3	1	ο.			Q .			1.9538	Ο.
3	5	260.9	30		Q .				
4	1	0.			-269.	64		0.	118117.
4	5	Ο.			45967				
5	1	269.6	54		Ο.			260.9	0.
5	5	20832	28.		Ο.				
6	1	Ο.			-260.	9		O .	45967
6	5	0.			16296	8.			
0000000	0Ō								
XYZREF	1	3							
1	1	307	03		Ο.			-97 7335	
00000000	00				•				
XY7	Ř.	3							
4		355 0	132		- 205	276		- 44 699	
		255 (132		205	278		-44 600	
	n.	000.0			200.			44.030	
4	~								
	e								
	~~								
		e							
AMOZ	9	~~~							
		.052							
2	2	.032							
3	3	052							
00000000	00	-							
AMBJ	6	6							
1	1	. 13							
2	2	. 13							
3	3	. 13							
00000000	00								
AM84	6	6							
1	1	. 259							
2	2	. 259							
3	3	. 259							
00000000	00								
4									
ISEL 1	2	2							
1	1	1	1						
2	1	2	1						
000000000	ò	-	•						
ISEL2	2	2							
	1	1	2						
,	÷	,	2						
00000000	\sim	41	4						
TSEL 2	~	-							
IJELJ	4	4	•						
1	1		3						
2		2	3						
00000000	N N	-							
ISEL4	2	2							
1	1	1	4						
2	1	2	4						
00000000	ю.								
STOP									

and the second
C-8

.

OGR,

Appendix D— Reflective Mesh Coordinates

Appendix D--Reflective Mesh Coordinates ľ

77.6

COORDINATES OF MESH NODAL POINTS

(Inches)

3

BOX NUMBER !

.

•

.

Y

and the second second second second

COORDINATES	x	۷	2
(1, 17)	0.00000	- 168 . 82440	27.15654
(3,15)	9.85383	- 184 . 83509	30.21928
(3,17)	9.85383	- 168 . 82440	27.20818
(5,13)	19.70658	-200.79436	33.64691
(5,15)	19.70658	- 184 . 83509	30.37416
(5,17)	19.70658	- 168 . 82440	27.36306
(7,11)	29.55717	-216.69850	37.43590
(7,13)	29.55717	-200.79436	33.90497
(7,15)	29.55717	- 184 . 83509	30.63222
(7,17)	29.55717	- 168 . 82440	27.62112
(9,9)	39.40451	-232.54399	41.58246
(9,11)	39.40451	-216.65850	37 . 79702
(9,13)	39.40451	-200.79436	34 . 26609
(9,15)	39.40451	- 184 . 83509	30.99334
(9,17)	39.40451	- 168 . 82440	27.98224
(11, 7)	49.24755	-248.32750	46.08259
(11, 9)	49.24755	-232.54399	42.04649
(11,11)	49.24755	-216.69850	38.26105
(11,13)	49.24755	-200.79436	34.73012
(11,15)	49.24755	- 184 . 83509	31.45737
(11,17)	49.24755	- 168 . 82440	28.44627
(13, 5)	59.08520	-264.04587	50.93209
(13, 7)	59.08520	-248.32750	46.64933
(13, 9)	59.08520	-232.54399	42.61323
(13,11)	59.08520	-216.69850	38.82779
(13,13)	59.08520	-200.79436	35.29686
(13,15)	59.08520	- 184 . 83509	32.02411
(13,17)	59.08520	- 168 . 82440	29.01301
(15, 3)	68.91642	-279.69616	56.12656
(15, 5)	68.91642	-264.04587	51.60129
(15, 7)	68.91642	-248.32750	47.31852
(15, 9)	68.91642	-232.54399	43.28242
(15,11)	68.91642	-216.69850	39.49698
(15,13)	68.91642	-200.79436	35.96605
(15,15)	68.91642	- 184 . 83509	32.69330
(15,17)	68.91642	- 168 . 82440	29.68220
(17, 1)	78.74015	-295.27559	61.66144
(17.3)	78.74015	-279.69616	56.89792
(17, 5)	78.74015	-264.04537	52.37265
(17, 7)	78.74015	-248.32750	48.08989
(17, 9)	78.74015	-232.54399	44.05379
(17, 11)	78.74015	-216.69850	40.26835
(17,13)	78.74015	-200.79436	36.73742
(17, 15)	78.74015	- 184 . 83509	33.46467
(17,17)	78.74015	- 168 . 82440	30.45357

7

.....

I

in the

BOX NUMBER 2

COORDINATES	X	Y	Z
(1, 1)	78.74015	-295.27559	61.66144
(1,3)	78.74015	-279.69616	56.89/92
(1, 5)	78.74015	-264.04587	52.37265
(1, 7)	78.74015	-248.32/50	48.08989
(1, 9)	18.74015 78.74015	-232.34399	44.03375
(1,11)	78.74013	-210.09850	40.20035 36 73742
(1, 13)	78.74015	- 184 83509	33 46467
(1, 15)	78.74015	- 169 82440	30 45357
(1,1)	95 81158	-295 27559	63.24606
(3, 1)	95.81158	-279.69616	58.48254
(3, 5)	95.81158	-264.04587	53.95726
(3, 7)	95.81158	-248.32750	49.67450
(3,9)	95.81158	-232.54399	45.63840
(3,11)	95.81158	-216.69850	41.85296
(3,13)	95.81158	-200.79436	38.32203
(3,15)	95.81158	- 184 . 83509	35.04928
(3,17)	95.81158	- 168 . 82440	32 . 038 18
(5,1)	112.85181	-295.27559	65.13688
(5,3)	112.85181	-279.69616	60.37336
(5,5)	112.85181	-264.04587	55.84809
(5,7)	112.85181	-248.32750	51.56533
(5,9)	112.85181	-232.54399	47.52923
(5,11)	112.85181	-216.69850	43.74379
(5,13)	112.85181	- 194 93509	40.21200
(5, 15)	112.00101	- 169 83440	33 92901
(3, 17)	120 85558	-295 27559	67 33150
(7, 1)	129.85558	-279 69616	62.56798
(7, 5)	129.85558	-264.04587	58.04270
(7, 7)	129.85558	-248.32750	53.75994
(7, 9)	129.85558	-232.54399	49.72384
(7,11)	129.85558	-216.69850	45.93840
(7,13)	129.85558	-200.79436	42.40747
(7,15)	129.85558	- 184 . 83509	39.13472
(7.17)	129.85558	- 168 . 82440	36.12362
(9,1)	146.81780	-295.27559	69.82712
(9,3)	146.81780	-279.69616	65.06360
(9,5)	146.81/80	*264.0438/	DU. 33833 66 96667
(9,7)	140.81780	-248.32/30	JU.2333/ 53 24047
(9, 9)	140.81/80	-216 60050	52.21547 Ag A3403
(9,11)	140.01780	-210.05650	48.43403
(9,13)	146.61760	- 184 93509	41 63035
(9,13)	146 81780	- 168 82440	38.61925
(11, 1)	163 73351	-295.27559	72.62065
(11, 3)	163.73351	-279.69616	67.65714
(11, 5)	163.73351	-264.04587	63.33186
(11, 7)	163.73351	-248.32750	59.04910
(11, 9)	163.73351	-232.54399	55.01300
(11, 11)	163.73351	-216.69850	51.22756
(11,13)	163.73351	-200.79436	47.69663
(11,15)	163.73351	- 184 . 83509	44.42388
(11,17)	163.73351	- 168 . 82440	41.41278
(13, 1)	180.59795	-295.27559	75.70866

ORIGINAL PAGE IS

Ľ

1

ł

(12 5)	160.59795	-264.04587	66 . 4 1987
(13, 3)	180 59795	-248.32750	62.13711
(13, 7)	180 59795	-232.54399	58.10100
	100 50795	-216.69850	54.31557
(13,11)	400 60705	-200 79436	50.78464
(13, 13)		- 184 83509	47.51189
(13, 15)	180.39/93		44 50079
(13,17)	180.59795	- 100.02440	70 09743
(15, 1)	197.40655	-295.27559	75.00745
(15, 3)	197 . 4Q655	-279.69616	74.32351
(15, 5)	197.40655	-264.04587	69.79863
(15 7)	197.40655	-248.32750	65.5158/
(15 9)	197.40655	-232.54399	61.47977
(15, 11)	197 40655	-216.69850	57.69433
(15,11)	197 40655	-200.79436	54.16340
(15, 15)	197 40655	- 184 . 83509	50.89065
(15,15)	197 40655	- 168.82440	47.87955
(15,17)	214 15496	-295.27559	82.75297
(n, n)	214.15450	-279 69616	77.98945
(17, 3)	214.13490	-264 04587	73.46417
(17, 5)	214.15496	-248 22750	69.18141
(17, 7)	214.15496	-240.32730	65 14531
(17, 9)	214.15496	-232.04399	61 25987
(17,11)	214.15496	-216.69850	57 00004
(17,13)	214.15496	-200.79436	57.62834 EA EE610
(17, 15)	214.15496	- 184 . 83509	54.55619
(17, 17)	214.15496	- 168 . 82440	51.54509

,

·

*

-

.

• •

.

BOX NUMBER 3

.

COORDINATES	×	¥	Z
• • • • •		AAC A755A	00 75207
(1, 1)	214.15496	-295.27559	82.13231 77.09046
	214.13490	-279.09010	77 46417
	214.15450	-248 32750	69 18141
(1, 7)	211.15450	-232 54399	65 14531
(1, 3)	214.15496	-216 69850	61 35987
(1, 11)	214.15496	-200 79436	57 82894
(1,13)	214.15450	- 184 83509	54 55619
(1, 15)	214.15496	- 168 82440	51 54509
(3,1)	230.83674	-295.27559	86,70049
(3, 3)	230.83674	-279.69616	81.93697
(3, 5)	230.83674	-264.04587	77.41169
(3, 7)	230.83674	-248.32750	73.12893
(3,9)	230.83674	-232.54399	69.09283
(3,11)	230.83674	-216.69850	65.30739
(3,13)	230.83674	-200.79436	61.77646
(3,15)	230.83674	- 184 . 83509	58.50371
(3,17)	230.83674	- 168 . 82440	55.49261
(5.1)	247.45028	-295.27559	90.92601
(5,3)	247.45028	-279.69616	86.16249
(5,5)	247.45028	-264.04587	81.63722
(5,7)	247.45028	-248.32750	77.35445
(5,9)	247.45028	-232.54399	73.31835
(5,11)	247.45028	-216.69850	69.53291
(5,13)	247.45028	-200.79436	66.00198
(5,15)	247.45028	- 184 . 83509	62.72923
(5,17)	247.45028	- 168 . 82440	59.71813
(7, 1)	263.99190,	-295.27559	95.42489
(7, 3)	263.99190	-279,69010	90.00137
(1, 2)	203.99190	-204.04387	01 05222
(7,7)	203.99190	-248.32730	77 04702
	203.99190	-232.34333	77.01723
(7,11)		-210.03630	70 50096
(7,13)	263.33150	- 184 93509	67 22811
(7, 13)	263.33130	- 168 82440	64 21701
	200.35150	-295 27559	100 19230
(9, 3)	280 458 15	-279 69616	95 42878
(9,5)	280 458 15	-264.04587	90,90350
(9,7)	280.45815	-248.32750	86.62074
(9,9)	280.45815	-232.54399	82.58464
(9,11)	280.45815	-216.69850	78.79920
(9,13)	280.45815	-200.79436	75.26827
(9,15)	280.45815	- 184 . 83509	71.99552
(9,17)	280.45815	- 168 . 82440	68.98442
(11, 1)	296.84580	- 295 . 27559	105.22326
(11, 3)	296.84580	-279.69616	100.45974
(11, 5)	296.84580	-264.04587	95.93446
(11, 7)	296.84580	-248.32750	91.65170
(11, 9)	296.84580	-232.54399	87.61560
(11, 11)	296.84580	-216.69850	83.83016
(11, 13)	296.84580	-200.79436	80.29923
(11, 15)	296.84580	- 184 . 83509	77.02648
(11, 17)	296.84580	- 168 . 82440	74.01538
(13, 1)	313.15188	-295.27559	110.51267

ORIGINAL PAGE IN OF POOR QUALITY

-

4

÷.

.

ŧ

i de la

. • •	Sec.	111	19.19	

and the second
(13, 5)	313.15188	-264.04587	101.22388
(13.7)	313.15188	-248.32750	96.94111
(13.9)	313.15188	-232.54399	92 . 9050 1
(13, 11)	313.15188	-216.69850	89.11957
(13 13)	313.15188	-200.79436	85.58864
(13 15)	313 15188	-184 83509	82.31589
(13,13)	313 15100	- 168 82440	79 30479
	313.13180	-205 27550	116 05532
(15, 1)	323.37303	-279 69616	111 29181
(15, 3)	323.37303	-264 04597	106 76653
(15, 5)	329.37303	-249 20750	102 48377
(15, 7)	329.37363	-246.32730	00 44767
(15, 9)	329.37363	-232.54399	98.44/8/
(15,11)	329.37363	-216.69850	94.66223
(15,13)	329.37363	-200.79436	91.13130
(15,15)	329.37363	- 184 . 83509	87.85855
(15,17)	329.37363	- 168 . 82440	84.84745
(17, 1)	345.50854	-295.27559	121.84593
(17, 3)	345.50854	-279.69616	117.08241
(17, 5)	345.50854	-264.04587	112.55714
(17, 7)	345.50854	-248.32750	108.27438
(17, 9)	345.50854	-232.54399	104 . 23828
(17. 1)	345.50854	-216.69850	100.45284
(17.13)	345.50854	-200.79436	96.92191
(17, 15)	345.50854	- 184 . 83509	93.64916
(17.17)	345.50854	- 168 . 82440	90.63806
(17,15) (17,17)	345.50854 345.50854	- 184 . 83509 - 168 . 82440	93.64916 90.63806

١

•.

1

. 🕴

FORM 2401/

-

BOX NUMBER 4

COORDINATES	X	¥	z
			101 04503
(1, 1)	345.50854	-293.27559	121.84393
	345.50854	-264 04587	112 55714
(1, 5)	345.50854	- 248 32750	108.27438
	345 50854	-232.54399	104.23828
	345.50854	-216.69850	100.45284
(1, 13)	345.50854	-200.79436	96.92191
(1,15)	345.50854	- 184 . 83509	93.64916
(1,17)	345.50854	- 168 . 82440	90.63806
(3, 1)	361.55178	-295.27559	127.87817
(3,3)	361.55178	-279.69616	123.11465
(3,5)	361.55178	-264.04587	118.58938
(3,7)	361.55178	-248.32750	114.30661
(3,9)	361.55178	-232.54399	110.27051
(3,11)	361.55178	-216.69850	106.48507
(3,13)	361.55178	-200.79436	102.93413
(3, 15)	301.331/8	- 184.83309	95.00135
(3, 17)	301.331/0	- 108.02440	134 14754
(5, 1)	377 50385	-279 69616	129 38402
(5,3)	377 50385	-264 04587	124.85874
(5, 3)	377 50385	-248.32750	120.57598
(5, 7)	377 50385	-232.54399	116.53988
(5,11)	377.50385	-216.69850	112.75444
(5,13)	377.50385	-200.79436	109.22351
(5,15)	377.50385	- 184 . 83509	105.95076
(5,17)	377.50385	- 168 . 82440	102.93966
(7, 1)	393.36289	-295.27559	140.64863
(7,3)	393.36289	-279.69616	135.88511
(7,5)	393.36289	-264.04587	131.35983
(7,7)	393.36289	-248.32750	127.07707
(7,9)	393.36289	-232.54399	123.04097
(7,11)	393.36289	-216.69850	119.25553
(7,13)	393.36289	-200.79436	113.72400
(7, 15)	393.30289	- 164 . 83309	109 44075
(7, 17)	393.30209 Ang 12727	- 100.02440	147 37601
(9, 1)	409 12727	-279 69616	142.61249
(9.5)	409.12727	-264.04587	138.08722
(9, 7)	409.12727	-248.32750	133.80446
(9,9)	409.12727	-232.54399	129.76836
(9,11)	409.12727	-216.69850	125.98292
(9,13)	409.12727	-200.79436	122.45199
(9,15)	409.12727	- 184 . 83509	119.17924
(9,17)	409.12727	- 168 . 82440	116.16814
(11, 1)	424.79555	~295.27559	154.32429
(11, 3)	424.79555	-279.69616	149.56077
(11, 5)	424.79555	-264.04587	145.03549
	424./9000	-248.32/30	140.73273
(11, 9)	424.19000 A1A 70555	-216 6096A	130.71003
(11,11)	424.75000	-200 79436	129 40026
(11 15)	424 79555	- 184 . 83509	126 12751
(11.17)	424.79555	- 168 . 82440	123.11641
(13, 1)	440.36648	-295.27559	161.48806

ORIGINAL FACE IS

por states

		 · •		• •
	•			

4

(13, 5)	440.36648	-264.04587	152 19926
(13, 7)	440.36648	-248.32750	147.91650
(13, 9)	440.36648	-232.54399	143.88040
(13,11)	440.36648	-216.69850	140.09496
(13,13)	440.36648	-200.79436	136 56403
(13,15)	440.36648	- 184 . 83509	133.29128
(13,17)	440.36648	- 168 . 82440	130.28018
(15, 1)	455.83902	-295.27559	168.86199
(15, 3)	455.83902	-279.69616	164.09847
(15, 5)	455.83902	-264.04587	159.57319
(15, 7)	455.83902	-248.32750	155.29043
(15, 9)	455.83902	-232.54399	151.25433
(15,11)	455.83902	-216.69850	147.46889
(15,13)	455.83902	-200.79436	143.93796
(15,15)	455.83902	- 184 . 83509	140.66521
(15,17)	455.83902	- 168 . 82440	137.65411
(17, 1)	471.21226	-295.27559	176.44076
(17, 3)	471.21226	-279.69616	171.67724
(17, 5)	471.21226	-264.04587	167.15196
(17, 7)	471.21226	-248.32750	162.86920
(17, 9)	471.21226	-232.54399	158.83310
(17,11)	471.21226	-216.69850	155.04766
(17,13)	471.21226	-200.79436	151.51673
(17,15)	471.21226	- 184 . 83509	148.24398
(17,17)	471.21226	- 168 . 82440	145.23288

ORIGINAL PACE IS OF POOR QUALITY

•

1

÷

BOX NUMBER 5

· · · · · ·

COOCDINATES	x	¥	2
(1 1)	A71 21226	-295 27559	176.44076
	471 21226	-279.02616	171.67724
(1, 5)	471.21226	-264.04587	157.15196
	471 21226	-248.32750	162.86920
	471 21226	-232.54399	158.83310
	471 21226	-216.69850	155.04766
(1,13)	471.21226	-200.79436	151.51673
(115)	471.21226	- 184 . 83509	148.24398
(1,17)	471.21226	~ 168 . 82440	145.23288
(3,3)	486.48335	-279.69616	179.45451
(3, 5)	486.48335	-264.04587	174.91923
(3, 7)	486.48335	-248.32750	170.6 647
(3, 9)	486.48335	-232.54399	166.6.037
(3,11)	486.48335	-216.69850	162.82493
(3,13)	486.48335	-200.79436	159.29400
(3,15)	486.48335	- 184 . 83509	156.02125
(3,17)	486.48335	- 168 . 82440	153.01015
(5,5)	501.65388	-264.04587	182.90088
(5,7)	501.65388	-248.32750	178.61812
(5,9)	501.65388	-232.54399	174.58201
(5,11)	501.65388	-216.69850	170.79657
(5,13)	501.65388	-200.79436	167.26565
(5,15)	501.65388	- 184 . 83509	163.99290
(5,17)	501.65388	- 168 . 82440	160.98180
(7,7)	516.72345	-248.32750	186.77904
(7,9)	516.72345	-232.54399	182.74294
(7,11)	516.72345	-216.69850	178.95750
(7,13)	516.72345	-200.79436	175.42657
(7,15)	516.72345	- 184 . 83509	172.15382
(7,17)	516.72345	- 168 . 82440	169.14272
(9,9)	531.69176	-232.54399	191.08812
(9,11)	531.69176	-216.69850	187.30268
(9,13)	531.69176	-200.79436	183.77175
(9,15)	531.69176	- 184 . 83509	180.49900
(9,17)	531.69176	- 168 . 82440	177.48790
(11,11)	546.55866	-216.69850	195.82719
(11,13)	546.55866	-200.79436	192.29627
(11,15)	546.55866	- 184 . 83509	189.02352
(11, 17)	546.55866	- 168 - 82440	186.01241
(13,13)	561.32412	-200.79436	200.99529
(13, 15)	561.32412	- 184. 83509	197.72254
(13,17)	561.32412	- 168.82440	194./1144
(15,15)	575.98824	- 184 . 83309	200.33133
(15,17)	575.98824	- 168.82440	203.38023
(17,17)	220.22113	-108.82440	212.01422

ORIGINAL FIRE

. **)**

_

۰. **۴**

COORDINATES	X	¥	Z
(1, 1)	0.00000	- 168 . 82440	27.15654
(1.3)	0.00000	- 152 . 76453	24.41009
(1,5)	0.00000	-136.66113	21.93181
(1, 7)	0.00000	- 120. 5 1839	19.72389
(1,9)	0.00000	- 104 . 34063	17.78944
(1,11)	0.00000	-88.13230	16.13047
(1,13)	0.00000	-71.09798	14.74893
(1,15)	0.00000	-55.64232	13.64642
(1,17)	0.00000	-39.37008	12.82426
(3, 1)	9.85383	- 168 . 82440	27.20818
(3,3)	9.85383	-152.76453	24.461/2
(3,5)	9.65383	- 136.66113	21.98325
(3,7)	9.85383	-120.51839	19.//553
(3,9)	9.85383	- 1/)4 . 34063	17.04100
(3,11)	9.85383	-74 80709	14 90056
	3.83383	- 55 64333	13 69905
(3, 13)	9.00000	-39 37008	12 87589
(3,1))	19 70658	- 168 . 82440	27.36306
(5 3)	19.70658	- 151. 76453	24.61660
(5,5)	19.70658	-136.66113	22.13813
(5, 7)	19.70658	- 120.51839	19.93041
(5,9)	19.70658	- 104 . 34063	17.99596
(5,11)	19.70658	-88.13230	16.33699
(5, 13)	19.70658	-71.89798	14.95544
(5,15)	19.70658	-55.64232	13.85293
(5,17)	19.70658	-39.37008	13.03077
(7, 1)	29.55717	- 168.82440	27.62112
(7,3)	29.55717	- 152.76453	24.87466
(7,5)	29.55717	-136.66113	22.39019
(7, 7)	29.55/1/	- 120. 31839	20.10047
	29.00/1/	- 88 13230	16 59505
(7,11)	29.55717	-71 89798	15.21350
(7,15)	29.55717	-55.64232	14.11099
(7, 17)	29.55717	-39.37008	13.28883
(9, 1)	39.40451	- 168 . 82440	27.98224
(9.3)	39.40451	- 152 . 76453	25.23578
(9,5)	39.40451	-136.66113	22.75731
(9,7)	39.40451	- 120.51839	20.54959
(9,9)	39.40451	- 104 . 34063	18 61514
(9,11)	39.40451	-88.13230	16.95617
(9,13)	39.40451	-71.89798	15.5/462
(9,15)	39.40451	-55.64232	14.4/212
(9,17)	39.40451	-39.37008	13.04555
(11, 1)	49.24755	- 152 76453	25 69982
(11, 3)	49 24755	- 136 . 66 1 13	23.22134
(11, 7)	49.24755	- 120.51839	21.01362
(11, 9)	49.24755	- 104 . 34063	19.07917
(11, 11)	49.24755	-88.13230	17 42020
(11, 13)	49.24755	-71.89798	16.03866
(11, 15)	49.24755	- 55 . 64232	14.93615
(11, 17)	49.24755	-39.37008	14.11399
(13, 1)	59.08520	- 168 . 82 140	29.01301

ORIGINAL FACE IS OF POOR QUALITY

· 1

1

en en ser en ser

.

• e **

 .

~ -

(13.3)	59.08520	- 152 . 76453	26.26655
(13.5)	59.08520	- 136.66113	23.78808
(13, 7)	59.08520	- 120.51839	21.58036
(13, 9)	59.08520	- 104 . 34063	19.64591
(13, 11)	59.08520	-88.13230	17.98694
(13,13)	59.08520	-71.89798	16.60539
(13, 15)	59.08520	-55.64232	15.50289
(13, 17)	59.08520	-39.37008	14.68072
(15.1)	68.91642	- 168 . 82440	29.68220
(15, 3)	68.91642	- 152.76453	26.93575
(15, 5)	68.91642	- 136.66113	24.45727
(15.7)	68.91642	- 120.51835	22.24956
(15, 9)	68.91642	- 104 . 34063	20.31510
(15, 11)	68.91642	-88.13230	18.65614
(15,13)	68.54642	-71.89798	17.27459
(15,15)	68.9:542	-55.64232	16.17208
(15,17)	68.91642	-39.37008	15.34992
(17, 1)	78.74015	- 168 . 82440	30.45357
(17. 2)	78.74015	- 152 . 76453	27.70711
(17, 5)	78.74015	- 136.66113	25.22864
(17, 7)	78.74015	- 120 . 5 1839	23.02092
(17, 9)	78.74015	- 104 . 34063	21.08647
(17,11)	78.74015	-88.13230	19.42750
(17,13)	78.74015	-71.89798	18.04595
(17,15)	78.74015	- 55 . 64232	16.94344
(17.17)	78.74015	-39.37008	16.12128

11

٠

· 14

ORIGINAL FACE E

.

.

.

COORDINATES	X	Y	2
(1 1)	78.74015	- 168 . 82440	30.45357
(1,3)	78.74015	- 152 . 76453	27.70711
(1,5)	78.74015	-136.66113	25.22864
(1,7)	78.74015	- 120 . 51839	23.02092
(1,9)	78.74015	- 104 . 34063	21.08647
(1,11)	78.74015	-88.13230	19.42750
(1,13)	78.74015	-71.89798	18.04595
(1, 15)	78.74013	-33.04232	10.94344
	95 81159	- 168 82440	32 03818
(3, 1)	95 81158	- 152 76453	29.29172
(3,5)	95.81158	-136.66113	26.81325
(3, 7)	95.81158	-120.51839	24.60553
(3,9)	95.81158	- 104 . 34063	22.67108
(3,11)	95.81158	-88.13230	21.01211
(3,13)	95.81158	-71.89798	19.63057
(3,15)	95.81158	-55.64232	18.52806
(3,17)	95.81158	-39.37008	17.70590
(5, 1)	112.53181	- 100.02440	33.92901
(5,3)	112.05101	-136 66113	28.70408
(5, 7)	112.85181	- 120 . 5 1839	26.49636
(5,9)	112.85181	- 104 . 34063	24.56191
(5,11)	112.85181	-68.13230	22.90294
(5,13)	112.85181	-71.89798	21.52139
(5,15)	112.85181	-55.64232	20.41888
(5,17)	112.85181	-39.37008	19.59672
(7, 1)	129.85558	- 168.82440	30.12302
(7, 3)	129.00000	- 136 66113	30 89869
(7, 3)	129 85558	- 120 51839	28.69097
(7, 9)	129.85558	- 104 - 34063	26.75652
(7.11)	129.85558	-88.13230	25.09755
(7,13)	129.85558	-71.89798	23.71600
(7,15)	129.85558	-55.64232	22.61350
(7,17)	129.85558	-39.37008	21.79133
(9, 1)	146.81780	- 168.82440	38.61925
(9, 3)	140.81/80	- 152. /0453	33.01213
(9,5)	146 81780	- 120 5 1839	31.18660
(9,9)	146.81780	- 104 . 34063	29.25215
(9,11)	146.81780	-88 13230	27.59318
(9,13)	146.81780	-71.89798	26.21163
(9,15)	146.81780	-55.64232	25.10912
(9,17)	146.81780	- 39 . 37008	24.28696
(11, 1)	163.73351	- 168 . 82440	41.41278
(11, 3)	163 73351	- 152.76453	38.66632
(11, 5)	163./3351	- 130.05113	33 06013
(11, 7)	103./3331 463.73351	- 120. 31635	33. 30013
(11, 3)	163.73351	-88 13230	30.38671
(11.13)	163.73351	-71.89798	29.00516
(11, 15)	163.73351	-55.64232	27 90265
(11, 17)	163 73351	-39.37008	27.08049
(13, 1)	180.59795	- 168 . 82440	44 50079

original page 19 of poor quality

ъ.

FORM 2401/

-

~

ŧ

4

(13, 3)	180.59795	- 152 . 76453	41.75433
(13, 5)	180.59795	-136.66113	39.27585
(13.7)	180.59795	- 120. 5 1839	37.06814
(13, 9)	180.59795	- 104 . 34063	35.13368
(13, 11)	180.59795	-88.13230	33.47472
(13, 13)	180.59795	-71.89796	32.09317
(13, 15)	180.59795	-55.64232	30.99066
(13, 17)	180.59795	-39.37008	30.16850
(15.1)	197.40655	- 168 . 82440	47.87955
(15, 3)	197.40655	- 152.76453	45.13310
(15. 5)	197.40655	- 136.66113	42.65462
(15, 7)	197.40655	- 120 . 5 1839	40.44690
(15, 9)	197.40655	- 104 . 34063	38.51245
(15.11)	197.40655	-88.13230	36.85348
(15,13)	197.40655	-71.89798	35.47194
(15, 15)	197.40655	-55.64232	34.36943
(15,17)	197.40655	-39.37008	33.54727
(17, 1)	214.15496	- 168 . 82440	51.54509
(17.3)	214.15496	- 152.76453	48.79863
(17.5)	214.15496	- 136.66t 13	46.32016
(17.7)	214.15496	- 120 . 5 1839	44.11244
(17, 9)	214.15496	- 104 . 34063	42.17799
(17.11)	214.15496	-88.13230	40.51302
(17.13)	214.15496	-71.89798	39. 13748
(17.15)	214.15496	-55.64232	38.03497
(17.17)	214.15496	-39.37008	37.21281

.

.

ORIGINAL PAGE IS

÷

4

* 7 ×

•

_

ORIGINAL PAGE 13 OF POOR QUALITY

COORDINATES	X	¥	Z
(1, 1)	214.15496	- 168 . 82440	51.54509
(1,3)	214.15496	- 152 . 76453	48.79863
(1,5)	214.15496	-136.66113	46.32016
(1,7)	214.15496	- 120 . 51839	44.11244
(1,9)	214.15496	- 104 . 34063	42 17799
(1,11)	214.15496	-88.13230	40.51902
(1,13)	214.15496	-71.89798	39.13/48
(1,15)	214.15496	- 33.04232	38.0349/
(1,17)	214.15496	- 39. 37008	37.21201
(3, 1)	230.83674	- 108.82440	00.45201 60.74646
(3,3)	230.83674	~152 /6453	52 /4013
(3, 5)	230.83674	- 130.00113 - 100 51930	JU. 20700
(3, 7)	230.83074	- 120. 31833	46 12551
(3, 9)	230.83074	- 104.34083	44 46654
(3,11)	230.83674	-71 89798	43 08499
(3,15)	230 83674	-55.64232	41.98249
(3,17)	230.83674	- 39, 37008	41.16032
(5 1)	247.45028	- 168.82440	59.71813
(5.3)	247.45028	- 152 . 76453	56.97168
(5,5)	247.45028	- 136 . 66 1 13	54.49320
(5, 7)	247.45028	- 120 . 5 1839	52 28549
(5,9)	247.45028	- 104 . 34063	50.35103
(5,11)	247.45028	-88.13230	48.69207
(5, 13)	247.45028	-71.89798	47 31052
(5,15)	247 45028	-55.64232	46.20801
(5,17)	247.45028	-39.37008	45.38585
(7, 1)	263 99190	- 168 . 82440	64.21701
(7,3)	263.99190	- 152.76453	61.47056
(7,Ε)	263.99190	-136.66113	58.99208
(7,7)	263.99190	- 120 . 5 1839	56.78436
(7,9)	263 99190	~ 104 . 34063	54.84991
(7.11)	263.99190	-88.13230	53.19094
(7,13)	263.99190	-71 89798	51.80940
(7,15)	263.99190	-55.64232	50.70689
(7,17)	263.99190	- 39 . 37008	49.88473
(9,1)	280.45815	- 168 . 82440	68 98442
(9,3)	280.45815	- 152 76453	66.23796
(9,5)	280.45815	-136.66113	03.73949
(9,7)	280.45815	- 120. 51839	01.331// 50.64722
(9, 5)	280.45815	- 104 . 34063	39.31/32
(9,11)	280.45815	-88.13230	37 93833 E6 E3694
(9,13)	280.45815	-/1.89/98	30.37081
(9,15)	280.45815	-33.04232	53.47430
(9,1/)	280.45815	- 168 82440	34 03214 74 01529
(11, 1)	230.0430U 306.04500	- 100.0244U - 153 76453	71 36993
(11, 3) (44 6)	230.0438V 106 94590	- 132, /0433 - 136, 66113	/1.2003J 60 700/6
(11, 0)	230.0430V 306 84500	- 130.00113	66 5043
	130.0430U 106 9150A	- 104 24062	64 64070
(+ + , 3)	230.0430V 206 9460A	- AB 13330	67 0907 H
(11, 11)	230.0430U 206 8450A	- 00 1323V - 7 + 80700	61 60777
(11,13)	430.0430V 306 0450A	-55 6A000	60 60674
(11,10)	230.04300 206 8450A	-30 37009	50 69210
(12,17)	4 30.0430V 213 16199	- 169 83440	70 30470
(13, 1)	313.13100	- 100.02440	13 30413

D-14

•

FORM 2401/

(13 3)	313.15188	- 152.76453	76.55834 74.07986
	313 15188	- 136 . 66 1 1 3	74.07900
(13, 5)	212 15188	- 120.5;839	71.8/215
(13, 7)	313.15100	- 104 . 34063	69.93769
(13, 9)	313.15188	-88 13230	68.27873
(13,11)	313.15188	-71 89798	66.89718
(13,13)	313.15188	-55 64232	65.7946?
(13,15)	313.15188		64.97251
(13, 17)	313.15188	-39.37008	84 84745
(15 1)	329.37363	- 168.82440	82 10099
(15, 1)	329, 37363	- 152 . 76453	70 62252
(13, 3)	329.37363	- 136 . 66 1 13	73.02232
(15, 5)	329 37363	- 120.51839	//.41480
(15, 7)	329 37363	- 104 . 34063	75.48035
(15, 9)	229.07363	-88.13230	73.82138
(15,11)	229.01000	-71.89798	72.43983
(15,13)	329,37303	-55.64232	71.33732
(15,15)	329.37363	-29 37008	70.51516
(15,17)	329.37363	450 92440	90,63806
(17, 1)	345.50854	- 108. 82440	87.89160
(17.3)	345.50854	- 152. /6455	85 #1313
(17 5)	345.50854	-136.66113	92 20541
(17, 7)	345.50854	- 120 . 5 1839	04 37095
(17 9)	345.50854	- 104 . 34063	81.27095
	345.50854	-88.13230	/9.01199
(17,11)	345 50854	-71.83798	/8.23044
(17,13)	245 50854	-55.64232	77.12793
(17,15)	345 50854	-39.37008	76.30577
(17,17)	345.30854		

ORIGINAL FAGE IS

D-12

COORDINATES	X	Y	Z
(1, 1)	345.50854	- 168 . 82440	90.63806
(1,3)	345.50854	-152.76453	87.89160
(1, 5)	345.50854	-136.66113	85.41J1J
(1, 7)	345.50854	- 120. 51839	83.20341
(1,9)	345.50854	~ 104 . 34063	81.27095
(1,11)	345.50854	-68.13230	79.01139
	343.30834	-/1.83/36	78.23044
	343.30834	-30,37009	76 20577
	345.50854	- 168 82440	96 67029
(3, 1)	361 55178	- 152 76453	93 92384
(3, 5)	361 66178	- 136 66113	91 44536
(3, 5)	361 55170	- 120 5 1839	89 23765
(3, 7)	361 55178	- 104 34063	A7 30319
(3, 5)	361 55178	-88 13230	85 64423
(3,11)	361 55178	-71 89798	84.26268
(3.15)	361 55178	-55.64232	83 16017
(3,10)	361 55178	-39 37008	82.33801
(5, 1)	377 50385	- 168 . 82440	102.93966
(5, 3)	377 50385	- 152, 76453	100, 19321
(5,5)	377.50385	- 136 . 66 1 13	97.71473
(5, 7)	377 50385	- 120, 51839	95.50701
(5, 9)	377.50385	- 104 . 34063	93.57256
(5,11)	377.50385	-88, 13230	91.91359
(5.13)	377 50385	-71.89798	90.53205
(5,15)	377 50385	-55.64232	89.42954
(5,17)	377.50385	-39,37008	88.60738
(7, 1)	393.36289	- 168 . 82440	103.44075
(7,3)	393.36289	- 152. 76453	106.69429
(7, 5)	393.36289	- 136 . 66 1 13	104.21582
(7, 7)	393.36289	- 120.51839	102.00810
(7.9)	393.36289	- 104 . 34063	109.07365
(7,11)	393.36289	-88.13230	98.41468
(7 13)	393.36289	-71.89798	97.03313
(7,15)	393.36289	-55.64232	95.93063
(7, 17)	393.36289	-39.37008	95.10846
(9, 1)	409.12727	- 168 . 82440	116 16814
(9,3)	409.12727	- 152 . 76453	113.42168
(9,5)	409.12727	- 136.66113	110.94321
(9,7)	409.12727	- 120 . 5 1839	108 73549
(9,9)	409.12727	- 104 . 34063	106.80104
(9,11)	409.12727	-88.13230	105.14207
(9,13)	409.12727	-71.89798	103.76052
(9,15)	409.12727	-55.64232	102.65801
(9,17)	409.12727	-39.37008	101.83585
(11, 1)	424.79555	- 168 . 82440	123.11641
(11, 3)	424.79555	- 152 . 76453	120.36995
(11, 5)	424.79555	- 136.66113	117.89148
(11, 7)	424.79555	- 120.51839	115.68376
(11, 9)	424.79555	- 104 . 34063	113.74931
(11, 11)	424.79555	-88.13230	112 09034
(11,13)	424.79555	-71.89798	110.70879
(11,15)	424.79555	-55.64232	109.60629
(11, 17)	424.79555	-39.37008	108.78412
(13, 1)	440.36648	- 168 . 82440	130.28018

/ ...

ORIGINAL PAGE I

FORM 2401/

.

		1		
	110 05549	- 152, 76453	127.53372	
(13, 3)	440.30048	- 136 66113	125.05525	
(13, 5)	440.36646	100.51939	122.84753	
(13, 7)	440.36648	- 120. 31833	120 91308	
(13.9)	440.36648	- 104 . 34063	110 25411	
(13 11)	440.36648	-88.13230	417 87257	
(13, 13)	440.36648	-71.89798	117.87257	
(12,15)	440.36648	-55.64232	115.77000	
(13,13)	440.36648	- 39 . 37008	113.94/90	
	455.83902	- 168 . 82440	137.83411	
(15, 1)	455 83902	- 152 . 76453	134.90/65	
(15, 3)	455.0000	- 136 . 66 1 13	132.42918	
(15, 5)	433.83302	- 120, 51839	130.22146	
(15, 7)	433.83904	- 104 . 34063	128.28701	
(15, 9)	433.83902	-88 13230	126.62804	
(15,11)	433.83902	-71 89798	125.24649	
(15,13)	455.83902	-55 64232	124 . 14399	
(15,15)	455.83902	20.27008	123.32182	
(15,17)	455.83902	-35.37000	145.23288	
(17, 1)	471.21226	- 108.82440	142 48642	
(17.3)	471.21226	- 152.78453	140 00795	
(17.5)	471.21226	- 136.68113	137 80023	
(17.7)	471.21226	-120.51839	125 96578	
(17 9)	471.21226	- 104 . 34063	133.00070	
(17 11)	471.21226	-88.13230	134.20081	
(47 43)	471.21226	-71.89798	132.82327	
(17,13)	471.21226	-55.64232	131.72276	
(17,10)	471 21226	-39.37008	130.90060	
(17,17)	477721220			

•

D-17

ORIGINAL PAGE IS

Þ	
<u>بن</u> 80	

COORDINATES	x	Y	Z
(1, 1)	471.21226	- 168 . 82440	145.23288
(1,3)	471.21226	- 152.76453	142.48642
(1,5)	471.21226	- 136.66113	140.00/55
(1, 7)	471.21226	··· 120.51839	137.80023
	471.21226	- 104.34003	133.80378
	4/1.21220	-26.13230	134.20081
	4/1.21220		131 73376
	4/1.21220	- 30 . 37008	130 90060
	4/1.41220	- 169 82440	153 01015
(3, 1)	486 48335	- 152 76453	150.26369
(3, 5)	486 48335	- 136, 66113	147.78522
(3, 5)	486.48335	- 120. 51839	145.57750
(3 9)	486.48335	- 104 . 34063	143.64305
(3,11)	486.48335	-88, 13230	141.98408
(3,13)	486.48335	-71.89798	140.60254
(3,15)	486.48335	-55.64232	139.50003
(3,17)	486.48335	-39.37008	138.67787
(5, 1)	501.65388	- 168 . 82440	160.98180
(5,3)	501.65388	- 152 . 76453	158.23534
(5,5)	501.65388	-136.66113	155.75686
(5,7)	501.65388	- 120. 51839	153.54915
(5,9)	501.65388	- 104 . 34063	151.61469
(5,11)	501.65388	-88. 13230	149.95573
(5,13)	501.65388	-71.89798	148.57418
(5,15)	501.65388	-55.64232	147.47167
(5,17)	501.65388	-39.37008	146.64951
(7,1)	516.72345	- 168 . 82440	169.14272
(7,3)	516.72345	- 152 . 76453	166 . 39626
(7,5)	516.72345	- 136 . 66 1 13	163.91779
(7,7)	516.72345	- 120.51839	161.71007
(7,9)	516.72345	- 104 . 34063	159.77561
(7,11)	516.72345	~88.13230	158.11665
(7,13)	516.72345	-71.89798	156.73510
(7,15)	516./2345	-33.64232	133.03239
(7,17)	516.72345	- 39. 37008	134.81043
	531.091/0	- 100.02440	174 74144
	531.051/0	-132.70433	173 26297
	531.69176	- 120 5 1839	170 05525
	531.05170	- 104 34063	168 12080
(9, 9)	531 69176	-88 13230	166.46183
(9,17)	531 69176	-71 89798	165 08028
(9,13)	531 69176	-55 64232	163.97777
(9,17)	531.69176	-39.37008	163.15561
(11 1)	546.55866	- 168 . 82440	186.01241
(11 3)	546.55866	- 152, 76453	183.26596
(11, 5)	546.55866	-136.66113	180.78748
(11, 7)	546.55866	- 120 . 5 1839	178.57977
(11, 9)	546.55866	- 104 . 34063	176.64531
(11,11)	546.55866	-88.13230	174.98635
(11,13)	546.55866	-71.89798	173 60480
(11,15)	546.55866	- 55 . 64232	172.50229
(11,17)	546.55866	- 39 . 37008	171.68013
(13, 1)	561.32412	- 168 . 82440	194.71144

ORIGINAL PAGE 19 OF POOR QUALITY

-

FORM 2401.

-

Ţ.

4

(13, 3)	561.32412	- 152 . 76453	191.96498
(13, 5)	561.32412	- 136 . 66 1 13	189.48651
(13, 7)	561.32412	- 120 . 5 1839	187.27879
(13, 9)	561.32412	- 104 . 34063	185.34434
(13,11)	561.32412	-88.13230	183.68537
(13,13)	561.32412	-71.89798	182.30383
(13,15)	561.32412	-55.64232	181.20132
(13,17)	561.32412	- 39 . 37008	180.37916
(15, 1)	575.98824	- 168 . 82440	203.58025
(15, 3)	575.98824	~ 152 . 76453	200.83379
(15, 5)	575.98824	-136.66113	198.35532
(15, 7)	575.98824	-120.51839	196.14760
(15, 9)	575.98824	- 104 . 34063	194.21315
(15,11)	575.98824	-88.13230	192.55418
(15,13)	575.98824	-71.89798	191.17263
(15, 15)	575.98824	-55.64232	190.07013
(15,17)	575.98824	-39.37008	189.24796
(17, 1)	590.55119	- 168 . 82440	212.61422
(17, 3)	590.55119	- 152 . 76453	209.86776
(17, 5)	590.55119	-136.66113	207.38929
(17, 7)	590.55119	- 120.51839	205.18157
(17, 9)	590.55119	- 104 . 34063	203.24711
(17,11)	590.55119	-88.13230	201.58815
(17,13)	590.55119	-71.89798	200.20660
(17,15)	590.55119	-55.64232	199.10409
(17,17)	590.55 1 19	-39.37008	198.28193

,

original page **ig** of poor quality

4

ł

Ŋ

•

COORDINATES	X	¥	Z
			10 00 105
(1, 1)	0.00000	-39.37008	12.82420
(1, 3)	0.00000	- 29, 53 133	12 206 15
(1, 5)	0.00000	- 19.00333	12 20015
	0.0000	0,00000	12.00104
	0.00000	9.84522	12.00000
(1, 11)	0.00000	19 68935	12 20615
(1, 15)	0.00000	29.53133	12.46376
(1 17)	0,00000	39.37008	12.82426
(3, 1)	9,85383	- 39. 37008	12 87589
(3.3)	9.85383	-29,53133	12.51540
(3,5)	9.85383	- 19.68935	12.25779
(3, 7)	9.85383	-9.84522	12 10318
(3,9)	9.85383	0.00000	12.05163
(3,11)	9.85383	9.84522	12.10318
(3,13)	9.85383	19.68935	12.25779
(3,15)	9.85383	29.53133	12.51540
(3,17)	9.85383	39.37008	12.87589
(5,1)	19.70658	-39.37008	13.03077
(5,3)	19.70658	-29.53133	12.67028
(5,5)	19.70658	- 19.68935	12.41267
(5,7)	19.70658	-9.84522	12.25806
(5,9)	19.70658	0.00000	12.20052
(5,11)	16 70658	9.84322	12.23800
(0, 13)	19.70038	19.00333	12 67038
(5, 15)	19.70038	29.33133	13 03077
(3, 17)	19.70008	-39 37008	13 28883
$\begin{pmatrix} 1, 1 \\ 1 \end{pmatrix}$	29.55717	-29 53133	12 92834
(7, 5)	29 55717	- 19 68935	12.67073
(7, 7)	29.55717	-9.84522	12.51612
(7, 9)	29.55717	0.00000	12.46457
(7,1)	29.55717	9.84522	12.51612
(7.13)	29.55717	19.68935	12.67073
(7,15)	29.55717	29.53133	12.92834
(7,17)	29.55717	39.37008	13.28883
(9,1)	39.40451	-39.37008	13.64995
(9,3)	39.40451	-29.53133	13.28946
(9,5)	39.40451	- 19.68935	13.03185
(9,7)	39.40451	-9.84522	12.87724
(9,9)	39.40451	0.00000	12.82570
(9,11)	39.40451	9.84522	12.87724
(9,13)	39.40451	19.68935	13.03185
(9,15)	39.40451	29.53133	13.28940
	J9.40431 49.34755	- 29 - 37008	13.04555
(11, 1)	43.24730 10 91765	-20 52122	13 75349
(11, 3)	49 24765	- 19 68935	13 49588
(11 7)	49.24755	-9.84522	13 34127
(11, 9)	49.24755	0.00000	13.28973
(11.11)	49.24755	9.84522	13.34127
(11,13)	49.24755	19.68935	13.49588
(11, 15)	49.24755	29.53133	13.75349
(11, 17)	49.24755	39.37008	14.11399
(13, 1)	59.08520	- 39 . 37008	14.68072

ORIGINAL PAGE IS

-

•

1

D-20

ł

-

.

FORM 2401 I

.
- 94.

(13 3)	59,08520	-29.53133	14.32023
(13 5)	59.08520	- 19.68935	14.06262
(13, 3)	59 08520	-9.84522	13.90801
(13, 7)	59 08520	0.00000	13.85647
(13, 3)	59 08520	9.84522	13.90801
(13,11)	59.00010	19 68935	14.05262
(13, 13)	59.00520	29 53133	14.32023
(13,15)	59.00520	29.27009	14 68072
(13, 17)	59.08520	-29 37008	15 34992
(15, 1)	68.91042	-39.57000	14 98942
(15, 3)	68.91642	-29.53135	14 73192
(15, 5)	68.91642	~ 19.08933	14 67721
(15, 7)	68.91642	-9 84522	14.57721
(15, 9)	68.91642	0.00000	14.52500
(15,11)	68.91642	9.84522	14.5//21
(15,13)	68.91642	19.68935	14.73182
(15,15)	68.91642	29.53133	14.98942
(15.17)	68.91642	39.37008	15.34992
(17, 1)	78.74015	-39.37008	16.12128
(17.3)	78,74015	-29.53133	15.76079
(17 5)	78.74015	- 19.68935	15.50318
(17, 7)	78.74015	-9.84522	15.34857
(17 9)	78 74015	0.00000	15.29702
(17, 11)	78 74015	9.84522	15.34857
(17 (3)	78 74015	19.68935	15.50318
(17,15)	78 74015	29.53133	15.76079
(17,10)	78 74015	39.37008	16.12128
(17,17)	70.74015	00.07070	

ORIGINAL PAGE 19

•

•

.

A.

COORDINATES	X	Y	Z
(1 1)	78 74015	-39 37008	16 12128
(1, 3)	78.74015	-29.53133	15.76079
(1,5)	78.74015	- 19.68935	15.50318
(1,7)	78.74015	-9.84522	15.34857
(1,9)	78.74015	0.00000	15.29702
(1,11)	78.74015	9.84522	15.34857
(1,13)	78.74015	19.68935	15.50318
(1,15)	78.74015	29.53133	15.76079
(1, 17)	78.74015	39.37008	16.12128
(3, 1)	95.51158	-39.37008	17.70590
(3, 3)	90.01100 05 91159	- 10 69925	17.34340
(3, 3)	95.01150	-0 94533	16 02219
(3, 7)	95 81158	0.00000	16 89 164
(3,11)	95.81158	9.84522	16.93318
(3,13)	95.81158	19.68935	17.08779
(3,15)	95.81158	29.53133	17.34540
(3,17)	95.81158	39.37008	17.70590
(5, 1)	112.85181	-39.37008	19.59672
(5,3)	112.85181	-29.53133	19.23623
(5.5)	112.85181	- 19.68935	18.97862
(5,7)	112.85181	-9.84522	18.82401
(5,9)	112.85181	0.00000	18.77246
(5,11)	112.85181	9.84522	18.82401
(5,13)	112.85181	19.68935	18.97862
(5,15)	112.85181	29.53133	19.23623
(5,1/)	112.85181	39.37008	19.59672
(7, 1)	129.80008	-39.37008	21.79133
(7, 3)	129.00000	- 10 68025	21.43084
(1, 3)	129 85558	-9 84522	21.17323
(7, 9)	129 85558	0.00000	21.01802
(7,11)	129.85558	9 84522	21 01862
(7.13)	129.85558	19.68935	21, 17323
(7,15)	129.85558	29.53133	21.43084
(7,17)	129.85558	39.37008	21.79133
(9,1)	146.81780	~ 39 . 37008	24.28696
(9,3)	146.81780	-29.53133	23.92647
(9,5)	146.8i780	- 19 . 68935	23.66886
(9,7)	146.81780	-9.84522	23.51425
(9,9)	146.81780	0.00000	23.46271
(9,11)	146.81780	9.84522	23.51425
(9,13)	146.81780	19.68935	23.66886
(9,15)	146.81/80	29.53133	23.92647
	140.01/00	-20 -27008	24.28696
(11, 1)	163.73351	- 39. 37008	27.08049
(11.5)	163.73351	- 19 68935	26. 72000
(11. 7)	163.73351	-9 84522	26 30779
(11, 9)	163.73351	0.00000	26 25624
(11, 11)	163.73351	9,84522	26.30778
(11,13)	163.73351	19.68935	26.46239
(11, 15)	163.73351	29.53133	26.72000
(11,17)	163.73351	39.37008	27.08049
(13, 1)	180.59795	-39.37008	30.16850

ORIGINAL PAGE 19 OF POOR QUALITY

1

FORM 2401/

-

D-22

i

(13, 3)	180.59795	-29.53133	29.80801		
(13.5)	180.59795	- 19.68935	29.55040		
(13.7)	180.59795	-9.84522	29.39579		
(13, 9)	180.59795	0.00000	29.34424		
(13,11)	180.59795	9.84522	29.39579		
(13, 13)	180.59795	19.68935	29.55040		
(13,15)	180.59795	29.53133	29.80801		
(13,17)	180.59795	39.37008	30. 16850		
(15, 1)	197.40655	-39.37008	33.54727		
(15, 3)	197.40655	-29.53133	33. 18677		
(15, 5)	197.40655	- 19.68935	32.92916		
(15, 7)	197.40655	-9.84522	32.77455		
(15, 9)	197.40655	0.00000	32.72301		
(15,11)	197.40655	S.84522	32.77455		
(15,13)	197.40655	19.68935	32.92916		
(15,15)	197.40655	29.53133	33.18677		
(15,17)	197.40655	39.37008	33.54727		
(17, 1)	214.15496	- 39 . 37008	37.21281		
(17, 3)	214.15496	-29.53133	36.85231		
(17, 5)	214.15496	- 19.68935	36.59470		
(17, 7)	214.15496	-9.84522	36.44009		
(17, 9)	214.15496	0.00000	36.38855		
(17,11)	214.15496	9.84522	36.44009		
(17,13)	214.15496	19.68935	36.59470		
(17,15)	214.15496	29.53133	36.85231		
(17,17)	214.15496	39.37008	37.21281		

ORIGINAL PAGE IS OF POOR QUALITY

-

•

.

-

٩,

COORDINATES	x	Y	Z
(1.1)	214.15496	-39.37008	37 21281
(1.3)	214.15496	29.53133	36.85231
(1.5)	214.15496	- 19 . 68935	36.59470
1. 7)	214.15496	-9.84522	36.44009
(1, 9)	214.15496	0.0000	36.38855
(1,11)	214.15496	9.84522	36.44009
(1,13)	214.15496	19.68935	36.59470
(1,15)	214.15496	29.53133	36.85231
(1,17)	214.15496	39.37008	37.21281
(3, 1)	230.83674	-39.37008	41.16032
(3,3)	230.83674	-29.53133	40.79983
(3,5)	230.83674	- 19.68935	40.54222
(3,7)	230.83674	-9.84522	40.38761
(3,9)	230.83674	0.00000	40.33607
(3,11)	230.83674	9.84522	40.38761
(3, 13)	230.83674	19.68933	40.34222
(3,15)	230.830/4	29.03133	41 16032
	230.030/4	-39 37008	45 38585
(0, 1)	247.45028	-29 53133	45 02535
(5,5)	247.45028	- 19, 68935	44.76775
(5, 5)	247.45028	-9.84522	44.61314
(5,9)	247.45028	0.00000	44.56159
(5,11)	247.45028	9.84522	44.61314
(5,13)	247.45028	19.69935	44.76775
(5,15)	247.45028	29.53133	45.02535
(5,17)	247.45028	39.37008	45.38585
(7,1)	263.99190	- 39 . 37008	49.88473
(7,3)	263.99190	-29.53133	49.52423
(7,5)	263.99190	- 19.68935	49.26662
(7,7)	263.99190	-9.84522	49.11201
(7,9)	263.99190	0.00000	49.06047
(7,11)	263.99190	9.84522	49.11201
(7,13)	263.99190	19.68932	49.20002
(7,15)	263.99190	29.53133	43.32423
(1,1)	263.99190	-29 27008	43.00473
(9,1)	280.43813	-39.57008	54 29164
(9,3)	280.45815	- 19 69935	54 03403
	280.45815	-0.84522	53 87942
(9, 7)	280.45815	0.00000	53.82788
(9, 3)	280.45815	9 84522	53.87942
(9.13)	290.45815	19.68935	54.03403
(9,15)	280.45815	29.53133	54.29164
(9,17)	280.45815	39.37008	54.65214
(11. 1)	296.84580	- 39 . 37008	59.6831 0
(11. 3)	296.84580	-29.53133	59.32260
(11, 5)	296.84580	- 19.68935	59.06499
(11, 7)	296.84580	-9.84522	58.91038
(11, 9)	296.84580	0.00000	58.85884
(11, 11)	296.84580	9.84522	58.91038
(11,13)	296.84580	19.68935	59.06499
(11, 15)	296.84580	29.53133	59.32260
(11,17)	296.84580	39.37008	59.68310
(13, 1)	313.15188	-39.37008	64.97251

ORIGINAL PAGE 19 OF POOR QUALITY

.

1

¥

.

I

and the second sec

. J

(12 2)	313 15188	-29.53133	64.61201
(13, 3)	313 15188	- 19,68935	64.35441
(13, 5)	313.15100	-9.84522	64.19980
(13, 7)	313.15100	0,00000	64.14825
(13, 9)	313.13100	9 84522	64.19990
(13, 11)	313.13180	19.68935	64.35441
(13, 13)	313.15100	29 53133	64.61201
(13, 15)	313.10100	39 37008	64.97251
(13,17)	313.15100	-39 37008	70.51516
(15, 1)	329.37303	-29 53133	70.15467
(15, 3)	329.37363	- 19 58935	69.89706
(15, 5)	329.37303	-9 84522	69.74245
(15, 7)	329.37303	0.00000	69.69091
(15, 9)	329.37303	9 84522	69.74245
(15.11)	329.37363	19 68935	69.89706
(15,13)	329.37363	29 53133	70, 15467
(15,15)	323.37363	29.00100	70.51516
(15,17)	329.37363	- 29 37008	76.30577
(17, 1)	345.50854	-39 53133	75.94528
(17, 3)	345.50854	- 10 68935	75.68767
(17, 5)	345.50854	-0.94522	75.53306
(17, 7)	345.50854	0.00000	75.48151
(17, 9)	343.50854	9.84522	75.53306
(17,11)	343.30834	19 68935	75.68767
(17,13)	343,30834	29 53133	75.94528
(17,15)	140.00004	39 37008	76.30577
(17,17)	343.30834	45.57000	- · ·

ORIGINAL PAGE IS. OF POOR QUALITY

	COORDINATES	X	Y	2
			20. 27008	76 20577
	(1, 1)	345.5095A	-39.37008	75 94528
1. 7) 343.56354 -9.44522 75.5306 1. 9) 345.50854 0.00000 75.48151 1. 11) 345.50854 9.84522 75.5306 1. 15) 345.50854 29.53133 75.94528 1. 17) 345.50854 29.53133 81.97751 3. 1) 361.55178 -29.53133 81.97751 3. 5) 361.55178 -9.84522 81.56530 3. 7) 361.55178 -9.84522 81.56530 3. 7) 361.55178 -9.84522 81.56530 3. 11) 361.55178 9.84522 81.56530 3. 13) 361.55178 9.84522 81.56530 3. 11) 361.55178 9.84522 81.56530 3. 17) 361.55178 29.53133 81.97751 3.77 50385 -39.37008 82.33801 5. 1) 377.50385 -29.53133 81.97751 3.77.50385 -39.37008 82.33801 5.7834266 5. 7) 377.50385 9.84522 87.83466 5. 13) 377.50385 9.84522	(1, 3)	345 50854	- 19 68935	75.68767
	(1, 5)	345 56854	-9.84522	75.53306
1 1 345 50854 9 84522 75 53066 1 13 345 50854 19 68935 75 68767 1 15 345 50854 29 53133 75 94528 1 13 16 55178 -39 37008 82 33801 3 361 55178 -19 64935 81 71991 3 7 361 55178 9 84522 81 56530 3 13 361 55178 9 84522 81 56530 3 13 361 55178 9 84522 81 56530 3 13 361 55178 29 52133 81 71991 3 15 361 55178 29 53133 88 24688 5 3 377 50385 -39 37008 88 20738 5 3 377 50385 9 370533 88 24668	(1, 9)	345.50854	0.00000	75.48151
	(1.11)	345.50854	9.84522	75.53306
	(1,13)	345.50854	19.68935	75.68767
	(1, 15)	345.50854	29.53133	75.94528
	(1,17)	345.50854	39.37008	76.30577
	(3, 1)	361.55178	-39.37008	82.33801
	(3,3)	361.55178	-29.53133	81.9//31
	(3,5)	361.551/8	- 19.00933	81.71331
(3, 11)361.551789.8452281.56530(3, 13)361.5517819.6893581.71991(3, 15)361.5517829.5213381.97751(3, 17)361.5517839.3700882.33801(5, 1)377.50385-39.3700888.60738(5, 3)377.50385-9.65313388.624688(5, 5)377.50385-9.8452287.83466(5, 9)377.503859.8452287.83466(5, 9)377.503859.8452287.83466(5, 13)377.5038529.5313388.24688(5, 15)377.5038529.5313388.24688(5, 17)377.5038529.5313388.24688(5, 17)377.5038539.3700895.10846(7, 3)393.36289-39.3700895.10846(7, 7)393.36289-9.8452294.33575(7, 9)393.362899.8452294.33575(7, 13)393.362899.8452294.33575(7, 14)393.362899.9.8452294.33575(7, 15)393.3628939.3700895.10846(9, 11)409.12727-29.53133101.47536(9, 7)409.12727-9.84522101.06314(9, 7)409.1272729.53133101.21775(9, 7)409.1272729.53133101.21775(9, 17)409.1272729.53133101.21775(9, 17)409.1272729.53133101.21775(9, 17)409.1272739.37008101.83585(11, 11)424.79555 <th>(3, 7)</th> <th>361.33178</th> <th>0.00000</th> <th>81.50350</th>	(3, 7)	361.33178	0.00000	81.50350
	(3, 3)	361 55178	9.84522	81.56530
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	(3, 13)	361.55178	19.68935	81.71991
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	(3,15)	361.55178	29.53133	81.97751
	(3,17)	361.55178	39.37008	82.33801
	(5, 1)	377.50385	- 39 . 37008	88.60738
	(5,3)	377.50385	-29.53133	88.24688
	(5, 5)	377.50385	- 19.68935	87.98327
	(5.7)	377.50385	-9.84522	87.83466
	(5,9)	377.50385	0.0000	87.78312
	(9,11)	377.50385	9.84522	87.83400
	(5, 13)	377 50385	13.00333	AR 24688
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	(5,15)	377 50385	39 37008	AR 60738
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	(3,17)	393 36289	-39 37008	95.10846
	(7, 3)	393.36289	-29.53133	94.74797
	(7, 5)	393.36289	- 19.68935	94.49036
	(7, 7)	393.36289	-9.84522	94.33575
	(7,9)	393.36289	0.00000	94 28421
	(7,11)	393.36289	9.84522	94.33575
	(7,13)	393.36289	19.68935	94.49036
	(7,15)	393.36289	29.53133	94.74797
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	(7,17)	393.36289	39.37008	95.10846
	(9, 1)	409.12727	-39.37008	101.47536
	(9,3)	409.12727	- 19 68935	101 21775
	(9, 3)	409 12727	-9.84522	101.06314
	(9,9)	409.12727	0.00000	101.01160
	(9,11)	409.12727	9.84522	101.06314
	(9,13)	409.12727	19.68935	101.21775
(9,17) 409.12727 39.37008 101.83585 (11, 1) 424.79555 -39.37008 108.78412 (11, 3) 424.79555 -29.53133 108.42363 (i1, 5) 424.79555 -19.68935 108.16602 (11, 7) 424.79555 -9.84522 108.01141 (11, 9) 424.79555 9.84522 108.01141 (11, 13) 424.79555 19.68935 108.16602 (11, 15) 424.79555 9.84522 108.01141 (11, 15) 424.79555 19.68935 108.16602 (11, 17) 424.79555 39.37008 108.42363 (11, 17) 424.79555 39.37008 108.78412 (13, 1) 440.36648 -39.37008 115.94790	(9,15)	409.12727	29.53133	101.47536
(11, 1)424.79555- 39.37008108.78412(11, 3)424.79555- 29.53133108.42363(i1, 5)424.79555- 19.68935108.16602(11, 7)424.79555- 9.84522108.01141(11, 9)424.795559.84522108.01141(11, 11)424.795559.84522108.01141(11, 13)424.7955519.68935108.16602(11, 15)424.7955519.68935108.16602(11, 15)424.7955529.53133108.42363(11, 17)424.7955539.37008108.78412(13, 1)440.36648- 39.37008115.94790	(9,17)	409.12727	39.37008	101.83585
(11, 3) 424.79555 -29.53133 108.42363 (i1, 5) 424.79555 -19.68935 108.16602 (11, 7) 424.79555 -9.84522 108.01141 (11, 9) 424.79555 0.00000 107.95987 (11, 11) 424.79555 9.84522 108.01141 (11, 13) 424.79555 9.68935 108.16602 (11, 15) 424.79555 29.53133 108.42363 (11, 15) 424.79555 39.37008 108.42363 (11, 17) 424.79555 39.37008 108.78412 (13, 1) 440.36648 -39.37008 115.94790	(11, 1)	424.79555	- 39 . 37008	108.78412
(i1, 5) 424.79555 -19.68935 108.16602 (11, 7) 424.79555 -9.84522 108.01141 (11, 9) 424.79555 0.00000 107.95987 (11, 11) 424.79555 9.84522 108.01141 (11, 13) 424.79555 9.68935 108.16602 (11, 15) 424.79555 19.68935 108.16602 (11, 15) 424.79555 29.53133 108.42363 (11, 17) 424.79555 39.37008 108.78412 (13, 1) 440.36648 -39.37008 115.94790	(11, 3)	424.79555	-29.53133	108.42363
(11, 7) 424.79555 -9.84522 108.01141 (11, 9) 424.79555 0.00000 107 95987 (11, 11) 424.79555 9.84522 108.01141 (11, 13) 424.79555 19.68935 108.16602 (11, 15) 424.79555 29.53133 108.42363 (11, 17) 424.79555 39.37008 108.78412 (13, 1) 440.36648 -39.37008 115.94790	(i1, 5)	424.79555	- 19.68935	108.16602
(11, 9) 424./9555 0.00000 10/ 9598/ (11, 11) 424.79555 9.84522 108.01141 (11, 13) 424.79555 19.68935 108.16602 (11, 15) 424.79555 29.53133 108.42363 (11, 17) 424.79555 39.37008 108.78412 (13, 1) 440.36648 -39.37008 115.94790	(11, 7)	424.79555	-9.84522	108.01141
(11, 11) 424.79555 9.84522 108.01141 (11, 13) 424.79555 19.68935 108.16602 (11, 15) 424.79555 29.53133 108.42363 (11, 17) 424.79555 39.37008 108.78412 (13, 1) 440.36648 -39.37008 115.94790	(11, 9)	424.79555	0.00000	101 33381
(11,15) 424.79555 19.68355 108.18602 (11,15) 424.79555 29.53133 108.42363 (11,17) 424.79555 39.37008 108.78412 (13, 1) 440.36648 -39.37008 115.94790	(11, 11)	424./9000	9.04022	108.01141
(11, 17) 424.79555 39.37008 108.78412 (13, 1) 440.36648 -39.37008 115.94790	(11,13) (11,15)	424.79000 494 79555	19.00933	108 42363
(13, 1) 440.36648 -39.37008 115.94790	(11 17)	424 79555	39.37008	108.78412
	(13, 1)	440.36648	- 39 . 37008	115.94790

ORIGINAL PAGE 19 OF POOR QUALITY

.

.

FORM 2401/

-

A

p 🕅		
	2	

(13, 3)	440.36648	-29.53133	115.58740
(12 5)	440 36648	- 19.68935	115.32979
(13, 3)	440 36648	-9.84522	1.5.17518
(13, 7)	440.36648	0 00000	115.12364
(13, 3)	440.36648	9.84522	115.17518
(13,17)	440.36648	19.68935	115.32979
(13,13)	440.36648	29.53133	115.58740
(13,13)	440.36649	39 37008	115.94790
(13.17)	440.30040	-39 37008	123 32182
(15, 1)	433.83302	-20 53133	122 96133
(15, 3)	435.83902	- 40 69025	122 70372
(15, 5)	455.83902	- 19.00930	122.70372
(15, 7)	455.83902	-9.84522	122.34311
(15, 9)	455.83902	0.00000	122.45157
(15,11)	455.83902	9.84322	122.04511
(15,13)	455.83902	19.68935	122.70372
(15,15)	455.83902	29.53133	122.96133
(15,17)	455.83902	39.37008	123.32182
(17, 1)	471.21226	-39.37008	130.90060
(17, 3)	471.21226	-29.53133	130.54010
(17, 5)	471.21226	- 19.68935	130.28249
(17, 7)	471.21226	-9.84522	130.12788
(17.9)	471.21226	0.00000	130.07634
(17, 11)	471.21226	9.84522	130.12788
(17, 13)	471.21226	19.68935	130.28249
(17 15)	471.21226	29.53133	130.54010
(17 17)	471.21226	39.37008	130.90060
(,			

D-27

ORIGINAL PAGE 73 OF POOR QUALITY

COORDINATES	X	Ŷ	2
(1 1)	471.21226	-39.37008	130.90060
(1, 3)	471.21226	-29.53133	130.54010
(1, 5)	471.21226	- 19 . 68935	130.28249
(1, 7)	471.21226	-9.84522	130. 12788
(1,9)	471.21226	0.00000	130 07634
(1.11)	471,21226	9.84522	130. 12788
(1,13)	471.21226	19.68935	130.28249
(1,15)	471.21226	29.53133	130.54010
(1,17)	471.21226	39.37008	130.90060
(3, 1)	486.48335	- 39 . 37008	138.67787
(3,3)	486.48335	-29.53133	138.31737
(3,5)	486.48335	- 19 . 68935	138.05976
(3,7)	486.48335	-9.84522	137.90515
(3,9)	486.48335	0.0000	137.85361
(3,11)	486.48335	9.84522	137.90515
(3,13)	486.48335	19.68935	138.05976
(3,15)	486.48335	29.53133	138.31737
(3,17)	486.48335	39.37008	138.67787
(5,1)	501.65388	-39.37008	146.64951
(5,3)	501.65388	-29.53133	146.28902
(5,5)	501.65388	- 19 . 68935	146.03141
(5,7)	501.65388	-9.84522	145.87680
(5,9)	501.65388	0.00000	145.82525
(5,11)	501.65388	9.84522	145.87680
(5,13)	501.65388	19.68935	146.03141
(5,15)	501.65388	29.53133	146.28902
(5,17)	501.65388	39.37008	146.64951
(7, 1)	516.72345	-39.37008	154.81043
(7,3)	516.72345	-29.53133	154.44994
(7,5)	516.72345	- 19.68935	154.19233
(7, 7)	516.72345	-9.84522	154.03772
(7, 9)	516.72345	0.00000	153.98617
(7,11)	516.72345	9.84522	154.03772
(7, 13)	516.72345	19.68935	154.19233
(7,15)	516.72345	29.33133	154 91043
(7,17)	510.72345 534 60476	- 39 . 37008	162 15561
(9, 1)	531.09170	-39 57008	162 79512
(9,5)	531.65176	- 19 69935	162 53751
	531 69176	-9 94522	162 38290
(9, 7)	531 69176	0.00000	162 33136
(9,5)	531 69176	9.84522	162 38290
(9 13)	531 69176	19 68935	162 53751
(9 (5)	531 69176	29 53133	162 79512
(9,13)	531 69176	39 37008	163 15561
(11 1)	546 55866	-39 37008	171 68013
(11, 1)	546 55866	-29 53133	171.31963
(11.5)	546.55866	- 19.68935	171.06203
(11. 7)	546.55866	-9,84522	170.90742
(11. 9)	546.55866	0.00000	170.85587
(11,11)	546.55866	9,84522	170 90742
(11,13)	546.55866	19.68935	171.06203
(11, 15)	546.55866	29.53133	171.31963
(11, 17)	546.55866	39.37008	171.68013
(13, 1)	561.32412	- 39 . 37008	180.37916

original page 19 of poor quality -

D-28

•

FORM 2401/

-

- 1944 (1944) - 241 - 4

.

ંગ્ર

4	# "	
	*	
1		

-

(13, 3)	561.32412	-29.53133	180.01866
(13, 5)	561.32412	- 19.68935	179.76105
(13, 7)	561.32412	-9.84522	179.60644
(13, 9)	561.32412	0.00000	179.55490
(13,11)	561.32412	9.84522	179.60644
(13,13)	561.32412	19.68935	179.76105
(13,15)	561.32412	29.53133	180.01866
(13,17)	561.32412	39.37008	180.37916
(15, 1)	575.98824	-39.37008	189.24796
(15, 3)	575.98824	-29.53133	188.88747
(15, 5)	575.98824	- 19 . 68935	188.62986
(15, 7)	575.98824	-9.84522	188.47525
(15, 9)	575.98824	0.00000	188.42371
(15,11)	575.98824	9.84522	188.47525
(15,13)	575.98824	19.68935	188.62986
(15,15)	575.98824	29.53133	188.88747
(15,17)	575.98824	39.37008	189.24796
(17, 1)	590.55119	-39.37008	198.28193
(17, 3)	590 55119	-29.53133	197.92144
(17, 5)	590.55119	- 19.68935	197.66383
(17, 7)	590.55119	-9.84522	197.50922
(17, 9)	596.55119	0.00000	197.45767
(17,11)	590.55119	9.84522	197.50922
(17,13)	590.55119	19.68935	197.66383
(17,15)	590.55119	29.53133	197.92144
(17,17)	590.55119	39.37008	198.28193

ORIGINAL PAGE 13 OF POOR QUALITY

.

4

1

BOX NUMBER 16

•.

COORDINATES	×	۷	Z
(1 1)	0.00000	39.37008	12.82426
(1, 3)	0.00000	55.64232	13.64642
(1.5)	0.00000	71.89798	14.74893
(1,7)	0.00000	88.13230	16.13047
(1,9)	0.00000	104.34063	17.78944
(1,11)	0.00000	120.51839	19.72389
(1,13)	0.00000	136.66113	21.93161
(1,15)	0.00000	152.76453	24 4 1009
(1,17)	0.00000	168.82440	27.15654
(3,1)	9.85383	39.37008	12.87589
(3,3)	9.85383	55.64232	13.69805
(3,5)	9.85383	71.89798	14.80056
(3,7)	9.85383	88.13230	16.18211
(3,9)	9.85383	104.54063	17.84108
(3,11)	9.80383	120.31839	21 99225
(3,13)	9.83383	130.00113	21.30323
(3, 15)	9.00303	152.70455	27 20818
(3, 1/)	9.83383	39 37008	13 03077
(5, 1)	19 70658	55 64232	13.85293
(5,5)	19 70658	71 89798	14.95544
(5, 5)	19 70658	88 13230	16.33699
(5,7)	19 70658	104.34063	17.99596
(5, 11)	19.70658	120.51839	19.93041
(5,13)	19.70658	136.66113	22.13813
(5,15)	1 70658	152.76453	24.61660
(5,17)	19.70658	168.82440	27.36306
(7, 1)	29.55717	39.37008	13.28883
(7,3)	29.55717	55.64232	14.11099
(7,5)	29.55717	71.89798	15.21350
(7,7)	29.55717	88.13230	16 . 5950 5
(7,9)	29.55717	104.34063	18.25401
(7,11)	29.55717	120.51839	20.18847
(7.13)	29.55717	136.66113	22.39619
(7,15)	29.55717	152.76453	24.87466
(7,17)	29.55717	168.82440	27.62112
(9, 1)	39.40451	39.37008 EE 64222	13.04993
(9, 3)	39.40451	71 8979R	15 57462
(9, 5)	39.40451	AR 13230	16.95617
	39 40451	104 34063	18.61514
(9, 5)	39 40451	120.51839	20.54959
(9.13)	39.40451	136.66113	22.75731
(9,15)	39.40451	152.76433	25.23578
(9,17)	39.40451	168.82440	27.98224
(11, 1)	49.24755	39.37008	14.11399
(11, 3)	49.24755	55.64232	14.93615
(11, 5)	49.24755	71.89798	16.03866
(11, 7)	49.24755	88.13230	17 42020
(11, 9)	49.24755	104.34063	19.07917
(11, 11)	49.24755	120.51839	21.01362
(11,13)	49.24755	136.66113	23.22134
(11,15)	49.24755	152.76453	25.09982
(11, 17)	49.24/55	168.82440	28.44627
(13, 1)	59.08520	33.31008	14.080/2

ORIGINAL PASE 13 OF POOR QUALITY

.)

.

مع <u>م</u>

•

18

 1000	1
 · ·	
	- 6

(13, 3)	59.08520	55.64232	15.50289
(13, 5)	59.08520	71.89798	16.60539
(13, 7)	59.08520	88.13230	17.98694
(13, 9)	59.08520	104.34063	19.64591
(15.11)	59.08520	120.51839	21.58036
(13, 13)	59.08520	136.66113	23.78808
(13, 15)	59.08520	152.76453	26.26655
(13, 17)	59.08520	168.82440	29.01301
(15, 1)	68.91642	39.37008	15.34992
(15.3)	68.91642	55.64232	16.17208
(15, 5)	68.91642	71.89798	17.27459
(15, 7)	68.91642	88.13230	18.65614
(15, 9)	68.91642	104.34063	20.31510
(15, 11)	68.91642	120.51839	22.24956
(15,13)	3.91642	136.66113	24.45727
(15.15)	68.91642	152.76453	26.93575
(15.17)	68.91642	169.82440	29.68220
(17, 1)	78,74015	39.37008	16.12128
(17.3)	78.74015	55.64232	16.94344
(17, 5)	78.74015	71.89798	18.04595
(17, 7)	78.74015	88.13230	19.42750
(17.9)	78.74015	104.34063	21.08647
(17, 11)	78.74015	120.51839	23.02092
(17.13)	78.74015	136.66113	25.22864
(17.15)	78.74015	152.76453	27.70711
(17.17)	78.74015	168.82440	30.45357

.

ORIGINAL FALLE TS

•

. .

COORDINATES	x	Y	2
(1, 1)	78.74015	39.37008	16.12128
(1,3)	78.74015	55.64232	10.94344
(1, 5)	78.74015	PR 13230	19 42750
	78 74015	104 34063	21.08647
(1, 3)	78 74015	120 51839	23.02092
(1 13)	78.74015	136.66113	25.22864
(1,15)	78.74015	152.76453	27.70711
(1, 17)	78.74015	168.82440	30.45357
(3, 1)	95.81158	39.37008	17.70590
(3,3)	95.81158	55.64232	18.52806
(3,5)	95.81158	71.89798	19.63057
(3,7)	95.81158	88.13230	21.01211
(3,9)	95.81158	104 34063	22.67108
(3,11)	95.81158	120.51839	24.60553
(3,13)	95.81158	136.66113	26.81325
(3,15)	95.81158	152.76453	29.291/2
	90.81108	108.82440	10 69672
(5, 1)	112.00101	55 54232	20 41888
(5,3)	112.00101	71 89098	21 52139
(5, 3)	112.00101	88 13230	22,90294
(5,9)	112.85181	104.34063	24.56191
(5,11)	112.85181	120.51839	26.49636
(5,13)	112.85181	136.66113	28.70408
(5,15)	112.85181	152.76453	31.18255
(5,17)	112.85181	168.82440	33.92901
(7, 1)	129.85558	39.37008	21.79133
(7,3)	129.85558	55.64232	22.61350
(7,5)	129.85558	71.89798	23.71600
(7, 7)	129.85558	BE. 13230	25.09/55
(7,9)	129.85558	104.34063	20.73032
(7,11)	129.85558	120.31839	20.05057
(7,13)	129.83338	130.00113	33 37716
(7,13)	129.00000	168 82440	36 12362
(9,1)	146.81780	39.37008	24.28696
(9,3)	146.81780	55.64232	25.10912
(9,5)	146.81780	71.89798	26.21163
(9,7)	146.81780	88.13230	27.59318
(9,9)	146.81780	104.34063	29 25215
(9,11)	146.81780	120.51839	31.18660
(9,13)	146.81780	136.66113	33.39432
(9,15)	146.81780	152.76453	35.87279
(9,17)	146.81780	168.82440	38.61925
(11, 1)	163.73351	39.37008	27.08049
(11, 3)	163.73351	55.54232	27,90203
(11, 5)	10J./JJJ1 169 79954	11.03/30 11.03/30	29.00010
	103.73331	104 34063	32 04568
(11, 3)	163 73351	120 51839	33.98013
(11 13)	163 73351	136.66113	36.18785
(11, 15)	163.73351	152.76453	38.66632
(11, 17)	163.73351	168.82440	41.41278
(13, 1)	180.59795	39.37008	30.16850

original page **is** of poor quality

.

•

D-32

FORM 2401/

18 A

٠

(13 3)	150.59795	55.64232	30.99066
(13 5)	1c.0.59795	71.89798	32.09317
(10, 0)	1 59795	88.13230	33.47472
(13, 7)	100 50705	104 34063	35.13368
	100.09795	120 51839	37.06814
(13, 11)	180.39795	136 66113	39.27585
(13,13)	180.39795	152 76453	41.75433
(13, 15)		168 82440	44.50079
(13,17)	180.09790	20 27008	33 54727
(15, 1)	197.40655	39.37008	24 26942
(15, 3)	197.40655	55.64232	34.30343
(15, 5)	197.40655	71.89/98	JJ.4/154
(15, 7)	197.40655	88.13230	30.83348
(15, 9)	197 . 40655	104.34063	38.51245
(15,11)	197.40655	120.51839	40.44690
(15,13)	197.40655	136.66113	42.65462
(15 15)	197.40655	152.76453	45.13310
(15,17)	197.40655	168.82440	47.87955
(17 1)	214.15496	39.37008	37.21281
(17 3)	214.15496	55.64232	38.03497
(17 5)	214 15496	71.89798	39.13748
(17, 3)	214 15496	BB. 13230	40.51902
(17, 7)	214 15496	104 34063	42.17799
	214.15456	120 51839	44,11244
	214.15450	136 66113	46.32016
	217.13430	152 76453	48.79863
(17,15)	214.10490 014 46406	168 82440	51.54509
(17,17)	214.13490	100.02440	21.0.000

original prae is of poor quality

-

. .

COORDINATES	X	Y	Z
	•		
(1,1)	214.15496	39.37008	37.21281
(1,3)	214.15496	55.64232	38.03497
(1,5)	214.15496	71.89798	39.13748
(1,7)	214.15496	88.13230	40.51902
(1,9)	214.15496	104.34063	42.1//99
(1,11)	214.15496	120.51839	44.11244
(1,13)	214.15496	136.66113	46.32016
(1,15)	214.15496		48.79803
(1, 1/)	214.13490	100.02440	31.34309 A1 16032
(3, 1)	230.03074	55 64020	A1 99749
(3, 3)	230.83674	71 00709	41.30243
(3,5)	230.83674	71.03730 88 13330	43.00455
(3, 7)	230.83674	104 24052	44.40034
	230.83074	104.34003	40.12331
(3,11)	230.83074	136 66113	50 26768
(3, 13)	230.83674	152.76453	52.74615
(3, 15)	230.83674	168.82440	55.49261
	247 45028	39.37008	45.38585
(5, 1)	247 45028	55.64232	46.20801
(5,5)	247 45028	71.69798	47.31052
(5, 7)	247.45028	88.13230	48.69207
(5,9)	247.45028	104.34063	50.35103
(5,11)	247.45028	120.51839	52.28549
(5, 13)	247.45028	136.66113	54.49320
(5, 15)	247.45028	152.76453	56.97168
(5,17)	247.45028	168.82440	59.71813
(7,1)	263.99190	39.37008	49.88473
(7,3)	263.99190	55.64232	50.70689
(7,5)	263.99190	71.89798	51.80940
(7,7)	263.99190	88.13230	53.19094
(7,9)	263.99190	104.34063	54.84991
(7,11)	263.99190	120.51839	56.78436
(7,13)	263.99190	136.66113	58.99208
(7,15)	263.99190	152.76453	61.47056
(7,17)	263.99190	168.82440	64.21701
(9,1)	280.45815	39.37008	54.65214
(9,3)	280.45815	55.64232	55.47430
(9,5)	280.45815	71.89798	56.5/681
(9,7)	280.45815	88.13230	57.95835
(9,9)	280.45815	104.34063	59.61/32
(9,11)	280.45815	120.51839	61.551//
(9,13)	280.45815	136.66113	63.75949
(9,15)	280.45815	152.76453	66.23/90
(9,17)	280.45815	168.82440	68.98442
(11, 1)	296.84580	39.37008	59.68310
(11, 3)	296.84580	00.04232 74.00300	0U. 3U320
(11, 5)	296.84580	11.93135	01.00///
(11, 7)	296.84580	88.1323U	02.90931
(11, 9)	296.84580	104.34003	04.04828 66 50773
	290.84380	120.01039	60.002/J 60 70045
(11,13) (11,45)	230.8438U 306 04500	130.00113 159 76469	71 76203
(11,10)	270.0438U 306 04500	152.70403 169.93880	74 01520
(11, 17)	230.0438U	100.02490	64 97751
(13, 1)	313.13186	33.37000	04 37231

ORIGINAL PAGE 19 OF POOR QUALITY

-

•

¢.

D-34

i

142387 JM

.....

 ϕ

~

(12 3)	313 15188	55.64232	65.79467
(13, 3)	313 15188	71.89798	66.89718
(13, 5)	212 15188	88.13230	68.27873
(13, 7)	313.15188	104 34063	69.93769
	313.15188	120.51839	71.872.5
(13, 11)	212.15188	136.66113	74.07986
(13, 13)	313.13100	152 76453	76.55834
(13, 15)	313.15100	169 82440	79.30479
(13,17)	313.13100	39 37009	70.51516
(15, 1)	329.37363	55.67000	71.33732
(15, 3)	329.37363	71 00709	72 43983
(15, 5)	329.37363	/1.89/30	73 82138
(15, 7)	329.37363	88.13230	75 49035
(15, 9)	329.37363	104.34003	77 41480
(15,11)	329.37363	120.51839	70 60050
(15,13)	329.37363	136.66113	79.02232
(15,15)	329.37363	152.76453	82.10099
(15,17)	329.37363	168.82440	84.84/43
(17.1)	345.50854	39.37008	76.30577
(17.3)	345.50854	55.64232	77.12793
(17.5)	345.50854	71.89798	78.23044
(17 7)	345.50854	88.13230	79.61199
(17.9)	345.50854	104.34063	81.27095
(17, 11)	345.50854	120.51839	83.20541
(17 13)	345.50854	136.66113	85.41313
(17 15)	345.50854	152.76453	87.89160
(17 17)	345.50854	168.82440	90.63806

ORIGINAL FACE (3

BOX NUMBER 19

Carl Andrew Construction of the

COORDINATES	X	Y	Z
(1,1)	345.50854	39.37008	76.30577
(1,3)	345.50854	55.64232	77 12793
(1,5)	345 50854	71.89798	78.23044
(1,7)	245.50854	88.13230	79.61199
(1,9)	345.50854	104.34063	81.27095
(1,11)	345.50854	120.51839	83.20541
(1,13)	345.50854	136.66113	85.41317
(1,15)	345.50854	152.76453	87 89160
(1,17)	345.50854	168.82440	90.63806
(3, 1)	361.55178	39.37008	82.33801
(3,3)	361.55178	55.64232	83.16017
(3,5)	361.55178	71.89798	84.26268
(3,7)	361.55178	88.13230	85.64423
(3,9)	361.55178	104.34063	E7 30319
(3,11)	361.55178	120.51839	89.23705
(3,13)	361.551/8	130.00113	91 44330
(3,15)	361.55178	152.78453	93.92364
(3,17)	361.551/8	108.82440	90.07029
(5, 1)	377.50385	39.37008	88.00738
(5,3)	3/7.50385	JJ.042J2 74 00700	90 53205
(5, 5)	377.50385	/1.03/38	90.33203
	377 50385	404 34063	97 57256
(5, 2)	377 50395	120 51839	95 50701
(5,11)	377 50385	136 66113	97 71473
(5,15)	377 50385	152 76453	100, 19321
(5, 13)	377 50385	168 82440	102,93966
(3, 17)	213 36289	39 37008	95.10046
(7 3)	303.36289	55.64232	95.93063
(7, 5)	393.36289	71.89798	97 03313
(7, 7)	793.36289	88.13230	98.41468
(7, 9)	393.36289	104.34063	100.07365
(7,11)	393.36289	120.51839	102.00810
(7,13)	393.36289	136.66113	104 . 21582
(7,15)	393.36289	152.76453	106.69429
(7,17)	393.36289	168.82440	109.44075
(9,1)	409.12727	39 37008	101.83585
(9,3)	409.12727	55.64232	102.65801
(9,5)	409.12727	71.89798	103.76052
(9.7)	402 12727	88.13230	105.14207
(9,9)	409.12727	104.34063	106.80104
(9,11)	409.12727	120.51839	108.73549
(9,13)	409.12727	136.66113	110.94321
(9,15)	409.12727	152.76453	113.42168
(9,17)	409.12727	168.82440	116.16814
(11, 1)	424.79555	39.37008	108.78412
(11, 3)	424.79555	55.64232	109.60629
(11, 5)	424.79555	71.89798	110.70879
(11, 7)	424.79555	88.13230	112.09034
(11, 9)	424.79555	104.34063	113.74931
(11,11)	424.79555	120.51839	115.683/6
(11,13)	424.79555	136.66113	117.89148
(11, 15)	424.79555	152./6453	120. 30395
(11, 17)	424.79555	168.82440	123.11041
(13, 1)	440.36648	33.31008	113.94/90

ORIGINAL PAGE IS

•

4

I

.

D-36

1

1

-

1

ġ

FORM 2401.

. . . .

.

۰.

......

•

.

		•	
(13 3)	440.36648	55.64232	116.77006
(13 5)	440.36648	71.89798	117.87257
(12, 7)	440 38648	88.13230	119.25411
(13, 7)	440 36648	104.34063	120.91308
(13, 5)	440 36648	120.51839	122.84753
(13,11)	440 36648	136.66113	125.05525
(13,15)	440 36648	152.76453	127.53372
(13,13)	440.36649	168 82440	130.28018
	455 83903	39.37008	123.32182
(15, 1)	455.83502	55 64232	124.14399
	455.83902	71 89798	125.24649
(10, 5)	455.03572	88 13230	126.62804
	400.00002 AEE 02002	104 34063	128.28701
(15, 9)	455.65502	120 51939	130.22146
(15,11)	433.03302	126 66113	132 42918
(15,13)	455.83902	462 76462	134 90765
(15,15)	455.83902		137 65411
(15,17)	455.83902	108.82440	130, 90060
(17, 1)	471.21226	39.3700B	130.30000
(17, 3)	471.21226	33.64232	131.72270
(17, 5)	471.21226	/1.89/98	132.02327
(17, 7)	471.21226	88.13230	134.20081
(17, 9)	471.21226	1(4.34063	133.80378
(17,11)	471.21226	120.51839	137.80023
(17,13)	471.21226	136.66113	140.00/95
(17,15)	471.21226	152.76453	142.48042
(17,17)	471.21226	168.82440	145.23288

C . S

D-37

.

. . .

.....

ORIGINAL PAGE IS

.

1

.

Ì

. Marina and

the second s

COORDINATES	X	Y	Z
())	A71 21226	39 37008	130 90060
(1, 1)	471 21226	55.64232	131.72276
(1.5)	471.21226	71.89798	132.82527
(1, 7)	471.21226	88.13230	134.20681
(1.9)	471.21226	104.34063	135.86578
(1.11)	471.21226	120.51839	137.80023
(1,13)	471.21226	136.66113	140.00795
(1,15)	471.21226	152.76453	142.48642
(1,17)	471.21226	168.82440	145.23288
(3,1)	486.48335	39.37008	138.67787
(3,3)	486.48335	55.64232	139.50003
(3,5)	486.48335	71.89798	140.60254
(3,7)	486.48335	88.13230	141.98408
(3,9)	486.48335	104.34063	143.04303
(3,11)	480.48330	120.01839	143.37730
	480.48333	150.00113	150 26369
(3, 13)	400.40333	152.70455 168.82440	153 01015
(3,17)	501 65388	39.37008	146.64951
(5, 1)	501.65388	55.64232	147.47167
(5,5)	501.65388	71.89798	148.57418
(5,7)	501.65388	88.13230	149.95573
(5, 5)	501.65388	104.34063	151.61469
(5,11)	501.65388	120.51839	153.54915
(5, 13)	501.65388	136.66113	155.75686
(5,15)	501.65388	152.76453	158.23534
(5, 17)	501.65388	168.82440	160 . 98 180
(7,1)	516.72345	39.37008	154.81043
(7,3)	516.72345	55.64232	155.63259
(7,5)	516.72345	71.89798	156.73510
(7, 7)	516.72345	88.13230	158.11665
(7,9)	516.72345	104.34063	159.77501
(7, 11)	516.72345	120.51839	161.71007
(7, 13)	510.72345	130.00113	165 39626
(7,10)	516.72345 516.72345	152.70455 168.82440	169 14272
(7,17)	531 69176	39 37008	163.15561
(9.3)	531.69176	55.64232	163.97777
(9,5)	531.69176	71.89798	165.08028
(9,7)	531.69176	88.13230	166.46183
(9,9)	531.69176	104 . 34063	168.12080
(9,11)	531.69176	120.51839	170.05525
(9,13)	531.69176	136.66113	172 . 26297
(9.15)	531.69176	152.76453	174.74144
(9,17)	531.69176	168.82440	177.46790
(11, 1)	546.55866	39.37008	171.68013
(11, 3)	546.55866	55.64232	172.50229
(11, 5)	546.55866	71.89798	1/3.60480
$\{11, 7\}$	546.55866 546.55866	88.13230	1/4.98033
(11, 9)	340.33860 546 56866	104.J400J	170.043J1 178 67077
(11,11) (11,11)	340.33800 646 66066	120.31637/	10.3/3//
(11,13) (11,15)	546 55866	150.00113	183 26596
(11,10)	546.53800 546 55866	168 82440	186 01241
(13 1)	561 32412	39.3700A	180.37916
1.14.17	~~		

.

. .

I

•

FORM 2401.

D-38

•

¥	¥

-

		· · · · · · · · · · · · · · · · · · ·	
(13 3)	561.32412	55.64(22	181.20132
(13 5)	561.32412	71.89798	182.30383
(13, 7)	561.32412	88.13230	183.68537
(13 9)	561.32412	104.34063	185.34434
(13, 11)	561.32412	120.51839	187.27879
(13, 13)	561.32412	136.66113	189.48651
(13 15)	561 32412	152.76453	191.96498
(13, 17)	561.32412	168.82440	194.71144
(15, 1)	575 98824	39.37008	189.24796
(15, 1)	575.98624	55.64232	190.07013
(15 5)	575.98824	71.89798	191.17263
(15, 7)	575.98824	88.13230	192.55418
(15, 9)	575.98824	104.34063	194.21315
(15 11)	575.98824	120.51839	196.14760
(15,13)	575.98824	136.66113	198.35532
(15,15)	575 98824	152.76453	200.83379
(15,17)	575 98824	168.82440	203.58025
(17 1)	590.55119	39.37008	198.28193
(17 3)	590.55119	55.64232	199.10409
(17 5)	590.55119	71.89798	200.20660
(17 7)	590.55119	88.13230	201.58815
(17 9)	590.55119	104.34063	203.24711
(17 11)	590.55119	120.51839	205.18157
(17, 13)	590,55119	136.66113	207.38929
(17, 15)	590.55119	152.76453	209.86776
(17, 17)	590,55119	168.82440	212.61422

ORIGINAL PAGE 13

,

-

BOX NUMBER 21

.

COORDINATES	X	٧	Z
			07 45654
(1, 1)	0.00000	168.82440	27.10034
(3, 1)	9.80363	100.02440	27.20010
	9.00.00	169.03303	27 26206
(5,1)	19.70038	100.02440	20 37416
(0,3)	19.70658	109.03303	33 64691
(0, 0)	19.70038	169 93440	27 62112
(7, 1)	29.00717	184 83509	30 63222
(7,5)	29 55717	200.79436	33.90497
(1, 3)	29 55717	216.69850	37,43590
	39 40451	168.82440	27.98224
(9, 1)	39 40451	184 83509	30, 99334
(9,5)	39.40451	200.79436	34.26609
(9, 7)	39.40451	216.69850	37 79702
(9,9)	39.40451	232.54399	41.58246
(11, 1)	49.24755	168.82440	28.44627
(11, 3)	49.24755	184.83509	31.45737
(11. 5)	49.24755	200.79436	34.73012
(11, 7)	49.24755	216.69850	38.26105
(11, 9)	49.24755	232.54399	42.04649
(11,11)	49.24755	248.32750	46.08259
(13, 1)	59.08520	168.82440	29.01301
(13, 3)	59.08520	184.83509	32.02411
(13, 5)	59.08520	200.79436	35.29686
(13, 7)	59.08520	216.69850	38.82779
(13, 9)	59.08520	232.54399	42.61323
(13,11)	59.08520	248.32750	46.64933
(13, 13)	59.08520	264.03587	50.93209
(15, 1)	68.91642	168.82440	29.68220
(15, 3)	68.91642		J2.05JJU 25.05605
(15, 5)	68.91642	200.79430	33.90003
(10, 7)	68.91042	210.09830	A3 28243
(10, 9)	68.91042	232.34333	47 31852
(15,11)	68 91642	248.32730	51 60129
(15,15)	68 91642	279 69616	56.12656
(17, 1)	78 74015	168.82440	30,45357
(17 3)	78.74015	184.83509	33,46467
(17.5)	78.74015	200.79436	36.73742
(17. 7)	78.74015	216.69850	40.26835
(17.9)	78.74015	232.54399	44.05379
(17, 11)	78.74015	248.32750	48.08989
(17.13)	78.74015	264.04587	52.37265
(17, 15)	78.74015	279.69616	56.89792
(17.17)	78.74015	295.27559	61.66144

original page is of poor quality

7

-

÷.

-

- **-**

D-40

- - -

1

BOX NUMBER 22

COORDINATES	X	Ŷ	Z
(1, 1)	78.74015	168.82440	30.45357
(1,3)	78.74015	184.83509	JJ.4040/ 26 73742
(1, 5)	78.74013	200.79430	40 26835
(1, 7)	78 74015	232.54399	44.05379
(1,1)	78.74015	248.32750	48.08989
(1,13)	78.74015	264.04587	52.37265
(1,15)	78.74015	279.69616	56.89792
(1,17)	78.74015	295.27559	51.66144
(3,1)	95.81158	168.82440	32.03818
(3,3)	95.81158	184.83509	35 04928
(3,5)	95.81158	200.79436	38.32203
(3,7)	95.81158	216.69250	41.80290
(3, 9)	90.01100	232.34333	49 67450
(3,11)	95.81158	264 04587	53.95726
(3, 15)	95.61158	279.69616	58 48254
(3,17)	95.81158	295.27559	63.24606
(5,1)	112.85181	168.82440	33.92901
(5,3)	112.85181	184.83509	36.94011
(5,5)	112.85181	200.79436	40.21286
(5,7)	112.85181	216.69850	43.74379
(5,9)	112.85181	232.54399	47.52923
(5,11)	112.85181	248.32750	51.56533
(5,13)	112-85181	204.04307	55.84805
(5,15)	112.03101	2/3.03010	65 13688
(3,17)	129 85558	168 82440	36 12362
(7, 1)	129 85558	184.83509	39, 13472
(7, 5)	129.85558	200.79436	42.40747
(7, 7)	129.85558	216.69850	45.93840
(7,9)	129.85558	232.54399	49.72384
(7,11)	129.85558	248.32750	53.75994
(7,13)	129.85558	264.04587	58.04270
(7,15)	129.85558	279.69616	62.56798
(7, 17)	129.85558	295.27559	29 61026
(9, 1)	146.81780	100.02440	38.61925
(9,3)	146 81780	200 79436	44.90310
(9, 7)	146 81780	216.69850	48.43403
(9,9)	146.81780	232.54399	52.21947
(9,11)	146.81780	248.32750	56.25557
(9,13)	146.81780	264.04587	60.53833
(9,15)	146.81780	279.69616	65.06360
(9,17)	146.81780	295.27559	69.82712
(11, 1)	153.73351	168.82440	41.41278
(11, 3)	163.73351	184.83509	44.42388
(11, 5)	163.73351	200.79436	47.69003 51.00766
(11, 7)	103.73301	210.09830 222 54299	51.22/30
(11, 9)	163 73351	232.34333 248 32750	59 04910
(11,13)	163.73351	264.04587	63.33186
(11.15)	163.73351	279.69616	67.85714
(11.17)	163.73351	295.27559	72.62065
(13, 1)	180.59795	168.82440	44.50079

Original page is Of poor quality .

•

D-41

(13, 5)	180.59795	200.79436	50.78464
(13, 7)	180.59795	216.69850	54.31557
(13, 9)	180.59795	232.54399	58.10100
(13,11)	180.59795	248.32750	62, 13711
(13,13)	. 180. 59795	264.04587	66 41987
(13,15)	180.59795	279.69616	70 94514
(13,17)	180.59795	295.27559	75 70866
(15, 1)	197.40655	168.82440	47 87955
(15, 3)	197.40655	184.83509	50 89065
(15, 5)	197.40655	200.79436	54 16340
(15, 7)	197.40655	216.69850	57 69433
(15, 9)	197.40655	232.54399	6: 47977
(15, 11)	197.40655	248.32750	65 51597
(15,13)	197.40655	264.04587	69 79967
(15,15)	197.40655	279.69616	74 32391
(15,17)	197.40655	295.27559	79 08743
(17, 1)	214.15496	168.82440	51 54509
(17, 3)	214.15496	184.83509	54 55610
(17, 5)	214.15496	200 79436	57 83804
(17, 7)	214.15496	216 69850	61 25097
(17, 9)	214.15496	232 54399	65 14631
(17,11)	214.15496	248.32750	53.14331 69.19141
(17,13)	214.15496	264 04587	72 46417
(17, 15)	214, 15496	279 69616	73.90417
(17.17)	214.15496	295 27559	77.98943
• • •		200.27003	¢₹./529/

ORIGINAL PAGE IS

•

•

.

FORM 2401/

BOX NUMBER 23

COORDINATES	X	Y	Z
	A 4 4 4 5 4 9 5	468 00440	54 54500
	214.15496	168.82440	51.34309
(1, 3)	214.13450	200 79436	57 82894
(1, 3)	214.15496	216.69850	61.35987
(1, 9)	214.15496	232.54399	65.14531
(1,11)	214.15496	248.32750	69.18141
(1,13)	214.15496	264.04587	73.46417
(1,15)	214.15496	279.69616	77.98945
(1,17)	214.15496	295.27559	82.75297
(3, 1)	230.83674	168.82440	55.49261
(3,3)	230.83674	184.83509	58.50371
(3,5)	230.83674	200.79436	61.//040
(3, 7)	230.83074	210.09000	69 09283
(3, 3)	230.83074	232.34335	73 12893
(3,11)	230.83674	264 04587	77.41169
(3,15)	230,83674	279.69616	81.93697
(3,17)	230.83674	295.27559	86.70049
(5, 1)	247.45028	168.82440	59.71813
(5,3)	247.45028	184.83509	62.72923
(5,5)	247.45028	200.79436	66.00198
(5,7)	247.45028	216.69850	69.53291
(5,9)	247.45028	232.54399	73.31835
(5,11)	247.45028	248.32730	11.J3443 B1 62722
(5,13)	247.40048	204.04387	86 16249
(5,13)	247.45028	295 27559	90 92601
(7, 1)	263.99190	168.824.0	64.21701
(7.3)	263.99190	184.835.3	67.22811
(7, 5)	263.99190	200.79436	70.50086
(7,7)	263.99190	216.69850	74.03179
(7,9)	263.99190	232.54399	77.81723
(7,11)	263.99190	248.32750	81.85335
(7,13)	263.99190	264.04587	86.13609
(7,15)	263.99190	2/9.69616	90.00137
(7,17)	203.99190	293.27339	50.09443
(9, 1)	280.43813	108.82440	71 99442
	200.45015	200 79436	75 26827
(9, 5)	280.45815	216 69850	78.79920
(9,9)	280.45815	232.54399	82.58464
(9,11)	280.45815	248.32750	86.62074
(9,13)	280.45815	264.04587	90.90350
(9,15)	280.45815	279.69616	95.42878
(9,17)	280.45815	295.27559	100.19230
(11, 1)	296.84580	168.82440	74.01538
(11, 3)	296.84580	184.83509	77.02648
(11, 5)	296.84580	200.79436	80.29923
(11, 7)	296.84580	216.69850	83.83016
(11, 9)	296.84580	232.54399	87.01560
(11, 11)	255.84580	248.J2/30 364 04597	91.031/U 05 03446
(11,13)	230.0430U 208 84580	207.0400/ 279.69616	53.53440 100 45974
(11,10)	296 84580	295 27559	105 22326
(13 1)	313.15188	168.82440	79.30479

ORIGINAL PACE IS OF POOR QUALITY .

٠

.

Ł

Lange -

	Construction of the second sec		A CONTRACTOR A
(13, 5)	313.15188	200.79436	85.58864
(13, 7)	313.15188	216.69850	89.11957
(13, 9)	313.15188	232.54399	92.90501
(13, 11)	313.15188	248.32750	96.94111
(132)	313.15188	264.04587	101.22388
(13.15)	313.15189	279.69616	105.74915
(13, 17)	313.15188	295.27559	1 10 . 5 1267
(15, 1)	329.37363	168.82440	84.84745
(15, 3)	329.37363	184.83509	87.85855
(15.5)	329.37363	200.79436	91.13130
(15.7)	329.37363	216.69850	94.66223
(15, 9)	329.37363	232.54399	98.44767
(15, 11)	329, 37363	248.32750	102.48377
(15, 13)	329.37363	264.04587	106.76653
(15, 15)	329.37363	279.69616	111.29181
(15, 17)	329 37363	295.27559	116.05532
(17. 1)	345.50854	168.82440	90.63806
(17 3)	345 50854	184.83509	93.64916
(17 5)	345.50854	200.79436	96.92191
(17, 7)	345 50854	216 69850	100 45284
(17 9)	345 50854	232 54399	104 23828
(17 11)	345 50854	248 32750	108 27438
(17 13)	345 50854	264 04587	112 55714
(17,15)	345 50854	279 69616	117 08241
(17 17)	345 50854	295 27559	121 84593

ORIGINAL PAGE 19 OF POOR QUALITY

•

FORM 2401/

· •

Z

BOX NUMBER 24

۷

(1 1)	345 50854	168.82440	90.63806
(1,3)	345,50854	184.83509	93.54916
(1, 5)	345.50854	209.79436	96.92191
(1,7)	345.50854	216.69850	100.45284
(1,9)	345.50854	232.54399	104.23828
(1,11)	345.50854	248.32750	108.27438
(1,13)	345.50854	264.04587	112.55714
(1,15)	345.50854	279.69616	117.08241
(1,17)	345.50854	295.27559	121.84593
(3,1)	361.55178	168.82440	96.67029
(3,3)	361.55178	184.83509	99.68139
(3,5)	361.55178	200.79436	102.95415
(3,7)	361.55178	216.69850	106.48507
(3,9)	361.55178	232.54399	110.27051
(3,11)	361.55178	248.32750	114.30661
(3,13)	361.55178	264.04587	118.58938
(3,15)	361.55178	279.69616	123.11465
(3,17)	361.55178	295.27559	127.8/817
(5, 1)	377.50385	168.82440	102.93966
(5,3)	377.50385	184.83509	105.95076
(5,5)	377.50385	200.79430	109.22351
(5,7)	377.50385	216.69850	112.73444
(5,9)	377.50385	232.34399	110.03988
(5,11)	377 50385	290.32730	120.37330
(0, 13)	377 50385	204.04307	129 38402
(3, 13)	373 50365	275.05010	134 14754
	377.30383	169 92440	109 44075
(7, 1)	333.30203	100.02440	112 45 195
(7, 3)	393.30209	200 79426	115 72460
(7, 3)	393.30203	216 69850	119 25553
(7, 7)	393.30203	232 54399	123 04097
(7, 3)	393 36289	248.32750	127.07707
(7, 13)	393 36289	264 04587	131.35983
(7,15)	393.36289	279.69616	135.88511
(7, 17)	393, 36289	295.27559	140.64863
(9, 1)	409.12727	168.82440	116.16814
(9,3)	409.12727	184.83509	119.17924
(9,5)	409.12727	200.79436	122 . 45 199
(9,7)	409.12727	216.69850	125.98292
(9,9)	409.12727	232.54399	129.76836
(9,11)	409.12727	248.32750	133.80446
(9,13)	409.12727	264.04587	138.08722
(9,15)	409.12727	279.69616	142.61249
(9,17)	409.12727	295.27559	147 37601
(11, 1)	424 . 79555	168.82440	123.11641
(11, 3)	424.79555	184.83509	126.12751
(11, 5)	424.79555	200.79436	129.40026
(11, 7)	424.79555	216.69850	132.93119
(11, 9)	424.79555	232.54399	136.71663
(11, 11)	424.79555	248.32750	140.75273
(11,13)	424.79555	264.04587	145.03549
(11, 15)	424.79555	279.69616	149.56077
(11, 17)	424.79555	295.27559	154.32429
(13, 1)	440.36548	168.82440	130.28018

ORIGINAL PAGE IS OF POOR QUALITY

· ·

c₁, ,

.

COORDINATES

X

-

(13.5)	440.36648	200.79436	136.56403
(13 7)	440.36648	216.69850	140.09496
(13 9)	440 36648	232.54399	143.88040
	AAO 36648	248 32750	147.91650
	440.36640	264 04597	152 19926
(13,13)	440.30048		156 72454
(13, 15)	440.30048	2/9.89010	100.72404
(13,17)	440.36648	295.27559	101.48800
(15, 1)	455.83902	168.82440	137.65411
(15, 3)	455.83902	184.83509	140.66521
(15, 5)	455.83902	200.79436	143.93796
(15.7)	455.83902	216.69850	147.46889
(15.9)	455.839C2	232.54399	151.25433
(15, 11)	455.83902	248.32750	155.29043
(15, 13)	455.83902	264.04587	159.57319
(15, 15)	455.83902	279.69616	164 09847
(15.17)	455.83902	295.27559	1€J.86199
(17.1)	471.21226	168.82440	145.23288
(17.3)	471.21226	184.83509	148.24398
(17.5)	471.21226	200.79436	151.51673
(17, 7)	471.21226	216.69850	155.04766
(17.9)	471.21226	232.54399	158.83310
(17 11)	471 21226	248.32750	162.86920
(17 12)	471 21226	264.04587	167.15196
	471 01006	279 69616	171 67724
(1/,10)	471.21220	273.03010	176 44076
(17,17)	471.21226	542 51224	110.440/0

문화한 학생가 해당한 방법이 가려면서 해당한 전문 전문 방법이 있는 것이다. 또한 것이 있는 것이다. 그는 것이다. 그는 것이다. 이 가지 않는 것이다. 가지 않는 것이다. 가지 않는 것이다. 가지 👘

ORIGINAL PACE IS

•

•

r 4

이 같은 것이 있는 것이 있다. 가지 않는 것이 있는 것이 있는 것이 같은 것이 있는 것 같은 것이 있는 것

.

BOX NUMBER 25

3

COORDINATES	x	Y	Z
<i>.</i>		469 89440	146 22200
(1, 1)	4/1.21220	100.02440	149.23288
(1, 3)	4/1.21226		140.24390
(1, 5)	4/1.21228	200.73436	151.51075
$(1, \eta)$	4/1.21228	210.09030	155.04700
(1,9)	4/1.21226	232.343.45	130.03310
(1,11)	471.21226	248.32/50	102.00920
(1,13)	471.21226	264.04587	107.13190
(1,15)	471.21226	279.69616	1/1.6//24
(1,17)	471.2 226	295.27559	1/0.440/0
(3, 1)	486.48335	168.82440	153.01015
(3,3)	486.48335	184.83509	156.02125
(3.5)	486.48335	200.79436	159.29400
(3,7)	486.48335	216.69850	162.82493
(3,9)	486.48335	232.54399	106.61037
(3,11)	486.48335	248.32750	1/0.6464/
(3,13)	486.48335	264.04587	174.92923
(3,15)	486.48335	279.69616	179.45451
(5, 1)	501.65388	168.824-0	160.98180
(5,3)	501.65388	184.83509	163.99290
(5,5)	501.65388	200.79436	167.26565
(5,7)	501.65388	216.69850	170.79657
(5,9)	501.65388	232.54399	174.58201
(5,11)	501.65388	248.32750	178.61812
(5,13)	501.65388	264.04587	182.90088
(7,1)	516.72345	168.82440	169.14272
(7,3)	516.72345	184.83509	172.15382
(7,5)	516.72345	200.79436	175.42657
(7,7)	516.72345	216.69850	178.95750
(7,9)	516.72345	232.54399	182 74294
(7,11)	516.72345	248.32750	186.77904
(9,1)	531.69176	168.82440	177.48790
(9,3)	531.69176	184.83509	180.49900
(9,5)	531.69176	200.79436	183.77175
(9,7)	531.69176	216.69850	187.30268
(9,9)	531.69176	232.54399	191.08812
(11, 1)	546.55866	168.82440	186.01241
(11, 3)	346.55866	184.83509	189.02352
(11, 5)	546.55866	200.79436	192.29627
(11, 7)	546.55866	216.69850	195.82719
(13, 1)	561.32412	168.82440	194.71144
(13, 3)	561.32412	184.83509	197.72254
(13, 5)	561.32412	200.79436	200.99529
(15, 1)	575.98824	168.82440	203.58025
(15, 3)	575.98824	184.83509	206.59135
(17, 1)	590.55119	168.82440	212.61422

OF POOR QUALITY

•

- **W**

.

1

*

ORIGINAL PAGE IS OF POOR QUALITY

****** AHAIGUZ ****** ****** AHAIGUZ ******

•

D-48

,

Constant of

FORM 2401.

AGE K

OGR,

Appendix E---Mesh Deflections of Single Panel +

> Appendix E – Mesh Deflections of Single Panui

> > •

١

Mesh Support System Deflections, plus Box-Truss Deflections

ORIGINAL PAGE IS

۰,

.

MESH SUPPORT SYSTEM

••••	DISPLACEMENT	SOLUTION ++++ E	ME O
NODE	UX	UY	07
t	. 2672312-02	. 292 13 JE - 03	8996/2E-03
3	. 171156E-02	. 509 136E - 03	· 237202E-02
5	. 3358 19E - 02	. 93506 1E -03	- 5453176-02
7	. 240080E - 02	. 8340/6E-03	- 3678695-03
9	-2793956-02		
35	. 439345E - 02	4492926-03	7976786.02
37	992094E-03	965906F - 04	1779555 .01
39	. 147 107E -02	1579966-03	· 2268075.01
41	. 113959E - 02	- 9654285-04	- 1697316-02
43	.401011E-02	. 2080755-04	- 3338965-02
69	. 647203E -02	.6838235-03	• 749/715.00
71	.216174E-02	. 435989E-03	- 1979785.02
73	.453155E-02	. 7949295-03	- 8756846-07
75	. 30654 1E-02	4140365-03	- 584668E-02
77	.601142E-02	509504E-03	- 6891206-02
103.	. 594964E-02	- 608266E-03	- 6370606-02
105	. 190174E-02	3988515-03	- 300036-02
107	. 266435E-02	462080E-03	- 530032E-U2
109	. 121067E-02	6148515-04	- 3350542-02
111	. 508566E - 02	3944395-02	- EIEcasc-02
137	. 537662E-02	6577775-03	- 4968706-08
139	. 324002E - 02	616393E-03	4 6583875-00
141	.264826E-02	3971316-03	- 5655005 .00
143	.297306E-02	31 (5386-03	JUJJUYE •02
145	.516581E-02	.4473356-04	509056E-02

Local Shadow Effect

C.,

.

E-1

ORIGINAL PAGE IS OF POOR QUALITY

MESH SUPPORT SYSTEM

•••••	DISPLACEMENT	SOLUTION TIM	E - O.
NODE	UX	UY	UZ
1	. 536027E -03	3523672-03	. 266033E -02
-3 -	108958E-02		. 210711E-0Z
5	166386E-03	- , 72 1806E - 0J	296651E "OJ
7	147581E-02	133796E -02	. 291721E-02
9	. 3 26468E - 02	144959E-02	. 190023E - 72
35	. 317913E-02	. 412302E-04	192834E-02
37	. 853391E-03	547750E-04	181599E-02
39	125099E-02	530240E -03	. 235263E -02
41	605 163E - 02	2 - , 1804 14E - 02	. 116313E-01
43	. 357 1768 - 02	211484E-03	. 130912E-02
69	. 5 15 199E - 02	. 212664E-03	499487E-02
71	112244E-03	.884473E-06	173873E-03
73	. 242080E-C2	. 462564E-03	433716E-02
75	. 1023376-02	. 1 €0870E-03	134816E-02
77	. 63 1568E - 02	. 524151E-03	361498E-02
103	. 346803E-02	. 426857E-04	•. 152034E-02
105	610414E-02	650403E - 03	. 1006086-01
107	. 3758876-03	3 . 355670E - 03	7628915-03
109	. 414774E-02	. 113824E-02	676970E -02
111	. 575635E -02	. 468119E-03	252586E-02
137	. 153490E-02	140350E-03	. 22603 1E - 02
139	114213E-02	397563E - 03	. 1919668-02
141	517290E-03	567834E-03	. 802869E -03
143	. 409770E-03	650328E - 03	666021E-03
145	. 343503E-02	1 26002E - 02	, 149 43E-02

Maximum Temperature Case

E-2

A CONTRACTOR OF ANY ADDRESS OF A CONTRACTOR AND ADDRESS OF A DEPOSIT

ORIGINAL PAGE IS OF POOR QUALITY

.

MESH SUPPORT SYSTEM

.

	*****	DISPLACEMENT	SOLUTION	IME . O.
	NODE	UX	UY	UZ
	•			-
	1	*.1834385-04		
	J	- 1004/0E-VA		
	7	- 1009346-04		. 2000070-02 A407865-02
	, ,	2404676-04	2790835-02	437021F-02
	75	1968 14E - 115	- 1430975-03	231363F-02
	35	2953516-03	- 154166F-03	7687416-03
	79	- 291442E-02	- 931625F-(/3	543712E-02
	41	- 7597905-02	- 229 180E -02	144966E-01
	43	- 401037E-03	- 16 19756 -02	912115E-02
	60	268861E-02	663742E-C4	778741E-03
	71	- 25 1980E -02	387760E-03	413277E-02
	73	- 155208E-02	387512E-03	279198E-02
•	75	- 248733E-02	- 787325E-03	494589E-02
	77	920224E-03	115922E-02	. 649997E - 02
	103	177867E-02	166510E-03	. 3402598-02
	10/3	764177E-02	8662922-03	. 127605E-01
	107	202560E -02	1408828-03	. 3475122-02
	109	. 213224E-02	. 5838926-03	32 1076E - 02
	111	. 154950E-02	9165338-03	. 522947E-02
	137	. 25 18878-02	. 171384E-02	. 32603 tE -02
	139	967582E-03	. 235096E -02	. 169544E-02
	141	- 318814E-03	. 300648E-02	5837426-03
	143	. 794795E-03	. 379962E - 02	- +21092E-02
	145	. 368171E-02	. 39 1947E -02	. 1599468-02

Minimum Temperature Case

P

. **h**

ľ

ALC: NOTE: N

State State

ł

OGR,

Appendix F— Nodal Deflections for Thermal and Centrifugal Cases on the Antenna Support Structures MSDA THERMOELASTIC MODEL 5X5 2M. NEW SPIN AXIS W/BALLAST THERMOELASTIC BEHAVOIR MODEL

.

CENTRIFUGAL LOAD 6 RPM

State of the second second

DISPLACEMENT VECTOR

.

POINT	10	TYPE	Δx (inches)	Av (inches)	∆z (inches)	Θx (radiars)	Oy (radians)	Oz (radians)
FUINT	1	G	3.706227E-03	-2.783268E-04	-5.574797E-04	-3.058087E-04	2.764618E-05	7.995983E-05
	2	ā	4. 145374E-03	-4.4841378-04	-3.096691E-03	-2.900233E-04	-4.6529598-05	-2.890349E-05
	3	Ğ	5.022275 2-03	-6.032640E-04	-5.7495218-03	-2.616346E-04	-1.001230E 04	-8.483725E 05
	Ā	ā	6. 180902E-03	-4.233985E-04	-8.321891E-03	-2.886101E-04	-1.804508E-04	8.320552E-06
	-	ě	2 115724E-03	8 398682E-05	4 928 196E -04	-1.700018E-04	5. 270436E-05	4.684896E-07
	ž	å	2 213638E-03	-1 298.116F-04	-4 114297E-04	-1 615332E-04	-2.783390E-06	-5.947085E-06
	7	G	2 7757205-03	-2 221626F-04	-2 530503E-03	-1 4894525-04	-6 106067E-05	-2 0227965-06
		Ä	3 777880F-03	-3 484991E-04	-5.0351888-03	-1.285763E-04	-1.148764E-04	4.201915E 06
	ă	Ğ	5 151709E-03	-2 262625E-04	-7.842593E-03	-1.127964E-04	-1.634443E-04	-7.138893E-06
	10	Ğ	6 669278F-03	3.592340E-05	-1.033618E-02	- 1.687855E-04	-2.713586E-04	-4.962463E-05
	11	ă	-2 6714976-04	1 303417E-04	9.731782E-05	-2.666396E-06	-5.776564E-06	1.093262E-05
	12	ĕ	8 529487E-05	1 1133585-04	-3 354701E-05	-2 1826378-05	-1.221469E-05	-5.033830E-06
	43	Ğ	7 9088335-04	1. 110050E 04	-1 739772F-03	-2 277026E-05	-8 839822F-05	2 534009E-06
	1.0	Ğ	1 8000765-03	-1 304988F-05	-3 8483316-03	-2 463520E-05	-1 467877E-04	9 5147465-06
	15	G	3 8949925-03	3 885395F-05	-7 2029906-03	-1 6914935-05	-1 925166E-04	1 583839E-05
	10	Ğ	5.054552C 03	1 1341605-04	-1 0023545-02	-2 738344F-05	-2 749534F-04	5 300956E 05
	10	G	-2 768636E-04	-2 697571F-05	9 702026F-05	2 859425E-06	-5 834484F-06	-1.063263E-05
		Ğ	7 4933346-05	1 3548885-05	-3 029321E-05	2 468244E-05	-1 2185536-05	5 407219E-06
	10	G	7 7957105-04	7 8888246-05	- 1 737415E-03	2 364503E-05	-R 822158F-05	-2 211370E-06
	20	G	1 8880585-03	2 0554245-04	-3 845257F-03	1 5739045-05	-1 496668F-04	-1 0554728-05
	24	G	3 8834036-03	2 005 1985 -04	-7 199274F-03	2 28 1060F-06	-1 92524 1E-04	-1 806297E-05
	22	G	5 672814F-03	1 625030E-04	-1 0019295-02	7 6383825-06	-2 750016E-04	-5 450686E-05
	23	Ğ	2 058484E-03	1 764134E-05	A 977895F-04	1 8366405-04	5 274860E-05	1 451965E-07
	24	6	2 1563156-03	2 535096F-04	-4 016277E-04	1 738 16 15 -04	-2 274392E-06	6 822311E-06
	26	G	2 7179395-03	3 834614F-04	-2 516208E-03	1 4297335-04	-6 049399E-05	1.7085988-06
	26	G	3 7191995-03	5 490137E-04	-5 017440E-03	1 112070E-04	-1 146554E-04	-6 991010E-06
	20	G	5.713155E 03	A 638346E-04	-7 821906F-03	A 692579E-05	-1.635340E-04	1.5306666-06
	28	ă	6 607898E-03	2 3799618-04	-1 031301E-02	1.5395476-04	-2.7141638-04	4.476826E-05
	29	ä	3 607469E-03	3 991075E-04	-5.369305E-04	3.070837E-04	2.782357E-05	8.019619E-05
	30	· ā	A 045572E-03	6 067774E-04	-3 069777E-03	2.8476938-04	-4.626375E-05	2.853654E-05
	31	Ğ	4 920640E-03	8.000920E-04	-5.716636E-03	2.5092998-04	-1.000304E-04	8.232534E-G3
	32	ă	6 077004E-03	6 567418E-04	-8. 2837 16E-03	2.7350838-04	-1.304918E-04	-9.847758E-06
	33	ă	7 864332E-04	-1 6038315-04	-5.507726E-04	3.007337E-04	3.737831E-05	-5.228812E-05
	34	Ğ	1.190461E-03	-1.288812E-04	-3.081453E-03	2.736687E-04	1.116109E-04	3.2026798-05
	35	ä	1.9929808-03	-1.074336E-04	-5.726817E-03	2 336266E-04	1.8737598-04	2.351980E-05
	36	Ğ	3 133113E-03	-6 601210E-05	-8.306256E-03	2 115280E-04	2.087657E-04	3 314235E-05
	37	Ğ	-1 068837E-04	-5 303757E-06	4 945016E-04	1 691386E-04	-1.658776E-05	-3.537285E-06
	38	Ğ	-6 229460E-05	-7 847213E-05	-4 039859E-04	1.590825E-04	6.866719E-C5	-2.310784E-06
	30	Ğ	2 500264E-04	2 2099 195-05	-2 508583E-03	1.392974E-04	1.329463E-04	2.9260998-05
	40	Ğ	4 190944E-04	8 657904E-05	-4.9916758-03	1. 126878E-04	2. 187296E-04	-4.266386E-06
	41	Ğ	2.093265E-03	7.233068E-05	-7.7976376-03	7.970548E-05	2.863264E-04	-7.779073E-06
	42	Ğ	3.527319E-03	1.331459E-04	-1.032064E-02	8.721986E-05	3.111383E-04	-3.418330E-05
	43	G	0.0	0.0	0.0	8.757772E-06	-5.678831E-06	1.504010E-05
	44	G	-2.677513E-04	0.0	0.0	2.061392E-05	2.668981E-05	-2.986844E-06
	45	G	-3.125767E-04	6.689089E-05	-1.707952E-03	1.943847E-05	1.852971E-04	3.059024E-06
	46	G	-4.816531E-05	1.449777E-04	-3.747289E-03	2.621559E-05	2.412785E-04	1.5948022-05
	47	G	1.038661E-03	1.353624E-04	-7.104434E-03	2 77 1032E - 05	3. 162052E-04	1.314308E-05
	48	G	2.579969E-03	1.570141E-04	-9.984384E-03	2. J68657E-05	3.297511E-04	3.032106E-05
	49	G	0.0	1.001984E-04	0.0	-9.096014E-06	-5.745585E-06	-1.487873E 05
	50	Ğ	-2.781665E-04	1.332849E-04	0.0	-2.577507E-05	2.6638582-05	3. 125674E-06

ORIGINAL PAGE IS

L

SURCASE 1

1.

a system a distant

4

NSDA THERNOELASTIC MODEL 5X5 2M. NEW SPIN AXIS W/BALLAST THERMOELASTIC BEHAVOIR MODEL

٠

٠

.

CENTRIFUGAL LOAD 6 RPM

SUBCASE 1

.

•

.

	D	1 9	S	P	L		С	E	H	£	N	T	v	E	С	T	0	R	
--	---	-----	---	---	---	--	---	---	---	---	---	---	---	---	---	---	---	---	--

POINT	tD.	TYPE	∆x (inches)	∆y (inches)	∆z (inches)	θx (radians)	θy (radians)	θz (radians)
	51	G	-3.238257E-04	1.0474938-04	-1.705370E-03	-4.718389E-05	1.848724E-04	-5.457833E-06
	62	ā	-5.952066E-05	6.827673E-05	-3.744406E-03	-5.359992E-05	2.405993E-04	-2.0854548-05
	53	ä	1.0268898-03	1.160005E-04	-7.100817E-03	-5.380804E-05	3.154396E-04	-1.822012E-05
	54	Ğ	2 567856E-03	1 319669E-04	-9.980223E-03	-5.9427698-05	3.292137E-04	-3 363900E-05
	66	ă	-1 623696E-04	1.072936E-04	4.995348E-04	-1.839804E-04	-1.668767E-05	3.739399E-06
	56	ā	-1.173563E-04	2.105929E-04	-3.939577E-04	-1.971622E-04	6.772147E-05	4.233797E-07
	57	ā	1.949177E-04	1.488369E-04	-2.494333E-03	-1.781479E-04	1.312945E-04	-3.470455E-05
	58	ā	8.636737E-04	1.248844E-04	-4.974040E-03	-1.592139E-04	2.163885E-04	-3.791724E-06
	59	ā	2.036748E-03	1.770939E-04	-7.777119E-03	-1.316889E-04	2.835893E-04	-4.180002E-06
	60	ā	3 4692826-03	1.5380/DE-04	-1.029743E-02	-1.169372E-04	3.103750E-04	2.470341E-05
	61	Ğ	6 941455E-04	2 901040E-04	-5.302278E-04	-3. 167566E-04	3.694478E-05	5. 160432E-05
	62	Ğ	1 097090E-03	2 968146E-04	-3.054552E-03	-2.9524208-04	1. 106387E-04	-3.450288E-05
	63	Ğ	1 897753E-03	3.150650E-04	-5.693963E-03	-2.5906396-04	1.857965E-04	-2.982563E-05
	64	ā	3.035665E-03	3.110317E-04	-8.268115E-03	-2.415339E-04	2.073024E-04	-3.685188E-05
	65	Ğ	-3.891458E-03	8.790582E-05	2.780691E-04	1.464516E-06	-5.503145E-04	2.6362528-05
	66	ā	-9.269314E-03	9. 193277E-05	3.878278E-04	-2.177434E-06	-1.381034E-05	2.955909E-05
	67	ā	-1.464590E-02	5.767577E-05	5.347973E-04	-1.294441E-05	2.444616E-04	3.232045E-05
	68	G	-3.9008798-03	1.773247E-05	2.775192E-04	- 1 . 498638E -06	-5.503285E-04	-2.612852E-05
	69	G	-9.278556E-03	1.638312E-05	3.871977E-04	2.210912E-06	-1.381780E-05	-2.9328912-05
	70	G	-1.465597E-02	5.260577E-05	5.340814E-04	i . 983900E -05	2.444540E-04	-3.206642E-05
	71	G	-3.906645E-03	-8.558710E-06	-2.253408E-03	3.579671E-06	9.5772438-05	-8.925541E-06
	72	G	-9.289145E-03	6.127434E-06	-3.109423E-03	1.238394E-05	-2.305508E-04	-5.595606E-06
	73	G	-1.454003E-02	2.136703E-05	-3.342134E-03	1.225420E-06	-3.003031E-04	-2.585857E-06
	74	G	-3.916059E-03	7.799017E-05	-2.256329E-03	1.003307E-06	9.5758398-05	9.152917E-06
	75	G	-9.298349E-03	6.631941E-05	-3.111313E-03	- 7 . 29698 1E - 06	-2.305583E-04	5.824669E-06
	76	G	-1.455011E-02	4.837757E-05	-3.344125E-03	2.974497E-05	-3.003107E-04	2 . 840500E -06
	77	G	-7.089047E-04	5.365488E-05	-1.519139E-03	- 1 . 93365 1E -05	-6.5522828-05	-1.743951E-05
	78	G	-7.169458E-04	1.720406E-05	-1.523684E-03	2.078668E-05	-6.554399E-05	1.735752E-05
	79	G	0.0	0.0	0.0).0	0.0	0.0
	80	G	0.0	0.0	0.0	0.0	0.0	0.0

original page 19 of poor quality L

•

FORM 2401.

~

ा स्टब्स् के प्रतिसंह के प्राप्त है।

1.80

-

MSDA THERMOELASTIC MODEL 5X5 2M. NEW SPIN AXIS W/BALLAST THERMOELASTIC BEHAVOIR MODEL

- 23

S. .

90 DEGREE ORBITAL POSITION (AVE. TEMP.)

DISPLACEMENT VECTOR

4

POINT	ID.	TYPE	∆x (inches)	∆y (inches)	∆z (inches)	θx (radians)	θy (radians)	θz (radians)
	1	G	3. 182630E-03	2.573115E-03	1.621822E-03	-4 960921E-06	1.093044E-05	1.2898298-06
	2	Ğ	3.543188E-03	2.359679E-03	9.474088E-04	-7.981681E-07	1.803920E-05	1.3957998-09
	3	Ğ	4.520842E-03	2.470084E-03	-9.987882E-04	-1.234367E-06	2.633308E-05	6.212310E-07
	Ā	Ğ	6.117453E-03	2.3908138-03	-3.444982E-03	-1.0425678-06	3.312388E-05	-8.126002E 07
		ā	2 063315E-03	1.672273E-03	1.687663E-03	-5.8389338-06	9.5589858-06	5.890874E-06
	Ā	ā	2 310584E-03	1.740-268-03	1.991705E-03	-5.4604638-06	1.2531598-05	1.254981E-06
	7	ā	2 645848E-03	1.203323E-03	1.006726E-03	1.857295E-06	1.676242E-05	2.333882E-06
	Ś.	ā	3.566056E-03	1.5358256-03	-7.650679E-04	-1.5535108-06	2.337179E-05	-4.705405E-07
	ĕ	ā	5.130047E-03	1.478691E-03	-3.1828658-03	-2.209531E-07	3.0728712-05	-9.366734E-07
	10	Ğ	7.389262E-03	1.386961E-03	-5.900314E-03	-6.789739E-08	3.614362E-05	-1.177246E-06
	11	ā	8 405265E-04	7.504559E-04	2.579653E-03	-2.640430E-06	4.101169E-06	-3.7336458-07
	12	ā	1 355363E-03	5.456373E-04	2.438229E-03	-3. 184995E-06	4.129424E-06	-3.758435E-06
	13	Ğ	1 8123578-03	1.024308E-04	8.113332E-04	1.798044E-G6	9.413086E-06	4.269300E-08
	14	Ğ	3 5536926-03	5.472459E-04	-1.111088E-03	-6.502730E-07	2.285239E-05	2.595877E-06
	15	ă	4 883813E-03	5.632329E-04	-3. 194735E-03	9.5187088-07	2.812582E-05	5.391637E-07
	16	Ğ	6 979290E-03	4.322319E-C4	-5.639668E-03	9.6473418-07	3.338463E-05	5.203022E-07
	17	ă	7 394248E-04	-4.356033E-04	2.568690E-03	1.6660216-07	4.665161E-06	-2.319640E-06
		Ğ	1 534907E-03	-2 676117E-04	2 301783E-03	1 5078865-06	5.119328E-06	3.033512E-06
	10	Ğ	1 9478395-03	6 140396E-04	7 1525146-04	-2 962798F-06	9 854884E-06	1 13.3935-06
	20	Ğ	3 372261E-03	-A 992863E-05	-1 247238E-03	2 141743E-06	2 160673E-05	-1 090171E-06
	24	ä	4 615069E-03	-2.648156E-04	-3. 175254E-03	2.2348315-06	2.647602E-05	3.895263E-06
	22	ã	8 765117E-03	-4.057116E-04	-5.7701208-03	1.927990E-06	3.284126E-05	4.631945E-06
	23	ĕ	116629E-03	-1 358333E-03	1.411316E-03	3 537603F-06	4.330258E-06	-2.0674728-06
	24	6	1714756-03	-1 405192E-03	1 854886F-03	4 513760E-06	6 997355E-06	2 52707 IE-06
	25	Ğ	1 0-76625-03	-5 336726F-04	8 9146165-04	-1 7186715-06	1 268573E-05	2 538515E-06
	20	Ğ	1.0070020 00	-1 0398165-03	-6 9042875-04	2 3540495-06	1 8959876-05	3 5139015-06
	40		2.0002200-00	-1.0250102-03	-9 7825125-03	2 7053186-06	2 6191555-05	3 8392355-06
	21	G		-1 4162205-03	-8 3785585-03	2.1033102.00	3 293758F-05	R 724266F-06
	20	9	1 3410525-03	-2 1696566-03	1 268 16 15 -03	3 6535445-06	A 095673F-06	2 850984F-06
	30	Ğ	1 8339705-03	-1 6923605-03	# 4212985-04	2 3872105-07	1 0640715-05	1 7039316-06
	24	Ğ	2 4982925-03	-1 969561E-03	-7 064074F-04	1 0289945-06	1 871404E-05	-1 5117798-07
	31	9	4.0079445-03	-2 1755026-03	-2 7070855-03	1 6628935-06	2 647244E-05	3 087788F-06
	32	Ğ	1.5638146-03	1 7182185-03	1 940648F-03	-5 4341476-06	1 032672F-05	6 018932F-06
	34	Ğ	A 122129E-04	2 1969146-03	-3 0090605-04	-1 2636156-06	1 698285E-05	4 985203F-07
	35	Ğ	A 625256E-04	2 185607E-03	-1 940010E-03	-2 241418E-06	2 568078E-05	-1 337779E-06
	36	Ğ	1 0089265-03	2 151138F-03	-4 551986F-03	-2 032615E-C	3 251971E-05	-2 2716925-06
	37	ä	6 069717E-04	7 191197F-04	2 168 190F - 03	-6 0183415-06	N 674859E-06	5 130539E-07
	33	å	5 7015336-04	6 082466F-04	1 0714065-03	-8 5216215-06	1 0228305-05	-2.946715E-07
	30	å	2 079742E-04	1 325104F-03	-7 144812E-05	-9 5402735-07	1 414320E-05	2 4852128-06
	40	ä	-5 5299346-05	1 3025356-03	- 1 R02469E-03	-1 8823835-06	2 305937E-05	-1 8794915-06
	A 1	Ğ	A 016949E-04	1 353751E-03	-4 067015E-03	-2 149650E-06	2 996631E-05	-2 3529855-06
	43	å	1 7016985-03	1.319187E-03	-6.950641E-03	-1.352612E-06	3.5855896-05	-3.5667778-06
	43	Ğ	0.0	0.0	0.0	-5 856338E-06	4 124003E-06	8 591383E-07
	44	Ğ	7 4033695-04	0.0	0.0	-3 790972F-06	3 805819E-06	-2 459961E-07
	46	Ğ	A 994005E-04	A 855229E-04	3 240084E-04	1 402263E-06	7 5759135-06	1 695412E-06
	46	Ğ	-R 1657725-05	5 169475F-04	-1 011695E-03	-8 659466F-08	2 332036E-05	-2.6866516-07
	47	Ğ	5 072700F-04	5 3129158-04	-3.703652E-03	-1.1598458-06	2.793475E-05	-1.538934E-06
	48	õ	1 735886F-03	4 830887E-04	-6 395849E-03	-1.508322E-07	3.306323E-05	-7.5492918-07
	49	Ğ	0.0	-1.425704F-04	0.0	2.451288E-06	4.746838E-06	-7.619589E-07
	43 60	Ğ	7 200 1565-04	5 0004276-05	0.7	2 3045695-06	A 972251F-06	2 021072E-06
	UU U		/. 3001306-04	9.000-216.03	v · . ·	2.007003L 00		

ORIGINAL PACE IS OF POOR QUALITY **A** 1

SUBCASE 2

٠

1

٠

а.

F-3
NSDA THERMOELASTIC HODEL 5x5 2M. NEW SPIN AXIS W/BALLAST THERMOELASTIC BEHAVOIR MODEL

90 DEGREE ORBITAL POSITION (AVE. TEMP.)

and the second s

SUBCASE 2

12

389 - B

1

.

DISPLACEMENT VECTOR

.

POINT ID	. TYPE	Ax (inches)	Ay (inches)	Δz (inches)	θx (radians)θy (radians)	0z (radians)
51	G	4.602049E-04	-2.856156E-05	1.150104E-04	-2.537946E-06	8.574228E-06	-4.041978E-07
52	G	-1.219071E-04	-2.095826E-04	-1.241052E-03	-9.871548E-07	2 . 22927 1E - 05	2.358920E-07
53	G	4.680030E-04	-2.363473E-04	-4.024043E-03	9.590990E-07	2.633007E-05	2.639846E-06
54	G	1.551364E-03	-3.0080898-04	-6.501267E-03	1.475902E-06	3.284431E-05	4.817294E-06
55	G	3.599705E-04	-8.168249E-04	1.879991E-03	3.321006E-06	5.820803E-06	1.804722E-06
56	G	3.065386E-04	-5.191017E-04	8.736212E-04	6 . 5562 19E - 06	6.660790E-06	2.626703E-06
57	G	-2.825290E-04	-8.794971E-04	-1.692361E-04	-5.439338E-07	1.1391958-05	-5.706094E-07
68	G	-5.9187322-04	-1.041076E-03	-1.748284E-03	6.513934E-C7	1.9788488-05	3.148363E-06
59	G	-2.411199E-04	-1.129831E-03	-3.854889E-03	2.289781E-06	2.632612E-05	4 . 463566E -0 6
60	G	8.390814E-04	-1.190745E-03	-6.416811E-03	2.489386E-06	3.297591E-05	6.132584E-06
61	G	7.308752E-04	-1.561931E-03	1.59314'4E-03	3.755725E-06	4.129961E-06	-2.669950E-06
ô2	G	-4 . 996403E -05	- 1 . 730887E -03	-3.940119E-04	-2.380397E-08	1.055142E-05	-3.977540E-07
63	G	-5.255493E-04	- 1 . 966923E - 03	-1.640044E-03	4.723067E-07	1.9106738-05	3.343958E-07
64	G	-1.735694E-04	-2.028871E-03	-3.889786E-03	1.340527E-06	2.664783E-05	3.548607E-06
65	G	-4.648534E-03	9.558732E-04	4.266190E-03	-4.118768E-07	-3.402170E-05	6.4285£6E-08
68	G	-1.102201E-02	9.684505E-04	5.974658E-03	9.222187E-08	-5.052575E-05	-7.595659E-07
67	G	-1.988672E-02	9.066239E-04	7.195455E-03	5.386353E-07	-6.4127675-05	- 1. 255455E - 06
68	G	-4.608814E-03	-3.039308E-04	4.273601E-03	-1.331312E-06	- 3 . 488 949E - 05	-2.221480E-06
69	G	-1.094496E-02	-9.932324E-05	5.970354E-03	-1.274697E-06	-5.086614E-05	-2.177333E-06
70	G	- 1 . 979353E -02	2.566348E-05	7.207074E-03	-5.400987E-07	-6.444089E-05	- 1 . 726757E - 06
71	G	-3.632897E-03	9.879362E-04	-1.173473E-03	- 1 . 425923E -07	-3.402170E-05	-1.271457E-07
72	G	-1.070130E-02	1.130236E-03	-2.107967E-03	-7.730316E-07	-5.052575E-05	-7.786926E-07
73	G	-1.995268E-02	1.152021E-03	-3.0635988-03	1.9673208-07	-6.412767E-05	- 1 . 320269E -06
74	G	-3.572546E-03	2.258416E-04	-1.312527E-03	3.405552E-07	-3.488949E-05	-2.5111578-06
75	G	-1.061944E-02	3.762102E-04	-2.169722E-03	-8.830358E-07	-5.086614E-05	-2.246092E-06
76	G	-1.985441E-02	3.653006E-04	-3.104843E-03	4.915060E-07	-6. 344089E-05	-1.760448E-06
77	G	-6.337300E-04	8.187483E-04	-3.465478E-04	-3.593187E-06	-1.829760E-05	-6.641706E-07
78	G	-4.810036E-04	3.454518E-04	-5.58608 1E -04	5.676708E-07	-1.953677E-05	-5.7958022-06
79	G	0.0	0.0	0.0	0.0	0.0	0.0
80	G	0.0	0.0	0.0	0.0	0.0	0.0

original page is of poor quality

FORM 2401/

4

-2-

.

F-4

MSDA THERMOELASTIC MODEL 5X5 2M. NEW SPIN AXIS W/BALLAST THERMOELASTIC BEHAVOIR MODEL

., e

225 DEGREE ORBITAL POSITION (AVE. TEMP.)

F-5

DISPLACEMENT VECTOR

ા મહાર છે. તે 🙀 તે પુરુષ છે. તે જેવા છે. જેવા છે માટે માટે માટે

POINT ID	TYPE	∆x (inches)	Av (inches)	Az (inches)	θx (radians)	θv (radians)	θz (radians)
1	G	9 519919F-04	-3 259703E-03	3. 224751E-03	4.971461E-05	6.838284E-06	- + 865926F-06
	Ğ	2 7597505-03	-3.529604E-03	3. 289509E-03	-4.187178E-07	7.2394915-06	-4 213185E-06
3	Ä	A 460463E-03	-3 774533E-03	4.141870E-03	-2.255506F-06	7.2293555-06	-2 249869E-06
	ä	5 787636E-03	-3 A34599E-03	5 846800E-03	-3 1816815-06	5 9848 18E-06	-6 3621335-06
	Ğ	-1 0406695-04	-1 4863615-03	2 7074396-03	8 8012155-06	A 320424E-06	-4 9560166-06
	Ğ	1 2016625-02	-1 8447205-03	1 7800105-03	6 726625E-06	4 783004E-06	-4 1971945-06
7	Ğ	3 2676705-03	-1 8914975-03	1 7948815-03	-9 3596536-07	4 798031E-06	9 9204255-09
	Ğ	5 1429216-03	-2 2276545-03	2 4445135-03	-1 2583965-06	6 897695E-05	-2 2473255-05
	Ğ	5. 14252 1E-03 6 900533E-03	-2 1950575-03	3 7369975-03	-1 3145136-06	7 7966146-08	-1 8270405-06
	Ğ	7 8588495-03	-1 883019F-03	6 095062E-03	-2 764758E-07	5 7469575-06	2 8107295-06
11	Ğ	3 3889655-04	2 062557F-04	2 831454F-03	-5 8310215-06	2 158258E-06	6 2770 125-07
42	Ğ	1 8900205-03	1 6507185-04	2 5049956-03	-1 2342795-06	5 7281375-06	-1 2412316-06
14	Ğ	3 5934395-03	1.6405095-04	2.30433312 US	-1 2020025-06	9 6658186-06	-1.0519365-06
13	Ğ	A 7368995-03	-4 543164E-04	1 477669E-03	-1 7325498-07	1 0882765-05	-2 0072645-06
15	Ğ	4.7000352-03	-3 5917735-04	3 4460915-03	1 5910775-08	9 6262815-08	2 7334545-06
10	Ğ	7 6476855-03	-7 031558F-04	5 662969F-03	3 6111136-07	8 175087F-08	-3 355308E-08
17	Ğ	1 9865106-04	A 053943E-04	2 7050705-03	2 733604E-06	1 3310236-06	2 1505525-06
	Ğ	1 8651055-03	7 2500005-04	2.7550702-03	-3 0058535-07	6 215286E-06	2.1500032-00
10	9	2 589454E-03	1 0508305-03	8 GO14275-04	-5 8720685-07	9' 633834E-06	1 8749616-06
20	ä	4 672001E-03	1 6713675-03	1 3471246-03	-9 081050E-07	1 037398F-05	2 2425625-06
21	Ğ	6 2716795-03	1 4925026-03	3 3656735-03	2 2188275-07	A 055578F-06	-2 2326126-06
22	Ğ	7 584542E-03	1 284485E-03	5 609825F-03	8 0434425-07	7 7309505-06	1 2268286-06
23	6	-3 2170425-04	2 1074436-03	2 5913305-03	-1 1132726-05	9 8713316-06	6 107365 -06
24	Ğ	1 0334716-03	2 8559936-03	1 2393946-03	-8 673878F-06	1 1848986-05	7 4074505-06
25	ä	3 0833065-03	3 1450905-03	1 1875976-03	-9 117305F-07	A 549240E-07	2 0724956-07
25	Ğ	A 953705E-03	3 4615105-03	2 0910016-03	-1 5162655-07	3 6700905-06	2.0724552-07
27	Ğ	6 677511E-03	3 3342615-03	3 6391455-03	1 1469585-06	A 854319E-06	1 7563635-06
28	Ğ	7 5257165-03	2 7449976-03	6 189995F-03	1 3502405-06	2 9361545-06	-7 56 1068E -06
20	Ğ	6 229654E-04	A 3530155-03	2 4206225-03	-6 5874 105-06	A 1092545-06	2.5010002 00
30	Ğ	2 A22655E-03	4 8129376-03	2 55254AF-03	-1 9509585-06	5 1157036-06	A 600559E-06
31	Ğ	A 045086E-03	5 036464E-03	3 6615965-03	6 209956F-07	A 142076E-06	1 6635946-06
32	Ğ	5 255134E-03	A #11683E-03	5.601330C 03	1 9711275-06	2 7452625-06	7 0162675-06
33	ã	-2 116309E-04	-2 406629E-03	7 821196F-04	5 784079E-06	8 130901F-06	-A 624360E-06
34	Ğ	1 531784E-03	-3 551718F-03	1 395182F-03	-A 767424F-07	7 6716155-06	-8 173104F-05
35	Ğ	3 2385436-03	-3 946547E-03	2 2860236-03	-2 A76301E-06	6 920828F-06	-3 44 18495-06
36	å	A 71A378E-03	-3 693625F-03	3 5197385-03	-2 633268E-06	6 A02338F-06	-5 1193945-06
37	G	-7 732740E-04	-9 540219E-05	3 9900256-04	A 669054E-06	3 8046215-06	-6 9592935-06
38	Ğ	A 702284E-05	-6 704502F-04	6 076120E-04	7 9865135-06	7 717084F-06	-8 7415875-06
30	G	2 4082495-03	-1 9760096-03	3 7461355-04	1 2424175-06	6 49 1646F-06	-3 9624376-06
AG	G	A 024285E-03	-0 378225E-03	1 0099215-03	-8 0468915-07	6 7137628-06	-1 7118605-07
41	G	5 5496105-03	-2 2328935-03	2 452194F-03	-8 4304375-07	8 135256F-06	-9 866946F-07
42	Ğ	6 9423535 03	-1 8398265-03	3 849649E-03	3 970508F-07	5 923645E-06	5 1444915-06
43	Ğ	0.0400000 00		0.0100102 00	8 733501E-07	2 1048055-06	-1 8797275-06
44	Ğ	9 953217F-04	0.0	0.0	-9 522239E-07	5 552627F-04	-1 499846F-06
45	Ğ	1.0540976-03	-1 403959F-04	A 811312E-04	5 174456E-07	1 0911775-05	5 7937916-07
46	Ğ	3 043672F-03	-6 183246E-04	2 294604E-04	5.2420956-117	1 139400E-05	-2.807833E-07
47	6	5 0157905-03	-4 655984F-04	1.2037325-03	-4.414061F-07	8.621345F-06	2.2153116-06
AA	Č	6 3375125-03	-3 83444RF-04	3. 139286F - M3	2.8844215-07	8. 425888F-06	1.478926F-06
40	ă	0.0	2.854650F-04	0.0	-2.5167"6F-06	1. 157251E-06	4.521394E-06
50	ā	9.0627678-04	6.744897E-04	0.0	-3.148568E-07	5.830363E-06	5.583030E-06
~~~				# · •			

SUBCASE 3

.

-

.

ſ

.

NSDA THERMOELASTIC NODEL 5X5 2M. NEW SPIN AXIS W/BALIAST THERMOELASTIC BEHAVOIR NODEL

.

225 DEGREE ORBITAL POSITION (AVE. TEMP.)

SUBCASE 3

•

1

		TUDE	Ax (inches)	Av (inches)	Az (inches)	Ax (radians)	Av (radians)	Az (radians)
PUINI	10.	ITPE	1.0020865-02	1 0365105-03	2 6047925-04	-1 2652615-06	+ 1564055-05	-5 A154805-A7
	31 64	9	2 0201225-02	1.0303102-03	0 677242E-04	-2.2033012-00	1.1304932-03	-3.0134602-07
	52	G	3.0301322-03	1.4991202-09	9.377343E-03	-3.0049002-00	1.1231902-03	-3.8338246-07
	53	G	5.0154272-03	1.3908982-03	1.129040E-UJ	-1.4945/92-00	8.33/0932-00	-2.8000232-00
	54	a	6.314318E-03	1.281/9/E-03	3.09453/2-03	-0.309/512-0/	8.2/38212-06	-1.436031E-06
	55	G	-1.767342E-03	3.8477622-04	3.1//5/02-04	-1.043681E-03	1.0803162-06	1.491460E-05
	26	G	-9.543523E-04	1.4089702-03	1.0001146-04	-9.328502E-06	1.3364366-05	1.2/30352-05
	57	G	2.923922E-03	2.88//422-03	-1.33/03/2-04	-3.703430E-06	1.9052351-00	2.767503E-06
	58	G	4.304389E-03	3.2769252-03	7.3542372-04	-1.655378E-06	3.667405E-06	-6.528114E-07
	59	G	5.726185E-03	3.135074E-03	2.326117E-03	-1.158588E-06	5.592050E-06	3.990499E-07
	60	G	7.G25987E-O3	2.710205E-03	3.961340E-03	-9.464038E-07	3.438679E-06	-6.421731E-06
	61	G	- 1.798988E-04	3.209856E-03	2.973620E-05	- <b>8</b> . 262529E - 06	7 . 2 19899E - 06	-2.517551E-06
	62	G	1.548652E-03	4 . 469866E -03	7.077294E-04	- 1 . 470297E -06	4.974848E-06	1.135817E-05
	63	G	3.279728E-03	4.910913E-03	1.802789E-03	9 . 469988E - 07	3.728043E-06	3.082327E-06
	64	G	4.650748E-03	4.625600E-03	3.323668E-03	1 . 2302 I IE - 06	3.296059E-06	5.717198E-06
	65	G	-2.293747E-03	1.292263E-03	4.444526E-03	-5.414423E-06	- 1 . 245024E -05	1.086673E-05
	66	G	-3.933151E-03	1.686407E-03	6.151787E-03	-9.483541E-07	-1.344574E-05	1.054918E-05
	67	G	-5.414066E-03	1.086207E-03	6.944734E-03	6 . 120377E -06	- 9 . 053629E - 06	7.077269E-06
	68	G	-2.514291E-03	-3.482312E-05	4.412678E-03	8.410436E-08	- 1.279934E-05	-6.057340E-06
	69	G	-4.241248E-03	5.409668E-04	6.095181E-03	-5.536029E-06	- 1 . 367015E - 05	-3.343284E-06
	70	G	-じ、740521E-03	1 . 459 155E -03	6.895443E-03	-5.918732E-06	-9.297105E-06	6.168484E-07
	71	G	-3.789084E-03	-8.329662E-04	2.454020E-03	5.056943E-06	-1.245024E-05	1.055244E-05
	72	G	-6.217628E-03	-3.580677E-04	4.001453E-03	-4.577397£-06	-1.344574E-05	1.059204E-05
	73	G	-8.308409E-03	- 1 . 48386 1E - 04	5.497223E-03	5.798224E-07	-9.053629E-06	6.956132E-06
	74	G	-4.019445E-03	1.445258E-03	2.363250E-03	-7.352766E-06	- 1. 279934E-05	-5.603033E-06
	75	G	-6.516691E-03	1.549211E-03	3.906972E-03	1.374065E-06	- 1.367015E-05	-3.586775E-06
	76	G	-8.634753E-03	1.559015E-03	5.406838E-03	-1.036172E-06	-9.297105E-06	7.421415E-07
	77	G	-2.328874E-03	8.934012E-05	6.662011E-04	1.817117E-06	- 1.353522E-05	3.3038888-07
	78	G	-2.491577E-03	2.361972E-04	5.755441E-04	-4.060768E-06	- 1.386965E-05	1.3228318-06
	79	G	0.0	0.0	0.0	0.0	0.0	0.0
	80	G	0.0	0.0	0.0	0.0	· .U	0.0

۲

•

4

DISPLACEMENT VECTOR

ORIGINAL PAGE IS

* *

FORM 2401/

MSDA THERMOELASTIC MODEL 5X5 2M. NEW SPIN AXIS V/BALLAST THERMOELASTIC BEHAVOIR MODEL

270 DEGREE ORBITAL POSITION (AVE. TEMP.)

DISPLACEMENT VECTOR

POINT	10.	TYPE	∆x (inches)	∆y (inches)	∆z (inches)	Θx (radians)	Oy (radians)	θz (radians)
	1	G	1.820487E-03	-3.542979E-03	4.7618898-03	3.262873E-06	3.7852398-06	4. )27793E 07
	2	Ğ	3.806532E-03	-3.583780E-03	5.101566E-03	-1.109617E-06	5.8532632-06	-4.249886E-06
	3	G	5.544345E-03	-3.845245E-03	6.7309578-03	-2.584029E-06	5.504458E-06	-1.797083E-06
	4	G	6.582587E-03	-3.250061E-03	9.790731E-03	-4.653889E-06	2.444352E-06	-7.709171E-06
	5	G	5.457235E-04	-1.670468E-03	3.894526E-03	8.566635E-06	9.974062E-06	-3.314518E-06
	6	G	2.0963225-03	-2.133-63E-03	2.2825858-03	6.336135E-06	1.028613E-05	-4.736638E-06
	7	Ĝ	4.3989078-03	-1.136397E-03	2.823269E-03	-1.974270E-06	1.103070E-06	1.718821E-06
	Å	Ğ	5.408382E-03	-2.190725E-03	4.392518E-03	-1.103621E-06	4.323223E-06	-2.836016E-06
	9	ā	8. 158735E-03	-2.034210E-03	6.719044E-03	-1.7338215-06	5.247497E-06	-1.849513E-06
	10	G	8.441872E-03	-1.393165E-03	1.095596E-02	-1.113780E-06	2.932220E 07	4.067142E-06
	11	G	3.437022E-04	1.585859E-04	3.642575E-03	-1.013008E-05	2.230114E-06	-4.981776E-07
	12	G	2.601336E-03	1.212768E-04	3.345082E-03	-1.149402E-06	6.735852E-06	2 . 79655 1E -07
	13	Ĝ	3.465422E-03	5.202251E-04	1.635744E-03	-2.5787348-06	1.048503E-05	6.431204E-07
	14	Ğ	6.155133E-03	-2.190795E-04	3.221530E-03	1.550836E-07	9.8179428-06	-3.093197E-06
	15	G	7.573015E-03	3.462683E-05	6.384215E-03	-3.401904E-07	6. 106372E-06	3.870041E-06
	16	G	8.295239E-03	1.775431E-04	1.0165338-02	-1.238680E-07	3.468813E-06	2.436769E-07
	17	G	1.8838908-04	1.116003F-03	3.607105E-03	7.658319E-06	1.292958E-06	3.780297E-06
	18	G	2.520159E-03	1.452563E-03	3.306015E-03	3. A 10E-07	6.915171E-06	2.680514E-06
	19	G	3.389506E-03	1.495041E-03	1.502367E-03	1	1.032279E-05	1.6083328-06
	20	G	6.049879E-03	2.426247E-03	3.114081E-03	-9.018897E-07	9.421268E-06	4.803039E-06
	21	G	7.464842E-03	2.306107E-03	6.301683E-03	2.712189E-07	5.703863E-06	-1.811961E-06
	22	G	8.180256E-03	2.217531E-03	1.010038E-02	3.270496E-07	3.098450E-06	2.409085E-06
	23	G	4.492362E-05	2.917445E-03	3.874268E-03	-9.837999E-06	1.309378E-05	7.829146E-06
	24	G	1.619835E-03	3.779540E-03	2.005048E-03	-7.579506F06	1.3069978-05	<b>5.654356E</b> -06
	25	G	3.935870E-03	3.863700E-03	2.479615E-03	5.209567E-07	-1.618648E-06	2.310238E-07
	26	G	5.946405E-03	4.406878E-03	4.183184E-03	1.024342E-07	2.211608E-06	4.647593E-06
	27	G	7.662734E-03	4.379858E-03	6.628215E-03	1.478349E-06	3.386777E-06	3.561504E-06
	28	G	7.880453E-03	3.770632E-03	1.097783E-02	1.281308E-06	-1.305785E-06	-2.133547E-06
	29	G	1.040220E-03	5.239537E-03	4 . 32 1696E -03	-4.338168E-06	2.017904E-06	2.465446E-06
	30	G	3.022019E-03	5.626438E-03	4.670793E-03	-6.531711E-07	4 . 395 157E -06	6.161701E-06
	31	G	4.716753E-03	6.086056E-03	6.420556E-03	1.312515E-06	3 595380E-06	2.955261E-06
	32	G	5.690100E-03	5.620820E-03	9.620303E-03	3.6889512-06	4 . 5369 16E -07	9. <b>52489</b> 5E~06
	33	G	1.057742E-03	-2.916000E-03	1.221027E-03	4.767385E-06	6.5915252-06	3.2207492-06
	34	G	2.817280E-03	-3.751422E-03	2.631650E-03	-1.986628E-06	5.466528E-06	-1.014714E-05
	35	G	4.588864E-03	-4.034136E-03	4.263556E-03	-3.127766E-06	4.773350E-06	-3.388658E-06
	36	G	5.998182E-03	-3.637265E-03	6.333908E-03	-3.542973E-06	3.236321E-06	-5 974406E-06
	37	G	-9.294045E-04	-3.431863E-04	5.848109E-04	8.174896E-06	8.390783E-06	-8.465968E-06
	38	G	3.221425E-04	-1.004360E-03	1.057565E-C3	7.492603E-06	1.201588E-05	-9.22240*E-06
	39	G	4.132517E-03	-2.076190E-03	1.184926E-03	5.611288E-07	2.546930E-06	-7.809144E-07
	40	G	5.699775E-03	-2.285881E-03	2.732152E-03	-7.863357E-07	3.772638E-06	-1.647795E-07
	41	G	7.131111E-03	-1.997032E-03	5.200049E-03	-6.989783E-07	5.911997E-06	-9.112654E-07
	42	G	8.369905E-03	-1.392369E-03	7.530262E-03	1.932638E-07	5.907512E-07	6.864734E-06
	43	G	0.0	0.0	0.0	3.287392E-06	2.12?224E-06	-3.119583E-06
	44	G	1.556076E-03	0.0	0.0	-5.842959E-07	5.427316E-06	-1.726812E-06
	45	G	1.740762E-03	-6.943063E-05	1.221522E-03	-9.015041E-07	1.258937E-05	2.336133E-06
	46	G	4.621653E-03	-3.439130E-04	1.761608E-03	5.605381E-07	1.037102E-05	7.720665E-07
	47	G	£.643516E-03	-6.566002E-05	3.530230E-03	-4.482160E-07	6.065665E-06	2.806332E-06
	48	G	7.712494E-03	1.467740E-04	6.563402E-03	8.749364E-09	3.823225E-06	2.100144E-06
	49	G	0.0	1.066448E-03	0.0	-4.064011E-06	1.092319E-06	5.844192E-06
	50	G	1.454879E-03	1.460657E-03	0.0	-5.123336E-08	6.461083E-C6	5.874330E-06

ORIGINAL PAGE IS

SUBCASE 4

٠

8

.

F-7

MSDA THERMOELASTIC MODEL 5X5 2M. NEW SPIN AXIS W/BALLAST THERMOELASTIC BEHAVOIR MODEL

270 DEGREE ORBITAL POSITION (AVE. TEMP.)

SUBCASE 4

3

•

.

-

•

	D		5	P	L	A.	C	Ł	-	Ł	N		v	Ł	C		U	
--	---	--	---	---	---	----	---	---	---	---	---	--	---	---	---	--	---	--

.

POINT	ID.	TYPE	$\Delta x$ (inches)	∆y (inches)	∆z (inches)	Ox (radians)	0y (radians	) θz (radians)
• • • • • • • •	51	G	1.658101E-03	1.822939E-03	1. 106468E-03	-5.504534E-07	1.289772E-05	-9.798015E-07
	52	G	4.555274E-03	2.296895E-03	1.651208E-03	-2.427578E-06	1.021700E-05	2.937394E-07
	53	G	6.579232E-03	2.227827E-03	3.449789E-03	-8.941659E-07	5.825281E-06	-1.553206E-06
	54	Ĝ	7.639589E-03	2.168074E-03	6.499372E-03	-6.307320E-07	3.566567E-06	-3.870419E-07
	55	Ğ	-1.852379E-03	1.416806E-03	5.691610E-04	-9 017619E-06	1.024090E-05	1.551157E-05
	56	Ğ	-5.993231E-04	2.481434E-03	8.199703E-04	-8.153437E-06	1.4888898-05	1.3249458-05
	57	Ğ	4. 107051E-03	3.837582E-03	8.747396E-04	-2.301289E-06	-3.742430E-07	1.644104E-06
	58	G	5.539410E-03	4.2551162-03	2.545436E-03	-9.040024E-07	1.785629E-06	1.5136628-06
	59	G	6.886176E-03	4.160353E-03	5.104620E-03	-5.326503E-07	4.259807E-06	2.239918E-06
	60	G	8.043892E-03	3.694300E-03	7.559340E-03	-7.836042E-07	-8.630622E-07	-5.583978E-06
	ä1	G	5.231551E-04	4.427368E-03	7.944276E-04	-6.291233E-06	5.787304E-06	-5.942554E-06
	62	G	2.274541E-03	5.519211E-03	2.216408E-03	4 850046E-07	3.627196E-06	1.3546958-05
	62	G	4.042119E-03	6.043294E-03	3.953764E-03	1.923367E-06	2.795650E-06	4.8035198-06
	64	G	5.392379E-03	5.8198998-03	€. 172037E-03	2.4688928-06	1.317668E-06	7.8519638-06
	65	G	-2.739367E-03	2.041926E-03	5.935514E-03	-8.061516E-06	-1.076095E-05	1.470621E-05
	66	G	-4.314406E-03	2.252653E-03	8.484871E-03	2.100499E-06	- 1.662388E-05	1.301997E-05
	67	G	-6.237223E-93	1.333993E-03	9.790432E-03	7.615023E-06	-1.511175E-05	8.040430E-06
	68	G	-2.975276E-03	-2.591558E-04	5.899378E-03	4.3575662-06	- 1 . 1 152 18E -05	-9.591015E-06
	69	G	-4.55957 IE-03	1.250218E-04	8.433620E-03	-5.879660E-06	-1.682429E-05	-7.651481E-06
	70	G	-6.499218E-03	1.344081E-03	9.744035E-03	-8.578011E-06	- 1.5323538-05	-2.048640E-06
	71	G	-4.444701E-03	-8.752320E-04	4.2154LUE-03	7.5539058-06	- 1.076095E-05	1.4020978-05
	72	G	-7.228923F-03	-3.716887E-04	5.825930E-03	-5.414187E-08	- 1 . 662388E - 05	1.320307E-05
	73	G	-1.032124E-02	-1.381247E-04	7.373509E-03	8.354167E-07	-1.511175E-05	7.866970E-06
	74	G	-4.683032E-03	1.985877E-03	4.113312E-03	-9.756187E-06	- 1.115218E-05	-8.913850E-06
	75	G	-7.473564E-03	2.038194E-03	5.740854E-03	2.5660808-06	- 1.682429E-05	-7.857479E-06
	76	G	-1.058292E-02	1.963839E-03	7.290355E-03	-9.724239E-07	- 1.532953E -05	-1.870844E-06
	77	G	-3.680876E-03	4.340846E-04	1.436156E-03	2.326326E-06	-1.379364E-05	-2.920039E-06
	78	G	-3.844932E-03	4.400052E-04	1.320701E-03	-3.770377E-06	-1.428651E-05	5.315812E-06
	79	G	0.0	0.0	0.0	0.0	0.0	0.0
	80	G	0.0	0.0	0.0	0.0	0.0	0.0

ORIGINAL PAGE IS

-

-